

Crane-operated warehouses: Integrating location

assignment and crane scheduling

Sam Heshmatia,b, Túlio A. M. Toffoloa,c, Wim Vancroonenburga,d,*, Greet Vanden Berghea

aKU Leuven, Department of Computer Science, CODeS - Belgium

bUniversity of Porto, Faculty of Engineering, INESC TEC – Portugal

cFederal University of Ouro Preto, Department of Computing – Brazil

dResearch Foundation Flanders – FWO Vlaanderen

*Corresponding author:

Wim Vancroonenburg, Ph.D. - wim.vancroonenburg@cs.kuleuven.be

Ghent Technology Campus,

Gebroeders De Smetstraat 1, 9000 Gent, Belgium.

Author notes

Wim Vancroonenburg is a postdoctoral researcher funded by Research Foundation Flanders -

FWO Vlaanderen. Editorial consultation provided by Luke Connolly (KU Leuven).

Data instances + validator available at : https://bitbucket.org/Sam-Hes/cwsp/

mailto:wim.vancroonenburg@cs.kuleuven.be

Crane-operated warehouses:1

Integrating location assignment and crane scheduling2

Abstract3

Crane-operated warehouses constitute an essential asset for the many industries which must tem-4

porarily store products on their way from manufacturers to consumers. Such warehouses are a prac-5

tical necessity rather than an explicitly desired service and they introduce significant operational6

costs which should be minimized. The problem addressed by the current paper, the Crane-operated7

Warehouse Scheduling Problem (CWSP), concerns the location assignment of input products and8

the scheduling of cranes for product movement in such warehouses. Several constraints are asso-9

ciated with the problem, for example certain products should not be stored close to each other10

(due perhaps to a difference in temperature or aroma) and cranes must respect operational safety11

distances between each other in order to prevent dangerous collisions. The present paper explores12

a novel methodology which combines these two decisions – location assignment and crane schedul-13

ing - instead of solving them sequentially. In addition to mathematical formulations for location14

assignment and crane scheduling, both an integrated mathematical formulation and a fast heuris-15

tic are presented for the CWSP. The quality of the mathematical formulation and the heuristic16

are compared against the conventional sequential approaches. Experimentation upon an exten-17

sive range of instances show significantly improved results are attainable when integrating location18

assignment and crane scheduling, despite some (expected) increase in computational time.19

Keywords: Crane-operated warehouse scheduling, Crane scheduling, Crane interference,20

Location assignment21

1. Introduction22

Warehouses constitute a form of infrastructure commonly employed by manufacturers, whole-23

salers and retailers to store goods not only during the production process but also during their24

distribution. Warehouse efficiency therefore plays a crucial role in global economy. Their efficiency25

enhances the capacity of supply chains, providing significant economic and service benefits to both26

businesses and end users. Reducing storage and handling costs, increasing warehouse capacity and27

improving the timeliness of deliveries are essential to further sustaining and strengthening supply28

chains. The present study focuses on the first aspect, in particular in Crane-operated warehouses.29

The term ‘Craned-operated warehouse’ refers to a type of warehouse or storage area which30

employs any type of overhead crane such as rubber-tired gantry cranes (RTGCs) or rail mounted31

gantry cranes (RMGCs). Overhead cranes are commonly used in industrial warehouses where32

the stored products are rather heavy and large-sized in nature (examples of which include steel33

coils, large pallets of goods, . . .) or in container terminals where containers are temporarily stored34

in stacks before being transferred to their next destinations. The Crane-operated Warehouse35

Scheduling Problem (CWSP) studied throughout this paper concerns the optimization of both the36

products’ storage location and the crane operations which are necessary to do so in warehouses37

Preprint submitted to Computers & Industrial Engineering January 17, 2019

which employ such overhead cranes. A warehouse typically consists of a set of input and output38

points which are located in the periphery of a storage area. Products are stored subject to a range39

of operational constraints and a set of cranes are employed for handling operations. In many cases,40

cranes cannot overtake each other (such as when they are operating on the same pair of rails),41

thereby necessitating proper safety measures to avoid collisions. The CWSP as such is composed42

of two constituent optimization problems, namely:43

i) The Location Assignment Problem (LAP): assigning the storage locations to incoming prod-44

ucts and those which must be relocated within the storage area.45

ii) The Crane Scheduling Problem (CSP): scheduling the cranes’ operations.46

The objective is to minimize both total storage cost and tardiness of crane operations.47

The CWSP is conventionally split into the two aforementioned sub-problems – the LAP and48

CSP - which are solved sequentially. First, the LAP is solved and the resulting storage locations49

for incoming/relocated products are fixed. Next, the CSP is solved to determine the best schedule50

for the handling operations. To date, there has been a considerable lack of research which assesses51

the impact of integrating these two sub-problems.52

Container terminals represent one specific real-world application where the CWSP is encoun-53

tered. Given the continuously increasing volume of containers being handled in terminals world-54

wide, which places significant pressure on terminals’ infrastructure and operations, it is unsurprising55

that there exists a vast body of container terminal literature relevant to the problem.56

The majority of studies related to the LAP involve optimization problems in container terminals57

such as the re-handling problem (Jovanovic and Voß, 2014; Ku and Arthanari, 2016) and the58

container stacking problem (Zhang et al., 2014; Gharehgozli et al., 2014). The re-handling problem59

concerns removing containers from stacks to enable a given set of container retrievals where the60

objective is to minimize the number of moves. Studies addressing the container stacking problem61

mostly focus on minimizing reshuffling, namely those unproductive moves required to gain access62

to a desired container which is blocked (Chen and Lu, 2012; Boysen and Emde, 2016). Other63

objectives include minimizing travelling distance, wasted space, or estimated retrieval cost (Park64

et al., 2011).65

The objective function of the LAP in the present study derives itself directly from operational66

practices found in production industries and differs from objective functions found in references67

related to container terminals. It includes cost terms related to storing a product in a specific loca-68

tion and others related to storing certain products adjacent to one another. The former cost terms69

are used to model the retrieval costs (specified as a distance from an output point), while the latter70

model operational constraints of production industries which seek to avoid storing certain products71

in close proximity. For instance, companies may wish to avoid storing aromatic products next to72

each other or may require hot products to be stored away from those which have already cooled73

down. While companies may often disallow such neighbouring location assignments altogether,74

in situations of high storage occupancy it may not always be feasible to do so. Addressing such75

situations as soft constraints, penalized as costs in the objective function, enables the necessary76

modelling flexibility and avoids infeasibility.77

Many studies address the CSP independent from the LAP, considering the LAP’s solution as78

a fixed input. The most relevant references to the present study are those focused on scheduling79

multiple cranes. For single crane scheduling, interested readers are referred to the survey by Boysen80

2

and Stephan (2016). Due to the increasing necessity to accelerate handling operations in ware-81

houses, many recent papers have focused on scheduling multiple cranes operating simultaneously82

within the same storage area. Dorndorf and Schneider (2010) studied a container yard in which a83

pair of cranes operates on the same rails with another larger crane operating above them (cross-over84

crane) on its own pair of rails. Each of the two smaller cranes has its own distinct working area85

to avoid collisions. Given independent and mutually-exclusive working areas and the presence of a86

separate cross-over crane, crane interference does not pose a problem in such yards. By contrast,87

Li et al. (2009) considered a container terminal which employs multiple cranes that may interfere88

with one another. They proposed a discrete-time MIP model for the problem and a heuristic to89

solve it. Li et al. (2012) extended Li et al. (2009)’s work by proposing a continuous time MIP90

model capable of handling instances with a higher number of storage and retrieval requests. Wu91

et al. (2015) also considered a container terminal with multiple cranes, as Li et al. (2009, 2012),92

and proposed a polynomial time heuristic to solve their optimization problem. These studies are93

particularly interesting with regard to how they model the scheduling of multiple cranes operating94

in storage areas with inter-crane interference. However a noteworthy and significant difference95

with respect to the present work lies in how within all the aforementioned studies containers are96

delivered. This means cranes remain static at the stacking piles and do not move during handling97

operations. Consequently, the duration of all operations can be assumed to be equal. This sim-98

plifies the problem modeling by enforcing equal time durations for all operations. In a general99

setting, however, input and output may occur anywhere around the storage area and cranes move100

over that storage area while handling products. Gharehgozli et al. (2017) investigated a set of101

rules and their influence on the effect of temporary locations in a so-called handshake area which102

facilitates container handover between cranes. The paper presented some managerial insights on103

the size, location, and number of such handshake areas.104

Gharehgozli et al. (2015) attempted to integrate location assignment and crane scheduling105

problems in a container terminal, wherein the water-side crane performs all requests which must106

be stacked or retrieved from the water-side, and land-side operations are carried out similarly by107

a land-side crane. However a significant limitation to their model is that storage and retrieval108

requests are already assigned to cranes in advance. Moreover, the model was designed for only109

one land-side and one water-side crane, and thus cannot accommodate cases with more than two110

cranes, or cases where both cranes may handle requests from anywhere throughout the storage111

area.112

In practice, warehouse managers are becoming increasingly aware that warehouse efficiency113

may be bolstered by exploiting an integrated optimization approach, where location assignment114

and crane scheduling decisions are simultaneously taken into consideration and jointly optimized115

(Darvish and Coelho, 2018). The literature is however lacking studies that investigate this. The116

present research, therefore, focuses on this integrated approach of handling the CWSP. It provides117

a general setting which may be easily adapted to other warehouses, land-side container terminals118

or any other industry employing multiple gantry cranes for product handling.119

Mathematical formulations and heuristics are developed and tested upon a set of instances120

which are randomly-generated using probability distributions and insights extracted from a rele-121

vant industrial case. Results are compared against those obtained with a heuristic based on the122

dispatching rules and manual strategies employed in practice. The findings from this computational123

study reveal the significant benefits of combining the LAP and CSP when solving the CWSP.124

The remainder of the paper is structured as follows. Section 2 provides a detailed problem125

3

definition of the CWSP. Section 3 presents mathematical formulations for the LAP and the CSP,126

and also formulates the CWSP by means of a continuous-time mixed integer programming model127

which considers realistic constraints. Section 4 presents a heuristic algorithm for solving the LAP,128

CSP and CWSP. Computational experiments and a comparative algorithmic performance analysis129

are detailed throughout Section 5. Finally, Section 6 summarizes the paper’s primary findings and130

discusses possible future research directions.131

2. Problem definition132

Throughout this study, a crane-operated warehouse is considered which consists of a storage133

area within which products are placed. The storage area is composed of locations, with each134

location storing at most one product. A set of special locations representing input/output (I/O)135

points around the storage area is defined where input requests originate and output requests must136

be delivered. Each I/O point either originates input or collects output requests which must be137

processed by their due time.138

Each request consists of a product that must be moved. Requests are divided into two sets:139

• Input requests (RI): requests which require location assignment. RI consists of requests for140

products at an input point requiring transfer to the yard or products that must be moved141

within the yard to enable cranes to access locations, located beneath them, associated with142

output requests;143

• Output requests (RO): requests consisting of products within the yard requiring transfer to144

an output point.145

Set R represents the union of the two sets: R = RI ∪ RO. A release time and due time are146

associated with each request, defining when the product is available for transfer and when it is due147

to be transferred.148

The set of available locations L consists of locations that are already free or will become149

free during the scheduling horizon when their stored product has been moved. This includes150

the origin location of the output requests and those requests which move products inside the151

yard. L excludes locations which store products that will not be moved during the scheduling152

horizon. Following convention, the storage area length is mapped to a horizontal coordinate axis.153

A horizontal coordinate hl is associated with each individual location l ∈ L. The horizontal154

coordinates in the yard are ordered from left to right. A product may be stored in a location above155

ground level, stacked on another product. Therefore, in addition to its horizontal and lateral156

coordinates, a location l is also defined by its level above the ground. To be able to store a product157

in a location above ground level, all locations beneath the product must be occupied by other158

products. Cranes are employed to execute input and output requests. A set of available, identical159

cranes C is defined, each being capable of handling one request at a time. Cranes are mounted160

on a pair of rails along the horizontal axis, and are ordered and indexed from left to right in the161

storage area. Additionally, cranes have no predefined working areas, the only restriction being that162

they cannot cross and that a safety distance must be respected between neighbouring cranes while163

moving throughout the storage area. This study assumes that cranes can reach all locations.164

Figure 1 illustrates a top-view of a crane-operated storage area in which the gray border repre-165

sents the input/output points. Three cranes are ordered from left to right and operate across the166

4

storage area. Note that the safety distance must be respected and therefore, cranes cannot pass167

over each other.168

Crane

Location(s)

I/O point

Safety
distance

Crane 1 Crane 2 Crane 3

Figure 1: Top view of a warehouse employing three cranes.

The CWSP consists of two optimization problems, the LAP and the CSP. The LAP’s objective169

is to minimize the total storage cost of input requests. The storage cost for a product is defined170

in terms of an assignment in the neighbourhood of other products in the storage area. The total171

storage cost includes the cost, summed over all input requests, of assigning an input request to a172

location in the storage area (pre-calculated and corresponding with the distance to neighbouring173

products which will not move during the scheduling horizon) and the cost of assigning two input174

requests in neighbouring locations.175

The CSP consists of deciding when and by which crane each request will be executed, while176

respecting precedence constraints and constraints concerning safety distances. Precedence con-177

straints may be predetermined or introduced during location assignment. Predetermined prece-178

dence constraints follow from when a product is stacked on top of a product associated with an179

output request, the top product must be removed first after which the output request may be180

executed. Precedence constraints introduced during location assignment follow from assigning an181

input request to the location of a request originated within the yard (either input or output) or182

assigning two input requests on top of each other. The objective is to minimize total tardiness of183

all requests. A request’s tardiness equals the difference between its completion time and due time184

if positive, or zero otherwise.185

The combined problem of solving both the LAP and CSP simultaneously is referred to as the186

CWSP. The objective of the CWSP is to minimize the weighted linear expression presented in187

Equation (1), where α and β are weights defining the relative importance of the terms, while ELA188

and ECS correspond to total storage cost and total tardiness, respectively.189

Total cost = α · ELA + β · ECS (1)

5

3. Mathematical formulation190

This section presents mathematical formulations for the LAP (Section 3.1) and CSP (Section191

3.2), followed by a formulation for the CWSP (Section 3.3) which considers the LAP and CSP192

simultaneously.193

3.1 Location assignment problem194

Formulation FLA concerns the assignment of destination locations to input requests. Table 1195

summarizes the notation employed for the LAP formulation.196

FLA



min
∑
i∈RI

∑
l∈L

γilxil +
∑
i∈RI

∑
j∈RI

ωijzij

s.t.
∑

l∈L:l 6=bi
xil = 1 ∀ i ∈ RI

∑
i∈RI

xil ≤ 1 ∀ l ∈ L

xil ≤
∑
j∈RI

xjk ∀ i ∈ RI , l ∈ L, k ∈ Ul

xil + xjk ≤ 1 + zij ∀ i, j ∈ RI , l ∈ L, k ∈ Nl

xil ∈ {0, 1} ∀ i ∈ RI , l ∈ L
zij ∈ {0, 1} ∀ i, j ∈ RI ,

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Objective function (2) minimizes the total storage cost. The storage cost is divided into two197

parts: the cost of assigning request i to location l and the cost of assigning requests i and j ∈ RI in198

each other’s neighbourhood, denoted by ωij and γil respectively. Constraints (3) and (4) are classic199

assignment constraints ensuring exactly one location is assigned to each input request and that200

each location receives, at most, a single request, respectively. Constraints (3) also prevent assigning201

input requests to their origin locations. If request i represents a product that must be moved202

within the yard to access a product below, other input requests may use bi as their destination,203

after the product below bi has been moved. Constraints (5) force all available locations underneath204

location l ∈ L to have an input request assigned, thus ensuring that no product is stacked atop205

an empty location. It is sufficient to assure there is an input request assigned to each available206

location k ∈ Ul, since the products not associated with any requests will not be moved during207

the scheduling horizon. Constraints (6) set the value of zij to 1 if requests i and j are placed in208

neighbouring locations and 0 otherwise. Constraints (7) and (8) state variables xil and zij are209

binary.210

Following the LAP, precedence constraints may be implied when input requests are assigned to211

the origin locations of output requests or when two input requests are assigned to locations where212

one is on top of the other. The outcome of the LAP (destination location for input requests) along213

with the set of precedence requests is the input for the CSP.214

3.2 Crane scheduling problem215

Formulation FCS models the CSP which considers the crane assignment for requests and the216

sequencing of requests per crane. FCS implements various realistic operational constraints such as217

6

Table 1: Notations for the LAP formulation

Sets:
R : set of all requests
RI : set of input requests, RI ⊆ R
L : set of available locations, those locations that are currently empty or

will become empty due to product movements.
Ul : set of all available locations underneath location l, Ul ⊂ L
Nl : set of all neighbouring locations of location l, Nl ⊂ L

Parameters:
ωij : storage cost of assigning request i to a neighbouring location of product

associated with request j
γil : storage cost of assigning request i to location l
bi : origin location of request i

Decision variables:
xil : binary variable equal to 1 if request i is assigned to location l and 0 otherwise
zij : binary variable equal to 1 if request i is assigned to a neighbouring location of

request j’s destination and 0 otherwise

multiple cranes working simultaneously in the storage area and precedence constraints. Note that218

each crane can traverse the entire storage area provided safety distances between all cranes are219

respected. This means that a crane may move beyond the storage area boundary to provide space220

for another crane to access storage location at or close to the area’s perimeter.221

The continuous-time formulation for the CSP presented in this paper was inspired by Li et al.222

(2012), who showed that for the CSP with multiple cranes this formulation significantly reduced223

the model’s size and enabled larger instances to be solved compared to a discrete-time formulation224

for the same problem. Recall from Section 1 that Li et al. (2012) considered the CSP in a container225

terminal where containers were brought directly in front of the stacking pile. As a consequence,226

cranes do not move along the rails when moving a product. They instead move products laterally227

(along the crane beam). However, in a general setting of crane-operated warehouses the cranes228

move along the storage area to reach the respective input/output point during their operations.229

Conflicting requests and variable operation durations are consequently inevitable. The model230

presented in the following section accounts for this additional complexity. Table 2 summarizes the231

notation employed to formulate the CSP.232

233

The constraints of FCS are organised into three categories: (i) request assignments for cranes,234

(ii) handling conflicting requests and, finally, (iii) setting the requests’ starting times.235

(i) Request assignments for cranes236

Constraints (9) ensure that exactly one crane is assigned to each request. Constraints (10) and237

(11) determine the value of variable nij which must be 1 if request i finishes before the starting238

time of request j and 0 otherwise.239

7

Table 2: Notations for the CSP formulation

Sets:
RO : set of output requests, RO ⊆ R

Γi : set of requests that must be executed before request i, Γi ⊆ R
C : set of cranes

Parameters:
sdcc′ : safety distance required between cranes c and c′

stcc′ : time required by a crane to travel the safety distance between cranes c and c′

ML : yard length +
∑
c∈C sdc(c+1)

MT : large number, 2 × required time for a crane to travel the yard length × number of requests
ηc : order of crane c in the storage yard, 0 ≤ ηc < NC
di : duration of request i
bi : origin location of request i
ei : destination location of request i
ri : release time of request i
τi : due time of request i
hl : horizontal coordinate of location l, denoting the coordinate along the rails
h−i : horizontal coordinate of the leftmost location of request i’s trajectory
h+
i : horizontal coordinate of the rightmost location of request i’s trajectory

gicjc′ : required waiting time between the start time of request i by crane c and the start time of request j
by crane c′ (due to possible conflicts)

tlk : time required by a crane to travel from location l to location k
oaij : equal to 1 if trajectory of request i is to the left of request j’s trajectory and 0 otherwise

Decision variables:
yic : binary variable equal to 1 if request i is handled by crane c and 0 otherwise
si : continuous variable indicating the start time of request i
δi : continuous variable indicating the tardiness of request i

Auxiliary variables:
nij : binary variable equal to 1 if request i finishes before the start time of request j and 0 otherwise
qij : binary variable equal to 1 if request i begins before the start time of request j and 0 otherwise
oij : binary variable equal to 1 if requests i and j are conflicting and 0 otherwise

obij : binary variable equal to 1 if the crane assigned to request i is to the right of the crane assigned to request j
and 0 otherwise.

ocij : binary variable equal to 1 if the distance between h−i and h+
j is less than the safety distance required between

cranes handling them and 0 otherwise

8

∑
c∈C

yic = 1 ∀i ∈ R (9)

si + di ≥ sj −MTnij ∀i, j ∈ R : i 6= j (10)

si + di ≤ sj + (1− nij)MT ∀i, j ∈ R : i 6= j (11)

Each crane may move only one product at a time. When two requests are scheduled within240

overlapping times (nij = nji = 0), they must be assigned to different cranes. Figure 2 presents241

two cases involving requests i and j where the horizontal axis represents time (t). In the first case,242

sj (starting time of j) is larger than si and smaller than si + di (finishing time of i), and thus243

nij = nji = 0 (time overlapping requests). In the second case, request j is executed after request i244

is finished and, therefore, nij = 1 and nji = 0 (non-overlapping moves).245

t t

sj sj +dj

si si +di

request j

request i

nij = nji = 0 nij = 1, nji = 0

sj sj +dj

si si +di

Figure 2: An example of overlapping and non-overlapping requests with respect to time.

Constraints (12) prevent the assignment of time-overlapping requests to the same crane.246

yic + yjc ≤ 1 + nij + nji ∀i, j ∈ R : i 6= j,∀c ∈ C (12)

(ii) Handling conflicting requests247

Cranes cannot pass each other and must respect a safety distance to avoid collision. The physical248

constraints due to non-crossing and safety requirements of cranes pose a significant challenge. If249

simultaneously executing requests i and j violates the safety distance, then these requests are250

conflicting and must be scheduled at different times. When this situation occurs, binary auxiliary251

variable oij is set to 1, indicating requests i and j are conflicting.252

To assist in identifying conflicting requests, the minimum horizontal coordinate (h−i) and max-253

imum horizontal coordinate (h+
i) of a request i are employed and are independent of the requests254

movement direction. Since the origin and destination locations of requests are given by the location255

assignment, values h−i = min(hbi , hei) and h+
i = max(hbi , hei) are easy to pre-compute.256

Requests assigned to different cranes may be conflicting depending on their minimum and257

maximum horizontal coordinates and on the position of the assigned cranes. Given two requests258

i and j handled by cranes c and c′ respectively and a required safety distance sdcc′ , two different259

situations are possible. The first situation arises when the cranes must pass each other to handle260

the requests whereas the second situation occurs when there is insufficient space for them to respect261

the safety distance and handle the requests.262

9

Figure 3 illustrates trajectories of two requests i and j as well as of cranes c and c′. Two cases263

may be considered for these two requests. In the first case where crane c is assigned to request i264

and crane c′ to request j, (yic = yjc′ = 1), the allocation is such that no conflict occurs. In the265

second scenario, however, inverting the crane assignments (yic′ = yjc = 1) renders the simultaneous266

handling of requests impossible, given that cranes cannot pass each other therefore, requests i and267

j are conflicting, and starting times si and sj must be different.268

j

i

sdcc'

Crane chi
− hi

+ hj
+hj

− hCrane c'

sdcc'

Figure 3: Conflicting requests due to crane assignments.

Parameter oaij and auxiliary variable obij identify conflicting requests due to cranes requiring to269

pass each other. oaij indicates whether the trajectory of request i is completely to the left of j’s270

trajectory, such that h+
i < h−j ⇒ oaij = 1. Constraints (13) are employed to define the values of271

obij , which equals 1 if the crane assigned to request i is to the right of the crane assigned to request272

j, obij = 1.273

∑
c∈C

ηc yjc ≥
∑
c∈C

ηc yic − |C| · obij ∀i, j ∈ R : i 6= j (13)

Whenever both oaij and obij equal one, i’s trajectory is to the left of j’s trajectory while i’s crane274

is to the right of j’s crane, resulting in a conflict. Constraints (14) force oij to take a value of 1275

whenever oaij = obij = 1. Likewise, Constraints (15) force oij to take value 1 whenever oaji = obji = 1.276

When request i is conflicting with request j, then request j is conflicting with request i, implying277

oij = oji.278

oij ≥ oaij + obij − 1 ∀i, j ∈ R (14)

oij ≥ oaji + obji − 1 ∀i, j ∈ R (15)

Another cause of request conflict concerns the safety distance between cranes. Figure 4 illus-279

trates the trajectory of two requests i and j and cranes c and c′. Requests i and j are conflicting as280

there is insufficient space for the cranes to begin handling the requests while respecting the safety281

distance (h−i − h+
j < sdcc′). Given the position of the requests’ minimum and maximum horizontal282

10

coordinates, they are conflicting and the cranes cannot begin executing them simultaneously.283

h

i

hi
− hi

+

j

hj
+hj

−

sdcc '

Crane cCrane c′

Figure 4: Conflicting requests with overlapping trajectories.

Auxiliary binary variables ocij are introduced to identify such conflict. Constraints (16) de-284

termine the value of ocij . Whenever i and j are handled by cranes c and c′ (yic = yjc′ = 1 or285

yic′ = yjc = 1), the maximum value for yic + yic′ + yjc + yjc′ equals two and therefore, Constraints286

(16) ensure ocij equals one whenever the minimum horizontal coordinate of i, h−i , conflicts with the287

maximum horizontal coordinate of j, h+
j , and 0 otherwise (h−i − h+

j < sdcc′ ⇒ ocij = 1).288

h−i − h+
j ≥ sdcc′ − (2− yic − yic′ − yjc − yjc′ + ocij)ML ∀i, j ∈ R : i 6= j, c, c′ ∈ C : c 6= c′ (16)

Whenever both ocij and ocji equal one, a conflict is detected. Constraints (17) force oij (and oji)289

to take a value of 1 whenever ocij = ocji = 1.290

oij ≥ ocij + ocji − 1 ∀i, j ∈ R : i 6= j (17)

(iii) Setting the requests’ starting times291

A crane can handle one request at a time, therefore, to execute two consecutive requests, a crane292

requires sufficient time to finish executing the first request and then travel from its destination to293

the second request’s origin.294

If two requests i and j are handled by a single crane c, (yic = yjc = 1), i and j must be handled295

one at a time (nij = 1 or nji = 1). Assume request j is executed after finishing i (nij = 1).296

Constraints (18) ensure starting time sj is greater than or equal to the sum of i’s finishing time297

(si + di) and the time required by the crane to travel from i’s destination to j’s origin (teibj).298

Constraints (18) hold when yic + yjc + nij = 3 (requests are handled by a single crane and j is299

executed after finishing i), ⇒ sj ≥ si + di + teibj .300

sj ≥ si + di + teibj − (3− yic − yjc − nij)MT ∀i, j ∈ R, i 6= j,∀c ∈ C (18)

The starting time of two requests handled by different cranes depends on whether they are301

11

conflicting or not. When the cranes’ trajectories while handling two requests are not conflicting,302

then the requests’ starting times do not influence each other. However, if the two requests are303

conflicting, a waiting time must be applied between starting the requests. gicjc′ denotes the required304

waiting time between request i handled by crane c and request j handled by crane c′. The value of305

gicjc′ depends upon the position of the cranes involved and on their movement direction resulting306

in three different cases reflected by Equations (19), (20) and (21).307

The first case (Figure 5(a)) occurs when yic = yjc′ = 1, crane c is to the left of c′, ηc < ηc′ and308

i’s destination is to the right of j’s origin, hei > hbj . In such situation crane c′ cannot immediately309

begin executing j after the starting time of i, and must instead wait for c to finish i, di, plus the310

time c requires to travel from i’s destination to j’s origin, teibj . Therefore the waiting time of crane311

c′ to execute request j is di + teibj . Another situation which results in the same value for gicjc′312

occurs when crane c is to the right of c′, ηc > ηc′ and i’s destination is to the left of j’s origin,313

hei < hbj (Figure 5(b)). Figure 5 presents these situations both resulting in gicjc′ = di + teibj .314

j

i

Crane c Crane c'

sdcc' sdcc'

(a) hei > hbj , ηc < ηc′

Crane c'

j

i

Crane c

sdcc' sdcc'

(b) hei < hbj , ηc > ηc′

Figure 5: Two conditions which result in gicjc′ = di + teibj .

The value of gicjc′ is determined by Equations (19).315

gicjc′ = di + teibj ∀i ∈ R,
{
j ∈ R : hei > hbj , ∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hei < hbj , ∀c, c′ ∈ C : ηc > ηc′
(19)

Conflicts may also occur when crane c′ does not necessarily need to wait until the end of request316

i. Figure 6 illustrates examples where crane c′ may begin executing request j, teibj time units before317

concluding request i. Such value for gicjc′ guarantees that by the time crane c finishes executing318

request i, crane c′’s distance to crane c exceeds sdcc′ .319

12

i

j

Crane c Crane c'

sdcc' sdcc'

(a) hbi < hei < hbj , ηc < ηc′

j

i

Crane cCrane c'

sdcc'

(b) hbj < hei < hbi , ηc > ηc′

Figure 6: Two conditions which result in gicjc′ = di − teibj .

Equations 20 define the conditions for gicjc′ = di − teibj .320

gicjc′ = di − teibj ∀i ∈ R,
{
j ∈ R : hbi < hei < hbj ,∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hbj < hei < hbi , ∀c, c′ ∈ C : ηc > ηc′
(20)

Figure 7 presents two other scenarios which influence the value of gicjc′ . The first scenario321

occurs when crane c is to the left and c′ is to the right, ηc < ηc′ , and the destination of request i322

is to the left of j’s origin, hei < hbj and hei < hbi , or when crane c′ is to the left of c, ηc > ηc′ ,323

and the destination of i is to the right of j’s origin, hei > hbj and hei > hbi . In these cases gicjc′ is324

equal to the travel time from i’s to j’s origin, tbibj .325

i

j

Crane c Crane c'

sdcc' sdcc'

(a) hei < hbj , hei < hbi , ηc < ηc′

j

i

Crane c' Crane c

sdcc'sdcc'

(b) hei > hbj , hei > hbi , ηc > ηc′

Figure 7: Two conditions which result in gicjc′ = tbibj .

When i is an output request and the conditions presented in Figure 7 are satisfied,326

Equations (21) determine the value of gicjc′ .327

gicjc′ = tbibj ∀i ∈ R,
{
j ∈ R : hei < hbj , hei < hbi , ∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hei > hbj , hei > hbi , ∀c, c′ ∈ C : ηc > ηc′
(21)

Constraints (22) and (23) define the value of variable qij which must equal 1 if request i begins328

before j’s starting time and 0 otherwise.329

13

si ≥ sj −MT qij ∀i, j ∈ R : i 6= j (22)

si ≤ sj + (1− qij)MT ∀i, j ∈ R : i 6= j (23)

Assume requests i and j are handled by two separate cranes, c and c′. If the requests are330

not conflicting, i’s starting time does not influence j’s, since the requests are assigned to different331

cranes. If, however, the requests are conflicting, then the starting time of j must consider i’s332

starting time coupled with the position and direction of both cranes. Constraints (24) coordinate333

the starting times of consecutive requests if the following conditions are satisfied: (i) two different334

cranes (c and c′) are assigned to execute requests i and j, yic = yjc′ = 1, (ii) the requests are335

conflicting, oij = 1, and (iii) request j begins after request i, qij = 1.336

sj ≥ si + gicjc′ + stcc′ − (4− yic − yjc′ − oij − qij)MT ∀i, j ∈ R, c, c′ ∈ C, i 6= j, c 6= c′ (24)

When the three conditions are satisfied, then request j must begin after the starting time of i337

plus the waiting time required between requests i and j (gicjc′) and the time required for a crane338

to travel the safety distance between c and c′ (stcc′).339

Constraints (25) ensure the starting time of request i occurs after its release time ri.

si ≥ ri ∀i ∈ R (25)

When products are stacked on top of each other and the bottom one should be moved, the340

requests associated with the top products must precede those associated with products situated341

on the lower levels. A set of precedence constraints, Γi, indicates the set of requests which must342

precede i. Constraints (26) specify these precedence relations and state that request i may only343

begin after all its preceding requests are finished.344

si ≥ sj + dj ∀i ∈ R, j ∈ Γi (26)

The tardiness associated with request i is denoted by δi ≥ 0. Constraints (27) set the delay of345

each request to be at least the request’s finishing time (si + di) minus its due time, τi.346

δi ≥ si + di − τi ∀i ∈ R (27)

All variables, except si (starting time of request i) and δi (tardiness of request i), are binary:347

yic ∈ {0, 1} ∀i ∈ R, c ∈ C (28)

nij , qij , oij , o
a
ij , o

b
ij , o

c
ij ∈ {0, 1} ∀i, j ∈ R : i 6= j (29)

si, δi ≥ 0 ∀i ∈ R (30)

The CSP formulation is given by FCS , where the objective function (31) minimises the tardiness348

of all requests.349

14

FCS


min.

∑
i∈R

δi

s.t. (9)− (30)

(31)

3.3 Integrated formulation for crane-operated warehouse scheduling problems350

This section introduces an integrated continuous-time formulation for the CWSP (FCWS) which351

considers the location assignment for input requests, the crane assignment for all requests, and the352

sequencing of the requests per crane. FCWS includes all constraints associated with the LAP353

and CSP plus some additional constraints. Since the input requests’ destinations are undefined354

(whereas for the CSP, they are determined by first solving the LAP), the following parameters in355

FCS become variables in FCWS : h−i , h+
i , di and ei for all requests i ∈ RI and oaij when at least one356

of requests i and j is an input request. Note that since these variables are defined only for input357

requests, the definitions in Table 2 remain valid for output requests.358

Additional constraints are required to assist in identifying the conflicting requests. Equations359

(32) and (33) are employed to obtain h−i and h+
i for request i ∈ RI , respectively. Constraints (34)360

are employed to define the values of oaij .361

h−i =
∑

l∈L:hl≤hbi

hl xil +
∑

l∈L:hl>hbi

hbi xil ∀i ∈ RI (32)

h+
i =

∑
l∈L:hl≤hbi

hbi xil +
∑

l∈L:hl>hbi

hl xil ∀i ∈ RI (33)

h+
i ≥ h−j −ML · oaij ∀i, j ∈ R : i 6= j (34)

Output requests have a fixed duration, while input requests’ durations depend on the chosen362

destination. Constraints (35) are employed to compute the duration of input requests.363

di =
∑
l∈L

tbil xil ∀i ∈ RI (35)

As the destinations of input requests are decision variables, setting the value of gicjc′ when364

request i is an input request requires additional constraints. Equations (36) define the value of365

gicjc′ when crane c handling request i is to the left of crane c′ which handles request j. When366

hei < hbj and hei < hbi then gicjc′ = tbibj as in Constraints (21), if hei < hbj and hei > hbi then367

gicjc′ = di−teibj as in Constraints (20), and finally hei > hbj then gicjc′ = di+teibj as in Constraints368

(19).369

gicjc′ =
∑

l∈L:hl<hbj ,hl<hbi

tbibjxil +
∑

l∈L:hl<hbj ,hl>hbi

(di − teibj) xil +
∑

l∈L:hl>hbj

(di + teibj) xil

∀i ∈ RI , j ∈ R,∀c, c′ ∈ C : ηc < ηc′ (36)

Similarly, Equations (37) set the value of gicjc′ for input requests in case crane c handling370

request i is to the right of crane c′ which handles request j.371

15

gicjc′ =
∑

l∈L:hl<hbj

(di + teibj) xil +
∑

l∈L:hl>hbj ,hl<hbi

(di − teibj) xil +
∑

l∈L:hl>hbj ,hl>hbi

tbibjxil

∀i ∈ RI , j ∈ R,∀c, c′ ∈ C : ηc > ηc′ (37)

In case of output requests, as their destinations are given, the value of gicjc′ is obtained in a372

similar way as in FCS . Constraints (38), (39) and (40) are modified based on Constraints (19),373

(20) and (21) respectively to set gicjc′ for request i ∈ RO and request j ∈ R.374

gicjc′ = tbibj ∀i ∈ RO,
{
j ∈ R : hei < hbi , hei < hbj , ∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hbi < hei , hbj < hei , ∀c, c′ ∈ C : ηc > ηc′
(38)

gicjc′ = di − teibj ∀i ∈ RO,
{
j ∈ R : hbi < hei < hbj , ∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hbi > hei > hbj , ∀c, c′ ∈ C : ηc > ηc′
(39)

gicjc′ = di + teibj ∀i ∈ RO,
{
j ∈ R : hei > hbj ,∀c, c′ ∈ C : ηc < ηc′

j ∈ R : hei < hbj ,∀c, c′ ∈ C : ηc > ηc′
(40)

Another set of additional constraints is required due to implied precedence constraints during375

the location assignment. Constraints (41) assert that if an input request is assigned atop another376

input request, the bottom request is placed first. Constraints (42) ensure j is moved after i if it377

has been assigned to i’s origin location.378

nij ≥ xjl + xik − 1 ∀i, j ∈ RI : i 6= j, l ∈ L, k ∈ Ul (41)

nij ≥ xjbi ∀i ∈ R, j ∈ RI (42)

The objective function is a weighted linear combination of the LAP’s objectives (Equation (2))379

and those of the CSP (Equation (31)). The CWSP formulation is given by FCWS :380

FCWS


min. α

∑
i∈RI

∑
l∈L

γilxil +
∑
i∈RI

∑
j∈RI

ωijzij

 + β
∑
i∈R

δi

s.t. (3)− (12), (16)− (18), (22)− (30), (32)− (42)

(43)

The CWSP is a complex problem that generalizes the Sequential Ordering Problem (SOP)381

(Escudero, 1988), which represents a special case of the CWSP scheduling component with a single382

crane and fixed request destinations. Consequently, the CWSP is considered at least as hard as the383

SOP. Given the SOP is known to be NP-hard (Montemanni et al., 2009), by consequence, CWSP384

is an NP-hard problem.385

4. Heuristic approach386

A local search based algorithm is proposed consisting of constructive and improvement phases387

for solving the CWSP. During both phases, an indirect solution representation capable of reducing388

16

the search space is employed (Section 4.1). All the algorithm’s components are explained through-389

out the following sections. The constructive phase (4.2) consists of a greedy constructive heuristic390

inspired by a set of dispatching rules. During the improvement phase (4.3) a Late Acceptance Hill391

Climbing (LAHC) meta-heuristic (Burke and Bykov, 2017) is employed which considers several392

neighbourhood structures (4.4). Figure 8 presents a general overview of the proposed algorithm.393

Start

Define requests’ ordering

Location and crane
assignment

Decode indirect solution

Evaluation

Termination
criterion met?

Pe
rt

ur
b

th
e

cu
rr

en
t

(in
di

re
ct

)
so

lu
tio

n
by

 r
an

do
m

 m
ov

e
fr

om

a
ra

nd
om

 n
ei

gh
bo

rh
oo

d

Decode the best
indirect solution

End

C
on

st
ru

ct
iv

e
ph

as
e

di
sp

at
ch

in
g

ru
le

s
Im

pr
ov

em
en

t
ph

as
e

La
te

 a
cc

ep
ta

nc
e

hi
ll

cl
im

bi
ng

No

Yes

Initial indirect
solution generation

Update current
(indirect) solution

Accept solution
(LAHC criterion)

No

Yes

Figure 8: General overview of the heuristic approach

4.1 Solution representation394

The local search-based algorithm considers an indirect solution representation. Each solution395

is represented by a list L of (request, location, crane)-tuples. The actual schedule is produced by a396

decoder which utilizes both the ordering of requests, the locations and crane assignments included397

in list L.398

The decoder is also employed to evaluate solutions by computing their storage cost and total399

tardiness. Whereas the total tardiness can be obtained by applying Equation (2), computing the400

total tardiness is less straightforward. It requires all requests’ starting times, which determine on401

the requests’ execution order in L in such a way that all conflict-related constraints are satisfied.402

17

The decoder is presented by Algorithm 1. For each tuple (i, ei, c) in L, request i has its starting403

time si initialized as its release time (lines 1-2). If crane c was previously assigned to another404

request, the starting time si is set to be after the execution of the crane’s previous request plus405

the time required for the crane to begin executing request i (lines 3-5). To handle conflicts with406

requests assigned to other cranes, the algorithm loops over the schedule of all other cranes from407

end to beginning (lines 6-8). In case request i conflicts with a request k of crane c′’s schedule, si is408

set to be at least sk + gkc′ic + stcc′ (lines 9-10), where gkc′ic is the waiting time defined in Section 3.409

Once the algorithm finds a conflicting request k in crane c′’s schedule, it is unnecessary to proceed410

checking, as all other requests assigned to c′ are scheduled earlier than k. The algorithm then411

moves on to the next crane, if any remain. Therefore, the decoder will execute only O(|R| × |C|)412

operations in the best case. Since in most applications the number of cranes |C| may be fixed as413

a constant, in the best case the decoder runs in linear time. In the worst case, however, O(|R|2)414

operations may be required by the decoder. After the schedules of all cranes are checked, the415

minimum value for si is calculated and the algorithm includes request i into crane c’s schedule416

(lines 12). Once all starting times are computed, the tardiness can be easily calculated employing417

Equations (27) and (31).418

One of the advantages of the indirect solution representation proposed is that it prevents the419

generation of a class of unattractive solutions which include avoidable idle times between operations.420

Indeed, given that the indirect representation is no more than a sequence, the decoder will produce421

a left-active schedule which is always better than alternative schedules based on this sequence, but422

which include idle times.423

Moreover, the indirect solution is simple to modify, requiring only a few verifications to guaran-424

tee feasibility. Its main disadvantage lies in the additional O(|R|2) operations required for decoding425

and evaluating solutions.426

4.2 Constructive heuristic427

An initial solution is constructed by a greedy algorithm which applies a set of dispatching rules.428

Algorithm 2 details this procedure. A directed acyclic graph is considered where nodes represent429

Algorithm 1: Decoding an indirect solution

Input: Ordered list L of tuples {request, location, crane}
1 foreach tuple (i, ei, c) ∈ L do
2 si ← ri // minimum starting time si is the release time ri

3 if crane c’s schedule is not empty then
4 j ← last request in crane c’s schedule
5 si ← max(si , sj + dj + tejbi) // si must consider when crane c is available at position bi

6 foreach crane c′ ∈ C, c′ 6= c do
7 let schedule S−1 be the reverse of crane c′’s schedule
8 foreach request k ∈ S−1 do
9 if request i conflicts with request k then

10 si ← max(si , sk + gkc′ic + stcc′) // si must also take conflicting moves into account

11 break foreach-loop

12 add request i (ending at location ei) into crane c’s schedule

18

requests and arcs directing from ri to rj indicate precedence constraints (ri must precede rj). In this430

graph, requests are first sorted topologically. By sorting the directed acyclic graph topologically,431

for every directed arc (ri, rj), ri precedes rj in the ordering ensuring that the precedence constraints432

are respected. Requests within the same topological level are sorted by their release times. This433

strategy defines the initial ordering of the requests (line 1). The solution is initialized as an empty434

list (line 2) and, afterwards, two steps are applied for each request (lines 3-6). First, the available435

location which has the lowest storage cost is assigned to input requests (lines 4-5). Note that output436

requests have preassigned locations and therefore do not require such an assignment. In the second437

step, requests are assigned to the nearest available crane (line 6). Both the requests’ starting times438

and the cost of the solution corresponding with L are computed employing the decoder presented439

in Algorithm 1.440

Algorithm 2: Constructive CWSP algorithm

1 R← list of requests sorted topologically and chronologically
2 L ← empty list // or empty ordered set

3 foreach request i ∈ R do
4 if i ∈ RI then // checking whether request i is an input request (these requests require assigning a

location)

5 ei ← the nearest available location to the origin of input request i

6 c← nearest crane to bi // greedy criterion: nearest crane to the origin of request i is selected

7 insert (i, ei, c) to L
8 return list of tuples L

4.3 Late Acceptance Hill Climbing441

The LAHC meta-heuristic represents an extension of the greedy hill-climbing algorithm which442

compares the candidate solution against the solution which was ‘current’ l iterations before. Con-443

sequently, the meta-heuristic permits the acceptance of worsening solutions, thus avoiding local444

optima. This study employs the LAHC meta-heuristic presented in Algorithm 3 which requires445

the following arguments: (i) initial solution s0, (ii) parameter l, (iii) set of neighbourhoods N ,446

(iv) maximum number of iterations without improvement itmax and (v) timeout, which indicates447

the runtime of LAHC.448

The LAHC meta-heuristic maintains a fixed-length list v containing objective function values449

of the solutions visited during the last l iterations. Initially, all v elements are set to the initial450

solution’s objective value, given by f(s0) (line 1). Next, current solution s, best solution s∗ and451

index i are initialized (lines 2-3). At each iteration a new candidate solution s′ is generated by452

applying a randomly generated move from a randomly selected neighbourhood to the current453

solution s (lines 5-6). The candidate solution’s objective value, f(s′), is compared against vi and454

the current solution’s value f(s) (line 7). s′ is accepted (line 12) to replace the current solution455

if its objective value is less than or equal to vi or f(s). If the candidate solution s′ has a better456

objective value than the best solution s∗ generated thus far, it replaces s∗ (lines 13-14). If the457

objective value of s′ is greater than vi or f(s), the number of iterations without improvement, it,458

increments by one (lines 15-16). Finally, vi and i are updated: vi ← f(s) (replacing the oldest459

value), and i is set to point to the next position of list l (lines 17-18). Note that i acts as a cyclic460

19

Algorithm 3: Late acceptance hill climbing algorithm

Input: Initial solution s0, list size l, set of neighbourhoods N , maximum number of
consecutive iterations without improvement itmax, and runtime limit timeout

1 vi ← f(s0) ∀ i ∈ {0, ..., l − 1}
2 s∗ ← s← s0

3 i← it← 0
4 while it < itmax and elapsed time < timeout do
5 Select a random neighbourhood N ∈ N
6 s′ ← random neighbour solution m ∈ N(s)
7 if f(s′) ≤ vi or f(s′) ≤ f(s) then
8 if f(s′) < f(s) then
9 it← 0

10 else
11 it← it+ 1

12 s← s′

13 if f(s′) < f(s∗) then
14 s∗ ← s

15 else
16 it← it+ 1

17 vi ← f(s)
18 i← (i+ 1) mod l

19 return s∗

pointer. This iterative process repeats until the elapsed time reaches timeout or the number of461

iterations without improvement reaches itmax. The latter criterion prevents the heuristic from462

continuing the search in situations whre no more improvements are generated during a long period463

of time. Finally, the best solution obtained is then returned (line 19).464

4.4 Neighbourhood structures465

Ten neighbourhoods were developed to explore the CWSP’s solution space. The neighbour-466

hoods are grouped into two categories: (i) Location assignment and (ii) Crane scheduling neigh-467

bourhoods. All ten neighbourhoods operate over the list of tuples L and therefore modify only the468

indirect solution. Infeasible solutions may be obtained by applying some of these neighbourhood469

operators to a solution. For instance, both assigning a product atop an empty location and ignoring470

the precedence constraints when changing the requests’ order result in infeasibility. Such infeasible471

solutions are discarded during the search.472

The ten neighbourhoods are detailed as follows.473

474

Location assignment neighbourhoods475

– Location Re-assignment (LR): a random input request is selected and its destination location476

is replaced with another randomly selected available location.477

20

– Location Swap (LS): two random input requests are selected and their destination locations478

are swapped.479

– Greedy Location Assignment (GLA): a set of input requests is randomly selected and their480

location assignments are removed. Then, all possible locations are considered and the requests481

are greedily assigned to the lowest-cost location.482

Crane scheduling neighbourhoods483

– Crane Re-assignment (CR): a set of three requests is selected randomly and all crane assign-484

ment combinations are enumerated. The resulting solution is the one with the best quality485

among the enumerated solutions.486

– Order Swap (OS): two requests are randomly selected and their tuples are swapped, changing487

their execution order.488

– Random Insertion (RI): a random tuple is removed and re-inserted into a random position489

in the list.490

– Random Best Insertion (RBI): a request is randomly selected and its tuple is inserted into491

the lowest-cost position within the assigned crane’s schedule. Note that this neighbourhood492

requires O(|R|) operations to identify the lowest-cost position.493

– Nearest Location Assignment (NLA): a set of input requests is randomly selected and their494

location assignments are removed. Then, all possible locations are considered and each495

request is greedily assigned to the location nearest to its origin.496

This neighbourhood is employed as a crane scheduling neighborhood since it reduces the497

duration of requests and, as a consequence, reduces the potential risk of generating conflicting498

requests.499

– Best Order Permutation (BOP): a range of requests in a crane’s schedule is randomly selected;500

their tuples are subsequently removed and the best permutation of the selected tuples, de-501

termined by enumeration, is inserted into the list.502

This neighbourhood has exponential complexity and therefore the range must be limited to503

prevent prohibitive runtimes.504

– Moving Best Order Permutation (MBOP): This neighbourhood begins from the first tuple in505

the list L and executes the BOP move within a range of three tuples. The procedure moves506

forward in L by one tuple and executes the BOP move for next three tuples. It ends after507

|L| − 2 iterations by executing the BOP move for the last three tuples in the list.508

5. Computational study509

This section investigates the impact of integrating the location assignment and crane scheduling510

problems. The performance of both the formulations and heuristic are assessed across different511

scenarios: sequential and integrated.512

The sequential approach, on the one hand, solves two problems. It begins by solving the LAP,513

after which the assignments obtained are fixed when solving the CSP. The integrated approach,514

on the other hand, solves only one large problem: the CWSP.515

21

Table 3: Summary of sequential and integrated approaches

Formulation Objective Function LAHC Neighbourhoods

Sequential approach
FLA Equation (2) LR, LS, GLA
FCS Equation (31) CR, OS, RI, RBI, BOP, MBOP

Integrated approach FCWS Equation (43)
LR, LS, GLA, CR, OS, RI,
RBI, NLA, BOP, MBOP

Table 3 summarizes the formulations, objective functions and neighbourhood structures em-516

ployed by each approach. The sequential approach employs formulations FLA and FCS to solve517

the LAP and CSP, respectively. It also utilizes Equation (2) and location assignment neighbour-518

hoods to address the LAP heuristically. To solve the CSP by LAHC, the sequential approach519

employs Equation (31) and crane scheduling neighbourhoods. Whereas, the integrated approach520

solves formulation FCWS and considers Equation (43) and all the neighbourhoods when employing521

LAHC. Table 3 summarizes the objective functions and neighbourhoods employed in the heuristic522

approaches to both the sequential and integrated problems.523

The remainder of this section is organized as follows. First Section 5.1 presents the set of524

benchmark instances considered throughout the experiments. The comparison of the sequential525

and integrated approaches by employing the MIP formulations is presented in Section 5.2, while526

Section 5.3 presents the results of the sequential and integrated approaches employing the heuristic.527

Finally, Section 5.4 presents a discussion on the weights α and β employed within the objective528

function (see Equation (1)) in addition to an analysis of the instances.529

5.1 Instances530

A set of benchmark instances was generated in correspondance with the data obtained from a531

real-world warehouse. These instances are available online1 to enable transparent comparison of532

the proposed formulations and algorithms. Four characteristics were considered for the instance533

generation:534

Number of requests: the benchmark set includes instances with five levels denoting the535

number of requests: 10, 20, 30, 50 and 70.536

Storage size: the dataset considers three storage sizes. Small size storage areas have 250537

(10 × 25) locations per level. Medium size storage areas have 525 (15 × 35) locations per level538

and large storage areas 1000 (20 × 50) locations per level. A large storage area may have up to539

5000 locations. Based on the data obtained from the real-world problem, a realistic storage area540

contains approximately 3000 locations.541

Maximum stacking level: this limit is imposed for each storage area depending on various542

criteria such as the product type and safety requirements. Three stacking levels are considered:543

one, three and five levels, where one denotes the ground level.544

Storage load: this value is defined as a percentage indicating the initial occupancy level of545

the storage area. Three load factor values are considered: 30%, 50% and 70%.546

1CWSP data instances, solutions & validator to be made publicly available in a data repository after paper
acceptance due to incompatibility with double-blind review process. The data repository is available at a public url
shared with the editor through the title-page.

22

The value of each attribute is reflected in the instance name, which indicates, from left to right:547

(i) number of requests, (ii) storage size, represented by the letters s, m and l signifying small,548

medium and large, respectively, (iii) maximum stacking level, and (iv) storage load. Instance name549

50s 1 30, for example, indicates an instance with 50 requests, a small yard, maximum stacking550

level 1, and storage load equal to 30%.551

Release times were generated according to a Poisson distribution with a fixed “average fre-552

quency” within the scheduling horizon. The scheduling horizon is computed by multiplying “Num-553

ber of requests” by “average frequency”. Due times were calculated as the sum of a request’s554

“release time” and its “time window”, wherein the “time window” was generated according to a555

log-normal distribution.556

The number of yard products is calculated based on the yard size and yard load. For each557

stored product a location in the yard is randomly selected.558

The storage cost of assigning an input request to a neighbouring location of any product is559

generated according to a uniform distribution. The cranes’ travel times are measured by the560

Chebychev distance (the maximum of the lateral and longitudinal distance). It is assumed that561

the lateral and longitudinal speed of the cranes is identical, and thus the travel time may be562

substituted by the Chebychev distance. Table 4 summarizes the parameters of the distributions563

used in the instance generator.

Table 4: Instance generator distributions and parameters

Instance Parameter Distribution Distribution Parameter

Release time Poisson mean = 26.5

Time windows Log normal mean = 0.0666 * storage area’s length
standard deviation = 0.1 * storage area’s width

Stored product location Uniform range = locations in the storage area

Storage cost Uniform range = [0, 50)

564

The cranes are initially lined-up according to the required safety distance. The crane’s travel565

speed is set to one time unit per horizontal coordinate.566

5.2 Comparison of sequential and integrated approaches by MIP formulations567

In the sequential approach, the LAP completely disregards the possible impact of attaining568

good solutions for the CSP. The integrated approach, however, enables a trade-off between the569

LAP and the CSP by setting different values for their corresponding weights α and β in the570

objective function, Equation (1). Two settings are considered: (i) α >> β, making the integrated571

approach put the highest priority to the LAP. This enables determining the benefit of an integrated572

approach over the sequential approach where both primarily focus on optimizing the storage cost.573

(ii) α = β, which considers equal importance for storage cost and delays.574

The mathematical formulations were solved by Gurobi Optimizer 7.5 and run on an Intel R©575

Xeon R© CPU E5-2650 v2 @ 2.6GHz with one hour runtime limit. Table 5 reports the results576

obtained by solving the sequential (FLA+FCS) and integrated (FCWS) formulations. The results of577

unsolved instances (no integer solution found within the runtime limit) are excluded from the table578

for brevity. Location assignment evaluation (ELA), crane scheduling evaluation (ECS) and total579

23

weighted cost (Eτ), both when α = β and α >> β, are compared. Emboldened numbers indicate580

that optimal solutions were obtained. When both the LAP and CSP are solved to optimality only581

Eτ is emboldened.582

Table 5: Computational results obtained by solving the mathematical formulations (considered scenarios:
α = 100000, β = 1 (α >> β) and α = β = 0.50).

Instance

FLA + FCS FCWS (α >> β) FCWS (α = β)

ELA ECS Eτ (α >> β) Eτ (α = β) ELA ECS Eτ ELA ECS Eτ

10s 1 30 0 267.03 2.670E+02 133.51 0 55.13 5.513E+01 1 51.53 26.26
10m 1 30 0 478.41 4.784E+02 239.20 0 37.62 3.762E+01 0 37.62 18.81
10l 1 30 0 515.69 5.157E+02 257.84 0 76.82 7.682E+01 0 76.82 38.41
10s 1 50 0 229.25 2.293E+02 114.63 0 123.93 1.239E+02 11 78.92 44.96
10m 1 50 0 219.18 2.192E+02 109.59 0 56.45 5.645E+01 7 40.07 23.53
10l 1 50 0 447.85 4.479E+02 223.92 0 44.49 4.449E+01 4 32.49 18.24
10s 1 70 132 186.97 1.320E+07 159.49 132 135.97 1.320E+07 156 59.25 107.62
10m 1 70 48 348.86 4.800E+06 198.43 48 449.55 4.800E+06 86 185.92 135.96
10l 1 70 11 271.44 1.100E+06 141.22 11 148.17 1.100E+06 25 73.78 49.39
10s 3 30 13 352.10 1.300E+06 182.55 13 179.72 1.300E+06 49 76.07 62.53
10m 3 30 1 354.66 1.004E+05 177.83 1 107.51 1.001E+05 9 70.37 39.68
10l 3 30 0 295.28 2.953E+02 147.64 0 79.51 7.951E+01 - - -
10s 3 50 53 317.77 5.300E+06 185.39 53 201.77 5.300E+06 64 109.83 86.91
10m 3 50 31 409.77 3.100E+06 220.39 31 332.35 3.100E+06 41 126.77 83.88
10l 3 50 9 454.43 9.005E+05 231.72 9 145.71 9.001E+05 12 85.91 48.95
10s 3 70 130 392.07 1.300E+07 187.73 130 279.13 1.300E+07 190 102.40 146.20
10m 3 70 64 433.66 6.400E+06 248.83 64 492.57 6.400E+06 93 77.90 85.45
10l 3 70 98 441.02 9.800E+06 269.51 98 566.37 9.800E+06 134 118.11 126.05
10s 5 30 18 322.97 1.800E+06 170.48 18 182.53 1.800E+06 35 93.23 64.11
10m 5 30 653 477.18 6.530E+07 565.09 9 275.46 9.002E+05 24 76.36 50.18
10l 5 30 464 457.64 4.640E+07 460.82 6 244.62 6.002E+05 16 206.88 111.44
10s 5 50 66 435.57 6.600E+06 250.79 66 292.55 6.600E+06 - - -
10m 5 50 25 - - - 25 294.46 2.500E+06 42 196.59 119.30
10l 5 50 13 602.07 1.301E+06 307.54 13 159.11 1.300E+06 21 82.93 51.96
10s 5 70 83 247.93 8.300E+06 165.64 83 247.93 8.300E+06 100 91.85 95.92
10m 5 70 59 419.26 5.900E+06 239.13 59 263.06 5.900E+06 75 211.27 143.13
10l 5 70 43 541.38 4.301E+06 292.19 43 418.37 4.300E+06 51 87.02 69.01

20s 1 30 0 1221.04 1.221E+03 610.52 0 160.38 1.603E+02 - - -
20m 1 30 0 1821.80 1.822E+03 910.90 0 225.29 2.252E+02 1 235.90 118.45
20l 1 30 0 2171.42 2.171E+03 1085.71 0 198.40 1.984E+02 0 261.18 130.59
20s 1 50 4 1412.59 4.014E+05 708.30 4 425.09 4.004E+02 - - -
20m 1 50 0 1373.24 1.373E+03 686.21 0 445.37 4.453E+02 9 351.42 180.21
20l 1 50 0 1851.12 1.851E+03 925.56 0 155.85 1.558E+02 8 118.23 63.11
20s 1 70 448 801.34 4.480E+07 624.67 448 692.26 4.480E+07 480 196.16 338.08
20m 1 70 241 2396.80 2.410E+07 1318.90 241 1287.71 2.410E+07 333 640.11 486.55
20l 1 70 77 1210.96 7.701E+06 643.98 77 758.37 7.700E+06 88 337.18 212.59
20s 3 30 54 1328.04 5.401E+06 691.02 - - - - - -
20m 3 30 995 2031.35 9.950E+07 1513.18 15 740.32 1.500E+06 64 676.63 370.31
20l 3 30 648 - - - 0 277.50 2.775E+02 37 417.42 227.21
20s 3 50 168 1434.26 1.680E+07 799.13 - - - - - -
20m 3 50 99 2203.80 9.902E+06 1151.40 - - - 181 366.17 273.58
20l 3 50 1344 1852.22 1.344E+08 1598.11 45 1123.48 4.501E+06 49 578.48 313.74
20s 3 70 423 1552.35 4.230E+07 987.67 424 2902.26 4.240E+07 528 390.82 459.41
20m 3 70 168 1491.69 1.680E+07 829.84 168 1407.24 1.680E+07 - - -
20l 3 70 274 2989.96 2.740E+07 1631.98 - - - - - -
20s 5 30 923 939.96 9.230E+07 931.48 68 1630.26 6.801E+06 - - -
20m 5 30 886 - - - 43 2017.09 4.302E+06 - - -
20s 5 50 1527 1051.42 1.527E+08 1289.21 - - - - - -
20m 5 50 1450 - - - 87 2062.80 8.702E+06 - - -
20s 5 70 330 1499.62 3.300E+07 914.81 - - - - - -
20m 5 70 249 1435.31 2.490E+07 842.15 385 1738.69 3.850E+07 - - -
20l 5 70 129 - - - - - - 158 812.23 485.11

(continued on next page)

24

Table 5: Computational results obtained by solving the mathematical formulations (continued).

Instance

FLA + FCS FCWS (α >> β) FCWS (α = β)

ELA ECS Eτ (α >> β) Eτ (α = β) ELA ECS Eτ ELA ECS Eτ

30s 1 30 0 3495.86 3.496E+03 1747.93 0 668.80 6.688E+02 - - -
30m 1 30 0 4501.77 4.502E+03 2250.88 0 921.33 9.213E+02 - - -
30l 1 30 0 4911.02 4.911E+03 2455.51 0 634.49 6.344E+02 - - -
30s 1 50 98 3299.06 9.803E+06 1698.53 98 1303.66 9.801E+06 210 729.63 469.81
30m 1 50 19 3742.17 1.904E+06 1880.58 19 2616.36 1.902E+06 75 1880.72 977.86
30l 1 50 0 4683.93 4.684E+03 2737.80 0 724.51 7.245E+02 - - -
30s 1 70 934 2416.98 9.340E+07 1675.49 937 2667.16 9.370E+07 - - -
30m 1 70 544 5919.16 5.441E+07 3231.58 554 3078.50 5.540E+07 631 2046.16 1338.58
30l 1 70 249 3310.89 2.490E+07 1779.94 - - - 268 1623.10 945.55
30s 3 30 1585 2858.33 1.585E+08 2221.66 - - - - - -
30s 3 50 330 3643.15 3.300E+07 1986.57 - - - - - -
30s 3 70 821 3058.59 8.210E+07 1939.79 840 3613.93 8.400E+07 - - -
30m 3 70 371 3394.37 3.710E+07 1882.68 - - - - - -
30l 3 70 2589 - - - - - - 684 9339.08 5019.04
30s 5 70 756 4492.94 7.560E+07 2624.47 - - - - - -

50s 1 30 0 16686.92 1.669E+04 8343.46 - - - - - -
50m 1 30 0 17645.35 1.765E+04 8822.67 0 8264.20 8.264E+03 - - -
50s 1 50 401 12290.55 4.011E+07 6345.77 - - - - - -
50m 1 50 250 13869.28 2.501E+07 7059.64 - - - - - -
50l 1 50 11 15907.70 1.116E+06 7959.35 - - - 146 9867.24 5006.62
50s 1 70 1743 11544.01 1.743E+08 6643.50 1772 6898.15 1.772E+08 2370 4006.59 3188.29
50m 1 70 1017 19637.64 1.017E+08 10327.32 - - - - - -
50l 1 70 599 20988.08 5.992E+07 10793.54 - - - - - -
50s 3 70 3904 12233.50 3.904E+08 8068.75 - - - - - -

70s 1 30 67 19600.96 6.720E+06 9833.98 - - - - - -
70s 1 50 1436 20060.26 1.436E+08 10748.13 - - - - - -
70s 1 70 3225 16797.21 3.225E+08 10011.10 - - - - - -
70m 1 70 2023 29211.91 2.023E+08 15617.45 - - - - - -
70l 1 70 1332 41511.74 1.332E+08 21421.87 - - - - - -

The results indicate that the sequential approach yields better LAP solutions for only five583

instances, 20m 5 70, 30s 1 70, 30m 1 70, 30s 3 70 and 50s 1 70. This can be explained by the584

observation that in these two cases, none of the alternative approaches finds an optimal solution.585

For the remaining instances, the value of ELA obtained by FCWS(α >> β) is better than or586

equal to the value of ELA obtained by FLA + FCS , while FCWS(α >> β) always finds a better587

crane scheduling solution. However, FCWS(α >> β) was only able to find feasible solutions for588

two large instances (number of requests greater than 50). FCWS(α >> β) may change location589

assignments and is therefore able to find better crane scheduling while still achieving the same590

quality of location assignments. This shows how by integrating the LAP and the CSP, better591

location assignments and crane schedules are achievable. Generating better crane schedules by592

FCWS(α >> β) may require compromises with respect to computational runtimes. The results593

show that FCWS(α >> β) tends to take more time to achieve optima for small instances. However594

for larger instances both approaches take the entire runtime.595

When α is equal to β, it is evident that the ELA values obtained by FLA+FCS and FCWS(α >>596

β) are lower than those obtained by FCWS(α = β). However, Eτ is significantly lower in FCWS(α =597

β) than in FLA + FCS(α = β). Although FCWS(α >> β) is capable of finding good crane598

schedules while achieving high quality location assignments, the ECS obtained by FCWS(α = β)599

is lower. There are only two instances, 20l 3 30 and 20l 1 30, where FCWS(α >> β) achieved600

both better location assignments and crane scheduling within the available runtime. For the601

remaining instances, FCS(α = β) compromises as regards location assignment to achieve better602

25

crane schedules. The number of instances solved to optimality decreases as the number of requests603

grows.604

The detailed table of results including the optimality gap and computation time (cpu) of both605

approaches is presented in the Appendix (Table A.8).606

5.3 Comparison of sequential and integrated approaches by the proposed heuristics607

The heuristic was implemented in C++11. All experiments were executed for maximum 300608

seconds or maximum 10,000 consecutive iterations without improvement for all 135 instances. The609

heuristic’s parameters were tuned using the irace R-package which implements the iterated racing610

procedure for automatic algorithm configuration (López-Ibáñez et al., 2016) with a budget of 4,000611

runs. The purpose of irace is to automate the task of configuring an optimization algorithm’s612

parameters. It generates and tests a sample of parameter configurations for a given optimization613

algorithm on a set of instances. When sufficient statistical evidence is collected (by means of a614

Friedman test) that a certain parameter configuration is outperformed by others, it is discarded so615

as to focus on the remaining configurations. The best-performing configurations are reported.616

Table 6 summarizes the parameters by their role, type, range and tuned values for both ap-617

proaches (sequential and integrated).618

Table 6: Tuning parameters by irace package

Parameter Role Type Range
irace results

integrated sequential

lcws
Size of the late acceptance list for CWSP LAHC

number of requests
integer (10, 250) 56 -

llap
Size of the late acceptance list for LAP LAHC

number of requests
integer (10, 250) - 174

lcsp
Size of the late acceptance list for CSP LAHC

number of requests
integer (10, 250) - 104

plr Weight of using LR neighbourhood real (0.0, 1.0) 0.47 0.13
pls Weight of using LS neighbourhood real (0.0, 1.0) 0.18 0.07
pgla Weight of using GLA neighbourhood real (0.0, 1.0) 0.40 0.87
pcr Weight of using CR neighbourhood real (0.0, 1.0) 0.18 0.59
pos Weight of using OS neighbourhood real (0.0, 1.0) 0.34 0.36
pri Weight of using RI neighbourhood real (0.0, 1.0) 0.08 0.22
prbi Weight of using RBI neighbourhood real (0.0, 1.0) 0.47 0.64
pnla Weight of using NLA neighbourhood real (0.0, 1.0) 0.70 -
pbop Weight of using BOP neighbourhood real (0.0, 1.0) 0.52 0.38
pmbo Weight of using MBOP neighbourhood real (0.0, 1.0) 0.07 0.18

Table 7 reports the results of the three heuristics when the values of α and β are equal to 0.5619

(α = β = 0.5). The location assignment evaluation (ELA), crane scheduling evaluation (ECS) and620

total cost (Eτ) obtained by the three heuristics are compared. The heuristic was run five times621

with different random seeds, and the average of these results is reported. The improvement of622

the integrated and sequential heuristics over the constructive heuristic (G), the upper bound (UB)623

defined as the best feasible solution obtained by either the sequential or integrated formulation,624

and the relative optimality gap (gap) and the computational times (cpu) are reported. The opti-625

mality gap is measured by comparing Eτ obtained by the integrated heuristic and the lower bound626

generated by the mathematical formulations. The gaps may be relatively large as the lower bounds627

26

are weak due to employing large numbers (ML and MT) in the mathematical formulations. When628

FCWS(α = β) was unable to find a lower bound due to an out-of-memory error, OOM is reported.629

Emboldened numbers indicate that optimum solutions were obtained.630

The results show how the integrated heuristics find high quality solutions and are even able to631

find optimum solutions for the instances with ten requests and stacking level equal to one, in a632

short amount of time. There are only two instances 10s 1 70 and 10m 1 70 where the integrated633

heuristic was unable to find the optimum solution. Nevertheless, the optimality gaps are only 1.1%634

and 4.8%, respectively. There are instances for which the sequential heuristic finds better solutions635

than the optimum obtained by FLA + FCS . The explanation for these interesting results lies in636

how the sequential heuristic finds location assignments which enable better crane scheduling.637

27

Table 7: Computational results of Constructive, Sequential and Integrated heuristics (α = β = 0.5)

Instance

Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

10s 1 30 0 108.0 54.0 0 59.9 30.0 3.7 44.5 1 51.5 26.3 4.9 51.4 0.0 26.3 26.3
10m 1 30 0 234.1 117.1 0 37.6 18.8 6.1 83.9 0 37.6 18.8 3.5 83.9 0.0 18.8 18.8
10l 1 30 0 384.0 192.0 0 79.8 39.9 10.5 79.2 0 76.8 38.4 6.5 80.0 0.0 38.4 38.4
10s 1 50 0 235.8 117.9 0 137.9 69.0 4.2 41.5 11 79.0 45.0 9.2 61.8 0.0 45.0 45.0
10m 1 50 0 366.8 183.4 0 96.3 48.1 7.7 73.8 7 40.1 23.5 7.8 87.2 0.0 23.5 23.5
10l 1 50 0 350.4 175.2 0 45.4 22.7 13.0 87.0 1 35.5 18.2 8.1 89.6 0.0 18.2 18.2
10s 1 70 180 767.9 474.0 132 158.4 145.2 4.4 69.4 150 67.7 108.8 4.8 77.0 1.1 107.6 107.6
10m 1 70 48 1031.6 539.8 48 405.8 226.9 9.1 58.0 86 199.8 142.9 10.2 73.5 4.8 136.0 136.0
10l 1 70 11 843.8 427.4 11 166.1 88.5 14.9 79.3 25 73.8 49.4 29.3 88.4 0.0 49.4 49.4
10s 3 30 13 324.8 168.9 13 230.8 121.9 9.0 27.8 50 86.1 68.0 13.4 59.7 40.8 62.5 40.3
10m 3 30 1 400.8 200.9 1 185.9 93.5 17.8 53.5 6 76.4 41.2 24.8 79.5 81.1 39.7 7.8
10l 3 30 0 700.8 350.4 0 98.5 49.3 32.2 85.9 3 60.3 31.7 22.1 91.0 78.2 147.6 6.9
10s 3 50 58 538.0 298.0 53 275.2 164.1 11.1 44.9 60 111.5 85.8 12.9 71.2 48.8 86.9 43.9
10m 3 50 68 686.9 377.4 31 333.3 182.2 24.8 51.7 42 90.6 66.3 54.1 82.4 75.6 83.9 16.2
10l 3 50 9 1181.3 595.2 9 258.0 133.5 48.4 77.6 12 85.9 49.0 82.9 91.8 0.0 49.0 49.0
10s 3 70 150 1309.0 729.5 130 304.4 217.2 12.0 70.2 168 117.4 142.7 8.1 80.4 36.9 146.2 90.0
10m 3 70 64 1210.5 637.2 64 273.8 168.9 25.5 73.5 79 104.8 91.9 69.0 85.6 26.3 85.5 67.7
10l 3 70 106 697.3 401.7 98 321.4 209.7 57.2 47.8 115 112.8 113.9 102.3 71.6 50.4 126.1 56.5
10s 5 30 18 509.4 263.7 18 201.5 109.8 36.6 58.4 47 84.7 65.9 25.9 75.0 67.2 64.1 21.6
10m 5 30 9 972.4 490.7 9 372.8 190.9 32.2 61.1 29 66.8 47.9 47.2 90.2 77.5 50.2 10.8
10l 5 30 6 988.0 497.0 6 417.5 211.7 85.0 57.4 18 95.1 56.6 137.1 88.6 70.6 111.4 16.6
10s 5 50 66 717.0 391.5 66 341.7 203.8 23.1 47.9 71 123.9 97.5 22.4 75.1 56.6 250.8 42.3
10m 5 50 91 619.3 355.1 26 405.8 215.9 51.3 39.2 59 149.6 104.3 80.7 70.6 85.0 119.3 15.6
10l 5 50 51 517.4 284.2 13 199.3 106.1 59.8 62.7 19 85.1 52.1 105.1 81.7 56.2 52.0 22.8
10s 5 70 89 374.7 231.9 83 272.6 177.8 18.1 23.3 100 91.9 95.9 12.9 58.6 32.3 95.9 64.9
10m 5 70 84 1009.5 546.7 59 427.5 243.2 41.2 55.5 75 183.2 129.1 120.3 76.4 76.6 143.1 30.2
10l 5 70 44 1426.0 735.0 44 354.8 199.4 85.6 72.9 49 98.2 73.6 82.7 90.0 33.7 69.0 48.8

20s 1 30 0 358.9 179.4 0 190.5 95.2 14.8 46.9 18 134.7 76.4 42.2 57.4 62.8 610.5 28.4
20m 1 30 0 854.5 427.2 0 243.9 122.0 25.3 71.5 10 200.4 105.2 38.8 75.4 83.0 118.5 17.9
20l 1 30 0 2741.4 1370.7 0 205.4 102.7 51.5 92.5 0 195.2 97.6 269.5 92.9 67.5 130.6 31.7
20s 1 50 4 1652.1 828.1 4 539.1 271.5 21.8 67.2 44 198.5 121.3 54.8 85.4 71.0 708.3 35.2
20m 1 50 0 1556.1 778.1 0 467.9 233.9 32.0 69.9 28 263.9 146.0 74.2 81.2 88.2 180.2 17.2
20l 1 50 0 904.6 452.3 0 185.7 92.9 45.4 79.5 4 134.9 69.4 113.3 84.7 94.2 63.1 4.0
20s 1 70 550 2862.2 1706.1 448 629.7 538.8 24.3 68.4 485 186.1 335.6 37.8 80.3 29.5 338.1 236.6
20m 1 70 258 4543.9 2401.0 242 1188.2 715.1 38.6 70.2 380 402.6 391.3 47.8 83.7 62.4 486.6 147.1
20l 1 70 77 3110.3 1593.6 77 726.1 401.5 63.3 74.8 91 241.1 166.1 113.6 89.6 61.0 212.6 64.7
20s 3 30 100 2680.3 1390.1 54 902.8 478.4 30.1 65.6 133 163.8 148.4 104.3 89.3 79.7 691.0 30.1
20m 3 30 15 2364.1 1189.6 15 826.4 420.7 89.4 64.6 99 273.0 186.0 159.1 84.4 89.9 370.3 18.7
20l 3 30 0 2033.1 1016.6 0 307.8 153.9 98.8 84.9 35 148.0 91.5 168.2 91.0 92.0 227.2 7.3
20s 3 50 225 1467.3 846.1 139 603.1 371.0 36.1 56.2 174 313.4 243.7 89.4 71.2 75.9 799.1 58.8
20m 3 50 130 3485.8 1807.9 97 1162.3 629.6 78.0 65.2 193 257.8 225.4 197.9 87.5 86.4 273.6 30.7
20l 3 50 45 4481.3 2263.1 45 839.2 442.1 161.9 80.5 90 151.2 120.6 300.0 94.7 74.9 313.7 30.3
20s 3 70 543 5436.3 2989.6 438 1000.6 719.3 106.4 75.9 493 210.1 351.5 102.2 88.2 42.3 459.4 202.8

(continued on next page)

28

Table 7: Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance

Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

20m 3 70 197 4097.8 2147.4 170 1308.0 739.0 104.8 65.6 210 361.5 285.7 163.6 86.7 72.5 829.8 78.5
20l 3 70 307 3384.8 1845.9 275 1637.5 956.2 160.0 48.2 335 250.5 292.7 300.0 84.1 65.2 1632.0 101.8
20s 5 30 80 2458.7 1269.4 73 865.1 469.0 48.6 63.0 127 273.4 200.2 99.6 84.2 88.0 931.5 24.0
20m 5 30 37 2977.7 1507.3 37 1041.4 539.2 163.6 64.2 130 260.8 195.4 129.8 87.0 90.0 - 19.5
20l 5 30 30 3035.3 1532.6 30 850.9 440.5 212.7 71.3 80 317.1 198.5 299.6 87.0 - - OOM
20s 5 50 210 2552.3 1381.1 194 895.0 544.5 71.2 60.6 213 266.6 239.8 133.0 82.6 79.8 1289.2 48.4
20m 5 50 192 2472.6 1332.3 83 1078.2 580.6 210.9 56.4 298 355.1 326.5 300.0 75.5 - - OOM
20l 5 50 146 2917.4 1531.7 68 953.2 510.6 201.2 66.7 81 287.6 184.3 300.0 88.0 - - OOM
20s 5 70 390 3077.3 1733.6 321 933.3 627.1 79.1 63.8 465 282.9 373.9 156.4 78.4 73.0 914.8 100.8
20m 5 70 350 4295.8 2322.9 252 1521.8 886.9 156.2 61.8 321 496.2 408.6 283.6 82.4 85.2 842.2 60.6
20l 5 70 130 5138.0 2634.0 123 1035.4 579.2 176.2 78.0 224 334.3 279.1 300.0 89.4 81.5 485.1 51.7

30s 1 30 0 1777.2 888.6 0 447.0 223.5 53.0 74.8 35 283.2 159.1 126.8 82.1 - 1747.9 19.7
30m 1 30 0 2025.8 1012.9 0 630.3 315.2 49.1 68.9 41 407.0 224.0 115.0 77.9 - 2250.9 26.8
30l 1 30 0 6808.6 3404.3 0 348.5 174.3 115.5 94.9 0 337.3 168.6 178.8 95.0 - 2455.5 24.2
30s 1 50 113 4217.1 2165.0 104 1353.9 729.0 63.1 66.3 140 458.9 299.4 114.4 86.2 - 469.8 67.2
30m 1 50 52 4486.5 2269.2 19 2011.0 1015.0 232.2 55.3 137 492.1 314.5 244.1 86.1 - 977.9 21.6
30l 1 50 7 2601.7 1304.3 0 1459.3 729.6 273.2 44.1 9 280.8 144.9 268.9 88.9 - 2737.8 13.9
30s 1 70 1121 6534.2 3827.6 934 1450.6 1192.3 59.5 68.8 1034 345.9 689.9 109.7 82.0 - 1675.5 43.8
30m 1 70 616 9826.3 5221.1 548 2912.2 1730.1 153.2 66.9 777 628.3 702.7 246.5 86.5 58.1 1338.6 294.2
30l 1 70 287 7409.5 3848.2 249 1572.4 910.7 119.3 76.3 260 390.4 325.2 300.0 91.5 57.5 945.6 138.1
30s 3 30 173 5440.2 2806.6 132 1642.9 887.4 115.0 68.4 217 345.6 281.3 300.0 90.0 - 2221.7 37.0
30m 3 30 59 5332.9 2695.9 59 2237.0 1148.0 161.4 57.4 275 464.0 369.5 300.0 86.3 - - OOM
30l 3 30 35 3494.1 1764.5 12 1387.4 699.7 300.0 60.3 66 257.7 161.9 300.0 90.8 - - OOM
30s 3 50 414 4759.2 2586.6 320 1649.5 984.7 96.5 61.9 419 506.4 462.7 300.0 82.1 - 1986.6 OOM
30m 3 50 234 8504.2 4369.1 199 2816.5 1507.7 186.2 65.5 470 412.1 441.1 300.0 89.9 - - OOM
30l 3 50 115 9105.0 4610.0 112 2358.9 1235.5 186.0 73.2 206 509.7 357.9 300.0 92.2 - - OOM
30s 3 70 1080 11147.2 6113.6 918 2047.8 1482.9 172.0 75.7 913 439.3 676.2 271.5 88.9 55.5 1939.8 301.1
30m 3 70 408 10669.2 5538.6 364 2798.3 1581.1 163.7 71.5 602 721.7 661.9 300.0 88.0 80.2 1882.7 130.8
30l 3 70 630 11675.3 6152.7 529 3183.8 1856.4 293.6 69.8 939 543.4 741.2 300.0 88.0 - 5019.0 97.4
30s 5 30 193 5631.7 2912.3 160 1857.8 1008.9 169.6 65.4 249 561.0 405.0 176.3 86.1 - - OOM
30m 5 30 92 8734.2 4413.1 92 2129.0 1110.5 249.6 74.8 248 600.1 424.1 300.0 90.4 - - OOM
30l 5 30 61 6883.5 3472.3 61 1496.6 778.8 300.0 77.6 282 642.0 462.0 300.0 86.7 - - OOM
30s 5 50 391 7790.2 4090.6 349 2462.8 1405.9 125.9 65.6 531 408.8 469.9 300.0 88.5 - - 61.0
30m 5 50 275 6811.0 3543.0 166 2745.7 1455.9 252.7 58.9 665 669.1 667.0 300.0 81.2 - - OOM
30l 5 50 246 10671.6 5458.8 162 2531.2 1346.6 300.0 75.3 566 601.5 583.8 300.0 89.3 - - OOM
30s 5 70 925 8077.2 4501.1 626 2258.4 1442.2 181.2 68.0 796 758.7 777.4 300.0 82.7 79.6 2624.5 158.7
30m 5 70 679 8864.2 4771.6 537 3187.9 1862.5 212.3 61.0 1152 914.8 1033.4 300.0 78.3 - - OOM
30l 5 70 262 10267.7 5264.8 252 2852.5 1552.3 223.7 70.5 722 715.0 718.5 300.0 86.4 - - OOM

50s 1 30 0 8471.2 4235.6 0 2143.5 1071.8 203.5 74.7 119 1139.1 629.0 226.7 85.1 89.4 8343.5 66.5
50m 1 30 0 9120.2 4560.1 0 2177.5 1088.8 199.3 76.1 139 1470.3 804.6 281.0 82.4 93.0 8822.7 56.7
50l 1 30 0 23604.5 11802.2 0 1661.7 830.8 225.1 93.0 4 1536.6 770.3 219.7 93.5 - - OOM
50s 1 50 582 16480.0 8531.0 381 4641.6 2511.3 211.6 70.6 612 1190.7 901.4 257.3 89.4 77.9 6345.8 198.9

(continued on next page)

29

Table 7: Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance

Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

50m 1 50 161 15745.8 7953.4 113 6542.7 3327.9 202.5 58.2 632 1854.1 1243.0 300.0 84.4 93.3 7059.6 83.0
50l 1 50 39 14297.6 7168.3 12 6846.5 3429.3 300.0 52.2 151 1253.0 702.0 300.0 90.2 92.7 5006.6 51.1
50s 1 70 2128 16748.6 9438.3 1739 4143.1 2941.0 300.0 68.8 1993 1059.3 1526.2 239.6 83.8 47.8 3188.3 796.8
50m 1 70 1092 28900.6 14996.3 1001 7380.2 4190.6 300.0 72.1 1747 1608.0 1677.5 286.0 88.8 69.4 10327.3 513.7
50l 1 70 677 25874.3 13275.7 587 7885.2 4236.1 300.0 68.1 1044 1152.0 1098.0 300.0 91.7 71.7 10793.5 311.1
50s 3 30 402 15748.2 8075.1 294 5025.6 2659.8 300.0 67.1 608 1131.4 869.7 300.0 89.2 - - OOM
50m 3 30 196 20272.9 10234.5 148 7168.1 3658.0 300.0 64.3 861 1522.7 1191.8 300.0 88.4 - - OOM
50l 3 30 131 18198.4 9164.7 54 10340.5 5197.3 300.0 43.3 962 1361.9 1161.9 300.0 87.3 - - OOM
50s 3 50 858 18143.2 9500.6 667 5016.4 2841.7 218.8 70.1 1237 1272.3 1254.7 300.0 86.8 89.4 - 133.4
50m 3 50 531 26273.5 13402.3 446 9864.5 5155.3 300.0 61.5 1804 1166.2 1485.1 300.0 88.9 - - OOM
50l 3 50 286 30411.5 15348.8 264 10482.6 5373.3 300.0 65.0 1785 1604.1 1694.6 300.0 89.0 - - OOM
50s 3 70 2236 22187.2 12211.6 1920 6035.7 3977.8 300.0 67.4 2314 1067.4 1690.7 300.0 86.2 66.6 8068.8 564.4
50m 3 70 1072 25060.5 13066.3 870 9320.0 5095.0 300.0 61.0 2608 1606.4 2107.2 300.0 83.9 - - OOM
50l 3 70 1289 41972.4 21630.7 1106 13399.3 7252.7 300.0 66.5 3839 2053.0 2946.0 300.0 86.4 - - OOM
50s 5 30 617 17668.2 9142.6 515 5204.4 2859.7 300.0 68.7 1190 1405.5 1297.7 300.0 85.8 - - OOM
50m 5 30 346 36127.5 18236.8 346 9294.6 4820.3 300.0 73.6 1881 1872.6 1876.8 300.0 89.7 - - OOM
50l 5 30 162 25689.1 12925.5 124 10134.2 5129.1 300.0 60.3 1904 1982.9 1943.4 300.0 85.0 - - OOM
50s 5 50 1319 19176.2 10247.6 1291 8511.1 4901.0 300.0 52.2 3012 1679.5 2345.7 300.0 77.1 - - OOM
50m 5 50 543 24680.5 12611.8 417 9208.6 4812.8 300.0 61.8 2722 2023.6 2372.8 300.0 81.2 - - OOM
50l 5 50 469 37730.4 19099.7 349 13127.9 6738.5 300.0 64.7 2327 2723.1 2525.0 300.0 86.8 - - OOM
50s 5 70 2129 21907.9 12018.5 1689 7782.4 4735.7 300.0 60.6 3485 1736.3 2610.6 300.0 78.3 - - OOM
50m 5 70 1803 29442.5 15622.8 1584 13188.9 7386.5 300.0 52.7 4126 4085.9 4105.9 300.0 73.7 - - OOM
50l 5 70 683 35730.4 18206.7 639 16705.5 8672.2 300.0 52.4 4363 3092.1 3727.5 300.0 79.5 - - OOM

70s 1 30 159 21129.6 10644.3 59 9551.3 4805.1 300.0 54.9 855 2178.6 1516.8 300.0 85.8 94.7 9834.0 80.5
70m 1 30 0 20434.8 10217.4 0 4781.7 2390.8 300.0 76.6 493 2921.1 1707.0 300.0 83.3 - - OOM
70l 1 30 0 40968.3 20484.2 0 4610.7 2305.4 300.0 88.7 299 2930.8 1614.9 300.0 92.1 - - OOM
70s 1 50 1618 36220.8 18919.4 1122 10137.3 5629.7 300.0 70.2 2174 2275.6 2224.8 300.0 88.2 79.9 10748.1 447.7
70m 1 50 527 35398.5 17962.7 421 14808.9 7614.9 300.0 57.6 2503 3011.1 2757.0 300.0 84.7 93.3 - 185.9
70l 1 50 277 40254.4 20265.7 119 19999.4 10059.2 300.0 50.4 1565 2625.1 2095.1 300.0 89.7 - - OOM
70s 1 70 3854 34408.4 19131.2 3126 9247.3 6186.6 300.0 67.7 3727 2134.4 2930.7 300.0 84.7 53.4 10011.1 1366.7
70m 1 70 2222 56536.3 29379.1 1917 17887.0 9902.0 300.0 66.3 3786 3344.4 3565.2 300.0 87.9 74.8 15617.5 898.4
70l 1 70 1339 58128.2 29733.6 1216 19929.1 10572.6 300.0 64.4 3041 2238.2 2639.6 300.0 91.1 78.2 21421.9 575.7
70s 3 30 925 30533.0 15729.0 692 12187.0 6439.5 300.0 59.1 2229 1611.1 1920.1 300.0 87.8 - - OOM
70m 3 30 485 46373.1 23429.1 485 15703.6 8094.3 300.0 65.5 2383 2675.3 2529.1 300.0 89.2 - - OOM
70l 3 30 263 38437.7 19350.3 175 26446.0 13310.5 300.0 31.2 2363 4207.5 3285.2 300.0 83.0 - - OOM
70s 3 50 1653 40538.0 21095.5 1220 12007.4 6613.7 300.0 68.6 2837 1971.9 2404.4 300.0 88.6 - - OOM
70m 3 50 4039 52832.0 28435.5 973 16526.0 8749.5 300.0 69.2 4608 2439.0 3523.5 300.0 87.6 - - OOM
70l 3 50 656 64629.5 32642.8 561 26877.7 13719.4 300.0 58.0 4183 3868.6 4025.8 300.0 87.7 - - OOM
70s 3 70 994 47335.1 24164.6 3387 13763.5 8575.2 300.0 64.5 4277 7306.6 5791.8 300.0 76.0 - - OOM
70m 3 70 2098 53474.1 27786.1 1780 21424.2 11602.1 300.0 58.2 4947 3678.0 4312.5 300.0 84.5 - - OOM
70l 3 70 2080 69566.2 35823.1 1898 32793.6 17345.8 300.0 51.6 5844 6006.1 5925.0 300.0 83.5 - - OOM
70s 5 30 1189 34016.0 17602.5 1173 11377.2 6275.1 300.0 64.4 3019 2394.4 2706.7 300.0 84.6 - - OOM

(continued on next page)

30

Table 7: Computational results of Dispatching rules, Sequential and Integrated heuristics (continued)

Instance

Dispatching rules Sequential Integrated Best MIP bounds

ELA ECS Eτ ELA ECS Eτ cpu G% ELA ECS Eτ cpu G% gap UB LB

70m 5 30 624 73034.1 36829.1 623 18676.8 9649.9 300.0 73.8 4391 3693.4 4042.2 300.0 89.0 - - OOM
70l 5 30 414 65472.1 32943.0 414 23484.7 11949.3 300.0 63.7 3336 5458.1 4397.0 300.0 86.7 - - OOM
70s 5 50 2189 41795.0 21992.0 2255 13117.9 7686.4 300.0 65.0 4696 3542.3 4119.2 300.0 81.3 - - OOM
70m 5 50 850 53458.1 27154.1 850 17077.1 8963.5 300.0 67.0 5336 4445.2 4890.6 300.0 82.0 - - OOM
70l 5 50 739 58429.7 29584.4 739 19174.3 9956.7 300.0 66.3 5270 5840.9 5555.4 300.0 81.2 - - OOM
70s 5 70 3404 40241.7 21822.9 2946 16937.8 9941.9 300.0 54.4 5891 2974.5 4432.7 300.0 79.7 - - OOM
70m 5 70 2901 62528.1 32714.6 2655 25866.7 14260.8 300.0 56.4 7327 8793.2 8060.1 300.0 75.4 - - OOM
70l 5 70 1332 72718.7 37025.4 1190 31762.4 16476.2 300.0 55.5 6893 7988.2 7440.6 300.0 79.9 - - OOM

31

Figure 9 illustrates how the integrated heuristic may improve over the constructive heuristic.638

The instances are grouped by their number of requests and storage sizes. The horizontal axis639

represents the instance categories while the vertical axis corresponds to the improvement over640

constructive heuristics. The results are averaged over each category and demonstrate that the641

improvement over the constructive heuristic is, on average, 84% over all instances. Given that the642

constructive heuristic reflects common operational dispatching rules, the potential performance643

increase is large.

Im
pr

ov
em

en
t

ov
er

 C
on

st
ru

ct
iv

e
he

ur
ist

ic
 %

0

9

18

27

36

45

54

63

72

81

90

Instances
10s 10m 10l 20s 20m 20l 30s 30m 30l 50s 50m 50l 70s 70m 70l

Figure 9: Comparison of the constructive and integrated heuristic’s performance

644

5.4 Weight parameters and instance analysis645

Section 5.2 already briefly touched on the impact of the weight parameters α and β. In this646

section, the effect of adjusting these weight parameters is further investigated. Both a small647

(10s 1 70) and large (50m 1 50) instance were selected to illustrate the weight parameters’ effect.648

Figure 10 presents the impact of adjusting α and β for both the small (Figure 10(a), solved by FLA+649

FCS and FCWS), and the large instance (Figure 10(b)), solved by the sequential and integrated650

heuristic. The figure illustrates the LAP (ELA), CSP (ECS) and weighted objective function (Eτ)651

values obtained by the integrated approach as well as the Eτ obtained by the sequential approach.652

The weight parameters in the sequential approach do not impact upon the optimization process653

as the two sub-problems are solved separately. Sequential ELA and ECS are constant for all values654

of α and β. Therefore Eτ (α, β) is a linear function.655

As illustrated for
β

α
= 0:

integrated Eτ = sequential Eτ = integrated ELA = sequential ELA

By increasing
β

α
, the integrated ELA increases while the integrated ECS decreases. Interestingly656

the integrated Eτ is always lower than the sequential Eτ and by increasing
β

α
the gap between the657

integrated and sequential Eτ increases.658

32

0

50

100

150

200

250

300

350

β/α
0 0.10 0.25 0.40 0.66 1 1.50 2 4 10

Integrated Integrated
Integrated Sequential

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1∞

(a) Instance 10s 1 70 solved by the mathematical formulation

0

1500

3000

4500

6000

7500

9000

10500

β/α

0 0.10 0.25 0.50 0.66 1 1.50 2 4 10

Integrated Integrated
Integrated Sequential

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1

x̃b�p < x̃b+p
< x̃b�q , c < c0

x̃b�q < x̃b+p
< x̃b�p , c0 < c

sq � sp + tb�p b+p
� tb+p b�q + |c� c0|st

x̃b+p
< x̃b�q , x̃b+p

< x̃b�p , c < c0

x̃b+p
> x̃b�q , x̃b+p

> x̃b�p , c > c0

sq � sp + tb�p b�q + |c� c0|st

sq � sp + dp � tb+p b�q + |c� c0|st

request p

request q

FLA

FAWS

FCS

↵
r1 r2 r3 rn

ELA ECS E⌧

1∞

(b) Instance 50m 1 50 solved by the heuristic

Figure 10: Impact of the weight parameters’ ratio.

Figure 11 demonstrates how different attributes of instances may impact the improvement of659

the sequential and integrated heuristic over the constructive heuristic. Figure 11(a) represents660

the average Eτ obtained by the constructive, sequential and integrated heuristic with respect to661

the stacking level. By increasing the maximum stacking level, the relative improvement over the662

solution obtained by the constructive heuristic decreases. By increasing the storage size from small663

to large (Figure 11(b)), the sequential and integrated heuristics improve the initial solution from664

61% to 68% and from 80% to 87% respectively. Figure 11(d), meanwhile, illustrates how the load665

factor does not significantly influence the algorithms’ improvement over the initial solution.666

33

0

5,000

10,000

15,000

20,000

1 3 5

To
ta

l W
eig

ht
ed

 O
bj

ec
tiv

e

(a) Averaged cost over stacking level

0

5,000

10,000

15,000

20,000

Small Medium Large

To
ta

l W
eig

ht
ed

 O
bj

ec
tiv

e

(b) Averaged cost over storage size

0

12,000

24,000

36,000

48,000

10 20 30 50 70

To
ta

l W
eig

ht
ed

 O
be

jc
tiv

e

(c) Averaged cost over number of requests

0

5,000

10,000

15,000

20,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 O
bj

ec
tiv

e

(d) Averaged cost over load factor

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential HCLA LAP Sequential HCLA CSP
Integrated HCLA LAP Integrated HCLA CSP

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential HCLA LAP Sequential HCLA CSP
Integrated HCLA LAP Integrated HCLA CSP

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential Heuristic LAP Sequential Heuristic CSP
Integrated Heuristic LAP Integrated Heuristic CSP

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential Heuristic LAP Sequential Heuristic CSP
Integrated Heuristic LAP Integrated Heuristic CSP

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential Heuristic LAP Sequential Heuristic CSP
Integrated Heuristic LAP Integrated Heuristic CSP

0

3,500

7,000

10,500

14,000

0.30 0.50 0.70

To
ta

l W
eig

ht
ed

 C
os

t

Constructive Heuristic LAP Constructive Heuristic CSP
Sequential Heuristic LAP Sequential Heuristic CSP
Integrated Heuristic LAP Integrated Heuristic CSP

Figure 11: Instance attributes analysis by the constructive, sequential and integrated heuristic when α = β.

6. Conclusion667

This paper investigated the impact of integrating a location assignment problem (LAP) and668

a crane scheduling problem (CSP) in crane-operated warehouses by introducing the integrated669

Crane-operated Warehouse Scheduling Problem (CWSP). The CWSP assigns a storage location to670

input requests, assigns a crane to execute each request and decides how the set of requests must be671

sequenced per crane in such a way that the total storage cost and tardiness is minimized. Mixed672

Integer Programming (MIP) formulations for the LAP and CSP were presented in addition to a673

continuous-time MIP formulation which integrates both the LAP and CSP. This model considers674

realistic crane interactions in the storage area where cranes cannot pass each other and must keep675

a safety distance. Furthermore, a meta-heuristic based on Late Acceptance Hill Climbing (LAHC)676

was developed to overcome the limited scaling ability of solving the mathematical formulations677

by MIP solvers. In addition, 135 instances with various problem specifications were generated to678

enable validation and encourage future research.679

A comprehensive computational study revealed how integrating the LAP and the CSP may lead680

to 48% improvement for the CSP while keeping the same level of quality for the LAP solutions.681

Subsequently, the results showed that by integrating the LAP and CSP into one problem, there682

is a significant reduction in the total weighted objective of 62%. Furthermore, the benefit of the683

34

integrated heuristic over the MIP formulation was shown, where better solutions for both medium684

and large size instances were obtained compared to solving the MIP formulation on the respective685

instances. Additionally, a simulation of a real-world automated warehouse shows a significant686

potential for minimizing the storage cost and tardiness of the requests, when comparing the new687

procedures with typical dispatching rules.688

In conclusion, integrating location assignment and crane scheduling coordinates the resources689

in automated warehouses or container terminals more effectively and eventually leads to efficiently690

storing the products or containers in the storage areas as well as minimizing the tardiness of the691

input and output requests.692

Several interesting avenues exist to build upon this study in future research. Further solution693

approaches may be considered and investigated. Particularly, exact solution approaches would be694

a valuable contribution which may include proposing efficient lower bounding methods. Due to the695

nature of operations in automated warehouses, other research directions may focus on exploring696

the development of robust scheduling models which consider uncertain requests’ arrival times.697

Appendix A. Detailed computational results698

Table A.8 presents detailed computational results obtained by the mathematical formulations.699

gapla% (location assignment gap) and gapcs% (crane scheduling gap) indicate the gap obtained by700

FLA and FCS , respectively, when solving the problem sequentially. gap% denotes the gap obtained701

by FAWS .702

35

Table A.8: Detailed computational results obtained by mathematical formulations

Ins.

FLA + FCS FCWS (α >> β) FCWS (α = β)

ELA ECS Eτ (α >> β) Eτ (α = β) gapla% gapcs% cpu ELA ECS Eτ gap% cpu ELA ECS Eτ gap% cpu

10s 1 30 0 267.03 2.670E+02 133.51 0.00 0.00 107.28 0 55.13 5.513E+01 0.00 49.79 1 51.53 26.26 0.00 170.92
10m 1 30 0 478.41 4.784E+02 239.20 0.00 0.00 604.05 0 37.62 3.762E+01 0.00 60.78 0 37.62 18.81 0.00 513.46
10l 1 30 0 515.69 5.157E+02 257.84 0.00 0.00 302.12 0 76.82 7.682E+01 0.00 195.32 0 76.82 38.41 0.00 2044.59
10s 1 50 0 229.25 2.293E+02 114.63 0.00 0.00 67.69 0 123.93 1.239E+02 0.00 311.87 11 78.92 44.96 0.00 1009.35
10m 1 50 0 219.18 2.192E+02 109.59 0.00 0.00 360.00 0 56.45 5.645E+01 0.00 91.66 7 40.07 23.53 0.00 475.39
10l 1 50 0 447.85 4.479E+02 223.92 0.00 0.00 164.24 0 44.49 4.449E+01 0.00 97.42 4 32.49 18.24 0.00 187.29
10s 1 70 132 186.97 1.320E+07 159.49 0.00 0.00 115.83 132 135.97 1.320E+07 0.00 11.06 156 59.25 107.62 0.00 1227.04
10m 1 70 48 348.86 4.800E+06 198.43 0.00 0.00 121.24 48 449.55 4.800E+06 0.00 11.09 86 185.92 135.96 0.00 3290.77
10l 1 70 11 271.44 1.100E+06 141.22 0.00 0.00 155.79 11 148.17 1.100E+06 0.00 27.31 25 73.78 49.39 0.00 613.51
10s 3 30 13 352.10 1.300E+06 182.55 0.00 0.00 442.41 13 179.72 1.300E+06 0.00 119.08 49 76.07 62.53 35.51 3600.00
10m 3 30 1 354.66 1.004E+05 177.83 0.00 0.00 1254.72 1 107.51 1.001E+05 0.00 3600.00 9 70.37 39.68 80.35 3600.00
10l 3 30 0 295.28 2.953E+02 147.64 0.00 0.00 746.32 0 79.51 7.951E+01 0.00 2387.71 - - - - 3600.00
10s 3 50 53 317.77 5.300E+06 185.39 0.00 0.00 879.75 53 201.77 5.300E+06 0.00 3535.55 64 109.83 86.91 49.46 3600.00
10m 3 50 31 409.77 3.100E+06 220.39 0.00 0.00 911.50 31 332.35 3.100E+06 0.00 303.92 41 126.77 83.88 80.67 3600.00
10l 3 50 9 454.43 9.005E+05 231.72 0.00 0.00 1056.12 9 145.71 9.001E+05 0.00 467.58 12 85.91 48.95 0.00 2366.16
10s 3 70 130 392.07 1.300E+07 187.73 0.00 0.00 187.72 130 279.13 1.300E+07 0.00 217.53 190 102.40 146.20 38.42 3600.00
10m 3 70 64 433.66 6.400E+06 248.83 0.00 0.00 212.35 64 492.57 6.400E+06 0.00 92.46 93 77.90 85.45 20.80 3600.00
10l 3 70 98 441.02 9.800E+06 269.51 0.00 0.00 574.97 98 566.37 9.800E+06 0.00 502.12 134 118.11 126.05 55.16 3600.00
10s 5 30 18 322.97 1.800E+06 170.48 0.00 0.00 2714.13 18 182.53 1.800E+06 0.00 3600.00 35 93.23 64.11 66.30 3600.00
10m 5 30 653 477.18 6.530E+07 565.09 100.00 0.00 3224.10 9 275.46 9.002E+05 0.01 3600.00 24 76.36 50.18 78.51 3600.00
10l 5 30 464 457.64 4.640E+07 460.82 100.00 0.00 2845.26 6 244.62 6.002E+05 0.00 3600.00 16 206.88 111.44 85.09 3600.00
10s 5 50 66 435.57 6.600E+06 250.79 0.00 0.00 2300.19 66 292.55 6.600E+06 6.82 3600.00 - - - - 3600.00
10m 5 50 25 - - - 0.00 - 3600.00 25 294.46 2.500E+06 42.16 3600.00 42 196.59 119.30 86.90 3600.00
10l 5 50 13 602.07 1.301E+06 307.54 0.00 0.00 2306.55 13 159.11 1.300E+06 0.00 3391.92 21 82.93 51.96 56.24 3600.00
10s 5 70 83 247.93 8.300E+06 165.64 0.00 0.00 197.83 83 247.93 8.300E+06 0.00 176.25 100 91.85 95.92 32.34 3600.00
10m 5 70 59 419.26 5.900E+06 239.13 0.00 0.00 1313.89 59 263.06 5.900E+06 0.00 3600.00 75 211.27 143.13 78.93 3600.00
10l 5 70 43 541.38 4.301E+06 292.19 0.00 0.00 1755.06 43 418.37 4.300E+06 0.00 1223.19 51 87.02 69.01 29.27 3600.00

20s 1 30 0 1221.04 1.221E+03 610.52 0.00 0.00 1970.28 0 160.38 1.603E+02 35.40 3600.00 - - - - 3600.00
20m 1 30 0 1821.80 1.822E+03 910.90 0.00 0.00 2098.25 0 225.29 2.252E+02 37.60 3600.00 1 235.90 118.45 84.91 3600.00
20l 1 30 0 2171.42 2.171E+03 1085.71 0.00 0.00 2425.32 0 198.40 1.984E+02 0.00 3420.09 0 261.18 130.59 75.71 3600.00
20s 1 50 4 1412.59 4.014E+05 708.30 0.00 0.00 1898.00 4 425.09 4.004E+02 0.09 3600.00 - - - - 3600.00
20m 1 50 0 1373.24 1.373E+03 686.21 0.00 0.00 1967.59 0 445.37 4.453E+02 85.75 3600.00 9 351.42 180.21 90.47 3600.00
20l 1 50 0 1851.12 1.851E+03 925.56 0.00 0.00 2205.82 0 155.85 1.558E+02 0.00 3600.00 8 118.23 63.11 93.63 3600.00
20s 1 70 448 801.34 4.480E+07 624.67 0.00 0.00 2062.93 448 692.26 4.480E+07 0.00 2151.22 480 196.16 338.08 30.03 3600.00
20m 1 70 241 2396.80 2.410E+07 1318.90 0.00 0.00 1948.97 241 1287.71 2.410E+07 0.00 1295.57 333 640.11 486.55 69.77 3600.00
20l 1 70 77 1210.96 7.701E+06 643.98 0.00 0.00 2020.08 77 758.37 7.700E+06 0.00 358.51 88 337.18 212.59 69.57 3600.00
20s 3 30 54 1328.04 5.401E+06 691.02 77.77 80.41 3600.00 - - - - 3600.00 - - - - 3600.00
20m 3 30 995 2031.35 9.950E+07 1513.18 100.00 60.03 3600.00 15 740.32 1.500E+06 0.04 3600.00 64 676.63 370.31 94.94 3600.00
20l 3 30 648 - - - 100.00 - 3600.00 0 277.50 2.775E+02 47.91 3600.00 37 417.42 227.21 96.77 3600.00
20s 3 50 168 1434.26 1.680E+07 799.13 58.53 73.01 3600.00 - - - - 3600.00 - - - - 3600.00
20m 3 50 99 2203.80 9.902E+06 1151.40 82.82 87.74 3600.00 - - - - 3600.00 181 366.17 273.58 88.77 3600.00
20l 3 50 1344 1852.22 1.344E+08 1598.11 99.62 49.66 3600.00 45 1123.48 4.501E+06 66.67 3600.00 49 578.48 313.74 90.35 3600.00

(continued on next page)

36

Table A.8: Detailed computational results obtained by mathematical formulations (continued)

Ins.

FLA + FCS FCWS (α >> β) FCWS (α = β)

ELA ECS Eτ (α >> β) Eτ (α = β) gapla% gapcs% cpu ELA ECS Eτ gap% cpu ELA ECS Eτ gap% cpu

20s 3 70 423 1552.35 4.230E+07 987.67 14.42 59.01 3600.00 424 2902.26 4.240E+07 14.62 3600.00 528 390.82 459.41 55.85 3600.00
20m 3 70 168 1491.69 1.680E+07 829.84 0.00 76.80 3600.00 168 1407.24 1.680E+07 11.31 3600.00 - - - - 3600.00
20l 3 70 274 2989.96 2.740E+07 1631.98 44.16 81.51 3600.00 - - - - 3600.00 - - - - 3600.00
20s 5 30 923 939.96 9.230E+07 931.48 99.89 42.39 3600.00 68 1630.26 6.801E+06 95.45 3600.00 - - - - 3600.00
20m 5 30 886 - - - 100.00 - 3600.00 43 2017.09 4.302E+06 98.66 3600.00 - - - - 3600.00
20s 5 50 1527 1051.42 1.527E+08 1289.21 99.21 34.04 3600.00 - - - - 3600.00 - - - - 3600.00
20m 5 50 1450 - - - 99.72 - 3600.00 87 2062.80 8.702E+06 88.24 3600.00 - - - - 3600.00
20s 5 70 330 1499.62 3.300E+07 914.81 59.09 70.46 3600.00 - - - - 3600.00 - - - - 3600.00
20m 5 70 249 1435.31 2.490E+07 842.15 83.93 76.39 3600.00 385 1738.69 3.850E+07 78.95 3600.00 - - - - 3600.00
20l 5 70 129 - - - 82.17 - 3600.00 - - - - 3600.00 158 812.23 485.11 89.34 3600.00

30s 1 30 0 3495.86 3.496E+03 1747.93 0.00 0.00 2214.11 0 668.80 6.688E+02 91.89 3600.00 - - - - 3600.00
30m 1 30 0 4501.77 4.502E+03 2250.88 0.00 0.00 2554.77 0 921.33 9.213E+02 90.25 3600.00 - - - - 3600.00
30l 1 30 0 4911.02 4.911E+03 2455.51 0.00 94.73 3600.00 0 634.49 6.344E+02 80.19 3600.00 - - - - 3600.00
30s 1 50 98 3299.06 9.803E+06 1698.53 0.00 0.00 3401.45 98 1303.66 9.801E+06 11.74 3600.00 210 729.63 469.81 85.70 3600.00
30m 1 50 19 3742.17 1.904E+06 1880.58 100.00 95.28 3600.00 19 2616.36 1.902E+06 99.99 3600.00 75 1880.72 977.86 97.79 3600.00
30l 1 50 0 4683.93 4.684E+03 2737.80 0.00 0.00 2737.80 0 724.51 7.245E+02 94.12 3600.00 - - - - 3600.00
30s 1 70 934 2416.98 9.340E+07 1675.49 10.38 66.61 3600.00 937 2667.16 9.370E+07 11.20 3600.00 - - - - 3600.00
30m 1 70 544 5919.16 5.441E+07 3231.58 8.63 87.56 3600.00 554 3078.50 5.540E+07 10.29 3600.00 631 2046.16 1338.58 78.02 3600.00
30l 1 70 249 3310.89 2.490E+07 1779.94 0.00 0.00 2641.01 - - - - 3600.00 268 1623.10 945.55 85.39 3600.00
30s 3 30 1585 2858.33 1.585E+08 2221.66 99.74 59.80 3600.00 - - - - 3600.00 - - - - 3600.00
30s 3 50 330 3643.15 3.300E+07 1986.57 70.00 84.45 3600.00 - - - - 3600.00 - - - - 3600.00
30s 3 70 821 3058.59 8.210E+07 1939.79 18.27 69.32 3600.00 840 3613.93 8.400E+07 19.35 3600.00 - - - - 3600.00
30m 3 70 371 3394.37 3.710E+07 1882.68 39.35 84.73 3600.00 - - - - 3600.00 - - - - 3600.00
30l 3 70 2589 - - - 97.29 - 3600.00 - - - - 3600.00 684 9339.08 5019.04 98.06 3600.00
30s 5 70 756 4492.94 7.560E+07 2624.47 85.58 80.18 3600.00 - - - - 3600.00 - - - - 3600.00

50s 1 30 0 16686.92 1.669E+04 8343.46 0.00 0.00 2892.64 - - - - 3600.00 - - - - 3600.00
50m 1 30 0 17645.35 1.765E+04 8822.67 0.00 97.98 3600.00 0 8264.20 8.264E+03 98.38 3600.00 - - - - 3600.00
50s 1 50 401 12290.55 4.011E+07 6345.77 34.41 93.74 3600.00 - - - - 3600.00 - - - - 3600.00
50m 1 50 250 13869.28 2.501E+07 7059.64 84.40 95.04 3600.00 - - - - 3600.00 - - - - 3600.00
50l 1 50 11 15907.70 1.116E+06 7959.35 90.90 97.80 3600.00 - - - - 3600.00 146 9867.24 5006.62 98.98 3600.00
50s 1 70 1743 11544.01 1.743E+08 6643.50 16.40 83.19 3600.00 1772 6898.15 1.772E+08 17.77 3600.00 2370 4006.59 3188.29 75.01 3600.00
50m 1 70 1017 19637.64 1.017E+08 10327.32 14.06 92.16 3600.00 - - - - 3600.00 - - - - 3600.00
50l 1 70 599 20988.08 5.992E+07 10793.54 12.18 95.38 3600.00 - - - - 3600.00 - - - - 3600.00
50s 3 70 3904 12233.50 3.904E+08 8068.75 78.32 72.48 3600.00 - - - - 3600.00 - - - - 3600.00

70s 1 30 67 19600.96 6.720E+06 9833.98 100.00 96.20 3600.00 - - - - 3600.00 - - - - 3600.00
70s 1 50 1436 20060.26 1.436E+08 10748.13 48.11 90.22 3600.00 - - - - 3600.00 - - - - 3600.00
70s 1 70 3225 16797.21 3.225E+08 10011.10 18.63 80.97 3600.00 - - - - 3600.00 - - - - 3600.00
70m 1 70 2023 29211.91 2.023E+08 15617.45 19.37 90.92 3600.00 - - - - 3600.00 - - - - 3600.00
70l 1 70 1332 41511.74 1.332E+08 21421.87 20.79 95.56 3600.00 - - - - 3600.00 - - - - 3600.00

37

References703

Boysen, N., Emde, S., 2016. The parallel stack loading problem to minimize blockages. European Journal of704

Operational Research 249, 618–627.705

Boysen, N., Stephan, K., 2016. A survey on single crane scheduling in automated storage/retrieval systems. European706

Journal of Operational Research 254, 691–704.707

Burke, E.K., Bykov, Y., 2017. The late acceptance hill-climbing heuristic. European Journal of Operational Research708

258, 70–78.709

Chen, L., Lu, Z., 2012. The storage location assignment problem for outbound containers in a maritime terminal.710

International Journal of Production Economics 135, 73–80.711

Darvish, M., Coelho, L.C., 2018. Sequential versus integrated optimization: Production, location, inventory control,712

and distribution. European Journal of Operational Research 268, 203 – 214.713

Dorndorf, U., Schneider, F., 2010. Scheduling automated triple cross-over stacking cranes in a container yard. OR714

Spectrum 32, 617–632.715

Escudero, L., 1988. An inexact algorithm for the sequential ordering problem. European Journal of Operational716

Research 37, 236–249.717

Gharehgozli, A.H., Laporte, G., Yu, Y., de Koster, R., 2015. Scheduling Twin Yard Cranes in a Container Block.718

Transportation Science 49, 686–705.719

Gharehgozli, A.H., Vernooij, F.G., Zaerpour, N., 2017. A simulation study of the performance of twin automated720

stacking cranes at a seaport container terminal. European Journal of Operational Research 261, 108–128.721

Gharehgozli, A.H., Yu, Y., de Koster, R., Udding, J.T., 2014. A decision-tree stacking heuristic minimising the722

expected number of reshuffles at a container terminal. International Journal of Production Research 52, 2592–723

2611.724

Jovanovic, R., Voß, S., 2014. A chain heuristic for the blocks relocation problem. Computers & Industrial Engineering725

75, 79–86.726

Ku, D., Arthanari, T.S., 2016. On the abstraction method for the container relocation problem. Computers &727

Operations Research 68, 110–122.728

Li, W., Goh, M., Wu, Y., Petering, M., de Souza, R., Wu, Y., 2012. A continuous time model for multiple yard729

crane scheduling with last minute job arrivals. International Journal of Production Economics 136, 332–343.730

Li, W., Wu, Y., Petering, M., Goh, M., Souza, R.D., 2009. Discrete time model and algorithms for container yard731

crane scheduling. European Journal of Operational Research 198, 165–172.732

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The irace package: Iterated733

racing for automatic algorithm configuration. Operations Research Perspectives 3, 43–58.734

Montemanni, R., Smith, D., Rizzoli, A., Gambardella, L., 2009. Sequential ordering problems for crane scheduling in735

port terminals. International Journal of Simulation and Process Modelling 5, 348–361. doi:10.1504/IJSPM.2009.736

032597.737

Park, T., Choe, R., Hun Kim, Y., Ryel Ryu, K., 2011. Dynamic adjustment of container stacking policy in an738

automated container terminal. International Journal of Production Economics 133, 385–392.739

Wu, Y., Li, W., Petering, M.E.H., Goh, M., de Souza, R., 2015. Scheduling multiple yard cranes with crane740

interference and safety distance requirement. Transportation Science 49, 990–1005.741

Zhang, C., Wu, T., Zhong, M., Zheng, L., Miao, L., 2014. Location assignment for outbound containers with adjusted742

weight proportion. Computers & Operations Research 52, 84–93.743

38

http://dx.doi.org/10.1504/IJSPM.2009.032597
http://dx.doi.org/10.1504/IJSPM.2009.032597
http://dx.doi.org/10.1504/IJSPM.2009.032597

	Introduction
	Problem definition
	Mathematical formulation
	Location assignment problem
	Crane scheduling problem
	Integrated formulation for crane-operated warehouse scheduling problems

	Heuristic approach
	Solution representation
	Constructive heuristic
	Late Acceptance Hill Climbing
	Neighbourhood structures

	Computational study
	Instances
	Comparison of sequential and integrated approaches by MIP formulations
	Comparison of sequential and integrated approaches by the proposed heuristics
	Weight parameters and instance analysis

	Conclusion
	Detailed computational results

