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1KU Leuven
Hannes.Vandecasteele@cs.kuleuven.be

Problem Statement

Many stochastic systems have an inherent multiscale
nature due to a time-scale separation ε

dX = −(2X + Y )dt+AdWx

dY = −1

ε
(Y 3 − Y )dt+

1√
ε
dWy

When ε � 1, explicit methods are very inefficient.
Averaging out the fast mode Y yields an approximate
model for the slow mode X [2]

dX = −2Xdt+AdW
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For ε h 1 direct methods are accurate and efficient

For intermediate ε, explicit methods are still expen-
sive and the averaged model is inaccurate

0 1 2 3 4 5 6

−2

−1

0

1

2

Time[s]

X, Y

ε = 0.1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

2

4

6

8

X

Slow Histogram

microscopic model
averaged model

Goal: remove the modelling error while dealing with
the inherent multiscale nature

Micro-macro acceleration[1]

1. Simulate the Monte Carlo ensemble (Xn
j )j at time

tn over K microscopic steps of small step size δt

dXn,k+1
j = Xn,k

j + a(Xn,k
j )δt+ b(Xn,k

j )δW

2. Record the slow state funtions of interest Rl at every
time step

mn,k
l = E[Rl(x)], l = 1, . . . , L

3. Extrapolate these states over a larger time step ∆t

mn+1 = mn +
∆t

Kδt
(mn,K −mn)

4. Find a new distribution at time tn+1 = tn +∆t, con-
sistent with mn+1, minimizing the relative entropy

ϕ(x) = arg min
ϕ(x)

∫
G

ϕ(x) ln

(
ϕ(x)

π(x)

)
dx.

This method converges to the exact dynamics when
δt,∆t → 0 and L → ∞, and that the extrapolation
stability bound is independent of δt and ε[3]

Numerical Results

For moderate ε, micro-macro acceleration removes the
modelling error, while taking larger time steps than the
microscopic integrator δt
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A tri-atom molecule

Consider a simple slow-fast molecule

dxa = − ∂V
∂xa

dt+
√

2β−1dWxa

dxc = − ∂V
∂xc

dt+
√

2β−1dWxc

dyc = − ∂V
∂yc

dt+
√

2β−1dWyc

B A

C

xa

(xc, yc)

θ

With a bimodal potential energy function

V =
1

2ε

(
(xa − 1)2 + (rc − 1)2

)
+
k

2

((
θ − π

2

)2
− δθ2

)

Effective dynamics for θ[4]:
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Effective dynamics for (A− C)2:
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