



# Efficiency of micro-macro acceleration for scale-separated SDEs

Hannes Vandecasteele<sup>1</sup>, Przemysław Zieliński<sup>1</sup> and Giovanni Samaey<sup>1</sup>

<sup>1</sup>KU Leuven Hannes.Vandecasteele@cs.kuleuven.be

#### **Problem Statement**

Many stochastic systems have an inherent multiscale nature due to a time-scale separation  $\varepsilon$ 

 $dX = -(2X + Y)dt + AdW_x$  $dY = -\frac{1}{\varepsilon}(Y^3 - Y)dt + \frac{1}{\sqrt{\varepsilon}}dW_y$ 

When  $\varepsilon \ll 1$ , explicit methods are very inefficient. Averaging out the fast mode Y yields an approximate

#### Micro-macro acceleration<sup>11</sup>



## A tri-atom molecule

Consider a simple slow-fast molecule

$$dx_{a} = -\frac{\partial V}{\partial x_{a}}dt + \sqrt{2\beta^{-1}}dW_{x_{a}}$$
$$dx_{c} = -\frac{\partial V}{\partial x_{c}}dt + \sqrt{2\beta^{-1}}dW_{x_{c}}$$
$$dy_{c} = -\frac{\partial V}{\partial y_{c}}dt + \sqrt{2\beta^{-1}}dW_{y_{c}}$$



- Time t
- 1. Simulate the Monte Carlo ensemble  $(X_j^n)_j$  at time  $t^n$  over K microscopic steps of small step size  $\delta t$

 $dX_j^{n,k+1} = X_j^{n,k} + a(X_j^{n,k})\delta t + b(X_j^{n,k})\delta W$ 

2. Record the slow state functions of interest  $R_l$  at every time step

 $m_l^{n,k} = \mathbb{E}[R_l(x)], \ l = 1, \dots, L$ 

3. Extrapolate these states over a larger time step  $\Delta t$ 

$$\mathbf{m^{n+1}} = \mathbf{m^n} + \frac{\Delta t}{K\delta t} (\mathbf{m^{n,K}} - \mathbf{m^n})$$

4. Find a new distribution at time  $t^{n+1} = t^n + \Delta t$ , consistent with  $\mathbf{m^{n+1}}$ , minimizing the relative entropy

$$\varphi(x) = \arg\min_{\varphi(x)} \int_{G} \varphi(x) \ln\left(\frac{\varphi(x)}{\pi(x)}\right) dx.$$

This method converges to the exact dynamics when  $\delta t, \Delta t \to 0$  and  $L \to \infty$ , and that the extrapolation stability bound is independent of  $\delta t$  and  $\varepsilon^{[3]}$ 



With a bimodal potential energy function

$$V = \frac{1}{2\varepsilon} \left( (x_a - 1)^2 + (r_c - 1)^2 \right) + \frac{k}{2} \left( \left( \theta - \frac{\pi}{2} \right)^2 - \delta \theta^2 \right)$$





- For  $\varepsilon \approx 1$  direct methods are accurate and efficient
- For intermediate  $\varepsilon$ , explicit methods are still expensive and the averaged model is inaccurate



### **Numerical Results**

For moderate  $\varepsilon$ , micro-macro acceleration removes the modelling error, while taking larger time steps than the microscopic integrator  $\delta t$ 





**Goal**: remove the modelling error while dealing with the inherent multiscale nature

stochastic differential equations. SIAM Journal on Numerical Analysis, 2017, 55.6: 2745-2786.
[2] PAVLIOTIS, Grigoris; STUART, Andrew. Multiscale methods: averaging and homogenization. Springer Science & Business Media, 2008.
[3] DEBRABANT, Kristian; SAMAEY, Giovanni; ZIELINNSKI, Przemysław; Study of micro-macro acceleration schemes for linear slow-fast stochastic differential equations with additive noise, In preparation.

[4] LEGOLL, Frédéric; LELIEVRE, Tony. Effective dynamics using conditional expectations. Nonlinearity, 2010, 23.9: 2131.

