ADDING REDUNDANCY TO OBTAIN MORE RELIABLE AND
MORE READABLE PROLOG PROGRAMS

by M. Bruynooghe

Report CW 27, June 1982

Departement Computerwetenschappen
KATHOLIEKE UNIVERSITEIT LEUVEN

To appear in the Proceedings of the First International Logic
Programming Conference.

Adding redundancy to obtain more reliable and
more readable Prolog programs.

Maurice Bruynooghe
Departement Computerwetenschappen

K.U.Leuven
keywords : Prolog logic programming
data flow type checking software engineering

Abstract

Prolog programs are very error-prone, small typografical errors
do not result in compile time errors but in programs with dif-
ferent unintended meanings. The paper contains a proposal to
improve the situation. It suggests to add redundant information
about the flow of data through clauses and about the possible
values of arguments and gives a method to analyse the consistency
between this additional information and the +text of the prolog
clauses.

1. Motivation

Prolog is considered as a very high level language by its fol-
lowers due to its expressive power, its declarative reading, its
ease of creating and manipulating data structures, ... 11 We
could say that the language has a high level contents or seman-
tics. However, its form or syntax is rather low level compared to
the current practice in high level languages. Prolog programs are
very error-prone. ©Small syntactical deviations, i.e. spelling
errors in names of variables, procedures or functors, not enough
or to much arguments for a predicate or functor, ... are unlikely
to produce compile-time errors. They simply result in a different
undesired computation. It is a frustrating task +to debug such
programs. The quality of the resulting programs can be doubtfull
due to the lack of thoroughly testing.

The reason is the complete lack of redundancy in the programs :
procedure definitions are not introduced by a declaration defining
the number, the type and the call mechanism of their parameters;
variables are not declared and typeless (see common errors in
[1]). This has also an attractive size, it reduces the clerical
work of writing programs and entering them on a terminal. How-
ever, the disadvantage seems greater, it is below the current
standards of software engineering and creates resistance in
novice-users with prior programming experience.

i S

This paper describes an attempt to improve the situation by
requiring more information from the user. Due to the experimental
nature of our approach, the idea is to add formal comments to the
programs. A normal prolog interpreter can simply discard this
comments. However, the comments are playing a double role :

1) They can increase the readability of the program.

2) A special program can verify whether the formal comments are
consistent with the actual program text.

When writing a Prolog procedure, or reading our own procedures,
we have a number of things in our mind :

- Although procedures can be called with any input-output pat-
tern, we have only one or a few patterns in our mind. Using
the procedure with other patterns is potentially dangerous.
Such a call can have an infinite set of solutions, can result
in very inefficient computations, or can result in unintended
erroneous results due +to a difference between the procedural
and declarative semantics.

- We associate a set of meaningfull values (a 'type') with each
argument in a procedure definition.

- We associate a set of meaningfull values (a 'type') withh each
variable. In fact, variables are used inside arguments, their
meaningfull values can be derived from those of the arguments.

Usually, people do not take the time to write this information
as comments in their programs. This makes programs rather unread-
able for everyone except their author.

We have made an attempt to formalize the above information and
to develop a method to verify the consistency between the formal-
ized comments and the actual programtext.

To be acceptable, our approach should not cause an explosion of
the program size. Declaring all variables of each clause causes
such an explosion. We have abolished it, we attempt to derive the
types of the variables from the types of the arguments. Our for-
malized comments consists thus of

~ type declarations.

- a declaration for each procedure stating the number and types
of the arguments and the intended patterns of the calls.

— D

2. DPossible call patterns

While reading a prolog clause procedurally, we simulate its
execution. For each call, we ponder how the arguments looks like,
i.e. which (parts) are known before execution and what is the
effect on the arguments of executing the call, i.e. which (parts)
are known after execution. In fact, we are looking how data flows
through the clause.

An example

Quicksort (E.list,sort) {-- Partition (E’liSt’}lJlg)’
Quicksort (11,s1), Quicksort (12,s2),
Append (Elj§}§g,sort)

Quicksort is a procedure to sort lists, given a complete list as
first argument, it should compute its second argument completely
(the sorted list). To simulate its execution we start with Parti-
tion. This call has access to two completely known arguments X
and list. Execution of the call will result in the complete com-
putation of 11 and 12. This means that both recursive calls to
Quicksort know their first argument. Thus they will compute their
second arguments, s1 and 82. As a result, the call to Append has
access to two complete arguments and will compute its third argu-
ment, sort, completely. This is exactly the desired result for
Quicksort.

To formalize this validation of the data flow through Quick-
sort, it suffices to associate a pattern with each procedure, i.e.
(i,0) with Quicksort, (i,i,0,0) with Partition and (i,i,0) with
Append. In such a pattern i (input) means that the argument is
completely instantiated before execution and o {output) that the
argument is not known before execution but becomes completely
instantiated by the execution of the call.

A typografical error, i.e. changing an occurrence of 11 in 1,
will destroy this dataflow, it will be impossible to conclude that
Quicksort computes its second argument.

Some procedures are general purpose, Append, for example, can
also be wused to split a list in different parts, to subtract two
lists,... . Thus we can associate different patterns with the
same procedure e.g. (i,i,0), (0,0,i), (i,0,i),... with Append.

Also, an argument can be incomplete before and after execution
of a call. For example, to behave efficiently, it suffices that
Append knows its first argument. We have to introduce an annota-
tion nio standing for ‘'mneither input nor output' and we can
declare a pattern (i,nio,nio) for Append.

It is reasonable to state that the dinput part of a pattern
uniquely determines the remainder of the pattern. Either an argu-
ment is computed (o) or it is not (nio). Thus, the choice of a
matching pattern is deterministic. However, the availability of

——F -

different patterns can obscure the effect of typografical errors.
One of the other patterns can match an erroneous call. But,
because different patterns create different output, it is unlikely
that the output of +the clause, as derived from a data flow
analysis is in agreement with what has been declared in the pat-
tern of the call.

Although our simple annotations i,0 and nio can cover a large
amount of simple Prolog procedures, they are clearly insufficient
to cover everything. In fact, Prolog is so flexibel, it is possi-
ble that a call consumes a complete component of an incomplete
argument or produces a partially complete argument or ... that it
is wunclear to us how to design a simple compact annotation to
cover all possible uses. In the above example of Quicksort, it is
possible to switch +the 1last +two calls. We can execute Append
before s2 is known. This results in an incomplete sort. The call
to Quicksort will fill the hole in sort. However, our dataflow
analysis will fail to notice this and will not validate the pro-
cedure. A%t the end of the paper, we discuss an extension which is
able to cover such a frequently occurring situation.

The algorithm to validate the dataflow through a clause for a
given input-output pattern is quite simple. The data flow enters
the clause in the input arguments (i) of the heading. All vari-
ables occurring in such a term are completely instantiated. Then
we handle the calls from left to right. We have to 1look for a
matching dinput-output pattern. Arguments with all variables com-
pletely instantiated have to match i, the others either o or nio.
All variables occurring in an output argument (o) become com-
pletely instantiated and we process the next call. Once all calls
are handled, we have to validate the output part of the heading.
All variables occurring in an output (o) argument have %o be com-
pletely instantiated; a nio argument has to contain at least one
incomplete variable.

3. Types

In the previous section, we have introduced input-output pat-
terns to enhance the readability of programs and to perform some
validation. This section discusses another aspect contributing to
the same goal : the association of sets of meaningfull values
(' types') with the arguments of predicates and with the variables.

To avoid confusion and errors, it is usefull %o clasify atomic
objects into several separated types, especially in database
oriented applications. For example, we can distinguish Dbetween
students, courses and rooms. This improves the readability of
clauses and can be used to detect errors in calls like the switch-
ing of two arguments. In such cases, the use of types will create
an incompatibility between the actual types in the call and the
formal +types in the heading, e.g. using a room where a course is
expected and a course where a room is expected.

— 4 -

It is also possible to introduce a type which is a subset of
another type, e.g. a type person with subtypes student, man and
woman. To judge the usefulness of this, we have to look what hap-
pens with calls involving such types. We have two important cases

- The formal parameter (e.g. person) is more general than +the
actual parameter (e.g. student). Because a student is also a
person, this is completely legal.

- The actual parameter (e.g. person) is more general +than the
formal parameter (e.g. student). 1In Prolog, there is no reason
to state this as an error, it only means that the procedure
will fail in some cases, e.g. for the persons which are not
students, but will succeed in other cases.

We can only recognize an error when the procedure will always
fails, thus when the types of the actual and formal parameters are
disjoint. Thus, for validation purposes, the only important ques-
tion, is whether two types are disjoint or not. In favor of sub-
types is their contribution to readability of program. Their
disadvantage is the complexity of their handling : it is lengthy
to describe which types are disjoint and which are not. Moreover,
it is unclear how they can contribute to the validation process.
We have decided to consider all types as disjoint.

Atomic types can be defined by a set of values e.g. :
Atomic Color = red,blue,yellow]
Month = [1..12] (integers in the interval 1 to 12)
Room = [...
"...' means an undefined range of values.

Besides atomic objects, we also need structured objects like
lists, trees,... . Actually, we would like to distinguish between
lists of rooms, lists of courses, lists of trees of students,... .
Because all kinds of 1lists have the same global structure, it
would be very inconvenient to define each kind of list separately.
For this purpose, we have introduced typeschemas.

An example

List (any) = [nil] | . (any,List (any)).

This is a typeschema for lists. It has one parameter any. To
obtain the definition of a particular type of lists, we replace
the parameter any by that type. For example

List (Tree (student)) = [nilﬁ | . (Tree (Student),List (Tree (Stu-
dent))).

The righthandside hase one component (between square brackets)
giving the atomic objects belonging to the type. The remainder
consists of alternative rules to obtain elements of the types.
Each rule consists of a n-ary functor followed by n types. To
facilitate the derivation of the types of +the components (vari-
ables) from the type of a term, we require that all functors in a
type schema are different.

Schemas are also very useful to declare general purpose pro-
cedures. A procedure like Append can be used to concatenate any

- b -

kind of lists. We declare append with the following schema :
Append (List (any), List (any), List (any))

A particular instance is obtained by replacing the parameter by a
particular type, e.g.

Append (List(Room),List(Room),List(Room));

which expresses that appending two lists of rooms results in a
list of rooms. However, other oprocedures are less general, a
sorting procedure does not work for all lists but for example only
for lists with atomic elements. We found it convenient to clasify
atomic types in three classes :

Int : all elements are integers.

String : none of the elements are integers.

Atom : some elements are integers, others are not. (Int, String
and Atom are never used as types, they are type-classes). Now we
can express that a parameter is restricted to the subtypes of one
of these classes, e.g. any-Atom, any-Int,... and we can declare :
Sort (List(any-Atom),List(any-Atom)) or

Sorttrees (List(Tree(any-Atom)),List(Tree(any-Atom))).

A particular instance is obtained by replacing the parameter by a
subtype of Atom.

In general, a schema can require more than one parameter, +to
distinguish between them, we can use a set of prefixes like anyl,
any2,ec.. .

We can recognize different parts in the validation of the +type
information about a clause :

- verification that we cannot derive two disjoint types for the
same variable.

- verification that the types of the actual and formal parameters
in a call are not disjoint.

- given the types of the input arguments of a clause, verifica-
tion +that the +types of the results, as obtained by executing
the calls in the body are in agreement with the declared types
of the output arguments. This makes it necessary to perform
the validation for each input output pattern.

The use of declaration schemas poses special problems to the
validation :

1. The clause being validated has a declaration schema. In fact,
the clause has to be validated for each instance which will
ever be used. We restrict ourselves to validation of the
clause for a random instance replacing the parameter by a com-
pletely new type (with the appropriate subtype restriction).

2. A call has a declaration schema : it is necessary to select
the appropriate instance using the available information about
the actual parameters.

To discuss the validation more in detail, we give an example.

The relevant facts to validate the types in a Quicksort clause

SRR

are:

Structure List(any) = [nil]{.(any,List(any)) g

Decl Quicksort(List(any-Atom),List(any-Atom)), use (i,o0) .

Quicksort(nil,nil) <--

Quicksort(.(x,list),sort) <-- Partition(x,1ist,11,12),
Quicksort(11,sT), Quicksort(12,s2), o o
Append(s1,.(x,s2),s0rt).

Decl Partition(any-Atom,List(any-Atom),

List(any-Atom),List(any-Atom) .

Decl Append(List(any),List(any),List(any)).

Because Quicksort has a declaration schema, with ~ parameter
any-Atom, we introduce a new type A which is a subtype of Atom and
we have to show that, given a first argument of type List(A),

Quicksort succeeds and its second argument obtains the type
List(a).

We start with the input part of the heading. (For this valida-
tion, we also consider nio arguments as input). We have to com-
pare the argument with the type. In case of Quicksort we have the
term .(x,1ist) as input. By consulting the type definition of
List(A), we obtain A and List(A) for the type of the components.
We conclude with x having type A and list having type List(A).

Next we handle the calls from left to right. To handle a call,
we have +to distinguish between calls having a normal declaration
and those having a declaration schema. With normal declaration,
the treatment is simple compare the argument with the type.
Arriving at a variable with undefined type, we assign the type to
the variable. Finding an already typed variable, we verify that
the type of the variable is not disjoint (thus equal) with the
type of the argument. Confronted with a constant we look whether
the constant has the desired type.

Example : compare
.(John.(x,1)) with x of type Student and 1 of undefined type
with Listzbtudent). The result is : a meségge stating that John
should be of type Student, the confirmation of x having type
Student and the.assignment of type List(Student) to 1.

Having a call with a declaration schema, we have to select an
instance of the schema. This is obtained by comparing the type-
information of the actual arguments with the schema. This results
in assignments of types to the parameters. Taking the call to
Partition in Quicksort we compare X having type A with any-Atom.
We assign type A to any-Atom (after verifying that A is a subtype
of Atom). Comparing list of type List(A) with List(any-Atom)
results in comparing type A with the rarameter which already has a
type. We verify that both types are equal. The variables in the
other arguments do not have a type and we conclude that our
instance is derived by replacing any-Atom with A. Having elim-
inated +the schema, we compare the arguments with the type. In
case of Partition this results in a type List(A) for 11 and Il
In general, it is possible that a parameter has not received a
type. In such a case, we introduce a completely new type with the

——

proper subtype restriction (see next example).

The treatment of the other calls of Quicksort is similar. The
instances of +the Quicksort declaration are obtained by replacing
any-Atom with A, the instance of Append by replacing any with A.
The handling of the body ends with assigning List(A) to sort.

Finally, we have to verify that the output argument of the
clause has the desired type, i.e. that the computed type is equal
to the desired type. In our example, both types are identical.
In general, +the output argument is a term and we have to derive
the desired types for the variables occurring in it and to compare
the desired types with the types obtained by processing the body.

Another example :
Atomic Month[1..12] subset of Int;
Decl Nextmonth(Month,Month), use i,o
Nextmonth(m,nm) <- Lt(m,12), Plus(ﬂ,1,ﬂ).
Decl Lt(any1-Int,any2-Int);
Decl Plus(any1-Int,anyZ—Int,anyB-Int);

Processing the heading results in m having type Month. TFor the
call Lt, we select an instance Lt{Month,A) of the type schema with
A a new subtype of Int. A message that 12 should be of type 4, a
subtype of Int is given. Por the next call, we arrive at an
instance plus(Month,B,C) with B and C new subtypes of Int. A mes-—
sage that 1 should have type B is given and nm receives type C.
Looking at the output part of the heading, we conclude that mm
does not have the type Month and another message results. We feel
this treatment is appropriate because the correctness is based on
the semantics (e.g. using Lt(m,13) or dropping 1t makes the pro-
cedure invalid). Moreover, to avoid messages all over his pro-
gram, the programmer is encouraged to use the good programming
style of localising the use of procedures as Plus in a few pro-
cedures. Remark that declaring Plus as Plus(any-Int,any—Int,any—
Int) will result in the selection of the instance
Plus(Month,Month,Month) and that the procedure will be validated.
We consider this as undesirable.

4. Final Remarks

We have presented a method to improve the quality of Prolog
programs. It consists of the introduction of formal declarations
and a methodology to analyse the consistency between declarations
and prolog procedures. We have extended the programs with two
kinds of information :

1. Type information : the user can define atomic or structured
types which are mutually disjoint. Atom types are classified
as subtypes of Atom, Int or String. For each procedure, the
user declares the types of the arguments. We have introduced
schemas to obtain a compact notation.

— 8 -

Information about the intended patterns of use. We have
introduced the annotation i (input = completely instantiated
before execution), o (output = completely instantiated after
execution but not before) and nio (neither input nor output)
to describe allowed patterns of use. These patterns can be
used to verify the flow of data through a clause. These pat-
terns are insufficient to describe all possible uses of
prolog-procedures. An important case we cannot handle is the
use of incomplete data structures (trees with free variables
in the leaves, lists with free variables in the tail,...). In
fact the correctness of using such data structures often
depends on the semantics of "cut" and the ordering between
clauses, where our method considers a clause in isolation of
other clauses and does not take in account the side-effects of
build-in predicates. Another important class we cannot handle
is exemplified by Append. Append can be executed with an
incomplete second argument. In this case, the third argument
is incomplete after execution of the call, but is completed as
soon as the second argument becomes complete. To cover this,
we could introduce a notation (i,nio,0(2)). 0(2) means the
argument becomes complete as soon as the second argument is
completely known. With such annotations, the validation of
the data flow becomes more complex. Upon failure of the vali-
dation process, it becomes necessary to backtrack and to try
other patterns for the different calls.

We have to await experience with an implementation to judge to

value of our current proposal and to obtain insight in the desir-
able extensions.

5.

Acknowledgements

We are indebted to the Belgian "National Fonds voor Wetenschap-

pelijk Onderzoek"” for funding a visit to Iuis Pereira, and to ILuis
Pereira for the useful discussions about the subject of the paper.

6.

References

[1] Clocksin, W.F., Mellish, C.

A

Programming in Prolog.
Springer Verlag, 1981.

