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Abstract—Operator splitting algorithms are enjoying wide ac-
ceptance in signal processing for their ability to solve generic
convex optimization problems exploiting their structure and lead-
ing to efficient implementations. These algorithms are instances
of the Krasnosel’skiı̆-Mann scheme for finding fixed points of
averaged operators. Despite their popularity, however, operator
splitting algorithms are sensitive to ill conditioning and often
converge slowly. In this paper we propose a line search primal-
dual method to accelerate and robustify the Chambolle-Pock al-
gorithm based on SuperMann: a recent extension of the Kras-
nosel’skiı̆-Mann algorithmic scheme. We discuss the convergence
properties of this new algorithm and we showcase its strengths
on the problem of image denoising using the anisotropic total
variation regularization.

I. INTRODUCTION

A. Background and Motivation

Operator splitting methods have become popular in numer-
ical optimization for their ability to handle abstract linear op-
erators and nonsmooth terms and to lead to algorithmic for-
mulations which require only simple steps without the need
to perform matrix factorizations or solve linear systems [1].
As a result they scale gracefully with the problem dimension
and they are applicable to large-scale and huge-scale problems
as they are amenble to parallelization (such as on graphics
processing units) [2]. Because of these advantages, they have
attracted remarkable attention in signal processing [3]–[5].

Their main limitation, however, is that they are sensitive
to ill conditioning and although under certain conditions they
converge linearly, in practice they often perform poorly — as
a result, they are only suitable for small-to-medium-accuracy
solutions. Moreover, their tuning parameters are selected prior
to the execution of the algorithm.

In this paper we propose a line search method to accelerate
the popular Chambolle-Pock optimization method, we discuss
its convergence properties and apply it for the solution of an
image denoising problem [6].
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B. Mathematical preliminaries

Throughout the paper, (H, 〈·, ·〉H) and (K, 〈·, ·〉K) are two
Hilbert spaces. We denote by H⊕K their direct sum, endowed
with the inner product 〈(x, y), (ξ, η)〉H⊕K = 〈x, ξ〉H+〈y, η〉K.
We indicate with B(H;K) the space of bounded linear oper-
ators from H to K, writing simply B(H) if K = H. With
‖L‖ := supx∈H

‖Lx‖K
‖x‖H we denote the norm of L ∈ B(H;K),

whereas with L∗ its adjoint. We say that L ∈ B(H) is self-
adjoint if L = L∗, and skew-adjoint if L = −L∗.

The extended real line is denoted as IR = IR ∪ {∞}.
The Fenchel conjugate of a proper, closed, convex func-
tion h : H → IR is h∗ : H → IR, defined as h∗(y) =
supx∈H {〈x, y〉 − h(x)}. Properties of conjugate functions
are well described for example in [7]–[9]. Among these
we recall that f∗ is also proper, closed and convex, and
y ∈ ∂h(x)⇔ x ∈ ∂h∗(y) [7, Thm. 23.5].

The identity operator is denoted as I . Given an operator
T : H → H, fixT := {x ∈ H | Tx = x} and zerR :=
{x ∈ H | Tx = 0} are the sets of its fixed points and zeros,
respectively. Moreover, we say that T is firmly nonexpansive
if for every x, y ∈ H
‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2.

The projector on a nonempty closed convex set C ⊆ H, de-
noted as ΠC , is firmly nonexpansive [8, Prop. 4.8].

The graph of a set-valued operator F : H ⇒ H is
gph(F ) := {(x, ξ) | ξ ∈ F (x)}. F is said to be monotone if
〈ξ − η, x− y〉 ≥ 0 for all (x, ξ), (y, η) ∈ gph(F ). F is maxi-
mally monotone if it is monotone and there exists no monotone
operator F ′ such that gph(F ) $ gph(F ′), in which case the
resolvent JF := (I + F )−1 is (single-valued and) firmly non-
expansive [8, Prop. 23.7]. This is the case of the subdifferential
∂h(x) := {v ∈ H | h(y) ≥ h(x) + 〈v, y − x〉 ∀y ∈ H} of any
proper convex and lower semicontinuous function h : H → IR,
in which case, for any γ > 0 the resolvent of γ∂h is the prox-
imal mapping of h with stepsize γ, namely

Jγ∂h = proxγh := argmin
z∈H

{
h(z) + 1

2γ ‖z − · ‖2
}

(1)

see [8, Thm.s 12.27, 20.40 and Prop. 16.34].
For a set C ⊆ H, we denote its strong relative interior as

sriC; the strong relative interior coincides with the standard
relative interior in finite-dimensional spaces [8, Fact 6.14 (i)].

In what follows, for a (single-valued) operator T we use the
convenient notation Tx instead of T (x). Similarly, we shall
denote the composition of two operators T1 and T2 as T1T2

instead of T1 ◦ T2.
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II. THE CHAMBOLLE-POCK METHOD

Given L ∈ B(H;K) and two proper, closed, convex and
proximable functions f : H → IR and g : K → IR such that
dom(f + g ◦ L) 6= ∅, consider the optimization problem

minimize
(x,z)∈H⊕K

f(x) + g(z) s.t. Lx = z. (P)

The Fenchel dual problem of (P) is

minimize
u∈K

f∗(−L∗u) + g∗(u). (D)

Under strict feasibility, i.e., if 0 ∈ sri(dom g − L(dom f)),
strong duality holds and the set of dual optima is nonempty,
if H is finite-dimensional it is compact [9, Cor. 31.2.1] and
any primal-dual solution (x?, u?) to (P)-(D) is characterized
by the optimality conditions

0 ∈ F (x?, u?), where F :=

[
∂f

∂g∗

]
+

[
L∗

−L

]
(2a)

as it follows from [8, Thm. 19.1].
Here, denoting the primal-dual space as Z := H ⊕ K, F :
Z → Z is the sum of a maximally monotone and a skew-
adjoint operator. Although JF may be hard to compute, for
some invertible P ∈ B(Z) the resolvent of the preconditioned
operator P−1F leads to a simple algorithmic scheme. To this
end, define the self-adjoint operator P : Z → Z as

P :=

[ 1
α1
I −L∗

−L 1
α2
I

]
, (2b)

which is positive definite provided that α1α2‖L‖2 < 1. In this
case, P induces on Z the inner product 〈 · , · 〉P := 〈 · , P · 〉Z .
In what follows, the space Z is equipped with this inner prod-
uct and the corresponding norm ‖z‖P =

√
〈z, z〉P .

The monotone inclusion F (z) 3 0 can be equivalently writ-
ten as P−1F (z) 3 0. The application of the proximal point
algorithm on P−1F , namely fixed-point iterations of its resol-
vent, yields the preconditioned proximal point method (PPPM)
which uses the mapping T : Z 3 z 7→ z̄ ∈ Z implicitly de-
fined via (I + P−1F )z̄ 3 z or, equivalently,

(P + F )z̄ 3 Pz. (3)

In the metric induced by P , the PPPM operator T is firmly
nonexpansive because it is the resolvent of a maximally mono-
tone operator.

Using the definitions of F and P , the PPPM iterates become

(I + α1∂f)x̄ 3 x− α1L
∗u, (4a)

(I + α1∂g
∗)ū 3 u+ α2L(2x̄− x). (4b)

This is the Chambolle-Pock method, which prescribes fixed-
point iterations z+ = z+ λ(Tz− z) of the (firmly nonexpan-
sive) operator T = (P +F )−1P ; using (1), this is easily seen
to be equivalent to the steps of Algorithm 1. Notice that due to
the Moreau identity [8, Thm. 14.3], proxg∗ can be computed
in terms of proxg .

Note that the zeros of F are exactly the fixed points of T ,
that is F (z) 3 0 if and only if T (z) = z. Similarly, defining
the residual operator R : Z → Z associated with T

R = I − T, (5)

Algorithm 1 Chambolle-Pock

Require : α1, α2 > 0 s.t. α1α2‖L‖2 < 1, λ ∈ (0, 2),
x0 ∈ H, u0 ∈ K

1: for k = 0, 1, . . . do
2: x̄k ← proxα1f (xk − α1L

∗uk)

3: ūk ← proxα2g∗(uk + α2L(2x̄k − xk))

4: (xk+1, uk+1)← (1− λ)(xk, uk) + λ(x̄k, ūk)

which is also firmly nonexpansive, the problem of determining
a fixed point of T can be seen as the problem of finding a zero
of its residual R.

III. FROM KRASNOSEL’SKIĬ-MANN TO SUPERMANN

Let T : H → H be a firmly nonexpansive operator with
fixT 6= ∅. Given λ ∈ (0, 2), the Krasnosel’skiı̆-Mann (KM)
algorithm for finding a fixed point of T is

z+ = z + λ(Tz − z). (6)

The KM algorithm has been the locomotive of numeri-
cal convex optimization and encompasses all operator-based
methods such as the proximal point algorithm, the forward-
backward and forward-backward-forward splittings and three-
term splittings such as the Combettes-Pesquet and Vũ-Condat
and the all-embracing asymmetric forward-backward algo-
rithms [8], [10], [11]. Despite its simplicity and popularity,
the convergence rate of this scheme is — at best — Q-linear,
let alone it is sensitive to ill-conditioning and likely to exhibit
slow convergence.

Recently, [12] proposed SuperMann: an algorithmic frame-
work based on a modification of (6) which exploits the inter-
pretation of the KM step as a (relaxed) projection, namely

z+ = (1− λ)z + λΠCz
z, (7)

where Cz is the halfspace

Cz =
{
y ∈ H | ‖Rz‖2 − 〈Rz, z − y〉 ≤ 0

}
.

The key idea is the replacement of the halfspace Cz with a
different Cw in (7) which leads to generalized KM (GKM)
steps. More precisely, given a candidate update direction d ∈
H, w is taken as w = z + τd where τ > 0 is such that

ρ := 〈Rw,Rw − τd〉 ≥ σ‖Rw‖‖Rx‖. (8a)

The GKM step can be explicitly written as

z+ = z − λ ρ

‖Rw‖2Rw. (8b)

At the same, to encourage favorable updates, an educated
update of the form z+ = z + τd is accepted if the norm of
the candidate residual ‖Rz‖ is sufficiently smaller than the
norm of the current one, that is ‖Rw‖ ≤ c‖Rz‖ for some
c ∈ (0, 1). This combination of GKM and educated updates
gives rise to the SuperMann algorithm, where GKM steps are
used as globalization strategy for fast iterative methods z+ =
z + d for solving the nonlinear equation Rz = 0. As we
shall see in Section VI, when “good” update directions d are
employed, SuperMann leads to faster convergence and allows
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Figure 1: Starting from a point z, we move along a direction
d with step size τ arriving at a point w = z + τd. This point
defines the halfspace Cw. Because of firm nonexpansiveness of
T , Tw lies within the intersection of the two dashed orange
disks. For adequately small τ , as shown here, z /∈ Cw. The
point z+ = ΠCw z is then closer to z? ∈ fixT than z.

the attainment of higher precision. We will elaborate on a
possible choice of d in Section V.

In the SuperMann scheme the step length τ is determined
via a simple backtracking line search and is selected so that
either (i) the fixed-point residual Rw decreases sufficiently
or (ii) the next step approaches fixT sufficiently as shown
in Figure 1. The former enforces fast convergence whereas
the latter, which is referred to as a safeguard step, guarantees
global convergence by enforcing a quasi-Fejér monotonicity
condition.

IV. SUPERMANN APPLIED TO CHAMBOLLE-POCK

In Section II we showed that Chambolle-Pock algorithm
consists in fixed-point iterations of the operator T = (P +
F )−1P , where F and P are as in (2), which is firmly non-
expansive with respect to the metric 〈 · , · 〉P . As such, it fits
into the framework of KM schemes and can be robustified and
enhanced with the SuperMann scheme [12]. This is the goal
of this section, namely applying SuperMann to find a zero of
the Chambolle-Pock residual R (5). Throughout this section
we operate on space (Z, 〈 · , · 〉P ).

SuperMann uses exactly the same oracle as the original al-
gorithm, that is, it requires evaluations of proxα1f , proxα2g∗

and of the linear operator L and its adjoint (see Algorithm 2).
Throughout lines 2 to 4 we compute a step (x̄k, ūk) of the

Chambolle-Pock operator T and the corresponding fixed-point
residual rk = Rzk. In order to preclude certain invocations to
L and L∗, prior to the linear search (lines 7 to 17) we may
precompute the quantities lxk = Lxk, luk = L∗uk, δuk = L∗duk ,
δxk = Ldxk and δ̃k = δxk −α1δ

u
k . Then, w̄k can be evaluated as

w̄k = proxα1f (xk − α1l
u
k + τk δ̃k).

Similarly, v̄k can be evaluated as
v̄k = proxα2g∗(w

u
k + α2(2l̄xk − lxk − τkδxk)),

where l̄xk = Lw̄xk . In the special yet frequent case when
f is quadratic, proxα1f is linear and further computational

Algorithm 2 SuperMann on Chambolle-Pock

Require : α1, α2 > 0 s.t. α1α2‖L‖2 < 1, λ ∈ (0, 2),
c, q, σ ∈ (0, 1), x0 ∈ H, u0 ∈ K

Initialize: rsafe ←∞
1: for k = 0, 1, . . . do
2: x̄k ← proxα1f (xk − α1L

∗uk)

3: ūk ← proxα2g∗(uk + α2L(2x̄k − xk))

4: rk ← (xk − x̄k, uk − ūk)

5: Choose dxk ∈ H, duk ∈ K and τk ← 1, loop← true

6: while loop do
7: (wk, vk)← (xk, uk) + τk(dxk, d

u
k)

8: w̄k ← proxα1f (wk − α1L
∗vk)

9: v̄k ← proxα2g∗(vk + α2L(2w̄k − wk))

10: r̃k ← (wk, vk)− (w̄k, v̄k)

11: if ‖rk‖P ≤ rsafe and ‖r̃k‖P ≤ c‖rk‖P then
12: (xk+1, uk+1)← (wk, vk)

13: rsafe ← ‖r̃k‖P + qk, loop← false

14: else if 〈r̃k,r̃k−τk
(
dxk
duk

)
〉P

:=ρk

≥ σ‖rk‖P ‖r̃k‖P then

15: ηk ← λρk/‖r̃k‖2P , loop← false

16: (xk+1, uk+1)← (xk, uk)− ηkr̃k
else

17: τk ← τk/2

savings can be obtained by precomputing proxα1f (δ̃k) and
proxα1f (xk − α1l

u
k ).

Lastly, for the sake of computing scalar products and norms
in the required metric, the number of calls to the operator P
can be optimized by storing two additional vectors, namely
Prk and P r̃k.

In line 11 we accept an educated update (wk, vk) provided
that the norm of its residual r̃k is adequately smaller that the
norm of rk and that the norm of the latter has not significantly
increased compared to that at the previous iteration. In line 14,
we accept a Fejérian update following (8).

For any choice of direction dk = (dxk, d
u
k) ∈ Z , the

line search in Algorithm 2 is guaranteed to finish in finitely
many iterations, the resulting sequence converges weakly to a
fixed point z? = (x?, u?) in fixT , and (Rzk)k∈IN is square-
summable.

V. QUASI-NEWTONIAN DIRECTIONS

The choice of good directions is essential for the fast con-
vergence of the algorithm. As suggested in [12], a good selec-
tion consists in dk being computed with a modified Broyden’s
method. Namely, letting u ⊗ v denote the rank-one operator
x 7→ 〈v, x〉Pu, starting from an invertible B0 ∈ B(Z)

Bk+1 = Bk + ϑk

‖sk‖2P
(yk −Bksk)⊗ sk.

Here,
sk = (w̄k, v̄k)− (xk, uk)
yk = R(w̄k, v̄k)−R(xk, uk)

γk =
〈B−1

k yk,sk〉P
‖sk‖2P

(9a)
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and

ϑk =

{
1 if |γk| ≥ ϑ̄
1−sgn(γk)ϑ̄

1−γk otherwise
(9b)

with the convention sgn(0) = 1. Alternatively, using the
Sherman-Morrison-Woodbury identity we can directly com-
pute Hk = B−1

k as
Hk+1 = Hk + 1

〈s̃k,sk〉P
(sk − s̃k)⊗ (H∗ksk) (9c)

where
s̃k = (1− ϑk)sk + ϑkHkyk. (9d)

This obviates the storage and inversion of Bk as we can di-
rectly operate with their inverses Hk. We now have all the
ingredients to prove the efficiency of Algorithm 2.

Theorem V.1 (see [12]). Suppose that H and K are finite
dimensional, and consider the iterates generated by Algorithm
2 applied to (P), with directions (dxk, d

u
k) = −Hkrk, (Hk)k∈IN

being selected with Broyden’s method (9). Suppose that the
sequence of Broyden’s operators (Hk)k∈IN remains bounded.
Then,

(i) (xk, uk) converge to a primal-dual solution (x?, u?) and
the residuals rk converge to 0 square-summably;

(ii) if R is metrically subregular at (x?, u?), i.e., there exist
ε, κ > 0 such that dist((x, u), zerR) ≤ κ‖R(x, u)‖
for all ‖(x, u)− (x?, u?)‖ ≤ ε, then the convergence is
linear;

(iii) if, additionally, the residual R is calmly semidifferen-
tiable at (x?, u?), then the convergence is superlinear.

In image processing applications, problem sizes prohibit the
use of full Broyden methods where one needs to store and up-
date linear operators Hk. At the expense of losing certain theo-
retical properties of full-memory Broyden methods — such as
superlinear convergence under certain assumptions — limited-
memory variants, where one needs to store only m past pairs
(sk, yk), lead to a considerable decrease in memory require-
ments.

In Algorithm 3 we propose a restarted limited-memory
Broyden method tailored for the updates (9). A buffer of fixed
maximum capacity M is required, where we store the pairs
(sk, s̃k). A similar remark regarding the minimization of calls
to P as discussed for Algorithm 2 applies to this inner pro-
cedure. Specifically, the number of calls to operator P can
be reduced to one per execution of Algorithm 3 by simply
including the vectors P s̃k in the memory buffer.

VI. IMAGE DENOISING

A common problem in image processing is that of retrieving
an unknown image x ∈ IRm×n (of height m and width n
pixels) from an observed image y which has been distorted by
noise [13]. Such problems can be formulated as optimization
problems of the form

minimize
x∈Ω

1
2‖x− y‖2 + µTV`1(x), (10)

where Ω = [0, 255]m×n and TV`1 is the anisotropic total
variation regularizer defined as TV`1(x) = ‖Lx‖1, where

Algorithm 3 Restarted Broyden for the computation of direc-
tions dk ∈ Z

1: dk ← −Rzk, s̃k−1 ← yk−1

2: M ′ = k mod M

3: for i = k −M ′ . . . k − 2 do
4: s̃k−1 ← s̃k−1 + 〈si,s̃k−1〉P

〈si,s̃i〉P (si − s̃i)
5: dk ← dk + 〈si, dk 〉P

〈si,s̃i〉P (si − s̃i)
6: Compute ϑk−1 as in (9b)
7: s̃k−1 ← (1− ϑk−1)sk−1 + ϑk−1s̃k−1

8: dk ← dk + 〈sk−1,dk〉P
〈sk−1,s̃k−1〉P (sk−1 − s̃k−1)

9: if M ′ = M then
10: Empty the buffer

else
11: Append (sk, s̃k) into the buffer

L is the linear operator L : IRm×n → IRm×2n with Lx =
(Lhx, Lvx), Lh and Lv are the horizontal and vertical discrete
gradient operators and ‖ · ‖1 is the `1 norm [14]. The use of
TV`1 as a regularizer is based on the principle that noisy
images exhibit larger changes in the values of adjacent pixels.
For (10), operator F defined in (2a) has a polyhedral graph,
therefore it satisfies the metric subregularity condition required
by Theorem V.1 [15], so SuperMann converges R-linearly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·104
10−3

10−2

10−1

100

101

102

103

L and L∗ calls

‖R
z k
‖

Chambolle-Pock
SuperMann

Figure 2: Convergence of Chambolle-Pock and SuperMann:
‖Rzk‖ vs number of calls of operators L and L∗ with µ = 0.05.

In (10) we look for an image x which is close to the given
noisy image y (in the squared Euclidean distance) and has a
low total variation. The regularization weight µ can be chosen
via statistical methods [16]. For x ∈ IRm×n, operators Lh and
Lv are defined as

(Lhx)i,j =

{
xi,j+1 − xi,j for j = 1 . . . n− 1
0 for j = n

for i = 1 . . .m, and

(Lvx)i,j =

{
xi+1,j − xi,j for i = 1 . . .m− 1
0 for i = m

for j = 1 . . . n. It is known that ‖L‖ =
√

8 and that L∗ is the
discrete divergence operator [17].

For the problem in (10) we define
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Figure 3: (Left) Original image (640 × 480 pixels), (Middle)
Image distorted with zero-mean Gaussian noise with variance
0.025 (PSNR −31dB), (Right) Denoised image with µ = 24.5.

1) the primal Hilbert space H := IRm×n and the dual space
K := IRm×2n,

2) the term f(x) = 1
2‖x−y‖2 +δ[0,255]m×n(x) whose prox-

imal map is proxα1f (v) = ΠΩ[(1 + α1)−1(v + α1y)],
and

3) the term g(z) = µ‖z‖1 with proxγg(v)i =
sgn(vi)[|vi| − γµ]+.

We apply the aforementioned methodology for the filtering
of Gaussian noise which has been added to the image shown
in Figure 3 (Left) leading to a distorted image (Middle). Pa-
rameters α1 and α2 are taken equal to 0.95/

√
8 ≈ 0.3359 and

λ = 1. For the restarted Broyden method, we chose ϑ̄ = 0.5
and memory M = 10. For the line search in Algorithm 2 we
set σ = 1− c = 10−4 and q = 10−1.

As shown in Figure 2 for µ = 24.5, the proposed algorithm
converges considerably faster than Chambolle-Pock with the
former converging with termination criterion ‖Rzk‖ < 10−3

in 1129 iterations (4302 calls of L and L∗) and the latter
converging in 10527 iterations (21054 calls of L and L∗).
In Figure 4 (Left) we show the number of calls to L and L∗

for different values of µ — SuperMann is consistenty faster
than Chambolle-Pock. In order to evaluate how µ affects the
quality of the produced image, computing solutions of (10)
for several values of µ is often desired. In Figure 4 (Right)
we show how µ affects the PSNR of the denoised image with
respect to the original image.
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L
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d
L
∗

ca
lls

Chambolle-Pock
SuperMann
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−30

−28
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N

R
(d

B
)

Figure 4: (Left) Number of calls to L and L∗ vs µ; for val-
ues of µ larger than 42 the Chambolle-Pock algorithm did not
converge within 5 · 104 iterations, (Right) Peak signal-to-noise
ratio (PSNR) vs µ.

VII. CONCLUSIONS

We proposed a primal-dual line search algorithm to accel-
erate the Chambolle-Pock method which only involves invo-
cations to proxα1f , proxα2g∗ , L and L∗. We tested the pro-
posed method on the problem of image denoising using the
anisotropic total variation regularization demonstrating that the
new algorithm exhibits considerably faster convergence.

In future work we will further exploit the structure of oper-
ator T to compute semi-smooth Newton directions to achieve
even faster convergence results in the spirit of [18], [19].
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