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Abstract

American options are the reference instruments for the model calibration of a large

and important class of single stocks. For this task, a fast and accurate pricing algo-

rithm is indispensable. The literature mainly discusses pricing methods for Amer-

ican options that are based on Monte Carlo, tree and partial differential equation

methods. We present an alternative approach that has become popular under the

name de–Americanization in the financial industry. The method is easy to imple-

ment and enjoys fast run-times. Since it is based on ad hoc simplifications, however,

theoretical results guaranteeing reliability are not available. To quantify the result-

ing methodological risk, we empirically test the performance of the de–Americaniza-

tion method for calibration. We classify the scenarios in which de–Americanization

performs very well. However, we also identify the cases where de–Americanization

oversimplifies and can result in large errors.

Keywords

American options, calibration, binomial tree model, CEV model, Heston model, Lévy
models, model reduction, variational inequalities

1 Introduction

The most frequently traded single stock options are of American type. In general, there
exists a variety of (semi-)closed pricing formulas for European options. However, for
American options, there hardly exist any closed pricing formulas, and the pricing under
advanced models rely on computationally expensive numerical techniques such as the
Monte Carlo simulation or partial (integro) differential methods.
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1 Introduction

The motivation behind the de–Americanization methodology is to reduce the complexity
as well as to lower the computational cost. In general, it is much faster to calibrate
European options than American options.

In the financial industry, the so-called de–Americanization approach has become mar-
ket standard: American option prices are transferred into European prices before the
calibration process itself is started. This is usually done by applying a binomial tree.
The method is also briefly mentioned by Carr and Wu (2010), who describe how their
implied volatility data, stemming from the provider OptionMetrics, is obtained by ap-
plying exactly this de-Americanization scheme. Figure 1 illustrates the scheme of the
de–Americanization methodology.

Market Data:
American

Option Prices

de-Americanized
European

Option Prices

Calibrated
Model Parameters

Calibrated
Model Parameters

Binomial
Tree

Simplification

Calibration Calibration

Figure 1 De–Americanization scheme: American option prices are transferred into Eu-
ropean prices before the calibration process itself is started. We investigate the
effects of de–Americanization by comparing the results to directly calibrating
American options.

The de–Americanization methodology enjoys three attractive features. It delivers fast
run-times, is easy to implement and can flexibly be integrated into the pricing and cali-
bration toolbox at hand. One downside is that no theoretical error control is available.
Therefore, it is important to empirically investigate the accuracy, the performance and
the resulting methodological risk of the method. In order to conduct a thourough inves-
tigation of these factors, we consider prominent models and identify relevant scenarios
in which to perform extensive numerical tests. We explore the CEV model as an ex-
ample of a local volatility model, the Heston model as a stochastic volatility model and
the Merton model as a jump diffusion model. For all of these models, we implemented
finite element solvers as benchmark method for pricing American options. The following
questions serve as guidelines to specify decisive parameter settings within our studies.

1. Since American and European puts on non-dividend-paying underlyings coincide
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2 De–Americanization methodology

for zero interest rates, we analyze in particular the methodology for different in-
terest rates.

2. Intuitively, with higher maturities, the early exercise feature of American options
becomes more valuable and American and European option prices differ more sig-
nificantly. Therefore, we investigate the following question: Does the accuracy of
the de–Americanization methodology depend on the maturity and do de–Ameri-
canization errors increase with increasing maturities?

3. In-the-money and out-of-the-money options play different roles. First, out-of-the-
money options are preferred by practitioners for calibration since they are more
liquidly traded, see for instance Carr and Wu (2010). Second, in-the-money options
are more likely to be exercised. How does the de–Americanization methodology
perform for out-of-the-money options and for in-the-money options?

4. The difference between American and European options is model-dependent. In-
tuitively, (higher) jump intensities lead to higher values of early exercise features.
How does the de–Americanization methodology perform for continuous models
(CEV model and Heston model)? How does it perform for different jump intensi-
ties (Merton model)?

Our investigation is organized as follows. First, we introduce the de–Americanization
methodology in Section 2. Then we briefly describe in Section 3 the models and the
benchmark pricing methodology. Section 4 presents the numerical results: The accuracy
of the calibration procedure obviously hinges on the accuracy of the underlying pricing
routine. We therefore first specify the de–Americanization pricing routine and investigate
its accuracy. Afterwards, we present the results of calibration to both synthetic data
and market data. To conclude the numerical study, we present the effects of different
calibration results on the pricing of exotic options. We summarize our findings in Section
5.

2 De–Americanization methodology

In this section, we give a precise and detailed description of the methodology. The de–
Americanization methodology is used to fit models to market data. The core idea of de–
Americanization is to transfer the available American option data into pseudo-European
option prices prior to calibration. This significantly reduces the computational time
as well as the complexity of the required pricing technique. Basically, de–Americani-
zation can be split into three parts. The first part consists in collecting the available
market data. The currently observable price of the underlying S0, interest rate r and
the available American option prices are collected. In the following, we will denote the
American option price of the i-th observed option by V i

A. We interpret the market data
as the true option prices, thus we assume that the observed market prices V i

A can be

interpreted as V i
A “ suptPr0,Tis Ere´rt rHipStq|F0s, i “ 1, . . . , N , where rHi is the i-th
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2 De–Americanization methodology

payoff function, Ti the maturity of the i-th option, and the expectations are taken under
a risk-neutral measure, F is the natural filtration, and N denotes the total number of
options. Up to this point, no approximation has been used.

The second step is the application of the binomial tree to create pseudo-European – so
called de-Americanized – prices based on the observed American market data. In this
step, we look at each American option individually and find the price of the corresponding
European option with the same strike and maturity. This European option is found by
fitting a binomial tree to the American option. The binomial tree was introduced by
Cox et al. (1979) as follows. Starting at S0, at each time step and at each node, the
underlying can either go up by a factor of u or down by a factor of 1

u
and the risk-neutral

probability of an upward movement is given by

p “ er∆t ´ 1

u

u ´ 1

u

. (1)

Once the tree is set up, options can be valuated by going backwards from each final
node. Thus, path-dependent options can be evaluated easily. Since for each option i

the American option price V i
A is known, as well as S0 and r, the only unknown pa-

rameter of the tree is the upward factor u. At this step, the upward factor u˚
i is

determined such that the price of the American option in the binomial tree matches
the observed market price. Thus, denoting t0 : ∆t : Tiu “ t0,∆t, 2∆t, . . . , Tiu, we

have suptPt0:∆t:Tiu Ere´rt rHipSu˚

i
t q|F0s “ V i

A, where S
u˚

i
t denotes the underlying process

described by a binomial tree with upward factor u˚
i . The early exercise feature of Amer-

ican options is reflected in the fact that the the supremum is taken over all discrete time
steps. A detailed description of pricing American options in a binomial tree model is

given in Van der Hoek and Elliott (2006). Once S
u˚

i
t is determined, the corresponding

European option with the same strike and maturity as the American option is specified,

V i
E “ Ere´rTi rHipSu˚

i

Ti
q|F0s. Note that fixing u˚

i also implicitly determines the implied
volatility.

Then, for each American option V i
A, a corresponding European option V i

E has been found,
and the actual model calibration can start. The goal is to fit a model M , depending
on parameters µ P R

d, where d denotes the number of parameters in the model, to the

European option prices V i
E, i “ 1, . . . , N . Denote by S

Mpµq
Ti

the underlying process in

model M with parameters µ P R
d. In the calibration, the parameter vector µ is deter-

mined by minimizing the objective function of the calibration. Algorithm 1 summarizes
the de–Americanization methodology in detail.

Regarding the uniqueness of the factor u˚
i in the De–Americanization methodology de-

scribed in Algorithm 1, we will first investigate the case of a European put option. There-
fore, we interpret the risk-neutral probability in (1) as function of u, ppuq “ uer∆t´1

u2´1
. At

each node in the binomial tree we have a two-point distribution, that we call Bernoulli
distribution X „ QBpuq, where the value u is taken with probability ppuq and the value
1

u
is taken with probability p1 ´ ppuqq.
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2 De–Americanization methodology

Algorithm 1 De–Americanization methodology

1: procedure Collection of Observable Data

2: S0, r,
3: V i

A “ suptPr0,Tis Ere´rt rHipStq|F0s, i “ 1, . . . , N

4: procedure Application of the binomial tree to each option individually

5: for i “ 1 : N

6: Find u˚
i such that

7: suptPt0:∆t:Tiu Ere´rt rHipSu˚

i

t q|F0s “ V i
A

8: Derive the corresponding European option price with u˚
i

9: V i
E “ Ere´rTi rHipSu˚

i

Ti
q|F0s

10: end
11: procedure Calibration to European options

12: Find µ such that the differences

13: Ere´rTi rHipSMpµq
Ti

qs ´ V i
E, i “ 1, . . . , N

14: are minimized according to the objective function

Proposition 2.1
For i “ 1, ...., n, let Xi „ QBpuq and Yi „ QBpu1q. If u ď u1, and u, u1 satisfy the
conditions

1. u, u1 ě er∆t `
?
e2r∆t ´ 1, and

2. u, u1 ď p´er∆tk´1q´
?

per∆tk`1q2´4er∆tk

2k
“ 1

k
or u, u1 ě p´er∆tk´1q`

?
per∆tk`1q2´4er∆tk

2k
“

er∆t

k
,

then for any K P R

E

«˜
K ´

nź

i“1

Xi

¸`ff
ď E

«˜
K ´

nź

i“1

Yi

¸`ff
.

Remark 2.2
In the implementation of the tree, we set the time step size ∆t « 0.0002 and we use a
simple bi-section approach as suggested by Van der Hoek and Elliott (2006) to find u˚.
Thus, given a market price VA, starting with an upper bound uub and a lower bound ulb

satisfying the conditions in Proposition 2.1 such that,

sup
tPt0:∆t:Tiu

Ere´rt rHipSuub

t q|F0s ą VA,

sup
tPt0:∆t:Tiu

Ere´rt rHipSulb

t q|F0s ă VA,

the bi-section approach is started and the new candidate for u˚ is û “ uub`ulb

2
. When

suptPt0:∆t:Tiu Ere´rt rHipSû
t q|F0s ą VA, we set uub “ û for the next iteration, otherwise

5



3 Pricing Methodology

ulb “ û. As stopping criterion, we choose
ˇ̌
ˇ sup
tPt0:∆t:Tiu

Ere´rt rHipSû
t q|F0s ´ VA

ˇ̌
ˇ ď ε,

and set ε “ 10´5 in our implementation. In Proposition 2.1 we have investigated the
European put case and can deduce from the convex ordering that the put prices are mono-
tonically increasing in u. For a strict order, the u˚-value is thus uniquely determined.
In our case, the u˚-value can be determined uniquely as minimum of all u values satis-
fying the stopping criterion. Moreover, this indicates that also the American put price
in the binomial tree is increasing with increasing u. We validated this by numerical tests
(not reported). This is in line with the recommendation in Van der Hoek and Elliott
(2006). The only observed limitation is that the American put price can not given by an
immediate exercise at the initial time. This is explained in detail in Remark 4.1.

3 Pricing Methodology

In this section, we present a model formulation and numerical implementation of the
three investigated models (CEV, Heston, Merton). To investigate the de–Americaniza-
tion methodology, we need to price the American and European options. Our market
data in the numerical study later on will be based on options on the Google stock (Ticker:
GOOG). As Google does not pay dividends, we neglect dividend payments in our pricing
methodology. Without dividend payments, for r ą 0, it holds in general that American
calls coincide with European calls and only American puts have to be treated differently.
The opposite is true for r ă 0, in which case American and European puts coincide and
American and European calls have to be treated differently.

In general, for European options, there exists a variety of fast pricing methodologies such
as Fast Fourier Transform (Carr and Madan (1999); Raible (2000)) or even closed-form
solutions. The common approaches for pricing American options are P(I)DE methods
using either the finite difference method (FDM) or a finite element method (FEM). We
choose FEM since it is typically more flexible. To solve the resulting variational inequali-
ties for American options, we use the Projected SOR Algorithm, Achdou and Pironneau
(2005), Seydel (2012), for the CEV and Merton models, and the Primal Dual Active Set
Strategy, Hintermüller et al. (2002), for the Heston model.

3.1 Option Pricing Models

We briefly present the models that we use for our study, namely the constant elasticity of
variance model (CEV), the stochastic volatility Heston model, and the Merton model.

In all three of the models, the asset price dynamics Sτ are governed by a stochastic
differential equation (SDE) of the form

dSτ “ rSτ dτ ` σpS, τqSτ dWτ ` Sτ´ dJτ , S0 “ s ě 0, (2a)

6



3.2 Pricing P(I)DE

Jτ “
Nτÿ

i“0

Yi, (2b)

with Wτ a standard Wiener process, r the risk-free interest rate and a volatility function
σpS, τq. The jump part pJτ qτě0 is a compound Poisson process with intensity λ ě 0 and
independent identically distributed jumps Yi, i P N, that are independent of the Poisson
process pNτ qτě0. The Poisson process and the Wiener process are also independent.

As an example of a local volatility model, we begin by presenting the CEV model, which
was introduced by Cox (1975). Here, the local volatility is assumed to be a deterministic

function of the asset price for the process in (2), σpS, τq “ σS
ζ´1
τ , 0 ă ζ ă 1, σ ą 0 and

λ “ 0.

As an example of a stochastic volatility model, we use the model proposed by Heston
(1993). In contrast to the CEV model, the stochastic volatility is driven by a second

Brownian motion ĂWτ whose correlation with Wτ is described by a correlation parameter
ρ P r´1, 1s, and the model is based on the dynamics of both the stock price (2), with
jump intensity λ “ 0, and the variance vτ (3),

dvτ “ κpγ ´ vτ qdt ` ξ
?
vτdĂWτ , (3)

with σpS, τq “ ?
vτ , mean variance γ ą 0, rate of mean reversion κ ą 0 and volatility of

volatility ξ ą 0. Jumps are not included in either of the CEV or Heston models.

The Merton model includes jumps. The log-asset price process is not exclusively driven
by a Brownian motion, but instead follows a jump-diffusion process. Thus, in the model
of Merton (1976), the volatility of the asset process is still assumed to be constant,
σpS, τq ” σ ą 0, @S ą 0,@τ ě 0. But being a jump diffusion model, the jump intensity
λ ą 0 is positive and Nt „ Poisspλtq. The jumps are taken to be independent normally
distributed random variables, Yi „ N pα, β2q with expected jump size α P R and standard
deviation β ą 0.

3.2 Pricing P(I)DE

Denote by t “ T ´ τ the time to maturity T , T ă 8 and by K the strike of an option.
For the CEV model, we stay with the S variable, S P p0,8q, for the Heston and Merton
model we work with the log-transformed stock variable x :“ log

`
S
K

˘
, x P p´8,8q. In

the following, we will denote an American or European call or put price by P
Am{Eu

call{put . For

the CEV model we have P
Am{Eu

call{put : p0, T q ˆ R
` Ñ R

` and for the Heston and Merton

model we have P
Am{Eu

call{put : p0, T q ˆ R
n Ñ R

` (n “ 1 pMertonq, n “ 2 pHestonq). The

value of an option at t “ 0 is given by the payoff function rHcall{putp¨q, Pcall{putp0q “ P0 “

7



3.2 Pricing P(I)DE

rHcall{put with rHcallpSq :“ pS ´ Kq` or rHputpSq :“ pK ´ Sq` in the CEV model and
rHcallpxq :“ pKex ´Kq`, ( rHputpxq :“ pK ´Kexq`) in the Heston and Merton models.

Then, to find the value of the European option PEu
call{put, paying P

call{put
0

“ H̃call{putpSq
(P

call{put
0

“ rHcall{putpxq) at t “ 0 leads to solve the following initial boundary value
problem

BPEu
call{put
Bt ´ LsPEu

call{put “ 0, PEu
call{putp0q “ P

call{put
0

, (4)

where the spatial partial (integro) differential operator Ls, s “ tCEV,H,Mu is deter-
mined by the model used to price the option. For the CEV, Heston and Merton, it is
given by (5a), (5b) and (5c), respectively.

L
CEVP

Am{Eu

call{put : “ σS
ζ´1

t

2
S2

B2PAm{Eu

call{put
BS2

` rS
BPAm{Eu

call{put
BS ´ rP

Am{Eu

call{put , (5a)

L
HP

Am{Eu

call{put : “ 1

2
v

B2PAm{Eu

call{put
Bx2 ` ξvρ

B2PAm{Eu

call{put
BvBx ` 1

2
ξ2v

B2PAm{Eu

call{put
Bv2

` κpγ ´ vq
BPAm{Eu

call{put
Bv `

ˆ
r ´ 1

2
v

˙ BPAm{Eu

call{put
Bx ´ rP

Am{Eu

call{put , (5b)

LMP
Am{Eu

call{put : “ b
P

Am{Eu

call{put
Bx ` 1

2
σ2

B2PAm{Eu

call{put
Bx2 P

Am{Eu

call{put

`
ż

R

pPAm{Eu

call{put px ` zq ´ P
Am{Eu

call{put pxq ´
P

Am{Eu

call{put pxq
Bx zqF pdzq ´ rP

Am{Eu

call{put ,

(5c)

where, for the Merton model, the jump measure F is given by

F pdzq “ λa
2πβ2

exp

ˆ
´pz ´ αq2

2β2

˙
dz (6)

and the drift b P R is set to b :“ r ´ 1

2
σ2 ´ λ

ˆ
eα`β2

2 ´ 1

˙
due to the no-arbitrage

condition.

Due to its early exercise possibility, pricing an American option (e.g., put) results in
additional inequality constraints, and leads us to solve the following system of inequalities

BPAm
call{put
Bt ´ L

sPAm
call{put ě 0, PAm

call{put ´ P
call{put
0

ě 0, (7a)
˜

BPAm
call{put
Bt ´ LsPAm

call{put

¸
¨
´
PAm
call{put ´ P

call{put
0

¯
“ 0. (7b)
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3.3 Variational Formulation

We denote the parameter vector by µ :“ pξ, ρ, γ, κ, rq P R
5 for the Heston model,

µ :“ pσ, ζq P R
2 for the CEV model and µ :“ pσ, α, β, λq P R

4 for the Merton model.
Then the problems (4), (7) are parametrized problems with µ P P, where P Ă R

d is a
parameter space. The solution can be written as P “ P pµq. In some cases, for notational
convenience, we will omit the parameter-dependence of P and related quantities.

3.3 Variational Formulation

3.3.1 Boundary Conditions

We tackle the non-homogeneous truncated Dirichlet boundary conditions by means of
the lift function uLptq “ gptq onto the domain. For all models, we consider only Dirichlet-
or Neumann-type boundary conditions. For the European call in the Heston model, we
specify them as follows according to Winkler et al. (2001),

Γ1 : v “ vmin PEu
callpt, vmin, xq “ KexΦpd1q ´ Ke´rtΦpd2q, (8a)

Γ2 : v “ vmax PEu
callpt, vmax, xq “ Kex, (8b)

and we interpolate linearly on the boundaries Γ3 “ tx “ xminu and Γ4 “ tx “ xmaxu.
The cumulative distribution function Φp¨q is defined in (10) and d1,2 “ x`pr˘σ2

2
qt

σ
?
t

with

σ “ ?
v.

The boundary conditions for American put options in the Heston model are as follows,
according to Clarke and Parrott (1999) and Düring and Fournié (2012),

PAm
put pt, v, xq “ rHputpxq, on Γ3 Y Γ4,

BPAm
put

Bv pt, vmin, xq “ 0, on Γ1,
BPAm

put

Bv pt, vmax, xq “ 0, on Γ2.

For the CEV model, following Seydel (2012), we applied the boundary conditions

P
Am{Eu

call pt, Sminq “ 0, P
Am{Eu

call pt, Smaxq “ Smax ´ e´rtK, for call options,

PEu
put pt, Sminq “ e´rtK ´ Smin, PEu

put pt, Smaxq “ 0, for European put options,

PAm
put pt, Sminq “ K ´ Smin, PAm

put pt, Smaxq “ 0, for American put options.

In the Merton model, we subtract a function Ψ from the original pricing PIDE that
approximately matches the behavior of PMerton such that for all t P r0, T s we have
rPMerton “ PMertonpt, xq ´ Ψpt, xq Ñ 0 for x Ñ ˘8. We choose

ΨAm./Eu. callpt, xq “ pKex ´ Ke´rtqΦpxq,
ΨAm. putpt, xq “ pK ´ Kexqp1 ´ Φpxqq,

(9)

9



4 Numerical Study of the effects of de–Americanization

for European call and put options, respectively, where Φ is the cumulative distribution
function of the normal distribution (10),

Φpxq “ 1?
2π

ż x

´8
e´ 1

2
z2dz. (10)

The transformation of the Merton model obtained by subtracting an appropriately chosen
function Ψ as introduced in (9) results in zero boundary conditions in space, upt, xminq “
upt, xmaxq “ 0 for all t P r0, T s.

4 Numerical Study of the effects of de–Americanization

Our main objective is to investigate the de–Americanization methodology with respect
to the previously stated questions 1-4 on page 2. But before we look at these questions
and the calibration results in detail, we describe the discretization of our FEM pricers
followed by an investigation of the effects of de–Americanization on pricing. Then we
switch to calibrating to synthetic data and, finally, to market data.

4.1 Discretization

We set up mesh sizes and time discretization in all three models such that the errors
compared to benchmark solutions are roughly the same. In our test setting, we set
S0 “ 1, r “ 0.07, T “ t0.5, 0.875, 1.25, 1.625, 2u and K to 21 equally distributed values
in r0.5, 1.5s. For the discretization, we choose rSmin, Smaxs “ r0.01, 2s for the CEV
model, rvmin, vmaxs “ r10´5, 3s and rxmin, xmaxs “ r´5, 5s for the Heston model and
for the Merton model we set rxmin, xmaxs “ r´5, 5s. We set N “ 1000 for the CEV
model, N “ 49 ˆ 97 “ 4753 for the Heston model and N “ 192 for the Merton model,
as well as ∆t “ 0.008 for all models. For the CEV model, we choose σ “ 0.15 and
ζ “ 0.75 and as benchmark solution we implement the semi-closed-form solution of the
CEV model for European put and call prices as shown in Schroeder (1989). We use the
semi-closed-form solution in Janek et al. (2011) for the Heston model as benchmark and
as model parameters we use ξ “ 0.1, ρ “ ´0.5, γ “ 0.05, κ “ 1.2 and v0 “ 0.05. In
the Merton model, Fourier pricing is used as benchmark. The model is parametrized by
setting σ “ 0.2, α “ ´0.1, β “ 0.1 and λ “ 3. Summarizing the results, we observe
that for all models, with the introduced discretization, the absolute error between the
benchmark and the FEM solution is in the region of 10´3 to 10´4 and, thus, the pricers
for all three models have comparable accuracy.

10



4.2 Effects of de–Americanization on Pricing

4.2 Effects of de–Americanization on Pricing

First, we focus on pricing differences caused by de–Americanization. Therefore, we
compare the de–Americanized American prices with the derived European option prices
in the following way. Starting with a set of model parameters, we price the American
and European options. Then, the binomial tree is applied to translate the American
option prices into de-Americanized pseudo-European prices. Subsequently, we compare
the European and the pseudo-European so called de-Americanized prices to identify the
effects of the de–Americanization methodology.

The advantage of this approach is that we can purely focus on de–Americanization,
decoupled from calibration issues. In order to do so, we define the following test set for
the range of investigated options. Here, we focus on put options due to the fact that
American and European calls coincide for non-dividend-paying underlyings.

S0 “ 1

K “ 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20

T “ 1

12
,
2

12
,
3

12
,
4

12
,
6

12
,
9

12
,
12

12
,
24

12

r “ 0, 0.01, 0.02, 0.05, 0.07 (11)

In each model, 5 parameter sets are investigated to cover the parameter range. These
are summarized in Table 1.

CEV Heston Merton
σ ζ ξ ρ γ κ v0 σ α β λ

p1 0.2 0.5 0.10 -0.20 0.07 0.1 0.07 0.20 -0.01 0.01 1
p2 0.275 0.6 0.25 -0.50 0.10 0.4 0.10 0.15 -0.05 0.05 2
p3 0.35 0.7 0.40 -0.50 0.15 0.6 0.15 0.20 -0.10 0.10 3
p4 0.425 0.8 0.55 -0.45 0.20 1.2 0.20 0.10 -0.10 0.20 5
p5 0.5 0.9 0.70 -0.80 0.30 1.4 0.30 0.10 -0.15 0.20 7

Table 1 Overview of the parameter sets used for the CEV, Heston and Merton models

Motivation of the selected parameters for the CEV model The main feature
of the CEV model is the elasticity of variance parameter ζ, which is combined with the
level of the underlying to obtain a local volatility, namely σpS, tq “ σSζ´1, reflecting
the leverage effect. In our example, we investigate American puts and the option-holder
benefits from decreasing asset prices. In general, increasing the volatility leads to in-
creasing option prices, but especially compared to the classical Black-Scholes model we
are interested in the question of how strongly the incorporated leverage effect influences
the put prices and whether the differences between American and European puts can
be captured by the binomial tree. Thus, our selection for ζ in p1 is 0.5, which strongly
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differs from the Black-Scholes model, and then ζ is further increased up to 0.9 within
the scenarios. Additionally, we increase the values of σ.

Motivation of parameter selection for the Heston model Similar to the CEV
model, the (American) put prices increase with increasing volatility. We try to cover this
effect by increasing the volatility of the volatility parameters and the correlation between
the two stochastic processes. In general, for stocks, the correlation between the volatility
and the underlying value is negative. Thus, in the de-Americanization study, we focus on
negative correlation values ρ. Starting in p1 with a relatively low volatility and a slightly
negative correlation ρ, in p2 to p4 we increase the volatility of volatility parameter ξ,
the mean reverting level γ and the mean reverting speed κ, and also investigate higher
negative values for the correlation ρ. In all scenarios, the initial volatility v0 is set to
match the mean reverting level, i.e., v0 “ γ.

Motivation of parameter selection for the Merton model The Merton model
is a jump diffusion model. Due to the early exercise feature of American options, the
existence of jumps has a significant impact on American option prices. Consider for
example an American put. Here, the option-holder benefits from decreasing asset prices.
Consequently, when the possibility of negative jumps increases, the option price will
increase as well. The jump intensity parameter λ therefore plays a decisive role in this
de-Americanization study. The analogous reasoning holds for the expected jump size
parameter α. In the upcoming numerical study, we try to incorporate these effects.
The considered scenarios for the Merton model presented in Table 1 are chosen by this
reasoning. Scenario p1 describes a Black-Scholes-like market with a rather low presence
of jump occurrences. In p2 and p3, the jump feature appears more pronounced. Scenario
p4 and p5 finally are encoded by rather jump-dominated parameter sets, which have an
average number of 7 jumps per year with large expected negative jump sizes that appear
highly volatile.

Remark 4.1
We price the put options in (11) for the parameter sets shown in Table 1. For some
parameters, especially for high interest rates combined with low volatility, it could occur
that the price of an American put option equals exactly Ki´S0, so that this American put
option would be exercised immediately. In the following analysis, we excluded these cases
because a unique European option price cannot be determined by applying the binomial
tree. As illustrated in the following toy example in Figure 2, there are several possible
values for u to replicate the American option price if the price of the American option
is determined by immediately exercising it. In the example, a put option with strike
K “ 120 is priced. Here, u “ 1.04 and u “ 1.11 are possible solutions. To avoid
this, we consequently only consider American put options in our analyses when PAm

put ą
pK ´S0q` ¨ p1` δq. Thus, the American put option price exceeds the immediate exercise
price by a factor of δ. We set δ “ 1%.
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107.33, 12.67, 12.67

103.6, 15.80, 16.40

100.00, 18.81, 20.00 100.00, 20.00, 20.00

96.53, 22.88, 23.47

93.17, 26.83, 26.83

u « 1.036

123.63, 0.00, 0.00

111.19, 10.01, 10.01

100.00, 19.69, 20.00 100.00, 20.00, 20.00

89.94, 29.46, 30.06

80.89, 39.11, 39.11

u « 1.112

Figure 2 Given an American put option price of 20 with S0 “ 100, K “ 120, r “ 0.01,
i.e., an American put option in the exercise region, a unique tree cannot be
found to replicate this option. In this example, we show two binomial trees for
u « 1.036 (top) as well as u « 1.112 (bottom). In each tree, we show the value
of the underlying (black), the European put price (blue) and the American
put price (red) at each node. Both trees replicate the American option price
of 20.00 but result in different European put prices: 18.81 and 19.69.
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Figure 3 De–Americanization effects on pricing put options in the CEV model. As an
example, the results are shown for p5 for the average error between the de-
Americanized and the European prices for each strike (left) and each maturity
(right).
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Figure 4 De–Americanization effects on pricing put options in the Heston model. As
an example, the results are shown for p5 for the average error between the de-
Americanized and the European prices for each strike (left) and each maturity
(right).

In Tables 7 - 9 (CEV model), Tables 10 - 12 (Heston model) and Tables 13 - 15 (Merton
model) in the appendix, we show in the appendix the pricing effects for the synthetic
prices in (11). For each scenario pi, i “ 1, . . . , 5, we present the average difference between
the de-Americanized prices and the European prices for each maturity and each strike
and accordingly show the maximal European price in this maturity to reflect the issue
stated in Remark 4.1. Similar studies have been done for the maximal error at each
strike and maturity and confirm the findings based on the average error presented in
the following. In Figure 3, we highlight the results for scenario p5 in the CEV model
to illustrate the effects of de-Americanization in several interest rate environments for
different maturities or different strikes. For p5 in the Heston model and p5 in the Merton
model, the results are shown in Figure 4 and Figure 5, respectively. All of these figures
clearly highlight the case r “ 0 as having hardly any de-Americanization effects (Heston
and Merton) or at least fewer such effects (CEV).

In general, for the CEV model, we observe that for short maturities the de–Americanized
prices seem to overprice the European prices, whereas for longer maturities they seem
to underprice the European options. We see that with increasing σ and ζ parameters
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Figure 5 De–Americanization effects on pricing put options in the Merton model. As
an example, the results are shown for p5 for the average error between the de-
Americanized and the European prices for each strike (left) and each maturity
(right).

the maximal error increases and, overall, all parameter sets behave similarly. Focusing
on the interest rate, we observe that for higher interest rates (r “ 5% and r “ 7%)
the average errors are higher or at least in a comparable region. Especially for higher
interest rates, the maximal price has to be considered, because the higher the interest
rate, the higher the probability that we did not consider some in-the-money options
due to Remark 4.1 and that the options with high prices are neglected in this setting.
Thus we deduce that the error increases with increasing interest rates and that at high
maturities the error increases for scenarios with higher volatility. For scenarios p1, p2
and p3, we clearly observe that the effects of de-Americanization increase with increasing
strikes. This means that for in-the-money options the de-Americanization effects tend
to be stronger than for out-of-the-money options. This is consistent with the statements
made by Carr and Wu (2010). However, for higher interest rates, the average error seems
to decrease with increasing strikes.This is due to the issue mentioned in Subsection 4.1.
This effect occurred particularly strongly in the deep in-the-money region this effect oc-
curred and the affected cases were neglected.

For the Heston model, we observe in general that the de–Americanization error increases
with increasing interest rates within each parameter setting. Additionally we see that for
r “ 0% there is hardly any effect. By focusing on the scenarios with a higher volatility
of volatility parameter (p4 and p5), we observe stronger de–Americanization effects at
short and long maturities (T1 and T8). For short maturities, the de–Americanized price
is consistently lower than the corresponding European price throughout all scenarios,
whereas for high maturities the de–Americanized price is higher than the corresponding
European price. To highlight the in-the-money and out-of-the-money issue in Figure 4,
note that in the Heston model the error is far smaller out-of-the-money than deep in-
the-money. However, the highest errors tend to occur in the at-the-money and slightly
in-the-money regions.

For the Merton model, we observe similar, small effects for scenarios p1 and p2, i.e.,
the scenarios with low jump intensity, whereas for the scenarios with increasing jump
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4.3 Effects of de–Americanization on Calibration to Synthetic Data

intensity (p3, p4 and p5) we observe stronger de–Americanization effects, especially for
increasing maturities and interest rates. Figure 5 additionally shows that for increasing
strikes the effect of de–Americanization increases slightly for lower interest rates and that
for higher interest rates this error increases more strongly in the in-the-money region.

In addition to all of these de–Americanization effects in absolute terms, we checked the
magnitude of the relative error for the 1-year at-the-money put option, i.e., the absolute
difference between the European and the de-Americanized price divided by the European
price. In the CEV model, the average relative error for this option in all scenarios and
interest rate settings was 0.1% with a peak of 0.17% at scenario p2 with r “ 1%. The
average relative error for the Heston model was 0.17% with a peak of 0.83% in p2 with
r “ 7%. In the Merton model, the average relative error of the at-the-money put option
with maturity of one year was 0.18% with a peak of 1.02% at p5 and r “ 7%.

Summarizing the results,

• de–Americanization effects are sensitive to interest rate. The higher the interest
rates, the higher the observable pricing differences,

• de–Americanization effects increase with increasing volatility and increasing ma-
turities,

• de–Americanization effects tend to be stronger in-the-money,

• de–Americanization effects increase with higher jump intensities.

Overall, in the settings mentioned above, we observe a systematic effect caused by de–
Americanization. In the next step, we are interested in finding out whether these effects
are also reflected in the calibration results.

4.3 Effects of de–Americanization on Calibration to Synthetic Data

Here, we study the de-Americanization effect on synthetic American market data. To
this effect, in a first step, we generate artificial market data using our FEM implemen-
tations of the three considered models. In a second step, we calibrate each model to the
previously generated market data. This methodology allows us to disregard the noise
affiliated with real market data is affiliated with and thus enables us to study the effect
of de-Americanization exclusively.
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4.3 Effects of de–Americanization on Calibration to Synthetic Data

Our artificial market data is specified as follows.

S0 “ 1

r “ 7%

T1 “ 2

12
, K1 “ t0.95, 0.975, 1, 1.025, 1.05u,

T2 “ 6

12
, K2 “ t0.9, 0.925,K1 , 1.075, 1.1u,

T3 “ 9

12
, K3 “ t0.85, 0.875,K2 , 1.125, 1.15u,

T4 “ 1, K4 “ t0.8, 0.825,K3 , 1.175, 1.2u,
T5 “ 2, K5 “ t0.75, 0.775,K4 , 1.225, 1.25u.

(12)

As the data in (12) shows, we consider a high-interest market and a set of maturities
ranging from rather short-term American options with 2 months maturity to long-term
American products with 2 years maturity. Each maturity Ti is associated with a set of
strikes Ki, i P t1, . . . , 5u. To analyze the effects of de–Americanization on pricing, we
price these options for the five parameter scenarios in Table 1. Regarding the calibration
methodology, we have to make two choices. First, we have to decide which option types
to include and, second, we need to determine the objective function.

Regarding the choice of options, we first consider only put options for the whole strike tra-
jectory due to the fact that, in our setting of non-dividend paying underlyings, American
and European calls coincide. Thus, we include in-the-money as well as out-of-the-money
options. Second, motivated by the fact that the value of out-of-the-money options does
not include any intrinsic value and is therefore supposed to better reflect the randomness
of the market (as mentioned in Carr and Wu (2010)), we consider as a second approach
that only includes out-of-the money puts and out-of-the money calls for the whole set
of strikes and maturities. Consequently, in this second study, for each i P t1, . . . , 5u, we
consider call option prices for maturities Ti and strikes k P Ki with k ą 1 and put option
prices for maturities Ti and strikes k P Ki with k ă 1. At-the-money option data, i.e.,
options with strike K “ 1, is neglected.

Once the synthetic American market data has been generated, we create associated
second synthetic market data by applying the de-Americanization routine using the
binomial model.

Remark 4.1 and Figure 2 describe situations in which the de-Americanization routine
yields non-unique results. In the calibration to de-Americanized prices, we exclude op-
tions that cannot be de-Americanized uniquely as explained by the following remark.

Remark 4.2 (Disregarding non-unique de–Americanized prices)
As outlined above, we artificially generate American market data for a calibration study
on synthetic data. In a first step, we calibrate to the generated American prices di-
rectly. In a second step, we de–Americanize the option data and calibrate to the resulting
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4.3 Effects of de–Americanization on Calibration to Synthetic Data

quasi-European options. Here, we only consider option prices that admit a unique de–
Americanized price. Consequently, all American put option prices that violate

PAm
put ą pK ´ S0q` ¨ p1 ` δq, with δ “ 1%, (13)

are not de–Americanized and thus are neglected in the second step.

The second crucial assumption is the objective function. A variety of objective functions
are proposed in the literature, e.g., the root mean square error, the average absolute
error as a percentage of the mean price, the average absolute error, the average relative
percentage error, absolute price differences, relative price differences, absolute implied
volatilities, relative implied volatilities (see for example Detlefsen and Haerdle (2006),
Bauer (2012), Fengler (2005), Schoutens et al. (2004)).

We work directly with the observed prices and choose an objective function that considers
prices, and due to the fact that the considered out-of-the-money option prices are rather
small, we focus on absolute instead of relative differences. In the calibration, we take
the absolute average squared error (aase) as the objective function and we minimize,

aase “ 1

#options

ÿ

optionk

|Market pricek ´ Model pricek|2. (14)

The results of the calibration to synthetic data are summarized in Table 2 for the CEV
and Merton models and in Table 3 for the Heston model for calibrating to put options
and calibrating to out-of-the-money options.

Overall, we see that for the CEV model the parameters match well when calibrating to
American options. When calibrating to de-Americanized prices however, the volatility
parameter σ is underestimated in most cases and this underestimation is counterbalanced
by an overestimated ζ-value.

Focusing on the Heston model, we observe that in every calibration to American options
the parameters are matched better than in the corresponding calibration to de–Ameri-
canized data. We clearly see that the three parameters γ, κ and v0 are matched, but
the remaining two parameters ξ and ρ show different results. When calibrating put
options, as the volatility of volatility parameter ξ increases,the calibrated de–Aameri-
canized parameter overestimates the true parameter. When calibrating out-of-the-money
options, we observe that ξ is underestimated for lower ξ values and overestimated for
higher ξ values. Regarding ρ, as the volatility of volatility is increased, the de–Ameri-
canized parameter tends to underestimate the ρ value. Later, by focusing on pricing
exotic options, we will see whether these two contrary effects cancel each other or lead
to different exotic option prices.
For the Merton model, we observe that when calibrating American options σ is matched
fairly accurately in most cases. For the other 3 parameters, we observe that whenever the
jump intensity λ is underestimated, the corresponding mean α and standard deviation β
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CEV Merton
σ ζ aase σ α β λ aase

p1

true 0.2 0.5 — 0.20 -0.01 0.01 1 —

Put
Am 0.1977 0.4962 7.74e-6 0.20 0.01 0.05 0.29 1.07e-10
DeAm 0.1894 0.4501 8.35e-5 0.20 -0.06 0.03 0.37 8.37e-8

oom
Am 0.1997 0.4996 4.52e-6 0.20 0.00 0.05 0.32 1.35e-10
DeAm 0.1793 0.9609 2.75e-4 0.20 -0.02 0.04 0.30 3.80e-9

p2

true 0.275 0.6 — 0.15 -0.05 0.05 2 —

Put
Am 0.2740 0.6004 4.98e-7 0.15 -0.06 0.05 1.55 2.69e-11
DeAm 0.2607 0.7539 2.04e-6 0.14 -0.10 0.01 1.31 1.63e-7

oom
Am 0.2736 0.5978 1.91e-6 0.16 -0.10 0.04 0.66 1.91e-10
DeAm 0.2484 0.5367 1.10e-5 0.15 -0.11 0.03 0.74 2.22e-8

p3

true 0.35 0.7 — 0.20 -0.10 0.10 3 —

Put
Am 0.3515 0.7576 4.37e-5 0.22 -0.19 0.07 1.31 8.83e-10
DeAm 0.3272 0.8528 1.92e-4 0.16 -0.05 0.11 5.04 3.12e-8

oom
Am 0.3476 0.6984 1.00e-4 0.22 -0.19 0.07 1.32 5.47e-10
DeAm 0.3141 0.5527 5.99e-4 0.19 -0.17 0.09 1.88 3.33e-7

p4

true 0.425 0.8 — 0.10 -0.10 0.20 5 —

Put
Am 0.4258 0.7898 1.53e-6 0.10 -0.10 0.20 5.00 1.22e-13
DeAm 0.3942 0.8755 7.30e-6 0.10 -0.10 0.20 5.00 6.29e-16

oom
Am 0.4262 0.7966 3.27e-6 0.09 -0.09 0.21 4.90 2.19e-7
DeAm 0.3801 0.6009 1.96e-5 0.15 -0.14 0.22 3.63 6.53e-7

p5

true 0.5 0.9 — 0.10 -0.15 0.20 7 —

Put
Am 0.4982 0.9036 1.53e-6 0.10 -0.15 0.20 7.00 8.96e-13
DeAm 0.4570 0.9192 1.02e-5 0.05 -0.11 0.21 7.95 1.73e-7

oom
Am 0.4986 0.9036 4.02e-6 0.10 -0.15 0.20 7.00 5.00e-13
DeAm 0.4430 0.6549 2.38e-5 0.05 -0.20 0.23 5.08 1.67e-6

Table 2 Calibration results for calibrating to put options only and out-of-the-money
options for the CEV model (left) and Merton model (right). Due to the effect
of non-unique de-Americanization results, for the CEV model, some option
prices have been neglected in the calibration to de-Americanized option data,
as Remark 4.2 explains. In scenarios p1 to p5, 5, 5, 10, 10 and 10 prices were
excluded in the calibration to put options only. In scenarios p1 and p2 of the
Merton model, 5 prices have been excluded in the calibration to put options
only.

of the jump are adjusted accordingly. Similar observations can be made for calibration
to de–Americanized prices. Here, especially for calibrating out-of-the-money values in
p4 and p5, we observe that the σ value is also not matched.

Summarizing the results, we observe that when calibrating de-Americanized synthetic
data in a high-interest-rate environment for the continuous CEV and Heston models, the
main parameters driving the volatility of the underlying, ζ and σ (CEV) and ξ and ρ
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Heston
ξ ρ γ κ v0 aase

p1

true 0.1 -0.2 0.07 0.1 0.07 —

Put
Am 0.1002 -0.1999 0.07 0.1026 0.07 1.43e-13
DeAm 0.1 -0.4839 0.0651 0.5144 0.0695 1.50e-7

oom
Am 0.1006 -0.1987 0.07 0.1049 0.07 4.73e-13
DeAm 0.1 -0.1949 0.0665 0.2292 0.07 1.32e-8

p2

true 0.25 -0.5 0.1 0.4 0.1 —

Put
Am 0.25 -0.5 0.1 0.4 0.1 6.47e-23
DeAm 0.2667 -0.5067 0.0978 0.4374 0.0992 3.28e-8

oom
Am 0.25 -0.5 0.1 0.4 0.1 2.99e-17
DeAm 0.2199 -0.5 0.0885 0.1618 0.1 5.76e-9

p3

true 0.4 -0.5 0.15 0.6 0.15 —

Put
Am 0.4 -0.5 0.15 0.6 0.15 7.15e-16
DeAm 0.4684 -0.437 0.1544 0.6806 0.1495 6.04e-9

oom
Am 0.4 -0.5 0.15 0.6 0.15 7.03e-18
DeAm 0.3970 -0.5 0.1517 0.5413 0.1494 4.68e-9

p4

true 0.55 -0.45 0.2 1.2 0.2 —

Put
Am 0.55 -0.45 0.2 1.2 0.2 1.44e-17
DeAm 0.5773 -0.4298 0.2046 1.1975 0.1986 2.86e-9

oom
Am 0.55 -0.45 0.2 1.2 0.2 8.41e-22
DeAm 0.5625 -0.4369 0.2035 1.2198 0.1988 4.50e-9

p5

true 0.7 -0.8 0.3 1.4 0.3 —

Put
Am 0.7 -0.8 0.3 1.4 0.3 1.68e-17
DeAm 0.8504 -0.7057 0.3136 1.5832 0.2993 1.31e-8

oom
Am 0.7 -0.8 0.3 1.4 0.3 8.58e-23
DeAm 0.7763 -0.7602 0.3073 1.7021 0.2979 2.34e-8

Table 3 Heston model: Calibration results for calibrating to put options only and out-
of-the-money options.

(Heston), are often not exactly matched. In these cases, the application of the binomial
tree is not able to capture the volatility of the underlying exactly. For the jump model
(Merton), we observe that due to the de-Americanization the jump intensity is (more
strongly) mismatched than when directly calibrating to American options and in these
cases the wrongly calibrated jump intensity parameter may be compensated by adjusting
the other model parameters accordingly.

4.4 Effects of de–Americanization on Calibration to Market Data

In this section, we investigate the effects of de–Americanization by calibrating market
data. The single stock of our choice is Google as an example of a non-dividend-paying
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stock. Table 4 gives an overview of the processed data for the calibration procedure. In
total we obtained a data set containing 482 options, with slightly more puts than calls.
The risk-free interest rate for maturities of 1 month, 3 months, 6 months, 1 year and
2 years are taken from the U.S. Department of the Treasury1 and have been linearly
interpolated whenever necessary.

Maturity T # of options r
T1 27.02.2015 0.07 47 0.0001
T2 20.03.2015 0.13 49 0.000129508
T3 17.04.2015 0.20 52 0.00017541
T4 19.06.2015 0.38 87 0.00046087
T5 18.09.2015 0.62 98 0.000955435
T6 15.01.2016 0.95 101 0.001602174
T7 20.01.2017 1.97 48 0.004786339

Table 4 Processed Google option data for t0 “ 02.02.2015, S0 “ 523.76

In order to structure the available data, we follow the methodology applied for the
volatility index (VIX) by the Chicago board of exchange (CBOE (2009)):

• Only out-of-the-money put and call options are used

• The midpoint of the bid-ask spread for each option with strike Ki is considered

• Only options with non-zero bid prices are considered

• Once two puts with consecutive strike prices are found to have zero bid prices, no
puts with lower strikes are considered for inclusion (same for calls)

Basically, by this selection procedure, we only select out-of-the-money options that (due
to non-zero bid prices) can be considered as liquid. In general, an option price consists
of two components reflecting the time value and the intrinsic value of the option. By
focusing on out-of-the-money options, the intrinsic value effects are mostly neglected and
the highest option price will be at-the-money. Additionally, the highest market activity
is in the at-the-money and slightly out-of-the-money region. The calibration results are
summarized in Table 5.

Here, we observe hardly any differences in the parameters. This is in line with our ob-
servations in Section 4.2 for low-interest-rate environments. In these settings, American
and European puts almost coincide and, thus, there will hardly be any difference in the
prices and it is only natural that we observe very similar calibration results. Interest-
ingly, the aase value obtained by calibrating the Heston model is slightly lower when
calibrating de-Americanized options than American options.

1http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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CEV
σ ζ aase

Google Data
Am 0.25 0.98 3
DeAm 0.25 0.97 3.32

Heston
ξ ρ γ κ v0 aase

Google Data
Am 0.2290 -0.6854 0.0585 4.3186 0.0651 0.8464
DeAm 0.2245 -0.6941 0.0586 4.1433 0.0647 0.8319

Merton
σ α β λ aase

Google Data
Am 0.1936 -0.2000 0.2194 0.2935 0.5813
DeAm 0.1935 -0.2000 0.2133 0.3014 0.6035

Table 5 Calibration results for calibrating to out-of-the-money put and call options
combined.

4.5 Effects of de–Americanization in pricing exotic options

Plain vanilla options are traded liquidly in the market and are used to calibrate models.
Financial institutions use these calibrated models to price more exotic products such as
barrier and lookback options. In this subsection, we analyze which influences different
calibration results have on the accuracy of exotic option prices.

We analyze a down-and-out call option and a lookback option and hence translate
differences in the calibrated model parameters into quantitative prices. The payoff
rHDOCpSpT qq of a down-and-out call option with barrier B is given by

rHDOCpSpT qq “ pSpT q ´ Kq` ¨ 1mintďT SptqěB . (15)

In our setting, we set S0 “ 100, the barrier B to 90% of the initial underlying value and
the strike K to 105% of the underlying value. For the lookback option, we choose the
same strike and the payoff rHLookbackpSpT qq is

rHLookbackpSpT qq “ pS̄pT q ´ Kq`, with S̄pT q “ max
tďT

Sptq. (16)

We price these two exotic options for the calibrated parameters in Tables 2, 3 and 5
via a standard Monte Carlo method with 106 sample paths, 400 time steps per year
and antithetic variates as variance reduction technique. The results are shown in the
following Table 6.

Overall, we observe a different picture in each of the three models. In p1 and p2 of the
CEV model, the scenarios with relatively small volatility, we do not see any differences.
Thus, in cases with small volatility and medium elasticity of variance ζ, de–Ameri-
canization seems to work. In the other scenarios, we observe that the calibration of
de–Americanized prices leads to higher exotic option prices if we calibrate put options
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4.5 Effects of de–Americanization in pricing exotic options

CEV Heston Merton
barrier lookback barrier lookback barrier lookback

p1

true 9.93 10.11 8.75 8.80 3.86 25.70

Put
Am 9.93 10.10 8.74 8.78 3.92 25.86
DeAm 9.93 10.01 4.54 4.86 3.98 26.09

oom
Am 9.93 10.11 8.73 8.78 3.93 25.86
DeAm 10.13 11.13 8.27 8.37 3.88 25.77

p2

true 10.13 11.14 2.28 2.73 2.57 22.97

Put
Am 10.14 11.14 2.28 2.73 2.49 22.73
DeAm 11.47 14.59 2.07 2.54 2.56 22.94

oom
Am 10.12 11.10 2.27 2.73 2.64 23.24
DeAm 9.95 10.40 4.32 4.57 2.43 22.75

p3

true 11.60 14.93 1.15 1.80 6.65 37.35

Put
Am 12.48 17.83 1.15 1.80 6.78 37.88
DeAm 13.53 23.85 1.86 2.77 6.50 36.51

oom
Am 11.56 14.81 1.14 1.80 6.76 37.85
DeAm 10.07 10.91 1.40 2.08 6.17 37.63

p4

true 13.56 24.08 0.83 1.86 10.17 54.99

Put
Am 13.54 24.00 0.83 1.86 10.14 55.00
DeAm 14.14 30.87 1.04 2.21 10.11 54.98

oom
Am 13.51 23.81 0.83 1.86 10.18 54.99
DeAm 10.60 12.37 0.94 2.05 9.42 55.54

p5

true 14.76 43.40 0.02 0.52 15.63 76.15

Put
Am 14.80 43.99 0.02 0.52 15.48 75.69
DeAm 14.78 43.50 0.03 0.67 15.99 75.97

oom
Am 14.74 42.81 0.02 0.52 15.58 76.06
DeAm 11.68 15.13 0.02 0.56 13.98 75.01

Google
data

Am 14.21 32.10 0.69 1.51 4.03 28.91
DeAm 14.12 30.70 0.67 1.47 4.03 28.93

Table 6 Overview of prices for barrier and lookback options

only and lower exotic option prices if we calibrate out-of-the-money options. Thus, the
typically lower calibrated σ-value in combination with an increased ζ-value obtained by
calibrating de-Americanized options has this effect on the pricing of exotic options.

For the Heston model, we see that in the cases where the calibration of de–Americanized
data led to different ξ and ρ values there are differences in the exotic option prices.
More precisely, in all these cases, the corresponding barrier and lookback prices are too
high. This means that de–Americanization causes an systematic overpricing of exotic
options.

For the Merton model, we see rather small differences for lookback options, but more
interestingly, we observe differences for the down-and-out barrier option. This reflects
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5 Conclusion

the fact that the differently calibrated jump intensities and accordingly adjusted means
and standard deviations of the jumps can buffer de–Americanization effects over paths
where the option cannot vanish like in the barrier option case.

In high-interest-rate environments, the de–Americanization methodology leads to dif-
ferent exotic options prices in the CEV model when the volatility of the underlying is
higher. When using only put options, the exotic option prices tend to be higher; when
considering out-of-the-money options, the exotic option prices tend to be lower. In the
Heston model, we observe a similar picture as in the CEV model, however here no general
statement holds between higher and lower exotic option prices. Regarding the Merton
model, the differences in the exotic option prices are more visible when considering the
down-and-out barrier option.

5 Conclusion

In this paper, we investigate the de–Americanization methodology by performing ac-
curacy studies to compare the empirical results of this approach to those obtained by
solving related variational inequalities for local volatility, stochastic volatility and jump
diffusion models. On page 2, we propose key questions regarding the robustness of the
de–Americanization methodology with regard to changes in the (i) interest rates, (ii)
maturities; (iii) in-the-money and out-of-the-money options and (iv) continuous and
discontinuous models with increasing jump intensities.

First, focusing on pricing, we observe that de–Americanization causes larger errors (i)
for higher interest rates, (ii) for higher maturities, (iii) in the in-the-money region and
(iv) for continuous models in scenarios with higher volatility and/or correlation, as well
as in jump models for higher jump intensities. Second, we investigate model calibration
to synthetic data for a specified set of maturities and strikes in a high-interest-rate
environment. Numerically, we observe noticeable differences in the calibration results
of the de–Americanization methodology compared to the benchmark. For continuous
models, the main difference lies in the resulting volatility parameters. For the jump
model, the jump intensity is underestimated by the de–Americanization methodology,
especially in settings with high jump intensities, whereas the mean and the standard
deviation of the jumps are overestimated. When calibrating Google market data, hardly
any differences occur, which can be explained by the very low-interest-rate environment.
This is in line with the results for question (i).

In a final step, we investigate the effects of de–Americanization in the model calibration
on pricing exotic options. Here, exotic option prices play the role of a measure of the
distance between differently calibrated model parameters. In most cases, we observe that
exotic option prices are reasonably close to the benchmark prices. However, we observe
severe outliers for all investigated models. We find scenarios in which the exotic option
prices differ by roughly 50% in the CEV model (p4) and the Heston model (p1) and by
roughly 10% in the Merton model (p5), see Table 6. Whereas in the CEV model and the
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Merton model the differences tend to be higher when calibrating to out-of-the-money
options instead of only to put options, in the Heston model we have a mixed picture for
different scenarios.

In a nutshell, the methodological risk of de–Americanization critically depends on the in-
terest rate environment. For low-interest-environments, the errors caused by de–Ameri-
canization are negligibly small and the de–Americanization methodology can be em-
ployed when fast run-times are preferred. For higher-interest-rate environments, how-
ever, de–Americanization leads to uncontrollable outliers. Therefore, and since the de–
Americanization methodology does not provide an error control, we strongly recommend
applying a pricing method in the calibration that is certified by error estimators.

We leave the inclusion of dividends for future research. The numerical results for the
jump diffusion model and the sensitivity to interest rates indicate that discrete and con-
tinuous dividends may intensify the errors caused by the de–Americanization method.
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A Proof of Proposition 2.1

A.1 Proof of Proposition 2.1

Proof
Thanks to Lemma A.1, for any i ď n we have Xi ďcx Yi. Hence, in view of (Müller and Stoyan,
2002, Theorem 3.4.2), for each i ď n there exists a probability space pΩi,F i,Piq which
supports random variables xi and yi such that xi „ QBpuq, yi „ QBpu1q, and

E
P
i “
yi|xi

‰
“ xi P

i-a.s.

Let us define

Ω :“
ną

i“1

Ωi, F :“
nâ

i“1

F
i, P :“

nâ

i“1

P
i,

and extend xi and yi to pΩ,F ,Pq by setting

xipω1, ..., ωnq :“ xipωiq, yipω1, ..., ωnq :“ yipωiq.

Now, it is easy to see that for measurable A,B Ă R

Ppxi P A, xj P Bq “ Ppxi P AqPpxj P Bq, i ­“ j,

Ppyi P A, yj P Bq “ Ppyi P AqPpyj P Bq, i ­“ j,
(17)

and furthermore

Ppxi P A, yj P Bq “ Ppxi P AqPpyj P Bq, i ­“ j. (18)

From (17) we conclude that x :“ px1, ..., xnq „ pX1, ...,Xnq “: X, and y :“ py1, ..., ynq „
pY 1, ..., Y nq “: Y . Moreover, in view of (18), we obtain

Ery|xs “

¨
˚̋
Ery1|xs

...
Eryn|xs

˛
‹‚“

¨
˚̋
Ery1|x1s

...
Eryn|xns

˛
‹‚“ x P-a.s.
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A.2 Additional Lemmata

Therefore, by an application of (Müller and Stoyan, 2002, Theorem 3.4.2), we obtain
that X ďcx Y . Now let us note the following elementary fact: If f : U Ñ R is concave,
and g : R Ñ R is convex and decreasing, where U Ă R

n, then g ˝ f : U Ñ R is convex.
An application of this fact with

fpz1, ..., znq :“
nź

i“1

zi, n even, gpzq :“ pK ´ zq`,

and the convex order X ďcx Y yields the claim. Note that by Lemma A.2 f is concave.l

A.2 Additional Lemmata

Lemma A.1
Focusing on one node in the binomial tree, let X „ QBpuq and Y „ QBpu1q with u1 ě u.
Let

1. u, u1 ě er∆t `
?
e2r∆t ´ 1, and

2. u, u1 ď p´er∆tk´1q´
?

per∆tk`1q2´4er∆tk

2k
“ 1

k
or u, u1 ě p´er∆tk´1q`

?
per∆tk`1q2´4er∆tk

2k
“

er∆t

k
,

be satisfied. Then the random variable X is smaller than the random variable Y with
respect to the convex order, i.e. X ďcx Y .

Proof
Following (Müller and Stoyan, 2002, Theorem 1.5.3 and Theorem 1.5.7) it suffices to
show

1. ErXs “ ErY s
2. ErpX ´ kq`s ď ErpY ´ kq`s

Since p as in (1) is set up as risk-neutral probability, it holds for any u that ErXs “ er∆t

and therewith, the first condition is satisfied. Given a random variable X with a factor
u and a random variable Y with factor u1 ą u, we distinguish regarding the second con-
dition 5 cases.

Case 1: 1

u1 ă 1

u
ă u ă u1 ă k.

Obviously, in any case both options are out-of-the-money and ErpX ´ kq`s “ 0 “
ErpY ´ kq`s.

Case 2: 1

u1 ă 1

u
ă u ă k ă u1.
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A.2 Additional Lemmata

Here, ErpX ´ kq`s “ 0 and ErpY ´ kq`s “ ppu1qpu1 ´ kq ą 0, because only the second
option is in-the-money in the up-case. Therewith, the second condition is satisfied.

Case 3: 1

u1 ă 1

u
ă k ă u ă u1.

In this case both options are in-the-money in the according upward case.

ErpX ´ kq`s ´ ErpY ´ kq`s “ ppuqpu ´ kq ´ ppu1qpu1 ´ kq

“ u2er∆t ´ u

u2 ´ 1
´ u12er∆t ´ u1

u12 ´ 1
´ k

ˆ
uer∆t ´ 1

u2 ´ 1
´ u1er∆t ´ 1

u12 ´ 1

˙
.

The function ppuq “ uer∆t´1

u2´1
is a monotonically decreasing function because the deriva-

tive p1puq “ ´er∆t´u2er∆t`2u
pu2´1q2 would have the roots ua,b “ 1˘

?
1´e2r∆t

er∆t , but due to er∆t ě 1

either the derivative has no roots or a root at u “ 1 in the case r “ 0. However, in the
specification of the binomial tree it has to hold u ą er∆t and therewith, the derivative does
not have any roots. From p1p2q ă 0 the monotonically decreasing property follows. Hence,´
uer∆t´1

u2´1
´ u1er∆t´1

u12´1

¯
ě 0. If additionally the function gpuq “ u2er∆t´u

u2´1
is monotonically

increasing, ErpX ´ kq`s ď ErpY ´ kq`s follows directly. The derivative of g is given by

g1puq “ u2´2uer∆t`1

pu2´1q2 . The roots of the derivative are ua,b “ er∆t ˘
?
e2r∆t ´ 1. Thus,

for either u ď er∆t ´
?
e2r∆t ´ 1 or u ě er∆t `

?
e2r∆t ´ 1 the function is monotonically

increasing. From u ě er∆t in the binomial tree it follows ErpX ´ kq`s ď ErpY ´ kq`s if
u ě er∆t `

?
e2r∆t ´ 1.

Case 4: 1

u1 ă k ă 1

u
ă u ă u1.

In this case one option is in the upward as well as in the downward case in-the-money,
whereas the second option is only in-the-money in the corresponding upward case. ErpX´
kq`s “ ppuqpu ´ kq ` p1 ´ ppuqqp 1

u
´ kq “ er∆t ´ k.

ErpX ´ kq`s ´ ErpY ´ kq`s “ er∆t ´ k ´ ppu1qpu1 ´ kq

“ er∆t ´ k ´ u1er∆t ´ 1

u12 ´ 1
pu1 ´ kq

“ ´ku12 ` p1 ` ker∆tqu1 ´ er∆t

u12 ´ 1
. l

The roots are given by ua,b “ p´er∆tk´1q˘
?

per∆tk`1q2´4er∆tk

2k
. Thus by either u1 ď

p´er∆tk´1q´
?

per∆tk`1q2´4er∆tk

2k
“ 1

k
or by u1 ě p´er∆tk´1q`

?
per∆tk`1q2´4er∆tk

2k
“ er∆t

k
the

second condition is satisfied.
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B Detailed Results for Effects of de–Americanization on Pricing

Case 5: k ă 1

u1 ă 1

u
ă u ă u1.

Case 4 implies Case 5.

Lemma A.2
The function f : p0,8qn Ñ R, fpxq “ śn

i“1
xi is concave for n even.

Proof
The Hessian matrix H “ phijq1ďi,jďn is given by

hij “
#
0 i “ j,śn

k“1,k‰i,k‰j xk i ‰ j.

Applying the Leibniz formula the determinant of the Hessian matrix is given by

detpHq “
ÿ

σPSn

sgnpσq
nź

i“1

hiσi
, (19)

where Sn denotes the symmetric group on n elements and sgnpσq is the signature of the
permutation σ, which is 1 if σ is even and -1 if σ is odd. From hij “ 0 for i “ j it directly
follows that we only have to consider derangements, i.e. fixed-point-free permutations.
We denote the set of derangements in Sn with Dn and this yields for the determinant of
the Hessian matrix,

detpHq “
ÿ

σPDn

sgnpσq
nź

i“1

xn´2

i .

Next we apply (Chapman, 2001, Theorem 1), which states that the difference of even and
odd derangements in the symmetric group Sn is given by p´1qn´1pn ´ 1q. Therewith the
determinant of the Hessian matrix is given by,

detpHq “ p´1qn´1pn ´ 1q
nź

i“1

xn´2

i .

From xi P p0,8q, i “ 1, . . . , n it follows that the determinant is negative for even n and
thus, the function f is concave. l

B Detailed Results for Effects of de–Americanization on Pricing
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T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 1.E-4 1.E-4 1.E-4 1.E-4 1.E-4 1.E-4 9.E-5 6.E-5

r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 1.E-4

r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 8.E-5

r “ 5% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -3.E-5

r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -9.E-5

p2

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 7.E-5

r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4

r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 5.E-5

r “ 5% 3.E-4 4.E-4 3.E-4 3.E-4 2.E-4 1.E-4 6.E-5 3.E-4

r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 7.E-5 7.E-5 5.E-4

p3

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 6.E-5

r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4

r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 6.E-5

r “ 5% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 8.E-5 -2.E-4

r “ 7% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -1.E-7 -3.E-4

p4

r “ 0% 2.E-4 1.E-4 1.E-4 1.E-4 1.E-4 8.E-5 8.E-5 2.E-4

r “ 1% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 2.E-4 2.E-4 3.E-4

r “ 2% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 1.E-4 3.E-4

r “ 5% 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 8.E-5 1.E-4

r “ 7% 4.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 7.E-5 2.E-4

p5

r “ 0% 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 1.E-4 9.E-5 4.E-5

r “ 1% 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 6.E-7

r “ 2% 3.E-4 3.E-4 3.E-4 3.E-4 2.E-4 2.E-4 1.E-4 -1.E-4

r “ 5% 4.E-4 3.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -7.E-6 -5.E-4

r “ 7% 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4 4.E-5 -1.E-4 -8.E-4

Table 7 De–Americanization effects on pricing put options in the CEV model - Average
error between the de-Americanized and European prices for each maturity.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

p1

r “ 0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5

r “ 1% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4

r “ 2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4

r “ 5% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4

r “ 7% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 1.E-4 2.E-4 8.E-5

p2

r “ 0% 5.E-5 9.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5

r “ 1% 9.E-5 2.E-4 3.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

r “ 2% 8.E-5 2.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 2.E-4 2.E-4

r “ 5% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

r “ 7% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

p3

r “ 0% 4.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 8.E-5

r “ 1% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

r “ 2% 7.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 3.E-4 3.E-4 2.E-4

r “ 5% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 3.E-4 2.E-4 2.E-4 6.E-5

r “ 7% 3.E-5 9.E-5 2.E-4 2.E-4 3.E-4 3.E-4 2.E-4 1.E-4 -2.E-5

p4

r “ 0% 4.E-5 7.E-5 1.E-4 1.E-4 2.E-4 2.E-4 1.E-4 1.E-4 9.E-5

r “ 1% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 3.E-4 2.E-4

r “ 2% 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4

r “ 5% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -3.E-5

r “ 7% 9.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 -1.E-4

p5

r “ 0% 3.E-5 7.E-5 1.E-4 2.E-4 2.E-4 2.E-4 1.E-4 1.E-4 7.E-5

r “ 1% 6.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4

r “ 2% 5.E-5 1.E-4 2.E-4 3.E-4 4.E-4 4.E-4 2.E-4 2.E-4 1.E-4

r “ 5% 2.E-5 7.E-5 1.E-4 2.E-4 3.E-4 3.E-4 1.E-4 1.E-4 -9.E-6

r “ 7% 4.E-5 4.E-5 1.E-4 2.E-4 2.E-4 2.E-4 4.E-5 4.E-5 -1.E-4

Table 8 De–Americanization effects on pricing put options in the CEV model - Average
error between the de-Americanized and European prices for each strike.
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T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 0.055 0.104 0.108 0.154 0.204 0.211 0.218 0.244

r “ 1% 0.055 0.102 0.106 0.151 0.155 0.203 0.208 0.226

r “ 2% 0.054 0.101 0.104 0.107 0.151 0.196 0.198 0.208

r “ 5% 0.052 0.057 0.097 0.098 0.100 0.136 0.136 0.161

r “ 7% 0.051 0.054 0.057 0.093 0.093 0.093 0.093 0.109

p2

r “ 0% 0.103 0.154 0.204 0.208 0.217 0.230 0.242 0.283

r “ 1% 0.103 0.152 0.201 0.204 0.212 0.223 0.233 0.265

r “ 2% 0.102 0.109 0.154 0.201 0.207 0.216 0.224 0.248

r “ 5% 0.099 0.104 0.147 0.150 0.192 0.195 0.198 0.203

r “ 7% 0.058 0.101 0.105 0.144 0.146 0.182 0.181 0.176

p3

r “ 0% 0.152 0.205 0.212 0.219 0.233 0.252 0.269 0.320

r “ 1% 0.108 0.203 0.209 0.216 0.228 0.245 0.260 0.303

r “ 2% 0.107 0.201 0.207 0.213 0.224 0.239 0.251 0.287

r “ 5% 0.105 0.153 0.199 0.203 0.210 0.219 0.226 0.241

r “ 7% 0.103 0.150 0.194 0.196 0.201 0.206 0.210 0.214

p4

r “ 0% 0.156 0.212 0.223 0.233 0.252 0.276 0.297 0.352

r “ 1% 0.155 0.210 0.220 0.230 0.247 0.270 0.288 0.336

r “ 2% 0.154 0.208 0.218 0.227 0.243 0.263 0.279 0.319

r “ 5% 0.152 0.203 0.210 0.217 0.229 0.244 0.255 0.275

r “ 7% 0.150 0.200 0.206 0.211 0.221 0.232 0.239 0.247

p5

r “ 0% 0.205 0.220 0.235 0.248 0.272 0.300 0.323 0.377

r “ 1% 0.205 0.219 0.232 0.245 0.267 0.294 0.314 0.360

r “ 2% 0.204 0.217 0.230 0.242 0.263 0.287 0.306 0.345

r “ 5% 0.201 0.212 0.223 0.233 0.250 0.268 0.281 0.300

r “ 7% 0.156 0.209 0.218 0.227 0.241 0.256 0.266 0.273

Table 9 De–Americanization effects on pricing put options in the CEV model - Maximal
European put prices.

T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 1.E-8 2.E-7 2.E-7 1.E-7 2.E-7 1.E-7 3.E-7 -3.E-7

r “ 1% -7.E-5 -4.E-5 -5.E-5 -4.E-5 -4.E-5 -3.E-5 -3.E-5 6.E-6

r “ 2% -9.E-5 -7.E-5 -9.E-5 -6.E-5 -5.E-5 -5.E-5 -4.E-5 3.E-5

r “ 5% -3.E-4 -4.E-4 -1.E-4 -9.E-5 -9.E-5 -8.E-5 -7.E-5 3.E-5

r “ 7% -3.E-4 -3.E-4 -9.E-4 -1.E-4 -8.E-5 -1.E-4 -1.E-4 -4.E-5

p2

r “ 0% 3.E-8 1.E-7 1.E-8 -2.E-7 3.E-7 4.E-7 -8.E-8 -3.E-8

r “ 1% -4.E-5 -3.E-5 -4.E-5 -3.E-5 -2.E-5 -1.E-5 -2.E-6 9.E-5

r “ 2% -1.E-4 -5.E-5 -6.E-5 -5.E-5 -4.E-5 -3.E-5 -8.E-6 1.E-4

r “ 5% -2.E-4 -7.E-5 -1.E-4 -9.E-5 -8.E-5 -9.E-5 -1.E-4 2.E-5

r “ 7% -2.E-4 -6.E-4 -1.E-4 -1.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-4

p3

r “ 0% 3.E-9 4.E-8 -3.E-7 3.E-9 8.E-8 -2.E-7 5.E-7 1.E-7

r “ 1% -3.E-5 -2.E-5 -3.E-5 -2.E-5 -6.E-6 1.E-5 3.E-5 2.E-4

r “ 2% -6.E-5 -4.E-5 -4.E-5 -3.E-5 -7.E-6 2.E-5 6.E-5 3.E-4

r “ 5% -1.E-4 -7.E-5 -9.E-5 -5.E-5 -2.E-5 2.E-5 7.E-5 5.E-4

r “ 7% -4.E-4 -9.E-5 -1.E-4 -7.E-5 -4.E-5 -2.E-5 1.E-5 4.E-4

p4

r “ 0% 2.E-8 -8.E-8 2.E-7 4.E-8 -5.E-7 -1.E-7 -4.E-7 2.E-7

r “ 1% -3.E-5 -2.E-5 -2.E-5 -1.E-5 2.E-6 2.E-5 5.E-5 2.E-4

r “ 2% -5.E-5 -3.E-5 -3.E-5 -1.E-5 1.E-5 5.E-5 9.E-5 4.E-4

r “ 5% -1.E-4 -5.E-5 -6.E-5 -1.E-5 4.E-5 1.E-4 2.E-4 8.E-4

r “ 7% -1.E-4 -6.E-5 -8.E-5 -1.E-5 4.E-5 1.E-4 2.E-4 9.E-4

p5

r “ 0% -1.E-7 -3.E-7 -3.E-7 2.E-7 5.E-8 8.E-7 1.E-6 -2.E-6

r “ 1% -2.E-5 -2.E-5 -2.E-5 -7.E-6 2.E-5 8.E-5 2.E-4 7.E-4

r “ 2% -4.E-5 -3.E-5 -4.E-5 -1.E-5 3.E-5 1.E-4 3.E-4 1.E-3

r “ 5% -1.E-4 -7.E-5 -1.E-4 -5.E-5 2.E-5 2.E-4 5.E-4 2.E-3

r “ 7% -1.E-4 -1.E-4 -1.E-4 -9.E-5 -1.E-5 2.E-4 5.E-4 3.E-3

Table 10 De–Americanization effects on pricing put options in the Heston model - Aver-
age error between the de-Americanized and European prices for each maturity.
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0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

p1

r “ 0% -4.E-9 5.E-8 1.E-8 -1.E-7 -6.E-8 -5.E-7 -3.E-8 -2.E-7 8.E-7

r “ 1% 3.E-6 6.E-6 9.E-6 1.E-5 2.E-5 4.E-5 7.E-5 2.E-4 3.E-4

r “ 2% 8.E-6 1.E-5 2.E-5 3.E-5 5.E-5 9.E-5 2.E-4 5.E-4 9.E-4

r “ 5% 2.E-5 3.E-5 5.E-5 8.E-5 1.E-4 2.E-4 6.E-4 2.E-3 4.E-3

r “ 7% 2.E-5 4.E-5 7.E-5 1.E-4 2.E-4 4.E-4 9.E-4 3.E-3

p2

r “ 0% 3.E-8 -6.E-8 8.E-9 1.E-7 -2.E-7 -4.E-7 -3.E-7 5.E-7 -6.E-7

r “ 1% -2.E-5 -1.E-5 -2.E-6 7.E-6 2.E-5 3.E-5 4.E-5 1.E-4 2.E-4

r “ 2% -2.E-5 -2.E-6 1.E-5 3.E-5 4.E-5 6.E-5 1.E-4 2.E-4 4.E-4

r “ 5% 1.E-6 3.E-5 6.E-5 9.E-5 1.E-4 2.E-4 3.E-4 8.E-4 1.E-3

r “ 7% 1.E-5 5.E-5 8.E-5 1.E-4 2.E-4 3.E-4 4.E-4 1.E-3 2.E-3

p3

r “ 0% 7.E-8 8.E-7 7.E-7 8.E-7 7.E-7 2.E-6 7.E-7 3.E-6 2.E-6

r “ 1% 2.E-6 4.E-6 9.E-6 1.E-5 2.E-5 3.E-5 4.E-5 6.E-5 1.E-4

r “ 2% 5.E-6 1.E-5 2.E-5 4.E-5 6.E-5 8.E-5 9.E-5 2.E-4 3.E-4

r “ 5% 2.E-5 5.E-5 9.E-5 1.E-4 2.E-4 2.E-4 4.E-4 8.E-4 1.E-3

r “ 7% 4.E-5 9.E-5 1.E-4 2.E-4 3.E-4 3.E-4 7.E-4 1.E-3 2.E-3

p4

r “ 0% -2.E-8 -8.E-8 2.E-7 -1.E-8 1.E-7 -7.E-8 1.E-7 4.E-9 -2.E-7

r “ 1% -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -1.E-4 -9.E-5 -7.E-5

r “ 2% -4.E-4 -4.E-4 -3.E-4 -3.E-4 -2.E-4 -2.E-4 -1.E-4 -7.E-5 -9.E-6

r “ 5% -7.E-4 -6.E-4 -5.E-4 -4.E-4 -2.E-4 -1.E-4 -5.E-5 1.E-4 3.E-4

r “ 7% -7.E-4 -6.E-4 -5.E-4 -3.E-4 -2.E-4 -1.E-4 3.E-5 3.E-4 6.E-4

p5

r “ 0% 2.E-7 2.E-7 4.E-7 7.E-7 7.E-7 4.E-7 8.E-7 1.E-6 9.E-7

r “ 1% 4.E-4 4.E-4 4.E-4 4.E-4 3.E-4 3.E-4 3.E-4 3.E-4 3.E-4

r “ 2% 7.E-4 7.E-4 6.E-4 6.E-4 6.E-4 5.E-4 5.E-4 4.E-4 4.E-4

r “ 5% 1.E-3 1.E-3 1.E-3 1.E-3 9.E-4 7.E-4 6.E-4 5.E-4 5.E-4

r “ 7% 3.E-4 1.E-3 1.E-3 1.E-3 9.E-4 7.E-4 6.E-4 6.E-4 5.E-4

Table 11 De–Americanization effects on pricing put options in the Heston model - Av-
erage error between the de-Americanized and European prices for each strike.
The empty fields are due to Remark 4.1.

T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 0.200 0.202 0.205 0.209 0.217 0.229 0.240 0.278

r “ 1% 0.199 0.200 0.202 0.205 0.212 0.222 0.231 0.261

r “ 2% 0.198 0.198 0.200 0.202 0.207 0.214 0.221 0.244

r “ 5% 0.195 0.193 0.191 0.191 0.192 0.194 0.195 0.198

r “ 7% 0.194 0.189 0.186 0.184 0.182 0.180 0.179 0.171

p2

r “ 0% 0.201 0.204 0.208 0.214 0.224 0.238 0.251 0.293

r “ 1% 0.200 0.202 0.206 0.210 0.219 0.231 0.242 0.277

r “ 2% 0.199 0.200 0.203 0.207 0.214 0.224 0.233 0.261

r “ 5% 0.196 0.195 0.195 0.197 0.200 0.204 0.208 0.217

r “ 7% 0.194 0.191 0.190 0.190 0.191 0.192 0.193 0.192

p3

r “ 0% 0.202 0.208 0.216 0.224 0.238 0.256 0.273 0.326

r “ 1% 0.201 0.207 0.213 0.220 0.233 0.250 0.264 0.309

r “ 2% 0.200 0.205 0.211 0.217 0.228 0.243 0.255 0.294

r “ 5% 0.197 0.199 0.203 0.207 0.215 0.224 0.231 0.250

r “ 7% 0.195 0.196 0.198 0.201 0.206 0.212 0.216 0.225

p4

r “ 0% 0.204 0.214 0.224 0.234 0.252 0.275 0.295 0.362

r “ 1% 0.203 0.212 0.221 0.231 0.247 0.268 0.287 0.345

r “ 2% 0.202 0.210 0.219 0.227 0.243 0.262 0.278 0.329

r “ 5% 0.199 0.205 0.211 0.218 0.229 0.243 0.255 0.286

r “ 7% 0.197 0.202 0.207 0.212 0.221 0.231 0.240 0.259

p5

r “ 0% 0.207 0.222 0.234 0.248 0.270 0.297 0.322 0.400

r “ 1% 0.206 0.220 0.232 0.245 0.265 0.291 0.314 0.384

r “ 2% 0.205 0.218 0.230 0.242 0.261 0.285 0.306 0.369

r “ 5% 0.202 0.213 0.223 0.233 0.249 0.268 0.283 0.326

r “ 7% 0.201 0.210 0.219 0.227 0.241 0.257 0.269 0.300

Table 12 De–Americanization effects on pricing put options in the Heston model - Max-
imal European put prices.
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T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% -3.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -1.E-4

r “ 1% -3.E-4 -3.E-4 -3.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4

r “ 2% -3.E-4 -3.E-4 -3.E-4 -2.E-4 -3.E-4 -2.E-4 -2.E-4 -2.E-4

r “ 5% -2.E-4 -2.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-5 -9.E-5 9.E-5

r “ 7% -2.E-4 -2.E-4 -4.E-5 -9.E-6 -5.E-5 -5.E-5 3.E-4 9.E-5

p2

r “ 0% -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -1.E-4 -8.E-5

r “ 1% -1.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4

r “ 2% -1.E-4 -1.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4 -5.E-4

r “ 5% -2.E-5 -3.E-5 -1.E-4 -3.E-5 -6.E-5 -3.E-4 -2.E-4 -5.E-4

r “ 7% -4.E-5 9.E-5 -5.E-6 -1.E-4 3.E-5 6.E-5 -2.E-4 -4.E-4

p3

r “ 0% -1.E-4 -9.E-5 -8.E-5 -7.E-5 -6.E-5 -6.E-5 -5.E-5 -4.E-5

r “ 1% -1.E-4 -1.E-4 -2.E-4 -2.E-4 -3.E-4 -3.E-4 -4.E-4 -6.E-4

r “ 2% -1.E-4 -2.E-4 -2.E-4 -3.E-4 -4.E-4 -6.E-4 -7.E-4 -1.E-3

r “ 5% -1.E-4 -2.E-4 -3.E-4 -4.E-4 -7.E-4 -1.E-3 -2.E-3 -2.E-3

r “ 7% -9.E-5 -2.E-4 -3.E-4 -5.E-4 -8.E-4 -1.E-3 -2.E-3 -3.E-3

p4

r “ 0% 1.E-6 -2.E-6 -3.E-7 4.E-7 1.E-7 -3.E-7 3.E-6 -1.E-6

r “ 1% 8.E-5 1.E-4 1.E-4 8.E-5 5.E-5 -8.E-6 -8.E-5 -4.E-4

r “ 2% 2.E-4 2.E-4 2.E-4 1.E-4 2.E-5 -1.E-4 -3.E-4 -1.E-3

r “ 5% 4.E-4 6.E-4 4.E-4 1.E-4 -3.E-4 -9.E-4 -1.E-3 -3.E-3

r “ 7% 3.E-4 5.E-4 6.E-4 7.E-5 -6.E-4 -3.E-3 -2.E-3 -4.E-3

p5

r “ 0% -2.E-6 -8.E-7 -1.E-6 4.E-7 -2.E-7 -2.E-6 -4.E-6 -1.E-6

r “ 1% 5.E-5 3.E-5 -2.E-5 -6.E-5 -2.E-4 -3.E-4 -4.E-4 -9.E-4

r “ 2% 1.E-4 2.E-5 -9.E-5 -2.E-4 -4.E-4 -7.E-4 -1.E-3 -2.E-3

r “ 5% 2.E-4 -4.E-5 -4.E-4 -8.E-4 -1.E-3 -2.E-3 -3.E-3 -5.E-3

r “ 7% 4.E-5 -6.E-5 -8.E-4 -1.E-3 -2.E-3 -3.E-3 -4.E-3 -6.E-3

Table 13 De–Americanization effects on pricing put options in the Merton model -
Average error between the de-Americanized and European prices for each
maturity.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

p1

r “ 0% 8.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 2.E-04 2.E-04 3.E-04

r “ 1% 8.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04 3.E-04 2.E-04

r “ 2% 7.E-05 1.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04 2.E-04 2.E-04

r “ 5% 5.E-05 9.E-05 2.E-04 2.E-04 2.E-04 2.E-04 3.E-05 -2.E-04 -6.E-04

r “ 7% 3.E-05 7.E-05 1.E-04 2.E-04 2.E-04 8.E-05 -4.E-04 -8.E-04 0.E+00

p2

r “ 0% 2.E-05 4.E-05 7.E-05 1.E-04 2.E-04 2.E-04 2.E-04 2.E-04 1.E-04

r “ 1% 3.E-05 6.E-05 1.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 4.E-04

r “ 2% 4.E-05 7.E-05 1.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 3.E-04

r “ 5% 5.E-05 1.E-04 2.E-04 3.E-04 4.E-04 3.E-04 -3.E-05 -4.E-04 0.E+00

r “ 7% 6.E-05 1.E-04 2.E-04 3.E-04 4.E-04 8.E-05 -1.E-03 -1.E-03 0.E+00

p3

r “ 0% 2.E-05 3.E-05 4.E-05 5.E-05 8.E-05 1.E-04 1.E-04 9.E-05 7.E-05

r “ 1% 9.E-05 1.E-04 2.E-04 2.E-04 3.E-04 4.E-04 4.E-04 4.E-04 5.E-04

r “ 2% 2.E-04 2.E-04 3.E-04 4.E-04 5.E-04 6.E-04 6.E-04 7.E-04 8.E-04

r “ 5% 3.E-04 5.E-04 6.E-04 8.E-04 1.E-03 1.E-03 1.E-03 1.E-03 1.E-03

r “ 7% 5.E-04 6.E-04 8.E-04 1.E-03 1.E-03 1.E-03 2.E-03 1.E-03 2.E-03

p4

r “ 0% -3.E-06 2.E-06 2.E-06 -3.E-06 3.E-06 -2.E-06 -3.E-07 -2.E-06 5.E-07

r “ 1% 4.E-05 5.E-05 4.E-05 5.E-05 4.E-05 2.E-05 -9.E-06 -4.E-05 -9.E-05

r “ 2% 1.E-04 1.E-04 2.E-04 2.E-04 2.E-04 1.E-04 8.E-05 5.E-06 -9.E-05

r “ 5% 4.E-04 5.E-04 6.E-04 7.E-04 7.E-04 7.E-04 5.E-04 2.E-04 1.E-04

r “ 7% 7.E-04 8.E-04 1.E-03 1.E-03 1.E-03 1.E-03 8.E-04 8.E-04 8.E-04

p5

r “ 0% 2.E-06 -2.E-07 -6.E-09 -3.E-07 4.E-06 1.E-06 2.E-06 7.E-08 3.E-06

r “ 1% 1.E-04 2.E-04 2.E-04 2.E-04 2.E-04 3.E-04 3.E-04 3.E-04 3.E-04

r “ 2% 3.E-04 4.E-04 4.E-04 5.E-04 5.E-04 6.E-04 6.E-04 7.E-04 7.E-04

r “ 5% 9.E-04 1.E-03 1.E-03 1.E-03 2.E-03 2.E-03 2.E-03 2.E-03 2.E-03

r “ 7% 1.E-03 1.E-03 2.E-03 2.E-03 2.E-03 2.E-03 3.E-03 3.E-03 3.E-03

Table 14 De–Americanization effects on pricing put options in the Merton model -
Average error between the de-Americanized and European prices for each
strike. The empty fields are due to Remark 4.1.
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T1 T2 T3 T4 T5 T6 T7 T8

p1

r “ 0% 0.200 0.200 0.201 0.203 0.207 0.214 0.221 0.248

r “ 1% 0.199 0.198 0.198 0.199 0.201 0.206 0.211 0.230

r “ 2% 0.198 0.196 0.195 0.195 0.196 0.199 0.202 0.212

r “ 5% 0.195 0.190 0.187 0.184 0.180 0.176 0.174 0.165

r “ 7% 0.193 0.186 0.181 0.177 0.170 0.163 0.157 0.138

p2

r “ 0% 0.200 0.200 0.200 0.201 0.203 0.208 0.214 0.237

r “ 1% 0.199 0.198 0.197 0.197 0.198 0.200 0.204 0.218

r “ 2% 0.198 0.196 0.194 0.193 0.192 0.192 0.194 0.200

r “ 5% 0.195 0.190 0.185 0.182 0.176 0.170 0.165 0.152

r “ 7% 0.193 0.186 0.180 0.174 0.165 0.155 0.148 0.125

p3

r “ 0% 0.200 0.201 0.205 0.210 0.221 0.237 0.252 0.302

r “ 1% 0.199 0.199 0.202 0.206 0.216 0.230 0.243 0.284

r “ 2% 0.198 0.197 0.200 0.203 0.211 0.223 0.234 0.268

r “ 5% 0.195 0.192 0.191 0.193 0.197 0.203 0.209 0.223

r “ 7% 0.193 0.188 0.186 0.186 0.188 0.191 0.194 0.197

p4

r “ 0% 0.205 0.212 0.221 0.232 0.256 0.288 0.315 0.398

r “ 1% 0.204 0.210 0.219 0.229 0.252 0.282 0.307 0.381

r “ 2% 0.203 0.208 0.216 0.226 0.247 0.276 0.299 0.365

r “ 5% 0.200 0.203 0.208 0.216 0.235 0.257 0.275 0.319

r “ 7% 0.198 0.199 0.203 0.210 0.227 0.246 0.260 0.292

p5

r “ 0% 0.205 0.217 0.238 0.260 0.295 0.336 0.370 0.474

r “ 1% 0.204 0.215 0.236 0.258 0.291 0.330 0.362 0.457

r “ 2% 0.203 0.213 0.234 0.255 0.286 0.324 0.354 0.441

r “ 5% 0.200 0.208 0.228 0.247 0.274 0.306 0.330 0.394

r “ 7% 0.198 0.205 0.224 0.241 0.267 0.294 0.315 0.366

Table 15 De–Americanization effects on pricing put options in the Merton model -
Maximal European put prices.
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