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Abstract 16 

The Hippo pathway and its downstream effectors, the transcriptional co-activators YAP and TAZ, 17 

regulate organ growth and cell plasticity during animal development and regeneration. 18 

Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs 19 

with poor or compromised regenerative capacity, such as the adult heart, and the liver and 20 

intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side 21 

effects. Most notably, YAP/TAZ are hyperactivated in human cancers and prolonged activation of 22 

YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote 23 

regeneration be harnessed in a safe way? Here we review the role of Hippo signaling in animal 24 

regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine, 25 

and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side 26 

effects.  27 
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 29 

[H1]  Introduction 30 

Trauma, disease, or ageing induce tissue damage, which requires the activation of regenerative 31 

responses to restore organ function1. Unfortunately, however, most organs in adult humans have 32 

little or no potential to regenerate, and injury triggers scaring and fibrosis that ultimately lead to 33 

organ malfunction1,2. Thus, is it possible to therapeutically activate repair, prevent or reverse 34 

scaring, and restore organ function?  35 

 36 

Regenerative potential of a tissue is endowed either by the presence of resident stem cells, such 37 

as in the skin and intestine, or by the ability to reactivate cell proliferation in terminally 38 

differentiated cells, such as in hepatocytes in the liver1,3. One approach of regenerative medicine 39 

aims to mimic such repair mechanisms in organs with poor regeneration. This is attempted, for 40 

example, by activating endogenous repair mechanisms or by transplanting stem or progenitor 41 

cells. However, simply triggering cell proliferation of differentiated cells is generally not sufficient 42 

to endow a measurable regenerative potential onto a tissue, as exemplified by the heart4-7. 43 

Similarly, clinical trials for stem cell transplantation approaches showed only limited efficacy8. 44 

Then, what mechanisms engage cells to regenerate tissue damage, and can they be applied for 45 

therapy in non-regenerating organs? 46 

 47 

The discovery of the Hippo pathway and its fundamental role in organ growth and regeneration 48 

identified a novel approach to incite regeneration. The downstream effectors of the Hippo 49 

pathway YAP (Yes-associated protein, also known as YAP1) and TAZ (transcriptional co-activator 50 

with PDZ-binding motif; also known as WWTR1) are required for regeneration in different organs, 51 

and their ectopic activation in adult mice can drive overgrowth of some organs (liver), promote 52 

dedifferentiation of mature cell types (lung secretory cells, hepatocytes), and trigger the expansion 53 

of stem and progenitor cell compartments (skin, intestine)9-12. These findings prompted 54 
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investigations of the potential of artificial YAP/TAZ activation (for simplicity we will treat YAP and 55 

TAZ as equivalent proteins as they are structurally similar, have largely redundant functions, and 56 

cause similar effects when overexpressed in many contexts, although some differences exist that 57 

need further investigation) in stimulating organ repair and regeneration in non-regenerating 58 

organs, with exciting results in mice13-17. The mouse heart is currently the most prominent example 59 

where experimental activation of YAP/TAZ had beneficial regenerative effects, but activation of 60 

YAP/TAZ also aided regeneration of several other organs in adult mice including the liver18, muscle, 61 

and intestine13-17,19. These studies raise the possibility of manipulating Hippo pathway activity as a 62 

means to stimulate endogenous mechanisms of regeneration in injured human organs. However, 63 

the therapeutic activation of YAP/TAZ for regenerative purposes may bear notable risks, because 64 

YAP/TAZ hyperactivation is well established to promote cancer development 20,21. 65 

Here, we first provide a synopsis of the Hippo pathway and its function during tissue repair and 66 

organ regeneration and then review experiments indicating that YAP/TAZ activation can stimulate 67 

regeneration in different mouse tissues. We also survey the risks of artificial YAP/TAZ activation 68 

associated with their potential to disrupt organ function and cause cancer, and discuss how it may 69 

be possible to safely activate YAP/TAZ for regenerative medicine.  70 

 71 

[H1] The Hippo pathway and its regulation 72 

The first components of the Hippo pathway were identified in Drosophila melanogaster22-30 and 73 

the founding member, the Hippo (Hpo) kinase, was named after its overgrown and darkened 74 

(hyperpigmented) mutant cuticle phenotype in adult flies. Soon after, the conserved nature of the 75 

pathway and its role in mammalian organ size regulation was revealed by the characterization of 76 

the mammalian core kinase cascade and the generation and analysis of mutant alleles 31-38.  77 

 78 

The Hippo pathway is a highly conserved signal transduction pathway that regulates gene 79 

expression (Fig. 1). The core of the pathway is a kinase cascade that in mammals comprises the 80 

Ste20-like kinases 1 and 2 (MST1 and MST2 (also known as STK4 and STK3), the homologues of the 81 



 4 

D. melanogaster Hpo kinase), the large tumor suppressor kinases 1 and 2 (LATS1 and LATS2, Warts 82 

in D. melanogaster), the adaptor proteins Salvador1, MOB1A/B (SAV1 and Mats in D. 83 

melanogaster), the homologous transcriptional co-activators YAP and TAZ (Yorkie in D. 84 

melanogaster), and the TEAD transcription factors (TEAD 1-4, Scalloped in D. melanogaster) 85 

(Fig.1)9,12,39,40.  86 

Mechanistically, YAP/TAZ in complex with a TEAD transcription factor bind to gene enhancers, 87 

interact with chromatin remodelling factors, and modulate RNA Polymerase II (Pol II) to drive or 88 

repress the expression of target genes, which prominently include cell cycle, cell migration and cell 89 

fate regulators (see also below) 40-48. Of note, although TEAD transcription factors are required for 90 

YAP/TAZ target gene expression, YAP-TEAD complexes alone may not be sufficient to activate the 91 

different genetic programs. Indeed, bioinformatics analyses of the regulatory regions that are 92 

bound by YAP/TAZ–TEAD complexes identified cooperation between YAP/TEAD and other 93 

transcription factors45,49-52 (Fig. 1). In addition, although TEAD factors are their main interaction 94 

partners, YAP/TAZ can interact with other DNA binding transcription factors such as p7353, RUNX54, 95 

and TBX555,56. Therefore, YAP/TAZ cooperate with various transcription factors to regulate target 96 

gene expression.  97 

 98 

Activation of MST1/2 induces the phosphorylation of SAV1 and MOB1A/B 57,58, which assist MST1/2 99 

in the recruitment, phosphorylation, and activation of LATS1/258-60. LATS1/2 can also be 100 

phosphorylated and activated by the MAP4K1-7 family kinases61-63. Subsequently, LATS1/2 101 

phosphorylate YAP and TAZ32,39,40,46,64-66. YAP/TAZ phosphorylation by LATS1/2 causes their 102 

cytoplasmic sequestration by 14-3-3 proteins and triggers further phosphorylation by Casein 103 

kinase 1δ/ε as well as ubiquitylation by the SCF E3 ubiquitin ligase complex and proteasomal 104 

degradation67-70. Thus, the core Hippo kinases inhibit YAP/TAZ activity and suppress the 105 

transcriptional output of the Hippo pathway.  106 

 107 
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The activity of the Hippo pathway is regulated by a multitude of upstream inputs, many of which 108 

relay signals from the plasma membrane9,12,39. However, unlike other classical signal transduction 109 

pathways, such as the epidermal growth factor (EGF), transforming growth factor-β (TGFβ), or 110 

WNT signalling pathways, the Hippo pathway does not appear to have dedicated receptors and 111 

extracellular ligands. Rather, the Hippo pathway is regulated by a network of upstream 112 

components that have roles in other processes such as the establishment of cell adhesion71-75, cell 113 

morphology76-78, and cell polarity79-90(Fig. 1). The activity of the Hippo pathway is thus modulated 114 

in response to mechanical strains, changes or defects in cell–cell and cell–extracellular matrix 115 

(ECM) adhesion but also nutrient availability91,92 and other cellular stresses93,94. Therefore, the 116 

Hippo pathway constitutes a sensor for tissue and cellular integrity rather than responding to 117 

dedicated extracellular signalling molecules.  118 

 119 

Adherens junctions and tight junctions are major hubs of Hippo pathway regulation36,60,75,79,81-120 

83,88,90,95-98. These cell-cell junctions contain protein complexes that establish apico-basal cell 121 

polarity, such as the Crumbs and aPKC complex, and they  directly link to core components of the 122 

Hippo pathway through the angiomotin (AMOT)-family proteins96,97,99, E-cadherin and its adaptor 123 

protein α-catenin that interacts with YAP–14-3-3 complex 73-75, LIM domain proteins that interact 124 

with LATS kinases (such as AJUBA)100,101, and various scaffolding components (such as  125 

neurofibromin 2 (NF2; also known as Merlin), kidney and brain protein (KIBRA; also known as 126 

WWC1)) that regulate the activity of the core complex60,84-86,90. Thus, disruption of cell–cell 127 

adhesion can have strong effects on Hippo pathway activity and lead to activation or repression of 128 

YAP/TAZ.  129 

 130 

The mechanical properties of the extracellular environment and cell shape are other profound 131 

regulators of Hippo activity76-78. Mechanical stress, such as that caused when cells are grown on 132 

stiff surfaces or exposed to fluid shear stress triggers YAP and TAZ nuclear translocation76-78,102,103, 133 

whereas detachment from the ECM causes YAP/TAZ nuclear export72. The effects of the 134 
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mechanical properties of the ECM on the Hippo pathway are mediated by integrin complexes at 135 

cell–ECM adhesion sites and changes in the actomyosin cytoskeleton induced by integrin signalling 136 

in response to physical ECM properties 72,76-78,104,105. Although the exact mechanisms are not 137 

known, mechanical forces may further regulate YAP/TAZ through modulating the structure of 138 

nuclear pores and hence the nuclear translocation of YAP/TAZ106.  139 

 140 

The Hippo pathway is also modulated by crosstalk with other signalling pathways. In particular 141 

these are G-protein coupled receptors (GPCRs) that are activated by lipids (lysophosphatidic acid 142 

and sphingosine 1-phosphophate or hormones (glucagon or epinephrine) and signal through F-143 

actin to regulate YAP/TAZ107,108; the WNT pathway which regulates YAP/TAZ through direct 144 

interaction with the -catenin destruction complex [G]109 and through destruction complex 145 

independent mechanisms110,111; Src family kinases and c-Abl kinase that phosphorylate tyrosine 146 

residues on YAP and promote YAP nuclear localization and activity in transcription56,112,113; and the 147 

phosphoinositide 3-kinase (PI3K)pathway 114. Various other signaling mechanisms that modulate 148 

YAP/TAZ localization, degradation, activity, and their ability to interact with TEAD have also been 149 

described. Detailed descriptions of these mechanisms can be found in other reviews9,39,98.  150 

 151 

In summary, YAP and TAZ activation–inactivation is a dynamic process that integrates multiple 152 

cellular and extracellular signals through a variety of molecular mechanisms. Thus, the Hippo 153 

pathway is a complex network of different inputs that offers many potential targets to 154 

pharmacologically modulate YAP/TAZ activity.  155 

 156 

[H1] Roles in development and regeneration 157 

The Hippo pathway is heralded as a master regulator of organ growth. This is because loss of 158 

function of the core kinases or hyperactivation of YAP/TAZ in mice or Yki in developing D. 159 

melanogaster causes overgrowth of multiple organs such as liver and heart in mice or imaginal 160 

discs [G] in flies9-12,39,115-117. Hippo signalling is often also involved in organ regeneration and tissue 161 
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repair where it regulates not only cell proliferation but also other processes that are important for 162 

regeneration such as cell survival, cellular dedifferentiation, and expansion of progenitor cell and 163 

stem cell compartments (Table 1)9,11,12,39,115-117. Unfortunately, these downstream effects are also 164 

hallmarks of cancer and YAP/TAZ are indeed often hyperactivated in different types of human 165 

cancers where they contribute to tumour development20,21.  166 

 167 

[H2] YAP/TAZ in growth control and development  168 

The functions of the Hippo pathway in organ growth are exemplified in studies where YAP/TAZ 169 

were hyperactivated by loss of function mutations in the core kinases or overexpression of 170 

constitutive active phosphosite-mutant YAP or TAZ where the major LATS phosphorylation site, a 171 

serine residue, is mutated to an alanine (S127 in human YAP and S109 in mouse YAP, referred as 172 

YAP-1SA) (Fig. 2). Conditional deletion of the MST1/2 kinases or YAP-1SA overexpression during 173 

mouse embryogenesis caused extensive liver and heart overgrowth by driving the proliferation of 174 

hepatocytes and cardiomyocytes beyond normal organ size23,31,32,34-38,118-120. In adult mice YAP 175 

hyperactivation caused overgrowth of the liver but not the heart15,31,32. In the adult intestine, lung, 176 

and skin, hyperactivation of YAP triggered stem cell hyperproliferation and blocked terminal 177 

differentiation (Table 1) 31,73,121-123. These results thus show that the activity of the Hippo core 178 

kinases is normally required to restrict YAP/TAZ activity and to prevent overgrowth and ectopic 179 

cell proliferation. On the other hand, the YAP/TAZ gain-of-function phenotypes demonstrate the 180 

power of YAP/TAZ to trigger cell proliferation and to promote cell stemness (Table 1).  181 

 182 

In contrast to the dramatic overgrowth phenotypes caused by YAP/TAZ gain of function in a 183 

number of organs, requirements for Yap/Taz for normal growth are surprisingly limited. During 184 

development, YAP and TAZ have partially redundant functions and are essential for a variety of 185 

processes that include growth and proliferation but also cell type specification and differentiation 186 

(Table 1). Homozygous Yap mutant mouse embryos arrest development around E8.5 and have 187 

defects in trophectoderm [G] specification, yolk sac vascularization, body axis extension, and 188 
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neuroepithelium formation124; homozygous Taz mutant mice are viable although some adults 189 

suffer from pulmonary and kidney disease125-127. Yap and Taz double-null embryos die prior to the 190 

morula stage, suggesting functional redundancy of these transcription co-activators during early 191 

embryonic development128. Conditional deletion of Yap and Taz revealed prominent roles in many 192 

different tissues and developmental stages. For example, in the developing cardiovascular system, 193 

deletion of Yap in the embryonic heart impeded cardiomyocyte proliferation and caused 194 

myocardial hypoplasia17,129, and deletion of Yap and Taz in endothelial cells caused defects in 195 

sprouting angiogenesis resulting in impaired vascularization and embryonic lethality130,131. 196 

Similarly, deletion of Taz in the lung epithelium resulted in hypoplastic lung tissue and disruption 197 

of branching morphogenesis [G], and Yap deletion resulted in loss of basal airway stem cells, and 198 

lung hypoplasia121,125,126,132. Single deletion of Taz or double deletion of Yap and Taz in the ureteric 199 

bud led to cyst-like branching during kidney development125,127,133. Notably, deletion of Yap and 200 

Taz was inconsequential for the development and homeostasis in the adult intestine, even though 201 

YAP expression is enriched in the stem cell compartment located at the base of normal intestinal 202 

crypts [G] 109,134,135. Simiarly, deletion of Yap and Taz during liver development did not affect adult 203 

liver size but caused defects in bile duct differentiation, where YAP is normally expressed at high 204 

levels19,36,136.  205 

 206 

Altogether, the Yap/Taz loss-of-function phenotypes demonstrate that YAP and TAZ have 207 

pleiotropic and tissue specific functions. They support and promote growth of some organs, but 208 

this role is not ubiquitous.  209 

 210 

[H2] YAP/TAZ directly control cell cycle progression and cell survival genes. 211 

YAP/TAZ can promote cell proliferation in different cell types in vivo and in vitro. Chromatin 212 

immunoprecipitation and RNA sequencing data showed that YAP/TAZ directly regulate the 213 

expression of genes involved in cell cycle progression such as components of the DNA replication, 214 

mitosis, cell growth, and DNA repair machineries (Fig. 1; Table 1)43,45,137-139. In addition, YAP/TAZ 215 
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promote cell survival by upregulating the expression of several inhibitors of apoptosis, including 216 

members of the BCL-2 (B cell lymphoma 2) and IAP (inhibitor of apoptosis) families, such as 217 

survivin, cIAP1 and MCL132,43 (Table 1). Thus, YAP and TAZ promote an increase in cell numbers by 218 

driving cell proliferation and suppressing apoptosis. YAP/TAZ also regulate various aspects of 219 

cellular metabolism to promote cell proliferation39.  220 

 221 

[H2] YAP promotes dedifferentiation and stemness.  222 

Accumulating evidence indicates that YAP/TAZ can promote pluripotency programmes (Fig. 1; 223 

Table 1). Genome-wide analysis of YAP/TAZ-binding targets revealed that they bind to the 224 

promoters and drive the expression of genes important for stem cell potency140. Among these 225 

target genes are the four Yamanaka pluripotency factors SOX2, NANOG, OCT4, and MYC, and 226 

several components of the Polycomb group (PcG) proteins [G]140. YAP expression is indeed 227 

enriched in diverse stem cell populations in vivo and in vitro11. In human embryos, for instance, 228 

YAP is localized to the nucleus of inner cell mass cells of the developing blastocysts141, which 229 

contains the embryonic stem (ES) cells. Surprisingly, however, YAP localized to the nucleus of 230 

trophoblast [G] cells and not in the inner cell mass of the mouse embryo128. The trophoblast, 231 

however, is also composed of stem cells which give rise to extraembryonic tissues142. Human and 232 

mouse embryonic stem cells cultured in non-differentiating conditions had high levels of YAP and 233 

endogenous YAP was re-activated in somatic cells during reprogramming into inducible pluripotent 234 

stem (iPS) cells140. In contrast, YAP levels were downregulated during differentiation140, and LATS2 235 

levels increased in differentiating mouse ES cells, primordial germ cells, and iPS cells143.  However, 236 

while YAP and TAZ were essential for maintenance of ES cell stemness in some conditions140, others 237 

reported that they are dispensable indicating that YAP and TAZ are not absolutely required for ES 238 

cell fate and that their requirement may depend on tissue and culture conditions109,144.  239 

  240 

Experimental hyperactivation of YAP or TAZ expanded stem cell compartments, induced cell 241 

dedifferentiation, and potentiated cell reprogramming into stem or progenitor cells. In vitro, 242 
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overexpression of YAP or deletion of the MST kinases allowed the expansion of naive pluripotent 243 

mouse ES cells even in pro-differentiation conditions140,145. Furthermore, knockdown of LATS2 or 244 

overexpression of YAP accelerated the reprogramming of human fibroblasts into iPS cells140,143, and 245 

overexpression of YAP reprogrammed somatic cells in vitro and allowed the formation of different 246 

types of tissue specific stem cells146. In vivo, activation of YAP induced expansion of existing stem 247 

cell compartments in the skin73,122,147,148, dental epithelium149, embryonic brain150, intestine31,134, 248 

lung121, and trachea151. Importantly, YAP hyperactivation could reprogram somatic cells in organs 249 

that lack resident stem cells, such as in the liver where YAP overexpression transdifferentiated 250 

mature hepatocytes into ductal/progenitor cells136,152. Thus, YAP functions as a reprogramming 251 

factor and its activation is sufficient to overrule differentiation-inducing cues in vitro and in vivo.  252 

 253 

[H2] Requirement for YAP/TAZ in regeneration. 254 

Although YAP and TAZ play pivotal roles during development, they are largely dispensable for 255 

homeostasis of many adult organs. However, YAP and TAZ activity is important for regeneration of 256 

multiple tissues in adults. In the adult mouse liver YAP is expressed in bile duct cells and endothelial 257 

cells, but its expression is low or absent in hepatocytes36,136. Upon liver injury after partial 258 

hepatectomy, YAP was activated in regenerating hepatocytes and repressed again once 259 

regeneration was completed153. Deletion of Yap and Taz in the liver delayed, but did not prevent, 260 

liver regeneration after partial hepatectomy due to reduced hepatocyte proliferation19. Similarly, 261 

YAP was activated after bile duct ligation, a model for cholestatic liver injury, and deletion of Yap 262 

compromised hepatocyte and bile duct cell proliferation by augmenting hepatocyte necrosis154. 263 

Thus, YAP and TAZ are not required for hepatocyte maintenance but are activated during and 264 

contribute to liver regeneration. 265 

 266 

The level and activity of YAP also change dynamically from homeostasis to injury and regeneration 267 

in the intestine, skin, and heart. Ionizing radiation or administration of dextran sulphate sodium 268 

(DSS) salts caused injury to the intestinal epithelium and induced an initial reduction of YAP levels 269 
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during the injury phase155. Upon stopping DSS administration, however, the intestine initiated 270 

regeneration and the levels of YAP dramatically increased, exceeding the levels observed during 271 

homeostasis134,155,156. Deletion of Yap in the intestinal epithelium impaired crypt cell proliferation 272 

and regeneration in a number of reports134,135,155, but others found that Yap deletion accelerated 273 

crypt cell proliferation after ionizing radiation156. The reason for this discrepancy is currently 274 

unknown. In the skin, depletion of Yap and Taz by siRNA-mediated knockdown or by Cre mediated  275 

KO slightly reduced proliferation of basal epithelial cells and delayed wound closure in 276 

mice122,148,157. Finally, nuclear YAP was absent in normal adult cardiomyocytes, but enriched in 277 

epicardium and myocardium of infarcted hearts158,159. Cardiomyocyte-specific deletion of Yap 278 

impaired neonatal heart regeneration and resulted in fibrotic scaring after myocardial infarction160.  279 

 280 

Althogether, these results indicate that YAP/TAZ are specifically activated and contribute to 281 

regeneration but not to homeostasis in the intestine, liver, and heart, whereas in the skin YAP/TAZ 282 

contribute to homeostasis and regeneration. Thus, YAP and TAZ are generally activated during 283 

organ regeneration, but their specific functions may differ in different organs.  284 

 285 

[H1] Organ regeneration by YAP activation  286 

Most adult organs have a limited ability to regenerate properly patterned and functional organs 287 

after injury, but recent experiments in mice show that ectopic YAP activation can promote 288 

regeneration of several organs (Figs. 2-4).  289 

 290 

[H2] YAP activation promotes heart regeneration. 291 

Proliferation of mammalian cardiomyocytes has long been thought to be restricted to embryonic 292 

stages, with little or no capacity to regenerate after birth161(Fig. 2). However, it was recently 293 

discovered that not only embryonic but also neonatal mouse hearts can regenerate heart muscle 294 

damage after myocardial infarct, although this capability progressively declines and is lost in 7-day 295 

old animals161(Fig. 2a). This discovery put forward the idea that reactivating embryonic and 296 
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neonatal pathways of cell proliferation and organ growth may trigger adult cardiomyocytes to 297 

proliferate and regenerate an injured heart.  298 

 299 

Recent findings pointed to YAP as a prime candidate to stimulate heart regeneration in adults. The 300 

idea of activating YAP comes from studies in mice showing that cardiomyocyte-specific 301 

hyperactivation of YAP by overexpression of a constitutive active YAP-1SA or by conditional 302 

deletion of Sav1, a upstream negative regulator of YAP/TAZ, caused increased proliferation of 303 

embryonic cardiomyocytes13,17,120,160. Indeed, such hyperactivation of YAP starting in embryonic 304 

cardiomyocytes caused continuous proliferation of cardiomyocytes in adults and enabled heart 305 

regeneration and restored heart function after infarction (Fig. 4). However, these experiments 306 

induced adult heart regeneration by prolonging the embryonic capability of cardiomyocyte 307 

proliferation into adults, which is of course not a clinically relevant strategy. Therefore, can acute 308 

activation of YAP provoke heart regeneration in adults? 309 

 310 

To test whether acute activation of YAP stimulates heart regeneration in a more therapeutic 311 

setting, YAP was activated after infarction in adults mice13. Remarkably, activation of YAP by 312 

conditionally deleting Sav1 or Lats1/2 or by using an adeno-associated virus subtype 9 (AAV9) 313 

expressing human YAP-1SA or Sav1 siRNA (Table 2) after heart infarction triggered heart repair, 314 

improved cardiac function, and increased mouse survival13,15,162. This was possible even though the 315 

extent of cardiomyocyte proliferation was 20-fold less than the proliferation induced in wild-type 316 

regenerating neonatal cardiomyocytes. Notably, long term overexpression (four and a half 317 

months) of YAP-1SA induced by AAV9 transduction into adult hearts did not induce cardiac 318 

hypertrophy, compromise gross heart architecture, or induce tumour formation in the heart15 (see 319 

section Risks of YAP/TAZ activation below for more discussion).  320 

 321 

Artificial activation of YAP was also beneficial in another mouse model for heart disease, namely 322 

muscular dystrophy. There, YAP activation ameliorated the symptoms of dilated cardiomyopathy 323 
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in dystrophin [G] loss-of-function hearts (Mdx mice), a developmental model for Duchenne 324 

muscular dystrophy [G] 16. Mdx mutant mice showed decreased heart function and increased 325 

fibrosis, but Sav1;Mdx double mutant hearts showed less severe dilation, reduced fibrosis, and 326 

maintained cardiac function in adults16. These studies thus suggest that YAP activation can awaken 327 

the regeneration potential of post-mitotic cardiomyocytes in mice and may be used to treat a 328 

number of human heart maladies. 329 

 330 

Several lines of evidence indicate that YAP drives the embryonic programme of heart growth and 331 

that its artificial activation can partially reactivate this program in adult cardiomyocytes. As 332 

mentioned above, YAP is required for heart development17 and neonatal heart regeneration160. 333 

YAP activity is then repressed a few days after birth by an increase in the activity of Hippo pathway 334 

kinases, coincident with the loss of regenerative capacity (Fig. 2)13. Experimental YAP activation in 335 

adult cardiomyocytes upregulated genes such as ACTA1 (encoding smooth muscle α-actin), 336 

CTNNB1 (encoding -catenin), Snai2, and Sox2, which are only expressed in foetal hearts, during 337 

neonatal cardiac repair or in cardiomyocyte reprogramming14,120. In addition, the insulin-like 338 

growth factor and WNT signalling pathways, which are active in embryonic hearts, are reactivated 339 

by YAP-1SA overexpression in the infarcted adult heart129. In addition, YAP activation in the heart 340 

of transgenic mice caused an increase in the number of small and mononuclear cardiomyocytes, 341 

which resemble the immature cardiomyocytes found during early development13.  342 

 343 

In conclusion, YAP activation in adult cardiomyocytes does not only trigger ectopic proliferation 344 

but induces cardiomyocyte reprogramming and rejuvenation. However, whether these effects are 345 

translated to humans is currently not known. Also, our understanding of how YAP aids heart 346 

regeneration is still rudimentary, and further research is required to reveal the therapeutic 347 

potential and risks of activating YAP in the infarcted human heart. 348 

 349 

[H2] YAP activation and liver regeneration. 350 
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While young and healthy livers have a supreme regenerative capacity, old and chronically diseased 351 

livers affected by diabetes, infection, alcoholic liver disease, and cholestasis cannot regenerate 352 

efficiently163-166. Thus, being able to counteract the effects of chronic liver disease and induce liver 353 

regeneration has great clinical value. 354 

 355 

Like in the heart, YAP is also a prime candidate to activate an endogenous regeneration programme 356 

in the liver. As discussed above, YAP is activated and required in regenerating livers and 357 

experimental activation of YAP enhanced liver regeneration in mice18,154,167. Knock down of MST1/2 358 

by liposomal vesicles [G] containing siRNAs targeting MST1/2 (Table 2) triggered hepatocyte 359 

proliferation and accelerated liver regeneration after partial hepatectomy in young and old 360 

mice18,19,167. Similarly, pharmacological activation of YAP using an MST1/2 inhibitor called XMU-361 

MP-1 (Table 2) augmented liver repair and reduced liver fibrosis after acute and chronic injury 362 

induced by paracetamol and carbon tetrachloride intoxication or by bile duct ligation167. Notably, 363 

even though mice were treated daily with XMU-MP-1 for 1 week after paracetamol-induced injury, 364 

they did not develop cancerous phenotypes for at least 10 months after initiating the treatment167. 365 

Thus, YAP seems to be a driving force that enhances the regeneration capacity of the young and 366 

healthy liver in mice and suggest that therapeutic activation of YAP may improve regeneration in 367 

diseased and aged livers in humans. 368 

 369 

Overexpression of activated YAP in adult mouse hepatocytes triggered their transdifferentiation 370 

into progenitor-like cells that could differentiate into biliary epithelial cells [G] or re-differentiate 371 

into hepatocytes136. Cells with progenitor cell-like traits and elevated levels of YAP expression were 372 

also found in humans, where cholestatic livers show YAP upregulation in ductular reactions [G] 373 

154,168. In summary, ectopic activation of YAP may promote liver regeneration by activating two 374 

distinct cellular mechanisms: hepatocyte proliferation and transdifferentiation into stem-cell-like 375 

progenitor cells.  376 

 377 
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[H2] The Hippo pathway in the regulation of intestinal stem cells. 378 

The healthy intestine is an organ that has an enormous regenerative capacity owing to the 379 

presence of a designated stem cell compartment, but fails to efficiently regenerate when affected 380 

by disease, such as ulcerative colitis [G] and Crohn’s disease [G] 169. Interestingly, the intestine is 381 

also highly sensitive to Hippo pathway manipulations: gain of YAP/TAZ activity by YAP-1SA 382 

overexpression or by conditional deletion of Mst1/2 or Sav1 in adult mice led to extensive 383 

expansion of undifferentiated intestinal progenitor cells and intestinal crypt hyperplasia (Fig. 384 

3A)31,32,38,134. Thus, YAP activity also affects cell proliferation and stemness in the intestine, 385 

suggesting that its hyperactivation, if controlled, might have beneficial effects in promoting 386 

intestinal regeneration. Indeed, artificial YAP hyperactivation by administering the MST1/2 387 

inhibitor XMU- MP-1 in a mouse model of colitis, markedly suppressed the colitis symptoms 167. 388 

Notably, even though mice were treated daily with XMU-MP-1 for 1 week after DSS-induced injury, 389 

they did not develop cancerous phenotypes for at least 10 months after initiating the treatment167. 390 

Thus, inhibition of MST kinases or direct activation of YAP may be used to restore the regeneration 391 

potential of injured intestinal epithelia.  392 

 393 

How does YAP activate regeneration in the intestine? As mentioned above, YAP is enriched in the 394 

stem cell compartment (characterized by the expression of LGR5) of the intestinal crypt during 395 

homeostasis and is highly upregulated throughout the intestinal epithelium during regeneration134. 396 

Surprisingly, however, rather than simply promoting stem cell proliferation during regeneration, 397 

the activation of YAP temporarily supressed the normal homeostatic programme of intestinal stem 398 

cells and drove a more embryonic stem cell programme instead. The WNT signalling and the adult 399 

stem cell programme were suppressed, while foetal markers such as AnxA1, Trop2 and Sca1 were 400 

induced135,155. Thus, YAP activation rejuvenated the intestinal epithelium by inducing embryonic 401 

cell phenotypes and the expression of a more primitive stem cell programme. The induction of 402 

these embryonic phenotypes are transient and adult cell fates are restored once the injury is 403 

resolved. 404 



 16 

 405 

[H2] YAP/TAZ in skin and wound healing.  406 

The skin epithelium is constantly being renewed by a population of basal layer stem cells and has 407 

a tremendous potential to heal wounds, although this progressively declines with age170. In young 408 

mice, YAP expression is high in the basal layer and hair follicle of the skin, two compartments that 409 

harbor stem cells (Fig. 3b), but YAP levels decrease with age in correlation with the decline in 410 

proliferative potential of basal layer stem cells122. Deletion of Yap and Taz in the skin of adult mice 411 

slightly impaired proliferation of basal layer cells, and caused hair loss157.  412 

 413 
Upon wounding, YAP and TAZ are activated and translocate to the nucleus of differentiated 414 

epidermal cells and promote their proliferation157. Downregulation of Yap by siRNA-mediated 415 

knockdown148 or double conditional knockout of Yap and Taz157 in adult mice reduced the 416 

proliferation rate of skin epithelial cells and delayed skin wound closure in mice. Conversely, 417 

conditional hyperactivation of YAP in basal cells in embryos and new born pups induced expansion 418 

of the basal cell compartment by promoting proliferation of basal cells and inhibiting terminal 419 

differentiation122,147. Accordingly, ectopic YAP activation in the developing skin caused a decrease 420 

in the expression of differentiation markers (Krt1, Ivl, Lor) and upregulation of progenitor cell 421 

markers74. Thus, YAP and TAZ are required for skin homeostasis by maintaining proper levels of 422 

proliferation of basal progenitor cells, which need to be expanded during regeneration. However, 423 

whether ectopic activation of YAP can accelerate wound healing and skin regeneration in mice or 424 

in humans has not been reported.  425 

 426 

In conclusion, the induction of tissue repair and regeneration mediated by the activation of 427 

YAP/TAZ in different tissues of animal models suggest that YAP/TAZ activation may also aid in the 428 

regeneration of injured organs in humans, particularly, the heart. However, whether and how 429 

YAP/TAZ can be activated in a safe and effective in human patients still needs to be investigated. 430 

 431 
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[H1] Risks of YAP activation 432 

 While the idea of activating YAP to promote tissue regeneration is exciting, it also raises concerns 433 

regarding safety. This is because sustained activation of YAP in adult mice can result in aberrant 434 

cell proliferation, tissue fibrosis, and tumorigenesis (Fig. 5)12,20,21,171. Surprisingly, however, while 435 

ectopic activation of YAP is sufficient to induce hyperplasia in many organs, only a few organs 436 

develop tumours after YAP activation in adult mice20. Indeed, hyperactivation of YAP/TAZ alone is 437 

insufficient to trigger tumour formation in pancreas, heart, lung, mammary gland, and nervous 438 

system in genetically manipulated mice73,120,172-175. Even in organs where YAP activation induces 439 

cancer, not all YAP-activated cells initiate tumour formation. For example, only a few tumour 440 

nodules develop in livers with ubiquitous YAP activation throughout the parenchyma [G] 33-37. This 441 

indicates that YAP alone is not sufficient to induce tumour formation and that cooperation with 442 

other pro-tumorigenic events is required for cancer development.  443 

 444 

[H2] YAP activation contributes to cancer development in humans. 445 

Analysis of YAP/TAZ function in human cancer cells in vitro and in vivo by xenotransplants into mice 446 

showed that YAP/TAZ regulate many of the hallmarks of cancer, including the promotion of cancer 447 

cell proliferation, cancer stem cell fate, chemoresistance, and metastasis12,20,21. In line with this, 448 

elevated levels and nuclear localization of YAP are observed with appreciable frequency in many 449 

human cancers, such as liver176-180, lung181-186, breast187,188, skin74 and colorectal cancer189,190 where 450 

they are correlated with poor prognosis. 451 

 452 

Interestingly, the activation of YAP or TAZ in the vast majority of these cancers is not associated 453 

with mutations in currently known Hippo pathway components12,20,21, except for some oral 454 

cancers191, hepatocellular carcinomas192, uveal melanoma193,194, mesotheliomas [G] 195, 455 

neurofibrosarcomas [G] 196, pancreatic ductal adenocarcinoma197, and schwannomas [G] 198 that 456 

can have genomic amplifications of YAP or TAZ and somatic mutations in components of the Hippo 457 

pathway. Thus, although YAP is highly upregulated in many human cancers, there is no strong 458 
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selective pressure for mutations in Hippo pathway components and the activation of YAP is likely 459 

due to epigenetic events (such as DNA methylation) and/or defects in the many molecular 460 

mechanisms that regulate the activity of the Hippo pathway.  461 

 462 

[H2] Pro-tumorigenic activity of YAP/TAZ requires other oncogenic events.  463 

In the mouse liver, tissue-wide overexpression of YAP-1SA or deletion of Mst1/2, Sav1, Nf2, or 464 

Mob1A/B, caused increased liver size and eventually lead to the development of liver tumours that 465 

resembled human mixed HCC/ICC [G] 31,32,34,35. In addition, ectopic expression of a constitutively 466 

active version of YAP where all five Lats phosphorylation sites have been mutated (YAP5SA) mice 467 

triggered liver tumorigenesis in adult even when YAP was expressed only in a subpopulation of 468 

sparse hepatocytes 199. Thus, YAP is a powerful driver of hepatocyte proliferation and its 469 

uncontrolled hyperactivation eventually culminates in the formation of liver tumours. However, 470 

only a few YAP expressing cells transformed into tumour initiating cells, suggesting that YAP must 471 

cooperate with other tumour inducing stimuli to trigger tumorigenesis, at least in the time frame 472 

of the life span of a mouse. 473 

 474 

Activated YAP can synergize with oncogenic mutations to trigger tumorigenesis or increase cancer 475 

cell malignancy. In the lung, activation of YAP was not sufficient to trigger tumour formation and 476 

caused only hyperplasia200. However, YAP activation promoted progression of small adenomas to 477 

high-grade lung adenocarcinomas when it was combined with overexpression of an oncogenic 478 

mutant of the Kras gene (KrasG12D) that activates the RAF-MAPKinase pathway 200. Another example 479 

is the mammary gland where YAP overexpression alone impaired terminal differentiation of 480 

secretory cells during lactation but did not induce tumour formation172. However, YAP/TAZ 481 

overexpression transformed benign human and mouse breast cancer cells into high-grade and 482 

metastatic tumours187,188,201. Similarly, TAZ overexpression in normal brain cells was insufficient to 483 

induce glioma formation but increased the malignancy of such tumours202.  484 

 485 
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YAP can also synergize with injury and inflammation to trigger tumour initiation. Chronic injury and 486 

inflammation can potentiate the neoplastic transformation of proliferative cells because of the 487 

abundance of growth factors, activated stroma, and DNA damage promoting agents in the 488 

inflammatory milleu203. Indeed, artificial YAP activation synergizes with tissue injury and 489 

inflammation to promote cancer cell hallmarks in the liver and intestine204,109,134. Single 490 

hepatocytes expressing YAP-1SA were eliminated and did not expand clonally, unless hepatotoxins 491 

or the inflammatory cytokine IL-6 were provided204 . Thus, YAP-1SA overexpressing hepatocytes 492 

only survived and hyperproliferated when YAP expression was combined with liver injury that 493 

caused inflammation. In the colon, sustained overexpression of YAP-1SA or deletion of Sav1 only 494 

caused sporadic formation of benign adenomas (Fig. 5)109,134, but combining Sav1 deletion with 495 

acute injury caused by DSS resulted in the development of multiple neoplastic colonic polyps prone 496 

to transform into invasive adenocarcinomas 134. Similarly, in the skin, activation of YAP in basal 497 

stem cells induced cell proliferation but did not cause cancer73. However, YAP overexpressing skin 498 

cells produced tumours resembling squamous cell carcinoma after they were transplanted onto 499 

immunocompromised mice — a procedure that causes inflammation and activates a wound 500 

healing response73. Thus, ectopic YAP activity alone potently induces hyperplastic growth but is 501 

inefficient in causing cancer in several organs. However, the ectopic activation of YAP can synergize 502 

with pro-inflammatory cues to cause tumorous growth in injured organs.  503 

 504 

In conclusion, sustained YAP activation can induce tumour formation in cells which are facing 505 

different environmental stresses, such as inflammation, or that already have premalignant 506 

oncogenic mutations, such as in RAS. This is likely because YAP can induce ectopic cell proliferation, 507 

confer cancer stem cell traits, and induce metastatic behaviour of normal cells within damaged or 508 

diseased organs, thus increasing the risk of malignant transformation. However, the tissue 509 

overgrowth and tumour formation resulting from transient activation of YAP are often reversible 510 

upon cessation of YAP activation31,32. Thus, although the activation of YAP can trigger undesired 511 
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side effects, there might be a therapeutic window of YAP activation that can be used to induce 512 

organ regeneration while avoiding excessive organ growth or tumorigenesis.  513 

 514 

[H2] YAP/TAZ activation promotes tissue fibrosis. 515 

YAP/TAZ activation can promote tissue fibrosis by regulating the activation of myofibroblasts. 516 

Human and mouse myofibroblasts and stellate cells [G] showed prominent nuclear YAP 517 

accumulation in fibrotic lungs, kidneys, and livers171,205,206. In mouse models of liver and renal 518 

fibrosis, administration of carbon tetrachloride or unilateral ureteral obstruction resulted in rapid 519 

cytoplasmic to nuclear translocation of YAP and induction of YAP target genes in hepatic stellate 520 

cells and renal fibroblast171,206. Injection of human fibroblasts that overexpressed constitutive 521 

active versions of YAP or TAZ into immunocompromised mice caused accumulation of ECM 522 

components and lung fibrosis205. Conversely, inhibition of Yap expression in hepatic stellate cells 523 

or in renal fibroblast impeded fibrogenesis in livers and kidneys, indicating that YAP activation is 524 

essential for myofibroblast activation and fibrosis 171,206. Thus, because YAP/TAZ drive stellate cell 525 

and myofibroblast activation and tissue fibrosis in different organs, therapeutic activation of 526 

YAP/TAZ for regenerative medicine could be hampered by the induction of fibrosis.  527 

 528 

[H1] Approaches to activate YAP/TAZ 529 

The power of YAP/TAZ to provoke regeneration opens new opportunities for clinical applications 530 

in regenerative medicine. However, it is not clear how YAP/TAZ action can be harnessed 531 

therapeutically in a way that avoids its deleterious side effects (Table 2). In the following sections 532 

we provide an overview of different strategies that may help accomplish using Hippo pathway 533 

modulations to aid regenerative medicine. 534 

 535 

[H2] Transient YAP/TAZ activation and the reversibility of YAP/TAZ driven phenotypes.  536 

Although organ overgrowth and tumorigenesis can arise after sustained YAP/TAZ hyperactivation, 537 

short-term activation of YAP/TAZ may avoid these problems. In the liver of adult mice, for example, 538 
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doxycylin-inducible YAP-1SA overexpression caused massive hepatomegaly with a 5-fold increase 539 

in liver size after 4 weeks of induction31,32. Strikingly, however, termination of YAP overexpression 540 

by withdrawing doxycycline induced cell death in these enlarged livers, which returned to near 541 

normal size in only two weeks31,32,207. Furthermore, YAP downregulation, induced by liposome 542 

encapsulated siRNA (Table 2) in MST1/2 mutant livers, caused regression of hepatic tumours 543 

associated with long term YAP hyperactivation and reactivated a hepatocyte differentiation 544 

signature152. Thus, YAP induced liver overgrowth is not permanent and can be reverted upon YAP 545 

inactivation.  546 

 547 

YAP-driven hyperplasia and cell dedifferentiation phenotypes are also reversible in other organs. 548 

Halting YAP-1SA overexpression restored normal intestinal structure and led to the rapid 549 

reappearance of differentiated enterocytes [G], goblet cells [G] and Paneth cells [G] at the expense 550 

of stem and progenitor cells induced by YAP overactivation (Fig. 3a) 31. Similar observations were 551 

also made in the skeletal muscle. Here, transient hyperactivation of YAP-1SA induced regenerative 552 

myogenesis and cell dedifferentiation characterized by the induction of regenerative myogenesis 553 

markers 208, which, unexpectedly, was followed by muscle degeneration(Fig. 5)208. Nonetheless, 554 

the muscle atrophy and deterioration phenotype was largely reversible upon cessation of YAP-1SA 555 

expression 208. These observations suggest that halting YAP activation after a desired therapeutic 556 

time window required to induce regenerative programmes, may avoid or revert many side effects 557 

observed after long-term YAP activation (Fig. 5). However, additional investigations need to test 558 

the reversibility of abnormal growths and carcinogenesis induced by YAP hyperactivation, 559 

especially in unhealthy tissues affected by oncogenic mutations, inflammation, or fibrosis.  560 

 561 

[H2] Hypomorphic deregulation of Hippo signaling. 562 

In addition to temporally restricted activation, hypomorphic (partial) activation of YAP/TAZ may be 563 

sufficient to drive tissue regeneration while minimizing adverse side effects. Deletion of different 564 

upstream Hippo regulators resulted in different strengths of YAP/TAZ activation209. Deletion of 565 
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LATS1/2 resulted in the strongest activation of YAP owing to the complete inability to 566 

phosphorylate YAP/TAZ209. MST1/2 deletion caused moderate activation of YAP owing to a 567 

decrease in the activation of LATS1/2, whereas deletion of SAV1 resulted in an even weaker 568 

activation of YAP because the lack of SAV1 only reduces MST1/2 activity. Accordingly, in the heart, 569 

for example, the number of dividing cells was larger in Lats1/2 mutant hearts compared to Sav1 570 

mutants13, but Sav1 mutant cardiomyocytes still re-entered the cell cycle and were able to 571 

promote heart regeneration in adult mice13. Thus, YAP can be activated to different strengths 572 

depending on which upstream regulator is targeted by a therapeutic agent. One good example is 573 

the MST1/2 inhibitor XMU-MP-1 (Table 2) whose administration increased YAP activity enough to 574 

promote organ repair, but caused only mild liver and intestinal overgrowth phenotypes, much 575 

weaker than those caused by genetic deletion of Mst1/2167. Similarly, knockdown of MST1/2 by 576 

liposome encapsulated siRNAs (Table 2) only partially activated YAP, but stimulated liver 577 

regeneration18. Overall, partial activation of YAP/TAZ might be sufficient to reach therapeutic 578 

efficacy without causing adverse effects such as tissue overgrowth and tumorigenesis. 579 

 580 

[H2] Tissue-specific activation of YAP/TAZ. 581 

An additional possibility to avoid adverse side effects is to activate YAP/TAZ only in the tissue or 582 

cell type of interest. In the heart, for example, an adeno-associated virus serotype 9 (AAV9) (Table 583 

2) was used to express human YAP-1SA to stimulate cardiomyocyte proliferation and heart 584 

regeneration in adult mice after myocardial infarction15. Notably, overexpression of YAP-1SA in the 585 

adult heart did not induce tumour formation or other overt phenotypes, suggesting that the use 586 

of AAV9-YAP-1SA may be a safe strategy to activate YAP in the heart15. Notably, different AAV 587 

vectors and serotypes [G] have been approved for use in humans and can be used to deliver genes 588 

to different cell types210,211,212.  589 

 590 

Another layer to control YAP/TAZ expression is the use of AAV vectors in combination with 591 

inducible expression systems, such as a doxycycline inducible system or laser directed activation 592 
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using optogenetics [G] . This combinatorial approach could take advantage of the tissue specificity 593 

of AAV infection and the inducibility of a conditional expression system213. Optogenetic techniques, 594 

in particular, may allow very accurate control of gene expression in a spatially precise and 595 

minimally invasive manner214. Such transgenic approaches, however, would still need to consider 596 

potential immune responses against the virus and cells expressing foreign proteins before being 597 

applied to any clinical setting. 598 

 599 

A different approach that does not involve gene therapy or the use of viral vectors is to simply 600 

inject recombinant proteins, such as Hippo pathway regulators, directly into the organ of interest 601 

(Table 2). Using this approach, intramyocardial injection of recombinant agrin, a component of the 602 

neonatal ECM, activated YAP, promoted cardiomyocyte proliferation and cardiac regeneration 603 

after myocardial infarction in juvenile and adult murine hearts215. Mechanistically, in the muscle 604 

tissue, YAP is sequestered out of the nucleus by dystrophin-associated glycoproteins and agrin 605 

activates YAP by inducing the disassembly of the dystrophin–glycoprotein complex and the release 606 

of YAP 215. It remains unknown, however, whether agrin has myocardial specificity for YAP 607 

activation. 608 

 609 

In summary, current technologies already offer a number of options to induce transient and tissue 610 

specific expression of YAP/TAZ. Yet, the therapeutic value for the use of YAP/TAZ activation to 611 

induce regeneration will depend on developing additional layers of safety measures to control the 612 

regenerative potential and adverse effects of these transcription co-activators.  613 

 614 

[H2] Activation of select YAP/TAZ target genes. 615 

Activation of YAP/TAZ target genes may be sufficient to mimic the stimulation of regeneration by 616 

these transcription factors. CYR61 and CTGF, for instance, are classic YAP/TAZ target genes that 617 

belong to a family of secreted cysteine-rich proteins and regulate diverse biological processes, such 618 

as cell migration, cell proliferation, and cell adhesion. In lower vertebrates, such as zebrafish, spinal 619 
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cord regeneration depends on local secretion of endogenous CTGF and can be enhanced by local 620 

delivery of human CTGF recombinant protein216. Notably, the beneficial effects of CTGF are not 621 

restricted to lower vertebrates, as the delivery of CTGF or transplantation of CTGF overexpressing 622 

mesenchymal stem cells augmented the recovery of osteochondral defects [G] produced by 623 

ligament injury in rabbits 217,218. Similarly, overexpression of Cyr61 in hepatocytes or administration 624 

of purified CYR61 protein accelerated resolution of injury-induced fibrosis in mice 219. 625 

Administration of purified CCN1 protein also accelerated intestinal epithelial regeneration in a 626 

mouse model of colitis220. This suggests that CTGF and probably the products of other YAP target 627 

genes may be used instead of YAP/TAZ to therapeutically stimulate regeneration. Thus, 628 

identification of which YAP/TAZ target genes are the drivers of regeneration may allow the 629 

development of therapeutic strategies that avoid the tumorigenic potential of YAP/TAZ. 630 

 631 

[H1] Conclusions and perspective  632 

The research thus far shows that YAP/TAZ activation can stimulate stem cell mobilization, induce 633 

cell proliferation, and accelerate tissue repair in several organs, including those that are not able 634 

to efficiently regenerate. Although these findings are exciting, using YAP/TAZ for regenerative 635 

medicine in humans is still far from realization. However, the pioneering mouse studies discussed 636 

in this Review provide the groundwork for future research in YAP/TAZ as therapeutic targets to 637 

unleash the regenerative potential of non-regenerating tissues and organs. Notably, some organs 638 

such as the heart are inherently resistant to cancer formation and may represent ideal targets to 639 

explore the use of YAP/TAZ activation to promote tissue regeneration. In other organs, however, 640 

sustained YAP/TAZ activity can impair organ function by causing tissue degeneration, hypertrophy 641 

or triggering tumour formation. Further studies, thus, need to focus on better understanding 642 

tissue-specific effects of YAP/TAZ overactivation and on identifying ways to safely activate YAP/TAZ 643 

in different contexts.  644 

 645 
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There are still crucial open questions that remain to be answered before we can exploit the 646 

potential of YAP/TAZ for regenerative medicine. First, because current evidence of YAP/TAZ 647 

activation as a cue for regeneration comes from studies of mice and cultured cells, at the moment 648 

it is not clear whether primary human cells and organs can respond to YAP/TAZ activation in the 649 

same way as cells from current models. Second, it is still necessary to evaluate any potential 650 

deleterious effects that could arise in response to transient activation of YAP/TAZ in human tissues 651 

and to evaluate their impact on human health. Finally, there are a number or questions open with 652 

respect to the molecular mechanisms of tissue regeneration and the role of YAP/TAZ in this 653 

process. It remains unknown what triggers the activation of YAP/TAZ in tissues with regenerative 654 

potential and why such mechanisms do not take place in organs with no or low regeneration 655 

potential. Furthermore, we have only a rudimentary understanding of how YAP/TAZ promote 656 

regeneration. Thus, better understanding of genes and processes under their control can inform 657 

the development of new approaches for regenerative medicine that are alternative to YAP/TAZ 658 

activation, thereby, possibly avoiding the deleterious effects of YAP/TAZ overactivity.  659 

 660 

Overall, given the vast potential of YAP/TAZ as promoters of tissue regeneration that emerges from 661 

recent studies, we can now look forward to exciting fundamental and translational research on 662 

Hippo–YAP/TAZ signalling to pave the way for new clinical approaches in regenerative medicine.  663 

 664 
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Figure Legends 1263 

Figure 1. Hippo signalling pathway components and regulation  1264 

a. To date over thirty components that comprise the Hippo pathway have been identified, but this 1265 

schematic focuses on the main aspects of the Hippo pathway. The core of the Hippo pathway is 1266 

defined by an evolutionary conserved kinase cascade composed of the Ste20-like kinases 1 and 2 1267 

(MST1 and MST2; Hippo in flies) and the large tumor suppressor kinases 1 and 2 (LATS1 and LATS2 1268 

kinases; Warts in flies), their cofactors SAV1 and MOB1A/B, the transcription co-activators YAP and 1269 

TAZ (Yorkie in flies), and the TEAD1-4 family transcription factors9,12,39,40. Activation of the Hippo 1270 

pathway is associated with the phosphorylation of the core Hippo kinases MST and LATS: MST is 1271 

autophosphorylated (which is counteracted by STRIPAK–SLMAP protein phosphatase PP2A 1272 

complex) and subsequently phosphorylates LATS. MST is also activated by TAO kinases, whereas 1273 

LATS can also be phosphorylated by MAP4 kinases (MAP4Ks). Activation of LATS induces the 1274 

phosphorylation of YAP and TAZ and inhibits their transcription co-activator function. 1275 

Phosphorylated YAP/TAZ are exported from the nucleus and degraded in the cytoplasm or 1276 

sequestered at cellular junctions. When the kinases are not active, YAP/TAZ accumulate in the 1277 

nucleus, bind to the TEAD transcription factors and promote the expression of target genes. The 1278 

activity of these core components is regulated by a number of upstream mechanisms that involve: 1279 

cell junctions through various scaffolding proteins such as angiomotin (AMOT), neurofibromin 2 1280 

(NF2; also known as Merlin), kidney and brain protein (KIBRA; also known as WWC1), AJUBA and 1281 

zonula occludens (ZO) proteins; cell polarity, including Crumbs complex and aPKC–PAR complex; 1282 

mechanical forces through the actin cytoskeleton and integrin signalling from the extracellular 1283 

matrix (ECM); and a number of cell surface receptors such as G-protein-coupled receptors (GPCRs) 1284 

and receptor tyrosine kinases (RTKs). Hippo also cooperates with WNT signalling: both β-catenin 1285 

and YAP/TAZ associate with the destruction complex and are targeted for β-TrCP-mediated 1286 

degradation, and inactivation of the destruction complex upon WNT stimulation drives β-catenin 1287 

as well as YAP/TAZ nuclear translocation. In addition, metabolic inputs are relayed to Hippo via 1288 

AMP-activated protein kinase (AMPK). Thus, the Hippo pathway integrates multiple cellular and 1289 
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extracellular inputs to regulate gene expression and organ growth. b. Different transcriptional 1290 

outputs of YAP/TAZ activity can trigger different cellular processes. Such transcriptional outputs 1291 

depend on cooperation of YAP/TAZ–TEAD complexes with other transcription factors. CK1, Casein 1292 

kinase 1δ/ε; GF, growth factor; MARK4, MAP/microtubule affinity‐regulating kinase 4; RASSF, Ras 1293 

association domain family. 1294 

 1295 

Table 1. Cellular responses to YAP activation  1296 

YAP/TAZ activation induces the expression of a number of target genes and elicits a variety of 1297 

cellular responses in a tissue specific manner. The artificial hyperactivation of YAP/TAZ induces 1298 

increased cell proliferation, cell migration, promotes cell differentiation and stemness, regulates 1299 

cell fate decisions, induces cell morphology and cytoskeletal changes, and promotes cell survival 1300 

by counteracting programed cell death.  1301 

 1302 

Figure 2. YAP-mediated heart regeneration  1303 

a. Changes of heart regeneration potential and YAP activity during mouse development13,17. The 1304 

potential to repair and regenerate the heart is high in embryos but lost during the first few days 1305 

after birth161. The activity of YAP follows that trend, while the activity of upstream acting large 1306 

tumor suppressor kinases (LATS1 and LATS2) shows the opposite development. b. YAP 1307 

hyperactivation in adult cardiomyocytes induces the expression of genes associated with an 1308 

embryonic cardiomyocyte phenotype and increased proliferation 13,17,120,160. 1309 

 1310 

Figure 3. Effects of YAP hyperactivation on regeneration and homeostasis of the intestine and 1311 

skin a. Although YAP is enriched in crypt stem cells, it is dispensable for intestinal homeostasis. 1312 

Upon injury, YAP is activated, enters the nucleus (green) and drives the expression of genes 1313 

associated with a primitive gut stem cell programme that overrules the WNT-driven stem cell 1314 

programme that occurs in homeostasis and directs low levels of stem cell self-renewal 135,155. This 1315 

drives the expansion of the intestinal stem cell (ISC) compartment through increased survival of 1316 



 40 

ISCs. b. YAP is enriched in basal stem cells of the normal skin9-12. Upon regeneration, YAP expression 1317 

is enriched in basal cells, keratinocytes and dermal cells (these cells were marked red). YAP 1318 

overexpression results in expansion of the basal stem cell compartment, increased proliferation 1319 

and dedifferentiation of epidermal cells, whereas deletion of Yap and Taz in mice resulted in 1320 

thinning of the epidermis and in delayed wound healing. 1321 

 1322 

Figure 4. Effects and benefits of YAP activation in different organs  1323 

a. Experimental activation of YAP induces cell proliferation in many organs in a dose dependent 1324 

manner. In the heart, YAP activation promotes cardiomyocyte proliferation and regeneration after 1325 

myocardial infarction13,15,162. In the liver of old mice, YAP activation restores the regeneration 1326 

potential after partial hepatectomy (PHx)18,19,167. YAP activation in the intestine induces stem cell 1327 

expansion and regeneration after injury134,155.  1328 

 1329 

Figure 5. Adverse effects of YAP activation in different organs.  1330 

Short and long-term activation of YAP can induce adverse phenotypes12,20,21,171. In the liver, 1331 

sustained activation of YAP by overexpression of constitutive active YAP (YAP-1SA) or by the 1332 

deletion of upstream Hippo pathway kinases induces overgrowth and eventually hepatocellular 1333 

carcinoma33-37. In the intestine, YAP promotes the expansion of the stem cell compartment 1334 

resulting in crypt hyperplasia and can result in the formation of benign adenomas if followed by 1335 

injury109,134. In striated muscles, YAP activation triggers inflammation and hypotrophy. In the adult 1336 

mouse heart, overexpression of YAP-1SA by AAV delivery did not cause overt phenotypes15.  1337 

 1338 

Table 2 Strategies for therapeutic YAP activation. 1339 

Multiple methodologies exist to trigger YAP activation in an organ-specific and transient manner. 1340 

AAV vectors can drive the expression of YAP in a specific organ or cell type when YAP is expressed 1341 

under a tissue-specific promoter. Such constructs can be coupled with inducible doxycycline 1342 

response systems (TetON and variants thereof) or with optogenetics to control the expression or 1343 
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activation of YAP213 214. A different strategy is to deliver extracellular ligands, such as Agrin215, to 1344 

activate YAP in the targeted organ or to express CTGF, encoded by a prominent YAP target 1345 

gene217,218. Finally, small molecule inhibitors that target negative regulators of YAP, such as the 1346 

MST1/2 inhibitor XMU-MP-1, allow hypomorphic (but ubiquitous) activation of YAP167.  1347 

 1348 

 1349 

 1350 

Glosary 1351 

β-Catenin destruction complex: β-catenin is degraded by a multiprotein "destruction complex" 1352 

that includes the tumor suppressors Axin and adenomatous polyposis coli (APC), the Ser/Thr 1353 

kinases GSK-3 and CK1, protein phosphatase 2A (PP2A), and the E3-ubiquitin ligase β-TrCP. In the 1354 

absence of Wnt signaling, the complex generates a β-TrCP recognition site by phosphorylation of 1355 

the β-catenin amino terminus, which targets β-catenin for degradation by the proteasome.  1356 

Imaginal discs: A group of undifferentiated cells in an insect larva that will develop into different 1357 

adult structures such as eyes, antennae, and wings.   1358 

Trophectoderm: The trophectoderm or trophoblast is the outer covering of cells that eventually 1359 

forms the placental interface between mother and offspring. 1360 

Branching morphogenesis: Is the growth and branching of epithelial tubules during 1361 

embryogenesis. 1362 

Intestinal crypts: Also known as crypts of Lieberkühn, are glands found in the intestinal epithelium 1363 

lining the small and large intestine, which contain stem cells and Paneth cells.  1364 

Polycomb group (PcG) proteins: A family of chromatin remodelling proteins that induce epigenetic 1365 

silencing of genes. 1366 

Trophoblast: Throphectoderm 1367 

Dystrophin: A cytoplasmic component of the dystrophin-associated protein complex in muscle 1368 

fibres that connects the cytoskeleton to the extracellular matrix.  1369 
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Duchenne muscular dystrophy: A genetic disorder caused by an absence of dystrophin and 1370 

characterized by progressive muscle degeneration and weakness.  1371 

Liposomal vesicles: Spherical vesicles composed of a bilayer comprising one or more phospholipids 1372 

and used as vehicles for the administration of nutrients or pharmaceutical drugs. 1373 

Biliary epithelial cells: Also known as cholangiocytes, are cuboidal epithelial cells that form bile 1374 

ducts in the liver.  1375 

Ductular reaction: A pathology associated with as increased number of ductules or fine 1376 

ramifications of the biliary tree in the liver that are often associated with an injury response.  1377 

Ulcerative colitis:  is a chronic bowel disease that causes inflammation in the large intestine or 1378 

colon.  1379 

Crohn’s disease: Is an inflammatory bowel disease. inflammation can appear anywhere in the 1380 

digestive tract, from the mouth to the anus.   1381 

Parenchyma: Parenchyma is the functional tissue of an organ and does not include any connective 1382 

or supporting tissue. 1383 

 1384 
Mesothelioma: A type of cancer that develops from the mesothelium, which is the thin layer of 1385 

tissue that covers many internal organs. 1386 

Neurofibrosarcoma: A malignant tumour that develops from the cells surrounding the peripheral 1387 

nerves. Also known as peripheral nerve sheath tumour. 1388 

Schwannoma: A generally benign tumour derived from Schwann cells, which are cells forming part 1389 

of the nerve sheath.  1390 

Mixed HCC/ICC: Rare intrahepatic lesions composed of hepatocellular carcinoma (HCC) and 1391 

intrahepatic cholangiocellular carcinoma (ICC). 1392 

Stellate cells: Pericytes found in the perisinusoidal space of the liver, also known as the space of 1393 

Disse (a small area between the sinusoids and hepatocytes). 1394 

Enterocytes: Simple columnar epithelial cells found in the small intestine which fulfill absorptive 1395 

functions. 1396 
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Goblet cells: Mucus producing cells found in the epithelium of the intestinal and respiratory 1397 

tracts.  1398 

Paneth cells: Epithelial cells located at the base of the intestinal crypt, which secrete antimicrobial 1399 

peptides and produce niche factors that modulate and maintain neighbouring stem cells. 1400 

 1401 

 1402 

 1403 


