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Abstract 

A healthy lifestyle is becoming more and more important for the modern day 

consumer and fresh, minimally processed, ready-to-eat vegetables play an 

essential role. Lamb’s lettuce (Valerianella locusta) is a popular greenhouse 

vegetable mainly thanks to these characteristics. It is used as an ingredient 

in salad mixtures and as a leafy salad making it an ideal healthy food for the 

modern day consumer. However, lamb’s lettuce plants presented to the 

market are not always freshly harvested. Producers can store them up to 

four weeks in their cooling facility, because fresh produce and stored 

samples are indistinguishable by the human eye. However, the latter have 

an impaired shelf life potential leading to significant economic losses in 

distribution and lower consumption quality. Hence, the main objective was to 

develop a fast and nondestructive methodology to estimate how long a batch 

of lamb’s lettuce has been stored before it is presented to the market. 

In the first part of this dissertation, lettuce from commercial producers was 

stored at 1 and 4 °C for 21 d and the effects on metabolite content and 

respiration rate were studied. After 21 d of storage, the general sugar 

content of lamb’s lettuce had decreased. The RQ value indicated that 

carbohydrates remained the main carbon source during storage. However, 

the increase of free amino acids due to proteolysis indicated that the plants 

coped with nutrient stress and that amino acids were made available for 

respiration. The respiration rate decreased during storage, which implied a 

shortage in soluble carbohydrates. In conclusion, after 21 d of storage, 

carbohydrates were still the main energy source but the lamb’s lettuce was 

preparing to use a mixture of different carbon sources for respiration. As the 

main purpose of respiration during postharvest storage is to provide energy 
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for maintenance purposes, the energy production decreased and this likely 

would also affect shelf life potential. 

In the second part of the research, visible / near infrared (Vis/NIR) 

spectroscopy and chlorophyll fluorescence emission ratios were evaluated 

as a fast and non-destructive method to detect and quantify a prior storage 

period. Lamb’s lettuce from commercial producers was stored at 1 and 4 °C 

and the Vis/NIR spectra and fluorescence emission ratios were linked to the 

time in storage by partial least squares regression (PLSR). Preprocessing 

and variable selection techniques (interval PLS, Variable Importance in 

Projection scores, Genetic Algorithms PLS and Monte Carlo Uninformative 

Variable Elimination PLS) were used to improve the performance of the 

PLSR models. The PLSR model based on Vis/NIR spectra made successful 

predictions on a possible storage period. This was not possible for PLSR 

models based on chlorophyll fluorescence emission ratios without a 

correction for the storage temperature. The unsuccessful predictions based 

on chlorophyll fluorescence emission ratios could be due to a smaller 

calibration dataset which contained a lot of variation. The final prediction 

model based on Vis/NIR spectra used only 10% of the original wavelength 

variables and had a root mean squared error of cross validation of 3.6 d. 

This model was tested using 2 external test sets and had a maximum root 

mean square error of prediction of 3.7 d. Hence, Vis/NIR spectroscopy can 

be a valuable, rapid and non-destructive method for identifying and 

quantifying a prior storage period of lamb’s lettuce. 

 



Samenvatting 

Verse, minimaal verwerkte, direct eetbare groenten spelen een belangrijke 

rol in een gezonde levensstijl. Veldsla (Valerianella locusta) is een populaire 

glasgroente vanwege deze eigenschappen. Het wordt gebruikt als ingrediënt 

in vooraf klaargemaakte salades en het is ideaal gezond voedsel voor de 

hedendaagse consument. Veldsla die op de markt gebracht wordt, is echter 

niet altijd vers geoogst. Telers kunnen de planten tot wel vier weken 

bewaren in hun eigen koelfaciliteiten, omdat verse en bewaarde veldsla 

visueel niet te onderscheiden zijn. Bewaarde veldsla heeft echter een korter 

potentieel uitstalleven wat aanleiding geeft tot economische verliezen in de 

distributieketen en een lagere kwaliteit voor de consument. Vandaar dat de 

ontwikkeling van een snelle niet-destructieve methodologie voor het 

identificeren en kwantificeren van een voorafgaande bewaarperiode bij 

veldsla het hoofddoel was van dit proefschrift. 

In het eerste deel van dit proefschrift werd veldsla van commerciële telers 

gedurende 21 dagen bewaard bij 1 en 4 °C. De effecten van deze 

bewaarperiode op het gehalte van verschillende metabolieten en de 

respiratiesnelheid werd bestudeerd. Na een bewaarperiode van 21 dagen 

was het algemeen suikergehalte gedaald. De RQ waarde gaf aan dat 

koolhydraten de voornaamste koolstofbron waren. Gedurende deze 

bewaarperiode was echter ook een toename van vrije aminozuren vanwege 

proteolyse. Dit was een indicatie dat de planten moesten omgaan met 

nutriëntenstress en dat vrije aminozuren beschikbaar waren voor respiratie. 

Gedurende de bewaarperiode daalde de respiratiesnelheid. Dit impliceert 

een tekort aan oplosbare koolhydraten. Vandaar dat geconcludeerd werd 

dat na een bewaarperiode van 21 dagen veldsla nog koolhydraten gebruikte 
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als voornaamste energiebron, maar dat daarnaast veldsla voorbereidingen 

trof om andere koolstofbronnen te gebruiken voor respiratie. Het 

voornaamste doel van respiratie gedurende een bewaarperiode is om 

energie te voorzien voor onderhoudsdoeleinden in de plant. De 

energieproductie verminderde en dit zou waarschijnlijk het potentieel 

uitstalleven beïnvloeden. 

In het tweede deel van dit onderzoek werden zichtbaar / nabij-infrarood 

(Vis/NIR) spectroscopie en chlorofylfluorescentie emissieratio’s geëvalueerd 

als een snelle, niet-destructieve meetmethode om een voorafgaande 

bewaarperiode voor veldsla te detecteren en te kwantificeren. Veldsla van 

commerciële telers werd bewaard bij 1 en 4 °C. Vervolgens werden de 

Vis/NIR-spectra en fluorescentie-emissieratio’s gelinkt aan de bewaarduur 

met behulp van ‘partial least squares regression’ (PLSR). 

Voorbehandelingen en selectietechnieken op de variabelen (interval PLS, 

Variable Importance in Projection scores, Genetic Algorithms PLS en Monte 

Carlo Uninformative Variable Elimination PLS) werden toegepast om de 

performantie van de PLSR modellen te verbeteren. PLSR modellen 

gebaseerd op Vis/NIR-spectra maakten succesvolle voorspellingen over een 

voorafgaande bewaarperiode. Voorspellingen gebaseerd op 

chlorofylfluorescentie emissieratio’s waren niet succesvol zonder een 

correctie voor de bewaartemperatuur. Het feit dat de voorspellingen op basis 

van chlorofylfluorescentie-emissieratio’s niet succesvol waren, kan te wijten 

zijn aan de kleinere kalibratiedataset die veel variatie omvatte. Het 

uiteindelijke PLS-voorspellingsmodel gebaseerd op Vis/NIR-spectra 

gebruikte slechts 10 % van de originele golflengtes en had een gemiddelde 

fout in crossvalidatie van 3.6 dagen. Dit model werd getest door gebruik te 

maken van 2 externe testdatasets en kon de bewaartijden voorspellen met 

een gemiddelde fout van 3.7 dagen. Dit biedt perspectieven om Vis/NIR-

spectroscopie in de praktijk toe te passen als snelle en niet-destructieve 

methode voor het identificeren en kwantificeren van een voorafgaande 

bewaarperiode bij veldsla. 
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1. General introduction 

 Introduction 

Consumers are becoming more and more aware of the importance of a 

healthy lifestyle in which vegetables play an essential role (Cox et al., 1998; 

FAO/WHO, 2003; Ragaert et al., 2004). With time pressure as an important 

reason for consumers to be more convenience orientated regarding the 

choice of food, and prepared meals and food processing methods receiving 

skeptical responses, the consumption pattern is shifting towards minimally 

processed ready-to-eat products (Ahvenainen, 1996; Candel, 2001; Creed, 

2001; Rico et al., 2007; Rodgers, 2007; Verlegh and Candel, 1999). These 

foods are characterized by their fresh appearance and their ease of use 

(Dinnella et al., 2014; Kumpulainen et al., 2016). Lamb’s lettuce (Valerianella 

locusta) is a popular greenhouse vegetable, mainly thanks to these 

characteristics. It is used as an ingredient in salad mixtures and as a leafy 

salad making it an ideal healthy food for the modern day consumer 

(Enninghorst and Lippert, 2003; Ragaert et al., 2004). In a survey in 2004 

which aimed at gaining insight in consumer decision-making towards 

purchasing minimally processed vegetables and packaged fruits, lamb’s 

lettuce as part of a ‘gourmand salad’ was the third most purchased minimally 

processed vegetable. As a vegetable on its own, it was the seventh most 

purchased minimally processed product overall and second most purchased 

minimally processed single-vegetable product (Ragaert et al., 2004). In 2015 

alone, LAVA, the umbrella organization that promotes co-operation between 

the five most important fruit and vegetable auctions in Belgium, noted a 20% 

increase in yearly revenue from lamb’s lettuce. This resulted in 4.5 million 
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euros of revenue (Ceulemans, 2017). This increase can be attributed to 

higher demands and improved selling price. The production of lamb’s lettuce 

is fairly stable through the years, with LAVA reporting around 1500 tons of 

lamb’s lettuce being sold annually (Ceulemans, 2017).  

Lamb’s lettuce grows in a low rosette with spatula shaped leaves which can 

grow up to 15 cm long (Fig. 1.1). It naturally occurs in mild climates and is 

traditionally grown as a winter green. However, it is commercially produced 

in Belgium all year round via greenhouses. (Abrams and Ferris, 1960; 

Ceulemans, 2015; Ward, 1911). The peak in production is during the first 5 

weeks of the year. LAVA reports during this period a production of 30 000 kg 

of lamb’s lettuce per week (Ceulemans, 2015). 

 

 

 

Fig. 1.1 Image of lamb’s lettuce with a clear view of the rosette shape and spatulate leaves 
(bostonfoodandwhine.com, 2009) 
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 Post-harvest changes in lamb’s lettuce 

Lamb’s lettuce is still metabolically active after harvest. The metabolism is a 

complex process which is highly regulated to adapt to changes in the 

environment. These can be subdivided into anabolic and catabolic 

processes, where the first are related to the production of new cell 

components and the latter are related to the breakdown of energy rich 

nutrients (Taiz and Zeiger, 2010). Harvested lamb’s lettuce is kept in the 

dark at a low temperature (1 - 4 °C). In such an environment photosynthesis 

is no longer possible as a source of energy. Also, lamb’s lettuce does not 

have a large pool of soluble sugars to be used as an energy source 

(Enninghorst and Lippert, 2003). The only available carbohydrates are those 

synthesized through photosynthesis before harvest. It has been shown that 

leaves of Arabidopsis thaliana can experience sugar starvation (Morkunas et 

al., 2012). Sugar starvation has been reported to induce metabolic changes. 

The carbohydrate metabolism is replaced and alternative substrates are 

used to sustain respiration and metabolic processes. In the final phases of 

sugar starvation, even cellular organelles are degraded and this eventually 

leads to cell death (Mbong et al., 2017b).  

After harvest, leafy vegetables are usually exposed to uncontrolled humidity 

conditions. Low relative humidity is often the main cause of lettuce 

deterioration. It causes degradation of cell walls and affects other quality 

attributes, e.g., turgidity, texture, enzymatic browning (Ansorena et al., 

2012). Other changes during storage include a gradual decrease of the 

antioxidant content of which ascorbic acid, phenylpropanoids and 

carotenoids are the most important in leafy vegetables (Ferrante et al., 

2009). When stored at low temperatures (< 4 °C), lamb’s lettuce has a very 

slow chlorophyll reduction (Ferrante and Maggiore, 2007). However, the 

decline of chlorophyll and carotenoid content starts quickly after harvest at 

ambient temperatures (Ferrante and Maggiore, 2007; Yamauchi, 2015). The 

loss of chlorophyll during storage has been found in many vegetables and 
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the accompanied yellowing or browning spots reduce the shelf life and 

commercial value (Ferrante et al., 2004; Rico et al., 2007).  

 Measurement of the quality of fresh produce 

To determine the quality of fresh produce fast and non-destructive 

measurement set-ups are needed. The advantage of such techniques is that 

they require minimal sample preparation,  produce no waste, and typically 

are fast so that they can be incorporated in sorting lines (Nicolaï et al., 

2014). Two of those techniques are visible / near infrared (Vis/NIR) 

spectroscopy and measurements of chlorophyll fluorescence emission 

ratios. 

The visible and NIR parts of the electromagnetic spectrum encompass 

wavelengths between 380 and 780 nm, and 780 and 2500 nm, respectively 

(Fig. 1.2). In Vis/NIR spectroscopy, the sample to be measured is irradiated 

with light (electromagnetic radiation). The radiation can be transmitted, 

absorbed or reflected by the sample. The chemical and physical properties 

of the sample influence the contribution of each of these effects (Nicolai et 

al., 2007). In NIR, most absorption bands are complex with broad 

overlapping peaks due to overtones and combinations of fundamental 

absorptions in the far and mid infrared part of the electromagnetic spectrum 

(Reich, 2005). Hence, there is a need for chemometric data processing to 

relate spectral information to certain properties of the sample (Nicolai et al., 

2007). 

The principle of chlorophyll fluorescence emission signals is straightforward. 

When light is absorbed by chlorophyll it can drive photosynthesis, but it can 

also be dissipated as heat or re-emitted as light with a longer wavelength. 

The latter is known as chlorophyll fluorescence (Henriques, 2009; Maxwell 

and Johnson, 2000). Other compounds besides chlorophyll can absorb light 

which reduces the intensity of chlorophyll fluorescence. When leaves are 

exposed to different wavelengths of light, the intensities of chlorophyll 
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fluorescence can be compared. The intensities of these signals are sensitive 

to the distance between the sample and the detector which is why the 

signals are combined in ratios (Cerovic et al., 2009). Depending on the 

composition of the sample, different fluorescence ratios are measured which 

can be related to certain properties of the sample using chemometrics 

(Cerovic et al., 2009; Tremblay et al., 2011). 

Both Vis/NIR spectroscopy and chlorophyll fluorescence emission ratios 

result in output data with a lot of variables which are not straightforward to 

interpret. Multivariate statistics, also called chemometrics, is employed to 

process these variables. Statistical models can be created to extract useful 

information but they can also be used to make predictions on future 

unknown samples by finding correlations between complex output variables 

and a response variable of interest (Ghozlen et al., 2010; Nicolai et al., 

2007). 

 

 

Fig. 1.2 Example of a Vis / NIR reflectance spectrum of a leaf of lamb’s lettuce. 
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 Objectives and outline of the dissertation 

Lamb’s lettuce plants presented to the market are not always freshly 

harvested. In winter time, growers can store them up to four weeks in their 

cooling facility. Fresh produce and stored samples are indistinguishable by 

the human eye. However, the latter have an impaired shelf life potential 

leading to significant economic losses in distribution and lower consumption 

quality (Fao, 1989; Ferrante et al., 2009; Rico et al., 2007). The perceived 

level of freshness and appearance are two of the most important attributes 

for fresh ready-to-eat salads according to consumers. This emphasizes the 

need for a better control system for the freshness of lamb’s lettuce (Bublitz 

et al., 2010; Dinnella et al., 2014; Lennernäs et al., 1997). Hence, the main 

objective of this dissertation is to develop a fast and nondestructive 

methodology to estimate how long a batch of lamb’s lettuce has been stored 

before it is presented to the market. The hypothesis is that invisible changes 

in the plants during post-harvest storage have a physiological base which is 

detectable by Vis/NIR spectroscopy or chlorophyll fluorescence emission 

ratios. Hence, the following research questions were formulated: 

• What metabolic changes are present in lamb’s lettuce during a post-

harvest storage period? 

• Can Vis/NIR spectroscopy or chlorophyll fluorescence emission 

ratios be used to monitor such changes and allow to estimate the 

prior storage period or even predict shelf life potential? 

The outline of this dissertation is schematically illustrated in Fig. 1.3. In 

chapter 2, the state of the art is reviewed, starting with a description of 

lamb’s lettuce leaf anatomy, morphology and physiology with a focus on the 

leaf structure, the main metabolic pathways concerning the energy 

metabolism and the interaction of light with plant tissue. Also, fast non-

destructive measurement techniques are discussed including Vis/NIR 

reflectance spectroscopy and measurements of chlorophyll fluorescence 

emission ratios. As these multivariate techniques require chemometrics to 

extract the information of interest from the acquired signals, the most 
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important techniques for data preprocessing, variable selection, 

compression and regression are reviewed as well. 

The postharvest changes in the lamb’s lettuce’s energy metabolism are 

investigated in chapter 3. A gas chromatography - mass spectrometry based 

protocol is used to separate, identify and quantify intracellular metabolites in 

lamb’s lettuce plants stored after harvest at 1 and 4 °C. Respiration 

measurements are performed on similar samples to have an idea of any 

changes in the O2 consumption and CO2 production rate. Also, physiological 

changes during the storage period can be a possible source of information 

which can be detected by the fast and non-destructive measurement 

techniques. 

Chapters 4 and 5 investigate the possibility to use Vis/NIR spectroscopy and 

chlorophyll fluorescence emission ratios, respectively, as fast and non-

destructive measurement techniques to detect a prior storage period and 

predict shelf life potential. Internal non visual changes during a postharvest 

storage period may be detected using these techniques. The potential of 

both techniques have been evaluated based on a dataset with samples from 

different growers and cultivars stored for a few weeks at different 

temperatures. Using chemometrics, prediction models are constructed and 

the prediction potential of these models is evaluated and discussed.  

In Chapter 6, general conclusions are drawn from this PhD research and 

suggestions for future research are presented. 



8 1. General introduction
 

 

Fig. 1.3 Overview of the structure of the dissertation 

 



 

2. State of the art 

 Lamb’s lettuce as a fresh, ready-to-eat 
consumable 

Society nowadays is more and more aware of healthy foods and the link 

between vegetables and their benefits towards healthy living are fully 

recognized (Cox et al., 1998; Ragaert et al., 2004). The consumption of 

400 g of vegetables a day in addition to cooked or raw starch foods is 

recommended by the World Health Organization (FAO/WHO, 2003). 

National recommendations can differ, but in general these guidelines are 

hard to meet (Kumpulainen et al., 2016). Multiple studies have shown that 

taste, price and freshness are the main reasons for consumers to buy 

certain foods, but having a healthy diet is not always easily achieved in 

practice (Bublitz et al., 2010; Dalton et al., 1986; Glanz et al., 1998; 

Lennernäs et al., 1997). Consumers want to eat healthy, but are unable to 

differentiate between nutritionally poor and nutritionally rich foods. This is 

due to health claims of functional foods which are used as substitutes for 

healthy foods such as fruits and vegetables (Cornish, 2012). Other 

constraints to vegetable and fruit consumption are related to time pressure, 

which is one of the main reasons for consumers to be more convenience 

oriented when it comes to food choices (Candel, 2001; Verlegh and Candel, 

1999).  

In general, consumers tend to be skeptical towards different food processing 

methods and prepared meals (Creed, 2001). The change in consumption 

pattern has already lead to a shift in the food industry to minimally processed 

ready-to-use products (Ahvenainen, 1996; Rodgers, 2007). Minimally 

processed vegetables are fresh vegetables that are processed for improved 
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functionality without an alteration of the fresh-like properties. This processing 

method depends on the type of produce and can be washing, cutting, mixing 

and packaging. The final product is still perceived fresh, convenient in use 

and has no preservatives (Ragaert et al., 2004). The fact that these foods 

look fresh and are easy-to-use are important aspects for an increase in the 

consumption of healthy food (Dinnella et al., 2014; Kumpulainen et al., 2016; 

Neumark-Sztainer et al., 1999; Ragaert et al., 2004). Leafy salads are 

healthy due to their vitamin and fiber content. Of these leafy salads, lamb’s 

lettuce is a popular greenhouse vegetable thanks to its ease of use and 

fresh, ready-to-eat characteristics. It is used as an ingredient in ready-to-eat 

salad mixtures and as a leafy salad making it a perfect healthy food for the 

modern consumer (Enninghorst and Lippert, 2003; Ragaert et al., 2004). 

 Taxonomy, presence, morphology and leaf 
anatomy 

Lamb’s lettuce (Valerianella Locusta L.) is part of the Caprifoliaceae family, 

which is part of the order Dipsacales included within the asterid group of 

dicotyledons (The Angiosperm Phylogeny Group, 2009). It grows in mild 

climates and is traditionally grown as a winter green (Abrams and Ferris, 

1960; Ward, 1911). Lamb’s lettuce forms a low rosette. The leaves are 

spatula shaped and can be up to 15 cm long (Fig. 1.1).  

Lamb’s lettuce leaves are made up of an epidermis with stomata and 

vascular tissue surrounded with mesophyll (Fig. 2.1). The epidermis consists 

of flat, tabular epidermal cells and guard cells which make up the stomata. It 

is covered with a transparent layer called the cuticle which covers the 

epidermal cells and mainly consists of cutin and wax. The main function of 

the cuticle is to reduce the loss of water. Guard cells are specialized cells 

that are used to control gas exchange. They come in pairs and have a gap 

between them that forms the stomatal pore. This small opening enables gas 

exchange between the internal gas phase of the leaf and the surrounding 
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air. The size of the opening is regulated by changes in the shape of the 

guard cells which depends on the turgor pressure inside the guard cells 

(Cutler et al., 2008; Mauseth, 2008; Raven et al., 1999; Taiz and Zeiger, 

2010). The epidermis forms the boundary between the atmosphere and the 

inside of the leaf. 

The tissue interior to the epidermis is called the mesophyll. The mesophyll 

along the adaxial side of the leaf is called the palisade parenchyma. This 

contains the main photosynthetic tissue and contains more chlorophyll than 

the other tissues. The mesophyll in the abaxial side of the leaf is the spongy 

parenchyma. It contains large intercellular spaces that improve the transport 

of gasses like CO2, O2 and water vapor. Inside the mesophyll there are 

vascular bundles consisting of xylem and phloem. (Cutler et al., 2008; 

Mauseth, 2008; Raven et al., 1999; Taiz and Zeiger, 2010).  

 

Fig. 2.1 Microscopic cross section of a lamb’s lettuce leaf where the epidermis with cuticle (A) is 
visible on both leaf sides. Also, more chlorophyll containing and densely packed cells on the 
adaxial side called palisade parenchyma (B), and loosely packed cells with intercellular spaces 
on the abaxial side called spongy parenchyma (C) are clearly visible. No vascular tissue is 
present in this cross section (own work). 
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 Energy metabolism 

Plants have several energy related metabolic pathways. When solar energy 

is used to synthesize complex carbon compounds out of carbon dioxide 

(CO2) and water (H2O), this is referred to as photosynthesis. The energy of 

these carbon compounds can be released in a controlled manner by 

respiration. During respiration, carbon precursors for biosynthesis can be 

generated (Mauseth, 2008; Taiz and Zeiger, 2010). 

2.3.1. Photosynthesis 

Most photosynthetic tissue is divided in palisade and spongy parenchyma. 

These cells contain chloroplasts which have specialized internal membranes 

called thylakoids. In the chloroplast two photochemical complexes called 

photosystem I (PSI) and photosystem II (PSII) convert the energy from light 

captured by antenna systems made up of chlorophylls into chemical energy 

(Fig. 2.2). The reactions for which light is necessary are called the light 

reactions. In these reactions, PSI and PSII operate in series and use light 

from 400 to 700 nm. The reaction centers of PSI and PSII are specialized 

chlorophyll molecules called P700 and P680, respectively. Photons excite 

these reaction centers resulting in an excited electron. Photosynthesis 

begins when an electron of the reaction center P680 achieves this higher 

energy level. PSII oxidizes water to O2 and a proton (H+) in the lumen of the 

chloroplasts. At the same time, PSII reduces plastoquinone (PQ) to 

plastohydroquinone (PQH2). PQH2 in turn gets oxidized back to PQ by 

cytochrome b6f. This oxidation is coupled with a proton transfer from the 

stroma into the lumen which leads to a proton gradient over the thylakoid 

membrane. The electrons get delivered to PSI through plastocyanin (PC) 

and this leads to the reduction of nicotinamide adenine dinucleotide 

phosphate (NADP+) to NADPH in the stroma by Ferrodoxin (Fd) and 

ferrodoxin-NADP reductase (FNR). Additionally, the gradient generated over 

the thylakoid membrane is used to synthesize adenosine triphosphate (ATP) 

from adenosine diphosphate (ADP) and inorganic phosphate (Pi) by ATP 
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synthase (Garrett and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 

2010). 

The high energy compounds ATP and NADH drive the reduction of 

atmospheric CO2 to carbohydrates and other cell components in the carbon 

fixing reactions located in the stroma of the chloroplast. This cyclic reaction 

pathway is called the Calvin-Benson cycle (dark reaction) and proceeds in 

three phases: carboxylation of CO2, reduction of 3-phosphoglycerate and 

regeneration of ribulose 1,5-biphosphate (Fig. 2.3). The first phase of the 

cycle is the incorporation of 3 CO2 molecules in three ribulose 1,5-

bisphosphate molecules which results in six molecules of 3-

phosphoglycerate. In the next phase, 3-phosphoglycerate is reduced in two 

reactions to triose phosphates. The last phase of the cycle regenerates 

ribulose 1,5-bisphosphate through several reactions where three ATP’s are 

used to drive one reaction for each incorporated CO2 molecule. The output 

of one triose phosphate balances the carbon input. These triose phosphates 

are metabolized to products such as sucrose and other organic compounds 

(Garrett and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 2010) 

 
Fig. 2.2 The transfer of electrons and protons in the thylakoid membrane during the light 
reactions is carried out by four protein complexes: Photosystem I (PSI) with reaction center 
P680, Photosystem II (PSII) with reaction center P700, cytochrome b6f and ATP synthase. 
Water is oxidized by PSII and protons are released in the lumen. Electrons (e-) from PSII are 
used to reduce plastoquinone (PQ) to plastohydroquinone (PQH2). PQH2 is oxidized by 
cytochrome b6f and a proton is transferred from the stroma to the lumen. Plastocyanin (PC) 
delivers the electrons in turn to PSI. NADP+ is reduced to NADPH in the stroma by PSI via 
Ferrodoxin (Fd) and ferrodoxin-NADP reductase (FNR). The protons in the lumen diffuse down 
the electrochemical potential gradient and are used to synthesize ATP in the stroma from ADP 
and inorganic phosphate (Pi) (Based on Taiz and Zeiger, 2010). 
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Fig. 2.3 An overview of the Calvin-Benson cycle with three clear phases: carboxylation, 
reduction and regeneration. The black and red circles represent carbon and phosphate atoms 
respectively (Based on Taiz and Zeiger, 2010)  

2.3.2. Respiration 

Respiration is the process where reduced organic compounds are oxidized 

in a controlled manner. It can be considered as the reversal of the 

photosynthetic process. Sucrose with 12 carbon atoms is oxidized to 12 

molecules of CO2 and 12 molecules of O2 are reduced to water. The energy 

of this entire process is released in a series of reactions and is stored in 

ATP. The reactions of respiration can be grouped into four metabolic 

pathways: glycolysis, the pentose phosphate pathway (PPP), tricarboxylic 

acid (TCA) cycle, and oxidative phosphorylation. All these pathways are 

connected and respiratory substrates can enter at different points in the 

pathways (Garrett and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 

2010). 
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2.3.2.1. Glycolysis 

Glycolysis is the pathway that converts glucose into pyruvate. The series of 

reactions catalyzing this process are located in the cytosol (Fig. 2.4). There 

are two phases in glycolysis: an energy consuming phase and an energy 

conserving phase. In the initial energy consuming phase a hexose (glucose) 

is phosphorylated twice using 2 molecules of ATP and in turn is split into 2 

triose phosphates, i.e. glyceraldehyde 3-phosphate and dihydroxyacetone-

phosphate. The energy conserving phase oxidizes each triose phosphate to 

yield one molecule of pyruvate. In these reactions, 2 molecules of ATP and 1 

NADH are generated for each triose phosphate. Gluconeogenesis is the 

glycolysis process in the opposite direction where three glycolytic ATP 

dependent reactions are circumvented. It is used to produce sugars from 

organic acids (Garrett and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 

2010). 

2.3.2.2. Pentose phosphate pathway 

The pentose phosphate pathway (PPP) is an alternative way for the cell to 

oxidize sugars. The reactions are located in the cytosol and plastids, but 

under normal circumstances the pathway in the plastids is the dominant one 

(Fig. 2.4). The PPP has 2 distinct phases. The initial oxidative phase 

generates 2 NADPH molecules and oxidizes glucose 6-phosphate, a hexose 

phosphate, to ribulose 5-phosphate, a pentose phosphate. The second non-

oxidative phase consists of freely reversible reactions and converts ribulose 

5-phosphate to intermediates of the glycolysis, i.e., fructose 6-phosphate, a 

hexose phosphate, and glyceraldehyde 3-phosphate, a triose phosphate. 

These molecules can be converted to pyruvate in the glycolysis pathway, but 

alternatively they can be used to regenerate glucose 6-phosphate. The 

second phase can generate pentose sugars which can be used as a 

precursor for the synthesis of nucleotides. The PPP oxidizes hexose 

phosphates, but the PPP’s function is anabolic rather than catabolic (Garrett 

and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 2010). 
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2.3.2.3. Tricarboxylic acid cycle 

The TCA cycle takes place in the matrix of the mitochondria and completely 

oxidizes pyruvate to 3 molecules of CO2. It generates chemical energy and 

reducing power, but can also provide precursors of certain amino acids. 

First, pyruvate is transformed to acetyl-coenzyme A (CoA) (Fig. 2.4). This 

produces CO2 and NADH. In the next reaction, acetyl-CoA is incorporated in 

the TCA cycle by combining acetyl-CoA with oxaloacetate to form citrate. In 

the following steps, the two remaining carbon atoms of pyruvate are 

released as CO2 and these reactions generate two molecules of NADH. The 

remaining steps of the TCA cycle are used to regenerate oxaloacetate for a 

continued operation of the cycle. These reactions produce one molecule of 

ATP and reduce one molecule of flavin adenine dinucleotide (FAD) and one 

molecule of NAD+ to FADH2 and to NADH, respectively. Thus, in the TCA 

cycle, pyruvate is completely oxidized to 3 molecules of CO2 and the energy 

which is released generates four molecules of NADH, one molecule of 

FADH2 and one molecule of ATP. Alternatively, it is possible for malate to be 

converted to pyruvate. This makes it possible for TCA cycle intermediates to 

be oxidized (Garrett and Grisham, 2005; Mauseth, 2008; Taiz and Zeiger, 

2010). 
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Fig. 2.4 Overview of respiration including glycolysis in the cytosol; pentose phosphate pathway 
in the cytosol and plastids; TCA cycle and oxidative phosphorylation in the mitochondria (Based 
on Taiz and Zeiger, 2010). 
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2.3.2.4. Oxidative phosphorylation 

Oxidative phosphorylation occurs in the inner mitochondrial membrane and 

uses the chemical energy conserved in the glycolysis, PPP and TCA cycle 

(NADH and FADH2) to generate ATP (Fig. 2.4). The reduced compounds 

(NADH and FADH2) have to be oxidized or the respiration process comes to 

a halt. The electron transport chain catalyzes a flow of electrons from NADH 

(or FADH2) to oxygen and in the process generates a proton gradient across 

the inner mitochondrial membrane (Fig. 2.5). There are four multiprotein 

complexes located in the inner mitochondrial membrane. Complex I oxidizes 

NADH and transfers the electrons to ubiquinon (UQ) reducing it to ubiquinol 

(UQH2). Four protons are pumped from the matrix to the intermembrane 

space for each transferred electron pair. Complex II catalyzes the oxidation 

of succinate in the TCA cycle and the reducing equivalents are transferred 

via FADH2 to UQ. UQH2 gets oxidized to UQ by Complex III and four protons 

are pumped over the membrane for each electron pair. The electrons are 

passed on to cytochrome c (Cyt c), which transfers the electrons from 

Complex III to Complex IV. This complex reduces O2 to two molecules of 

H2O. Two protons are pumped over the membrane per electron pair. The 

transport of protons generates a proton gradient across the inner 

mitochondrial membrane. ATP synthase uses this potential energy to 

generate ATP from ADP by allowing protons to flow back across the 

membrane down the gradient (Garrett and Grisham, 2005; Mauseth, 2008; 

Taiz and Zeiger, 2010). 
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Fig. 2.5 The electron transport chain in the inner membrane of the mitochondria have five 
protein complexes: Complex I to IV, and ATP synthase. NADH is oxidized by complex I and 
electrons (e-) are transferred to ubiquinon (UQ) reducing it to ubiquinol (UQH2) while protons are 
transferred over the membrane. Complex II catalyzes the oxidation of succinate to fumarate and 
these electrons are transferred to UQ. Complex III oxidizes UQH2 and pumps protons over the 
membrane. The electrons are transferred to cytochrome C (Cyt C) which transfers the electrons 
to Complex IV. Complex IV transfers protons over the membrane and produces H2O from O2 
and a proton. The protons in the intermembrane space diffuse down the electrochemical 
potential gradient and are used to synthesize ATP in the matrix from ADP and inorganic 
phosphate (Pi) (Based on Garrett and Grisham, 2005; Taiz and Zeiger, 2010). 

2.3.3. Alternative pathways 

When no sugars are available, other metabolites like fatty acids and amino 

acids can be used as a carbon source (Aubert et al., 1996; Dieuaide-

Noubhani et al., 1997; Hildebrandt et al., 2015; Inoue and Moriyasu, 2006; 

Mbong et al., 2017a, 2017b). This can lead to an increased protein 

breakdown which results in more amino acids. Autophagosomes can 

enclose proteins which can be broken down in amino acids or peptides by 

proteases (Aubert et al., 1996; Brouquisse et al., 1991; Dieuaide-Noubhani 

et al., 1997; Hildebrandt et al., 2015; Inoue and Moriyasu, 2006; Moriyasu 

and Ohsumi, 1996). The knowledge of the complete degradation pathways 

for all amino acids in plants is still rather limited. The first step involves the 

removal of nitrogen as ammonium and transferring it to storage compounds. 

Next, the carbon skeletons can be converted to precursors or intermediates 

of the TCA cycle (Hildebrandt et al., 2015).  

Fatty acids can be oxidized to acetyl-CoA through β-oxidation. Acetyl-CoA 

can be fed into the TCA cycle and used as an energy source. Alternatively, 

the carbons can be fed through the glyoxylate cycle, which is an anabolic 
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variant of the TCA cycle, where the CO2 producing steps are bypassed. This 

is achieved by converting isocitrate to succinate and glyoxylate. Glyoxylate 

is in turn combined with a second molecule of Acetyl-CoA to produce 

malate. Malate converts to oxaloacetate and the cycle can start again. 

Succinate is converted via malate to oxaloacetate in the TCA cycle. 

Oxaloacetate can be converted into carbohydrates by gluconeogenesis (Taiz 

and Zeiger, 2010). 

2.3.4. Respiratory Quotient 

The respiratory quotient (RQ) is the ratio of the amount of moles of CO2 

produced to those of O2 consumed (Eq. 2.1). Depending on the substrates 

used for respiration, a different value is achieved for the RQ.  
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Sugars have a theoretical RQ value of 1, because the oxidation of one mole 

of a hexose produces six moles of CO2 and consumes six moles of O2. The 

respiration of organic acids results in an RQ greater than 1. Due to the high 

oxygen content in these molecules less is needed to convert these 

molecules to CO2. The respiration of fatty acids results in a lower RQ, 

because lipids contain less oxygen per carbon. Hence, oxygen has to be 

consumed not only to oxidize every carbon, but also every hydrogen. On the 

other hand, normal RQ values in literature for respiration are between 0.7 

and 1.3. Fermentation leads to much higher RQ values, because no O2 is 

consumed. The RQ is an easy to determine parameter and is often used to 

gain information about the respiratory metabolism (Fonseca et al., 2002; Ho 

et al., 2013; Mauseth, 2008; Taiz and Zeiger, 2010). 

2.3.5. Postharvest changes in energy metabolism 

Lamb’s lettuce does not have a large pool of soluble carbohydrates which 

can be used as respiratory substrates (Enninghorst and Lippert, 2003). This 
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has also been shown for other leafy vegetables like butterhead lettuce 

(Varoquaux et al., 1996) and Chinese cabbage (Klieber et al., 2002). The 

carbohydrates synthesized through photosynthesis before harvest provide a 

limited energy source for respiration. Considering the fact that leafy 

vegetables are stored in dark environments where photosynthesis is not 

available, it is possible for them to experience sugar starvation (Morkunas et 

al., 2012). Limited information is available on sugar starvation in leafy 

vegetables during a postharvest storage period, but sugar starvation has 

been studied in sycamore cells (Journet et al., 1986), maize root tips 

(Brouquisse et al., 1991; Dieuaide-Noubhani et al., 1997), rice cells (Chen et 

al., 1994), Arabidopsis cells (Thimm et al., 2004), tobacco cells (Inoue and 

Moriyasu, 2006) and lamb’s lettuce cells (Mbong et al., 2017a, 2017b).  

Sugar starvation has been found to induce metabolic changes (Morkunas et 

al., 2012). An adaptation of the carbohydrate metabolism takes place with a 

gradual shift to alternative substrates to sustain respiration and metabolic 

processes. This may lead to autophagy (Brouquisse et al., 1991; Chen et al., 

1994; Journet et al., 1986; Rose et al., 2006; Saglio and Pradet, 1980). In 

maize root tips, sugar starvation has been subdivided in three phases 

(Brouquisse et al., 1992). The first phase is acclimation. The carbohydrate 

levels and respiration rate decrease and nitrogen is released by protein 

degradation. The next phase is called the survival phase and is 

characterized by an intensive breakdown of lipids and proteins, and an 

increase of free amino acids. The final phase is cell disorganization. The 

enzymatic activity and metabolite levels decrease significantly. This final 

phase is irreversible and leads to irreversible damage and cell death. During 

the acclimation and survival phases the total protein content decreases, 

while free amino acid content and proteolytic activity increase temporarily 

(Borek and Ratajczak, 2002; Moriyasu and Ohsumi, 1996; Tassi et al., 

1966). The metabolic changes are necessary to maintain respiration and 

basic metabolic processes in non-senescent cells. Even cellular organelles 

become degraded. Thus, energy acquisition is more essential for survival 



22 2. State of the art
 

even at the expense of organelles except for the nucleus and systems 

responsible for energy supply, i.e., mitochondria (Morkunas et al., 2012).  

Changes in metabolite content of lamb’s lettuce during postharvest storage 

have only been investigated for cells in suspension (Mbong et al., 2017a, 

2017b). Research on whole plants was limited to measurements of 

chlorophyll, carotenoids, total phenol, anthocyanins, ascorbic acid, glucose, 

fructose or sucrose content (Enninghorst and Lippert, 2003; Ferrante et al., 

2009; Ferrante and Maggiore, 2007). Hence, no information is at hand of 

changes in metabolite content of lamb’s lettuce during postharvest storage 

on a whole plant level. 

 Fast and non-destructive measurement 
techniques 

Different techniques are available to measure quality of fresh produce. Non-

destructive measurements are desirable, because they do not generate 

waste and can be applied to each individual plant instead of on a limited 

sample. Also, it is essential that the measurements can be performed on 

site, they need to be fast and provide accurate information about the quality 

of the produce before they are sold. Measurement techniques that meet all 

these conditions are different types of visible / near infrared spectroscopy 

and chlorophyll fluorescence measurements. All these techniques exploit the 

interaction of light with plant tissue to determine the quality of fresh produce. 

2.4.1. Interaction of light with plant tissue 

2.4.1.1. The electromagnetic spectrum 

Electromagnetic radiation has properties which are wave and particle-like. 

An electromagnetic wave exists out of an electric and magnetic field vector 

in phase and perpendicular to each other and perpendicular to the direction 
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of the propagating wave (Tipler and Mosca, 2008). The electromagnetic 

spectrum exists out of various types of electromagnetic waves which differ 

only in wavelength (λ) and frequency (v) (Fig. 2.6). Wavelength and 

frequency are inversely related to each other according to the equation: 

 /cν λ=  Eq. 2.2 

Where c is the speed of light. The different wavelengths of electromagnetic 

waves have an influence on their properties. Short wavelengths are related 

to higher frequencies and contain more energy. Hence, electromagnetic 

waves with shorter wavelengths can penetrate many materials which are 

non-penetrable for longer wavelengths. 

Electromagnetic waves have properties resembling those of particles where 

energy is quantized. These quantized packages of energy are called 

photons. The energy of a photon (E) is linked to the frequency according to 

the equation: 

 E hν=  Eq. 2.3 

Where h is Planck’s constant. 

 

Fig. 2.6 The electromagnetic spectrum with the names of different  frequency and wavelength 
ranges. These ranges are not well defined and can overlap. The visible range (shaded) is 
shown enlarged at the right (Encyclopaedia Britannica, 2018).   
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2.4.1.2. Interactions with light 

Radiation can be reflected, refracted, transmitted or absorbed when it hits a 

sample (Tipler and Mosca, 2008). Direct reflection on the surface of a 

sample can be specular or diffuse. If the surface is smooth, the reflection is 

called specular reflection. If the rays of light are parallel before they reflect of 

a surface they stay parallel when they are reflected. If the surface is rough, 

the reflection is called diffuse reflection because the rays reflect in random 

directions. Refraction happens when a beam of light strikes a boundary 

surface which separates two media. The angle of the incoming rays is 

different from the outgoing ones and this effect is called refraction (Tipler 

and Mosca, 2008). Scattering in a sample results from multiple refractions at 

phase changes inside the material (Nicolai et al., 2007). 

When radiation is absorbed, a transition of an atom or molecule to an 

excited state takes place. When a spontaneous transition to a less energetic 

state takes place, the atom or molecule undergoes transitions to one or 

more intermediate states before it returns to the ground state. Only the latter 

emits radiation. Hence, the energy in the emitted electromagnetic wave is 

lower and the wavelength longer. This process is often called fluorescence. 

The lifetime of an atom or molecule in the excited state is very low, the 

process of fluorescence seems to appear instantaneously. However, some 

excited states have longer lifetimes and can occur in a metastable state 

which emits light longer after the original excitation. This process is called 

phosphorescence (Tipler and Mosca, 2008; Visser and Rolinski, 2017). 

2.4.1.3. Leaf pigments 

A pigment is known as a substance that absorbs certain wavelengths 

specifically and has therefore a specific color. Most pigments absorb certain 

wavelengths and transmit or reflect wavelengths that they do not absorb. 

The spectrum of visible light ranges from violet with the shortest wavelength 

through indigo, blue, green, yellow, orange and finally red with the longest 

wavelength. Leaves have pigments that can absorb light in specific regions 
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of the spectrum and are optimized for photosynthesis in a chemical and 

structural way (Mauseth, 2008; Raven et al., 1999). 

Chlorophylls 

Green leaves are green due to the pigments chlorophyll a and chlorophyll b 

which are involved in photosynthesis. Chlorophyll a absorbs violet/blue and 

red wavelengths (Fig. 2.7). It interacts directly in the light requiring reactions 

of photosynthesis. Chlorophyll b is an accessory pigment and acts indirectly 

in photosynthesis by transferring light it absorbs to chlorophyll a. It is 

structurally slightly different from chlorophyll a as are the absorbed 

wavelengths, i.e., blue and orange/red (Fig. 2.7). The use of accessory 

pigments is broadening the range of light usable for photosynthesis. (Lee, 

2007; Mauseth, 2008; Raven et al., 1999; Taiz and Zeiger, 2010). 

 
Fig. 2.7 Absorption spectra of chlorophyll a (dark green), chlorophyll b (light green), carotenoids 
(orange) and anthocyanins (purple). The wavelengths shown range from the edge of ultraviolet 
(UV) through the visible spectrum to the edge of infrared (IR) (Based on Lee, 2007 and Raven 
et al., 1999)  
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Carotenoids 

Another family of accessory pigments is that of carotenoids. This family is 

split in two classes: xanthophylls and carotenes. Xanthophylls contain 

oxygen while carotenes are purely hydrocarbons. Both of these classes 

have a red, orange or yellow color due to absorption of wavelengths in the 

violet to green/blue part of the spectrum (Fig. 2.7). Carotenoids have another 

function besides being an accessory pigment. They also serve as an 

antioxidant preventing photo-oxidative damage to the chlorophyll molecules. 

In green leaves, chlorophyll masks the color of carotenoids. However, when 

chlorophyll breaks down, the carotenoids become visible, as is noticeable in 

yellow and orange colored autumn leaves (Mauseth, 2008; Raven et al., 

1999; Taiz and Zeiger, 2010). 

Flavonoids 

Flavonoids are water-soluble pigments. They are one of the largest families 

of plant phenolic compounds and are divided in several classes amongst 

which anthocyanins, flavones and flavonols are the most common. 

Anthocyanins have a blue, purple or red color (Fig. 2.7). They protect leaves 

against excessive sunlight which can cause damage to leaf tissues. 

Flavones and flavonols are yellow or ivory-colored pigments. Sometimes 

they are colorless, but they can change the color of a plant part by forming 

complexes with anthocyanins and metal ions in a process called 

copigmentation (Raven et al., 1999; Taiz and Zeiger, 2010). 

Postharvest changes in pigment content of leafy vegetables 

After harvest, certain leaf pigments undergo degradation that leads to a 

change in leaf color. The decline of the total chlorophyll and carotenoid 

content starts quickly after harvest at ambient temperatures, but can be 

slowed down by storage at lower temperatures (Ferrante and Maggiore, 

2007; Yamauchi, 2015). This has been observed in several horticultural 

products including rocket salad, Swiss chard and celery (Ferrante et al., 

2004; Ferrante and Maggiore, 2007; Viña and Chaves, 2003). Chlorophyll 
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synthesis in angiosperms is light dependent. Hence, the production of 

chlorophyll is impossible if plants are stored in the dark (Heyes and Neil 

Hunter, 2009). In rocket salad, the degradation of chlorophyll and 

carotenoids has been shown to be stimulated by the presence of light which 

stimulates the production of reactive oxygen species (Ferrante et al., 2004). 

However, research on lamb’s lettuce has shown that low-intensity light 

cycles have a positive effect on the concentrations of chlorophyll and 

carotenoids (Braidot et al., 2014). This is suggested to be due to the partial 

activation of photosynthesis which leads to the production of bioactive 

molecules and only low amounts of reactive oxygen species. 

2.4.2. Visible / near infrared spectroscopy 

Wavelengths of the electromagnetic spectrum between 780 and 2500 nm 

cover the near infrared (NIR) part, while wavelengths between 380 and 

780 nm cover the visual (Vis) part of the electromagnetic spectrum. In 

Vis / NIR spectroscopy, the sample which is measured is irradiated with 

electromagnetic radiation. This radiation hits the sample and can be 

transmitted, absorbed or reflected. The contribution of each of these effects 

depends on the chemical and physical properties of the sample (Nicolai et 

al., 2007). 

Absorption of a photon by C-H, O-H and N-H bonds of sugars, water and 

other organic compounds are the most dominant (Nicolaï et al., 2014). The 

fundamental vibrations occur in the infrared region. Hence, the most 

prominent absorption bands occurring in the NIR region of the spectrum are 

related to overtones and combinations of fundamental absorptions in the far 

and mid infrared (IR) part of the electromagnetic spectrum. Overtones occur 

when an atom or molecule is excited to another state than the first excited 

state. Combinations are observed when multiple vibrations are excited at the 

same time. This results in broad, overlapping and weaker absorption bands 

than in the far and mid IR region (Reich, 2005). In complex mixtures such as 

biological tissues the NIR spectra have no sharp peaks and they all look 

similar (Fig. 1.2).The spectra are dominated by overtone bands of the OH-
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bonds of water at 760, 970 and 1450 nm and carbohydrate absorbance 

bands exist around 750, 900, 1175 and 1400 nm (Nicolai et al., 2007; 

Xiaobo et al., 2010). Also, there are a lot of variables which are strongly 

correlated. These peculiarities of NIR spectra are the reason why 

chemometric data processing is essential to relate spectral information to 

sample properties (Nicolai et al., 2007). 

An NIR spectrophotometer is composed of a light source, which is usually a 

tungsten halogen light bulb, a sample presentation accessory, detector and 

extra optical components. The latter can be lenses, collimators, beam 

splitters, integrating spheres and optical fibers (Nicolai et al., 2007; Reich, 

2005). The classification of spectrophotometers is made based on the 

method to quantify the light intensity at different wavelengths and some 

examples are listed in Table 2.1 (Nicolai et al., 2007).  

Table 2.1 A list of monochromators used in Vis / NIR spectroscopy 

Name Explanation 

Filter The monochromator is a wheel with absorption or 
interference filters. The spectral resolution is limited. 

Scanning monochromator  A rotatable grating or a prism separate individual 
frequencies of radiation when these enter or leave the 
sample. The rotation is used to make the radiation of the 
individual wavelengths reach the detector. 

Fourier transform  An interferometer is used to generate modulated light; the 
time domain signal of the light reflected or transmitted by the 
sample can be converted into a spectrum via a Fourier 
transform. 

Photodiode array  A fixed grating disperses radiation onto an array of 
photodiode detectors. These can vary in material e.g. silicon 
(350–1100 nm), InGaAs (Indium Gallium Arsenide, 950 –
1700 nm). 

Laser based  No monochromator is present, but instead different lasers 
are used or the tuning of the laser is changed. 

Acoustic optic tunable filter  A diffraction based optical-band-pass filter is used that is 
tunable to pass different wavelengths by changing the 
frequency of an acoustic wave propagating through an 
anisotropic crystal medium. 

Liquid crystal tunable filter  A birefringent filter is used to create constructive and 
destructive interference based on the retardation, in phase 
between the ordinary and extraordinary light rays passing 
through a liquid crystal. In this way, they act as an 
interference filter to pass a narrow waveband of light. 
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Different measurement set-ups are available for obtaining near infrared 

spectra, i.e., reflectance, transmittance, transflectance and interactance (Fig. 

2.8). In a reflectance set-up the light source and detector are placed under a 

specific angle to avoid specular reflection. In a transmittance configuration 

the detector is positioned on the opposite site of the detector. Transflectance 

is a combination of these two. A highly reflective background is placed 

behind the sample which reflects all the radiation which would have passed 

through the sample. This radiation reflects off the background and interacts 

again with the sample. The detector is placed under an angle similar to the 

reflectance set-up. An interactance set-up has a light source and detector 

parallel to each other. It is necessary that the specular reflection cannot 

reach the detector. This can be achieved by using a cable which contains 

parallel optic fibers connected to the source or the detector on one side and 

the sample on the other side (Nicolai et al., 2007; Reich, 2005). 

 

Fig. 2.8 Setup for the acquisition of NIR spectra, with a light source (light bulb), sample (green), 
monochromator/detector (grey), support (black) and reflective background (white). The radiation 
is depicted as a thick solid arrow for incoming light, small solid arrow for internal scattering and 
a dotted arrow is used for the measured outgoing light. The interactance setup has a physical 
separation between the incoming and outgoing light. 
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The potential of NIR spectroscopy to analyze and characterize vegetables 

and fruits has been shown before (Nicolai et al., 2007). Applications include 

the nondestructive determination of soluble solids content and dry matter of 

kiwifruit (McGlone et al., 2002); firmness and soluble solids content of pear 

(Nicolai et al., 2008); soluble solids content of stone fruit (Golic and Walsh, 

2006); internal quality and optimal harvest date of apple (Lu et al., 2000; 

Peirs et al., 2001); bitterness, sweetness and crunchiness of chicory 

(François et al., 2008); moisture, ascorbic acid and soluble solids content of 

cabbage (Kramchote et al., 2014), among others. 

Specifically on leafy greens, NIR spectroscopy has been used to distinguish 

between differences in production methods of Lactuca sativa L. (Brito et al., 

2015); determine the nitrogen content in Lactuca sativa L. (Mao et al., 2015); 

determine the chlorophyll content in Lactuca sativa L. leaves (Yongli Zhu et 

al., 2011); predict the nitrate concentration of Lactuca sativa L. (Itoh et al., 

2015); predict chlorophyll, carotenoid and anthocyanin content of green and 

red lettuces (Steidle Neto et al., 2017); determine pH, water content and 

total phenol content of fresh cut lamb’s lettuce (Beghi et al., 2014; 

Giovenzana et al., 2014), among others. Hence, NIR spectroscopy has a lot 

of potential to determine the postharvest quality and freshness of lamb’s 

lettuce. 

2.4.3. Chlorophyll fluorescence 

When light is absorbed by chlorophyll molecules in a leaf, one of three things 

can happen. In most cases, the light is used to drive photosynthesis, but it 

can also be dissipated as heat or re-emitted as light. The latter is chlorophyll 

fluorescence. By measuring chlorophyll fluorescence, information about 

photochemistry can be gained (Henriques, 2009; Maxwell and Johnson, 

2000). 

The origin of chlorophyll fluorescence can be found in PSII (Fig. 2.2). The 

electrons of PSII need to pass through the different steps of the electron 

transport chain. As long as the first electron carrier (QA from PQ) has not 

passed the electron to the next one (QB from PQ), it is impossible for the first 
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acceptor to accept another electron from PSII. In this state, the reaction 

center is said to be in a closed state. This leads to a reduction in the 

efficiency of photosynthesis and an increase in chlorophyll fluorescence and 

heat dissipation. Of the absorbed light not used for photochemistry, most is 

converted into heat. (Henriques, 2009; Maxwell and Johnson, 2000; Taiz 

and Zeiger, 2010). 

2.4.3.1. Variable chlorophyll fluorescence 

When a leaf has been in the dark long enough, all the components of the 

photosynthetic electron transport chain are in the oxidized state. PSII is open 

and ready for photosynthesis. However, the mechanism for heat dissipation 

is not operational, because it needs a proton gradient over the thylakoid 

membrane. Hence, it needs the photosynthetic electron transport chain to 

work for a certain time to build its gradient. In this case, fluorescence is the 

only alternative to deactivate the excitation energy from PSII (Henriques, 

2009). 

 

 

Fig. 2.9 Typical response of a dark adapted leaf to a saturating flash of light plotted in a linear 
(A) and logarithmic (B) timescale (Based on Henriques, 2009). 
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A typical response of a dark adapted leaf to a saturating flash of light is 

shown in Fig. 2.9. In a linear timescale, the increase in fluorescence due to 

the closing reaction centers is shown by a vertical straight line from its origin 

(O) to its peak (P) (Fig. 2.9A). The decrease in fluorescence afterwards is 

mostly due to the reopening of the reaction centers when electrons move 

from the PQ to electron acceptors downhill in the photosynthetic electron 

transport chain. When the x axis is plotted on a logarithmic scale the vertical 

straight line is waved with two inflections at J and I (Fig. 2.9B). This OJIP 

curve shows the filling of PSII electron acceptors (Henriques, 2009). The rise 

from O to J is due to the closure of PSII reaction centers due to the oxidation 

of QA. Next, QA is reoxidized by QB which opens PSII and the curve 

becomes a bit less steep. The following steep rise from J to I reflects a new 

closure of PSII when QA is reduced. The reoxidation of Qa causes the curve 

to level off again at point I. The last rise to P corresponds to a full closure of 

PSII (Strasserf and Srivastava, 1995). 

The change in chlorophyll fluorescence with dark adapted leaves yields no 

information on the performance of PSII under real life continuous light 

conditions. Pulse amplitude modulation (PAM) fluorometers are used to 

measure chlorophyll fluorescence kinetics of leaves under field conditions 

(Brooks and Niyogi, 2011). PAM fluorometers use three types of light 

sources: weak modulated measuring light, actinic light with a moderate 

intensity and saturating light. The weak modulated measuring light is used to 

excite fluorescence and actinic light is used to drive photosynthesis. The 

detector is only sensitive to radiation which is modulated due to selective 

amplification of its low signal. Reflected or refracted actinic light is filtered out 

which makes it possible to measure fluorescence yield in sunlight (Brooks 

and Niyogi, 2011; Henriques, 2009). An example of a typical PAM trace is 

given in Fig. 2.10. Note that the maximum fluorescence yield in the light (Fm’) 

is lower than the one in the dark (Fm). This is due to the fact that part of the 

absorbed radiation can now be dissipated as heat. 

Chlorophyll fluorescence measurements are frequently used in 

photosynthesis research (Lu et al., 2002; Weng et al., 2005). After harvest, a 
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decrease in chlorophyll content is noticeable and can lead to a decrease in 

chlorophyll fluorescence (Agüero et al., 2007, 2011; Henriques, 2009; 

Krause and Weis, 1991). It has been shown that chlorophyll fluorescence 

measurements on iceberg lettuce heads at the time of harvest can be used 

to predict their postharvest quality (Schofield et al., 2005). However, it has to 

be noted that this experiment used a small amount of samples with a limited 

variation. Also, lamb’s lettuce and cucumber quality during storage could be 

evaluated using chlorophyll fluorescence measurements (Ferrante and 

Maggiore, 2007; Lin and Jolliffe, 2000). Hence, chlorophyll fluorescence 

measurements might be interesting to evaluate the postharvest quality and 

freshness of lamb’s lettuce. 

 

Fig. 2.10 Example of a PAM trace with the fluorescence yield of dark adapted (F0) and light 
adapted (F0’) leaves; the maximum fluorescence yield in the dark (Fm) and in the light (Fm’); Fv’ 
is the difference between Fm’ and F0’; Fs’ is the steady state fluorescence yield in actinic light; 
Fq’ is the fluorescence quenching under actinic light due to photochemistry at PSII. The dark 
adapted sample is initially submitted to a weak measuring beam (MB) to determine F0. Next, a 
saturating pulse (SP) is applied to obtain Fm. After reaching Fm the chlorophyll fluorescence 
returns to F0. This process can be speeded up by applying far-red (FR) light which is 
preferentially absorbed by PSI and leads to a faster oxidation of the PSII-associated electron 
transport chain. Actinic light (AL) is turned on and a number of spikes are given to suppress 
photochemical quenching. This reveals the Fm’. After the AL has been switched off, a 
progressive recovery of the Fm takes place to detect possible damaged reaction centers due to 
the light period. (Based on Henriques, 2009). 
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2.4.3.2. Chlorophyll fluorescence emission ratios 

Chlorophyll fluorescence intensities can be compared when exposed to 

different wavelengths of excitation light. This way, absorption of these 

wavelengths by other compounds can be seen as a change in the intensity 

of chlorophyll fluorescence. In tobacco leaves, flavonoids can screen off UV 

radiation (Fig. 2.11). When the UV light is absorbed by flavonoids in the 

adaxial epidermis, less light is absorbed by chlorophyll in the parenchyma 

cells. Hence, less fluorescence can be emitted. This leads to a smaller 

intensity of chlorophyll fluorescence when the leaves are exposed to UV light 

compared to when they are exposed to red light. The same principle has 

also been used in grape berries where green light was screened off by 

anthocyanins (Bengtsson et al., 2006; Ghozlen et al., 2010). 

 
Fig. 2.11 Example of the variable absorption of light with a different wavelength in tobacco 
leaves. UV light is absorbed by flavonoid accumulation in the adaxial epidermis, while this is not 
the case for red light. This leads to a larger signal in chlorophyll fluorescence when the leaves 
are exposed to red light compared to UV light (Tremblay et al., 2011).  
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Table 2.2 Nomenclature of fluorescence emission signals. The central wavelength of the 
excitation and emission band is indicated between brackets. 

Emission (nm) 

Excitation 

Ultraviolet A 
(373 nm) 

Blue 
(470 nm) 

Green 
(516 nm) 

Red-orange 
(635 nm) 

Yellow fluorescence (590 nm) YFUV YFB
a YFG

a YFR
a 

Red fluorescence (685 nm) RFUV RFB RFG RFR 

Far-red fluorescence (735 nm) FRFUV FRFB FRFG FRFR 
a These signals are reflected light rather than fluorescence 

Multiple excitation fluorescence sensors using light emitting diodes (LED’s) 

are commercially available. Each LED emits a narrow wavelength band of 

light onto the sample, one wavelength band at a time (Cerovic et al., 2009; 

Tremblay et al., 2011). These bands are typically situated in the ultraviolet A 

(UV, 375 nm), blue (B, 470 nm), green (G, 516 nm) and red-orange (R, 625 

nm) regions of the electromagnetic spectrum (Fig. 2.12). The pulsation of 

these LED’s is synchronized with three photodiode detectors which detect 

the yellow (YF, 590 nm), red (RF, 685 nm) and far-red (FRF, 735 nm) 

fluorescence emitted by the sample. Hence, for each excitation wavelength 

band there are three fluorescence emission signals. An overview of the 

nomenclature is shown in Table 2.2. (Cerovic et al., 2009; Ghozlen et al., 

2010; Tremblay et al., 2011). 

Fluorescence signals are sensitive to the distance between the sample and 

the detector, and the light scattering in the tissue. Hence, it is encouraged to 

combine fluorescence signals in ratios (Cerovic et al., 2009). Ratios have 

been used to determine chlorophyll, anthocyanin and flavonol content (Agati 

et al., 2007, 2005; Buschmann, 2007; Cerovic et al., 2002). Also, a nitrogen 

balance index has been developed which provides information on the 

carbon-nitrogen ratio (Cartelat et al., 2005; Demotes-Mainard et al., 2008; 

Meyer et al., 2006). Some combinations of different fluorescence signals are 

summarized in Table 2.3. 

Fluorescence emission ratios have been used for determining wine grape 

phenolic maturity, flavonols and anthocyanin content (Cerovic et al., 2008; 

Ghozlen et al., 2010; Kolb et al., 2003); estimating anthocyanin and 
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flavonoid content in apples (Hagen et al., 2006; Merzlyak et al., 2008); and 

determining anthocyanin content in olives (Agati et al., 2005); among others.  

More specific on leaf samples, fluorescence emission ratios have been 

successful in determining photo protection in leaves (Bilger et al., 2001; 

Cerovic et al., 2002); identifying phenolic and flavonoid content in lettuce 

plants (Zivcak et al., 2017); estimating anthocyanin content in leaves of 

different species (Bidel et al., 2015; Müller et al., 2013; Pfündel et al., 2007); 

estimating flavonoid content in leaves of different species (Agati et al., 2011; 

Latouche et al., 2013; Sytar et al., 2015, 2014); in monitoring the nitrogen 

status in grapevine and tobacco leaves (Cerovic et al., 2015; Tremblay et al., 

2011). Hence, plant pigment fluorescence emission ratios could also be 

informative on the postharvest quality and freshness of lamb’s lettuce. 

 

 

Fig. 2.12 The excitation light frequencies (UV, B, G, R) and fluorescence detection frequencies 
(YF, RF, FRF) of the Multiplex 3 (Based on Tremblay et al., 2011). 
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2.4.4. A need for multivariate statistics 

The output of certain measurement set-up, e.g. Vis/NIR spectroscopy and 

chlorophyll fluorescence emission ratios, produces a lot more data which 

can be strongly correlated. Hence, these datasets can be less straight 

forward to interpret than the variables of measurement techniques with only 

a few variables with lower correlation, as is the case for the chlorophyll 

fluorescence measurements. Hence, it is necessary to apply multivariate 

statistics (also called chemometrics) to search for correlations between the 

measured independent variables and the response variable of interest 

(Ghozlen et al., 2010; Nicolai et al., 2007). 

2.4.5. On-line measurements of fresh produce 

Fast and non-destructive measurements are essential for on-line 

measurement of fresh produce. Compared to Vis/NIR spectroscopy and 

chlorophyll fluorescence emission ratios, classical chlorophyll fluorescence 

measurements in daylight take up more time for each measurement or the 

measured leaves need a dark adaptation period before the actual 

measurement, which can take up to 30 minutes (Henriques, 2009; Maxwell 

and Johnson, 2000). Besides, only information on the status of PSII is 

gathered which can be considered as limited for a measurement technique 

which requires 30 min per measurement. Vis/NIR spectroscopy and 

chlorophyll fluorescence emission ratios can be performed in ambient light in 

a shorter time (< 1 s) without any dark adaptation period and seem more 

suited for on-line measurements (Cerovic et al., 2009; Nicolai et al., 2007).  
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Table 2.3 Commonly used fluorescence ratios 

Acronym Formula Description Reference 

SFRG G

G

FRF
RF

 
Simple chlorophyll Fluorescence 
Ratio (Green excitation LED); 
linked to chlorophyll content in 
the sample. 

Buschmann, 2007 

SFRR R

R

FRF
RF

 
Simple chlorophyll Fluorescence 
Ratio (Red excitation LED); 
linked to chlorophyll content in 
the sample. 

Buschmann, 2007 

FERRG R

G

FRF
FRF

 
Fluorescence Excitation Ratio 
(Red and Green LED’s);  linked 
to the screening of leaves by 
anthocyanins. 

Pfündel et al., 2007 

FLAV R

UV

FRF
log

FRF
 
 
 

 
Flavonol index; directly 
proportional to the flavonol 
content in the sample. 

Cerovic et al., 2002 

ANTHRG R

G

FRF
log

FRF
 
 
 

 
Anthocyanin index (Red and 
Green excitation LED’s); 
proportional to the anthocyanin 
content of the sample. 

Agati et al., 2007, 
2005 

ANTHRB R

B

FRF
log

FRF
 
 
 

 
Anthocyanin index (Red and 
Blue excitation LED’s); 
proportional to the anthocyanin 
content of the sample. 

Agati et al., 2007, 
2005 

FERARI 

R

5000
log

FRF
 
 
 

 
Fluorescence Excitation Ratio 
Anthocyanin Relative Index; has 
a positive correlation with 
anthocyanin content of red 
grape berries. 

Ghozlen et al., 2010 

NBIR R UV

R R

UV

SFR FRF
=

FRF RF
FRF
 
 
 

 
Nitrogen Balance Index based 
on SFRR; complex ratio that 
depends on epidermal phenol 
and chlorophyll content. It 
responds to the nitrogen 
nutrition of the plant. 

Cartelat et al., 2005; 
Demotes-Mainard et 
al., 2008; Meyer et 
al., 2006 

NBIG G UV

R G

UV

SFR FRF
=

FRF RF
FRF
 
 
 

 
Nitrogen Balance Index based 
on SFRG; complex ratio that 
depends on epidermal phenol 
and chlorophyll content. It 
responds to the nitrogen 
nutrition of the plant. 

Cartelat et al., 2005; 
Demotes-Mainard et 
al., 2008; Meyer et 
al., 2006 
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 Chemometrics 

Chlorophyll fluorescence emission ratios and Vis/NIR spectroscopy yield a 

complex fingerprint of the measured sample which requires advanced 

statistical data processing to extract chemical information from these 

multivariate signals. This branch of analytical chemistry involving advanced 

statistics is known as chemometrics. Models can be created to extract useful 

information, but can also be used to make predictions on future unknown 

samples. The construction of these models is carried out in different steps 

and is based on different algorithms. All of these influence the final model 

performance. 

2.5.1. Data compression and regression 

When measurement set-ups produce a high number of correlated variables, 

there is a need for statistical techniques that replace these by a smaller set 

of uncorrelated variables. The process of reducing the size of the dataset is 

referred to as data compression. 

2.5.1.1. Principal component analysis 

Principal component analysis (PCA) is a projection method that transforms a 

given set of variables into new orthogonal variables called principal 

components (PC). These PC’s are linear combinations of the original 

variables and are calculated in an iterative process. The first PC explains the 

most variance in the data. The second PC explains as much as possible of 

the remaining variance orthogonal to the first one and so on (MacGregor and 

Kourti, 1995; Naes et al., 2002). Hence, the PC’s are in such an order that 

each one covers more of the variance than the following one (Fig. 2.13). Any 

remaining variance is called the residual. Usually, only a few PC’s are 

required to cover the larger part of the variance in the data, resulting in an 

easier interpretation of the PCA model compared to the original data 

(MacGregor and Kourti, 1995; Naes et al., 2002). The purpose of PCA is to 
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find the directions in the data space where the variance between the data 

points is the largest.  

Scores and loadings are important for interpreting data correctly in PCA. 

Scores are the coordinates of the samples in the new coordinate system of 

PC’s, while loadings are the contribution of each of the original variables to 

the new PC’s (Fig. 2.13). Loadings and scores plots are plots with the PC’s 

on the axis where the loading vectors or scores are plotted. In a bi-plot, both 

loadings and scores are shown in the same plot.  

The covariance between variables and the differences between samples are 

easily visualized using PCA, because similar variables and samples are 

grouped together in a loadings and scores plot, respectively. This makes 

PCA useful for exploration of the data at the initial stages of data analysis. 

 

 

Fig. 2.13 An example of PCA on a three variable dataset (X1, X2, X3). On the left, the data is 
shown in three dimensions where the variables are plotted on each axis. In a PCA the first PC is 
drawn in the direction where it explains the most variance. Next the second PC is drawn 
orthogonal onto the first one in the direction which it explains the most of the remaining 
variance. The red lines between the data points and the blue plain of PC1 and PC2 are the 
residuals, the variance not explained by either of the 2 PC’s. On the right the blue plain is 
plotted in two dimensions with PC1 and PC2 as the axis. It describes the same dataset in less 
variables. It is called a scores plot. The data points have scores for each PC which are 
highlighted in green for one point, any remaining information in the residuals is lost. Also on the 
right, the loading vectors of the original variables are plotted in orange. This is called a loadings 
plot. The length and direction of each vector illustrates the importance of each variable for the 
PC’s. When scores and loadings are plotted together, it is called a bi-plot (Based on Saeys, 
2014).  
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2.5.1.2. Principal component regression 

Principal component regression (PCR) is a multivariate regression technique 

aimed at establishing a relationship between independent X variables and 

an observed response variable Y (Wold et al., 2001). PCR has 2 steps. First 

the independent X variables are decomposed using PCA. Next, a multiple 

linear regression is performed on the first PC’s instead of using the original 

variables. The advantages are that less variables are used. Hence, less 

coefficients have to be estimated which results in a more reliable estimation 

of the regression coefficients. Also, PC’s are orthogonal and thus 

uncorrelated which is good for multiple linear regression which does not 

perform well with highly correlated data (Naes et al., 2002). The downside of 

using PC’s is that they are focused on explaining the variance of X variables 

which are not necessarily the most informative with respect to the response 

variable Y (Wold et al., 2001). 

2.5.1.3. Partial least squares regression 

Partial least squares regression (PLSR) is a multivariate regression 

technique which overcomes the disadvantages of PCR (Wold et al., 2001). 

The new orthogonal variables in PLSR, called latent variables (LV’s), are 

constructed in such a way that they maximally capture the covariance 

between the independent X variables and the response variable Y. Hence, 

LV’s are ordered according to their relevance with respect to the response 

variable Y. The number of LV’s required to capture a certain fraction of the 

variation in Y is typically lower than the number of PC’s in a PCR model with 

similar performance (Nicolai et al., 2007). 

2.5.2. Identifying outliers 

Outliers are samples which are substantially different from the other samples 

in a population. They can have different origins, i.e., typing error, errors in 

the sensor, bad calibration, bad sample presentation, etc. A sample can be 

an outlier according to its values for the X variables and/or the Y variables. It 
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may also have a different relation between the X and Y variables than the 

other samples in the population. If an outliers is not dealt with through 

correction or removal, it can disturb the subsequent analyses (Bro et al., 

2014; Nicolai et al., 2007). 

An important first step in outlier detection is to inspect the raw data (Bro et 

al., 2014). However, for multivariate data it may be difficult to identify 

samples which have a different relation between the variables. Therefore, 

multivariate statistics have been proposed to detect points which are outside 

of the normal group of sample points of the population (Nicolai et al., 2007). 

The Q residual is a measure for the lack-of-fit of the lower dimensional 

representation of the data by the model. It is a residual between the sample 

and the projection of the sample on the hyperplane defined by the model. 

The Hotelling T² statistic is a measure for the distance of a sample’s 

projection on the model hyperplane to the center of that hyperplane (Bro et 

al., 2014; Wise et al., 2006). Samples can be outliers due to being faulty 

samples or due to being underrepresented. If the latter is true, removing the 

sample is not the solution, but similar samples should be added to the 

population (Bro et al., 2014). In practice, only outliers which have a negative 

effect on the regression model should be removed from the dataset (Martens 

and Naes, 1989). 

2.5.3. Validation methods 

The goal of making a prediction model is to construct a model which will 

perform well on future samples. This is not the same as describing the 

calibration data very well, because there is a chance of overfitting these 

training data. Hence, it is necessary to evaluate the model performance on 

data which was not used for training the model (Andersen and Bro, 2010). 

This can be obtained by splitting the dataset in a calibration set and a 

validation set. Typically, the ratio of the number of calibration to validation 

samples is 2 to 1. The calibration data is used for the construction of the 

model, while the validation data is used for determining the prediction error. 

The selection of the data from the calibration set can be at random, manual 
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or groupwise. However, there is always the chance that the calibration and 

validation dataset are not representative for the complete population (Wise 

et al., 2006), such that the obtained results depend on the data split.  

Cross validation (CV) is a method for testing a model’s performance where 

different splits of the data in calibration and validation are used and for each 

combination a calibration and prediction are performed (Naes et al., 2002). A 

leave-one-out cross validation (LOOCV) removes one sample from the 

calibration dataset at a time and a model is constructed from the remaining 

samples. The value of the response variable for this one sample is estimated 

by this model. Next, the following sample is taken out of the calibration 

dataset and the previous sample is placed back. This procedure is repeated 

until all the samples have been left out once and the variance of all the 

prediction residuals is estimated (Naes et al., 2002). However, for larger 

data sets this procedure is computationally intensive and has a great 

tendency to underestimate the true prediction error. Hence, it is 

recommended to leave multiple samples out in each round (Baumann, 

2003). Several methods of splitting up the data in CV are known, e.g. 

venetian blinds, contiguous blocks, random segments, groupwise (Naes et 

al., 2002; Wise et al., 2006). 

Apart from such internal validation strategies involving the splitting of a 

dataset, one can also evaluate the model performance on an independent 

test set, e.g., measured in a different year, at a different location, in a 

different season, on a different cultivar, etc. (Nicolai et al., 2007). This is 

known as external validation. Such an independent test set provides a more 

realistic way of testing the prediction performance of the model. Therefore, it 

is recommended to use an external validation when possible. 
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2.5.4. Evaluating model performance 

It is necessary to evaluate the prediction error of a calibration model and a 

common way to describe it is with the root mean square error (RMSE):  
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where n is the number of samples in the CV or validation dataset, ˆiy and iy  

are the predicted and measured values for the ith sample respectively. This 

value gives the average uncertainty for future predictions on new samples 

expressed in the same units as the original response variable (Naes et al., 

2002). Depending on the residuals on which it is calculated, it is defined as 

the root mean square error of cross validation (RMSECV), validation 

(RMSEV) or prediction (RMSEP). The value is also used to determine the 

model complexity by choosing the number of LV’s which minimizes the 

RMSECV or RMSEV (Nicolai et al., 2007). 

The coefficient of determination (R²) is another useful statistic. It has a value 

between 0 and 1 and represents the fraction of the variance of the response 

variable Y that is explained by the model based on the X variance (Wright, 

1921). 

2.5.5. Pre-processing methods 

Modification of the data before analysis is called pre-processing. It is used to 

remove irrelevant variance and linearize the variables to improve the 

performance of the regression techniques (Nicolai et al., 2007; Wise et al., 

2006). Linearization is important, because most modelling methods imply a 

linear relation (e.g., PCR, PLS) and this is easier to model than non-linear 

ones. Irrelevant sources of variation in the data will force the model to 

consume more degrees of freedom (more PC’s or LV’s). Thus, it is advisable 

to remove as much of this interfering variation as possible. A variety of pre-

processing methods have been developed (Rinnan et al., 2009) and the 

ones used in this PhD research are briefly explained below. 
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2.5.5.1. Mean centering and standardization 

Mean centering subtracts the average from each variable. It makes all the 

variables interpretable in terms of variation around the mean. 

Standardization divides each variable of a sample by the standard deviation 

of this variable calculated over all samples. In this way, all variables are 

given an equal importance when the typical variance is standardized to one, 

but other standardizations are possible (Naes et al., 2002). Standardization 

is very useful when variables expressed in different units are included as X 

variables (Nicolai et al., 2007). When mean centering and standardization 

are combined, it is often referred to as autoscaling (Wise et al., 2006) 

2.5.5.2. Scatter correction 

The most commonly used scatter correction methods are multiplicative  

scatter  correction (MSC), standard normal variate (SNV) and normalization 

(Rinnan et al., 2009). These techniques are designed to reduce the 

variability caused by light scattering between samples and are frequently 

used with NIR spectroscopic data. MSC is probably one of the most used 

pre-processing techniques. It is applied when additive (baseline shift) and 

multiplicative (tilt) effects have to be removed from the spectrum. MSC tries 

to remove the scatter effect by linearizing each spectrum to a reference 

spectrum. Typically, the average of all the spectra is chosen as a reference 

spectrum, but it can also be a generic reference spectrum (Nicolai et al., 

2007; Rinnan et al., 2009). SNV is another popular method for scatter 

correction of NIR data which gives very similar results to MSC (Dhanoa et 

al., 1994). SNV normalizes each spectrum to a zero mean and unit variance. 

Compared to standardization, SNV normalizes all the variables over the 

entire spectrum for each sample instead of each variable being standardized 

to the standard deviation of that column. (Nicolai et al., 2007; Rinnan et al., 

2009). 
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2.5.5.3. Multivariate filtering 

Sometimes, pre-processing techniques are not selective enough to remove 

signals which interfere with a good calibration. Multivariate filtering methods 

before the calibration can improve this calibration process. These filtering 

methods identify how variables change together and filter out patterns in 

these variables which are not beneficial to the model. A common way these 

filters work is by downweighting X variables which change when the Y 

variables are similar or by removing variation in the X variables which is 

uncorrelated to the Y variation, because samples with similar Y variables 

should theoretically have a similar covariance structure (Wise et al., 2006). 

The most popular techniques working according to this principle are 

Orthogonal Signal Correction (OSC), which downweights variance in the X-

block that is orthogonal to the Y-block (Wold et al., 1998); External 

Parameter Orthogonalization (EPO), which orthogonalizes a number of 

patterns identified as clutter based on differences between similar samples 

(Roger et al., 2003) and Generalized Least Squares Weighting (GLSW) 

(Martens et al., 2003; Zorzetti et al., 2011), which downweights variables 

based on differences between similar samples with an amount based on a 

weighting parameter α. 

2.5.6. Variable selection 

Variable selection encompasses the removal of irrelevant, noisy or 

unreliable variables. This improves model performance resulting in better 

predictions, reduced model complexity and improved robustness (Andersen 

and Bro, 2010; Mehmood et al., 2012; Xiaobo et al., 2010). This might seem 

unnecessary, because up and downweighting of variables in relation to the 

response variable is an inherent property of PLS. However, The PLS-

algorithms accuracy is reduced when more variables are used (Mehmood et 

al., 2012). Likewise, irrelevant variables can negatively affect the model 

robustness (Höskuldsson, 2001). 
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The ideal way to perform variable selection could be seen as trying all 

different combinations of variables and choosing the best set. However, this 

is not feasible, due to the fact that there are too many possible combinations 

which would make this too cumbersome and would take up too much time. 

Also, there is a high risk of overfitting unless the number of samples is much 

higher than the number of possible combinations of variables (Andersen and 

Bro, 2010). Hence, variable selection techniques have been developed 

which try to find a good set of variables instead of the optimal set of 

variables (Andersen and Bro, 2010).  

Variable selection techniques can improve model performance, but on the 

other hand useful variables can be eliminated which should always be 

avoided. Likewise, using fewer variables makes each variable more 

influential for the final model. This makes a correct selection of variables 

even more important (Nørgaard et al., 2000). A wide variety of variable 

selection techniques are described in literature (Mehmood et al., 2012; 

Xiaobo et al., 2010). Hence, the techniques explained below are limited to 

the ones which have been used in this PhD research. This selection was 

made based on the software at hand.  

2.5.6.1. Variable Importance in Projection scores 

The Variable Importance in Projection (VIP) score of a certain variable is a 

summary of the importance of that variable for the projections to find the 

LV’s. The VIP score for the jth variable is defined as: 
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where p is the total number of variables, A the number of used LV’s, 

(waj / ║wa║)² represents the importance of the jth variable for the ath LV and 

SSa is the sum of squares explained by the ath LV. Variables with a value 
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lower than 1 are considered unimportant while variables with a higher VIP 

score are considered more important. (Chong and Jun, 2005; Mehmood et 

al., 2012). 

2.5.6.2. Interval PLS 

When data are highly correlated, a window of variables is better in use 

instead of variable selection on each variable individually. Spectral data is 

highly correlated which is why interval PLS (iPLS) is a variable selection 

technique commonly used in spectroscopy. (Andersen and Bro, 2010; 

Nicolai et al., 2007; Wise et al., 2006). The first step in interval PLS (iPLS) is 

determining the interval size which can be a window of adjacent variables or 

limited to one variable. Forward iPLS fits a PLSR model to each interval and 

the interval with the smallest prediction error is selected. Next, combinations 

of this interval with each of the remaining intervals are made and a PLSR 

model is fitted to each combination. The combination with the smallest 

prediction error is selected. The process of adding an interval to the 

previously selected intervals is repeated until there is no improvement in the 

prediction error when an extra interval is added. Backward iPLS starts 

initially with all the intervals included in the selection and in turn each interval 

is excluded. A PLSR model is fitted to each combination of remaining 

intervals and the combination with the smallest prediction error is selected. 

This process is repeated and each time one interval is excluded until there is 

no further improvement in the prediction error when an extra interval is 

excluded (Nørgaard et al., 2000; Wise et al., 2006; Xiaobo et al., 2010). 

A consideration which should be made when using iPLS is that it may be 

that the best single-interval model is not included in the best dual-interval 

model. The latter selection of intervals cannot be found using iPLS, due to 

the stepwise approach (Wise et al., 2006).  
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2.5.6.3. Monte Carlo Uninformative Variable Elimination 

Monte Carlo Uninformative Variable Elimination (MC-UVE) PLS is a Monte 

Carlo based variant of UVE-PLS. In UVE-PLS a set of random variables with 

the same size as the original set of X variables is added to the independent 

X variables (Centner et al., 1996). Next, a PLSR model is constructed with a 

LOOCV. For each of the variables a reliability index (RI) is calculated based 

on the stability and importance of the regression coefficients of the PLSR 

model as estimated by each cycle of the LOOCV. The RI for the jth variable 

is defined as: 

 
j

j

j
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where jβ  and 
jσ  are the mean and standard deviation of the regression 

coefficients which have been calculated for variable j on the different 

calibration subsets in the LOOCV. The random artificial X variables contain 

no useful information for the PLSR model to work with. Hence, the original X 

variables with an RI smaller than or equal to the largest RI obtained for the 

random artificial X variables are considered uninformative and are excluded 

(Centner et al., 1996; Mehmood et al., 2012; Xiaobo et al., 2010). 

MC-UVE-PLS does not use random artificial variables. Instead, a Monte 

Carlo sampling of the samples is used instead of an LOOCV. The jβ , 
jσ  

and RI are calculated from the PLSR models based on the different Monte 

Carlo subsets (Cai et al., 2008; Mehmood et al., 2012). The RI ranks the 

variables from good (high RI) to bad (low RI) and new PLSR models are 

made with different amounts of variables where variables with a lower RI are 

discarded first. The final selection of variables to retain is based on the 

model performance of the different PLSR models. In most cases, this is the 

RMSECV or RMSEV. 
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2.5.6.4. Genetic algorithms PLS 

Genetic algorithms PLS (GA-PLS) is a variable selection technique which is 

inspired by Darwin’s theory of natural selection combined with PLSR 

(Andersen and Bro, 2010; Lucasius et al., 1994). First, the data is divided in 

intervals of equal size. Different combinations of these intervals, called 

individuals, are created by coding their ‘chromosomes’ as a sequence of 

zeros and ones indicating for each interval of variables whether it is used or 

not (genes) (Wise et al., 2006). The PLSR model performance of each 

individual is evaluated in cross validation (CV) to determine which are the 

‘fittest’ individuals. The worst performing half of the individuals are removed 

and the best performing half is used to ‘breed’ new individuals. This is done 

by pairing up individuals and exchange sections of the ‘chromosomes’ with a 

single or double cross over (Fig. 2.14). These new individuals are combined 

with the best half of the previous generation and all of these individuals are 

again evaluated based on their PLSR model performance in CV. This 

process is repeated until a predefined fraction of the population of individuals 

shares the same genes or until a certain number of generations has been 

completed (Lucasius et al., 1994; Mehmood et al., 2012; Wise et al., 2006). 

 Conclusions 

In this chapter, an overview has been given of the main physiological 

pathways in plant leaves (photosynhesis, respiration, alternative pathways) 

and how they can change during postharvest storage period. Limited 

information was found on the physiological changes in lamb’s lettuce during 

a postharvest storage period. It is known that they can be stored at low 

temperatures (<4 °C) up to four weeks without any visual indication of this 

storage period (Chapter 1). The changes in metabolite content and 

respiration rate during postharvest storage may allow to evaluate if there are  
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still sugars available for the energy metabolism or whether other energy 

sources, e.g., amino or fatty acids, are used. Therefore, this will be 

investigated in chapter three.  

Long storage periods prior to commercialization are undesirable, because 

they reduce the remaining storage life available to consumers after 

purchase. Therefore, there is a demand for a fast and non-destructive 

method to detect undesirable storage periods. Non-destructive 

measurements are desirable, because they do not generate waste and can 

deliver fast accurate information about the quality of lettuce before it is sold.  

This chapter gave an overview of some known techniques, i.e. Vis/NIR 

spectroscopy, chlorophyll fluorescence emission ratios and chlorophyll 

fluorescence. The latter measurements are less useful in practice due to the 

fact that these measurements need to be performed in the dark or after a  

 

 

Fig. 2.14 Schematic of single and double cross-over breeding. Two individuals A and B produce 
new inividuals C and D based on their own information. This information is represented as dark 
and light squares and represent included and exluded variables respectively. The information 
from individual B is colored darker than the information from individual A to visualize the cross-
over proces. In a single cross-over there is only one cross-over point, shown here as a vertical 
red line. For individual C the first part of its information originates from individual B, but after the 
cross-over point, the remaining information is from individual A. the opposite is noticable for 
individual D. In double cross-over breeding there are two cross-over points. In this case for 
individual C, before the first and after the last cross-over point, the data originates from 
individual A and between these cross-over points the data originates from individual B (Wise et 
al., 2006). 
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dark adaptation period which can last up to 30 minutes. Also, only 

information on the status of PSII can be obtained from such measurements 

which can be considered as limited for a ‘fast’ measurement technique 

lasting as much as 30 min. Vis/NIR spectroscopy and chlorophyll 

fluorescence emission ratios can be performed in ambient light in a shorter 

time (< 1 s) without any dark adaptation period and seem more suited for on-

line measurements. Hence, the potential of Vis/NIR spectroscopy and 

chlorophyll fluorescence emission ratios to estimate the prior storage period 

of lamb’s lettuce will be investigated in chapter four and five, respectively. 

 



 

3. Respiration and 
physiological events of 

lamb’s lettuce during 
storage 

 Introduction 

During storage, leafy vegetables are kept within an optimal range of 

temperature and relative humidity to maintain their quality (Kader, 2013, 

2002). A lower temperature preserves quality by reducing the speed of 

metabolic processes. The optimal temperatures for leafy vegetables are 

between 1 and 4 °C (Kader, 2002). The soluble photosynthetic sugars, 

mainly glucose, fructose and sucrose, are the main energy reserves during 

postharvest storage. Lamb’s lettuce has hardly any starch present as a 

carbon source (Enninghorst and Lippert, 2003). Glucose, fructose and 

sucrose can be respired or employed in biosynthetic reactions. The 

carbohydrates synthesized through photosynthesis before harvest result in a 

limited energy source for respiration. Leafy vegetables stored in dark 

environments are incapable of performing photosynthesis. Hence, it is 

possible for them to experience sugar starvation (Morkunas et al., 2012). To 

cope with nutrient stress, plants change their metabolism to employ different 

energy sources through protein and lipid breakdown (Brouquisse et al., 

1991; Chen et al., 1994). These metabolic changes are essential to maintain 

respiration and basic metabolic processes (Morkunas et al., 2012). The 
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objective of this work was to study the metabolic changes occurring in 

lamb’s lettuce during postharvest storage to get a better view on the effects 

it has on the shelf life potential. The hypothesis is that postharvest storage 

leads to a decrease in soluble carbohydrate content and a shift of the 

metabolism to alternative energy sources. 

 Materials and methods 

3.2.1. Plant material and storage conditions 

Lamb’s lettuce (Valerianella locusta L.) samples were harvested on March 

24, 2015, by six different commercial growers and immediately stored in 

refrigerated rooms (2 - 3 °C). One grower provided samples of cv ‘Festival’, 

another one provided samples of cv ‘Audace’ and four growers provided 

samples of cv ‘Trophy’. An overview of the growing and harvesting 

conditions for each batch of lamb’s lettuce are shown in Table 3.1. During 

the day of harvest the samples were transported to the nearby experimental 

station Inagro (Rumbeke-Beitem, Belgium) where the storage experiment 

took place. The samples were stored at 1 °C and 4 °C to evaluate the 

influence of storage temperature on the metabolism (Fig. 3.1). Preliminary 

experiments (data not shown) showed that post-harvest handling and 

packaging had a significant influence on the storage potential of the 

samples. Therefore, all samples were only analyzed once. 

Table 3.1 Overview of the growing and harvesting conditions for each batch of lamb’s lettuce 
used in the experiment. 

Grower Cultivar* 
Sowing 
density 

(seeds/m²) 

Growing 
period 
(days) 

Harvest 
date 

Harvest 
mechanism 

Rinsing 
time 

Storage 
temperature 

local facility (°C) 
1 Trophy 412 100 24/03 manual 10:00 2.0 
2 Festival 850 65 24/03 automated 19:00 2.0 
3 Trophy Unknown unknown 24/03 manual Unknown 2.0 
4 Trophy 360 103 24/03 manual Unknown 2.8 
5 Trophy 700 75 24/03 automated 19:00 3.0 
6 Audace 780 87 24/03 automated 8:30 2.0 

* All cultivars were from the seed company HM. Clause 
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Fig. 3.1 Outline of the experimental setup. The number of days indicates the duration from the 
start of the experiment. 

3.2.2. Respiration 

After 1, 2, 9, 16 and 21 d in storage, 40 g of lamb’s lettuce plant material 

was used for respiration measurements (Fig. 3.1). The density of lamb’s 

lettuce was determined in previous research using Archimedes’ principle 

(data not shown). This value (ρ = 237 g/L) was used to determine the 

volume taken by the plant material. Each measurement day, new plants 

were used for respiration measurements. The plant material (±0.2 L) was 

placed in a 1.7 L respiration jar with a solid block of 0.6 L at the bottom to 

reduce the volume of the headspace, resulting in a remaining space around 

0.9 L. Of each grower both the samples stored at 1 °C and 4 °C were used. 

The CO2 and O2 partial pressure of the headspace of the respiration jars 

which contained sample material were determined using a Compact Gas 

Chromatograph (Interscience, Louvain-la-Neuve, Belgium) and a Checkmate 

II (PBI Dansensor, Denmark), respectively. After the initial measurement, the 

airtight respiration jars were stored overnight in a cool room at 1 °C and 

4 °C. After 17 h, a second measurement of the headspace was performed. 

The largest average increase of CO2 in the headspace after 17 h was 

0,75%. The O2 consumption rates and CO2 production rates were calculated 

by taking the difference of the gas measurements between the initial and 

final measurement and dividing it by the sample mass and time between two 

measurements (Bekele et al., 2015). The respiration quotient (RQ) was 
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calculated from these measurements as the ratio of the CO2 produced to the 

O2 consumed (Fonseca et al., 2002; Ho et al., 2013). The oxidation of 1 

mole of hexose produces 6 mole of CO2 and consumes 6 mole of O2. 

3.2.3. Metabolite analysis 

3.2.3.1. Sample preparation 

Lamb’s lettuce leaves were sampled at 1, 2, 9, 16 and 21 d (Fig. 3.1). A 

sample for each grower at each storage temperature was taken. The leaves 

were ground into a fine powder after freezing in liquid nitrogen and were 

then stored at -80 °C. Hundred milligrams of ground powder was extracted 

at 70 °C for 15 min with 700 µL methanol containing 30 µL of 291 mg L-1 

internal standard (phenyl-β-D-glucopyranoside in methanol). Next, 700 µL 

distilled water was added and vortexed vigorously. Chloroform (350 µL) was 

added to the mixture to separate the non-polar fraction. Subsequently, the 

mixture was centrifuged for 15 min at 20800 g at 4 °C. The polar fraction 

was pipetted into a new safe-lock tube and dried with N2 at 50 °C. The dried 

residue was oximated by dissolving the residue in 40 µL of 20 g L-1 

methoxyamine hydrochloride in pyridine. The mixture was vortexed 

vigorously and incubated for 90 min at 30 °C. Next, 60 µL 

N, O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA) was added to derivatize 

the mixture. BSTFA reacts with both alcohols and acids and the reaction 

results in trimethylsilyl ethers and trimethylsilyl esters, respectively, which 

are more volatile. Finally, the derivatization was carried out at 37 °C for 

30 min (Mbong et al., 2017b; Oms-Oliu et al., 2011; Roessner et al., 2000). 

3.2.3.2. Apparatus 

A GC-MS system consisting of a 7890A gas chromatograph (Agilent 

Technologies, Palo Alto, CA, USA) and 5975C VLMSD mass spectrometer 

with triple-axis detector (Agilent Technologies) was used to separate the 

metabolites. A 30 m HP-5MS column (with a 5 % phenyl methysilox 
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stationary phase) with 250 µm internal diameter and 0.25 µm film thickness 

(Agilent Technologies) was used for the analysis. A split ratio of 5:1 and 20:1 

was used for the analysis of acids and sugars, respectively. A 2-layer 

sandwich injection was used as injection type containing a 0.2 µL external 

standard (Tetradecane) and a 0.2 µL air gap. The carrier gas was helium at 

a flow rate of 1 mL min-1. The temperature of the sample inlet and ion source 

was set to 230 °C, while the temperature of the interface was set to 250 °C. 

In the oven, the temperature cycles for the acid and sugar runs were 

different to get the optimized run times of 34.5 and 17.3 min. The acid run 

started with a 2 min heating period at 50 °C followed by a continuous 

increase of 10 °C min-1 to a final temperature of 325 °C. The sugar run 

started with a 2 min heating period at 90 °C followed by a continuous 

increase of 50 °C min-1 to 160 °C, 10 °C min-1 to 180 °C, 50 °C min-1 to 

215 °C, 10 °C min-1 to 230 °C, 50 °C min-1 to 255 °C, 10 °C min-1 to 290 °C 

and 50 °C min-1 to a final temperature of 325 °C. In both runs, the final 

temperature was maintained for 5 min. Before the injection of the 

subsequent sample, the system was equilibrated for 1 min at an initial 

temperature of 50 °C or 90 °C for acids and sugars, respectively. The 

GC-MS program was retention time-locked to tetracosane (Agilent 

Technologies). 

3.2.3.3. Quality Control 

Four quality control (QC) samples, which were a mixture of all the measured 

samples, were measured for both the sugar and acid run on each day 

spread out evenly between the samples. This resulted in a QC sample every 

3 to 4 samples which were used to detect possible drifting of the GC-MS. 

3.2.3.4. GC-MS analysis 

The chromatograms and mass spectra generated by the GC-MS were 

evaluated and deconvoluted using Agilent MSD Chemstation (Agilent 

Technologies Inc., Wilmington, USA), AMDIS (Automated Mass Spectral 
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Deconvolution and Identification System, National Institute of Standards and 

Technology, Gaithersburg, Maryland; USA) and NIST MS Search (National 

institute of standards and technology Mass Spectral Search Program for the 

NIST/EPA/NIH Mass Spectral Library, National Institute of Standards and 

Technology, Gaithersburg, Maryland, USA). The retention times and mass 

spectra of the metabolites were compared with Agilent Fiehn GC-MS 

Metabolomics RTL library (Agilent Technologies) for identification. A second 

confirmation was done using an in-house built library. The levels of the 

metabolites were normalized using internal standard (phenyl-β-D-

glucopyranoside in methanol), external standard (Tetradecane), peak area 

and sample weight. Calibration curves were obtained using pure standards 

and the content of each metabolite was calculated. All standards were 

purchased from Sigma Aldrich, Belgium.  

Lists of metabolites measured with the sugar and acid runs are shown in 

Table 3.2 and 3.3 respectively. These metabolites were used in standard 

mixtures and they were extracted from lamb’s lettuce samples. They are 

listed with the m/z used for quantification and the retention time. For each 

analyte, two extra qualifier ions were used to prevent misidentification. 

Metabolites in the text are not mentioned with the derivatized name of the 

molecule, but with the underivatized one. The content is expressed on a dry 

weight basis. 

3.2.4. Statistical analysis 

An ANOVA (α=0.05) was carried out in JMP Pro (JMP® Pro, Version 12, 

SAS Institute Inc., Cary, North Carolina, United States). Time in storage and 

storage temperature were considered as continuous variables while the 

growers were a categorical variable. Also, an interaction term for time in 

storage and storage temperature was included together with a quadratic 

time effect. 
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Table 3.2 Analyte derivatives which were identified in standard mixtures and in lamb’s lettuce 
samples using the sugar run. 

Analyte Retention time (min) m/z used for quantification 

Fructose 3TMS 7.988 307.2 

Glucose 3TMS 8.119 319.1 

Glucose-6-phosphate 3TMS 10.127 387.1 

Mannitol 3TMS 8.272 319 

Myo-inositol 3TMS 9.016 305.1 

Ribose 3TMS 6.864 307.1 

Sucrose 4TMS 11.823 451.2 

 

 

Table 3.3 Analyte derivatives which were identified in standard mixtures and in lamb’s lettuce 
samples using the acid run. 

Analyte Retention time (min) m/z used for quantification 

Aspartate 2TMS 14.646 232.1 

Beta-alanine 3TMS 13.441 290.1 

Citrate 4TMS 18.103 273.1 

Fumarate 2TMS 12.321 245 

GABA 3TMS 14.75 304.1 

Glutamate 2TMS 15.811 246.1 

Glutamine 3TMS 17.529 156 

Glycine 2TMS 11.841 174.1 

Isoleucine 1TMS 11.663 158 

L-alanine 1TMS 8.864 116.1 

Leucine 1TMS 11.654 158 

Malate 4TMS 14.259 233.1 

Norleucine  10.261 86 

Pyroglutamate 1TMS 14.643 156 

Pyruvate 1TMS 8.04 174 

Serine 3TMS 12.61 204.1 

Succinate 2TMS 11.886 247 

Valine 1TMS 10.547 144 
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 Results 

3.3.1. Respiration 

During the storage period of 21 d, the CO2 production rate and O2 

consumption rate gradually declined (Fig. 3.2). There was no significant 

difference between lamb’s lettuce stored at 1 °C and 4 °C. Only the time in 

storage was significant for the respiration rates. The respiratory quotient 

(RQ) remained constant over time and there was no influence of storage 

temperature on respiration rates or RQ. 

 

Fig. 3.2 The O2 consumption (a, ), CO2 production (a, ) and RQ (b) of lamb’s lettuce during 
a storage period at 1 °C ( ) and 4 °C ( ). The error bars represent the standard error of 
the mean (n=6).   
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3.3.2. Metabolites 

Twenty-five metabolites were identified (Fig. 3.4, 3.5 and 3.6). There was a 

significant effect of grower on the content of all metabolites, except that of 

beta-alanine (Table 3.4). The variability of the metabolite content between 

samples from different growers on the same day in storage after harvest, 

was greater than the technical variability of the QC samples. The fructose 

and glucose content in samples from six growers are shown in Fig. 3.3. The 

samples from each grower are marked differently to illustrate the grower 

effect. The samples from grower 1 are always the ones with the highest 

fructose and glucose content. 

  

 

Fig. 3.3 Time series showing the changes in 
content of fructose, glucose and the total sugar 
balance during a postharvest storage period of 
21 d for grower 1 ( ), 2 ( ), 3 ( ), 4 ( ), 
5 ( ) and 6 ( ). Each grower had samples 
stored at 1 °C and 4 °C, but storage 
temperature had no significant (p > 0.1) effect 
on fructose and glucose content. Hence, the 
average of these two samples for each grower 
was used. Storage temperature had an effect 
on sucrose content, but the grower effect had 
a greater effect than the temperature effect. 
The error bars represent the standard error of 
the mean (n=2). 
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Of the sugars and sugar alcohols measured, the content of fructose, 

glucose, mannitol and sucrose decreased significantly over time, resulting in 

a decrease of 46.7 %, 43.8 %, 52.1 % and 41.1 %, respectively, after 21 d in 

storage compared to the first day in storage (Fig. 3.4). The total sugar 

balance in hexose units decreases over time. Glucose, fructose and sucrose 

represent over 90 % of the total sugar balance during the entire 21 d storage 

period. Myo-inositol and ribose content increased significantly resulting in a 

31.6 % and 29.1 % increase after 21 d in storage compared to the first day 

in storage. The glucose-6-phosphate (G6P) content showed no significant 

influence of storage time. Storage temperature affected only sucrose 

significantly amongst all measured sugars and sugar alcohols. A higher 

storage temperature resulted in a content which was 36.2 % smaller at a 

storage temperature of 4 °C compared to the content at 1 °C after 21 d in 

storage. 

 
Fig. 3.4 Time series showing the changes in the content of sugars, sugar alcohols and total 
sugar balance in hexose units during postharvest storage for 21 d at 1 °C ( ) and 4 °C 
( ). The error bars represent the standard error of the mean (n=6).  
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For all the measured amino acids besides glutamine, norleucine and 

pyroglutamate (aspartate, beta-alanine glutamate, glutamine, glycine, 

isoleucine, L-alanine, leucine, serine, valine) a significant increase in content 

was observed with increasing storage time (Fig. 3.5). The increase was the 

most extreme for isoleucine and leucine which both increased 21 and 38 fold 

over 21 d storage at 1 °C and 4 °C, respectively. Norleucine decreased 

significantly with 59.6 %, while the glutamine and pyroglutamate content did 

not change significantly during the 21 d storage period. The content of beta-

alanine, glutamate, glutamine, glycine, L-alanine, norleucine and 

pyroglutamate were not significantly correlated with storage temperature. 

However, beta-alanine varied significantly with the interaction of storage time 

and temperature. The content of all other measured amino acids except 

aspartate (isoleucine, leucine, serine and valine) increased significantly with 

storage temperature. The aspartate content after 21 d in storage was 21.0 % 

smaller for samples stored at 4 °C than for samples stored at 1 °C. Also, the 

interaction between storage time and storage temperature affected the 

content of isoleucine, leucine, serine and valine significantly. The isoleucine, 

leucine, serine and valine content after 21 d in storage was respectively 

80.1 %, 80.1 %, 54.6 % and 73.4 % higher for  a storage temperature of 

4 °C than for storage at 1 °C. 

The measured metabolites of the tricarboxylic acid (TCA) cycle (citrate, 

fumarate, malate, succinate), pyruvate and gamma-aminobutyric acid 

(GABA) had different responses to a storage period (Fig. 3.6). Fumarate, 

malate, pyruvate and succinate content decreased with 18.1 %, 16.0 %, 

31.2 % and 53.2 %, respectively, after 21 d in storage, while the content of 

GABA increased with 74.7 % over the same period. A negative effect of the 

storage temperature was significant for fumarate and succinate. This 

resulted in a decrease of 31.8 % and 23.8 %, respectively, at a storage 

temperature of 4 °C compared to the content at 1 °C after 21 d in storage. 
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Table 3.4 P-values for the calculated F-values of the different factors for the analyzed 
compounds. 

Analyte Time in 
storage 

Storage 
temperature Grower Time in storage x  

Storage temperature Time in storage² 

Aspartate 0 0.043 0 0.487 0.813 

Beta-alanine 0.664 0.464 0.086 0.003 0.073 

Citrate 0.079 0.259 0 0.328 0.365 

Fructose 0.001 0.116 0 0.137 0.423 

Fumarate 0.015 0.006 0 0.362 0.396 

G6P 0.293 0.965 0 0.771 0.302 

GABA 0.006 0.199 0.002 0.664 0.035 

Glucose 0.027 0.669 0 0.325 0.575 

Glutamate 0.003 0.503 0 0.288 0.460 

Glutamine 0.765 0.837 0 0.083 0.129 

Glycine 0 0.256 0 0.157 0.171 

Isoleucine 0 0.000 0.005 0 0.617 

L-alanine 0 0.256 0 0.218 0.259 

Leucine 0 0.000 0.005 0 0.616 

Malate 0.015 0.214 0 0.560 0.110 

Mannitol 0.006 0.874 0 0.279 0.857 

Myo-inositol 0 0.420 0 0.436 0.186 

Norleucine 0.022 0.967 0 0.976 0.765 

Pyroglutamate 0.169 0.149 0 0.810 0.802 

Pyruvate 0.004 0.275 0 0.331 0.097 

Ribose 0 0.980 0 0.718 0.023 

Serine 0 0.004 0 0.008 0.660 

Succinate 0 0.038 0 0.916 0 

Sucrose 0 0.039 0 0.458 0.057 

Valine 0 0.004 0 0.006 0.292 
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Fig. 3.5 Time series showing the changes in amino acid content during postharvest storage for 
21 d at 1 °C ( ) and 4 °C ( ). The error bars represent the standard error of the mean 
(n=6). 
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Fig. 3.6 Time series showing the changes in content of pyruvate, GABA and TCA cycle 
metabolites during postharvest storage of 21 d at 1 °C ( ) and 4 °C ( ). The error bars 
represent the standard error of the mean (n=6). 

 Discussion 

3.4.1. Grower effect 

Each batch of plants grown by a different grower has its own specific 

growing and harvesting conditions which can be grower related (Table 3.1). 

However, other factors like the local environment and weather are also 

potential influencing factors. The ‘grower’ effect has to be seen as a 

confounded effect of all these different factors together. Hence, the grower 

itself is not necessary the cause of all this variability. This variability leads to 

larger standard errors in the graphs of Fig. 3.4, 3.5 and 3.6. Although the 

‘grower’ effect was significant for most of the metabolites and can lead to 

large differences in sugar content (Fig. 3.3), the respiration rate of the lamb’s 

lettuce plants was not significantly affected by the grower (Fig. 3.2). 
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3.4.2. Sugars and sugar alcohols 

It has been reported that glucose, fructose and sucrose are the main 

substrates for respiration in lamb’s lettuce (Enninghorst and Lippert, 2003). 

Although the temperature these authors considered was higher, a similar 

pattern during storage was noticeable. Initially, the amount of sucrose 

decreased rapidly, while glucose and fructose remained more or less stable. 

Only after a longer storage period, the amount of glucose and fructose 

decreased (Fig. 3.4 and 3.7). The conversion of sucrose to glucose and 

fructose postpones the decrease in glucose and fructose content. The total 

sugar balance decreased during the storage period of 21 d. 

The reason for the increase of ribose content during a starvation period is 

unknown, although a similar increase has been observed in lamb’s lettuce 

cells and Arabidopsis thalliana L. (Mbong et al., 2017b; Thimm et al., 2004). 

In A. thalliana, the increase in ribose content was linked to cell wall and 

nucleotide degradation (Thimm et al., 2004). The increase in ribose content 

observed in our data thus may be a general indicator of senescence 

associated breakdown processes.  

In celery, mannitol is converted to fructose-6-phosphate by an enzyme 

called mannitol dehydrogenase. Mannitol dehydrogenase expression is 

suppressed when the sugar content is high. This sugar repression allows 

large amounts of mannitol to be stored as a back-up carbohydrate and 

osmoprotectant (Stoop et al., 1996). If the same applies to lamb’s lettuce, 

the decrease of mannitol content during storage can be a consequence of 

the decrease in sugar content, because this leads to an increased 

conversion of mannitol to fructose-6-phosphate. Other research on lamb’s 

lettuce cells showed an increase in mannitol content during storage (Mbong 

et al., 2017b). However, this may be due to osmotic stress on these cell 

cultures by the broth, because it has been reported that osmotic stress has a 

negative influence on the conversion of mannitol to fructose-6-phosphate 

(Stoop et al., 1996). 

The increase in myo-inositol content has also been documented in lamb’s 

lettuce cells (Mbong et al., 2017b). It has been shown that myo-inositol 
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accumulates as a response to different environmental stresses (Loewus and 

Murthy, 2000). As such, it can aid the cells in maintaining their membrane 

integrity (Lee et al., 2007; Loewus and Murthy, 2000). Also, sugars derived 

from inositol can be used for ascorbic acid synthesis and as an energy 

reserve for the respiration metabolism (Kroh et al., 1970; Loewus, 1969, 

2006; Loewus et al., 1962). It has been shown that the ascorbic acid content 

decreases in lamb’s lettuce during a storage period at 20 °C, but the relation 

between an increase in myo-inositol content and the possible use for myo-

inositol in ascorbic acid synthesis during storage is unclear from this study 

(Spinardi and Ferrante, 2012). 

3.4.3. Amino acids 

During the postharvest storage period there was a general increase in the 

content of free amino acids noticeable (Fig. 3.5 and 3.7). The amino acid 

content increased faster at a storage temperature of 4 °C than at 1 °C, which 

can be explained by a more active metabolism at higher temperatures. 

Amino acids can be used as an alternative source of energy through 

autophagy during carbon starvation (Aubert et al., 1996; Brouquisse et al., 

1991; Dieuaide-Noubhani et al., 1997; Hildebrandt et al., 2015; Inoue and 

Moriyasu, 2006; Moriyasu and Ohsumi, 1996). An increase in free amino 

acid content during a starvation period has been observed in sycamore cells 

(Journet et al., 1986), Maize root tips (Brouquisse et al., 1991; Dieuaide-

Noubhani et al., 1997), rice cells (Chen et al., 1994), Arabidopsis cells 

(Thimm et al., 2004), tobacco cells (Inoue and Moriyasu, 2006) and lamb’s 

lettuce cells (Mbong et al., 2017b). However, the use of amino acids as the 

main carbon source would have led to a lowered RQ (Fonseca et al., 2002; 

Gran and Beaudry, 1993; Saglio and Pradet, 1980). The measured RQ 

values remained stable around 1 which meant that one CO2 was produced 

for each O2 consumed (Fig. 3.2). The RQ value should have decreased 

considerably during the storage period to assume a shift to amino acids as 

the main carbon source for respiration, but no significant change was 

noticeable. The increased amount of free amino acids was most likely due to 
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proteolysis, but the amino acids did not appear to be the sole dominant 

substrate for energy production. 

 

Fig. 3.7 The changes in content during a 21 d storage period at 1 ( ) and 4 °C ( ) are 
shown in a simplified scheme of the primary metabolism (gray background) and catabolic 
pathways of other metabolites (white background). The arrows link the relation between 
metabolites and can contain multiple steps in the actual metabolism. Detailed graphs are 
located in Fig. 3.4, 3.5 and 3.6 The error bars represent the standard error of the mean (n=6). 
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3.4.4. Pyruvate, GABA and TCA cycle metabolites 

Pyruvate is the last metabolite of the glycolysis pathway and many 

metabolites catabolize to pyruvate which is why it is hard to find a direct link 

between the decrease in pyruvate content and other compounds (Fig. 3.6 

and 3.7). It has been documented that the pyruvate content in onions 

decreases during a postharvest storage period (Blanchard et al., 1996). On 

the other hand, Mbong et al. (2017b) reported an increase in pyruvate 

content in lamb’s lettuce cells which could have originated from alanine and 

malate. However, in our study the total pyruvate content decreased, which 

means pyruvate was probably consumed in the TCA cycle. 

GABA is a non-protein amino acid and is produced from glutamate in a 

reaction catalyzed by glutamate decarboxylase (Shelp et al., 1999). The 

increase in GABA content may have different origins (Fig. 3.6 and 3.7). 

Stress induces glutamate decarboxylase which increases the conversion of 

glutamate to GABA. Also, a correlation between the increase in GABA and 

reactive oxygen species or wound stress has been reported (Bown et al., 

2006). The function of GABA during postharvest storage is still unclear, but it 

is possible that GABA has a double function as metabolite and signal 

molecule (Bouché and Fromm, 2004). Several researchers suggested a role 

for GABA in controlling the carbon-nitrogen balance, in stress response, 

regulating pH and as an alternative pathway for utilizing glutamate (Bouché 

et al., 2003; Bouché and Fromm, 2004; Bown et al., 2006; Shelp et al., 

1999). 

Metabolites of the TCA cycle had variable responses on the postharvest 

storage period and the storage temperature only had a significant effect on 

fumarate and succinate (Fig. 3.6 and 3.7). These redox equivalents 

produced by the TCA cycle are an important source for oxidative 

phosphorylation in the mitochondria (Popova and Pinheiro de Carvalho, 

1998). In other plants it was observed that during a starvation or dark period 

the glyoxylate pathway was used in combination with beta-oxidation of fatty 

acids in peroxisomes or proteolysis of proteins, resulting in a lower RQ 

(Chen, 2000; Dieuaide-Noubhani et al., 1997; Kunz et al., 2009). This 
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decrease in RQ can be explained by the fact that when molecules which 

contain less oxygen per carbon are oxidized, more oxygen has to be 

consumed. While it was expected that the RQ value would have decreased 

considerably during the storage period to assume a shift to fatty acids as the 

main carbon source for respiration, no significant change was noticeable 

(Fig. 3.2). It is uncertain which carbon source is the main source of energy 

because no measurements were performed to determine fatty acid content. 

The decrease in respiration rate during a starvation period has been 

documented in literature, but the reason for this decrease has been 

associated with different events. Journet et al. (1986) assumed that during 

starvation the total number of mitochondria per cell decreases, resulting in a 

lower respiration rate. They considered the availability of useable 

carbohydrates to be less important (Journet et al., 1986). Other researchers 

concluded that the respiration rate is controlled by the sugar supply and the 

amount of ATP required for metabolic processes on the biosynthetic level 

(Brouquisse et al., 1991). Research in Arabidopsis showed that the 

expression of many genes associated with the TCA cycle and the electron 

transport chain in mitochondria was reduced in conditions of low sugar 

content (Thimm et al., 2004). More recently, a similar decrease in respiration 

rate has been found in lamb’s lettuce cells (Mbong et al., 2017b). This 

research also showed a higher respiration rate when the cells were not 

experiencing a sugar starvation period. This indicates that substrate 

availability is an important factor in the decrease in respiration rate. 

 Conclusions 

After 21 d of storage, the general sugar content of lamb’s lettuce had 

decreased. The RQ value indicated that carbohydrates remained the main 

carbon source during storage. However, the increase of free amino acids 

due to proteolysis indicated that the plants coped with nutrient stress and 

that amino acids were made available for respiration (Brouquisse et al., 
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1991; Chen et al., 1994). The increase in concentration for most of the 

amino acids depended on the storage temperature in which a higher 

temperature resulted in a larger increase. However, the storage temperature 

did not influence the respiration rate. The 21 d in storage led to a significant 

decrease of the respiration rate, which might have been an indication of a 

shortage in soluble carbohydrates. In conclusion, after 21 d of storage, 

carbohydrates were still the main energy source but the lamb’s lettuce was 

preparing to use a mixture of different carbon sources for respiration. As the 

main purpose of respiration during postharvest storage is to provide energy 

for maintenance purposes, the energy production decreased and this likely 

would also affect shelf life potential. 

As it has been shown in chapter two, sugar content is detectable by Vis/NIR 

spectroscopy. Hence, the decrease of sugars during storage might be easily 

and non-destructively detectable and used for determining and quantifying 

the time in storage after harvest or even make predictions about the shelf life 

potential. Therefore, the potential of Vis/NIR spectroscopy as an option for 

determining the storage time of lamb’s lettuce, will be explored in the next 

chapter. 

 



 

4. Estimation of storage 
time of lamb’s lettuce 

based on Vis / NIR 
spectroscopy 

Based on Bert A.J.G. Jacobs, Bert E. Verlinden, Els Bobelyn, An Decombel, 

Peter Bleyaert, Joris Van Lommel, Isabel Vandevelde, Wouter Saeys, Bart 

M. Nicolai, Estimation of the prior storage period of lamb’s lettuce based on 

visible/near infrared reflectance spectroscopy, Postharvest Biology and 
Technology, Volume 113, March 2016, Pages 95-105, ISSN 0925-5214  

and Jacobs, B.A.J.G., Verlinden, B.E., Bobelyn, E., Decombel, A., Bleyaert, 

P., Van Lommel, J., Vandevelde, I., Saeys, W., Nicolai, B.M., 2015. 

Predicting stored period and shelf life potential of Lamb’s lettuce using 

Vis/NIR reflectance spectroscopy. Acta Hortic. 1079, 207–213. 

 Introduction 

Lamb’s lettuce is a popular greenhouse vegetable thanks to its ease of use 

and ready-to-eat character. It is used both as a leafy salad and as an 

ingredient in ready to eat salad mixtures (Enninghorst and Lippert, 2003; 

Ragaert et al., 2004). However, lamb’s lettuce presented to the market by 

the growers is not always freshly harvested. Depending on the season, it 

can be stored up to three weeks in the cooling facility of the growers. Stored 

samples are by eye visually indistinguishable from fresh produce, but they 

have impaired shelf life potential (Rico et al., 2007). This is a crucial problem 



74 4. Estimation of storage time of lamb’s lettuce based on Vis / NIR spectroscopy
 

as the perceived level of freshness and appearance are two of the most 

important attributes for ready to eat salad choice (Dinnella et al., 2014; 

Ferrante et al., 2004). Losses due to batches with limited shelf life lead to 

significant economic losses in distribution and lower consumption quality 

(Fao, 1989; Ferrante et al., 2009). During a postharvest storage period 

sucrose, glucose, fructose and starch are the main substrates of respiration 

in lamb’s lettuce (Enninghorst and Lippert, 2003; Chapter 3). Also, the 

reduction of chlorophyll content is very slow and depends on the length of 

storage time (Ferrante and Maggiore, 2007). Carotenoids are stable during 

the first five days of storage, but decrease after this initial stable period. This 

in contrast to anthocyanin content which starts to increase after an initial 

stable period of eight days (Ferrante et al., 2009).  

To detect prior storage of lamb’s lettuce, a fast and nondestructive 

measurement set-up is needed which estimates how long a batch of lamb’s 

lettuce has been stored before it is commercialized. Nondestructive 

measurements using visible / near infrared (Vis/NIR) spectroscopy may 

provide this nondestructive method. The potential of NIR to characterize and 

analyze fruit and vegetables has been shown before. Applications include 

the nondestructive determination of soluble solids content and dry matter of 

kiwifruit (McGlone et al., 2002); firmness and soluble solids content of pear 

(Nicolai et al., 2008); soluble solids content of stone fruit (Golic and Walsh, 

2006); internal quality and optimal harvest date of apple (Lu et al., 2000; 

Peirs et al., 2001); bitterness, sweetness and crunchiness of chicory 

(François et al., 2008); moisture, ascorbic acid and soluble solids content of 

cabbage (Kramchote et al., 2014), among others. Specifically on leafy 

greens, NIR spectroscopy has been used to distinguish between differences 

in production methods of Lactuca sativa L. (Brito et al., 2015); determine the 

nitrogen content in Lactuca sativa L. (Mao et al., 2015); determine the 

chlorophyll content in Lactuca sativa L. leaves (Yongli Zhu et al., 2011); 

predict the nitrate concentration of Lactuca sativa L. (Itoh et al., 2015); 

predict chlorophyll, carotenoid and anthocyanin content of green and red 

lettuces (Steidle Neto et al., 2017); determine pH, water content and total 
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phenol content of fresh cut lamb’s lettuce (Beghi et al., 2014; Giovenzana et 

al., 2014), among others. 

In the previous chapter, it has been shown that general sugar content 

decreased during a storage period. Hence, the decrease of sugars during 

storage might be easily and non-destructively detectable and used for 

determining and quantifying the time in storage after harvest or even make 

predictions about the shelf life potential. Therefore, the aim of this study was 

to investigate the potential of Vis/NIR spectroscopy to estimate how long a 

batch of lamb’s lettuce has been stored before it is presented to the market 

and to predict its shelf life potential. 

 Materials and methods 

4.2.1. Plant material and storage conditions 

Samples of nine cultivars (Agathe, Audace, Baron, Calarasi, Cirilla, Gala, 

Pulsar, Trophy, Palace) of lamb’s lettuce (Valerianella locusta L.) were 

harvested between September 2012 and November 2014. Batches 

harvested before 2014 were grown at the experimental station Inagro 

(Rumbeke-Beitem, Belgium). Batches harvested in 2014 contained more 

diverse plant material from commercial growers. Different treatments were 

applied during the postharvest period to induce extra variation. This extra 

variation was necessary, because the final prediction model had to be able 

to handle new samples which had different unknown storage conditions. An 

overview of treatments, cultivars and harvesting periods is given in 

Table 4.1. 

Lamb’s lettuce harvested in February 2014 was additionally subjected to a 

shelf life holding period of 10 d at 8 °C after harvest and storage periods at 1 

or 4 °C of 4, 7, 15 and 21 d, respectively. 
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4.2.2. Quality attributes 

The quality of lamb’s lettuce harvested in February 2014 was judged by a 

panel of experts at harvest and after a shelf life holding period. The quality 

scores ranged from 0 (wilted) to 10 (excellent). At the same days 

colorimetric measurements were performed using a CM-2600d 

spectrophotometer (Konica Minolta, Tokyo, Japan) on the adaxial and 

abaxial sides of the biggest leaf of a rosette. Color was expressed in L*a*b* 

and L*C*h* color space ((Hunt and Pointer, 2011). 

 

 

Table 4.1 Harvest periods, cultivars, growers and different treatments of the samples used. 

Harvest 
period Dataset Cultivars Growers Treatments 

September 
(2012) 

Validation 
(n=191) 

Trophya Experimental 
station 

Different harvesting times 
(9h, 12h), stored at 1°C 

January 
(2013) 

Calibration 
(n=767) 

Agathea, Audacea, 
Calarasib, Cirillab, 
Trophya, Palacea 

Experimental 
station 

Different transport temperature 
(20°C, 4°C), stored at 4°C 

March 
(2013) 

External test 
(n=83) 

Baronc Experimental 
station 

Different transport temperature 
(20°C, 4°C), stored at 4°C 

July 
(2013) 

Calibration 
(n=80) 

Audacea, Galaa, 
Pulsarb, Trophya 

Experimental 
station 

Different moistening schedule 
during storage, stored at 4°C 

November 
(2013) 

Calibration 
(n=139) 

Trophya Experimental 
station 

Moistened during storage, 
stored at 4°C 

February 
(2014) 

Calibration 
(n=165) 

Audacea, Calarasib, 
Trophya 

8 Commercial 
growers 

Different wrapping during 
storage, stored at 1 and 4°C 

May  
(2014) 

External test 
(n=86) 

Audacea, Pulsarb 5 Commercial 
growers 

Different wrapping during 
storage, stored at 1 and 4°C 

November 
(2014) 

Calibration 
(n=132) 

Trophya, Audacea 7 Commercial 
growers 

Different wrapping during 
storage, stored at 1 and 4°C 

All cultivars were from the seed companies a HM. Clause, b Rijk Zwaan and c Bayer. 
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4.2.3. Vis/NIR transflectance spectroscopy 

From each selected rosette, only the leaf with the largest surface area was 

used for Vis/NIR transflectance spectroscopy measurements. Adaxial and 

abaxial transflectance spectra (380 - 1690 nm, wavelength increment 2 nm) 

of 191, 767, 83, 80, 139, 165, 86 and 132 lamb’s lettuce leaves harvested in 

September 2012, January 2013, March 2013, July 2013, November 2013, 

February 2014, May 2014 and November 2014 respectively were acquired. 

Vis/NIR transflectance spectra were acquired using a Zeiss Corona 1.7 (Carl 

Zeiss, AG, Germany) Silicon (Si) - Indium Gallium Arsenide (InGaAs) diode 

array with a 0°/45° transflectance set-up using a fiber optics probe (Nicolai et 

al., 2007). The full width at half maximum of the Si and InGaAs diode array 

is 10 nm and 18 nm, respectively. The spectrophotometer was calibrated 

every 20 minutes. After each calibration, the white reference was measured 

again and the transflectance spectrum between 380 and 1690 nm was 

verified to be between 99% and 101% before proceeding to the actual 

measurements. If this was not the case the calibration would be performed 

again. This was done to be sure of a decent calibration. For each 

measurement, the leaf sample was placed between a polished white PTFE 

block and the measuring head which had a circular measurement area with 

a diameter of 2.5 cm. The measurement area includes almost the entire 

surface area of a lamb’s lettuce leaf. Spectra were acquired at least once a 

week during a period of three to four weeks. At each measurement point 

during storage new samples from the same batch were used to minimize the 

effect of sample handling on the quality of the samples. 

4.2.4. Prediction model 

4.2.4.1. Data matrix 

First, the adaxial and abaxial spectra were compared visually and using 

PCA. The technique used to build prediction models was PLSR (Wold et al., 

2001). Preliminary analysis showed a decrease in R², root mean square 

error of calibration (RMSEC) and cross validation (RMSECV) when only the 
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adaxial or abaxial spectrum was used compared to concatenated spectra. 

The R² decreased from 0.83 for the concatenated matrix to 0.78 and 0.80 for 

the adaxial and abaxial spectrum, respectively. Also, the decrease in the 

RMSEC and RMSECV was 0.5 and 0.1 d for the adaxial side and 0.5 and 

0.2 d for the abaxial side. Based on these preliminary results, the 

independent variables were the concatenated adaxial and abaxial spectra. 

The dependent variable was storage time after harvest (days).The adaxial 

and abaxial spectra of the measured lamb’s lettuce leaves were placed in 

succession in the data matrix. The regions in the combined spectra where 

the noise was too high (380 - 418 nm) were ignored. As the change from a 

Si to an InGaAs detector resulted in a bump in the spectrum, the range  

where the detectors change (962 - 992 nm) was also ignored. For possible 

practical implementations, it would be more interesting to have a cheaper 

measurement set-up. Preliminary analysis showed a rise in R² from 0.81 to 

0.86 when the wavelengths above 1100 nm were discarded. Also, a 

decrease in the RMSEC and RMSECV of respectively 0.5 and 0.7 d was 

observed with the exclusion of wavelengths above 1100 nm. Therefore, the 

analyses in this study were limited to the theoretical range of a Si detector 

(380 - 1100 nm). The lab set-up in this research used an InGaAs detector 

with wavelengths greater than 950 nm, resulting in a better signal to noise 

ratio in the 950 - 1100 nm range with higher wavelengths compared to a Si 

detector. This relative better performance would have to be taken into 

account if wavelengths in this region were retained in the final prediction 

model. 

From the initial 2843 combined spectra 767 were measured on samples 

harvested in January 2013. Of all the spectra, 27% originated from the same 

harvesting period and were grown by the same grower (Table 4.1). To 

minimize the overrepresentation of this harvesting period, while retaining as 

much of the variation as possible, a selection of 25% of the 767 spectra was 

made using the Kennard-Stone algorithm (Kennard and Stone, 1969) using 

the PLS-Toolbox (Eigenvector Research Inc., Wenatchee WA, USA) in 

Matlab (MATLAB R2013a, The MathWorks, Inc., Natick, Massachusetts, 
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United States). Additionally, eight outliers were discarded manually based on 

Q residuals and Hotelling T² statistics. 

The 706 spectra acquired in January 2013 (193), July 2013 (79), November 

2013 (138), February 2014 (164) and November 2014 (132) were used as 

calibration data. A cross validation (CV) was applied to evaluate the PLSR 

model performance during construction. An initial PCA on the combined 

spectra highlighted that different harvest periods were the cause of the main 

variation between samples. Hence, each harvest period was used as a 

separate CV group to assure that the model would be able to cope with 

unknown new harvest periods. The 190 spectra acquired in September 2012 

were used as a validation set for wavelength selection. An external test set 

was used for validating the accuracy and robustness of the final prediction 

models. This external test set consisted of 165 spectra acquired in March 

2013 (81) and May 2014 (84). 

For each PLSR model, an optimal number of LV’s was selected based on 

the RMSEC, RMSECV and the estimated signal to noise ratio (S/N). The 

latter was calculated using the ‘estimatefactors’ algorithm in the PLS-

Toolbox. This algorithm resamples the data and when the loadings change 

significantly between resamplings, the factor is probably based on noise and 

not on signal. An S/N greater than three is considered informative. This way, 

it is possible to estimate the number of significant factors in multivariate 

data. (Henry et al., 1999; Sug Park et al., 2000). 

4.2.4.2. Wavelength Selection 

Different wavelength selection techniques were applied on the spectra to 

improve the prediction potential and robustness of the PLSR model by 

removing wavelength variables which are not informative for predicting the 

dependent variable. Spectra from September 2012 were used as a 

validation set for wavelength selection to prevent overfitting during 

wavelength selection. The applied wavelength selection techniques were 

Variable Importance in Projection (VIP) scores (Chong and Jun, 2005), 

interval PLS (iPLS) (Nørgaard et al., 2000), Genetic Algorithms PLS 
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(GA-PLS) (Lucasius et al., 1994) and Monte Carlo Uninformative Variable 

Elimination PLS (MC-UVE-PLS) (Cai et al., 2008).  

iPLS 

Interval PLS was performed in automatic mode with an interval size of 2 nm 

(one variable). 

GA-PLS 

The GA-PLS parameters used in this study are listed in Table 4.2. Limited 

convergence in the selection of wavelengths was preferred due to the 

specific CV of the GA-PLS algorithm in PLS-Toolbox which prohibits a CV 

for each harvest period. Hence, the maximum convergence was chosen at 

40% and 25 replicate runs were performed. The GA-PLS output of the final 

generations was first analyzed for differences between models with a good 

and bad RMSECV. Wavelengths related to a higher RMSECV were 

considered uninformative and were discarded. The remaining wavelengths 

were analyzed in a different way. The final models of GA-PLS after 50 

generations used a different combination of wavelengths. Wavelengths 

which were retained in more models were considered more important for 

good predictions. Based on the presence of each wavelength in all of the 

final models different PLSR models were constructed with different numbers 

of retained wavelengths. The optimal number of selected wavelengths of the 

spectra of leaves was based on the RMSECV and RMSEV (root mean 

square error of validation). The latter was the RMSE of spectra which were 

harvested in September 2012. The spectra of this harvest period were used 

as a validation set for wavelength selection. Finally, the performance of the 

PLSR model based on the GA-PLS wavelength selection based on the 

presence (GA-PLS) was compared to the PLSR model based on the GA-

PLS wavelength selection’s best performing selection by the PLS-Toolbox 

(GA-PLSBest) 
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Table 4.2 GA-PLS parameters. 

Setting Value 

Population size 256 

Window width 1 

Initial terms 30% 

Penalty slope 0.1 

Max generations 50 

% at convergence 40 

Mutation rate 0.005 

Regression choice PLS (13 LV’s) 

Cross validation parameters Contiguous, 4 splits, 1 iteration 

Replicate runs 25 

GA-PLS10% 

When different repetitions of GA-PLS were evaluated, it was noticeable that 

there were differences in the RMSECV after 50 generations between 

different repetitions. This can be explained by the differences in the variables 

included in the initial population. It is important to retain the information from 

all the repetitions, but the number of models which retained uninformative 

wavelengths should be minimized. To cope with this, a second wavelength 

selection was applied using only the 10% best performing selections for 

each of the 25 replicate runs (GA-PLS10%). The selection of the optimal 

number of wavelengths to retain was based on the RMSECV and RMSEV. 

MC-UVE-PLS 

The selection of the number of wavelength variables to retain was based on 

the RMSECV and RMSEV of different PLSR models with different numbers 

of wavelength variables retained. The absolute value of the RI (abs(RI)) was 

the basis on which wavelengths were retained. Wavelength variables with a 

low abs(RI) were considered less important for good predictions. The 

maximum number of LV's in MC-UVE-PLS was set to 13 which is the same 

number of LV’s used by the initial full spectrum model. 1000 Monte Carlo 

simulations were performed, each of them using 75% of the samples for 

constructing a calibration model.  
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Statistical software for wavelength selection 

VIP scores and iPLS were performed using the PLS-Toolbox in Matlab. GA-

PLS was performed in Matlab and the evaluation of the final wavelength 

selections after 50 generations were performed in MS Excel (Microsoft 

Office Professional Plus 2010, Microsoft, Co., Redmond, Washington, 

United states). MC-UVE-PLS was performed using LibPLS (www.libpls.net) 

in Matlab. An error occurred in the Matlab script when calculating the RI, so 

the RI was calculated in MS Excel using the jβ  and 
jσ . Further evaluation 

of the output based on the RI was performed in MS Excel. 

Combined wavelength selections 

The different wavelength combinations were evaluated based on the 

RMSECV and RMSEV to identify overfitting. Wavelength combinations 

which were overfitting on the calibration data were not considered during 

further evaluation. During further evaluation, a combination of the 

wavelengths selected by the different wavelength selection techniques might 

give better results than any selection made by a single technique. Therefore, 

a combination of the selected wavelengths was made by combining all the 

selected wavelengths of different techniques or by keeping only the 

wavelengths on which the different techniques were unambiguous. These 

wavelength combinations were named C1, C2, C3 and C4 (Table 4.3). 

Finally, these combinations were compared to the best wavelength selection 

technique and the combinations which had a similar or better model 

performance were considered candidates for the final selection of 

wavelengths. The three best performing wavelength selections were used to 

construct PLSR models which were tested on robustness using an external 

test set which contained spectra acquired in March 2013 and May 2014. 

Two significance tests were performed to test if any of the three models 

performed significantly better than the rest. The first method compared the 

absolute values of the residuals of each sample in the external test set 

between two models (Thomas, 2003). The probability that one model 

performs better than the other was calculated in Matlab using the ‘signtest’ 



4.2. Materials and methods 83
 

 

function. The second method was a two-way analysis of variance (ANOVA) 

on the residuals of the external test set with one random factor and one fixed 

factor. The random factor was the sample number and the fixed factor was 

the PLSR model (Cederkvist et al., 2005). The output from these 

significance tests was used for the selection of the final model. 

4.2.4.3. Preprocessing 

Initially, the combined spectra were preprocessed using a multiplicative 

scatter correction (MSC). MSC is a pre-processing step that attempts to 

account for offset and scaling effects (Geladi et al., 1985). After wavelength 

selection, a Generalized Least Squares weighting (GLSW) was applied after 

a full spectrum MSC to further reduce the number of LV’s. GLSW is a filter 

which identifies interfering signals in the spectra and downweights them 

(Martens et al., 2003; Zorzetti et al., 2011). This is done by comparing 

samples with a similar Y-value and downweighting wavelength variables 

which vary among these samples and are a source of variance. This allows 

the prediction model to obtain a similar performance, while using fewer LV’s. 

A single parameter α defines how large the influence of the filter is on the 

downweighting of the interfering wavelength variables. A value for α is 

typically chosen between 1 and 0.0001. A larger value of α means that the 

filter has less effect. 

4.2.5. Predicting shelf life potential 

Based on data gathered in February 2014, prediction models were 

constructed using the PLS-Toolbox (Eigenvector Research Inc., Wenatchee 

WA, USA). The independent variables were combined Vis/NIR 

transflectance spectra (380 - 1690 nm, wavelength increment 2 nm) before 

the start of shelf life. The dependent variables were the data from the 

colorimetric measurements on the adaxial or abaxial sides of the leaf or the 

quality scores from the expert panel that were gathered after 10 d of a shelf 

life holding period at 8°C. A 10-fold cross validation was performed with a 
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venetian blinds strategy. Due to the small size of the calibration set, no 

advanced preprocessing and no variable selection were performed to reduce 

the risk of overfitting. The combined spectra were pre-processed using MSC 

and mean centering. 

 Results and discussion 

4.3.1. Adaxial and abaxial spectra 

The Vis/NIR spectra of the adaxial and abaxial sides are separated in a PCA 

score plot (Fig. 4.1A). A distinctive difference between the adaxial and 

abaxial spectra is noticeable in the visual part of the spectrum (400 to 

712 nm), but also in the NIR part of the spectrum (1400 - 1690 nm) where 

the abaxial signal has a higher intensity than the adaxial (Fig. 4.1B). This 

difference can be explained by the spatial orientation of the different cell 

types in leaves which have different properties. Palisade parenchyma cells 

are located below the upper epidermis and cuticle at the adaxial side of the 

leaves and contain a large number of chloroplasts per cell. More towards the 

abaxial side are spongy mesophyll cells which have fewer chloroplasts and 

between the cells are more intercellular spaces (Mauseth, 2008). When light 

enters the leaves from the adaxial side, it first encounters densely packed 

cells which have higher amounts of leaf pigments, resulting in a diffuse 

reflection with a higher absorbance in spectral regions known for leaf 

pigment absorption (Vis) and water absorption (1400 - 1500 nm) (Xiaobo et 

al., 2010). 

4.3.2. Evaluation of initial model 

The initial full spectrum PLSR model was based on the spectrum of both 

adaxial and abaxial leaf sides. The combined spectrum was preprocessed 

with MSC. It is noticeable that the RMSECV increased with the first three 

LV’s and that the RMSEC and RMSECV decreased slowly with each extra 
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LV. This was due to the influence of different harvest periods which were 

used as CV groups. Different harvest periods were the main source of 

external variation and in the initial full spectrum model the CV of extreme 

harvest periods had problems with correct predictions when using the first 

three LV’s, leading to an increased RMSECV. Also, the spectrum of each 

sample was influenced by factors which have nothing to do with the 

dependent variable ‘time in storage after harvest’. PLSR has more problems 

finding a good correlation when the number of wavelengths which are 

influenced by non-relevant factors increases (Mehmood et al., 2012).  

 

Fig. 4.1 (A) PCA plot of all the mean Vis/NIR transflectance spectra (400 -1690nm) of the 
abaxial (solid circles) and adaxial (open circles) side of lamb’s lettuce leaves. (B) Visualization 
of the average Vis/NIR transflectance spectra for the abaxial (solid line) and adaxial (dashed 
line) side of the leaves. 
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The RMSEC and RMSECV were inconclusive for indicating an optimal value 

of LV’s. There was only a local minimum when eight LV’s were used, but the 

RMSECV gave lower values with increasing LV’s and no real minimum was 

reached (Fig. 4.2A). Therefore, the optimal number of LV’s was selected 

based on the estimated S/N (Fig. 4.2B). An estimated S/N greater than or 

equal to three is considered good. As the S/N for the 13th LV was still good, 

the prediction model with 13 LV’s was selected. This model had an R² of 

0.75 and an RMSEC, RMSECV and RMSEV of 3.6, 6.0 and 5.4 d, 

respectively (Fig. 4.3 and Table 4.3). 

 

 

 

Fig. 4.2 (A) RMSEC (open circles) and RMSECV (solid circles) of the basic PLSR model on 
concatenated spectrum (420-1100 nm) of adaxial and abaxial leaf sides with limited 
preprocessing and no wavelength selection. (B) Estimated signal to noise ratios for different 
LV’s. The solid black line is the threshold (S/N = 3). Solid and open circles represent good 
(S/N ≥ 3) and bad (S/N < 3) signal to noise ratios, respectively. 
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Fig. 4.3 Time in storage after harvest plotted against the predicted time in storage which was 
predicted by the basic PLSR model on concatenated spectrum (420-1100nm) of adaxial and 
abaxial leaf sides with limited preprocessing and no wavelength selection. The solid and open 
circles are samples from the calibration set in cross validation and the validation set, 
respectively. The dashed and solid lines are the optimal regression line and the regression line 
of the current model, respectively. 

Table 4.3 Performance of PLSR models constructed by using wavelengths selected by different 
wavelength selection techniques.  

Name of 
combination 

Wavelength selection criteria 
Number of 

wavelengths 
LV’s R² 

RMSEC 
(days) 

RMSECV 
(days) 

RMSEV 
(days) 

Initial model / 650 (100%) 13 0.75 3.6 6.0 5.4 

VIP scores VIP score 207 (32%) 12 0.75 3.5 4.8 5.6 

iPLS iPLS 40 (6%) 8 0.78 3.4 3.5 5.0 

GA-PLSBest the GA-PLS model with  
the lowest RMSECV 

173 (27%) 10 0.75 3.8 5.5 4.7 

GA-PLS GA-PLS 390 (60%) 13 0.80 3.3 4.5 4.8 

GA-PLS10% GA-PLS10% 98 (15%) 10 0.82 3.1 4.3 4.1 

MC-UVE-
PLS 

MC-UVE-PLS 228 (35%) 14 0.84 3.0 3.7 3.9 

C1 Being included by both  
GA-PLS and MC-UVE-PLS 

174 (27%) 13 0.84 3.1 3.5 3.8 

C2 Being included by both  
GA-PLS10% and MC-UVE-PLS 

65 (10%) 13 0.82 3.3 3.7 3.9 

C3 being included by either 
 GA-PLS or MC-UVE-PLS 

444 (68%) 13 0.78 3.5 4.7 4.8 

C4 being included by either 
GA-PLS10% or MC-UVE-PLS 

261 (40%) 12 0.81 3.3 4.4 4.2 
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4.3.3. Wavelength selection 

The performance of PLSR models using wavelength variables chosen by 

different wavelength selection techniques is summarized in Table 4.3. When 

the different prediction models with a reduced number of wavelength 

variables were compared with the initial model, it became clear that all the 

wavelength selection methods improved the RMSECV. The RMSEV 

calculated on the data from September 2012 was not always similar to the 

RMSECV, which could indicate overfitting. This was in particular the case for 

PLSR models based on wavelength variables selected by VIP scores and 

iPLS. These models gave RMSECV values of 4.8 and 3.5 d, while the 

corresponding RMSEV’s were 5.6 and 5.0 d, respectively. The rather big 

difference between the RMSECV and RMSEV values suggests that these 

models were not very robust. 

The prediction model based on wavelengths selected by GA-PLS had an 

RMSECV of 4.5 d and an RMSEV of 4.8 d. The same was true for GA-

PLS10% with an RMSECV of 4.3 d and an RMSEV of 4.1 d which implies that 

both models were quite robust. The model with the lowest RMSECV after 

GA-PLS (GA-PLSbest) was the model which according to GA-PLS should 

have the best selection of wavelengths. The RMSECV and RMSEV were 5.5 

and 4.7 d, respectively. GA-PLSbest seems to be robust, but the selected 

wavelength variables result in a PLSR model with worse prediction 

performance than GA-PLS and GA-PLS10%. 

The performance of the selection based on GA-PLS10% performed better 

compared to regular GA-PLS. The latter used more LV’s (13 compared to 

10), had a lower R² (0.80 compared to 0.82) and the RMSEC, RMSECV and 

RMSEV were higher compared to GA-PLS10%, while using more 

wavelengths (390 compared to 98). Besides the improved performance, 

wavelength selection was easier based on GA-PLS10% compared to 

GA-PLS, thanks to the clear minimum in RMSECV and RMSEV which was 

noticeable in GA-PLS10% and not in GA-PLS (Fig. 4.4A and B). 

Of all the applied techniques for wavelength selection MC-UVE-PLS was the 

most successful, resulting in a PLSR model with the highest R² (0.84), the 
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lowest RMSECV (3.7 d) and the lowest RMSEV (3.9 d) (Table 4.3). Although 

only 35% of the initial wavelengths were retained for model construction, 14 

LV’s were used for the predictions. This was the highest number of LV’s any 

of the robust models used. 

 

Fig. 4.4 The RMSEC (solid circles), RMSECV (open circles) and RMSEV (diamonds) of PLSR 
models constructed using different numbers of wavelength variables that were selected from the 
concatenated adaxial and abaxial spectra ranging from 420 to 1100 nm based on (A) GA-PLS, 
(B) GA-PLS10%, and (C) MC-UVE-PLS.  
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4.3.4. Comparison of the selected wavelength variables 

The selected wavelength variables based on VIP scores and iPLS are 

shown in Fig. 4.5. The selection of wavelength variables using GA-PLS, 

GA-PLS10% and MC-UVE-PLS is shown in Fig. 4.4 and 4.6. Comparing the 

wavelength variables selected by the different methods revealed that all the 

techniques included more wavelength variables from the visual part of the 

spectrum than wavelength variables from the NIR range. The PLSR models 

constructed using wavelength variables selected by VIP scores and iPLS 

were not robust. The basis for the lack of robustness of these PLSR models 

was probably different. Forward iPLS selected 40 (6%) wavelength variables 

and this selection was probably missing wavelength variables essential for 

robustness (Fig. 4.5). VIP scores on the other hand, included more 

wavelength variables, but the resulting PLSR model was not robust. The big 

difference between the selected wavelength variables based on VIP scores 

on the one hand and GA-PLS, GA-PLS10% and MC-UVE-PLS on the other 

hand was the selection of many wavelengths around the red edge (680 - 730 

nm) for both leaf sides which seems to have a negative influence on 

robustness (Fig. 4.5 and 4.6). A property that all robust selections have in 

common with the selection based on VIP scores in the NIR range was the 

selection of wavelength variables around 958 nm on the adaxial side of the 

leaf. NIR wavelength variables which were included by all the robust 

techniques are 800 nm on both leaf sides and 900 nm on the abaxial side. 

The inclusion of these wavelengths in the NIR range seems to be crucial for 

robustness.  
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Fig. 4.5 (A) Selected wavelengths with their associated VIP scores for the initial PLSR model, 
and (B) selected wavelengths by forward iPLS wavelength selection. The dotted line is the 
mean spectrum of the adaxial and abaxial spectra. The thick solid areas indicate wavelength 
variables that were selected for constructing the PLSR model. The thin solid line in A is the VIP 
score for each wavelength and the dashed line is the threshold which discriminates between 
useful and useless wavelength variables. 

4.3.5. Combining wavelength selections 

The best performing PLSR models used 98, 228 and 390 wavelengths. It is 

remarkable that 98 wavelengths selected by GA-PLS10% performed better 

than the 390 wavelengths selected by GA-PLS, but worse than the 228 

wavelengths selected by MC-UVE-PLS. This could be due to the excessive 

removal of informative wavelengths or the inclusion of interfering non-

informative wavelengths. There is a high consistency in the wavelengths 

which none of these wavelength selection methods selected. Of the initial 

650 wavelengths, 32% (206) were discarded by all these techniques 

(Fig. 4.7).  
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Fig. 4.6 Output and selection of wavelength variables of (A) GA-PLS, (B) GA-PLS10%, and (C) 
MC-UVE-PLS. The dotted line is the mean spectrum of the adaxial and abaxial spectra. The 
thick solid areas indicate wavelength variables that were selected for constructing the PLSR 
model and the dashed line is the threshold which discriminates between useful and useless 
wavelengths. The thin solid line in A and B is the presence of each wavelength variable in the 
models constructed by the GA-PLS. The thin solid line in C is the rescaled absolute value of the 
reliability index (abs(RI)).  
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Fig. 4.7 Visual representation of the wavelengths which were excluded by both GA-PLS and 
GA-PLS10% as well as MC-UVE-PLS from the adaxial and abaxial spectra in the 420 – 1100 nm 
range. The dotted black line is the mean spectrum. The solid areas are wavelength variables 
which were always excluded by the wavelength selection techniques. 

A combination of the wavelengths selected by these different techniques 

might give even better results than any selection made by a single 

technique. Therefore, a combination of the selected wavelengths was made 

by combining all the selected wavelengths of different techniques or by 

keeping only the wavelengths on which the different techniques were 

unambiguous. In Table 4.3, the performance of the different models based 

on these combinations is presented together with the number of selected 

wavelengths. C1 and C2 were the only combinations which performed as 

good as MC-UVE-PLS, but the number of included wavelengths was lower. 

While the selection based on MC-UVE-PLS used 35% of the initial 650 

wavelength variables, combinations C1 and C2 respectively used only 27% 

and 10%. To reduce the number of LV’s, GLSW was applied with a different 

optimal threshold for each selection (Table 4.4). These final models were 

tested using an extra external test set which consisted of spectra acquired in 

March 2013 and May 2014 (Table 4.1). The root mean square error for this 

extra external test set (RMSEP) was used as an extra indicator for model 

robustness. All of the selected wavelength sets gave similar results in 

RMSECV, RMSEV and RMSEP, which indicates that these selections gave 



94 4. Estimation of storage time of lamb’s lettuce based on Vis / NIR spectroscopy
 

robust PLSR prediction models. A two way ANOVA compared all three 

models and concluded that C1 was significantly different from C2 (p=0.031) 

based on the residuals of the external test set. MC-UVE-PLS was not 

significantly different from C1 (p=0.763) or C2 (p=0.161). A pairwise 

significance test for evaluating residuals from two models concluded that the 

probability that C2 performed better than MC-UVE-PLS and C1 was 

respectively 0.9538 and 0.9995. Based on these results C2 was selected as 

the final model (Fig. 4.8). 

4.3.6. Practical implementation 

Measurements have shown that the variance between lamb’s lettuce plants 

in one batch is of the same magnitude as the variance between different 

batches (Verlinden et al., 2016). As the intention was to estimate the mean 

time in storage of the whole batch rather than that of individual plants, for 

example to support a decision to accept either reject a batch or to decrease 

the quality class of the whole batch, we decided to measure multiple plants 

of the batch and take the mean value as an improved estimation of the 

actual time after storage.  

 

Table 4.4 The performance of three models using different numbers of wavelengths tested on 
data from September 2012 (RMSEV) and data from March 2013 and May 2015 (RMSEP). 

Name of 

combination 

Number of 

wavelengths 

GLSW 

threshold 

LV’s R² RMSEC 

(days) 

RMSECV 

(days) 

RMSEV 

(days) 

RMSEP 

(days) 

MC-UVE-PLS 228 (35%) 1 5 0.85 3.0 3.5 3.8 3.7 

C1 174 (27%) 1.75 8 0.84 3.0 3.5 3.7 3.7 

C2 65 (10%) 0.4 7 0.83 3.2 3.6 3.7 3.3 
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Fig. 4.8 Time in storage after harvest plotted against the time in storage predicted by a PLSR 
model on the concatenated spectrum (420-1100 nm) of adaxial and abaxial leaf sides with 
preprocessing (MSC, GLSW) and after wavelength selection using 65 wavelength variables 
(C2). The solid and open circles are samples from the calibration set in cross validation and 
external test set, respectively. The dashed line is the optimal regression line and the continuous 
black line is the regression line for this prediction model. 

 

4.3.7. Physiological interpretation of selected wavelengths 

The 65 C2 wavelengths mainly consisted of wavelengths from the visible 

part of the spectrum and wavelengths in the NIR region just past the red 

edge. (Fig. 4.9). In green leaves, the wavelengths from the visual part of the 

spectrum are dominated by the absorption caused by photosynthetic 

pigments which are mainly chlorophylls having a blue and red absorption 

peak, and carotenoids absorbing in the blue-green part of the spectrum (Taiz 

and Zeiger, 2010). 
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Fig. 4.9 The wavelength variables which were included in selection C2. The dashed gray line is 
the mean spectrum and the solid areas are wavelength variables selected for constructing the 
PLSR model. 

Certain specific wavelengths which were retained in the final C2 selection 

were found to be associated with chlorophyll content (Le Maire et al., 2004). 

The reflectance signals at 542 nm and 556 nm were included in the selection 

for both the adaxial and abaxial side. These signals have been used to 

assess the total chlorophyll and chlorophyll b content, respectively (Maccioni 

et al., 2001). Other wavelength variables which were selected for both leaf 

sides and appear to be chlorophyll related are 436 nm and 606 - 608 nm. 

Chlorophyll a has an absorption maximum around 436 nm (Rabinowitch and 

Govindjee, 1969; Raven et al., 1999; Taiz and Zeiger, 2010) and a small 

local absorption maximum of chlorophyll b, where the absorption of 

chlorophyll a is at a local minimum, is around 606 - 608 nm (Raven et al., 

1999). 

Wavelengths solely associated with carotenoid content are hard to identify in 

green leaves due to the overlapping absorption with chlorophyll, but the total 

chlorophyll and carotenoid content can be associated with certain 

wavelengths (Féret et al., 2011; Merzlyak et al., 1999). The 500 nm 

wavelength was included in the chosen spectra from both leaf sides and has 

been associated with the total chlorophyll and carotenoid content (Chappelle 

and Kim, 1992; Zarco-Tejada et al., 2013).  
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Chlorophyll and carotenoid content decrease in lamb’s lettuce during a post-

harvest storage period. Therefore, it is logical that wavelengths associated 

with these pigments are included in the final selection of 65 wavelength 

variables (Ferrante et al., 2009; Ferrante and Maggiore, 2007). 

In the NIR region of the spectra, only the 800 nm wavelength was included 

in both adaxial and abaxial spectra. Due to the nature of NIR with broad 

overlapping peaks, it is hard to identify the origin of the importance of this 

wavelength (Nicolai et al., 2007; Xiaobo et al., 2010). However, it has been 

found that a combination of 800 nm with 550 nm can be related to the 

chlorophyll content of bean leaves. So, the 800 nm wavelength might be a 

reference wavelength which is essential for determining the height of the 

chlorophyll peak (Buschmann and Nagel, 1993). 

No wavelengths associated with sugar content were found in the final 

wavelength selection. Sugars were measured (Chapter 3), but the changes 

in concentration during storage might be too low to be detected by Vis / NIR 

spectroscopy. This is probably the reason why model performance improved 

when only wavelengths below 1100 nm were used compared to the use of 

more wavelengths up to 1690 nm. 

For other wavelengths which were identified as important for a correct 

prediction no obvious relations with leaf pigments, sugars or water content 

could be found. Therefore, these will not be discussed in detail. 

4.3.8. Predicting shelf life potential 

Most of the wavelengths included in the prediction models were in the visual 

part of the spectrum (Fig. 4.7). Therefore, PLSR models for predicting 

different color parameters after a 10 d shelf life holding period were 

constructed. The performances of the prediction models are displayed in 

Table 4.5. None of the parameters gathered during the colorimetric 

measurements at the end of a shelf life holding period were predictable by 

the Vis/NIR spectra measured at the start of the shelf life holding period. R² 

values were between 0.02 and 0.13. The RMSEC and RMSECV were high  
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for all the colorimetric parameters compared to the standard deviation of 

these parameters. A possible cause could be that the change in color due to 

the shelf life holding period was too small compared to the changes caused 

by other effects. A PLSR model based on Vis/NIR spectra for predicting the 

quality scores after a 10 d shelf life holding period was built. The model had 

an RMSEC and an RMSECV of 0.85 and 1.37, respectively, with an R² of 

0.33 while using 16 LV’s. This model performed better than any of the 

models using colorimetric measurements but still lacked accuracy and 

robustness, having a low R² and a high RMSECV. This might be due to the 

small calibration dataset. Another reason might be that it was too hard to 

determine the quality of lamb’s lettuce resulting in a poor link between the 

dependent and independent variables. The reason might also be that there 

was no solid correlation between the Vis/NIR spectrum before and the 

quality after a shelf life holding period. The reasons why were unclear, and 

determining shelf life potential using PLSR models for predicting different 

color parameters and quality scores was shown to be unfruitful. 

 

Table 4.5 An overview of the values from colorimetric measurements and the performance of 
constructed PLSR models based on the Vis/NIR spectrum for predicting these parameters after 
a shelf life holding period of 10 d at 8°C. 

Dependent 
variable 

Mean Standard 
deviation 

LV’s R² RMSEC RMSECV 

Adaxial color parameters 
a -9.49 0.49 2 0.03 0.47 0.49 
b 26.50 1.23 8 0.11 0.99 1.19 
C 28.16 1.22 8 0.10 0.99 1.21 
H 109.72 1.03 9 0.13 0.83 0.99 
Abaxial color parameters 
a -9.50 0.48 2 0.02 0.46 0.48 
b 26.50 1.22 8 0.11 0.99 1.19 
C 28.16 1.21 8 0.09 0.98 1.20 
h 109.75 1.03 9 0.12 0.84 0.99 
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 Conclusions 

Vis/NIR transflectance spectroscopy in combination with PLSR regression 

was evaluated as a fast and non-destructive method for determination and 

quantification of a prior storage period for lamb’s lettuce. The accuracy and 

robustness of the predictions improved vastly after wavelength selection with 

RMSECV, RMSEV and RMSEP values of respectively 3.6, 3.7 and 3.3 d. 

The number of LV’s dropped from 13 to 7, the RMSECV and RMSEV 

decreased with 2.4 and 1.7 d, respectively, while the R² increased from 0.75 

to 0.83. The number of used wavelength variables was minimized by 

combining the output of GA-PLS10% and MC-UVE-PLS, resulting in the 

selection of 65 essential wavelength variables which made up 10% of the 

initial 650 wavelength variables. These wavelengths in the Vis / NIR 

spectrum contained the essential information related to the time in storage 

after harvest and had a decent signal to noise ratio. It is possible that 

external factors influence certain wavelength variables, but these influenced 

wavelength variables can still be corrected by other wavelength variables 

which are not influenced to prevent an incorrect prediction (Table 4.1). After 

comparing the selected wavelengths with those reported in literature, it 

became clear that information on photosynthetic pigment degradation is 

essential for determining and quantifying a prior storage period of lambs 

lettuce. 

Predicting shelf life potential using PLSR models for predicting different color 

parameters and quality scores was shown to be unsuccessful. The accuracy 

and robustness of the predictions were insufficient. The best model had a 

RMSEC and a RMSECV of 0.85 and 1.37, respectively, with an R² of 0.33 

while using 16 LV’s. The reasons why it was hard to make these prediction 

were unclear and may be related to the small dataset or the lack of a link 

between the dependent and independent variables. 

Although good prediction results were obtained with Vis/NIR spectroscopy 

for determining and quantifying a prior storage period, it has been shown in 

chapter 2 that photosynthetic pigments can also be detected using 
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chlorophyll fluorescence emission measurements. Hence, this technique 

might be more suited to estimate the storage duration of lamb’s lettuce. 

Therefore, the use of chlorophyll fluorescence emission signals will be 

explored in the next chapter as an option for determining the storage time of 

lamb’s lettuce with a higher accuracy. 



 

5. Estimation of storage 
time of lamb’s lettuce 
based on chlorophyll 

fluorescence 

 Introduction 

In the previous chapter, the potential of Vis/NIR spectroscopy for 

determination and quantification of a prior storage period for lamb’s lettuce 

was evaluated. The wavelengths used by the final prediction model were in 

the visible part of the spectrum and could be related to photosynthetic 

pigment degradation. An alternative method to measure this pigment 

degradation is chlorophyll fluorescence emission. It has already been used 

on leaves, and direct relations have been made between certain chlorophyll 

fluorescence emission ratios and chlorophyll, flavonol and anthocyanin 

content (Agati et al., 2007, 2005; Buschmann, 2007; Cerovic et al., 2002; 

Sytar et al., 2015; Tempesta et al., 2012; Tremblay et al., 2011). Therefore, 

the aim of this study was to evaluate the potential of chlorophyll fluorescence 

emission signals to estimate how long a batch of lamb’s lettuce has been 

stored before it was presented to the market.  
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Fig. 5.1 Schematic representation of the experimental setup. The number of days indicates the 
storage time from the start of the experiment. 

 Materials and methods 

5.2.1. Plant material and storage conditions 

Samples of lamb’s lettuce (Valerianella locusta L.) grown by seven different 

commercial producers were harvested in November 2014. The samples 

were stored directly after harvest at the cooling facility of the producers until 

the start of the experiment. The maximum storage time at a local facility was 

five days. Each producer had his own specific growing and harvesting 

method. An overview of the growing and harvesting conditions for each 

batch of lettuce is shown in Table 5.1. These samples from different growers 

were included in the data set to create a realistic image of the variability in 

products presented to the market.  

The storage experiment took place at the experimental station Inagro 

(Rumbeke-Beitem, Belgium) and started at November 20, 2014. Different 

producers who store lamb’s lettuce have different storage conditions. To 

mimic this kind of variation half of the samples from each grower were stored 

at 1 °C and the other half at 4 °C (Fig. 5.1). Half of these samples were 

wrapped in plastic foil while the other half was left unwrapped. The wrapping 

is done in practice to prevent drying in the cool room during the storage 
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Table 5.1 Growing and harvesting conditions for each batch of lamb’s lettuce used in the 
experiment. 

Grower Cultivar* 
Sowing 
density 

(seeds/m²) 

Growing 
period 

(d) 

Harvest 
date 

Harvest 
mechanism 

Rinsing 
date 

Storage temp. 
local facility 

(°C) 

Time at 
local 

facility (d) 

1 Trophy 444 55 19/11 Manual 20/11 4 1 

2 Audace 840 43 15/11 Automated 18/11 3,5 5 

3 Trophy 430 55 20/11 Manual 20/11 / 0 

4 Audace 800 47 19/11 Automated 19/11 2 1 

5 Audace 750 48 19/11 Automated 19/11 2,5 1 

6 Trophy 500 51 20/11 Manual 20/11 / 0 

7 Audace 800 46 15/11 Automated 19/11 2 5 

* All cultivars were from seed company HM. Clause. 

period. It is done here to mimic realistic variation in storage conditions. The 

first night of the experiment, all the crates of lamb’s lettuce were stored at 

1 °C. Measurements were carried out after 1, 5, 7, 14 and 21 days in 

storage. At each measurement point during storage, new samples from the 

same batch were used to minimize the effect of sample handling on the 

quality of the samples 

5.2.2. Chlorophyll fluorescence emission measurements 

Chlorophyll fluorescence emission signals were measured using the 

Multiplex 3 (Force-A, Orsay, France), a portable fluorimetric device. It 

consists of four excitation Light Emitting Diode (LED) channels, i.e. 

ultraviolet (UV), blue (B), green (G) and red (R), and three fluorescence 

detection channels (Silicon photodiodes), i.e., yellow (YF), red (RF) and far-

red (FRF) (Chapter 2). Each excitation caused by a certain LED results in 

three values for fluorescence which leads to 12 output values: YFUV, RFUV, 

FRFUV, YFB, RFB, FRFB, YFG, RFG, FRFG, YFR, RFR and FRFR. The first part 

of the name of a variable mentions the fluorescence channel and the 

subscript mentions the LED excitation channel. The LED’s emit light in a 

pulsating manner and the detection is synchronized. One measured value is 

an average of 500 measurements. The measurements were taken on site 

and the stored data was processed later. 
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Before measuring samples, reference measurements were performed on a 

reference sample (Force-A, blue standard sheet). The measured values 

were compared with the reference values to determine if the sensor was still 

functioning correctly. 

Each crate containing samples was measured once in the center to have as 

little as possible effects of plants which may be affected by the edges of the 

crates. On the first day of the experiment, each crate was measured three 

times on three different spots to have more measurements due to the limited 

amount of samples at our disposal. This way, the first day of the experiment 

was not underrepresented in the data matrix. At the first day of the 

experiment, 21 chlorophyll fluorescence emission measurements were 

performed. During days 5, 7, 14 and 21 of the experiment 112 

measurements were performed, 28 on each day. Each measurement was 

conducted on different samples. 

5.2.3. Prediction model with separate temperatures 

5.2.3.1. Identifying outliers 

First, the chlorophyll fluorescence emission signals were analyzed using 

Principal Component Analysis (PCA) (Wold et al., 2001). The independent 

variables were chlorophyll fluorescence emission signals (12) or ratios of 

these signals (132) combined with specific combinations found in 

literature (9) (Table 2.3). The variables were preprocessed by autoscaling. 

Score plots were used to visualize the location of the samples in the model 

space. Q residuals and Hotelling T² statistics were used to identify outliers 

(MacGregor and Kourti, 1995). 

5.2.3.2. Constructing the prediction model 

Prediction models were constructed using Partial Least Squares Regression 

(PLSR) with the PLS-Toolbox (Eigenvector Research Inc., Wenatchee WA, 

USA) for Matlab (MATLAB R2013a, The MathWorks, Inc., Natick, 
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Massachusetts, United States) (Wold et al., 2001). The dependent variable 

was storage time after harvest (d).  

The calibration data consisted initially of samples which were measured the 

first day of the experiment and all samples that were measured later in the 

storage period at 4 °C. The samples which were stored at 1 °C were used as 

an external test dataset. After initial testing the selection of samples in the 

calibration matrix was changed.  

The data from samples from both storage temperatures were split in a 

calibration and test set using the Kennard-Stone algorithm (Kennard and 

Stone, 1969) available in the PLS-Toolbox (Eigenvector Research Inc., 

Wenatchee WA, USA) for Matlab. (MATLAB R2013a, The MathWorks, Inc., 

Natick, Massachusetts, United States). Of all measured samples 66 % were 

retained for calibration purposes and the remaining 34 % were used as an 

internal test set. Cross validation (CV) with each measurement day as a 

separate CV group was applied to evaluate the PLSR model performance as 

a function of the model complexity.  

For each PLSR model an optimal number of LV’s was selected based on the 

RMSEC, RMSECV and the signal to noise ratio (S/N). The latter was 

calculated using the ‘estimatefactors’ algorithm in PLS-Toolbox. The 

algorithm resamples the data and when the loadings change significantly 

between resamplings, the factor is probably based on noise and not on 

signal. An S/N greater than three is considered informative. This allows to 

estimate the number of significant factors in multivariate data (Henry et al., 

1999; Sug Park et al., 2000). 

5.2.3.3. Monte Carlo Uninformative Variable Elimination PLS 

To reduce the number of chlorophyll fluorescence emission ratios in the 

prediction model, Monte Carlo Uninformative Variable Elimination PLS 

(MC-UVE-PLS) was applied as a variable selection technique. The selection 

of the number of variables to retain in our models was based on the 

RMSECV of different PLSR models with different numbers of variables 

retained. The absolute value of the RI was the basis on which these 
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variables were retained. Variables with a low absolute value of the RI were 

considered less important for decent predictions and were discarded first. 

The maximum number of LV's in MC-UVE-PLS was set to the number which 

was selected for the model using all the chlorophyll fluorescence emission 

ratios. 10000 Monte Carlo simulations were performed, each of them 

contained 66% of the samples for constructing a calibration model. 

MC-UVE-PLS was performed using LibPLS (www.libpls.net) in Matlab. An 

error occurred in the Matlab script when calculating the RI, so the RI was 

calculated in MS Excel (Microsoft Office Professional Plus 2010, Microsoft, 

Co., Redmond, Washington, United states) using 
jβ  and 

jσ . Further 

evaluation of the output based on the RI was also performed in MS Excel. 

5.2.3.4. Variable Importance in Projection scores 

In the final selection of variables the Variable Importance in Projection (VIP) 

scores were used to identify interesting variables. 

5.2.3.5. Correcting for storage temperature 

In March 2015, a similar experiment was carried out in which samples were 

stored at 1 °C and 4 °C. Gas chromatography - mass spectrometry 

measurements of these samples revealed an effect of storage temperature 

on the abundance of metabolites (Chapter 3). Glucose, fructose and sucrose 

are the largest source of respiratory substrates in lamb’s lettuce. Hence, the 

concentrations of these soluble carbohydrates were combined for each 

sample and this sum was used as a quality parameter: 

 [glucose] [fructose] 2 [sucrose]Q = + + ⋅  Eq. 5.1 

where Q is the quality parameter, and [glucose], [fructose] and [sucrose] are 

the concentrations of glucose, fructose and sucrose, respectively. Sucrose is 

multiplied by two, because one mole of sucrose is split into one mole of 

glucose and one mole of fructose, which are used during respiration. The 
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decline of Q over time was faster for samples stored at higher temperatures 

(Fig. 5.2). These reactions are enzyme reactions which are typically 

described by Michaelis-Menten kinetics. One can assume that a substrate 

limitation is present somewhere during this catabolic process. If the 

concentration of the limiting substrate is low enough below the Michaelis-

Menten constant then the Michaelis-Menten kinetics can be approximated by 

a first order kinetic model (Michaelis and Menten, 2013): 

 
T

dQ
k Q

dt
= −  Eq. 5.2 

where kT is the temperature dependent rate constant. Taking the integral for 

1 °C and 4 °C leads to: 
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Eq. 5.3 

where Q0 is the value of Q at the start of the storage period, k1°C and k4°C are 

the rate constants for a storage temperature of 1 °C and 4 °C, respectively, 

and t1°C and t4°C are the time in storage after harvest when the final quality 

level Qf has been reached for a storage temperature of 1 °C and 4 °C, 

respectively. Solving these integrals leads to an equation for each 

temperature: 
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Fig. 5.2 An illustration of the decrease of the quality parameter Q, with increasing storage time 
at 1 °C ( ) and 4 °C ( ). The time in storage after harvest when a sample reaches a final 
quality level Qf is longer for samples stored at 1 °C (t1°C) than at 4 °C (t4°C). 

These equations were fitted simultaneously using a linear regression in R 

(R 3.3.2, R Foundation for Statistical Computing, Vienna, Austria). Thus, it 

was possible to have the same intercept with the Y axes for both regression 

lines, because there was no influence of the storage temperature at the start 

of storage. The angles of these regression lines were equal to the values for 

the temperature dependent rate constants (k1°C and k4°C). Rearranging these 

equations resulted in: 
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which made it possible to calculate the equivalent postharvest storage 

period at 4 °C for each postharvest storage period at 1 °C. These time 

values were used as the new dependent variables for the samples which 

were stored at 1 °C. 
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 Results 

5.3.1. Chlorophyll fluorescence emission signals 

The initial modeling was performed on 12 fluorescence emission signals 

combined with nine specific combinations found in literature. First, these 

variables were analyzed using PCA. Next, PLSR was used to make an 

estimation on a prior storage period. 

5.3.1.1. PCA analysis 

From the PCA on all the fluorescence signals using two principal 

components (PC’s) no outliers were identified based on Q residuals and 

Hoteling T² statistics (Fig. 5.4A). The score plot revealed no clear difference 

between wrapped and unwrapped samples, nor samples stored at 1 °C and 

4 °C which were the external test set and calibration set, respectively 

(Fig. 5.3A).  

Upon inspection of the samples of the initial measurement day and their 

corresponding producers, a few things were noteworthy (Fig. 5.3B and 

5.4B). First, these samples had a large spread in the Q residuals and 

Hotelling T² statistics, indicating that the producers had a strong influence on 

the variation of the sample pool which was also noticeable in the score plot. 

Also, the samples of most producers at the first measurement day were 

grouped together in the PCA score plot. However, the samples of producer 3 

and 6 were spread out over a slightly wider area compared to the others. 

These were the only producers who harvested their samples at the start of 

the experiment (Table 5.1). The three samples of producer 1 at the first 

measurement day are located close to each other in the score plot, so they 

seem to be very similar. However, the Q residuals of these samples were 

some of the most extreme of the entire dataset indicating that these samples 

did not fit well in the model. 
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5.3.1.2. PLS regression analysis 

A PLS regression analysis was carried out with chlorophyll fluorescence 

emission signals as independent variables and the storage time after harvest 

as dependent variable. The S/N plot suggested the selection of four LV’s, 

while the RMSECV reached a global minimum at five LV’s. To avoid 

overfitting by including noisy LV’s, four LV’s were included in the final PLSR 

model. When the actual storage time was plotted against the predicted 

storage time, a large spread in the predictions of the samples was noticeable 

after 15 d in storage (Fig. 5.5A). This can be explained by the lower 

prediction values for the samples of the internal test set. As a consequence, 

the model performance was poor with an RMSECV, RMSEP, R² in CV (R²CV) 

and R² in prediction (R²Pred) of 4.8 d, 6.9 d, 0.60 and 0.28, respectively 

(Table 5.2). 

Table 5.2 PLSR model performance statistics 

Data type 
Number of 

variables 
LV’s 

RMSEC 
(days) 

RMSECV 
(days) 

RMSEP 
(days) 

2
CalR  2

CVR  2
Pr edR  

Fluorescence signals 12 (100%) 4 3.2 4.8 6.9 0.81 0.60 0.28 

Fluorescence Ratios 141 (100%) 4 3.2 4.6 7.0 0.82 0.62 0.24 

Fluorescence Ratios 53 (37%) 4 3.1 4.0 6.8 0.83 0.71 0.27 

 

  

Fig. 5.3 Score plots of the PCA model using two PC’s based on solely chlorophyll fluorescence 
emission signals and no ratios. (A) The symbols represent data of the calibration ( ) and 
external test set ( ) data matrix. (B) Only the samples of the first measurement day were 
included and the symbols indicate which samples where grown by producer 1 ( ), 2 ( ), 3(  ), 
4 (  ), 5 (  ), 6 (  ) and 7 (  ).  
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Fig. 5.4 Plots of rescaled Q residuals and rescaled hoteling T² statistics of the PCA model using 
two PC’s based on solely chlorophyll fluorescence emission signals and no ratios. The dashed 
lines represent the 95% confidence limit and were used to rescale the plots. (A) The symbols 
represent data of the calibration ( ) and external test set ( ) data matrix. (B) Only the samples 
of the first measurement day were included and the symbols indicate which samples where 
grown by producer 1 ( ), 2 ( ), 3( ), 4 ( ), 5 ( ), 6 ( ) and 7 ( ). 

 

  

 

Fig. 5.5 Time in storage after harvest plotted 
against the predicted time in storage after 
harvest. The predictions were performed by 
PLSR models based on chlorophyll 
fluorescence emission signals (A), chlorophyll 
fluorescence emission ratios (B) and 
chlorophyll fluorescence emission ratios 
combined with MC-UVE-PLS variable 
selection (C). The samples from the 
calibration set in cross validation ( ) and the 
external test set ( ) are plotted together with 
the optimal regression line ( ) and the 
regression line corresponding to the current 
model ( ). 
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5.3.2. Chlorophyll fluorescence emission ratios 

A possible solution to improve the prediction based on fluorescence signals 

was to use ratios instead of raw signals. Hence, the modeling was 

performed on 132 fluorescence emission ratios combined with nine specific 

combinations found in literature. First, these variables were analyzed using 

PCA. Next, PLSR was used to make an estimation on a prior storage period. 

5.3.2.1. PCA analysis 

A PCA on the fluorescence ratios using four PC’s identified one outlier in the 

external test set based on Q residuals and Hotelling T² statistics (Fig. 5.7A). 

The score plot revealed no differences between the calibration and external 

test set which were stored at 4 °C and 1 °C, respectively (Fig. 5.6A), nor 

were any differences revealed between the wrapped and unwrapped 

samples. 

The data on the initial measurement day show again a large spread in the Q 

residuals and Hotelling T² statistics between producers (Fig. 5.7B). This is 

also noticeable in the score plot of PC 1 and PC 2 where the range of the 

sample scores of the first measurement day are almost the same as that of 

all samples of the whole experiment (Fig. 5.6A and B). The samples of the 

same producers are still grouped together in the PCA score plot. The 

samples of producer 3 and 6 are spread out over a slightly wider area 

compared to the others similar to the PCA model which used only 

fluorescence emission signals (Fig. 5.3B and 5.6B). The Q residuals for 

samples from producers 3 and 6 also show big differences (Fig. 5.7B). This 

variation in Q residuals and Hotelling T² statistics for the same producer on 

the initial measurement day indicates that, although these measurements 

were performed on the same crate, the fluorescence signals varied between 

different parts of the crates. The harvest moment for samples from 

producers 3 and 6 was at the start of the experiment. Hence, it could well be 

that variation was introduced in these signals by the harvest itself. 
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Fig. 5.6 Score plots of the PCA model using two PC’s based on chlorophyll fluorescence 
emission ratios. (A) The symbols contain data of the calibration ( ) and external test set ( ) 
data matrix. (B) Only the samples of the first measurement day were included and the symbols 
indicate which samples where grown by producer 1 ( ), 2 ( ), 3( ), 4 ( ), 5 ( ), 6 ( ) and 
7 ( ).  

 

 

 

  

Fig. 5.7 Plots of rescaled Q residuals and rescaled hoteling T² statistics of the PCA model using 
four PC’s based on chlorophyll fluorescence emission ratios. The dashed lines are the 95% 
confidence limit and were used to rescale the plots. (A) The symbols contain data of the 
calibration ( ) and external test set ( ) data matrix. (B) Only the samples of the first 
measurement day were included and the symbols indicate which samples where grown by 
producer 1 ( ), 2 ( ), 3( ), 4 ( ), 5 ( ), 6 ( ) and 7 ( ). 
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5.3.2.2. PLS regression analysis 

A PLS regression analysis was carried out with the chlorophyll fluorescence 

emission ratios as independent variables and the storage time after harvest 

as dependent variable. The S/N plot suggested that a maximum of nine LV’s 

were informative. The RMSECV pointed towards the use of four LV’s. 

Hence, four LV’s were used because the chances of overfitting are smaller 

with less LV’s. Compared to the model based on fluorescence emission 

signals, the model based on the ratios performed slightly better in CV, but 

worse results were achieved on the internal test set (Table 5.2). In Fig. 5.5B, 

the actual storage time is plotted against the predicted storage time. A larger 

spread in the predictions after 15 days in storage can be observed, similar to 

what was observed for the chlorophyll fluorescence emission signals (Fig. 

5.5A). This suggests that the temperature difference in storage between the 

calibration and external test has a large impact on the fluorescence signals 

and the underlying physiology as was shown in chapter 3. 

5.3.2.3. MC-UVE-PLS 

After applying MC-UVE-PLS on the chlorophyll fluorescence emission ratios, 

the best result in CV was found when 52 (37 %) of the variables were used. 

The S/N indicated that a maximum of five LV’s were informative, but the 

RMSECV pointed towards the use of four LV’s. Hence, four LV’s were used 

because the chances of overfitting are smaller with less LV’s. The four LV 

model had an R²CV and RMSECV of 0.71 and 4.0 d, respectively (Table 5.2). 

These values were an improvement compared to both previous models. The 

prediction results improved, but were still not sufficient for decent predictions 

with an R²Pred and RMSEP of 0.27 and 6.8 d. The large spread in the 

predicted storage times after 15 d was still noticeable after the variable 

selection was performed (Fig. 5.5C). This indicates that the storage 

temperature effect could not be filtered out using MC-UVE-PLS. 
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5.3.2.4. Correcting for storage temperature effects 

From the previous results, it appeared that the temperature effect during 

storage on the samples which was visible in the chlorophyll fluorescence 

emission signals was too large to be filtered out using variable selection. We 

therefore tried to compensate for these temperature effects using 

metabolomics data (Chapter 3).  

To compare a PLSR model constructed with the actual storage time with a 

PLSR model with the corrected one, we constructed a PLSR model with the 

actual time in storage after harvest with a calibration and external test matrix 

which contained samples stored at both temperatures (Fig. 5.8A). The S/N 

indicated that a maximum of nine LV’s were informative, but the RMSECV 

had a global minimum at three LV’s (Table 5.3). The prediction model which 

used three LV’s gave poor results in CV (RMSECV = 7.5 d, R²CV= 0.13) and 

in prediction (RMSEP = 5.2 d, R²pred = 0.34). When comparing the PLSR 

models based on fluorescence emission ratios, it was observed that the new 

data matrix with samples of both storage temperatures gave better results in 

prediction, but worse results in CV (Table 5.2 and 5.3). Hence, there was no 

real progress in combining data of the two temperatures. This indicates that 

PLSR had problems to fit data stored at both temperatures even though both 

storage temperatures were included in the calibration data matrix. 

 

Table 5.3 PLSR model performance statistics 

Data type Temperature 
correction 

Number of 
variables 

LV’s RMSEC 
(days) 

RMSECV 
(days) 

RMSEP 
(days) 

2
CalR  2

CVR  2
Pr edR  

Fluorescence 
ratios 

No 141(100%) 3 4.9 7.5 5.2 0.59 0.13 0.34 

Fluorescence 
ratios 

Yes 141 (100%) 4 3.3 4.9 4.2 0.76 0.46 0.50 

Fluorescence 
ratios 

Yes 29 (20%) 3 3.3 4.6 3.5 0.76 0.54 0.67 
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Fig. 5.8 Time in storage after harvest plotted 
against the predicted time in storage after 
harvest. The predictions were performed by 
PLSR models based on fluorescence 
emission ratios without temperature correction 
(R2

CV = 0.13 d) (A), with temperature 
correction (R2

CV  = 0.46 d) (B) and with 
temperature correction combined with MC-
UVE-PLS variable selection (R2

CV  = 0.54 d) 
(C). The samples from the calibration set in 
cross validation ( ) and the external test set 
( ) are plotted together with the optimal 
regression line ( ) and the regression line 
corresponding to the current model ( ). 

 

In an alternative approach, the duration of storage at 1 °C was translated to 

4 °C using a conversion factor according to Eq. 5.5. The chlorophyll 

fluorescence emission ratios were chosen over the raw signals, because 

they are known to be more stable compared to pure signals (Cerovic et al., 

2009). From a similar storage experiment (Chapter 3) we calculated that this 

conversion factor was equal to 0.68. This indicates that the quality of lamb’s 

lettuce stored at 1 °C decreased 0.68 times slower than lamb’s lettuce 

stored at 4 °C. A new prediction model was subsequently constructed using 

the converted data (Fig. 5.8B). The S/N indicated that nine LV’s were 

informative, but the RMSECV pointed towards the use of four LV’s. This 

PLSR model which used four LV’s gave better results in predicting the 

postharvest time both in CV (RMSECV = 3.3 d, R²CV = 0.46) and for the 

external test set (RMSEP = 4.2 d, R²Pred = 0.50) than the PLSR model 

without the temperature correction (Table 5.3).  
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After applying MC-UVE-PLS on the temperature corrected data, the best 

results in CV were achieved when 29 (20%) of the 141 variables were 

retained (Fig. 5.9, Fig. 5.8C and Table 5.4). The S/N indicated that five LV’s 

were informative, but the RMSECV pointed towards the use of three LV’s. 

The PLSR model using 29 variables performed slightly worse in calibration, 

but better in CV and prediction with an RMSECV, RMSEP, R²CV and R²Pred of 

4.6 d, 3.5 d, 0.54 and 0.67, respectively (Table 5.3). 

 

Table 5.4 The 29 variables which were included in the final PLSR model after applying 
MC-UVE-PLS on the temperature corrected data. 

Selected variables 

FLAV RFB/YFUV YFUV/FRFUV FRFB/YFB RFB/YFG 

NBIG FRFB/YFUV RFB/FRFUV RFUV/RFB FRFUV/FRFG 

FERARI FRFG/YFUV YFUV/YFB FRFB/RFB RFB/FRFG 

RFUV/YFUV FRFR/YFUV RFUV/YFB FRFUV/FRFB FRFUV/FRFR 

FRFUV/YFUV FRFUV/RFUV FRFUV/YFB RFB/FRFB RFB/FRFR 

YFB/YFUV RFB/RFUV RFB/YFB YFUV/YFG  

 

 

 

Fig. 5.9 RMSEC ( ) and RMSECV ( ) as a function of the number of variables based on 
MC-UVE-PLS variable selection on the data with temperature correction. 
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 Discussion 

The chlorophyll fluorescence emission ratios combined with MC-UVE-PLS 

resulted in better PLSR prediction models compared to using the raw 

fluorescence emission signals. After rescaling of the storage times for the 

effect of storage temperature, the prediction results improved significantly 

with the best results when MC-UVE-PLS was applied. From the 29 

chlorophyll fluorescence emission ratios which were selected by MC-UVE-

PLS after the temperature correction, six were documented in literature, i.e. 

FLAV, FRFUV/FRFR, FERARI, YFUV/FRFUV, FRFUV/YFUV, NBIG (Bilger et al., 

2001, 1997; Cartelat et al., 2005; Cerovic et al., 2009, 2008, 2002, 1999; 

Demotes-Mainard et al., 2008; Ghozlen et al., 2010; Malenovský et al., 

2009; Meyer et al., 2006). Both FLAV and FRFUV/FRFR have been 

associated with the shielding of leaves by flavonols (Bilger et al., 2001, 

1997; Cerovic et al., 2002). This suggests that a significant change in 

flavonols takes place during the postharvest storage period. Flavonols have 

a role in photoprotection, specifically as ultraviolet protectants, but they are 

also known to protect the plant against free radicals (Bogs et al., 2007; Koes 

et al., 2005). The amount of free radicals increases during a storage time, 

especially in wounded plants (Ferrante et al., 2009). 

FERARI has been shown to be correlated to the anthocyanin content in red 

grapes (Ghozlen et al., 2010). Hence, it is noteworthy that this variable was 

included, while the other anthocyanin ratios (ANTHRG, ANTHRB, FERRG) 

were not (Table 2.3). However, this could be because these variables 

contain more or less similar information and the other anthocyanin ratios 

could be considered as redundant. The anthocyanin content in lamb’s 

lettuce has been reported to increase after a stable period of eight days 

(Ferrante et al., 2009). It should be noted that FERARI is not a ratio of two 

fluorescence signals, but a log transformation of the inverse of FRFR (Table 

2.3). The use of chlorophyll fluorescence emission signals without ratios is 

discouraged unless a constant distance to the samples is maintained 
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(Cerovic et al., 2009). The latter was the case in our experiments, but one 

should be cautious when using this variable in future research. 

Both YFUV/FRFUV and the inverse FRFUV/YFUV were included in the final 

selection of variables. YFUV/FRFUV has been linked to multiple stress related 

situations and the accumulation of specific metabolites and fruit maturation 

(Cerovic et al., 2008, 1999; Malenovský et al., 2009). For red grapes, the 

information gathered from this ratio was similar to FERARI (Cerovic et al., 

2009). 

Chlorophyll fluorescence emission ratios which are influenced by epidermal 

phenols and chlorophyll were shown to respond to the nitrogen nutrition of 

the plant (Cartelat et al., 2005; Demotes-Mainard et al., 2008; Meyer et al., 

2006). NBIG is one of these ratios and was included as a variable after MC-

UVE-PLS (Table 2.3). 

Surprisingly, no ratio solely linked to chlorophyll content (SFRG, SFRR) was 

selected by MC-UVE-PLS, although a decrease in chlorophyll content in 

lamb’s lettuce has been shown during postharvest storage (Ferrante and 

Maggiore, 2007). In our experiments the decrease in chlorophyll content 

may have been too small to be detected with fluorescence signals (Ferrante 

et al., 2009). 

For the remaining variables selected by the model no reports on links to 

specific compounds or stress were found. A first observation was that seven 

of the 29 selected ratios had YFUV in the denominator. This might indicate 

that YFUV was a stable signal which was hardly influenced by different 

surrounding factors, e.g. growing conditions, harvest conditions, cultivar, etc. 

when there is a correction for storage temperature. Another interesting 

variable was FRFUV/YFB which was close to FRFUV/YFUV in the score plot 

and both of them were on the opposite side of the dependent variable when 

the first 2 LV’s were used (Fig. 5.10). Also, they had the highest VIP scores 

indicating that these ratios were important for the PLSR model (Fig. 5.11).  
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Fig. 5.10 Loadings plot of the PLSR model with temperature correction and variable selection 
for the first two latent variables. The X ( ) and Y variables ( ) are shown together with the 
highlighted X variables ( ).  

 

 

Fig. 5.11 VIP scores of the different variables of the PLSR model with temperature correction 
and variable selection. The three variables with the highest VIP score have their names 
displayed. 
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 Conclusions 

Although storage temperature had an effect on the samples in chapter 3, this 

did not lead to a clear grouping in the PCA scores plot. Also, a large 

difference between samples of different producers was noticeable on the 

first day of the experiment. The samples which were harvested on the first 

day of the experiment grown by the same producer showed a lot of variation 

in their chlorophyll fluorescence emission signals, indicating that extra 

variation in these signals might be induced by the stress of harvest itself. 

The influence of this harvest related stress decreased when lamb’s lettuce 

was stored for a longer time. As it was concluded from the metabolomics 

study in chapter 3 that the storage temperature has a significant effect on 

the postharvest aging of lamb’s lettuce, the storage times were normalized 

for this temperature effect. Then, PLSR prediction models were built to 

predict the normalized storage time from the acquired chlorophyll 

fluorescence emission signals and ratios calculated from these. 

MC-UVE-PLS selected 29 variables for inclusion in the PLSR prediction 

model to obtain a prediction error of 3.5 d and an R²pred of 0.67. The fact that 

the storage temperature needs to be known for this PLSR model to work, 

makes it not usable in practice. A grower who is storing its produce is not 

likely to share this information. However, this prediction model has led to 

some insights considering changes in lamb’s lettuce during a post-harvest 

during storage period. Of the 29 selected variables, six were documented in 

literature. These were related to stress (FRFUV/YFUV, YFUV/FRFUV) and 

flavonol content (FLAV, FRFUV/FRFR), suggesting that free radicals were 

produced during storage. FRFUV/YFB was included in the final selection and 

had one of the highest VIP scores, but more research is needed to link this 

ratio to a specific stress condition or metabolite. 

 





 

6. General conclusions 
and future perspectives 

 General conclusions 

Lamb’s lettuce presented to the market is not always freshly harvested. It 

can be stored up to three weeks without any notable visual differences 

compared to fresh lamb’s lettuce plants. However, the stored plants have an 

impaired shelf life potential which leads to lower consumption quality and 

losses in distribution. In this dissertation, the main objective was to develop 

a fast and non-destructive methodology to detect a prior storage period of 

lamb’s lettuce based on non-visual biological information. This was based on 

the hypothesis that invisible changes during a post-harvest storage period 

have a physiological base which is detectable by Vis/NIR reflectance 

spectroscopy or chlorophyll fluorescence emission ratios.  

In Chapter 3, the metabolic changes occurring in lamb’s lettuce during 

postharvest storage were studied to get a better view on their effect on the 

shelf life potential. Leafy vegetables stored in dark environments are 

incapable of performing photosynthesis. Hence, the carbohydrates 

synthesized through photosynthesis before harvest result in a limited energy 

source for respiration during storage. After 21 d of storage, the general 

sugar content had decreased. The RQ value indicated, though, that 

carbohydrates were still the main carbon source. However, the increase of 

free amino acids due to proteolysis indicated that the plants coped with 

nutrient stress and were preparing to use amino acids for respiration. The 

increase in concentration for most of the amino acids was sensitive to the 

storage temperature in which a higher temperature resulted in a larger 
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increase. However, the storage temperature did not influence the respiration 

rate. During storage, the respiration rate decreased, which implied a 

shortage in soluble carbohydrates. Therefore, we can conclude that after 

21 d of storage, lamb’s lettuce was still using carbohydrates as an energy 

source and that a mixture of different carbon sources could be used for 

respiration. Hence, if the storage period was longer, this would lead to a 

greater change in the energy metabolism. This also implies that the storage 

of lamb’s lettuce has a negative effect on shelf life potential. 

In Chapter 4, Vis/NIR spectroscopy in combination with PLS regression was 

evaluated as a fast and non-destructive method for determination and 

quantification of a prior storage period for lamb’s lettuce. The accuracy and 

robustness of the predictions improved significantly after selection of 10 % of 

the initial 650 wavelength variables. The number of latent variables dropped 

from 13 to 7, the R² increased from 0.75 to 0.83, while the RMSECV and 

RMSEV decreased to 3.6 and 3.7 d, respectively. The results of Chapter 3 

suggested that Vis/NIR spectroscopy could be a useful technique, because it 

could detect the decrease in carbohydrate content during storage. However, 

the wavelengths included in the PLSR model after variable selection were 

mostly situated in the visible part of the spectrum and more specifically 

wavelengths related to photosynthetic pigment degradation rather than 

sugars. It is possible that the wavelengths related to sugar content were too 

unstable to make a robust model. Also, in Chapter 3 we found that a lot of 

variation in soluble carbohydrate content was noticeable when samples were 

grown by different producers. Finally, it may well be possible that the change 

in carbohydrate content in lamb’s lettuce during storage was simply too 

small to be detected using NIR spectroscopy on intact leaves.  

An attempt was made in Chapter 4 to predict shelf life potential. A prediction 

of color parameters and quality scores after a shelf life holding period was 

not feasible. The reasons why the performance of the prediction models was 

poor were unclear and may be related to the small dataset or the lack of a 

link between the dependent and independent variables. 
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In Chapter 5, we investigated the potential of fluorescence spectroscopy to 

detect postharvest storage changes of lamb’s lettuce. A transformation 

based on the data of Chapter 3 was used to normalize the storage periods 

for the effect of storage temperature. A lot of variation was observed 

between the samples from different producers. Also, samples from the same 

producer had more variation between them when the measurements were 

performed closer to the moment of harvest. This suggests that extra 

variation in the fluorescence signals was induced by the stress of harvest 

itself. Surprisingly, no variable which could be linked solely to chlorophyll 

content was included in the final selection. This was in contrast with the 

variables included in the prediction model based on Vis/NIR spectra, where 

wavelengths related to photosynthetic pigments degradation were used. 

Comparing the PLSR prediction models of both techniques, the one based 

on Vis/NIR spectra gave the best performance and seemed to be the more 

suited option for application in practice. However, the datasets on which both 

models were constructed were vastly different. Chlorophyll fluorescence 

measurements were performed on whole crates while Vis/NIR transflectance 

measurements were performed on a single leaf of lamb’s lettuce. Also, the 

chlorophyll fluorescence dataset had only one harvest period, while the 

Vis/NIR calibration dataset contained 5 harvest periods. Hence, a simple 

one on one comparison was not possible. However, the PLSR prediction 

models based on chlorophyll fluorescence emission ratios were more 

sensitive to variations in storage temperature than those based on the 

Vis/NIR spectra. The prediction model based on Vis/NIR spectra has been 

implemented in practice with satisfying results. It is currently offered as a 

service by the Flanders Centre of Postharvest Technology (Heverlee, 

Belgium). 
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 Future perspectives 

The results presented in this thesis leave several unanswered questions 

about the changes in lamb’s lettuce during storage, the measurement and 

modelling techniques. Several suggestions for future research are presented 

in the following paragraphs. 

First, the postharvest changes in pigment composition of lamb’s lettuce 

during storage would be interesting to study. In the first place, these would 

be photosynthetic pigments, i.e., chlorophyll a, chlorophyll b and 

carotenoids. The prediction model based on Vis/NIR spectroscopy used 

wavelength variables mainly from the visible part of the spectrum for a 

robust prediction model. Also, these wavelengths could be linked to 

photosynthetic pigments. The fact that no chlorophyll fluorescence emission 

ratios linked to chlorophyll content were selected for the prediction of the 

postharvest storage period is remarkable. Hence, it would be interesting to 

investigate the temperature dependency of pigment degradation in lamb’s 

lettuce. Another metabolite worth investigating is ascorbic acid which has 

already been proposed as a good monitor for quality during storage of leafy 

vegetables.  

Another possibility is to identify a specific metabolite or multiple metabolites 

that can be considered as biomarkers for shelf life potential. A requirement is 

that they can be measured fast and nondestructively. Their rate of change or 

time to cross a certain threshold may also be used as an indicator of shelf-

life potential. Even when these metabolites could only be measured 

destructively, they might be used as a biomarker to, for example, confirm 

storage duration predictions based on VIS/NIR spectroscopy in case of 

disputes. 

Another topic worth investigating more is the possibility to use fluorescence 

emission ratios as a fast- and non-destructive measurement technique. The 

dataset used in this dissertation was small compared to the random variation 

between the samples measured. It might be possible that inclusion of more 

samples in the calibration dataset would improve the prediction 
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performance. Also, if fluorescence emission ratios could be measured on the 

same samples as Vis/NIR spectra, a one on one comparison could be made 

to determine the most suited technique. 

An interesting research topic would be to use concatenated models. In this 

method, it would be possible to make an estimate of the storage period 

based on more than one model. The first model could separate the samples 

based on the most similar season of growth, which was the biggest source 

of variation for Vis/NIR spectra. And for each season a separate model 

which estimates the storage time could be constructed. 

Another research topic would be to use a data matrix which contains the 

Vis/NIR spectrum and fluorescence emission ratios of the same sample or 

batch of samples. Multi-block PLS can be applied to this combination of data 

instead of only one of the two. Hence, information from both techniques at 

the same time can be employed for optimal prediction results. The 

augmented data matrix would provide an increased complexity. Hence, a 

correct selection of variables becomes more important. Variable selection 

techniques can be applied to the concatenated matrix which can lead to an 

optimal combination of variables from both techniques. If one of both 

techniques turns out to give redundant information, the variable selection 

techniques will point this out by not selecting any of the variables in the 

concatenated matrix. 
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