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Abstract 

Purpose of review  

In this paper, the specific and general indications for sedatives in the neuro-critical care unit 

are discussed, together with an overview on current insights in sedative protocols for these 

patients. In addition, physiological effects of sedative agents on the central nervous system 

are reviewed.  

Recent findings 

In the general intensive care unit population, a large body of evidence supports light 

protocolized sedation over indiscriminate deep sedation. Unfortunately, in patients with severe 

acute brain injury, the evidence from randomized controlled trials is scarce to non-existent, 

and practice is supported by expert opinion, physiological studies, and observational or small 

randomized trials. The different sedatives each have different beneficial effects, and side 

effects.  

Summary 

Extrapolating the findings from studies in the general intensive care unit population suggest to 

reserve deep continuous sedation in the neuro-intensive care unit for specific indications. 

Although an improved understanding of cerebral physiological changes in patients with brain 

injury may be helpful to guide individualized sedation, we still lack the evidence base to make 

broad recommendations for specific patient groups.   
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Introduction: 

In the general intensive care unit (ICU), light rather than deep sedation is recommended in 

mechanically ventilated patients [1], in combination with daily awakening trials. RCT’s have 

demonstrated the short-term benefits of this policy, such as a reduced ICU length of stay (LOS) 

and a shorter duration of mechanical ventilation (MV) [2, 3]. Unfortunately, brain injured 

patients were excluded in these trials. In the neuro-critical care unit (NCCU), sedative agents 

are used for specific therapeutic indications, that do not exist in patients without intracranial 

pathology. On the other hand, sedatives interfere with clinical neurologic assessment of the 

patient [4]. This paper is a narrative review on the indications, sedation protocols, and depth 

of monitoring in the NCCU, as well as the pharmacologic properties of frequently used 

sedatives.  

 

Specific indications in the NCCU for the continuous use of sedative agents.  

Intracranial pressure (ICP) control is an important indication for continuous sedatives in the 

NCCU, even while the evidence for this practice is based on low-quality evidence [5]. The ICP 

is a warning sign for pending herniation and deranged perfusion. The relationship between 

elevated ICP and worse patient outcomes is determined by the degree of ICP elevation, as 

well as by the duration of the episode of intracranial hypertension [6]. Sedatives reduce ICP 

through multiple mechanisms. First, they suppress coughing or other forms of Valsalva. 

Second, they reduce agitation and motoric unrest. Third, they reduce brain metabolism 

(CMRO2). Cerebral blood flow (CBF) is closely regulated by CMRO2, and a reduction in CBF 

will reduce cerebral blood volume (CBV), bringing the patient in a less steep range of the 

ICP/volume curve. In addition, when cerebral perfusion is critical, the reduction in CMRO2 can 

restore supply/demand mismatch to the brain. Fourth, they can treat seizures, as discussed 

below. Finally, sedatives can facilitate ICP-directed therapies, for instance PaCO2 control by 

MV. Specific properties of different sedatives are discussed below. Continuous sedation is also 

a rescue therapy for refractory status epilepticus (RSE), and should be considered in case of 

ongoing seizures for more than 40 minutes failing to respond to first- and second-line 

anticonvulsants [7]. For this indication, guidelines recommend anesthetic doses of either 

thiopental, midazolam, pentobarbital, or propofol, under continuous electro-encephalogram 

(EEG) monitoring [8]. There is no clear evidence from RCTs for this rescue therapy. A third 

specific indication for sedation in the NCCU is allowing targeted temperature management 

(TTM). TTM is associated with shivering, leading to patient discomfort, increased CMRO2 and 

increased ICP. Short acting sedatives such as propofol and remifentanil may be preferred 

here, over longer acting products such as midazolam and fentanyl [9].   

Finally, paroxysmal sympathetic hyperactivity (PSH), is a rare but striking clinical syndrome 
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following severe acquired brain injury, with paroxysmal tachycardia, arterial hypertension, 

tachypnoea, hyperthermia, and spasticity in response to afferent stimulation [10]. Continuous 

infusions of sedatives are often used to suppress the manifestations of PSH. GABA-acting 

agents such as propofol or midazolam are not preferred, but opioids, and α-2-agonist like 

clonidine or dexmedetomidine, can be effective temporary therapeutic options while the patient 

is still in the ICU.  An excellent and more elaborate review on the specific indications for 

sedatives in the NCCU can be found in Oddo et al. (11). Outside these specific indications, the 

sedation strategy of NCCU patients, regardless of the admission diagnosis, should aim at light 

rather than deep sedation, to allow neurological evaluation and to avoid the side effects of 

continuous sedation, as explained in the sections below.   

 

Assessment of the depth of sedation 

Guidelines recommend to titrate to light sedation, and use a clinical scale to set the therapeutic 

goal and assess the depth of sedation [1]. When sedating for a NCCU-specific indication, 

therapy should be titrated to a therapeutic goal as well with appropriate monitoring: ICP-

monitoring when ICP-control is the goal, continuous EEG monitoring when seizures are 

treated, clinical scales for TTM and PSH. In particular, it is important to monitor when 

withdrawing sedation. The Bi-spectral index (BIS) monitor uses a processed EEG signal to 

quantify depth of sedation and could be useful in the general ICU for deep sedation combined 

with neuromuscular blockade, or for light sedation when a sedative scale cannot be used [1]. 

In TBI, the BIS has been shown to be prognostic [12]. A small prospective RCT in a tertiary 

NCCU, including mainly hemorrhagic stroke patients, demonstrated a reduction in propofol-

dose used in a 12-hour period, when BIS-guided sedation was compared to sedation-scale-

guided sedation, but these findings need to be confirmed in a larger trial before they can be 

widely recommended [13].   

Sedative protocols, and neurological wake-up tests.  

The clinical neurological examination (neuro-exam) is crucial in the evaluation patients 

admitted to the NCCU, with 3 main goals: first, to detect the presence of neurological 

abnormality; second, to formulate a differential diagnosis, and establish the possible 

anatomical location of the problem; third, to assess the evolution of the neurological condition 

by serial assessment [4]. Sedation interferes with many aspects of the neuro-exam.  Therefore, 

it is essential to avoid unnecessary sedation, titrate to therapeutic goals, stop sedation as soon 

as the indication is no longer present, and to monitor carefully during withdrawal [11]. 

Protocolized sedation may reduce hospital LOS, in general ICU patients [14]. Only one study 

has examined the effectiveness of protocolized analgo-sedation, specifically in the NCCU [15]. 

Using a before-after design, protocolized sedation led to more adequate pain control, a 
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reduced use of propofol and midazolam, and faster awakening when daily neurological wake-

up tests (NWTs) were performed. In the general ICU, NWTs have been shown to reduce the 

number of unnecessary technical exams because of unexplained prolonged unconsciousness 

[16]. Performing NWTs in patients sedated for ICP-control is still controversial, because of the 

risk of neuro-worsening, while the probability to detect a new neurological finding appears to 

be low  [17-18]. A recent review identified in total 1 retrospective and 4 prospective 

observational trials on NWTs in brain-injured patients, as well as one small non-predefined 

subgroup of a RCT [19]. In 5 studies, NWTs were associated with worsening of neuro-

monitoring parameters, and/or had to be interrupted. In summary, there are no data to support 

the indiscriminate use of NWTs in severe brain injury. When performing a NWT, it should be 

done with appropriate monitoring.  

Specific sedatives in the NCCU 

The advantages and drawbacks of different sedatives are summarized in table 1. Figure 1 is 

a schematic graphical representation of their differential effects on ICP, cerebral perfusion 

pressure (CPP), CBV, CBF, CMRO2, and glucose metabolism (CMRgluc).  

Propofol 

Propofol is a GABA-receptor agonist, and the most frequently used sedative in the ICU.  It has 

an interesting pharmacokinetic profile, with fast recovery even after prolonged sedation. 

Propofol is highly effective in reducing the ICP, and is in fact the first choice sedative for the 

treatment of intracranial hypertension [19], even while there are concerns because of the 

prominent hemodynamic suppression and CPP reduction. Propofol has a dose-dependent 

EEG-suppressive effect, and is used as third-line treatment for RSE as explained above [8]. In 

addition, propofol preserves cerebrovascular autoregulation, and CBF-CMRO2-coupling [20].  

In the NCCU, long-term high dose propofol infusions have been associated with propofol 

infusion syndrome (PRIS). This is a rare phenomenon characterized by massive muscular 

energy failure due to the effect on mitochondria, leading to rhabdomyolysis, cardiac 

arrhythmia, and asystole [21]. PRIS is in most cases fatal.  

Midazolam 

Midazolam, as compared to propofol, has less pronounced reductions of CMRO2, CBF and 

ICP, which is one of the reasons it is not the recommended first-line drug of choice for the 

treatment of intracranial hypertension [19], even when it  has more favourable hemodynamic 

profile. Like all benzodiazepines, it has anticonvulsive properties, but does not produce an 

isoelectric EEG. A systematic review identified 4 studies including in total 187 patients that 

compared propofol with midazolam for the sedation of patients with TBI, and found a similar 

efficacy and safety of both drugs, with no differences in controlling ICP and CPP [22]. Another 
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systematic review found more hypotension and lower CPP with propofol compared to 

midazolam [23]. An important drawback of prolonged midazolam infusions, in particular in the 

NCCU, is the unpredictable prolonged awakening, due to tissue accumulation and an active 

metabolite [24]. In a recent multicenter before-after study, switching from a midazolam-fentanyl 

based regimen to propofol-remifentanil, resulted in significantly earlier awakening and more 

ventilator-free days [25]. A single center observational cohort study found an association 

between delayed awakening and midazolam use [26]. Because of this possible delay in neuro-

prognostication when using midazolam, it might be advisable to avoid benzodiazepines in post-

cardiac arrest patients. In addition, the use of midazolam, in particular by infusion, is an 

independent risk factor for the development of delirium and posttraumatic stress disorder [27, 

28].  

Ketamine 

Ketamine is an N-methyl-D-aspartate receptor antagonist, producing amnesia, psycho-

sensory and analgesic effects. The combination of analgesic and sedative properties, 

hemodynamic stability, and pulmonary vasodilation, makes ketamine an appealing agent in 

anesthesia and critical care [29]. It has an opioid-sparing effect [30]. Unfortunately, data on 

safety in long-term ketamine infusions are lacking, but they are associated with liver failure 

and haemorrhagic cystitis.  

Ketamine has long been banned in patients at risk for intracranial hypertension after two small 

studies in the seventies reported an increase in cerebrospinal fluid pressure in non-ventilated 

patients [31,32].  However, a recent systematic review of 7 studies (in 101 adult and 55 

pediatric sever TBI patients) [33] has provided low-level evidence that ketamine does not 

increase, and might even lower ICP, provided patients are ventilated and sedated. A second 

systematic review in non-traumatic neurological illness, found the same [34].  Due to the known 

psychotomimetic effects of ketamine, clinicians are apprehensive of the risk of delirium. 

However, a retrospective cohort study comparing ketamine- and non-ketamine-based 

sedation, found no significant differences in delirium incidence, or number of delirium days 

[35].   

There is some evidence pointing towards a possible neuroprotective role. Ketamine reduces 

glutamate-induced inflammatory cytokine production in isolated human glioma cells in vitro 

[36], and reduces MRI-spectroscopy-measured frontal glutamate concentrations in children 

[37]. Cortical spreading depolarizations (CSDs) are large, propagating waves of mass neuronal 

and glial depolarization and important contributors to the progression of brain injuries in 

patients with acute neurological injury. Findings from preclinical data suggesting that ketamine 

might decrease CSDs, have recently been confirmed in a small prospective RCT in 10 SAH 



7 
 

and TBI patients, where even sub-anesthetic doses of ketamine inhibited CSDs [38], providing 

the first evidence that CSDs are not mere an epiphenomenon of the suffering brain.  

Ketamine has differential regional effects on CMRO2: frontal regions, the insula, and the 

anterior cingulate gyrus show an increase, while a decrease is observed in pons, cerebellum, 

and temporal lobe. These changes in regional CMRO2 are not entirely followed by changes in 

regional CBF, pointing to a dose-dependent uncoupling [39, 40].  

During prolonged seizures, the number and activity of postsynaptic GABA-A receptors 

decreases, leading to decreased effectiveness of GABA-acting agents, while concurrently, the 

number and activity of NMDA receptors increases. In this perspective, whether using ketamine 

earlier on could facilitate early seizure control or improve outcomes, is an interesting 

hypothesis, currently not supported by evidence from RCTs. Nowadays, ketamine is mainly 

used after 5-6 anticonvulsants have failed [41], In a retrospective study, the introduction of 

ketamine contributed to the permanent control of refractory or super-refractory status 

epilepticus in 1/3 of patients [42].  

 

Dexmedetomidine 

Dexmedetomidine, an alpha-2 agonist, provides sedation without inducing unresponsiveness 

or coma and has analgesic properties without effect on respiratory drive. A recent Cochrane 

review concluded that dexmedetomidine shortens the time to extubation and discharge 

compared to more conventional agents such as propofol [43]. During neurosurgery, 

dexmedetomidine allowed for a better neurological evaluation including detection of focal 

neurological deficits, compared to midazolam or propofol [44]..Despite the surge in interest the 

past years, only limited literature exists about the safety and efficacy of alpha-2 agonists in 

NCCU patients, as evident from 2 recent systematic reviews [45, 46]: there was no safety issue 

with using dexmedetomidine in this population, although the available evidence was of low 

quality. No evidence for efficacy could be found. Currently, no studies have compared 

dexmedetomidine to clonidine in the NCCU.  

Volatile anaesthetics 

The development of new anaesthetic reflectors ‘AnaConDa’ and ‘Mirus’, revamped interest in 

the use of volatile anaesthetics for sedation in the ICU [47].  Potential benefits include rapid 

onset, bronchodilation, a decreased CMRO2 and easy titration through end-tidal gas 

monitoring. When administered for a long time, volatile agents also improved sedation stability 

with fewer dose adjustments  [47, 48]. In a recent meta-analysis, volatile anaesthetics had 

significantly shorter awakening and extubation times compared to propofol and midazolam, 

but no difference in LOS [49]. Nonetheless, sedative agents are still not routinely used in the 
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NCCU,because of the risk of an increased ICP due to a rise in CBF, even though the study of 

Villa in 2012 showed no difference ICP levels compared to propofol [50]. Some concerns still 

exist, including the potential environmental contamination, which urges the need for 

scavenging [51]. Epidemiological data on prolonged volatile anaesthetics administration 

demonstrate a strong association with long-term cognitive deficits [52], in particular in children 

[53]. Although confounding by indication remains an important concern in interpreting these 

studies, these potential neurotoxic effects cannot be ignored and uncertainty about safety, in 

particular in young and brain injured patients, preclude their use in the NCCU, even though a 

study on rats in 2014 showed a decrease of CSD when using isoflurane compared to propofol 

[54].   

Opioids 

Fentanyl is associated with a moderate [55] or no [56] reduction in CBF and CMRO2. The same 

holds for sufentanil, where a small increase in ICP was found in one study, most likely as a 

consequence of the normal autoregulatory response to a temporary reduction in blood 

pressure [57]. Remifentanil can cause minor clinically negligible increases in CBF [58].  In view 

of their very similar and small effect on ICP, CBF and CMRO2, the choice of opioid should be 

determined by the pharmacokinetic profile: remifentanil permits faster and more predictable 

awakening for neurological assessment. However, if prolonged deep sedation is required, 

fentanyl or sufentanil might be preferred [59, 60].  

Barbiturates 

Barbiturates cause a dose-dependent suppression of EEG, up to an almost total suppression 

of all cortical activity above basal metabolism, with a concomitant decrease in CMRO2, 

CMRgluc, and CBF.  At high doses, there is important hemodynamic suppression. Other side 

effects, such as ileus, loss of ciliary transport, nefro- and hepatotoxicity, adrenal suppression, 

and profound immunosuppression, make the patient under barbiturate coma highly vulnerable 

for potentially lethal complications [61, 62]. In addition, barbiturate infusions have an 

unfavourable pharmacokinetic profile with prolonged awakening. In view of these important 

side-effects, barbiturates are mainly used as rescue therapy, for refractory seizures and control 

of intracranial hypertension where lower tier therapies are insufficient.  Other rescue therapies 

for refractory intracranial hypertension, hypothermia and decompressive craniectomy (DC), 

have become obsolete or at least controversial in view of the results of recent RCT’s. Indeed, 

trials on prophylactic [63] as well as second tier hypothermia [64]  have demonstrated harm, 

rather than benefit.  Early decompressive craniectomy (DC) results in worse clinical outcomes 

[65] while secondary DC [66] will result in a higher proportion of patients who will remain in a 

vegetative state, and only a small proportion of patients with good clinical outcomes at 1 year. 

Therefore, barbiturates are now the first rescue therapy to control elevated ICP refractory to 
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maximum standard medical and surgical treatment, as recommended by the current guidelines 

[19] Thiopental (loading dose 2-5mg/kg, maintenance dose 3mg/kg/h) has demonstrated a 

higher effectiveness than pentobarbital (loading dose 10 mg/kg, followed by maintenance 

dosage of 1 mg/kg/h) in a RCT[67].,  

However, no RCTs exist comparing barbiturates to other sedatives as last resort therapy for 

both desperate situations, leading to only weak or no evidence [68, 69]. However, since there 

is no other agent with a similar powerful effect, it is very likely that they will remain to be used 

in these settings.  

 

General conclusion: 

Specific indications for sedation in the NCCU exist, outside the indications of general ICU 

patients. It is important to target sedatives to a specific therapeutic goal, and to monitor for 

effect and side-effects. The physiological effects of the most frequently used sedatives are 

well-known, unfortunately the evidence upon which their use in brain-injured patients is based 

is weak. Often multiple agents will be necessary to maximize desirable effects and minimize 

adverse effects.  
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Key Points:  

 

1. Daily interruption or reduction of sedation is recommended in mechanically ventilated 

patients to enhance neurological evaluations and to improve short- and long-term 

outcomes. Specific indications exist for sedation in NCCU: ICP control, seizure control, 

reduction in CMRO2, PSH, and to allow for brain-protective therapy.  

 

2. Future studies on the use of sedatives for neuroprotection in patients with severe acute 

acquired brain injury, should focus on relevant outcomes, while at the same time 

monitoring the important pathophysiological mechanisms involved in secondary brain 

damage, such as detection of cortical spreading depression, of neuro-inflammation and 

energy dysfunction.   

 

3. Individualized sedation in neuro-critical care patients, should consider all known 

effects, potential advantages and side effects, possible drug interactions, to determine 

the optimal sedative regimen adapted to a particular clinical scenario. 
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Figures and Tables: 

Table 1: Comparison of the advantages and disadvantages of sedative agents in the ICU 

 

      

  

 Indications in the neuro-ICU Advantages Disadvantages 

Propofol  First-line sedative to treat 
intracranial hypertension 

 First choice sedative for status 
epilepticus unresponsive to anti-
epileptic drugs 

 Post-cardiac arrest, when rapid 
awakening is important 

 Pharmacokinetic profile.  

 Anticonvulsive 

 Dose-dependent reduction of ICP, 
CMRO2, CMRgluc, and CBF. 

 

 Hemodynamic instability (MAP↓ 
CPP↓) 

 Risk of Propofol Infusion 
Syndrome 

 Lack of analgesic effect 

 Hypertriglyceridemia 
 

 

Midazolam  Second line sedative, to be added 
when other sedatives are 
insufficient or at their maximum 
dose 

 Sedation of hemodynamically 
unstable patients 

 Anticonvulsive 

 Amnesic effect 

 More hemodynamically stable  
       compared to propofol 

 

 Risk of accumulation 

 Increased ICU length of stay 

 Increased duration of MV 

 Increased risk of delirium and PTSD 

 No analgesic effect 
 

 

Barbiturates  Rescue therapy for intracranial 
hypertension and refractory or 
superrefractory status epilepticus 

 Strong effect on ICP reduction, 
CMRO2, CMRgluc, and CBF. 

 Burst suppression of EEG 
 

 Hypotension (MAP↓↓ CPP ↓↓) 

 Adrenal dysfunction 

 Immunosuppression 

 Nefro- and hepatotoxicity 

 Long context-sensitive half-life 
 

 

Opioids  Analgesia 

 Tolerance of mechanical ventilation 

 Only mild CPP and ICP effect  No ICP- lowering effect 

 Risk of accumulation  
(except for remifentanil) 

 Remifentanil: hyperalgesia 

 Dependence 
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Figure 1: Comparison of the effect of sedative agents on neurophysiology (CPP, ICP, 

CBV, CBF, CMRO2, CMRgluc)   

 

Comparison of the neurophyisiological effect of sedative agents: propofol, midazolam, 

dexmedetomidine, ketamine, volatile agents and thiopental.  The differential regional effects 

on CBF/CMRO2 of ketamine are shown: frontal regions, the insula, and the anterior cingulate 

gyrus show an increase, while a decrease is observed in pons, cerebellum, and temporal lobe.  

 

 

 

 

 


