
Fast Adaptive Hinging Hyperplanes

Qinghua Tao1,2, Jun Xu3, Johan A.K. Suykens2 IEEE Fellow and Shuning Wang1

Abstract— This paper proposes a fast algorithm for the
training of adaptive hinging hyperplanes (AHH), which is
a popular and effective continuous piecewise affine (CPWA)
model consisting of a linear combination of basis functions. The
original AHH incrementally generates new basis functions by
simply traversing all the existing basis functions in each dimen-
sion with the pre-given knots. Meanwhile, it also incorporates a
backward procedure to delete redundant basis functions, which
avoids over-fitting. In this paper, we accelerate the procedure
of AHH in generating new basis functions, and the backward
deletion is replaced with Lasso regularization, which is robust,
requires less computation, and manages to prevent over-fitting.
Besides, the selection of the splitting knots based on training
data is also discussed. Numerical experiments show that the
proposed algorithm significantly improves the efficiency of the
existing AHH algorithm even with higher accuracy and it also
enhances robustness in the given benchmark problems.

I. INTRODUCTION

System identification works by building a mathematical
model, which describes the intrinsic relationship with given
data. In applications, the relationships among the data are
usually described with different levels of nonlinearity. There-
fore, the choice of the mathematical model becomes crucial,
since the chosen model has to be flexible enough to describe
the given data. At the same time, the identification method
to estimate the parameters of the model is also required to be
effective with respect to efficiency, accuracy and robustness.

In nonlinear systems, continuous piecewise affine (CPWA)
functions are popular for modeling, since any continuous
function can be arbitrarily approximated by a CPWA function
in a compact set. A CPWA function f(x) equals different
affine function fk(x) in different sub-region Ωk within Ω =⋃

Ωk,
◦
Ωk1

⋂ ◦
Ωk2

= ∅, ∀k1 6= k2, where
◦
Ωk is the interior

of Ωk with fk1
(x) = fk2

(x),∀x ∈ Ωk1

⋂
Ωk2

[1]. However,
this formula is ineffective to apply. Therefore, compact
representations for CPWL have been proposed. They are

*This work is jointly supported by the National Natural Science Founda-
tion of China (61473165, 61134012), Chinese Scholarship Council (CSC)
and Science and Technology Innovation Committee of Shenzhen Municipal-
ity (JCYJ2017-0811-155131785). Johan Suykens acknowledges support by
Research Council KU Leuven CoE PFV/10/002 (OPTEC), FWO projects:
G0A4917N, G.088114N, ERC Advanced Grant E-DUALITY (787960).

1,2Qinghua Tao is with TNList, Department of Automation, Tsinghua
University, Beijing, 100084, China, and with STADIUS, ESAT, KU Leuven,
Leuven, 3001, Belgium taoqh14@mails.tsinghua.edu.cn

3Jun Xu is with School of Mechanical Engineering and Au-
tomation, Harbin Institute of Technology, Shenzhen, 518055, China
xujunqgy@hit.edu.cn

2Johan A.K. Suykens is with STADIUS, ESAT, KU Leuven, Leuven,
3001, Belgium johan.suykens@esat.kuleuven.be

1Shuning Wang is with TNList, Department of Au-
tomation, Tsinghua University, Beijing, 100084, China
swang@mail.tsinghua.edu.cn

usually described in a linear combination of basis functions,

f(x) =

M∑
m=1

amBm(x), (1)

where f(x) and Bm(x) : Rn → R is also CPWA.
A series of CPWA models have been established in

recent years [2], [3], [4], [5]. Among these models, hinging
hyperplane (HH) has attracted extensive attention due to
the model simplicity and explicit geometric meaning [2],
[6]. However, HH cannot represent all the CPWA functions
in more than two dimensions. In [4], Wang proposed the
generalized hinging hyperplane (GHH) model, which can
represent any CPWA function in all dimensions. The strong
representation ability of GHH leads to complicated structure.
To make a tradeoff between model complexity and flexibility,
adaptive hinging hyperplanes (AHH) was proposed, and it
has shown excellent performance in function approximation,
system identification, predicative control, etc [5], [7].

AHH was originally constructed as an analogy to multi-
variate adaptive regression splines (MARS), which is pro-
posed for flexible regression modeling and can be regarded
as a generalization of recursive partitioning regression [8]. It
has been shown that AHH has more flexibility than MARS
with piecewise linear splines. AHH can also be regarded as
a special case of GHH with simpler model structure.

Analogous to MARS, the existing AHH is identified
through recursively partitioning the domain, and mainly
consists of two parts, which are the forward and backward
steps. In the forward procedure, the domain is progressively
partitioned and new basis functions are generated incremen-
tally. Specifically, it sequentially chooses one of the existing
basis functions as the root, and then traverses the candidate
knots to select the one with the largest decrease in fitting
error to further split the domain, generating two new basis
functions. To avoid over-fitting, the backward step tentatively
checks all the basis functions and deletes the redundant ones.

In this paper, we develop a fast adaptive hinging hy-
perplanes (FAHH) algorithm, which effectively reduces the
traverse in the forward procedure and replaces the backward
procedure with Lasso regularization to further improve the
efficiency and also enhance the accuracy and robustness.
Besides, the knots selection is also discussed. Numerical
experiments show that FAHH ouperforms the existing AHH
in efficiency while help to approach higher accuracy in both
function approximation and dynamic system identification.

The rest of this paper is organized as follows. In Section
2, the preliminaries are presented. Section 3 introduces the
proposed FAHH algorithm, which is tested in Section 4 with

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 1482

numerical experiments. Section 5 concludes the paper.

II. PRELIMINARIES

A. Model of Adaptive Hinging Hyperplanes

MARS was first introduced by Friedman in [8], and can
be considered as a generalization of recursive partitioning
regression. The basic idea of MARS is to partition the
entire domain recursively, assigning a basis function for
each sub-region. Then the approximation model of MARS is
constructed as a linear combination of these basis functions,
which are expressed in terms of the product of truncated
power spline function [±(x(v) − β)]q+, where x ∈ Rn, [·]+
denotes the positive part of the expression, q is the order
of univariate spline functions, x(v) is the splitting variable
located in the v-th dimension and β is the splitting knot.

The order q of the spline functions in MARS is usually
set as q = 1. When q = 1, MARS is formulated as

f(x) = a0 +

M∑
m=1

am

Km∏
k=1

[smk · (x(vmk)− βmk)]+, (2)

where smk = ±1, Km is the number of the splits that give
rise to Bm(x) and Km ≤ n, since the splitting variables
are required to be distinctive. The truncated power spline
function of MARS is equivalent to max{0,±(x(vmk)−β)},
which resembles the HH models. Inspired by this, model (2)
is extended to obtain a generalized hinging function based
on nonadditive MARS model, i.e., AHH. The model of AHH
is constructed by converting product operator “

∏
” to “min”,

hence the basis function Bm(x) of AHH is

min
k∈{1,...,Km}

max{0, smk · (x(vmk)− βmk)}. (3)

It is shown that AHH can partition the domain into more
subregions than MARS and AHH also achieves higher testing
accuracy in [5]. A toy example is conducted for y =
sin(0.83πx1) cos(1.25πx2) in Fig 1, where the identified
AHH model brings more flexibility than MARS.

-1.5

1

-1

-0.5

0.5 1

0

y

0.5

0.5

x2

0

1

x1

0
-0.5

-0.5
-1 -1

-1.5

1

-1

-0.5

0.5 1

y

0

0.5

x2

0.5

0

x1

1

0
-0.5

-0.5
-1 -1

Fig. 1. The identification results of MARS (left figure) and AHH (right
figure) based on the fixed settings with the same identification algorithm.

Although AHH is derived based on MARS, it still belongs
to the family of CPWA with hinging basis, which is basically
formulated as hinge-shaped functions (HH), say

±max{0, Lm(x)},m = 1, . . . ,M (4)

where Lm is a linear function [2]. To improve the representa-
tion ability of HH, GHH model is proposed in [4] with global

representation ability in Rn. In fact, AHH is equivalent to a
special case of GHH model, whose basis function is

±max{Lm,1(x), . . . , Lm,km(x)},m = 1, ...,M, (5)

where km is the number of linear functions in Bm(x).
AHH has been proven to be able to approximate any

continuous function in a compact set. Due to these properties,
it is worthy of shading more light on the research of AHH.

B. Identification of AHH

The model of AHH is formulated as follows

f(x) = a0+

M∑
m=1

am min
k∈{1,...,Km}

max{0, smk(x(vmk)−βmk)},

(6)
where x ∈ Rn and Km ≤ n. Similar to MARS, the
identification can be interpreted as a tree where each node
corresponds to a basis function. Meanwhile, the split of the
tree (domain) is used to further partition the corresponding
node (sub-region) and incrementally generate new basis
functions which yield the best fit. The measurement of fit
in MARS and AHH is a modified form of the generalized
cross validation (GCV) criterion originally proposed in [9]

LOF(f̂M0) =
1

N

∑N
i=1(yi − f̂M0

(xi))
2

(1− C̃(M0)/N)2
, (7)

where M0 is the current number of basis functions, B ∈
RM0×N is data matrix [8], C̃(M0) = trace(B(BTB)BT)+
1 + dM0, and d is the smoothing parameter depending on
the problems. The same as [5], we set d = 2 in this paper.

In the forward procedure, all the existing basis functions
are traversed to be taken as the parental basis, and then all
the pre-given candidate knots in each dimension are searched
to find the one with the lowest LOF to generate two new
basis functions. To prevent over-fitting, the backward step is
then introduced to tentatively delete the basis functions to
reduce redundancy. The details are given in Algorithm 1.

III. FAST ADAPTIVE HINGING HYPERPLANES

AHH model shows great flexibility in performance, but its
identification procedure is prohibitive in efficiency due to the
exhaustive search. In the proposed FAHH algorithm, inspired
by [11], the exhaustively complete search is modified to be
more concise: only the most promising trials are kept and
some potentially redundant searches can be omitted to reduce
computational burden. Meanwhile, the backward procedure
is replaced with Lasso regularization to further increase the
efficiency with robustness. The data-based knots selection
method is also discussed.

A. Reduction In Traverse

Given the data {xi}Ni=1 and M = 2I − 1 where I is the
number of iterations and {am}Mm=1 is obtained by LS method
whose computation is proportional to CLS = NM2. We may
assume that there are J candidate knots in each dimension.

1483

Algorithm 1: Adaptive Hinging Hyperplanes
Input: Mmax; βk ∈ {β1, ..., βJk

}, k = 1, ..., n.
Output: The identified AHH model f̂(x).
• Forward Stepwise
Step 1: Set B1(x) = α1 and M = 1.
Step 2: Sequentially select Bm(x) and v from

Loop 1: Bm(x),m ∈ {1, . . . ,M}
Loop 2: v ∈ {1, . . . , n} & v /∈ {vmk|k = 1, . . . ,Km}

with candidate knot βk ∈ {β1, ..., βJk
}. Let

f̂(x) =

M∑
i=1

aiBi(x)+aM+1BM+1(x)+aM+2BM+2(x),

and obtain {ai}M+2
1 by least squares (LS) method.

Step 3: Choose B∗m(x), x(v∗) and β∗ with the lowest
LOF∗, such that
BM+1(x) = min{B∗m(x),max{0,x(v∗)− β∗}}
BM+2(x) = min{B∗m(x),max{0,−(x(v∗)− β∗)}}
Step 4. M = M + 2. If M < Mmax, go to step 2.
• Backward Stepwise
Step 1: J∗ = {1, ...,M}; LOF∗.
Step 2: Sequentially select M0 from {M, ..., 2}, and
then sequentially delete one basis function from
{B2(x), ..., BM0

(x)}. Record the lowest LOF∗ with
corresponding basis functions indexed as J∗.
Step 3: f̂(x) = a1α1 +

∑
i∈J∗ aiBi(x)

All the candidate knots 1 ≤ k ≤ J in each dimension x(v)
based on the existing basis function Bm(x), i.e.,

Loop 1: m ∈ {1, . . . ,M}
Loop 2: v ∈ {1, . . . , n}, (8)

are traversed. Thus, in the I-th iteration, the computation is
proportional to nJMCLS = nJNM3. For a large-scale data
set (large nNJ) and an adequate complexity of the model
(large M), the training time of AHH becomes prohibitive.
Inspired by [11], the core idea is to alter Loop 1 and Loop
2 from the exhaustive search to a more concise way.

1) Priority queue among basis functions: In Loop 1,
the existing AHH algorithm sequentially chooses one of
the existing basis functions {Bm(x)}Mm=1 as the parental
basis to generate two new basis functions BM+1(x) and
BM+2(x) with the minimal LOFM (m). Hence, LOFM (m)
is computed for all the M existing basis functions with
m∗ = arg min1≤m≤M LOFM (m), where the optimal split-
ting variable and knot are denoted as x(v∗) and β∗.

With iterations going on, LOFM (m) does not change
dramatically by adding new basis functions. Thus, in later
iterations the basis functions resulting in lower LOF are
more likely to bring a better approximation in the next
iteration. The idea is then to construct the parental basis
by selecting some of such existing basis functions. Consider
{LOFM (k)}Mk=1 sorted in ascending order and let RM (m)

be the ranking order of LOFM (k) in the sorted list,

RM (m) = Sort
LOFM (m)

{LOFM (k)}Mk=1. (9)

Smaller RM (m) means that the corresponding basis function
Bm(x) has more potential to bring a better result when
being chosen as the parental basis. Differently, only the
first K basis functions ranked in this list are selected to
be the parental basis. For BM+1(x) and BM+2(x), we set
LOFM (M + 1) = LOFM (M + 2) = −∞ to ensure that the
new basis functions are selected as the parental basis at least
once, and then update {RM (m)← RM (m)− 2}Mm=1.

However, the basis functions with high LOFM might lose
the chance to be tried as the parental basis, while still having
some potentials to bring a better result. This problem can be
solved by introducing an aging factor β in the priority queue,

PM (m) = RM (m) + β(I − Im) (10)

where Im is the iteration at which LOFM (m) was last
computed. Thus it can provide some opportunities for these
basis functions to be selected. Hence, Loop 1 becomes

Loop 1∗: If M < K, m ∈ {1, . . . ,M}
If M ≥ K, m ∈ {Sorti{PM (k)}Mk=1}Ki=1.

(11)
2) Splitting saving among iterations: In Loop 2, the

candidate knots have to be recomputed in each iteration over
all dimensions. In Section III-A.1, the underlying assumption
motivating the priority queue is that the approximation does
not dramatically change with iterations going on. Thus, the
optimal splitting variable x(v∗) of the parental basis Bm∗(x)
should not substantially change either.

This idea can be achieved with two parameters (lm, vm).
lm is the last iteration at which the knots are computed for
parental basis Bm(x) over all dimensions 1 ≤ v ≤ n with
v∗ = vm. For the first K functions in PM (m), the exhaustive
search over all dimensions 1 ≤ v ≤ n only conducts if

I − lm > h (12)

where h is the interval between two iterations at which the
complete search over all dimensions is conducted. Then we
update lm ← I and vm ← v∗. If condition (12) does not
hold, the computation is conducted only in dimension v =
vm. Hence, Loop 2 becomes

Loop 2∗: If I − lm > h, v ∈ {1, . . . , n}
If I − lm ≤ h, v = vm.

(13)

The index h quantifies the frequency of the complete
search over all dimensions. The complete traverse is done
only if it has been more than h iterations since it was
last conducted with complete traverse. For the new basis
functions, we set lM+1 = lM+2 = −∞ so that the complete
search can be calculated in the next (I + 1)-th iteration, and
then update M = M + 2 and I = I + 1 [11]. Larger h
and smalled K bring less computation. When h = 1 and
K = M , it degenerates to the original AHH.

1484

B. Lasso Regularization

To some extent, the greedy incremental design of basis
functions is to deliberately over-fit the data with an exces-
sively large model. Then, a backward stepwise deletion is
incorporated to trim the model back to a proper size, which
can also be achieved by introducing Lasso regularization.

Lasso is a shrinkage and selection method for regression.
It minimizes the sum of squared errors with a bound on
the sum of the absolute values of the coefficients, which can
induce coefficients to be exactly 0 [12]. By introducing Lasso
regularization, the redundant basis functions can be removed
more efficiently. Then, the problem is formulated as

min
1

2

N∑
i=1

(
yi −

M∑
m=1

amBm(x)
)2

+ λ

M∑
m=1

|am|, (14)

where Bm(x) is the generated basis function and λ > 0.
With Lasso regularization, the whole model is optimized
with robustness. The strategy of reducing traverse in Section
III-A may bring a slight decrease in accuracy due to the
incomplete searching mechanism, while Lasso regularization
can provides possibilities improve accuracy.

The problem with Lasso regularization can be efficiently
solved with the alternating direction method of multipliers
(ADMM) which is designed to solve convex optimization
problems by breaking them into smaller pieces [13], [14]. In
the existing backward procedure, the computational burden
increases evidently with the increase of model complexity
and data dimension, while ADMM in our approach does not.

C. Knots Selection

The existing AHH algorithm uniformly selects the splitting
knots in each dimension. In FAHH, we provide an alternative
to utilize the training data, i.e., the candidate knots can be

β1 = xj(k), . . . , βJk
= xj+w(Jk−1)(k), (15)

where w is the sampling interval among the data. Equation
(15) requires Bm(xj) > 0 [8], [10]. With identification going
on, the number of qualified splitting knots with Bm(xj) > 0
decreases, which also accelerates the identification.

In summary, the framework of the proposed FAHH algo-
rithm is presented in Algorithm 2.

D. Computation analysis

The computation reduced in FAHH is mainly controlled
by the reduced traverse and Lasso regularization. Similarly to
the analysis in [11], we introduce the proportion that reduces
the total computation to compare with the existing AHH.

In reducing the traverse of parental basis functions and
dimensions, the computation is controlled by K and h. When
K =∞ and h = 1, it degenerates to the original AHH.

For the first K elements in the priority queue, the opti-
mizations over all dimensions are performed with probability
1/h. The expected computation can be reduced proportion-
ally from Kn to 3n+(K−3(1−1/h+n/h)), which brings
the average computational improvement ratio

C(h,K) = (3 + (K − 3)((1− 1/h)/n+ 1/h))/K. (16)

Algorithm 2: Fast Adaptive Hinging Hyperplanes
Input: Mmax; K; h; λ; βk ∈ {β1, . . . , βJk

} where βk
is from the training data, k = 1, . . . , n.

Output: The identified AHH model f̂(x).
• Forward Stepwise
Step 1: Set B1(x) = α1 and M = 1.
Step 2: Loop 1∗→ sequentially select Bm(x).
Step 3: Loop 2∗→ sequentially select v with βk. Similar
with AHH, apply LS method to obtain {ai}M+2

i=1 .
Step 4: Choose B∗m(x), x(v∗) and β∗ with the lowest
LOF∗ obtain BM+1 and BM+2 analogously. Step5:
Update information in Loop 1∗ and Loop 2∗.
Step 6. M = M + 2, If M < Mmax, go to step 2.
• Lasso Regularization
Apply ADMM to equation (14) and obtain f̂(x).

As mentioned in Section III-A, in each iteration I , the
computation of LS method is proportional to nJNM3. Thus,
the total computation of I iterations is proportional to

W0 = nJN
(M(M+1)

2

)2
. (17)

Hence, for m ≤ K, the computation proportion W1 is the
same as that for the original AHH, i.e.,

W1 = nJN
(K(K+1)

2

)2
. (18)

When m > K, the expected computation becomes propor-
tional to nJNM2K · C(h,K) according to equation (16).
For m > K, the computation is proportional to

W2 = nJNK · C(h,K)(M(M + 1)(2M + 1)/6
−K(K + 1)(2K + 1)/6).

(19)

Thus, the total computation of FAHH is reduced by ratio
R = (W1 + W2)/W0 compared to AHH. The computation
in FAHH increases with M3 instead of M4 in AHH. De-
creasing K or increasing h manages to relieve computational
burden, but it may affect the accuracy.

In AHH, the backward procedure repeats (M−1)+(M−
2) . . . + 1 operations of LS method, which makes the total
computation proportional to WB = N((M − 1)M/2)2 −
N((M − 1)M(2M − 1)/6). In FAHH, the backward proce-
dure is replaced with Lasso regularization, which is solved
efficiently with ADMM algorithm. Since the computation of
ADMM algorithm differs in various problems, we compare
the computational cost with numerical tests.

For knots selection based on the training data, the restric-
tion Bm(xj) > 0 shrinks the number of qualified knots
during the identification process. Thus, the computation
varies with different data sets. A toy example is illustrated
in Section IV-A.

IV. NUMERICAL TESTS

In this section, we evaluate FAHH on problems of function
approximation and dynamic system identification. The nu-
merical experiments compare FAHH with the existing AHH
and the popular CPWA models of HH and GHH, which are

1485

with the same settings in [5]. All experiments are performed
on Matlab R2017 with Intel i7-3770, 3.40GHz CPU, 16G
RAM and Windows 10.

A. Evaluation of the proposed strategies

We first present a toy example to evaluate the strategies in
FAHH. Consider the test function y1 = 10 sin(πx1x2) +
20(x3 − 0.5)2 + 10x4 + 5x5 + 0x6, x ∈ [−1, 1]6, tested
by [1], [5], [15]. The relative squared sum of error
(RSSE) is used to evaluate the performance i.e., RSSE =∑N

t=1(y(t)− ŷ(t))2/
∑N

t=1(y(t)− y(t))2. The running time
is denoted as T (s), and N is the size of data. We set M = 40.
Each test is repeated 50 times, and the average is shown.
The training and testing data are randomly generated with
N = 2000. The results of AHH are RSSE0 and T0. To
enhance the performance, all the data are normalized in this
paper.

We try different K and h to do the test. Table I shows
that smaller K and large h can relieve computation burden,
where RE = RSSE /RSSE0 and RT = T/T0, but may
bring lower accuracy. When the efficiency is considered as
priority, this strategy outperforms the existing AHH.

TABLE I
PERFORMANCE ON y1 .

K = 30, h = 1 K = M,h = 10 K = 30, h = 10
RE 0.0065/0.0064 0.0069/0.0064 0.0070/0.0064
RT 4.85/5.51 2.76/5.51 2.58/5.51

We apply ADMM to solve FAHH with Lasso regulariza-
tion, with K = 30, h = 10 and λ ∈ {0.1, 1, 5, 10}. We only
compare the backward deletion TBack to Lasso TLasso.

TABLE II
PERFORMANCE WITH LASSO REGULARIZATION ON y1 .

M = 40
N = 1000 N = 2000

RSSE /RSSE0 0.0106/0.0172 0.0058/0.0064
TLasso/TBack 0.04/0.27 0.04/0.33

Table II illustrates that Lasso regularization improves the
accuracy and efficiency. Compared to Table I (M = 40, N =
2000), the accuracy sacrificed due to the traverse reduction is
compensated with Lasso. Besides, we use data-based method
to select knots with w = 100. RSSE decreases to 0.0053,
and T to 1.62s. This strategy provides another improvement,
but this property cannot be always guaranteed in all cases.

B. Tests on function approximation

The tests on function approximation are from [1], [5], say
y1 and y2, where y1 is the explained in Section IV-A and

y2 =
ev1(x)

1 + ev1(x)
+

ev2(x)

1 + ev2(x)
+

ev3(x)

1 + ev3(x)
, x ∈ [0, 1]10.

The details of v1(x), v2(x) and v3(x) can be found in [5].
K = 30, h = 10 are set. The values in bold have the highest

accuracy, and the underlined ones hold the lowest running
time. Table III illustrates that FAHH performs with the

TABLE III
PERFORMANCE OF RSSE(T) WITH M = 50 AND N = 2000.

FAHH AHH HH GHH
y1 0.0050(2.23) 0.0061(10.24) 0.1290(14.61) 0.1173(24.15)
y2 0.1807(2.91) 0.1819(11.85) 0.2131(2.78) 0.2118(16.86)

highest accuracy and significantly improves the efficiency of
AHH. The performance of HH and GHH may be prohibitive,
since its gradient-based algorithm greatly relies on a good
initial point and the learning step. To enhance the experiment,
we take different M and N to compare AHH and FAHH.

TABLE IV
PERFORMANCE (FAHH/AHH) WITH DIFFERENT M AND N .

M = 30 M = 40 M = 50
RSSE

y1 0.0059/0.0065 0.0053/0.0064 0.0050/0.0061
y2 0.1942/0.1981 0.1822/0.1903 0.1807/0.1819

T
y1 1.21/2.56 1.62/5.51 2.23/10.24
y2 1.38/2.92 2.25/6.36 2.91/11.85

N = 500 N = 1000 N = 2000
RSSE

y1 0.0149/0.0198 0.0078/0.0122 0.0053/0.0064
y2 0.2218/0.2661 0.1967/0.2090 0.1822/0.1903

T
y1 0.39/3.17 0.75/4.28 1.62/5.51
y2 0.42/3.38 0.95/4.64 2.25/6.36

Table IV shows that the efficiency of FAHH becomes
more significant with M increasing. It also illustrates that
the accuracy advantage of the proposed FAHH algorithm is
more evident with less training data .

C. Application to dynamic system identification
This section compares the performance of the algorithms

in dynamic system identification with benchmark nonlinear
dynamic systems of NARX model [16] and the real data
from coupled electric drive data set [19], [20].

System 1: Consider the nonlinear system [5], [17], [18]

y(t) =
y(t− 1)y(t− 2)y(t− 3)u(t− 2)(y(t− 3)− 1)

1 + y2(t− 2) + y2(t− 3)

+
u(t− 1)

1 + y2(t− 2) + y2(t− 1)
.

The system is excited by a random signal u(t) (1 ≤ t ≤
800) uniformly distributed in [−1, 1] with a noise from
N (0, 0.052). The regression vector is set as x = [y(t −
1) y(t − 2) y(t − 3) u(t − 1) u(t − 2)]T . We set M = 50,
k = 30, h = 1 and w = 100. Fig 2 shows the simulated
outputs of the round at which AHH and FAHH both achieve
preferable estimation.

In some of the tests, AHH shows instability in prediction,
where the simulated output fluctuates heavily in some re-
gions. A more comprehensive comparison is the conducted

1486

0 100 200 300 400 500 600 700 800

t

-1.5

-1

-0.5

0

0.5

1

y

True

AHH

FAHH

Fig. 2. For AHH and FAHH, the RSSE is 0.0895 and 0.0132 respectively,
while the running time T is 3.45s and 0.66s.

with 300 repeats in different settings. FAHH maintains
stability but AHH has 5 unstable runs, which mainly owns
to the introduction of Lasso regularization.

System 2: The CE8 coupled electric drives [19] consists
of two electric motors that drive a pulley using a flexible
belt. We use the uniform data from [20], which consists of
500 evaluations. We train FAHH model with the first 300
evaluations and test it with the rest data. The performance is
shown in Fig 3, where M = 10 and w = 80. We choose x =
[y(t−1) · · · y(t−5) u(t−1) · · · u(t−5)]T as the regression
vector. When we reset M = 15, FAHH still outperforms
AHH, where the corresponding RSSE is 0.0034 and 0.0042,
and running time T is 0.23s and0.81s for FAHH and AHH
respectively. Another point to be noticed is that AHH and
FAHH can select the variables, which help to explore proper
regression vector. In this test, it shows that only with x =
[y(t−1) y(t−2); y(t−3) u(t−3) u(t−4) u(t−5)]T FAHH
and AHH still achieve similar results, where the RSSE is
0.0034 and 0.0047 respectively.

0 50 100 150 200 250 300

0

2

4

Training Data

0 50 100 150 200
-1

0

1

2

3
Testing Output

Real Output

AHH

FAHH

Fig. 3. For AHH and FAHH, the RSSE is 0.0046 and 0.0041, while the
running time T is 0.26s and 0.06s respectively.

V. CONCLUSIONS
AHH is a popular CWPA model consisting of a linear

combination of basis functions, which are incrementally

generated by the complete traverse in forward procedure
combined with backward deletion. In this paper, we propose
FAHH algorithm to accelerate the traverse in the forward pro-
cedure by skipping the potentially redundant searches with
a heuristic strategy, while the backward deletion is replaced
with Lasso regularization to further improve efficiency and
guarantee accuracy with robustness. Besides, the data-based
selection of the splitting knots is also discussed. Numerical
experiments verify that the proposed FAHH algorithm signif-
icantly improves the efficiency of existing AHH with higher
accuracy and it also enhances robustness.

REFERENCES

[1] X. Huang, J. Xu, and S. Wang, “Nonlinear system identification with
continuous piecewise linear neural network”, Neurocomputing, vol. 77,
no. 1, pp. 167-177, 2012.

[2] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation”, IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999-1013, 1993.

[3] P. Julian, A. Desages, and O. Agamennoni, “High-level canonical
piecewise linear representation using a simplicial partition”, IEEE
Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 46, no. 4, pp. 463-480, 1999.

[4] S. Wang and X. Sun, “Generalization of hinging hyperplanes”, IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4425-4431,
2005.

[5] J. Xu, X. Huang, and S. Wang, “Adaptive hinging hyperplanes and its
applications in dynamic system identification”, Automatica, vol. 45,
no. 10, pp. 2325-2332, 2009.

[6] X. Huang, S. Mehrkanoon, and J. A. K. Suykens, “Support vector
machines with piecewise linear feature mapping”, Neurocomputing,
vol. 117, pp. 118-127, 2013.

[7] J. Xu, X. Huang, X. Mu, and S. Wang, “Model predictive control
based on adaptive hinging hyperplanes model”, Journal of Process
Control, vol. 22, no. 10, pp. 1821-1831, 2012.

[8] J. H. Friedman, “Multivariate adaptive regression splines”, The annals
of statistics, pp.1-67, 1991.

[9] P. Craven and G. Wahba, “Smoothing noisy data with spline func-
tions”, Numerische Mathematik, vol. 31, pp. 377-403, 1979.

[10] J. H. Friedman and B. W. Silverman, “Flexible parsimonious smooth-
ing and additive modeling”, Technometrics, vol. 31, no. 1, pp. 3-21,
1989.

[11] J. H. Friedman, “Fast MARS”, Technical Report, Stanford University,
1993.

[12] R. Tibshirani, “Regression shrinkage and selection via the lasso”,
Journal of the Royal Statistical Society, Series B (Methodological),
pp. 267-288, 1996.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers”, Foundations and Trends in Machine learning,
vol. 3, no. 1, pp. 1-122, 2011.

[14] N. Parikh and S. Boyd, “Proximal algorithms”, Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 127-239, 2014.

[15] V. Cherkassky, D. Gehring and F. Mulier, “Comparison of adaptive
methods for function estimation from samples”, IEEE Transactions
on Neural Networks, vol. 7, no. 4, pp. 969-984, 1996.

[16] J. Sjöberg, Q Zhang, L. Ljung, et al, “Nonlinear black-box modeling
in system identification”, Automatica, vol. 31, no. 12, pp. 1671-1724,
1995.

[17] K. S. Narendra, and K. Parthasarathy, “Identification and Control of
Dynamical Systems Using Neural Networks”, IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 4-27, 1990.

[18] J. Roll, A. Nazin and L. Ljung, “Nonlinear system identification via
direct weight optimization”, Automatica, vol. 41, no. 3, pp. 475-490,
2005.

[19] P. E. Wellstead, “Introduction to physical system modeling”, Academic
Press, London, UK, 1979.

[20] T. Wigren and M. Schoukens, “Coupled Electric Drives Data Set
and Reference Models”, Technical Report, Department of Information
Technology, Uppsala University, 2017.

1487

