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Abstract: Light, color, and radial velocity data (2007–2015) for HD 161796, V887 Her, and HD 331319,
three oxygen-rich post-AGB stars, have thus far not provided direct support for the binary hypothesis
to explain the shapes of planetary nebulae and severely constrain the properties of any such
undetected companions. The light and velocity curves are complex, showing similar periods and
variable amplitudes. Nevertheless, over limited time intervals, we compared the phasing of each.
The color curves appear to peak with or slightly after the light curves, while the radial velocity curves
peak about a quarter of a cycle before the light curves. Thus it appears that these post-AGB stars
are brightest when smallest and hottest. The spectra of these objects are highly variable. The Hα

line has multiple, variable emission and absorption components. In these oxygen-rich post-AGB
stars atmospheric lines, such as near-infrared Ca II triplet and low-excitation atomic lines, also have
multiple components and sometimes show line doubling, indicative of shocks induced by pulsation.

Keywords: late-stage stellar evolution; planetary nebulae; multi-wavelength photometry; radial
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1. Introduction

Stars at the proto-planetary nebula (PPN) phase evolve from the Asymptotic Giant Branch towards
the PN phase becoming hotter at almost constant luminosity. These low mass stars are surrounded
by a circumstellar envelope ejected during the AGB phase. The details of the physical processes and
stellar winds that shape these envelopes remain uncertain. The outstanding question in PN research is
the role and importance of binarity in the shaping of PNe.

We selected seven bright (V < 10 mag) post-AGB stars observable with 1-m class telescopes
from the northern hemisphere (Hrivnak et al. [1]). They all have F- and G spectral types.
Of these 7 metal-poor PPNe, 3 are O-rich and 4 are C-rich. In this contribution, we will consider
the 3 O-rich objects: HD 161796 (IRAS 17436+5003), HD 331319 (IRAS 19475+3119), and V887 Her
(IRAS 18095+2704). The objects have spectral energy distributions typical for “shell” objects: they
are double peaked, with a peak in the visible arising from the (reddened) photosphere and a second
peak in the mid-infrared arising from re-radiation from cool (T≤ 200 K) dust. However, they have no
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near-infrared excess, the presence of which is an indication of the presence of a disk. The disk-type
post-AGB stars have been shown to be binaries (Manick et al. [2], Van Winckel et al. [3]).

HD 161796 is highly aspherical, and shows a low density polar outflow and a high density
equatorial region (Min et al. [4]). HD 331319 is a quadrupolar nebula with two collimated bipolar lobes
(Sahai et al. [5]). V887 Her is an extended source with a significant circumstellar shell (Ueta et al. [6])
and OH masers (Lewis et al. [7]).

To prove or exclude the presence of binaries in these shell objects is crucial to our understanding
of the way(s) that bipolar PPNe and PNe form. If it turns out that these PPNe are not binaries, then it
raises the possibility that there may be more than one way to produce bipolar PNe.

2. Observations and Analysis

High-resolution spectra were obtained at the Dominion Astrophysical Observatory 1.2 m telescope
since 2007 and with the HERMES Spectrograph on the 1.2 m Mercator telescope (Raskin et al. [8],
Van Winckel et al. [9]) since 2009. Radial velocities of the HERMES spectra were determined via the
cross-correlation technique using a mask in the range 477–655 nm for F0-type stars and fitting the peak
of the obtained correlation function with a gaussian (Hrivnak et al. [1]). Radial velocities of DAO
spectra were also obtained via cross correlation with a set of bright IAU RV standards observed with
the same instrumentation. In this case velocities were determined by fitting a parabola to the upper
half of the cross correlation profiles (Hrivnak et al. [1]).

Photometric observations of these objects were obtained from 2007 to 2015 at the Valparaiso
University Observatory with a 0.4 m telescope equipped with a CCD camera and filters standardized
to the Johnson B and V and Cousins R systems. Differential photometry was employed, using an
aperture of 11′′ diameter (Hrivnak et al. [10]). For V887 Her ASAS-N data were available and used
(Kochanek et al. [11]).

3. Results and Discussion

3.1. Radial Velocity and Photometry

The RV amplitudes are small (<4.0 km/s, Hrivnak et al. [12]) and the periods found in the RV
data are in the range 35 to 103 days, similar to the pulsation periods of the objects. So far, no clear
evidence for long-period RV variations due to binary companions has been found in any of these
objects. This sets significant constraints on the properties of any undetected binary companion: they
must be of low mass, ≤0.2 M�, or long period, longer than 30 years. Thus the present observations do
not provide direct support for the binary hypothesis to explain the shapes of thes PPNe.

The light and velocity curves are complex with multiple periods and variable amplitudes.
However, over limited time intervals during 2007–2015, we were able to identify dominant periods in
the light, color, and velocity curves and compare the phasing of each. See figures in Hrivnak et al. [12]
which shows the phased light, color, and velocity curves of the objects. The color curves appear to
peak with or slightly after the light curves while the RV curves peak about a quarter of a cycle before
the light curves. For all three objects plus two previously studies PPNe (Hrivnak et al. [13]), (a) the
light and color curves are approximately in phase, with the suggestion that the color curve perhaps
peaks slightly (∼0.05 P) after the light. (b) The RV curve is approximately −0.25 P out of phase with
the light curve. Thus it appears that these PPNe are brightest when smallest and hottest. These results
differ from those found for Cepheid variables, where the light and velocity differ by half a cycle, and
are hottest at about average size and expanding. However, they do appear to have similar phasing to
the larger amplitude pulsations seen in RV Tauri variables. Attempts at modeling pulsation in these
post-AGB stars are few (Fokin et al. [14]) and the observed periods are longer than models indicate.
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3.2. Spectroscopic Variability

The average Hα profiles show broad wings with central emission and absorption components
(Figure 1). The individual spectra show that these Hα components vary in depth, in width, and position
(Figure 2). The strength of the blue and red emission are changing alternately. The red emission and
absorption component is generally weaker than the blue. In the inverse P-Cygni profile phase, the blue
emission peak can be very strong.

Figure 1. (left) The averaged Hα profiles of all spectra corrected for RV and normalized.
(right) The averaged Ca II 854.2 nm profiles of all spectra corrected for RV and normalized.

Figure 2. HD 331319 line profiles observed in 2015. At the left Hα, in the middle the Ca II line at
λ 854.2 nm, and at the right the RV’s measured in the spectrum. The y-axes are Julian Dates, modified
as indicated.

The near-infrared Ca II triplet and some low-excitation metal lines such as Ba II and Fe II also
show strong variability (Figure 2). In these lines, line splitting in two can be observed sometimes.
This splitting was observed in C-rich post-AGB stars (Klochkova [15]) with a complex circumstellar
envelope, but here we confirm that it is also observed in such O-rich post-AGB stars. Further analysis
will help clarify where these components originate in these stars. The observed splitting and short-term
variability in low excitation atomic lines provide evidence that shock waves are present in the outer
layers of the atmosphere or circumstellar envelope (Fokin et al. [14], Klochkova [15], Zacs et al. [16]).
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The lack of line splitting phenomena in the high excitation potential lines is most likely because these
lines are formed deeper in the atmosphere.

The complex spectral variability and lack of stable periods in the light and velocity curves makes
the temporal changes hard to phase. Provisionally, in Figure 3 we phased V887 Her to the period
of 102.3 days and the same epoch as Hrivnak et al. [12]. We searched for evidence for a jet as seen
in BD+46 442 (Bollen et al. [17]), in which a broad absorption with a velocity up to ∼−400 km/s
is observed. In the phased spectra of V887 Her there is an extended blue absorption at phase 0.35.
However the velocity at the blue edge of the absorption is only −50 km/s, no more than 2–3 times
the typical expansion velocity of PNe and AGB stars, and lasts less than 0.10 phase cycle, while in
BD+46 442 it is at least 0.25 phase cycle. These are not indications for a strong jet. These “Shell” objects
have Hα profiles similar to “disc” sources, but without the presence of strong jets.

The analysis of the high-resolution spectra of these post-AGB stars continues, in order to better
investigate and understand the shocks, pulsation, and kinematics in these objects.

Figure 3. Dynamic Hα spectra of V887 Her, phased to 102.3 days and binned to 0.05, showing different
phase-dependent variations in the line profiles. The velocity on the x-axis denotes the RV shift from the
laboratory wavelength. The color indicates the continuum normalized flux.
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