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I 
 

Summary 
 

Experience and learning shape human behavior and alter brain functioning. To investigate the effects 

of learning on visual object representations in the brain, real-world visual experts are studied.  

Many different domains of visual expertise (e.g. bird expertise, car expertise, radiology etc.) have been 

linked to changes in neural processing, and these neural effects of expertise have been found in a wide 

variety of brain regions. In the first fMRI study, we aimed to shed light on the interaction between the 

specific domain of expertise and the localization and the extent of the underlying neural changes at 

the whole-brain level. Using large-scale univariate and multivariate analyses, we systematically 

compared the neural responses to expert object categories in two groups of visual experts, 

ornithologists and mineralogists, and a group of control participants. Results indicated the presence 

of distributed expertise-related neural changes for both domains of expertise, with more widespread 

effects for ornithology compared to mineralogy. Furthermore, these neural expertise effects consisted 

of a combination of domain-specific neural changes in high-level visual cortex, and domain-

independent expertise effects in the frontal lobe.  

A large body of research exists on both behavioral and neural effects of visual expertise, however, 

these two separate streams in the literature show large discrepancies. While many behavioral studies 

have emphasized the importance of subordinate-level processing in expertise, not a single study has 

investigated the neural activation underlying individual objects of expertise in a real-world domain. 

We aimed to fill this gap in the literature by investigating both mental and neural representations of 

individual objects of expertise in experts and compare them to those of novices to detect expertise-

related changes. In a second experiment, we investigated the mental representations of individual 

objects of expertise and their perceptual similarity. Results showed a quantitative enhancement of 

the mental representational space of objects of expertise in experts compared to novices. 

Furthermore, expertise induced qualitative changes in the form of more fine-grained, subordinate-

level distinctions in experts’ mental representational spaces. These expertise effects were influenced 

by top-down factors.  

In the final experiment of this dissertation, we explored whether and how expertise changes the way 

in which individual objects of expertise are represented in the brain. We applied multi-voxel pattern 

analyses to investigate the neural representational spaces of objects of expertise for both experts and 

novices. Results indicated quantitatively enhanced neural representations of objects of expertise in 

experts compared to novices, in higher-level brain regions. The overall structure of the neural 

representational space was not altered by expertise. Finally, the mental and neural representational 

spaces of both experts and novices were compared. The studies described in this dissertation 

advanced our understanding of the neural basis of visual expertise. 

 

 



 

 
 

 

 

 

 



 

III 
 

Samenvatting 
 

Het menselijk gedrag en het functioneren van onze hersenen worden beïnvloed wanneer we leren en 

ervaring opdoen. Om de effecten van leren op visuele objectrepresentaties in de hersenen te 

onderzoeken, worden visuele experts bestudeerd.  

Veel verschillende domeinen van visuele expertise (zoals vogelexpertise, auto-expertise, radiologie 

enz.) zijn in verband gebracht met veranderingen in neurale activatie en deze neurale effecten van 

expertise zijn gevonden in een breed scala van hersengebieden. In de eerste fMRI-studie trachtten we 

licht te werpen op de interactie tussen het specifieke domein van expertise en de locatie en de omvang 

van de onderliggende neurale veranderingen in de volledige hersenschors. Met behulp van 

grootschalige univariate en multivariate analyses vergeleken we systematisch de neurale responsen 

voor expertise-gerelateerde objectcategorieën in twee groepen van visuele experts, ornithologen en 

mineralogen, en een groep controle-participanten. De resultaten wezen op de aanwezigheid van 

gedistribueerde neurale veranderingen voor de beide domeinen van expertise, met meer 

wijdverspreide effecten voor ornithologie in vergelijking met mineralogie. Bovendien bestonden deze 

neurale expertise-effecten uit een combinatie van domein-specifieke neurale veranderingen in de 

hogere-orde visuele cortex, en domein-onafhankelijke expertise-effecten in de frontale lob.  

Er is reeds veel onderzoek uitgevoerd naar zowel de gedrags- als de neurale effecten van visuele 

expertise, maar deze twee afzonderlijke stromen in de literatuur vertonen grote discrepanties. Veel 

gedragsstudies naar visuele expertise hebben het belang benadrukt van informatieverwerking op een 

onderschikkend niveau door experts (discriminatie van objecten op een meer gedetailleerd niveau in 

vergelijking met niet-experts). Toch heeft geen enkele studie de neurale activatie onderzocht die ten 

grondslag ligt aan individuele objecten van expertise, in plaats van de expertise-gerelateerde 

objectcategorie, in een echt expertise-domein. Wij willen dit hiaat in de literatuur opvullen door zowel 

mentale als neurale representaties van individuele objecten van expertise bij experts te onderzoeken 

en deze te vergelijken met die van niet-experts om expertise-gerelateerde veranderingen te 

detecteren. In een tweede experiment onderzochten we de mentale representaties van individuele 

objecten van expertise en hun perceptuele gelijkenissen. De resultaten wezen op een kwantitatieve 

versterking van de mentale representatieruimte van individuele expertise-objecten bij experts in 

vergelijking met niet-experts. Bovendien leidde expertise tot kwalitatieve veranderingen in de vorm 

van meer gedetailleerde distincties (op onderschikkend niveau) tussen de individuele objecten in de 

mentale representatieruimte van experts. Deze effecten van expertise werden beïnvloed door top-

down factoren.  

In het laatste experiment van dit proefschrift hebben we onderzocht of en hoe expertise de manier 

beïnvloedt waarop individuele objecten van expertise worden gerepresenteerd in de hersenen. We 

analyseerden multi-voxel patronen om de neurale representatieruimte van objecten van expertise 

voor zowel experts als niet-experts te onderzoeken. Resultaten duidden op kwantitatief versterkte 

neurale representaties van expertise-objecten in experts in vergelijking met niet-experts, en dit in 

hogere-orde hersenregio’s. De algemene structuur van de neurale representatieruimte bleef 

ongewijzigd. Ten slotte werden de mentale en neurale representatieruimtes van zowel experts als 

niet-experts vergeleken. De studies die beschreven staan in dit proefschrift vergroten onze kennis van 

de neurale basis van visuele expertise. 
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1.1 VISUAL OBJECT RECOGNITION 

 

1.1.1 The visual system 

When you ask a child which part of our body we use to see, they will undoubtedly respond 

“the eyes”. However, the eyes are just the beginning of a complex process in which visual 

information about the outside world is transferred into the brain. Light that falls onto the 

retina is converted into neural signals which are sent towards the occipital cortex and onto 

higher-level visual regions in the brain where the visual information is reconstructed and 

interpreted. The cortical processing of visual information starts in the primary visual cortex or 

V1 in which neurons detect edges and orientations (e.g. edges that are oriented horizontally 

or vertically). The neurons in V1 provide the input for two distinct visual streams: the dorsal 

stream or the “where / how” pathway and the ventral stream or the “what” pathway 

(Goodale & Milner, 1992; Ungerleider & Mishkin, 1982; see Fig. 1.1). The dorsal stream ends 

in the posterior parietal cortex and is responsible for visually guided action by encoding the 

location of an object (“where”), directing eye movements and guiding the reaching for and 

the grabbing of the object (“how”). The ventral stream ends in the inferior temporal cortex 

(IT) and ensures form recognition and identification of the object (“what”). The ventral stream 

consists of a series of brain regions which are organized in a hierarchical way, containing both 

feedforward (bottom-up) and feedback (top-down) connections. The neurons in V1 feed 

information to the neighboring regions V2 and V3 which have increasingly broader receptive 

fields and further analyze the information from V1. Further along the “what” pathway is visual 

area V4, the main color center of the brain (Bartels & Zeki, 2000). Finally, visual information 

accumulates in the inferior temporal or ventral temporal cortex and the lateral occipital 

complex (LOC), which house complex representations of the shape and identity of the 

perceived objects. These brain regions are responsible for object recognition.  

 

1.1.2 Object recognition 

The importance of object recognition in our daily lives cannot be stressed enough. Imagine 

having to actively think about the meaning of every object we see, or even experiencing a 

small delay between seeing and understanding what we see. Normal functioning would be 
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made impossible. We constantly interpret everything that appears in our visual field and we 

do so with astonishing speed. Humans are able to accurately categorize a scene which has 

been presented for just 100 ms, or in other words: we are able to identify 10 scenes per 

second (Greene & Oliva, 2009). Even though the appearance of an object can vary greatly 

depending on the viewing conditions like point of view, lighting, distance to the object and so 

on, we are still able to exactly identify what we are looking at, and in record time.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The visual system. The dorsal visual pathway, which starts in primary visual cortex (V1) 
and ends in the posterior parietal cortex, serves visually guided action. The ventral visual pathway, 
which starts in V1 as well and ends in inferior temporal cortex (IT), encodes the shape and identity of 
perceived objects. Figure adapted from Martin (2012). 
 

 

The inferior temporal cortex and LOC are object-selective, meaning that they are activated 

more strongly when viewing objects compared to visual noise or scrambled objects (Malach 

et al., 1995). These brain regions process representations of a wide range of object categories, 

both large and small, animate and inanimate, natural and human-made and independent of 

the format of the object (e.g. photograph or line drawing; Ishai, Ungerleider, Martin, & Haxby, 

2000). How and where in the object-selective cortex are these different categories of objects 

represented? Several smaller brain regions within occipitotemporal cortex (OTC) are 
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category-specific: they respond very strongly to their preferred object category, but less so to 

any other type of object (see Fig. 1.2). For example, the fusiform face area (FFA) in ventral 

temporal cortex and the occipital face area (OFA) are highly selective for faces (Kanwisher, 

McDermott, & Chun, 1997). Face-selective regions have been found in human fMRI studies as 

well as in monkeys (Tsao, Freiwald, Knutsen, Mandeville, & Tootell, 2003). Furthermore, the 

extrastriate body area (EBA) specifically processes bodies and body parts (Downing, Jiang, 

Shuman, & Kanwisher, 2001), the parahippocampal place area (PPA) processes scenes, places, 

and visual landmarks such as houses (Epstein & Kanwisher, 1998) and the visual word form 

area (VWFA) processes letter strings (Cohen et al., 2000).  

 

 

 

 

 

 

 

Does this mean that the object-selective cortex is entirely made up out of distinct and highly 

specialized regions or modules whose sole function it is to represent one specific category of 

objects? Up until now, these kind of specialized regions have only been found for the object 

categories mentioned above. Downing, Chan, Peelen, Dodds and Kanwisher (2006) searched 

for selective regions for a wide range of other object categories like birds, chairs, flowers, 

musical instruments, insects, cars and so on, but they did not find any new specialized regions 

within the occipitotemporal cortex. Possibly, these category-specific regions do exist but have 

not yet been found due to insufficient methods or a too low scan resolution, in which case 

high resolution scanning could offer a solution (Schwarzlose, Baker, & Kanwisher, 2005). 

However, it seems more likely that for example a specialized “chair region” does not exist. A 

division into separate modules with a high preference for every existing object category 

would not be the most efficient way to organize the object-selective cortex. Then how are 

other objects represented? Instead of a localized increase in activity like for faces, other 

Figure 1.2. Object-selective regions. Ventral 
pathway regions in the right hemisphere of 
one individual that were significantly 
activated in the following contrasts: bodies > 
faces + houses (green), faces > bodies + 
houses (red) and houses > faces + bodies 
(blue). The yellow areas represent regions 
that were significantly active for the contrast 
objects > scrambled in a group of people. 
Figure adapted from (Op de Beeck, Haushofer, 
& Kanwisher, 2008). 
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object categories are represented by a distributed pattern of activity across a broader region 

of cortex like LOC (Ishai, Ungerleider, Martin, Schouten, & Haxby, 1999). These distributed 

patterns of selectivity for the different object categories appear to form a large-scale map, 

consisting of a gradient of selectivity across the object-selective cortex (Op de Beeck, 

Haushofer, & Kanwisher, 2008). The underlying dimensions of this large-scale map, and 

whether or not the category-specific regions like FFA are a part of it, are subject to discussion. 

Several dimensions have been proposed to be the dominant principle of organization. One 

possibility is eccentricity (Levy, Hasson, Avidan, Hendler, & Malach, 2001). This concept is 

related to the retinotopic organization (organization based on the visual field) that can be 

found very strongly in early visual areas like V1 and that extends in a weaker manner into 

lateral occipital and occipitotemporal cortex. This theory suggests that object categories 

which rely on detailed inspection and are mostly seen in the center of the visual field (e.g. 

faces) are represented in brain regions processing central information, while other object 

categories (e.g. buildings) are processed in brain regions associated with peripheral 

information (Levy et al., 2001). A second principle of organization that has been proposed is 

the type of processing that is elicited by the stimulus or object category. More specifically, 

what might determine the neural representation of an object category is whether it is 

processed in a holistic or in a part-based manner. Holistic processing is the tendency to 

process an object as a unified whole instead of processing all parts of the object separately, 

the mutual relations between the different parts and the total configuration are crucial to the 

recognition of the object (McGugin, Gatenby, Gore, & Gauthier, 2012; Richler & Gauthier, 

2014). This type of processing has been mainly found for faces (Tanaka & Farah, 1993; Tanaka 

& Sengco, 1997; although some argue against the view that faces are processed holistically; 

see Burton, Schweinberger, Jenkins, & Kaufmann, 2015). Thus it is proposed that face-

selective regions like FFA are actually regions in which holistic processing is implemented 

(Gauthier & Tarr, 2002; Tarr & Gauthier, 2000). Another potential underlying dimension of 

the organization of object-selective cortex could be the perceived shape of objects. Research 

has shown that unfamiliar objects with similar perceived shapes elicit similar neural response 

patterns (Op de Beeck, Torfs, & Wagemans, 2008). However, evidence has also been found 

for objects with very dissimilar perceived shapes that are processed in closely related brain 

regions. For example, even though the overall shape of hands is very different from other 

body parts like legs and torsos, a hand-preferring region has been located in the left lateral 
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occipital sulcus which partially overlaps with the left body-selective EBA (Bracci, Ietswaart, 

Peelen, & Cavina-Pratesi, 2010).  

Although relevant evidence has been found for each of the above mentioned dimensions, 

they can only partially explain the way in which object-selective cortex is functionally 

organized (Op de Beeck et al., 2008). The most dominant criterion that determines the 

selectivity of the high-level visual cortex seems to be (semantic) object category. This 

corresponds to our mental representational space of objects or in other words: our perceived 

similarity between different object categories. Most people will intuitively organize different 

object categories based on their meaning instead of their form (e.g. all plant categories, 

whether they are flowers or trees, will be grouped together). The visual cortex represents 

different object categories in a continuous semantic space. Research has shown that this 

semantic map possibly includes several dimensions such as mobile vs. immobile categories, 

social vs. non-social categories and animate vs. inanimate categories (Huth, Nishimoto, Vu, & 

Gallant, 2012). The distinction between animate and inanimate categories is quite prominent 

in occipitotemporal cortex (Downing et al., 2006; Kriegeskorte et al., 2008). Living or animate 

objects differentially activate regions in the lateral fusiform gyrus, while inanimate objects 

are processed more medially (medial fusiform gyrus). Logically, the animate-inanimate 

gradient stretches between the FFA on one side and PPA on the other side (Mahon & 

Caramazza, 2009). Finally, it is important to note that the potential dimensions driving the 

functional organization of object-selective cortex mentioned above are not necessarily 

mutually exclusive. Each of these dimensions could contribute to a greater or lesser extent to 

the large-scale selectivity map that is the object-selective cortex. For example, Bracci and Op 

de Beeck (2016) illustrated that in ventral and lateral OTC, information about both shape and 

semantic category are represented independently.  

The question remains how the organization of the object-selective cortex arises. Is the 

underlying large-scale map of object representations innate, is the gradient of selectivity a 

product of visual experience, or is it a combination of both?  
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1.2 LEARNING AND EXPERTISE 

 

1.2.1 Perceptual and visual object learning 

Experience and learning enable us to adapt to our ever-changing environment. We overcome 

challenges by acquiring new or modifying existing knowledge and skills. Perceptual learning 

consists of learning to recognize entirely new stimuli or increase our sensitivity to variations 

in familiar stimuli. It exists in all sensory modalities, for example: one can learn to hear the 

difference between musical tones, improve the ability to distinguish two points that are 

touching the skin or learn to distinguish different grape varieties when tasting wine. In this 

case, we focus on visual perceptual learning. Studies on visual perceptual learning have 

focused on a wide range of very low-level stimuli (like learning to discriminate between subtle 

changes in line orientations) to very high-level stimuli (e.g. learning to categorize artificially 

created objects) (Fine & Jacobs, 2002).  

There are different theories concerning the mechanisms of perceptual learning and 

categorization. According to these theories, we learn to categorize new stimuli by comparing 

its visual representation to some form of representation of the category that is stored in 

memory and judging its similarity to the category. Exemplar-based theories of perceptual 

learning state that categories are represented in the form of individual exemplars of the 

category with which we have had experience (Nosofsky, 1987, 2011). The prototype theory 

asserts that categories are stored in memory in the form of an abstract summary or 

prototype, which can be seen as the ‘average’ of all exemplars that have been experienced 

(Mervis & Rosch, 1981; Posner & Keele, 1968). Both theories emphasize the importance of 

the concept of similarity in the field of perceptual learning: only by resemblance to a 

prototype or to exemplars can a new stimulus be assigned to a category.  

Several properties are attributed to perceptual learning. Often, effects of perceptual learning 

are not only specific to the stimulus category (e.g. Searston & Tangen, 2017), but also to the 

stimulus configuration used during training, like the location of visual stimuli in an orientation 

discrimination task. In other instances, learning effects are, to some extent, generalized 

across stimuli and tasks (Fahle, 2005; Gegenfurtner & Seppänen, 2013). Furthermore, top-

down attention can modulate effects of perceptual learning; greater and faster 
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improvements are achieved for attended versus unattended stimuli (Byers & Serences, 2012). 

However, perceptual learning does not only occur with explicit task instructions focused upon 

the trained stimuli, it can even occur in the absence of directed attention towards or even 

perception of the ‘trained’ stimulus feature (Seitz & Dinse, 2007).  

Perceptual learning is inherent to our perceptual system. Training using basic visual tasks, like 

orientation discrimination of line segments or discrimination of spatial frequencies of 

gratings, results in long-term improvements in sensitivity for the trained stimulus category. 

This indicates that even in the adult brain neural plasticity remains in the visual cortex 

(Gilbert, Li, & Piech, 2009). Research on the neural effects of visual object learning has indeed 

shown that visual experience influences the way in which objects are represented in the brain 

(e.g. Folstein, Palmeri, & Gauthier, 2013). The neural effects of visual object training have 

typically been studied by measuring and comparing the neural response to a category of novel 

objects both before and after intensive training, or by comparing trained to untrained objects 

(Brants, Wagemans, & Op de Beeck, 2011; Gauthier & Tarr, 1997; Wong, Palmeri, Rogers, 

Gore, & Gauthier, 2009). This type of experiments has shown that training with a specific 

category of objects induces changes in the neural activation underlying the representation of 

that category, indicating that the large-scale map of object representations in object-selective 

cortex is at least partly formed by experience. 

The exact way in which learning affects object representations in the brain is still largely 

unknown. Human fMRI studies have reported an increase as well as a decrease in the 

magnitude of the neural response to a trained object category (e.g. Gauthier & Tarr, 1997; 

Kourtzi, Betts, Sarkheil, & Welchman, 2005; van der Linden, Murre, & van Turennout, 2008). 

Furthermore, studies applying multi-voxel pattern analyses (MVPA; see section ‘Experimental 

techniques’ in this chapter) have shown that training changes the multi-voxel patterns of 

selectivity that represent the trained object category (Brants, Bulthé, Daniels, Wagemans, & 

Op de Beeck, 2016; Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006). Some studies have 

found these training-related neural changes to be restricted to small subregions of the visual 

cortex (Gauthier & Logothetis, 2000; Logothetis, Pauls, & Poggio, 1995). However, other 

studies have demonstrated that visual object learning introduces rather distributed neural 

effects, with the magnitude of the effect varying across subregions of the visual cortex 

(Brants, Bulthé, Daniels, Wagemans, & Op de Beeck, 2016; Op de Beeck, Baker, DiCarlo, & 
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Kanwisher, 2006; Op de Beeck & Baker, 2010). Another way in which learning can affect 

neural object representations is by encoding the object dimensions that are relevant for the 

categorization of the objects. When learning to categorize objects, the neural representations 

in visual cortex are stretched along the category-relevant dimensions, meaning that the 

neural representations of objects that vary along a category-relevant dimension become 

more distinct (Folstein, Gauthier, & Palmeri, 2012; Folstein et al., 2013; Folstein, Palmeri, Van 

Gulick, & Gauthier, 2015; Sigala & Logothetis, 2002).  

 

1.2.2 Visual expertise 

A good approach to studying the effects of learning or experience in any given domain is by 

studying real-world experts, since expertise can be seen as an extreme form of learning. 

Experts are individuals who are able to produce superior performances on a regular basis 

within a specific domain. Their achievements within this domain surpass those of novices in 

the same domain, as well as their own achievements in other domains. People have been 

interested by expertise for a long time. Originally, expertise was seen as an innate ability that 

cannot be trained or practiced. Chess masters were assumed to be people with a great 

intellectual capacity to extensively search for alternative chess moves (Ericsson & Lehmann, 

1996). Later, the role of experience and deliberate practice in expertise was emphasized 

(Ericsson & Lehmann, 1996; Ericsson, Krampe, & Tesch-Römer, 1993). Now it is generally 

estimated that 10 years of deliberate practice are necessary to become an expert. Over the 

years, a wide range of experts from different domains have been studied, like chess masters 

(Bilalić, Langner, Ulrich, & Grodd, 2011), professional musicians (Schlaug, 2001), radiologists 

(Bilalić, Grottenthaler, Nagele, & Lindig, 2014) and even the Brazilian footballer Neymar 

(Naito & Hirose, 2014).  

However, in this dissertation the emphasis is placed on visual expertise, which is defined as a 

consistent superior performance compared to novices in recognizing, categorizing and 

identifying objects within a specific domain (Ericsson & Lehmann, 1996; Harel, Kravitz, & 

Baker, 2013; Shen, Mack, & Palmeri, 2014). Visual experts are very proficient in discriminating 

between visually similar objects belonging to a homogeneous object category (see Fig. 1.3 for 

an example). Behavioral studies on visual expertise have indicated that experts have the 
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tendency to identify and classify objects of expertise at a more subordinate level compared 

to novices (Tanaka & Taylor, 1991). While a novice might refer to a bird simply as being a bird 

(the basic level of categorization), a bird expert will preferentially categorize this bird using 

the subordinate level of categorization, in this case the species of the bird (e.g. “robin”). What 

is more, a bird expert would be equally fast to recognize this bird at the basic level as he would 

be to identify it more specifically. Several learning studies have indicated that training 

participants to identify or categorize objects at the subordinate level greatly enhances the 

participants’ ability to discriminate these objects, showing a much greater improvement than 

participants that are trained at the basic level (e.g. Scott, Tanaka, Sheinberg, & Curran, 2006; 

Tanaka, Curran, & Sheinberg, 2005; Wong et al., 2009).  

 

 

 

 

 

Figure 1.3. Example of two visually similar objects. These two birds are visually very similar, even 
though they belong to different species (left: little ringed plover, right: common ringed plover). Bird 
experts are very good at discriminating and categorizing visually similar birds.  

 

Visual expertise has been used for almost two decades in a large number of fMRI and EEG 

studies to investigate the effects of learning on the neural representations of object 

categories in the human brain. To give an idea of the extent of the domain of visual expertise 

in neuroscience, here are examples of different types of expertise that have been 

investigated: car expertise (Gauthier, Skudlarski, Gore, & Anderson, 2000; McGugin et al., 

2012; Xu, 2005), bird expertise (Gauthier et al., 2000; Xu, 2005), chess expertise (Bilalić, 

Langner, et al., 2011), radiology (Bilalić et al., 2014; Haller & Radue, 2005; Harley et al., 2009), 

expertise with musical instruments and notation (Hoenig et al., 2011; Wong & Gauthier, 

2010), expertise in computer programming (Floyd, Santander, & Weimer, 2017) and so on. 

This wide range of studies has generated very divergent results for which a consensus on the 

proper interpretation has yet to be reached. This is illustrated by the contrasting conclusions 
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that have been made in available literature reviews (e.g. Curby & Gauthier, 2010; Harel et al., 

2013; McKone & Kanwisher, 2005). The question remains which brain regions are most 

influenced by effects of intensive learning and which voxels remain unaltered, or in other 

words: which factors determine the distribution and localization of  expertise effects? 

 

The expertise hypothesis 

One of the first studies in which the neural correlates underlying a real-world domain of visual 

expertise were investigated was the influential study by Gauthier, Skudlarski, Gore, and 

Anderson (2000). Gauthier and colleagues recruited 11 car experts and 8 bird experts and 

presented them with images of cars, birds, faces and familiar objects inside the scanner. They 

measured the neural response of the two expert groups to their respective expert object 

categories in face-selective regions. The results indicated an increase of activation in response 

to objects of expertise in right FFA and OFA. Furthermore, they found that the neural 

activation in the right FFA was related to the experts’ score on a behavioral test of expertise. 

This study provided evidence for the perceptual process view of expertise and the expertise 

hypothesis. The perceptual process view considers expertise to be stimulus-driven and 

automatic. Experts’ performances are highly efficient and seem to be effortless. Furthermore, 

the hypothesis predicts that expertise-related neural changes are restricted to local 

populations of neurons (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Gauthier & Tarr, 

1997). Following this reasoning, long-term visual experience with a specific object category 

would lead to a region in OTC that is highly selective for this category (more so than for other 

categories). These kind of category-specific regions of course exist for faces (FFA and OFA), 

bodies (EBA) and scenes (PPA). The face-selective region FFA plays a central role in the 

expertise hypothesis, a more specific version of the perceptual process view. According to 

this hypothesis, FFA is the brain region in which ‘expert processing’ takes place (Gauthier et 

al., 2000; Gauthier et al., 1999; Sigala & Logothetis, 2002), independent of the visual object 

category in which the expert has been trained (‘domain-general’). We have all been learning 

to discriminate faces from each other since the day we were born, and even though faces are 

very homogeneous (same parts, same overall structure), we are all highly proficient in doing 

so. This has lead the proponents of this theory to conclude that FFA’s selectivity for faces has 

arisen due to the fact that we are all experts in processing faces, and not because faces form 
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a special object category. The ‘expert processing’ that is implemented in FFA is believed to be 

the tendency to process objects in a holistic manner (see section 1.1.2 ‘Object recognition’ in 

this chapter). Holistic processing is an important feature of face perception (Gauthier & Tarr, 

2002; Tarr & Gauthier, 2000). Furthermore, it has been associated with other homogeneous 

object classes with which humans have a lot of experience (Boggan, Bartlett, & Krawczyk, 

2012; Gauthier et al., 2014). Thus, the expertise hypothesis predicts that expertise-related 

neural changes for homogeneous object classes are mainly situated in FFA. 

Apart from the above mentioned study by Gauthier and colleagues (2000), several other fMRI 

studies in which experts were compared to novices have indeed demonstrated an increased 

activation in the FFA in response to objects of expertise. These studies included real-world 

experts with multiple years of experience with chess (Bilalić, Langner, et al., 2011), cars 

(McGugin, Gatenby, et al., 2012; Xu, 2005), radiology (Bilalić et al., 2014; Harley et al., 2009) 

and even Pokémon cards (James & James, 2013). Experience-related neural changes in FFA 

were also demonstrated in participants who were extensively trained to recognize novel 

objects (e.g. ‘Greebles’; Gauthier et al., 1999). 

Despite these results, the expertise hypothesis has been subject to controversy. First of all, 

several other fMRI studies have failed to find an expertise effect in face-selective regions, 

including studies with real-world experts (Bartlett, Boggan, & Krawczyk, 2013; Grill-Spector, 

Knouf, & Kanwisher, 2004; Krawczyk, Boggan, McClelland, & Bartlett, 2011; Rhodes, Byatt, 

Michie, & Puce, 2004) and laboratory-trained participants (Brants et al., 2011; Op de Beeck et 

al., 2006; Wong et al., 2009). Furthermore, it has been suggested that at least in a subset of 

studies the increased response for objects of expertise found in FFA might be due to the 

nature of the presented stimuli (birds, cars, Greebles, Pokémon characters) and the degree 

to which they resemble faces (Kanwisher & Yovel, 2006; Op de Beeck et al., 2006; Xu, 2005). 

In addition, some behavioral studies argue against holistic processing for objects of expertise 

(Hsiao & Cottrell, 2009; Robbins & McKone, 2007; Weiss, Mardo, & Avidan, 2016). But one of 

the most important criticisms that has been expressed, is that the above mentioned studies 

focused on a limited number of regions of interest (ROIs) and did not systematically compare 

the response to expertise objects in face-selective regions to other regions in or beyond the 

visual cortex, hereby potentially missing crucial effects (Harel, 2015; Harel et al., 2013; Op de 

Beeck & Baker, 2010).  
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The interactive view of expertise 

According to the interactive view of expertise, visual expertise does not solely induce bottom-

up perceptual (stimulus-driven) changes, but is also impacted by top-down factors like 

conceptual knowledge, attention and decision-making (Harel, 2015; Harel et al., 2013). For 

example, Harel, Gilaie-Dotan, Malach and Bentin (2010) performed an experiment in which 

the task relevance of the objects of expertise was manipulated. Car experts and novices were 

presented with images of cars and airplanes and were instructed to detect repetition of car 

images while ignoring both repeated and unrepeated airplane images (‘attend cars’ task) and 

vice versa (‘attend airplanes’ task). They found widespread expertise-related neural changes 

in and beyond the visual cortex, however, this expertise-related activation drastically 

diminished when cars were task irrelevant. McGugin et al. (2015) manipulated task relevance 

as well, they found that reducing attention to objects of expertise diminished expertise effects 

but did not make them disappear completely. The importance of attentional engagement in 

expertise was also demonstrated in a behavioral study in which experts showed a clear 

preference for pictures of objects related to their field of expertise (Hershler & Hochstein, 

2009). 

This interplay between bottom-up and top-down processes implies that a wider range of brain 

regions are involved in visual expertise. According to the interactive view, the neural 

correlates underlying visual expertise are not limited to a specific, local region in the brain but 

instead are expressed by rather moderate changes in neural activation that are distributed 

across a larger patch of cortex (Brants et al., 2016; Harel, 2015, 2016; Kourtzi et al., 2005; Op 

de Beeck & Baker, 2010). The presence of expertise-related neural activation has been 

demonstrated in visual cortex beyond the FFA, for example in early visual cortex (Harel et al., 

2010), in LOC (Harel et al., 2010; Jiang et al., 2007; Op de Beeck et al., 2006) and other parts 

of the (occipito)temporal cortex (Bilalić, Langner, Erb, & Grodd, 2010; Bilalić, Turella, 

Campitelli, Erb, & Grodd, 2012; Krawczyk et al., 2011; Moore, Cohen, & Ranganath, 2006; 

Wong, Palmeri, Rogers, et al., 2009), in the parahippocampal gyrus (PHG; Harel et al., 2010) 

and in the fusiform gyrus (FG; Harel et al., 2010; Rhodes et al., 2004). Even brain regions 

outside the visual cortex have emerged in the search for expertise effects, including prefrontal 

regions (Bartlett et al., 2013; Harel et al., 2010; Jiang et al., 2007; Krawczyk et al., 2011; Moore 
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et al., 2006) and parietal regions (Bartlett et al., 2013; Bilalić, Kiesel, Pohl, Erb, & Grodd, 2011; 

Bilalić et al., 2012; Harel et al., 2010; Moore et al., 2006).  

Experts’ performances are not automatic but instead consist of a complex interplay of 

perceptual stimulus characteristics, preferential attention for the expert object category and 

retrieving and updating conceptual knowledge about the category. What we know about the 

stimuli and what we expect based on previous experiences determines where we focus our 

attention and how we process the stimuli (Bilalić, 2017). It is proposed that the fronto-parietal 

network, in which neural expertise effects have been found, underlies the top-down 

attentional control that comes into play in expertise (Bartlett et al., 2013; Corbetta & 

Shulman, 2002; Harel, 2015).  

 

Informativeness 

It seems clear that the localization of expertise effects in and beyond the visual cortex varies 

widely between studies. However, the reason why certain neural subregions are affected by 

a particular domain of expertise and a particular task while others are not, is still unclear. It 

has been suggested that the extent to which neurons and brain regions are involved in a 

particular type of expertise depends on their informativeness for the field of expertise and 

the task at hand (Op de Beeck & Baker, 2010). Developing expertise with a particular object 

category will likely induce neural changes in those brain regions that already had a preexisting 

selectivity for that category (Brants et al., 2016). This means that expertise effects in visual 

cortex are domain-specific. A study in which juvenile monkeys were trained to discriminate 

between three new categories of stimuli, induced the emergence of distinct, specialized brain 

regions for each separate stimulus set. The locations of these regions were similar across 

monkeys but different across stimulus sets, suggesting that experience had modulated a 

preexisting map of neural object representations (Srihasam, Vincent, & Livingstone, 2014).  

This concept of informativeness has its origin in the field of visual neuroscience. Research has 

shown that orientation training in monkeys with stimuli that are presented in a fixed position 

of the visual field induces improvements in neural sensitivity for the trained orientation in 

trained neurons in V1 (with a corresponding receptive field), while no changes in neural 

tuning are found for untrained neurons (Schoups, Vogels, Qian, & Orban, 2001). Similarly, 
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orientation training also induced changes in the tuning curve of the most informative neurons 

for the trained orientation in V4 in monkeys (Raiguel, Vogels, Mysore, & Orban, 2006). The 

idea of informativeness is also related to the neuronal recycling hypothesis (Dehaene & 

Cohen, 2007) which explains the cortical localization of new cultural functions such as reading 

by suggesting that such evolutionary novel functions ‘recycle’ existing brain circuitry. The 

brain regions which are most likely to be recycled are the regions which are devoted to the 

most similar existing functions. Dehaene and Cohen (2007) provide convincing arguments for 

the ‘recycling’ of evolutionarily older brain regions for two new cultural functions: reading 

and arithmetic. However, the ‘recyling’ of informative brain regions in the context of 

perceptual expertise needs further investigation.  

 

 

1.3 EXPERIMENTAL TECHNIQUES 

 

1.3.1 functional Magnetic Resonance Imaging  

The neural data that are presented in this dissertation were acquired using functional 

Magnetic Resonance Imaging (fMRI). FMRI is a non-invasive technique which allows us to 

measure and visualize neural activity by detecting changes in the brain’s blood flow. When 

the metabolic activity of neurons increases, the blood supply to that region increases as well 

to meet the demand of oxygen. Active neurons consume oxygen and convert oxyhemoglobin 

(oxygenized red blood cells) into deoxyhemoglobin (deoxygenized red blood cells). An fMRI 

scan measures the concentration of deoxyhemoglobin in the blood, which is termed the 

BOLD-signal (blood-oxygen-level dependent contrast; Ogawa, Lee, Kay, & Tank, 1990). This 

way, activated brain regions are identified. The spatial resolution of fMRI is high (1-3 mm), 

but the temporal resolution is lower: there is a delay of a few seconds between the actual 

increase in neuronal signaling and the arrival of oxygenated blood in the engaged brain area.  

Participants are placed into the MRI scanner and are asked to perform a specific task. This 

way, brain regions that are active and relevant for that task are identified. Note that the brain 

serves a multitude of different functions, brain regions that are active while a participant is 

performing a task are not necessarily specific for that task (e.g. while identifying faces, brain 
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regions that subserve vision in general but that are not specific to face processing are active 

as well). Therefore, neural activity must always be compared to a carefully chosen baseline 

neural response, in order to identify those brain regions in which the neural activity for the 

experimental condition is greater (or smaller) relative to the baseline condition. For example, 

to identify face-selective regions, the neural activation elicited by viewing faces should be 

contrasted against the activation elicited when viewing man-made objects or scrambled 

images. 

 

Preprocessing 

Collected fMRI data first need to undergo a series of preprocessing steps before the actual 

statistical analyses can be carried out. The data in this dissertation underwent the following 

steps.  

In the studies presented in this dissertation, the entire brain was scanned in 3 seconds. 

Because the brain is scanned in slices, functional scans need to be corrected for slice timing 

differences (the first slice is scanned approximately 3 seconds earlier than the last slice). 

Second, it is inevitable that participants move their heads slightly (1-2 mm in every direction) 

during a scan session that can last up to 90 minutes. Therefore, functional scans are realigned 

to each other to correct for the participants’ head movements and are later co-registered 

with the anatomical image to ensure a perfect overlap between the functional and anatomical 

data. Scans during which participants have made relatively large, sudden movements (e.g. 

translations of more than 1 voxel size) are deleted from the data set.  

Each person’s brain is unique in the sense that there are small interindividual differences in 

the anatomy of the brain (e.g. on average a man’s brain is slightly larger than a woman’s 

brain). To be able to compare neural activation across participants, the functional and 

anatomical images of each participant need to be normalized so that they form a uniform 

space. In this case, images were normalized to the Montreal Neurological 152-brain image, 

which is a template created by averaging the anatomical scans of 152 individuals. Finally, the 

functional scans are spatially smoothed to increase the signal-to-noise ratio; neural activation 

is smeared out across voxels (volumetric pixels) to make sure that actual neural ‘signals’ are 

not lost in random noise.  
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1.3.2 Univariate analyses  

After the neural data have been preprocessed, a general linear model (GLM) is fitted to the 

data to estimate the linear relationship between the different experimental conditions of the 

task and the recorded neural activation in each voxel, resulting in a beta value for each voxel 

and each experimental condition. 

Traditionally, univariate analyses of fMRI data are used to identify brain regions that are 

significantly more activated when performing a specific task. For each voxel, a contrast is 

calculated by subtracting the beta value of a baseline condition (e.g. fixating a dot on an 

otherwise blank screen) from the beta value of the experimental condition, resulting in a 

contrast map. To investigate which brain regions are more involved in one experimental 

condition compared to the other, the contrast maps of both conditions are statistically 

compared. It is possible to study the neural activation that is elicited by the different 

experimental conditions at the whole-brain level by visualizing significantly active voxels 

across the entire cortex. Another possibility is to apply ROI-based analyses. In this case, the 

univariate neural activation is investigated in a limited set of pre-selected brain regions. These 

brain regions or ROIs can be delineated in each participant based on an anatomical template 

(aROIs) or based on independent functional localizer scans to identify ROIs (fROIs) with a high 

selectivity for a specific condition or category (e.g. face-selective regions). Subsequently, the 

beta values of the individual voxels included in this ROI are averaged and statistically 

compared, resulting in one measure of activation per ROI. In chapter 2 of this dissertation, 

both whole-brain and ROI-based univariate analyses were applied. 

 

1.3.3 Multi-voxel pattern analyses  

Traditional univariate analyses are not able to measure neural activation at a sub-regional 

level. Multivariate analyses on the other hand look at the spatial pattern of activation that is 

formed by multiple voxels simultaneously. This technique, called multi-voxel pattern analysis 

or MVPA (Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 2006), allows us to explore 

widespread, distributed patterns of activity for different conditions. Even if individual voxels 

are not significantly selective for a specific condition, the combined response pattern may 

very well carry information about that condition or about a specific stimulus. MVPA is 
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sensitive to changes in activation patterns, even when the mean activation in a region remains 

constant. The goal of MVPA is to determine whether multi-voxel patterns associated with 

different conditions (or with the same condition but in different subject groups) are 

discriminable from each other. In this dissertation, multi-voxel patterns of activity were 

analyzed in three different ways.  

 

Correlational MVPA 

One way to investigate multi-voxel patterns of activation is by performing correlational 

analyses (Figure 1.4). This method is used to judge the similarity between the multi-voxel 

patterns that represent all the different experimental conditions in a specific ROI. The first 

step in this analysis consists of randomly dividing the acquired neural data of each participant 

into two equally sized subsets. The neural activation patterns of all the experimental 

conditions in the first subset are correlated with the patterns of all the conditions in the 

second subset. This procedure of dividing the data and computing the correlations is repeated 

100 times and averages are calculated across these repetitions. As a result, a similarity matrix 

is created in which each cell contains the mutual correlation between two specific conditions. 

Similarity matrices can also be transformed in dissimilarity matrices by calculating 1 minus 

the correlation for each cell. The (dis)similarity matrices of different participants belonging to 

the same group are then averaged. The (dis)similarity matrices can be used to judge which 

experimental conditions have very similar neural representations and which conditions elicit 

very differing neural activation patterns. In chapters 2 and 4 of this dissertation, correlational 

multi-voxel pattern analyses were applied. 

 

MVPA decoding: subject classification 

The classical approach to MVPA decoding is used to answer the question whether multi-voxel 

patterns underlying different experimental conditions are statistically distinct from each 

other. This analysis is again applied within a pre-selected (functional or anatomical) ROI. A 

model is trained to learn to distinguish two experimental conditions (e.g. condition ‘cars’ and 

condition ‘dogs’) based on their neural activation patterns. Next, the trained model is tested 

with new data from the two conditions that the model has never ‘seen’ before. For each new 
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activation pattern, the trained model classifies the pattern into one of the two experimental 

conditions (e.g.: the model predicts whether the activation pattern was linked to the ‘face’ or 

the ‘car’ condition). The overall classification accuracy of the model is calculated as the 

proportion of times the model correctly classified the activation patterns into one of the two 

conditions. If the classification accuracy is above chance level (50% in the case of two 

conditions), then the activation patterns underlying the different experimental conditions in 

the selected ROI are distinguishable from each other.   

 

 

 

 

 

 

 

 

 

Figure 1.4. Schematic overview of correlational MVPA and the subject classification analysis. 
 

In this dissertation, the principle of MVPA decoding was used in a different way; we applied 

subject classification analyses to determine whether multi-voxel patterns for the same 

experimental condition but in different subject groups were distinguishable from each other 

(Figure 1.4). In this case, the data set consists of the multi-voxel patterns that are elicited by 

a selected experimental condition in a specific ROI, of all the participants from the two subject 

groups. First, for each of the two subject groups, one participant is randomly selected and left 

out of the data set. Next, a linear classifier (model) is trained on the patterns of all the subjects 

(training sample) except for the left-out pair (test sample), to learn to distinguish the neural 

response patterns (for the selected experimental condition) of the two subject groups. After 

training, the left-out pair (new data) is used to test the trained model: the response pattern 

Subject classification analysis Correlational MVPA 
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of each of the two subjects is classified as belonging to one subject group or the other. This 

procedure is repeated until each participant is left out of the training sample once. A 

classification accuracy is calculated as the proportion of times in which test participants were 

correctly classified as belonging to subject group 1 or 2. The higher the classification accuracy, 

the better the classifier was able to make a distinction between the neural representations of 

the experimental condition of the two subject groups.  

 

MVPA decoding: subject generalization 

Furthermore, we used MVPA decoding in the form of a subject generalization analysis (Figure 

1.5). In a subject generalization analysis, data from three subject groups are analyzed. On the 

one hand, the neural activation patterns for experimental condition A of subject groups 1 (1A) 

and 2 (2A) are compared. On the other hand, the neural responses for experimental condition 

B of subject groups 1 (1B) and 3 (3B) are compared. Any potential differences between 1A 

and 2A are then related to differences between 1B and 3B, to investigate whether they are 

similar or not. This way, any shared mechanisms between the neural responses of subject 

group 2 to condition A (2A) and the neural responses of subject group 3 to condition B (3B) 

are uncovered. In this dissertation, we used the subject generalization analysis to compare 

the neural activation patterns of two different groups of experts (groups 2 and 3) for their 

respective expertise conditions (conditions A and B) by comparing the response patterns of 

each expert group to the activation patterns of a group of control participants (group 1; 

responses to conditions A and B). 

Again, a classifier is trained to make a distinction between the neural representations of 

subject groups 1 and 2 (for condition A: 1A and 2A), however, in the testing phase the classifier 

is presented with neural data from subject groups 1 and 3 (for condition B: 1B and 3B). The 

generalization accuracy is calculated as the proportion of times in which a test participant 

from group 1 (1B) is classified as belonging to group 1 (1A), and a test participant from group 

3 (3B) is classified as belonging to group 2 (2A). A high generalization accuracy indicates the 

presence of very similar mechanisms that distinguish the activation patterns for 1A and 2A on 

the one hand and the activation patterns for 1B and 3B on the other hand. In the case of the 

expert groups, this would mean that effects of expertise in expert group 1 (compared to 

control participants) are very similar to effects of expertise in expert group 2 (compared to 
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control participants). The subject classification and the subject generalization analyses were 

both applied in chapter 2. 

 

 

 

 

 

 

 

 

Figure 1.5. Schematic overview of the subject generalization analysis. 
 

 

1.4 OBJECTIVES 

 

Despite the large body of research investigating the neural correlates of visual expertise, 

many questions remain unanswered.  

A first gap in our understanding of the neural correlates underlying visual expertise concerns 

the wide variety of brain regions in which expertise effects have been found. In the second 

chapter of this dissertation, we aim to shed light on the interaction between the specific 

domain of expertise and the localization and the extent of the underlying neural changes. We 

conducted a large-scale fMRI study in which we systematically compared two domains of 

visual expertise, ornithology and mineralogy. We applied both univariate and multivariate 

analyses to compare the neural responses to the respective expert object categories (birds 

and minerals) between the two expert groups and a third group of control participants. 

Importantly, while some studies have already compared different domains of visual expertise, 

this is the first to investigate expertise-related neural changes of two groups of experts at the 
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whole-brain level. By focusing upon a limited set of ROIs, potential expertise effects might be 

missed. Other studies adopted a broader perspective and performed at least some whole-

brain univariate or multivariate analyses, but they were limited to only one domain of 

expertise. We investigated whether visual expertise induces domain-specific neural changes, 

possibly showing a bias to those regions which are most activated by the object domain 

(‘informative regions’). Alternatively, more general correlates of visual expertise that are 

similar across different domains could play a role, either at the level of specific regions of 

interest or at a more distributed level. 

A major shortcoming in the literature on visual expertise concerns the discrepancy between 

behavioral and neural (whether it be EEG or fMRI) studies. While many behavioral studies 

have emphasized the importance of subordinate-level processing in expertise (i.e. 

categorizing or discriminating objects at a fine-grained, detailed level), not a single study has 

investigated the neural activation underlying individual objects of expertise. 

In a second experiment (chapter 3) we investigated the mental representations of individual 

objects of expertise in bird experts and compared them to the mental representations of 

novices. Both bird experts and novices provided behavioral similarity judgments of a carefully 

chosen stimulus set of birds in a multiple object arrangement task. Similarity between 

individual objects or exemplars is an important aspect of perceptual learning: we learn to 

categorize new objects by comparing its visual representation to a prototype or to exemplars 

that are stored in memory. Mental representational spaces or similarity spaces displayed the 

similarity between the mental representations of individual objects for both subject groups. 

This approach has never before been applied in the field of visual expertise. We investigated 

the influence of expertise on the subordinate-level similarity in the expert object category. 

Furthermore, we examined the influence of top-down effects by adding a task manipulation: 

participants were asked to perform either an expertise-related or a non-related task.  

Even though all neural studies investigating real-world perceptual expertise have included 

experts that were very proficient at making fine-grained distinctions between visually similar 

objects within a specific domain, they all investigated the neural activation underlying the 

expert object category. In chapter 4 of this dissertation a study is presented in which we 

investigated neural expertise effects at the subordinate level by exploring whether and how 

bird expertise changes the way in which individual objects of expertise (birds) are represented 
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in the brain. We applied MVPA to distinguish the distributed neural responses to individual 

birds in the object-selective cortex. These neural representations were combined in a 

representational space and subsequently compared between bird experts and novices.  

Moreover, to ensure comparability we used the same stimulus set of objects of expertise in 

chapters 3 and 4. We aim to compare the mental (behavioral) representational spaces of both 

experts and novices (chapter 3) to their neural representational spaces of the same individual 

objects of expertise. 
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Visual expertise induces changes in neural processing for many different domains of 

expertise. However, it is unclear how expertise effects for different domains of expertise are 

related. In the present fMRI study, we combine large-scale univariate and multi-voxel 

analyses to contrast the expertise-related neural changes associated with two different 

domains of expertise, bird expertise (ornithology) and mineral expertise (mineralogy). Results 

indicated distributed expertise-related neural changes, with effects for both domains of 

expertise in high-level visual cortex and effects for bird expertise even extending to low-level 

visual regions and the frontal lobe. Importantly, a multivariate generalization analysis showed 

that effects in high-level visual cortex were specific to the domain of expertise. In contrast, 

the neural changes in the frontal lobe relating to expertise showed significant generalization, 

signaling the presence of domain-independent expertise effects. In conclusion, expertise is 

related to a combination of domain-specific and domain-general changes in neural 

processing. 
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2.1 INTRODUCTION 

 

Experience and learning shape human behavior and influence the functional architecture of 

the brain. A widely studied exemplar of learning is visual expertise, defined as a superior 

performance in identifying and categorizing visually similar objects within a specific domain 

(Harel et al., 2013; Shen et al., 2014). Visual expertise has been associated with changes in 

the underlying neural activation for the expert object category, with evidence from many real-

world domains of expertise as well as experimentally induced forms of expertise and learning 

in humans and primates (Folstein et al., 2013; Gauthier et al., 1999; Kourtzi et al., 2005; Li, 

Ostwald, Giese, & Kourtzi, 2007; Op de Beeck et al., 2006; Sigala & Logothetis, 2002; Sigman 

et al., 2005; Wong et al., 2009).  

Despite the large body of available studies on this topic, a consensus has yet to be reached 

on the proper interpretation of their findings, as is demonstrated by the strongly differing 

conclusions in available literature reviews (e.g. McKone and Kanwisher 2005; Curby and 

Gauthier 2010; Harel et al. 2013). A recurring point of disagreement is the potentially 

important role played by specific brain areas, particularly the fusiform face-selective cortex 

(fusiform face area, FFA). Not surprisingly, many empirical studies have focused on this 

specific issue. Several fMRI studies in which experts were compared to novices have indeed 

demonstrated a relation between expertise and activation in the FFA in response to objects 

of expertise. These neural changes have been found in chess experts, car experts, plane 

experts, ornithologists and radiologists (Bilalić et al., 2014; Bilalić, Langner, et al., 2011; 

Gauthier et al., 2000; Harley et al., 2009; McGugin, Gatenby, et al., 2012; Xu, 2005) as well as 

in participants who were extensively trained to recognize novel objects (e.g. “Greebles”, 

Gauthier et al., 1999; Behrmann et al., 2005). An EEG study also demonstrated a competition 

for neural resources between faces and objects of expertise in face-selective areas in OTC 

(Bruno Rossion, Collins, Goffaux, & Curran, 2007). However, several other studies have failed 

to find an expertise effect in face-selective regions, including studies with real-world experts 

(Grill-Spector et al., 2004; Krawczyk et al., 2011; Rhodes et al., 2004) and laboratory-trained 

participants (Op de Beeck et al., 2006), even when using the original Greeble stimuli (Brants 

et al., 2011). 
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The presence of expertise-related activity has also been demonstrated in occipitotemporal 

cortex (OTC) beyond the FFA (Brants et al., 2011; Grill-Spector et al., 2004; Harel et al., 2010; 

Jiang et al., 2007; Krawczyk et al., 2011b; Mongelli et al., 2017; Moore et al., 2006; Op de 

Beeck et al., 2006; Rhodes et al., 2004; Wong et al., 2009). Even areas outside the visual cortex 

have emerged in the search for expertise effects, including prefrontal and parietal regions 

(Harel et al., 2010; Krawczyk et al., 2011; Moore et al., 2006) and auditory association cortex 

for professional musicians (Hoenig et al., 2011). 

All reviews agree that various forms of expertise exist and that expertise-related neural 

changes might depend upon stimulus characteristics and domain-specific task requirements 

(compare, for example, Richler and Gauthier (2014) and Harel et al. (2013)). In at least a 

subset of the studies for example, the increased response observed in the FFA may be due to 

the nature of the presented stimuli and the degree to which they resemble faces (Op de 

Beeck, Baker, DiCarlo, & Kanwisher, 2006; Xu, 2005). However, there is surprisingly little direct 

evidence to support such claims. It remains unclear why the localization of expertise effects 

in visual cortex varies widely between studies, sometimes affecting the FFA and sometimes 

affecting other regions.  

We aim to investigate the interaction between the specific domain of expertise and the 

localization and the extent of the underlying neural changes. To do this, we need to compare 

different domains of visual expertise and focus on the related patterns of activity in the entire 

visual cortex and even the brain at large. While some studies have already compared different 

domains of visual expertise (e.g. car experts vs bird experts: Gauthier et al., 2000; Xu, 2005 

and car experts vs plane experts: McGugin et al., 2012a), they only focused upon a limited set 

of ROIs and might therefore have missed potential expertise effects. Others adopted a 

broader perspective and performed at least some whole-brain univariate or multivariate 

analyses but were limited to only one domain of expertise (Bilalić et al., 2014; Harel et al., 

2010; Mongelli et al., 2017). As a consequence, we lack insight into the degree of similarity 

(or disparity) between neural changes induced by different domains of visual expertise. 

In the present fMRI study we combine large-scale univariate analyses, multi-voxel brain 

decoding and region-of-interest analyses to compare the changes in neural processing 

associated with two forms of expertise, bird expertise (ornithology) and mineral expertise 

(mineralogy). We have deliberately included one animate and one inanimate domain, 
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because this seems to be the major distinction underlying the large-scale organization of 

neural object representations (e.g. Kriegeskorte et al. 2008; Mahon and Caramazza 2009; 

Bracci and Op de Beeck 2016). While mineralogy might seem an odd choice at first, minerals 

form a homogenous object category that is more representative of a nonliving category than 

for example the more commonly studied category of cars (Gauthier et al., 2000; Xu, 2005). 

Since cars are moving objects and the front views of cars resemble faces (Xu, 2005), they have 

often been depicted as living objects (e.g. the Pixar animation film series “Cars”). Comparing 

two very different domains of visual expertise offers us the opportunity to investigate 

whether expertise induces domain-specific neural changes, possibly showing a bias to affect 

those regions which are most activated by the object domain (“informative” regions; Op de 

Beeck and Baker 2010; Brants et al. 2016). Alternatively, more general correlates of visual 

expertise that are similar across different domains could play a role, either at the level of 

specific regions of interest (Gauthier et al., 2000) or at a more distributed level (Harel et al., 

2013). Importantly, to test these hypotheses we have to investigate patterns of activity not 

only at the level of individual areas, but more broadly across large cortical regions. 

 

2.2 MATERIAL AND METHODS 

 

2.2.1 Participants 

The study included 68 participants. Twenty-one candidate experts in ornithology, 27 

candidate experts in mineralogy and 20 control participants took part in the behavioral 

session of this study. All participants completed perceptual and semantic measures for both 

domains of expertise (see details below). Based on the behavioral results, 10 candidate 

experts in mineralogy were excluded from further participation and analyses. One expert in 

ornithology was excluded for MRI safety reasons. The final sample of subjects consisted of 20 

ornithologists (aged 26.4 ± 5 years, 5 females, average 8.6 years of experience (sd 4.6 years), 

apart from three outliers all within 3 and 10 years), 17 mineralogists (aged 25.3 ± 5 years, 7 

females, average 6.4 years of experience (sd 3.7 years), apart from three outliers all within 3 

and 8 years) and 20 control participants (aged 24.3 ± 3 years, 7 females, no experience with 

either birds or minerals). These sample sizes were larger than the number of participants 
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included in the few other studies comparing two groups of experts (Gauthier et al., 2000; Xu, 

2005). The subject groups were mostly matched for number of men/women. Previous 

research has indicated that men show an advantage for recognition of nonliving objects, while 

women tend to be better at recognizing living objects (McGugin, Richler, Herzmann, Speegle, 

& Gauthier, 2012). While it would be interesting to investigate sex differences in these 

domains of expertise, our subject groups consisted of too few female experts to make the 

comparison.  All ornithologists were active birdwatchers that had taken up this hobby out of 

interest. The group of mineralogists consisted in part of students with an academic degree in 

geology and in part of participants that actively collected and identified minerals. All 

participants were healthy adults with normal or corrected-to-normal vision and the three 

groups were matched for level of education. The study was approved by the Medical Ethical 

Committee of KU Leuven and all participants provided a written informed consent. 

 

2.2.2 Behavioral session and determination of expertise level 

All subjects participated in a behavioral session of approximately one hour, in which they 

carried out several computer and paper-and-pencil tasks. First, participants were asked to fill 

out a questionnaire in which their self-reported knowledge of birds and minerals was 

measured, as well as their general interest in classifying and determining objects. This 

questionnaire was a Dutch translation of the questionnaire used by Gauthier et al. (2014), in 

which the category-specific questions were attuned to birds and minerals. Second, all 

participants completed two perceptual discrimination tasks, one for each domain of 

expertise, to determine their level of expertise. Each discrimination task consisted of 80 pairs 

of colored images of either European bird species or of more or less well-known minerals, 

which were selected with the assistance of experts in both domains. The participants had to 

decide for each pair of images whether both images were of the same species in the case of 

birds or whether they shared the same chemical composition (polymorphs) in the case of 

minerals. Note that for both types of expertise, the discrimination task was not strictly 

(though largely) a perceptual task. Both visual (birds: shape and color of claws, beak, feathers, 

etc.; minerals: crystal structure) and non-visual (birds: birdsong, habitat; minerals: hardness) 

aspects play a role in the classification of birds and minerals. Furthermore, experts need 

domain-specific knowledge to know how to interpret the visual information (e.g., the fact that 
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for some species of birds the male and female exemplars are very different). The pairs in both 

tasks (half ‘same’, half ‘different’) varied in difficulty. The images were presented 

sequentially: the first image appeared for 1 second, the second image remained on the screen 

until a same/different response was made by pressing one of two keys on the keyboard. The 

design of this discrimination task was inspired by tasks used in earlier fMRI studies of expertise 

(Gauthier et al., 2000; Gilaie-Dotan, Harel, Bentin, Kanai, & Rees, 2012; Harel et al., 2010; 

McGugin, Gatenby, Gore, & Gauthier, 2012).  

An additional semantic task was used to measure how well participants were able to name 

different objects of expertise, again for both domains of expertise. Participants were asked to 

name a list of 30 colored images as precise as possible, without being limited by a time 

constraint. Each answer was awarded one, two or three points, based on the specificity of the 

answer. For example, naming the correct bird species (and even giving the correct Latin name) 

would earn more points than naming the more general bird family. Participants with a 

knowledge of birds were considered bird experts if they reached an accuracy level of 65% on 

the bird discrimination task, which was the case for all candidate bird experts. Three 

participants who claimed to have no specific knowledge of birds reached the 65% boundary 

as well, however, they were not considered to be experts based on their low score on the 

semantic task for birds (maximal score of 15% correct, far below the average score of 65% for 

the included bird experts). For the selection of mineralogists the same logic was applied. 

However, the mineral discrimination task proved to be more difficult, therefore a threshold 

of 60% was applied. One candidate mineral expert did not reach the 60% threshold (score: 

57.5%), but since his semantic score was very good (situated at the 76th percentile of semantic 

scores for all included mineral experts), he was still included in the study as a mineralogist. 

Ten other candidate mineralogy experts were excluded for further testing (no fMRI scan) 

because they did not reach the 60% discrimination threshold and did not compensate with a 

convincing score on the semantic task (scores situated below the 29th percentile of semantic 

scores for all included mineral experts). The thresholds for the discrimination tasks were 

chosen to make the distinction between experts and non-experts as clearly as possible, while 

taking into account the different characteristics of the performance on the two tasks. The 

selected thresholds for both tasks were significantly different from the chance level of 50%. 

Following the binomial distribution, the probability of answering exactly or more than 48 out 
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of 80 trials (60%) correctly is p = 0.046, the probability of having exactly or more than 52 

correct trials (65%) is p = 0.0048, under the null hypothesis of a distribution centered at 50%. 

After the imaging data had been collected, we tested the participants’ memory for the bird 

and mineral exemplars that had been presented to them during the scans (see fMRI 

procedure and experimental design). In this delayed recognition task, for both categories the 

20 original images were interspersed with 20 distracters and participants were asked to 

indicate which of these images they had or had not seen during the experiment. 

Finally, we assessed the participants’ recognition ability in a third, neutral domain to assess 

whether the experts’ performance on the relevant discrimination task (e.g. bird task for 

ornithologists) was related to a more domain-general skill of fine object recognition. Although 

participants’ performance on the discrimination task of the “opposite” domain (e.g. mineral 

task for ornithologists) already served as a baseline measure (since it concerns an object 

category of which participants have no specific knowledge), we also administered the 

Cambridge Face Memory Test (CFMT, Duchaine and Nakayama, 2006) to all participants. 

 

2.2.3 Apparatus 

Imaging data were collected using a 3T Philips Ingenia CX scanner with a 32-channel head coil 

at the Department of Radiology of the University Hospitals Leuven. Functional images were 

acquired via an EPI sequence with a TR of 3 s, TE of 30 ms, 54 slices, 2.5 x 2.56 mm in plane 

voxel size, slice thickness of 2.5 mm, inter-slice gap of 0.2 mm, flip angle of 90° and an 84 x 82 

acquisition matrix, covering the whole cerebral cortex. We collected a high-resolution T1-

weighted anatomical image for each participant (182 slices, 0.98 x 0.98 x 1.2 mm resolution, 

TR = 9.6 ms, TE = 4.6 ms, 256 x 256 acquisition matrix). The stimuli were presented using 

PsychToolbox 3 (Brainard, 1997) in Matlab and projected onto a screen which could be viewed 

through a mirror mounted on the head coil. 
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2.2.4 fMRI procedure and experimental design 

Imaging data were collected in a block-design experiment consisting of 10 runs, each lasting 

255 seconds. Within each run, 7 categories of stimuli were presented: birds, minerals, faces, 

scenes, living objects (animals), nonliving objects and scrambled images (Figure 2.1). Each 

category contained 20 gray-scale images.  The images were presented on a uniform gray 

background at a uniform size of 300 x 300 pixels in a random left or right orientation and with 

a small position jitter (maximum 50 pixels in horizontal and vertical direction) around the 

fixation point. The order in which the categories were presented was balanced over runs and 

participants and the stimulus order within each category block was randomized. Each block 

contained 20 stimulus trials, of which three trials were an immediate repetition of the 

previously presented image but with a random position and orientation. Participants were 

asked to press a button to signal these successive image repetitions regardless of position and 

orientation changes. Responses were collected via a response box.  

 

2.2.5 Analyses 

fMRI preprocessing and statistical analysis 

All imaging data were preprocessed using the Statistical Parametric Mapping software 

package (SPM12, Welcome Department of Cognitive Neurology, London). Functional images 

were corrected for slice timing differences as well as head movements by realignment to the 

mean image. The images were smoothed using a Gaussian kernel of 8 mm full-width at half 

maximum (FWHM) for univariate second level analyses, and a Gaussian kernel of 5 mm 

FWHM for the univariate ROI-analyses and for all multi-voxel analyses (subject classification, 

generalization and representational similarity analyses). Both anatomical and functional 

images were normalized to the standard Montreal Neurological 152-brain average template 

and the voxels were resampled to a voxel size of 2.5 x 2.5 x 2.5 mm. Due to some technical 

difficulties and excessive head motion, a number of functional runs had to be excluded from 

further analyses. We controlled for excessive head motion during scanning by discarding all 

runs in which participants moved more than half a voxel size (1.25 mm) on two consecutive 

images. For 41 participants (14 ornithologists, 11 mineralogists and 16 controls), we were able 

to include all 10 functional runs. For 10 participants (4 ornithologists, 4 mineralogists and 2 
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controls) 9 runs were included, for 4 participants (2 ornithologists and 2 controls) we included 

8 runs and for the remaining 2 participants (mineralogists) we included 7 runs. For each 

participant a general linear model (GLM) was fitted to estimate the linear relationship 

between the experimental conditions and the recorded neural activation in each voxel. The 

fixation condition was not explicitly modeled. Motion realignment parameters were added as 

regressors to control for signal variation due to head motion. Further analyses were 

performed using t-tests between coefficients of different experimental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic overview of the design of one experimental run and expertise stimuli. Overview 
of the design of one experimental run (A), images of 7 categories were presented in a block-design (20 
grayscale images per block). At the start, in the middle and at the end of each run a fixation block of 
15s was presented. (B) The 20 bird stimuli and 20 mineral stimuli that were used during the experiment. 
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Regions of interest 

Given that object recognition has been shown to be sustained by a neural system 

encompassing low- and high-level regions in ventral visual cortex as well as frontal regions 

(e.g. Fenske et al. (2006)), we delineated three large but mutually exclusive anatomically 

defined regions of interest (aROIs). First, we selected all voxels that were significantly active 

above the threshold of p < 0.001 (uncorrected) in the contrast [all conditions - fixation]. 

Anatomical masks, created by using the WFU PickAtlas Toolbox (Wake Forrest University 

PickAtlas, fmri.wfubmc.edu/cms/software), were used to define the following bilateral aROIs 

(Figure 2.2): a low-level visual aROI (Brodmann areas 17 and 18, which included V1 and nearby 

cortical regions, defined in all 57 subjects), a high-level visual aROI (Brodmann areas 36, 37 

and 20, defined in all 57 subjects) and the complete frontal lobe (including motor cortex, 

defined in all 57 subjects). Given that these masks provide a thin cortical thickness which is 

not realistic given the smoothed nature of our fMRI data for the between-group comparisons, 

the anatomical masks were expanded by two voxels in all directions to make sure that most 

relevant active voxels were included. The resulting minor overlap between the low-level 

visual aROI and the high-level visual aROI was removed from both resulting masks. Seven 

additional functional ROIs (fROI) were delineated manually in each individual participant, 

independent from the experimental data. These fROIs, that were defined using different 

functional contrasts, all included spatially contiguous voxels that exceeded the uncorrected 

statistical threshold of p < 0.0001. Significantly active voxels were displayed on coronal slices 

and manually selected. Only clusters consisting of a minimum of 20 voxels were selected. 

When less than 20 active voxels were found, a more liberal uncorrected threshold of p < 0.005 

was applied. Here again, the minimum cluster size was taken into account, and the fROI was 

not defined if cluster size was smaller than 20 voxels. The fusiform face area (left FFA: 54 

subjects; right FFA: 56 subjects) and the occipital face area (OFA) were defined by the contrast 

[faces - nonliving] in combination with anatomical criteria. Due to the fact that OFA could only 

be selected in a limited number of participants (38 left and 44 right), this region was left out 

of any further analyses. For the selection of the parahippocampal place area (PPA; left PPA: 

57 subjects; right PPA: 57 subjects), voxels around the parahippocampal gyrus that showed 

responsiveness for the contrast [scenes - nonliving] were delineated. We defined two parts 

of lateral occipital complex (LOC) using the [nonliving – scrambled] contrast: a more posterior 
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part in lateral occipitotemporal cortex (pLOC; left pLOC: 57 subjects; right pLOC: 57 subjects) 

and a more anterior part in ventral occipitotemporal cortex (aLOC; left aLOC: 57 subjects; 

right aLOC: 57 subjects). Both regions were selected in a mutually exclusive way. Finally, a 

region selective for living objects (left Living: 57 subjects; right Living: 56 subjects) and a region 

selective for nonliving objects (left Nonliving: 56 subjects; right Nonliving: 56 subjects) were 

delineated using the contrasts [living - nonliving] and [nonliving - living] respectively. Analyses 

in both the anatomical and the functional ROIs were performed across hemispheres (see e.g. 

Harel et al., 2010). The average sizes and MNI coordinates of all the ROIs mentioned above 

are presented in supplementary material (section 2.5.1, Table 2.2).  

 

 

 

 

 

 

 

Univariate fMRI analysis 

We performed conventional univariate fMRI analyses to determine the presence of 

heightened neural activation in experts compared to novices in response to objects of 

expertise. We calculated the mean response per voxel elicited by the different experimental 

conditions and compared these mean activations (beta values) between subject groups. This 

way, we performed whole-brain second-level analyses as well as group comparisons within 

specific ROIs. The effect of expertise for birds was defined by the contrast [birds – base] in 

which the “base” condition was a combination of the living and nonliving condition. The 

contrast [minerals - base] was used to define the expertise effect for minerals. For all 

univariate analyses, we first applied a stringent threshold of p < 0.05 corrected for family-wise 

error. However, when no effects survived, we lowered the threshold to p < 0.0001 

(uncorrected, minimum cluster size of 10 voxels, see Lieberman and Cunningham (2009)) for 

all bird expertise analyses and an uncorrected threshold of p < 0.001 (minimum cluster size 

Figure 2.2. Lateral and ventral view of the three 
anatomically defined aROIs. The low-level visual 
aROI is indicated in dark red, the high-level visual 
aROI in dark green and the frontal lobe in orange. 
The masks were visualized using BrainNet Viewer 
((Xia et al., 2013) http://www.nitrc.org/projects/ 
bnv/) and custom Matlab code. 
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of 10 voxels) for the mineral expertise analyses. Note that these univariate maps are not 

meant to demonstrate significance for individual voxels, but instead to visualize where the 

voxels with the clearest univariate differences and thus with potential relevance for the 

classifiers tend to be. 

 

Multivariate fMRI analyses: subject classification 

With this analysis, we tried to answer the following question: can we make a distinction 

between subject groups based on their neural response patterns for a specific condition? 

These subject classification analyses were applied in each ROI to discriminate ornithologists 

from control participants and mineralogists from control participants (see Fig. 2.3A). The 

response per voxel per subject was defined by the univariate contrast of one of the expertise 

conditions versus base, e.g. [birds – base]. The contrast values were standardized by 

subtracting the mean value across all voxels in the subject-specific response pattern and 

dividing this result by the standard deviation across voxels. A linear support vector machine 

(SVM) was applied using the libsvm Matlab toolbox (Chang & Lin, 2011) with similar 

parameters as Bulthé and colleagues did (Bulthé, De Smedt, & Op de Beeck, n.d.). To train 

and test the SVM model, we used a leave-pair-out cross-validation (LPOCV) technique, as was 

used by Ung et al. (2014). For each of the two subject groups, a participant was randomly 

selected and left out of the training sample. Next, the classifier was trained on all subjects 

except for the left-out pair, which was subsequently used to test the trained model. Since all 

subjects viewed the same images for all the object categories, the training and testing of the 

classifier happened on identical images. This procedure was repeated until each participant 

was left out once. In the case of unequal group sizes, the procedure was repeated until each 

participant of the smallest group was left out once. The decoding accuracy was calculated as 

the proportion of times in which test participants were correctly classified as belonging to one 

of the two subject groups. To control for slight differences in decoding accuracies due to the 

random selection (pairing) of test data, the LPOCV technique was iterated 1000 times and the 

decoding accuracies were averaged across all iterations. The higher this resulting decoding 

accuracy, the better the classifier was able to make a distinction between the two groups. In 

order to determine the significance threshold for the decoding accuracies, we applied Monte 

Carlo permutation tests (Mourão-Miranda, Bokde, Born, Hampel, & Stetter, 2005). The above 
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described LPOCV technique was again repeated 1000 times, only this time the class labels of 

the training sample were randomly shuffled before the model was trained, leading to a 

distribution of decoding accuracies based on random information. A 95% confidence interval 

around the mean of this distribution was calculated to determine the significance threshold 

for each comparison. As a sanity check, we checked that the significance thresholds obtained 

through permutations were very similar and not more liberal compared to the threshold 

expected from a simple (parametric) binomial test. According to such a binomial test, results 

above 62.5% would be significant with a total of 40 participants, as in classifications involving 

ornithologists and controls. For mineralogists and controls (N=37), the parametric threshold 

would be 62.2%.  

Furthermore, for each individual participant a mean decoding accuracy was calculated by 

dividing the number of times this participant was classified as an expert by the number of 

times the data of this participant were used as test data. This was done for the two 

comparisons mentioned above: we calculated the proportion of times ornithologists and 

control participants were classified as an ornithologist and the proportion of times 

mineralogists and control participants were classified as a mineralogist. These “proportions 

decoded as expert” were then related to the different behavioral measures of expertise 

(results in Table 2.1). 

 

Multivariate fMRI analyses: generalization 

To check whether potential differences in neural representations between control 

participants and bird experts were similar to the differences in representations between 

control participants and the group of mineral experts (and vice versa), we tested 

generalization of subject classification (Figure 2.3B). In particular, we tested whether the 

classifier that was trained to make a distinction between the control group and one expert 

group based on the objects of expertise of that expert group (e.g., birds for ornithologists), 

was also able to make a distinction between the control group and the other expert group 

using their objects of expertise (e.g., minerals for mineralogists). Within each ROI, 

generalization was tested in both directions: training the classifier on the distinction 

ornithologists vs. control participants and testing on mineralogists vs. control participants, 

and vice versa. The overall “generalization accuracy” was calculated by averaging the 
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decoding accuracies for both directions. To determine the significance threshold, we applied 

for each direction of generalization the same random permutation method as described 

above. This resulted in two distributions of decoding accuracies based on random 

information. By randomly selecting half of the decoding accuracies from each distribution and 

combining these selected values, we created a new distribution that was used to determine 

the significance threshold for the generalization accuracy. Again, the obtained thresholds 

were similar to the thresholds which would be observed using a parametric binomial test with 

the number of participants involved (N=57). Hence we used a parametric method to calculate 

the 95% confidence interval around the proportion of subject generalization in order to 

compare it to the maximal generalization (see next paragraph). 

 

Figure 2.3. Schematic overview of the subject classification analyses and the generalization analysis. 
(A) Overview of the subject classification analyses for bird expertise and mineral expertise. A classifier 
was trained to make a distinction between the expert group and the control group based on their 
neural responses for the expert object condition (birds or minerals). Subsequent testing resulted in a 
classification accuracy. (B) Overview of the generalization analysis. A classifier was trained on the 
expertise effect for one domain of expertise (e.g. bird expertise: the distinction between ornithologists 
and control participants for the category of birds) and tested on the other domain of expertise (e.g. 
mineral expertise: the distinction between mineralogists and control participants for the category of 
minerals). The generalization analysis was performed in two directions. 
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Maximal generalization: simulations  

We have already shown previously through simulations how the amount of generalization is 

limited by the classification accuracy in the two datasets between which the generalization is 

tested (Brants et al., 2016). If the two datasets differ in classification accuracy, then the 

generalization accuracy will be somewhere in between. We implemented these simulations 

with the classification accuracies obtained in the current dataset in order to quantify the 

maximally expected generalization accuracy given the empirically measured classification 

accuracies. A detailed explanation of this simulation approach is given in Brants et al. (2016).  

 

Multi-voxel representational similarity analyses 

Within the high-level visual aROI, multi-voxel patterns of activation for all the seven different 

conditions were correlated in a pairwise manner as a measure of their similarity or 

distinctness. As a first step, the data set for each participant was randomly divided into two 

equally sized subsets of runs (one half of the data amounted to 4 or 5 runs in which each 

condition was presented twice). Beta values for each voxel of the high-level visual aROI were 

standardized by subtracting the mean value across all conditions. For each participant, the 

activation patterns of all conditions in the first subset of runs were correlated with the second 

subset. This procedure of dividing the data and computing the correlations was repeated 100 

times, resulting for each participant in a matrix of correlations averaged across those 

repetitions. The individual similarity matrices were averaged across participants within each 

group. The resulting group similarity matrices, in which each cell contained the correlation 

between two specific conditions, were visualized using multidimensional scaling (MDS), which 

arranged the experimental conditions in a two-dimensional space according to similarity in 

activation patterns. Highly correlated conditions are shown closer together whereas less 

correlated conditions are located further apart in the MDS plots. This method allowed us to 

investigate potential differences between experts and novices in the representational 

similarity between the categories of stimuli.  
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2.3 RESULTS 

 

2.3.1 Behavioral indices of expertise 

The final sample included 57 participants from three groups: ornithologists (N=20), 

mineralogists (N=17), and control participants (N=20). A variety of behavioral indices 

showcased the domain-specific expertise of participants. Figure 2.4 displays the proportion 

correct scored by the three subject groups on the discrimination and semantic tasks for birds 

and minerals, these scores were used to select the experts. For the discrimination tasks, we 

calculated d’ (d-prime) for each participant based on the number of Hits (subject correctly 

responds that birds / minerals are the same) and False Alarms (subject responds that birds / 

minerals are the same while in reality they are different; d’ = z(H) – z(FA)). These d’ values 

were used in the following analyses. On the bird discrimination task, the ornithologists scored 

significantly higher than the mineralogists (t(35) = 8.39, p < 0.0001) and the control 

participants (t(38) = 9.71, p < 0.0001). The mineralogists outperformed the ornithologists 

(t(35) = 7.50, p < 0.0001) and the control participants (t(35) = 7.84, p < 0.0001) on the mineral 

discrimination task.  

The mineralogists’ performance on the mineral discrimination task was significantly lower 

than the ornithologists’ score on the bird discrimination task (t(35) = 5.67, p < 0.0001). 

However, it should be noted that the two discrimination tasks were not calibrated and are 

therefore not really comparable. It might very well be that the mineral discrimination task 

was more difficult. This can be illustrated by a linear regression analysis showing that an 

ornithologist with 7 years of experience would reach a d’ of 2.23, while an equally experienced 

mineralogist would only get a d’ of 0.91 on the mineral discrimination task. Note that the 

control participants showed no difference in performance between the bird discrimination 

task and the mineral discrimination task (t(19) = 1.35, p = 0.19), for both tasks they performed 

around chance level.  

The semantic tasks showed the same pattern of results. On the semantic task for birds, the 

ornithologists’ score was higher than the mineralogists’ (t(19.95) = 13.23, p < 0.0001), which 

was in its turn higher than the score of the control participants (t(35) = 2.50, p = 0.015). On 
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the semantic task for minerals, the mineralogists outperformed the ornithologists (t(23.87) = 

9.79, p < 0.0001)  and the control participants (t(18.33) = 11.26, p < 0.0001).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Results for the behavioral expertise tasks. Results for the discrimination and semantic 
tasks for ornithologists (N=20), mineralogists (N=17) and control participants (N=20). Boxplots display 
the median proportion correct and interquartile range, whiskers indicate the minimum and maximum 
values and dots represent outliers (> 1.5 x interquartile range). Unpaired t tests were used to determine 
significance, which is indicated by * (p < 0.05) or by ** (p < 0.0001). For the discrimination tasks (left 
panel), chance level performance was at 50%. The expert group always outperformed the other two 
groups on those tasks related to their field of expertise. These scores were used to select the experts. 

 

Finally, ornithologists with more years of experience tended to score better on the bird 

expertise tasks compared to less experienced ornithologists. Self-reported years of 

experience with birds was significantly correlated with performance on the semantic task for 

birds (Pearson’s r = 0.46, p = 0.02) and the relation to the performance on the discrimination 

task also tended to be positive, although not significant (Pearson’s r = 0.42, p = 0.06). For 

mineralogists, there was no significant correlation between years of experience and the 

scores on the mineral tasks (semantic task: Pearson’s r = 0.31, p = 0.11; discrimination task: 

Pearson’s r = 0.40, p = 0.11). We did not find a correlation between the age of the experts and 
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their scores on the discrimination or semantic tasks for their expert object category (Orn.: 

discrimination task: Pearson’s r = 0.01, p = 0.95; semantic task: Pearson’s r = 0.21, p = 0.38; 

Min.: discrimination task: Pearson’s r = -0.05, p = 0.86; semantic task: Pearson’s r = 0.41, p = 

0.10). 

As was mentioned in the methods section, the discrimination tasks and the semantic tasks 

were used to select the experts. Therefore, the group differences on these tasks are to be 

expected and circular. However, other behavioral measures showed clear differences 

between the three subject groups as well. On the expertise questionnaire, apart from their 

number of years of experience, participants also indicated on a scale of 1 to 9 how often they 

read text about birds/minerals and how often they looked at images of birds/minerals. The 

responses clearly showed a difference between the three subject groups, with the experts 

spending more time with their specific domain of expertise and the control participants not 

really spending time on either domain (text birds: Orn.: 8.0, Min.: 2.2, Con.: 1.7; images birds: 

Orn.: 8.0, Min.: 3.6, Con.: 2.0; text minerals: Orn.: 1.7, Min.: 7.2, Con.: 1.4; images minerals: 

Orn.: 1.6, Min.: 6.9, Con.: 1.6).  

Furthermore, on the one-back task participants performed while in the scanner, both expert 

groups achieved higher scores when the task involved images belonging to their domain of 

expertise compared to images belonging to the other expert domain. For each participant and 

for each condition we calculated d’ (d’ for condition Birds: Orn.: 2.88, Min.: 1.89, Con.: 2.21; 

d’ for condition Minerals: Orn.: 2.75, Min.: 2.55, Con.: 2.38). A two-way repeated measures 

ANOVA with subject group as a between-subjects factor and condition (7 levels) as a within-

subjects factor revealed a significant interaction (F(12,324) = 2.98, p = 0.001) between subject 

group and stimulus condition, accompanied by a significant main effect of stimulus condition 

(F(6,324) = 41.77, p < 0.0001) but no main effect of subject group (F(2,54) = 2.03, p = 0.142). 

The interaction between stimulus condition and subject group was also significant when 

restricted to birds and minerals (F(2,54) = 10.76, p < 0.0001). To estimate the increase in 

discriminability both expert groups showed for their expert condition compared to the 

remaining conditions, we calculated d’(expert condition) – d’(remaining conditions). The 

increase in discriminability did not differ between the two expert groups (t(35) = 1.49, p = 

0.15).  
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The findings were similar for the delayed recognition task in which participants indicated 

which bird and mineral images they had or had not seen during the scans. Again, for each 

participant and for each condition d’ was calculated. A two-way repeated measures ANOVA 

for unbalanced groups with subject group as a between-subjects factor and condition (birds 

or minerals) as a within-subjects factor showed that both expert groups were better able to 

recognize presented and not-presented images from their specific domain of expertise 

(significant interaction: F(2,54) = 52.59, p < 0.0001; d’ for condition Birds: Orn.: 3.14, Min.: 

1.16, Con.: 1.09; d’ for condition Minerals: Orn.: 2.40, Min.: 2.61, Con.: 2.15). The increase in 

discriminability (d’(expert condition) – d’(nonexpert condition)) for the delayed recognition 

task was significantly different between the two expert groups (t(35) = 3.10, p = 0.004), 

mineralogists showed an advantage over ornithologists.   

Finally, we tested whether there was any relationship between the participants’ performance 

on the expertise-related tasks and the third neutral domain of face perception as measured 

by the CFMT. The three subject groups did not differ in their face recognition ability (F(2,54) 

= 0.37, p = 0.69; Orn.: 75% correct, sd = 12.9%, Min.: 74% correct, sd = 10.8%, Con.: 77% 

correct, sd = 14.5%). For neither of the two expert groups a significant correlation could be 

found between the experts’ performance on the CFMT and their performances on the 

expertise tasks for their domain of expertise (Orn.: discrimination task: Pearson’s r = -0.23, p 

= 0.33; semantic task: Pearson’s r = -0.17, p = 0.47; Min.: discrimination task: Pearson’s r = 

0.26, p = 0.31; semantic task: Pearson’s r = 0.32, p = 0.21).  

 

2.3.2 Expertise-related multi-voxel patterns of selectivity 

The fMRI scans probed the patterns of activity related to stimuli from the two domains of 

expertise, birds and minerals, as well as five other reference conditions: faces, scenes, living 

objects, nonliving objects and scrambled images (see Fig. 2.1).  

We searched for expertise-related changes in the multi-voxel patterns by means of subject 

classification methods, following the scheme in Figure 2.3A. If the neural response patterns 

to a particular stimulus condition would be altered by expertise, then we should be able to 

reliably classify subjects as belonging to a particular subject group based upon these patterns. 

Three large aROIs were anatomically defined: a low-level visual aROI, a high-level ventral 
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visual aROI, and the frontal lobe. The classification of subjects was tested for two selectivity 

patterns: the selectivity for birds and selectivity for minerals. Two group comparisons were 

made: (1) ornithologists vs. control participants and (2) mineralogists vs. control participants.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Subject classification and generalization results. (A) Results for the subject classification 
analyses in percentages. Monte Carlo permutation tests were used to determine the significance 
threshold for each classification accuracy (see section 2.2.5), significance is indicated by a *. The left 
panel shows the classification of participant groups based on their neural response patterns for birds. 
The classifier was able to make a distinction between ornithologists and control participants in all three 
aROIs. The right panel shows the classification for the category of minerals, with a significant 
distinction between mineralogists and control participants in the high-level visual aROI. (B) Results for 
the generalization analysis. Generalization accuracies are depicted by the dark grey bars, the light grey 
bars show the maximal generalization that could be expected given the classification performances for 
the two expertise effects in each specific aROI (see section 2.2.5). Significance is indicated by an 
asterisk. 

 

As shown in Figure 2.5A, the multi-voxel pattern classification was able to make a distinction 

between ornithologists and control participants based on the selectivity for birds in each 

aROI. Classification accuracies in the different aROIs ranged from 76.9% (p < 0.0001) to 91.3% 

(p < 0.0001). A very different result was found for mineral expertise (Figure 2.5B). The 
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distinction between mineralogists and control participants could only be made based on 

neural response patterns in high-level visual cortex (67.4%, p = 0.024). No significant 

classification was found in the low-level visual aROI (53.2%, p = 0.301) nor in the frontal lobe 

(61.3%, p = 0.117).  

Although high-level visual cortex showed significant effects for each expertise domain, there 

was an obvious difference in effect size between domains (subject classification accuracies: 

91.3% for bird expertise, 67.4% for mineral expertise). We hypothesized that this difference 

in effect size might be explained by a difference in the level of expertise between 

ornithologists and mineralogists. To address this issue, we performed the same analysis on a 

subset of the expert groups that were matched for their level of expertise. Because the 

discrimination and semantic tasks were not comparable between the two domains of 

expertise (see above), we calculated a new measure of experience using the participants’ 

answers on the expertise questionnaire. For each expert, we calculated an average score 

indicating how often they read text about and looked at images of their objects of expertise 

(see above) and multiplied this with the number of years of experience they had. On average, 

the group of ornithologists had more “active experience” than the group of mineralogists 

(Orn.: 68.2, Min.: 43.9; t(35) = 2.35, p = 0.025). To match the two expert groups on this 

measure of experience, we temporarily excluded the 7 ornithologists with the most 

experience and the 4 mineralogists with the least experience, resulting in two groups with 13 

experts each that did not differ on their level of experience (Orn.: 47.9, Min.: 50; t(24) = 0.22, 

p = 0.83). The subject classification accuracies in the high-level visual aROI for the matched 

groups were very similar to the ones that were obtained for the complete expert groups. The 

13 least experienced ornithologists could be distinguished from the control participants 

equally well as when the most experienced ornithologists were included (90.1% vs. 91.3%). 

The same was true for the group of mineralogists when only the 13 most experienced 

participants were included (67.2% vs. 67.4%). These results showed that the difference in 

decoding accuracies in high-level visual cortex between the two domains of expertise was not 

influenced by the difference in level of experience between the two groups. (Remark: the 

analyses mentioned below were performed on the complete expert groups.) 

As far as significant classification was possible for objects of expertise, that is, in all aROIs for 

ornithology and in high-level visual cortex for mineralogy, this classification was in each case 
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higher than the classification obtained when the other group of experts was classified based 

upon neural activity patterns associated with the same objects (Figure 2.5). Ornithologists 

could not be distinguished from controls based upon the minerals condition. Likewise, 

mineralogists and controls could not be differentiated based on the birds condition in high-

level visual cortex. Curiously, this same differentiation was possible in low-level visual cortex 

(64.9%, p = 0.032), albeit to a lesser extent than for ornithologists. 

Overall, these findings fit with the general prediction that developing expertise alters the 

processing of objects in the domain of expertise. The findings are further confirmed by 

correlational analyses. We analyzed the “proportion decoded as expert” of each participant, 

to gain a better understanding of which participants were most often classified as being either 

an ornithologist (vs. a control participant, based on their neural response patterns for birds) 

or a mineralogist (vs. a control participant, based on their neural response patterns for 

minerals). We correlated the proportion of times participants (ornithologists and control 

participants) were classified as being an ornithologist (“proportion decoded as expert”), with 

their behavioral scores on the bird discrimination task (d’) and the semantic task for birds. 

The same correlations were calculated for participants classified as being a mineralogist 

(mineralogists and control participants), using the scores on the mineral expertise tasks. 

Results can be found in Table 2.1. Furthermore, in Figure 2.10 in the supplementary material 

(section 2.5.3), scatterplots display the relation between the participants’ scores on the 

discrimination tasks and the semantic tasks on the one hand and the “proportion decoded as 

expert” in the high-level visual aROI on the other hand. 

For the comparison between ornithologists and control participants, in all three aROIs there 

was a significant positive correlation between the proportion of times participants were 

classified as ornithologist and the scores on the discrimination task and semantic task for 

birds. The higher a participant’s scores on the bird expertise tasks, the more likely this 

participants was to be taken for an ornithologist by a model that was trained to make the 

distinction between ornithologists and control participants based on their neural 

representations for birds. In the high level visual aROI, we also found a significant positive 

correlation between the proportion of times participants were classified as being a 

mineralogist and the scores on the mineral discrimination task. The correlation with the 

scores on the semantic task for minerals tended to be positive as well.     
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Table 2.1. Correlations between the “proportion decoded as expert” and performances on two 
behavioral tasks. The “proportion decoded as expert” represents the proportion of times a subject was 
either classified as being an ornithologist (ornithologists and control participants, N = 40) or as a 
mineralogist (mineralogists and control participants, N = 37). The four aROI x classification situations 
in which the subject classification was significant, are indicated by a bold frame. 

 

2.3.3 Domain-specific and domain-general signatures of expertise 

The rationale of our design with multiple types of expertise was to investigate whether effects 

of expertise are similar across different domains. Is bird processing in ornithologists changed 

in a similar way as mineral processing in mineralogists? To answer this question, we tested 

whether subject classification could be generalized across domains of expertise. More 

specifically, we tested whether a classifier that was trained to make a distinction between 

ornithologists and control participants based on their response patterns for birds, generalizes 

to the distinction between mineralogists and control participants based on their response 

patterns for minerals, and vice versa (see Fig. 2.3B). This generalization was tested in both 

directions in all three anatomical ROIs and an average accuracy was calculated for each aROI. 

The lower the generalization accuracy compared to the classification accuracies, the more 

evidence for domain specificity of expertise effects. The higher the generalization accuracy, 

the more evidence for domain-general representations.  

Aside from the generalization performance, we calculated the maximal generalization that 

could be expected (see Materials and Methods & Brants et al., 2016). This maximal 

generalization, which is in between the classification performances shown in Figure 2.5, is 

important as a benchmark. First, if it is low, which is a consequence of low decoding 

  Low-level visual High-level visual Frontal lobe 

Classification Behavioral task r p r p r p 

Ornithologists and 

controls: classified 

as ornithologists 

Discrimination birds 0.544 0.0003 0.787 < 0.0001 0.628 < 0.0001 

Semantic birds 0.579 < 0.0001 0.812 < 0.0001 0.677 < 0.0001 

Mineralogists and 

controls: classified 

as mineralogists 

Discrimination minerals -0.057 0.738 0.442 0.006 0.258 0.123 

Semantic minerals -0.080 0.680 0.267 0.055 0.162 0.170 
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performance, then the generalization analysis has insufficient sensitivity to differentiate 

between domain-specific and domain-general representations. More specifically, we have 

insufficient sensitivity when the maximum generalization is lower than our threshold of 

significance (61.8% - 64.7%). This was the case for the low-level visual aROI. Thus, in this 

region the signatures of expertise in the two domains were not strong enough to interpret 

the outcome of the generalization analysis.  

In the high-level visual aROI, the theoretical maximal generalization was 79.2%, well above 

the threshold of significance. However, in the empirical data there was no significant 

generalization, with the generalization accuracy at 60.6%. Given that the 95%-confidence 

interval around a proportion of 0.606 with N=57 is [0.479 0.733], this subject generalization 

was significantly lower than the maximum generalization of 79.2%. Thus, at least part of the 

expertise effects on the neural representations of birds and minerals in high-level visual 

cortex were domain-specific. The way in which neural processing of expert objects in high-

level visual cortex was changed by expertise depended upon the domain of expertise. 

In the frontal lobe we found a different result. Generalization accuracy was significant at 

66.9%, close to the predicted maximal generalization performance of 71.1%. This significant 

generalization signaled a substantial “overlap” between the two expertise effects in these 

regions. The  result in the frontal lobe was remarkable, since we could not find a significant 

subject classification for mineralogists compared to control participants in this region. The 

fact that the generalization in this aROI did work, suggested that, although the decoding 

accuracy in the frontal lobe failed to reach significance for one of the two datasets, there must 

still be some meaningful information present that points to a distinction between 

mineralogists and control participants (similar findings in earlier studies: Oosterhof et al. 

2012; Brants et al. 2016). 

Taken together, the generalization of subject classification classifiers across domains of 

expertise indicated that expertise-related neural changes tend to reflect domain-specific 

effects in high-level visual cortex, whereas more general domain-independent effects of 

expertise were found in the frontal lobe. 
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2.3.4 Univariate effects of expertise 

In the previous analyses, multi-voxel pattern analysis (MVPA) results showed the presence of 

expertise effects for both bird expertise and mineral expertise. Because MVPA does not give 

a direct indication of which voxels or sub-regions drive classification, the next logical step is 

to examine the more fine-grained locations of these expertise effects. The simplest approach 

is to perform a univariate test of the voxel-wise contrast value which was used in the 

classification. Starting with bird expertise, we compared the brain activation for the [birds-

base] contrast in bird experts with the same contrast for all bird novices (mineral experts and 

control participants). Analyses revealed a large bilateral cluster in lateral ventral temporal 

cortex that was significantly more active for bird experts compared to novices (Figure 2.6A). 

MNI coordinates for the peak voxels in left and right hemisphere were (-51, -57, -20) and (37, 

-55, 20) respectively. Furthermore, some more scattered effects could be found in left 

prefrontal cortex. The latter effects disappeared when the threshold was increased to p < 0.05 

corrected for family-wise error. When comparing bird experts to the group of control 

participants in itself, the distribution of effects was largely the same. 

 

 

 

 

 

 

 

Figure 2.6. Overview of the univariate bird and mineral expertise effects. (A) Left hemisphere, ventral 
and right hemisphere view of the univariate bird expertise effect: heightened activation for birds in 
bird experts compared to bird novices (uncorrected threshold of p < 10-4, minimum cluster size of 10 
voxels). (B) Left hemisphere, ventral and right hemisphere view of the mineral expertise effect: 
heightened activation for minerals in mineral experts compared to mineral novices (uncorrected 
threshold of p < 10-3, minimum cluster size of 10 voxels). (C) Ventral view of the bird expertise effect 
(orange – yellow) and the mineral expertise effect (light blue). Dark blue outlines delineate the 
functional regions with a preference for nonliving objects, green outlines indicate regions selective for 
living objects and black outlines indicate the bilateral FFA. The figures were created using BrainNet 
Viewer ((Xia, Wang, & He, 2013) http://www.nitrc.org/projects/bnv/) and custom Matlab code. 
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Ventral temporal cortex is known to house a complex functional organization. Figure 2.6C 

shows a ventral cortical view of the bird expertise effect and the mineral expertise effect in 

combination with outlines of the most relevant empirically measured regions with a 

functional preference for living objects, nonliving objects, as well as the fusiform face area. 

The spatial distribution of the bird expertise effect does not align with any of these functional 

divisions. 

In addition, we quantified the bird expertise effects in 6 bilateral fROIs (FFA, PPA, pLOC, aLOC, 

a Living and a Nonliving region) that were manually delineated in individual participants using 

functional data from the conditions of faces, living objects, nonliving objects, scrambled and 

scenes. The expertise effect for birds was tested by comparing the mean activation for the 

contrast [birds – base] in ornithologists with the mean activation in bird novices (mineralogists 

and control participants). For each fROI, the results were averaged across the left and right 

hemisphere. The results are depicted in Figure 2.7A. In all 6 fROIs we found significantly 

heightened activation for birds in ornithologists compared to bird novices. This included FFA 

(N1 = 19, N2 = 34, p < 0.0001) and the Living region (N1 = 20, N2 = 36, p < 0.0001), which are 

most informative and most responsive to the domain of birds (which are living objects), but 

also the less responsive regions like pLOC (N1 = 20, N2 = 37, p = 0.001), aLOC (N1 = 20, N2 = 37, 

p < 0.0001), PPA (N1 = 20, N2 = 37, p = 0.005) and the Nonliving region (N1 = 20, N2 = 35, p = 

0.003). Nevertheless, we found a significant positive correlation (Pearson’s r = 0.584, p = 

0.046) between the fROIs’ general sensitivity for birds (average activation for the [birds-base] 

contrast in bird novices) and the difference in [birds - base]-activation between bird experts 

and bird novices (Figure 2.7C). In other words: the expertise effect for birds was most 

pronounced in those fROIs that already showed a higher specificity for birds (FFA and Living 

region). To make sure that the bird expertise effect in the Living region was not driven by the 

FFA, we excluded FFA voxels from the Living region for each participant and repeated the 

analysis for all participants for which the bilateral fROIs consisted of more than 20 voxels 

(Living - FFA left: 42 subjects, average size of 60 voxels; Living - FFA right: 42 subjects, average 

size of 73 voxels; given that the Living region was restricted to ventral cortex, it is to be 

expected that voxels responsive to animal bodies would overlap substantially with the FFA, 

see e.g. Schwarzlose et al. (2005)). Again, we found significantly heightened activation for 
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birds in ornithologists compared to bird novices (N1 = 11, N2 = 24, p = 0.005) and the size of 

the effect was very similar to the effect in the original Living region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Results for the univariate ROI-analyses. (A) Mean activation for the [Birds - Base] contrast 
for bird experts and bird novices (mineralogists and control participants) in 6 functionally defined ROIs 
(activation was averaged across hemispheres, only subjects with both left and right hemisphere fROIs 
were included). Boxplots display median and interquartile range, whiskers indicate the minimum and 
maximum values, dots represent outliers (> 1.5 x interquartile range) and significance is indicated by 
an asterisk. In all 6 fROIs, there was a significant difference between experts and novices. (B) Mean 
activation for the [Minerals - Base] contrast for mineral experts and mineral novices (ornithologists 
and control participants). Unpaired t tests revealed no significant differences. In supplementary 
material (section 2.5.4, Figure 2.11) we have broken down the single difference bars depicted in panels 
A and B into the constituting two bars (activation for expert condition and activation for base condition 
separately). (C) Scatterplot displaying a significant positive correlation (Pearson’s r = 0.584, p = 0.046) 
between the general preference for birds (mean activation for birds in bird novices) and the expertise 
effect for birds (heightened activation in bird experts compared to novices) across left (L) and right (R) 
hemisphere fROIs. The dotted line depicts the linear line of best fit (y = 0.26 + 0.21x). 
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Expertise effects for minerals were measured by comparing activation between mineral 

experts and mineral novices (ornithologists and control participants) for the contrast 

[minerals – base]. No effects survived a stringent FWE-corrected threshold. At a lower 

uncorrected threshold of p < 0.001 (with a minimum cluster size of 10 voxels, see Lieberman 

and Cunningham (2009)), small, distributed effects in left and right prefrontal and ventral 

temporal regions emerged (Figure 2.6B). Here again, the effects were largely the same when 

comparing mineral experts with the group of control participants in itself. 

As illustrated in Figure 2.6C, the peak voxel of the cluster of significant activation in left ventral 

temporal cortex was located more posterior compared to the bird expertise effect in that 

same region (MNI coordinates of peak voxel (-38, -70, -20)). The absence of effects at an FWE-

corrected threshold shows that expertise effects are distributed in a manner that is more 

convenient for a multi-voxel approach. Nevertheless, the small univariate peaks could still 

underlie the multi-voxel effects. We performed the same multivariate subject classification 

analysis as described above in this left ventral temporal cluster, to check whether the effects 

in this cluster could explain the multivariate results shown above. The resulting decoding 

accuracy (44.4%) was not significant, meaning that the multi-voxel responses for minerals in 

this particular cluster did not differ between mineralogists and control participants. This also 

indicated that the significant subject classification between mineralogists and control 

participants in the high-level visual aROI (67.4%) was not driven by a very local effect in this 

left ventral temporal cortex, but signified a more distributed effect across a larger part of 

high-level visual cortex.  

We also performed fROI-based analyses for mineral expertise. The mineral expertise effect 

was tested by comparing the mean activation for the contrast [minerals – base] in 

mineralogists with the mean activations in mineral novices. There were no significant 

differences between these two groups in any of the selected regions (Figure 2.7B). This finding 

further suggests that expertise for minerals induces small and distributed neural effects which 

are not confined to very specific (known) functional distinctions. Overall, in line with the 

MVPA findings, the univariate results suggest that the changes in selectivity underlying the 

MVPA findings are distributed, stronger in ornithologists than in mineralogists, and do not 

show an obvious overlap in spatial distribution in high-level visual cortex.  



2 | Domain-general and domain-specific expertise effects 

54 
 

Here we restrict the investigation of expertise effects at the level of smaller ROIs to univariate 

analyses. A priori we decided to only perform the classification and generalization analyses in 

these three large aROIs because these are the optimal and most sensitive analyses to 

investigate questions about domain specificity. Post hoc we checked the results in the 6 

smaller functional ROIs that were delineated in each participant for the purpose of ROI-based 

univariate analyses. Overall, the classification performances dropped compared to those in 

the larger aROIs (e.g. for classifying ornithologists vs. control participants based on the birds 

condition in the high-level visual cortex: drop from 91.3% to an average of 69.2% across 

fROIs), in some fROI x condition combinations falling below the statistical threshold. Given 

the lower sensitivity in these smaller fROIs we refrain from drawing strong conclusions. At 

best, the results suggest that the higher classification performances in the aROIs do not seem 

to be based upon one smaller sub-region. We also calculated the correlations between the 

behavioral scores and the “proportion decoded as expert” in the fROIs. The results confirm 

most of what we see in the aROIs but with some variability between the fROIs. These results 

are shown in supplementary material (section 2.5.2, Figure 2.9 and Table 2.3). 

 

2.3.5 Expertise does not influence the representational similarity of object 

categories 

After having shown that expertise changes the high-level visual multi-voxel activity patterns 

for objects of expertise in a domain-specific manner, the question emerges whether these 

changes might be related to a specific altered representation of these objects relative to other 

object categories. To test this, we applied multivariate correlational analyses to investigate 

potential differences between the two expert groups and the control participants in the 

representational similarity between the 7 conditions (faces, birds, living, nonliving, 

scrambled, minerals, scenes) in high-level visual cortex. Especially the relationship between 

the expertise condition on the one hand (birds for ornithologists, minerals for mineralogists) 

and the remaining conditions on the other hand could be informative.  

The MDS-plots for the different subject groups can be found in Figure 2.8. The mutual 

relations between the different conditions were strikingly similar across the three subject 

groups, with a clear distinction between the animate and inanimate categories. The objects 

of expertise nicely followed this distinction, independently of expertise, and did not seem to 
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suddenly turn up in an unexpected position in their experts. Of course, visual inspection of 

MDS plots does not substitute statistics, but at least such explorative inspection suggests no 

obvious effects of expertise which would warrant further statistical testing. More quantitative 

analyses also did not show any obvious and significant difference between subject groups. 

We also performed these MVPA-based MDS analyses using data from the low-level visual and 

frontal aROIs, to again find similar representational spaces in the three subject groups (results 

not shown).  

To sum, expertise does not seem to have a strong influence on the representational similarity 

between the object category of expertise and other categories. Put bluntly: a mineral is 

(visually) similar to a rock, even to a mineralogist. (Note that mineralogists will fiercely argue 

that people should not confuse minerals with rocks.)  

 

 

 

 

 

 

Figure 2.8. MDS-plots of the neural similarity between the 7 object categories. Multi-dimensional 
scaling plots for ornithologists, mineralogists and control participants in the high-level visual aROI. The 
representational similarity between the different conditions is very similar across the three subject 
groups, with a clear distinction between living and nonliving object categories. 
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2.4 DISCUSSION 

 

2.4.1 Conclusions 

In the present study, we compared the changes in neural processing that were associated 

with two very different types of visual expertise: ornithology and mineralogy. Multi-voxel 

analyses showed that both types of expertise influence neural object representations in high-

level visual cortex, while the effects for bird expertise even extended to low-level visual 

regions and to the frontal lobe, displaying a distributed pattern of expertise effects. Univariate 

differences in response strength were only found for bird expertise, distributed across all 

included category-selective regions of interest. Importantly, a multi-voxel generalization 

analysis indicated that the expertise effects in high-level visual cortex were mostly specific to 

the domain of expertise. In the frontal lobe, in contrast, changes in object processing due to 

expertise overlapped significantly across the two different domains of expertise. 

 

2.4.2 Top-down influences of expertise 

In the one-back task that participants performed in the scanner, for both expert groups the 

ability to detect repetitions of images belonging to the domain of expertise was higher 

compared to images belonging to the other expert domain, with in addition better 

performances on a post-scan recognition task. These results are in line with an earlier study 

which showed that experts had a clear preference for pictures of objects related to their field 

of expertise (Hershler & Hochstein, 2009). The fact that objects of expertise appear to be 

more salient to experts may reflect the relevance of top-down attentional control in 

expertise. Harel et al. (2010) demonstrated that the level of engagement experts show for the 

objects of expertise affects the neural responses to these expert objects. Based on their 

findings, we would predict smaller or even no effects of expertise in tasks which do not tap 

into the expertise. 

Frontal cortex would be the most likely source of this top-down attentional control (Corbetta 

& Shulman, 2002; Harel, 2015; Harel et al., 2010). Our analyses of the frontal lobe provide 

some insight into the nature of these top-down influences. By applying the multi-voxel 

generalization analysis, we demonstrated the presence of domain-general effects of expertise 
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in frontal lobe. Several other studies, on various domains of expertise, have shown neural 

expertise-related changes in frontal lobe as well: e.g. for chess expertise (Krawczyk et al., 

2011), radiological expertise (Bilalić et al., 2014), car expertise (Harel et al., 2010) and novel 

objects trained in the lab (Moore et al., 2006). However, the present study is unique in the 

sense that we demonstrate for the first time that these expertise effects in frontal lobe are 

similar across very different types of visual expertise. While our findings point towards the 

dominance of domain-general processes in frontal cortex, they do not pinpoint the exact 

processes that are involved. Probably it is a mixture of processes (attentional control, 

memory, arousal, …). 

 

2.4.3 Informativeness 

Expertise effects in high-level visual cortex did not generalize across different domains of 

expertise, indicating that expertise-related changes in the neural object representations in 

this region depend on the specific domain of expertise. We also showed that the peak 

activation (peak voxels of univariate activation) for both types of expertise did not overlap, 

possibly explaining the lack of generalization in MVPA. Note that the differences in effect size 

between the stronger bird expertise effects and the weaker mineral expertise effects is not 

by itself evidence for domain-specific effects of expertise. To the contrary, the situation that 

the effects in one domain would just be a stronger version of the effects in the other domain 

is exactly the situation that was simulated to estimate the maximal between-domain 

generalization possible given the within-domain decoding. Instead, the crucial evidence for 

domain specificity in high-level visual cortex was the lack of generalization between the two 

domains of expertise, significantly lower than the estimated maximal generalization.  

Strikingly, we found that the expertise-related enhanced activation for birds was most 

pronounced in those functional regions that already showed a higher sensitivity for birds in 

bird novices, like the FFA and the Living region. This result is similar to the results in a recent 

study by Brants et al. (2016), who showed that training to discriminate between novel objects 

strengthens the responses in a pre-existing specificity map for the to-be-trained objects. It 

has been suggested that the extent to which neurons and brain regions are involved in a 

particular type of expertise depends on their informativeness for the domain of expertise and 
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the task at hand (Brants et al., 2016; Op de Beeck, 2012; Op de Beeck & Baker, 2010). This 

concept of informativeness has its origin in the field of visual neuroscience (Raiguel et al., 

2006; Schoups et al., 2001). However, we should note that in the current study, we also 

showed the presence of bird expertise effects in PPA and the Nonliving region (like other 

studies before us have found expertise effects in object-selective regions, see introduction), 

which are considered to be “noninformative” regions. Furthermore, we were not able to show 

similar effects in informative regions for mineralogists. Thus, informativeness is a partial but 

not a full explanation of the domain-specific distribution of expertise effects in visual cortex.  

Apart from the domain in which subjects have acquired expertise, the type of training with 

the object category could also influence the neural effects of expertise. In the study by Brants 

et al. (2016), in which both type of training and expert object category were manipulated 

across a group of laboratory-trained participants, only object category influenced the 

reported neural expertise effects. However, some studies have shown differential changes in 

the neural representations of novel objects depending on the type of training participants 

received (Wong et al., 2009; Wong, Folstein, & Gauthier, 2012). Type of experience is of 

course very hard to control for when comparing two real-world domains of expertise. The 

way in which participants in the current study gained experience with birds or minerals could 

play a role in the resulting neural expertise effects, however, we did not take type of training 

into account when selecting participants for this study and therefore we cannot make 

statements on how this might have influenced our results.    

This study fits into the bigger framework of ongoing discussions regarding the neural 

processes that underlie expert object recognition, in which two contrasting views play a major 

role. The perceptual process view sees expertise as a stimulus-driven, domain-general 

process, with expertise-related neural changes located in one specific region that 

encompasses the type of processing necessary for expert object recognition (Gauthier & Tarr, 

1997). The expertise hypothesis, a more specific version, focuses on the relation between 

expertise and face processing. According to this hypothesis, FFA is the brain region in which 

“expert processing” takes place (Gauthier et al., 2000, 1999). Its selectivity for faces has arisen 

due to the fact that we are all experts in processing faces, and not because faces are a special 

category.  
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The interactive view on expertise on the other hand is domain-oriented and sees expertise as 

an interaction between bottom-up and top-down factors (Harel et al., 2013). The neural 

correlates of expertise are not limited to one specific region in the brain but depend upon the 

domain of expertise and the task demands. In line with this view is the idea of informativeness 

which was mentioned above. In the current study, expertise effects were found in FFA, as 

predicted by the expertise hypothesis, but also outside of FFA and even outside the visual 

cortex. Furthermore, the domain-specific effects that were found in high-level visual cortex 

point more towards the domain-oriented view on expertise: expertise-related changes in this 

region were localized differently depending on the domain of expertise. 

 

2.4.4 Limitations and future directions  

The present study provides a substantial advance in our understanding of how different 

domains of expertise change the brain. However, many questions remain. In terms of our own 

data, it is puzzling that the expertise effects show a strong difference in size between 

ornithology and mineralogy. The successful subject classification in high-level visual cortex 

and the significant generalization in frontal lobe show that mineral expertise effects are 

present, but they are smaller compared to effects of bird expertise. How can we explain this 

difference in effect sizes? There was a minor difference in the level of expertise between the 

two subject groups. We indicated that this difference is insufficient to explain the differential 

effect size at the neural level. A different possibility is that ornithology is a more visual 

expertise compared to mineralogy. In fact, both domains are only partially visual and also rely 

on other modalities (e.g., sound for birds and touch for minerals). The relative importance of 

the different modalities might differ between the domains of expertise. However, according 

to experts in the field, the shape of a mineral  is still a very important determinant for 

identification and classification.  

The results of the subject classification analyses showed a second curious finding. In high-

level visual cortex, the interaction between domain of expertise and stimulus condition was 

as expected: ornithologists could be classified based on their neural response patterns for 

birds and mineralogists based on the neural responses to minerals. However, in the low-level 

visual ROI, mineralogists could be distinguished from control participants based on their 
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response patterns for birds. This result was not related to behavior, given that mineralogists 

and control participants did not show convincing differences in performance on the 

behavioral tasks for birds. There was also no difference in univariate activation for the [birds 

- base] contrast between the two subject groups.   

Following the major distinction underlying the large-scale organization of neural object 

representations, we chose to compare one animate and one inanimate domain of expertise. 

Therefore, differences in neural expertise effects between the two domains of expertise could 

be related to this animate-inanimate distinction, instead of the two domains in itself. To shed 

light on this issue, two different animate object categories of expertise should be compared 

(e.g., Tanaka and Taylor, 1991; Tanaka and Curran, 2001), as well as two inanimate expert 

object categories. Furthermore, the level of homogeneity of an object category influences 

discrimination of the objects at the subordinate level (individual objects that are perceptually 

very similar make discrimination harder, D’Lauro et al., 2008) and subsequently may influence 

the underlying neural expertise effects. Therefore, the selected expert object categories 

should also be matched based on their homogeneity. When comparing ornithology with 

mineralogy, it is possible that the categories of birds and minerals differ in their intra-category 

homogeneity (note that issues like these can never be completely avoided when comparing 

two very different real-world domains of expertise).  

An important limitation of the present study is that expertise is manifested at the behavioral 

level in the ability to make fine-grained within-category distinctions (e.g., discriminating 

among birds), whereas at the neural level we investigated selectivity for between-category 

distinctions (e.g., discriminating birds from other objects). Important effects might be missed 

by this lack of specificity at the neural level. Further studies should be done to investigate the 

neural representation of more subordinate distinctions, although this approach might 

encounter the limits of multi-voxel analyses in terms of distinguishing fine object distinctions 

(see e.g. Brants et al. (2016)). Such studies could extend the present findings, which reveal 

domain-specific effects of expertise on between-category selectivity in high-level visual cortex 

combined with domain-general effects in the frontal lobe.   
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2.5 SUPPLEMENTARY MATERIAL 

 

2.5.1 ROI sizes and MNI coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2. ROI sizes. Table displays for each ROI the number of subjects in which this ROI was outlined, 

the mean and standard deviation (sd) of the number of voxels and the mean and standard deviation 

of the MNI coordinates.  

 

 

ROI # subjects size (± sd) 
MNI coordinates (± 

sd) 

Anatomical ROIs    

Low-level visual ROI 57 7042 / 

High-level visual ROI 57 5462 / 

Frontal lobe 57 42017 / 

Functional ROIs    

FFA (left) 54 109 (±74) -42±3, -55±8, -19±4 

FFA (right) 56 182 (±97) 44±4, -53±8, -19±4 

OFA (left) 38 56 (±36) -38±5, -88±4, -10±4 

OFA (right) 44 64 (±56) 39±5, -87±3, -9±4 

PPA (left) 57 179 (±101) -25±5, -48±7, -9±4 

PPA (right) 57 258 (±114) 27±5, -47±9, -10±4 

pLOC (left) 57 286 (±150) -41±5, -85±5, -6±7 

pLOC (right) 57 299 (±166) 41±5, -84±5, -5±6 

aLOC (left) 57 341 (±231) -37±7, -54±10, -16±5 

aLOC (right) 57 350 (±249) 40±7, -56±10, -16±6 

Living (left) 57 111 (±73) -43±3, -59±7, -17±4 

Living (right) 56 158 (±79) 45±4, -56±7, -18±4 

Living – FFA (left) 42 60 (±36) -43±4, -60±7, -16±4 

Living – FFA (right) 42 73 (±40) 45±4, -58±6, -16±4 

Nonliving (left) 56 108 (±72) -28±3, -52±7, -11±4 

Nonliving (right) 56 108 (±78) 30±4, -50±7, -11±4 
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2.5.2 Subject classification analyses in smaller ROIs 

We a priori decided to perform MVPA in the larger anatomical ROIs, assuming that we would 

have more sensitivity to make inferences about domain specificity in these larger ROIs. Post 

hoc we also performed some of the analyses in the smaller functional ROIs. In the graphs 

below (Figure 2.9), we show the results of the subject classification analyses in the following 

smaller ROIs: the high-level visual regions (anterior and posterior LOC, PPA, FFA and the Living 

and Nonliving regions) and two subregions of the frontal lobe (dorsolateral prefrontal cortex 

(DLPFC) and inferior frontal gyrus (IFG)).  

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Subject classification results in smaller ROIs. Results for the subject classification analyses 
in subregions of the high-level visual cortex (A) and the frontal lobe (B). Bars depict the classification 
accuracies in percentages. The dark bars indicate the potential expertise effects (e.g. classification of 
ornithologists (orn) vs controls (con) based on their activation for birds). Significant classification 
accuracy (after FDR correction) is indicated with an asterisk. 
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Overall, the results suggest that the expertise effects that we have demonstrated in the larger 

anatomical ROIs seem to be distributed across the smaller subregions instead of localized 

within one specific (functional) ROI. In the high-level visual regions, bird expertise effects are 

present in aLOC, pLOC, the Living and the Nonliving region, while mineral expertise effects 

can only be found in the Nonliving region (when correcting for multiple comparisons), thus 

reflecting the whole-brain univariate results. In the frontal regions, bird expertise effects are 

present in both subregions while there are no mineral expertise effects (cfr. subject 

classification results in the frontal lobe). However, many of the effects hoover around the 

statistical threshold in these smaller ROIs (overall lower classification performance compared 

to the larger anatomical ROIs). Given the lower sensitivity in these smaller ROIs, we refrain 

from drawing strong conclusions. 

We also included the brain-behavior correlations (correlations between the proportion of 

times each participant was decoded as an expert and the participants’ scores on the 

behavioral tasks) for the smaller ROIs (Table 2.3). Again, given the lower sensitivity, it is hard 

to interpret these findings. The results for the smaller ROIs confirm most of what we see in 

the large ROIs, but with some variability between ROIs. Given that this variability might in 

large part be due to noise fluctuations in the data, which is why we prefer to restrict 

conclusions to the larger ROIs. 

 

Classification Behavioral task  aLOC pLOC PPA FFA Living Nonliving IFG DLPFC 

Orn. vs Con. 

Discrimination birds r 0.54 0.50 0.24 0.35 0.29 0.30 0.39 0.48 

 p 0.000 0.001 0.131 0.027 0.074 0.059 0.012 0.002 

Semantic birds r 0.54 0.55 0.26 0.39 0.35 0.43 0.53 0.61 

  p 0.0004 0.0002 0.111 0.013 0.025 0.006 0.0004 < 0.0001 

Min. vs Con. 

Discrimination minerals r -0.12 0.16 0.26 -0.10 0.01 0.41 0.38 0.34 

 p 0.491 0.353 0.121 0.562 0.968 0.011 0.019 0.042 

Semantic minerals r -0.20 0.06 0.25 0.09 0.21 0.45 0.33 0.24 

 p 0.239 0.746 0.132 0.577 0.209 0.005 0.050 0.151 

 

Table 2.3. Correlations between the “proportion decoded as expert” and behavioral scores for the 
high-level and frontal subregions. The “proportion decoded as expert” represents the proportion of 
times a subject was either classified as an ornithologist (ornithologists and control participants) or as 
a mineralogist (mineralogists and control participants). Regions in which the subject classification 
accuracy was significant are indicated by a frame. Significant correlations are highlighted in green.  
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2.5.3 Scatterplots depicting the relation between the “proportion decoded as 

expert” and behavioral tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Scatterplots depicting relation between the “proportion decoded as expert” and 
behavioral tasks. (A) Scatterplots depicting the relation between the ornithologists’ and control 
participants’ scores on the bird discrimination task and semantic task for birds on the one hand and 
the proportion of times each participant was classified as being an ornithologist in the high-level visual 
aROI on the other hand. (B) Scatterplots depicting the relation between the mineralogists’ and control 
participants’ scores on the mineral discrimination task and semantic task for minerals on the one hand 
and the proportion of times each participant was classified as being a mineralogist in the high-level 
visual aROI on the other hand. 
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2.5.4 Univariate ROI-analyses: breakdown of activation for expert condition and 

base condition 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. Univariate activation for expert condition and base condition. This figure is related to 
Figure 2.7 which shows the mean activation for the [birds - base] contrast for bird experts and bird 
novices (2.7A) and the mean activation for the [minerals – base] contrast for mineral experts and 
mineral novices (2.7B). Bar graphs display the mean activation for the conditions birds and base 
separately in bird experts and bird novices (A) and the mean activation for the conditions minerals and 
base separately in mineral experts and mineral novices (B). 

 

In the bar graphs above (Figure 2.11) we have broken down the single difference bars 

depicting the mean activation for the contrast [expert condition – base condition] in experts 

and novices into the constituting two bars (activation for expert condition and activation for 

base condition). The base condition is calculated by averaging the activation for the living and 

nonliving conditions. The graphs show that both expert object categories (birds and minerals) 

elicit a response in (almost) all of the functional ROIs in both experts and novices. However, 

the response elicited by the base condition is higher than the response for minerals in both 

mineral experts and novices and the same is true for the bird activation in PPA and the 
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Nonliving region in bird experts and novices. This result is in line with the results found by 

McGugin et al. (2012), who show that activation for cars in car experts (in FFA) is actually 

negative when compared to an “animal” baseline. Nevertheless, they do show the presence 

of an expertise effect by calculating correlations between the activation for cars and a 

behavioral measure of car expertise. The neutral base condition that we have used is also a 

“high-level” condition, and it is not surprising that our ROIs show a high response for this 

condition. For example: when looking at the bird experts’ and novices’ response for the base 

condition in PPA and the Nonliving region, we see that this response is higher than the 

response for birds. However, since the base condition is partly made up out of activation for 

nonliving objects (the preferred object category for PPA and the Nonliving region), this finding 

is not surprising. The increased activation for birds (even when compared to a “high-level” 

base condition) in bird experts compared to bird novices is what indicates the presence of an 

expertise effect. 
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Visual experts are able to quickly and accurately identify individual exemplars belonging to 

the same visually homogeneous object category. We learn to recognize and categorize new 

exemplars by judging its similarity to a representation of the category that is stored in 

memory. However, the concept of perceptual similarity has not yet been investigated in the 

context of expertise, an ‘extreme’ form of perceptual learning. In the present study, we 

investigate the influence of expertise on the mental representations of objects of expertise. 

We applied a multiple object arrangement paradigm and representational similarity analyses 

to study the mental representational spaces of experts and compare it to those of novices. 

Results indicated a quantitative enhancement of the representational space of objects of 

expertise in experts compared to novices. Furthermore, we also demonstrated the presence 

of qualitative differences in the form of more fine-grained, subordinate-level distinctions in 

the experts’ mental representational spaces. Finally, the expression of these expertise effects 

was influenced by top-down factors. 
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3.1 INTRODUCTION 

 

In daily life, we constantly interpret our surroundings by identifying and categorizing objects 

that appear in our visual field. For categorization, we must group physically different objects 

together, while identification requires us to discriminate between physically similar objects. 

When developing visual expertise in a specific domain, learning to identify individual 

exemplars is especially important.  

Research on the behavioral aspects of visual expertise has, among other things, focused on 

the way in which objects of expertise are processed. It has been proposed that objects of 

expertise are processed in a configural or holistic manner (Curby & Gauthier, 2010; Gauthier 

& Tarr, 1997, 2002; Richler & Gauthier, 2014; Richler, Wong, & Gauthier, 2011; Rossion & 

Curran, 2010; Wong, Palmeri, & Gauthier, 2009). Holistic processing has originally been 

described as a hallmark of face perception (Tanaka & Sengco, 1997; Tanaka & Farah, 1993). 

Configural information, that is information about the way in which the different parts of an 

object relate to each other, is crucial to the representation of faces, and also plays a role in 

objects of expertise. Changes in the typical configuration of an object of expertise can 

disproportionately impair the recognition of the object (however, see Robbins & McKone, 

2007). 

Additionally, the type of training that is optimal to acquire expertise in a visual domain has 

been extensively studied. Tanaka and Taylor (1991) already showed that in contrast to 

novices, experts use subordinate-level names (e.g. ‘robin’ or ‘sparrow’) as frequently as basic-

level names (e.g. ‘bird’), and they perform subordinate-level categorizations as fast as basic-

level categorizations. Several studies have compared subordinate-level training with basic-

level training and mere exposure in a specific visual domain (Gillebert, Op de Beeck, Panis, & 

Wagemans, 2008; Scott, Tanaka, Sheinberg, & Curran, 2006, 2008; Tanaka, Curran, & 

Sheinberg, 2005; Wong, Palmeri, Rogers, Gore, & Gauthier, 2009). In basic-level training, 

participants are trained to divide objects into broader categories at the basic level, while in 

subordinate-level training, they are required to identify and discriminate between visually 

similar objects belonging to the same category. Subordinate-level training leads to a better 

discrimination performance between exemplars and has long-term effects (Scott et al., 2008). 

Furthermore, subordinate-level training induces a greater generalization of subordinate 
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discrimination to novel exemplars from learned categories and to exemplars belonging to 

new, but structurally related categories (Gauthier, Williams, Tarr, & Tanaka, 1998; Tanaka et 

al., 2005). It has become clear that subordinate-level categorization is the trademark of visual 

expertise and it is therefore important to study the way in which experts make fine-grained 

distinctions between individual exemplars within the expert object category.  

The question of how we learn to categorize new objects is studied in the field of perceptual 

learning. To recognize, identify or categorize an object requires the comparison of its visual 

representation with some representation of stored knowledge. According to the exemplar-

based model, categories are represented by individual exemplars that are stored in memory 

(Nosofsky, 1987, 2011; Nosofsky, Sanders, Gerdom, Douglas, & McDaniel, 2017; Nosofsky, 

Sanders, & McDaniel, 2017). New instances are categorized by judging the similarity to these 

exemplars: if the perceived stimulus holds many similarities with exemplars of a specific 

category, it is assigned to that category. For example, the mental representation of the 

category ‘birds’ is stored in memory by means of a collection of representations of robins, 

warblers, pigeons, ducks, ostriches and other birds which people have encountered. In the 

generalized context model, an exemplar-based view proposed by Nosofsky (1986), exemplars 

are represented as points in a multidimensional psychological space. The similarity between 

exemplars is inversely proportional to their distance in the psychological space. The exemplar-

based view is contrasted by the prototype theory which states that categories are 

represented by an abstract summary or a prototype, which is derived by averaging 

experiences with exemplars (Mervis & Rosch, 1981; Posner & Keele, 1968; Smith & Minda, 

1998). New stimuli are categorized by comparing their similarity to the category prototype.  

Both theories emphasize the importance of similarity in categorization: only by resemblance 

to a prototype or to exemplars can a new stimulus be assigned to a category. It is thus key to 

study perceptual similarity and the way in which mental representations of categories and 

objects relate to each other in order to understand how we learn to categorize objects 

(Nosofsky, 1992). Several studies have used similarity spaces of object categories to 

investigate perceptual learning (Edelman, 1998; Shepard, 1987). In most studies, 

representational spaces or feature spaces were created by carefully manipulating a limited 

number of dimensions in an artificially created object class of very simple (Cohen, Nosofsky, 

& Zaki, 2001) or more complex stimuli (Folstein et al., 2012; Gillebert et al., 2008; Goldstone 
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& Steyvers, 2001; Panis, Vangeneugden, & Wagemans, 2008). This highly controlled 

experimental manipulation renders a feature-space representation that is a fairly direct 

reflection of the object category. Creating a representational space for a natural, real-world 

object category is more challenging. Natural stimuli are more complex and vary along a large 

number of dimensions that could be difficult to describe and that are not independent from 

each other (Mathy & Bradmetz, 2011). In a recent study in which novice participants were 

trained to classify pictures of rocks, a multidimensional feature space for rocks was used to 

test the exemplar-based model’s predictions of categorization and generalization 

performances (Nosofsky, Sanders, & McDaniel, 2017; Nosofsky, Sanders, Meagher, & 

Douglas, 2018).  

The traditional way to investigate perceptual similarity is by asking participants to make 

pairwise similarity judgments of the different objects and subsequently applying 

multidimensional scaling (MDS) to create a two-dimensional visualization of the mutual 

relations between the objects (Goldstone, Medin, & Gentner, 1991; Nosofsky, 1992; Nosofsky 

et al., 2018; Shepard, 1980; Steyvers, 2002). However, a more efficient multiple object 

arrangement (MOA) method has been proposed in which participants are asked to arrange a 

set of objects according to their similarity by placing them in a two-dimensional space 

(Goldstone, 1994a; Kriegeskorte & Mur, 2012). The farther the objects are placed from each 

other, the more dissimilar they are. From these arrangements, the pairwise dissimilarities 

between the objects are derived. This method is highly efficient because by positioning an 

object in the 2-D space, the participant gives information about multiple pairwise similarities 

at the same time. Additionally, it allows the context provided by the remaining items to be 

taken into account when judging the similarity between two objects (e.g. a hamster and a cat 

may seem more similar to each other when an elephant is added to the set of items). 

Furthermore, participants can, consciously or subconsciously, base their arrangements on 

multiple underlying dimensions, which do not have to be prespecified by the researcher.  

Although mental representational spaces of object categories have been investigated in the 

field of perceptual learning, this technique has never before been applied to study the 

behavioral aspects of an ‘extreme’ form of learning: visual expertise. It is our goal to map out 

the representational similarity space of experts in a real-world domain and compare this to 

the representational space of novices for the same object category. In the current study, we 
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will apply the MOA method to investigate the mental representational space of the expert 

object category of birds. To the best of our knowledge, the MOA method is new in the field 

of expertise. We aim to investigate the influence of extensive experience on the mental 

representations and the perceptual similarity of birds by comparing two subject groups: 

ornithologists or bird experts and novices. Moreover, we will implement one expertise-

related MOA task and one non-related task. It has previously been shown that similarity 

relations between objects are not invariant but instead may change depending on the 

experimental task context (Nosofsky, 1987; Nosofsky, Sanders, & McDaniel, 2017; Van Gulick 

& Gauthier, 2014). Research on the behavioral aspects of expertise has also demonstrated 

the influence of top-down processes: experts show a clear attentional preference for their 

expert object category (Hershler & Hochstein, 2009). We therefore predict that effects of 

expertise on the mental representational space of the expert object category will be more 

pronounced in an attention grabbing expertise-related task. 

 

 

3.2 METHODS 

 

3.2.1 Participants 

We recruited 41 subjects to participate in this study: 21 candidate bird experts, who were 

active birdwatchers, and 20 control participants. Half of these participants (11 ornithologists, 

9 control participants) already took part in a previous fMRI study on expertise (Martens, 

Bulthé, van Vliet, & Op de Beeck, 2018). One candidate bird expert was excluded due to a 

neurological background. To check their level of knowledge concerning birds, all new 

participants (10 ornithologists, 11 control participants) completed a perceptual and a 

semantic task on bird expertise, which were also administered in the previous study. No 

participants had to be excluded based on their results on these expertise tasks (see details 

below). The final subject sample consisted of 20 ornithologists with an average age of 28.3 ± 

5.5 years (5 females, average experience of 11.1 ± 4.6 years) and 20 control participants with 

an average age of 28.6 ± 4.5 years (6 females, no experience with birds). The two subject 

groups were matched for level of education. All participants were healthy adults with normal 
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or corrected-to-normal vision, and all provided a written informed consent. The study was 

approved by the Medical Ethical Committee of KU Leuven. 

 

3.2.2 Determination of expertise level 

The behavioral experiment formed part of a larger fMRI study on expertise and lasted 

approximately 90 minutes for the new participants and 60 minutes for those who already 

took part in a previous study. The new participants first completed a perceptual 

discrimination task and a semantic task (see Martens et al., 2018). For the remaining 

participants, results were taken from the previous study.  

The perceptual discrimination task, which was used to assess the participants’ knowledge of 

birds, consisted of 80 pairs of colored images of European bird species (with no background) 

that were selected with the help of a bird expert. Half of these pairs were made up out of 

birds that belonged to the same bird species, the other half consisted of birds belonging to 

different species. Participants had to decide for each pair whether both birds did or did not 

belong to the same species. The visual similarity of the birds within each pair varied, with 

some very easy trials (e.g. do a robin and a crow belong to the same bird species?) and some 

trials that were a lot more difficult (e.g. visually differing male and female exemplars of the 

same species). Participants with a knowledge of birds were considered to be experts when 

they reached a score of 65% on the discrimination task. No candidate bird experts or control 

participants had to be excluded based on their score on this task. In the semantic task, a 

second assessment of expertise, participants were asked to name 30 colored images of birds 

as precise as possible. The more specific the answers (e.g. specific bird species, sex of the bird, 

Latin name), the higher the score (one, two or three points) that was awarded (for more 

details, see: Martens et al., 2018).  

 

3.2.3 Multiple object arrangement 

All participants provided similarity judgments of 24 birds using a multiple object arrangement 

paradigm (Goldstone, 1994a; Kriegeskorte & Mur, 2012). The task was administered to the 

participants using Matlab R2013a. The specific birds that were selected for this task are 
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discussed in detail in the next section. Participants were asked to arrange the different stimuli 

based on their similarity in a two-dimensional space on the computer screen (Figure 3.1). The 

distances between the stimuli were interpreted as (dis)similarities: the closer together they 

were placed, the more similar they were. First, participants performed a practice trial with 

unrelated images for three minutes, to get familiarized with the format of the task. Next, they 

performed the actual MOA task twice: first they were asked to arrange the 24 birds according 

to their taxonomy or similarity of bird species, this was an expertise-related task. In a second, 

non-related task for which no specific bird knowledge was required, participants arranged the 

same birds according to their visual similarity, while disregarding any species information. For 

each task, participants had 20 minutes to repeatedly arrange the stimuli. In the first trial, all 

the 24 birds were presented simultaneously. For the subsequent arrangements, different 

subsets of the stimuli were presented. The subsets were selected by an adaptive algorithm 

based on the information that was gathered in the previous trials: the estimated certainty for 

the (dis)similarity between each bird pair was calculated and pairs for which this certainty 

was the lowest were selected to be arranged again.  

 

 

 

 

 

 

 

 

 

Figure 3.1. Example of multiple object arrangement task. Participants are asked to arrange birds 
based on their similarity in a 2-D space by dragging and dropping the presented icons in the white 
circle. Birds that are more similar are placed closer together. Participants have unlimited time to 
perform an arrangement. After each arrangement is done, a different subset of birds is presented. 
Participants performed two MOA tasks: a species task and a visual task. Each task lasted 20 mins. 
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At the end of the experiment, participants performed a familiarity test. They were asked to 

name the 24 birds they had seen in the MOA task, to ensure that the ornithologists were 

familiar with these specific bird species. 

 

3.2.4 Stimuli 

The 24 birds that were selected for the MOA tasks were all common European bird species. 

The birds were arranged into 8 triplets (Figure 3.2). Within these triplets, visual appearance 

and species of the birds were manipulated. Each triplet consisted of two birds belonging to 

the same species but that were visually different (birds A and B, e.g.: a visually differing male 

and female or a species with differing summer and winter plumage) and a third bird (bird C) 

from a different species that was visually similar to bird B. Of these 24 birds, 13 were 

songbirds (5 different songbird families, 9 different species), 5 were wading birds (2 different 

bird families, 3 different species) and 6 were birds of prey (2 different bird families, 4 different 

species). In the MOA tasks, all 24 birds were presented together in a random fashion. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Stimuli. The 24 birds that were selected for the MOA task consist of 8 triplets. In each triplet, 
birds A and B belong to the same species but are visually different, while birds B and C belong to 
different bird species but are visually similar. The bird species are grouped into bird families, which are 
indicated by rectangular frames. Furthermore, the bird families belong to three large bird orders: the 
birds in yellow are songbirds, the birds in blue are wading birds and the birds in red belong to the order 
of birds of prey. 
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3.3. RESULTS 

 

3.3.1 Measures of expertise 

Twenty ornithologists and twenty control participants were selected to participate in this 

study based on their score on the perceptual discrimination task. Ornithologists reached an 

average score of 84% (sd = 9.4%, min. = 67%, max. = 96%), scoring significantly higher than 

control participants who performed at chance level (average score of 51%, sd = 6.2%, min. = 

40%, max. = 64%; t(19) = 11.26, p < 0.0001). Since the performance on this task was used as 

an inclusion criterion, this result is trivial. However, two other and statistically independent 

behavioral measures also demonstrated the clear difference in experience between experts 

and novices. On the semantic task, in which participants named 30 birds, ornithologists 

(68.6%, sd = 15.7%, min. = 42.2%, max. = 93.8%) outperformed the control participants (9.2%, 

sd = 3.4%, min. = 1.1%, max. = 16.7%), as a group (t(19) = 15.80, p < 0.0001) and even for all 

individual pairs of participants (minimum in ornithologists is clearly higher than the maximum 

in controls). Finally, with an average score of 83.5% on the familiarity test (sd = 14.1%, min. = 

50%, max. = 100%), ornithologists demonstrated that they were overall familiar with the 24 

specific birds that were presented to them during the MOA task, while control participants 

were not (average of 7%, sd = 5.4%, min. = 0%, max. = 20.8%; t(19) = 21.49, p < 0.0001). Within 

the group of ornithologists the different measures of expertise were associated with each 

other and with the self-reported level of expertise. For example, the ornithologists’ self-

reported years of experience were significantly correlated with their performance on the 

semantic task (Pearson’s r = 0.47, p = 0.038) and on the familiarity test (Pearson’s r = 0.46, p 

= 0.039), but not significantly with the performance on the discrimination task (Pearson’s r = 

0.37, p = 0.11). 
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Figure 3.3. Representational dissimilarity matrices. Matrices representing the average pairwise 
dissimilarities or distances between the 24 birds based on the MOA arrangements made by 
ornithologists (A) and control participants (B) in the species task (left) and the visual task (right). 
Smaller dissimilarities are visualized with reddish shades and larger dissimilarities with bluer shades. 
The matrices are sorted in such a way that they reflect the taxonomy of the birds. Songbirds are 
indicated by yellow brackets, wading birds by blue brackets and birds of prey by red brackets. The bird 
codes match the codes used in Figure 3.2. 

 

 

SPECIES TASK VISUAL TASK 

A 
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Figure 3.4. MDS-plots of the MOA arrangements. Plots displaying the average arrangements made 

by ornithologists (A) and control participants (B) in the species task (left) and the visual task (right). 

Plots were visualized using 2-D multidimensional scaling with metric stress in Matlab R2013a. Birds in 

yellow are songbirds, blue birds are wading birds and birds in red are birds of prey. 
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3.3.2 Mental representational space of objects of expertise 

To be able to investigate the mental representational space for the 24 birds of both experts 

and novices, all participants were asked to arrange the birds first according to their species 

similarity (expertise-related task) and in a second task according to their visual similarity (non-

related task). Based on these arrangements, the pairwise dissimilarities of the 24 birds were 

derived for both subject groups and both tasks, and presented in representational 

dissimilarity matrices (RDMs; Figure 3.3). The resulting arrangements were also visualized 

using multidimensional scaling (Figure 3.4). At a first glance, it becomes clear that both 

ornithologists and control participants arranged the birds according to the bird orders in both 

tasks: songbirds were grouped together, as were wading birds and birds of prey respectively 

(with one “odd bird out” in the control group: a songbird (5C) visually resembling a wading 

bird).  

 

3.3.3 Consistency of arrangements 

To compare how consistent the subjects within each group solved both tasks, we calculated 

within-group correlations for each task. Each subject’s dissimilarity matrix (upper half, 

excluding the diagonal) was correlated with the individual dissimilarity matrices from all other 

subjects belonging to the same group. These correlations were averaged, resulting in one 

within-group correlation per subject per task (Figure 3.5). For both the species task and the 

visual task, the average within-group correlation for ornithologists was significantly higher 

than the average within-group correlation for novices, indicating that the experts solved both 

tasks more consistently (species task: t(19) = 11.04, p < .0001; visual task: t(19) = 2.97, p = 

0.008). This effect was stronger for the species task than for the visual task (t(19) = 7.04, p < 

.0001). 

Next we calculated the between-group correlations (each subject’s dissimilarity matrix was 

correlated with the individual dissimilarity matrices from all subjects belonging to the other 

group) and compared these to the within-group correlations. If the structure of the mental 

representational spaces of the two subject groups would differ, we would expect the 

between-group correlation to be lower than a reference value which lies in between the 

within-group correlations of the relevant task. This reference in case of a null hypothesis (no 
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difference in mental representational space) is calculated as the square root of the product 

of the two within-group correlations (e.g., Op De Beeck, Deutsch, Vanduffel, Kanwisher, & 

DiCarlo, 2008). For the visual task, this benchmark was 0.44. The empirically measured 

between-group correlation (Pearson’s r = 0.42) did not differ significantly from this reference 

value (t(19) = 1.04, p = 0.31), indicating that ornithologists and control participants solved the 

visual similarity arrangement task in a similar manner. However, for the expertise-related 

species task, the measured between-group correlation (Pearson’s r = 0.43) was significantly 

lower than the reference value of 0.48 (t(19) = 5.26, p < 0.0001), signaling a qualitative 

difference between the bird arrangements performed by the two subject groups.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Consistency of arrangements. Bar graph depicting the average within- and between-group 
correlations of the arrangements made by ornithologists and controls in the species task and the visual 
task. Error bars display the standard deviation (sd). The within-group correlation for ornithologists 
(ORN; in white) was in both tasks higher than the within-group correlation of control participants (CON; 
in light grey), indicating a higher consistency in the arrangements made by the experts. In the species 
task, the between-group correlation (dark grey) was significantly lower than the reference value 
(horizontal line), indicating a structural or qualitative difference between the arrangements made by 
the two subject groups. 
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3.3.4 Structural differences in representational spaces of experts and novices 

Visual inspection of the RDMs (Fig. 3.3) already gives an indication to what the qualitative 

difference between the ornithologists’ and control participants’ arrangements for the species 

task might have been. First of all the matrices suggest, like the MDS-plots, that information 

about the bird orders was present in the arrangements of both subject groups and for both 

tasks. To quantify this, we calculated the average within-order distance and the average 

between-order distance for both MOA tasks and both subject groups by calculating for each 

bird the average distance to all other birds belonging to the same order or belonging to a 

different order, respectively. Results are shown in Table 3.1. In both tasks and for both subject 

groups, the average within-order distance across orders was significantly smaller than the 

average between-order distance (Orn.: species task: t(19) = 25.74, p < .0001; visual task: t(19) 

= 12.06, p < .0001; Con.: species task: t(19) = 11.28, p < .0001; visual task: t(19) = 10.20, p < 

.0001). This was also the case for the three orders separately. This result confirmed what was 

already suspected based on the MDS-plots: birds belonging to the same bird order were 

indeed placed closer together by both subject groups and in both tasks.  

 

Subject group Task Within-order 
distance 

Between-order 
distance 

Ornithologists Species 0.028 0.067 
 Visual 0.034 0.066 

Controls Species 0.039 0.065 
 Visual 0.041 0.066 

 

Table 3.1. Within- and between-order distances. Average distances between birds belonging to the 
same order (within-order distance) and between birds belonging to different bird orders (between-
order distance) for both subject groups and both tasks. The within- and between-order distances are 
averaged across the three orders. Both subject groups grouped birds belonging to the same order 
together in both tasks. 

 

Furthermore, the ornithologists’ dissimilarity matrix for the species task clearly showed a 

more high level structure in the arrangement of the birds that did not seem to be present in 

the visual task of the ornithologists, nor in either of the two arrangements made by the 

control participants. We applied the same logic to test whether information at the higher level 
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of the bird families (within the bird orders) was present in the way the two groups arranged 

the birds in both tasks. The within-family distance was for each bird defined as the average 

distance to all other birds belonging to the same bird family (and same bird order), while the 

between-family distance was calculated as the average distance to all birds belonging to 

different bird families, but still from the same bird order. The stimulus set consisted of 5 

songbird families, 2 wading bird families and 2 families of birds of prey. For one songbird 

family we did not calculate the within-family and between-family distance, since it consisted 

of only one bird (bird 5C, see Figure 3.1).  

 

Subject group Task Within-family distance Between-family distance 
  Song Wading Prey Song Wading Prey 

Ornithologists Species 0.019 0.013 0.012 0.044 0.021 0.032 
 Visual 0.034 0.026 0.031 0.043 0.028 0.036 

Controls Species 0.037 0.039 0.036 0.045 0.036 0.035 
 Visual 0.040 0.043 0.040 0.046 0.038 0.037 
 

Table 3.2. Within- and between-family distances. Average distances between birds belonging to the 

same bird family (within-family distance) and between birds belonging to different bird families but to 

the same bird order (between-family distance) for both subject groups and both tasks. The within- and 

between-family distances are averaged across the families within each bird order. Cases in which the 

within-family distances were significantly lower than the between-family distances are indicated in 

bold.  

 

The results confirmed that ornithologists indeed grouped birds belonging to the same bird 

family together in the species task (Table 3.2): the average within-family distance was 

significantly smaller than the average between-family distance for the songbird families (t(79) 

= 14.72, p < 0.0001), the wading bird families (t(39) = 5.19, p < 0.0001) and the bird of prey 

families (t(39) = 13.86, p < 0.0001). In the visual task, ornithologists still made a distinction 

between bird families belonging to the songbird order (t(79) = 4.41, p < 0.0001) and between 

birds of prey families (t(39) = 2.67, p = 0.01), but they no longer separated the two wading 

bird families (t(39) = 1.27, p = 0.21). Control participants did make a distinction between the 

songbird families in both the species task (t(79) = 4.99, p < 0.0001) and the visual task (t(79) 

= 3.47, p = 0.0009). However, there was no information on the wading bird families or on the 

bird of prey families in either of the tasks, since for these two orders the between-order 
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distances were smaller than the within-order distances (Wading birds: species task: t(39) = 

1.53, p = 0.13; visual task: t(39) = 2.55, p = 0.01; Birds of prey: species task: t(39) = 0.53, p = 

0.60; visual task: t(39) = 2.21, p = 0.03). Overall, these results suggest that both subject groups 

arranged the birds in accordance with the bird orders, the finer structure in terms of the bird 

families however was significantly different between experts and novices. 

 

3.3.5 Dissimilarities between same-species birds and visually similar birds 

We designed the study to probe one specific qualitative difference between the groups in 

their mental representations. As mentioned in the Methods section (3.2.4), the 24 stimuli 

were chosen in such a way that bird species could not easily be derived from the visual 

features of the birds alone. The stimuli were divided into triplets in which two birds (A and B) 

belonged to the same species but were visually different and two birds (B and C) belonged to 

a different species but were visually similar (see Figure 3.2). We calculated for each subject 

the average distance between birds A and B and the average distance between birds B and C, 

for both MOA tasks (Figure 3.6).  

Paired-sample t-tests showed that in the species task, ornithologists successfully made the 

distinction between birds belonging to the same species and birds bearing a visual similarity: 

they placed birds A and B closer together than birds B and C (t(19) = 10.04, p < 0.0001). In the 

visual task, there was no difference in distance between birds A and B on the one hand and 

birds B and C on the other (t(19) = 0.05, p = 0.96), suggesting that ornithologists were using 

both species and visual information while judging the visual similarity of the birds. Control 

participants placed the visually similar birds closer together in the visual task (t(19) = 2.11, p 

= 0.048) and the same tendency was present in the species task, although the difference did 

not reach significance (t(19) = 2.09, p = 0.051). This indicates that the control participants 

were misled by the visual resemblance of the birds belonging to a different species. In each 

task, ornithologists placed birds A and B closer together than control participants did (two-

sample t-tests; species task: t(38) = 9.30, p < 0.0001; visual task: t(38) = 2.83; p = 0.007). 

Overall, these results indicate that ornithologists make fine-grained distinctions between 

birds at the level of the bird species and this effect is most pronounced in an expertise-related 

task. 
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Figure 3.6. Dissimilarities between bird pairs. Bar graph depicting the average pairwise dissimilarities 

or distances  between bird pairs for ornithologists and control participants in the species task and the 

visual task. Birds A and B (white) belong to the same bird species but are visually different, and birds B 

and C (grey) are visually similar but belong to different bird species. Error bars display the standard 

deviation (sd). Significant differences are indicated by asterisks: * p < 0.05 and ** p < 0.0001. 

 

 

3.4 DISCUSSION 

 

In the present study, we investigated the influence of visual expertise in ornithology on the 

mental representations of objects of expertise by comparing the similarity spaces created by 

experts and novices. The results indicated a quantitative enhancement of the 

representational space of objects of expertise; the similarity arrangements made by experts 

were more consistent compared to those made by novices. Furthermore, the results 

demonstrated the presence of qualitative differences between the similarity spaces of the 

two subject groups. Experts and novices have mental representations that share a lot of 

commonalities at the basic level (in this case: the bird orders). However, the more we go into 
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finer details, the more qualitative differences we find. The influence of expertise on the 

mental representations of the birds was noticeable in the more fine-grained distinctions: 

where ornithologists were able to organize the birds according to the intermediate level of 

the bird families and even the subordinate level of the bird species, control participants were 

overall not able to make these systematic distinctions beyond the level of bird orders. 

Moreover, these effects were most pronounced in an expertise-related task. 

 

3.4.1 Qualitative and quantitative expertise-related changes 

This is the first study to investigate the mental representational space of a natural category 

in a real-world domain of expertise. In the past, many behavioral studies have shown that 

similarity plays a crucial role in perceptual category learning, whether it is similarity to 

exemplars or similarity to a prototype (e.g. Nosofsky, 1986; Posner & Keele, 1968). Mental 

similarity spaces are not only useful to investigate how perceptual learning or learning to 

categorize comes about, it is also important to explore what happens after the initial learning 

phase. In this study we show that years of extensive visual experience with a particular object 

category can bring about structural changes in the mental representational space of that 

specific category. These structural changes express themselves in the form of fine-grained 

subordinate-level distinctions. The idea that subordinate-level processing is an important 

aspect of expertise was first stated by Tanaka and Taylor (1991) and has been demonstrated 

in many different behavioral studies on expertise. Our study further confirms these 

observations by clearly showing that bird experts use a more subordinate level of organization 

(in this case: bird families and even the bird species) compared to novices when asked to 

perform an expertise-related task. 

Apart from the structural changes in the mental representational space as a result of 

expertise, we also found that the coherence between the similarity spaces created by 

individuals was much higher in the group of experts compared to novices. The fact that 

ornithologists discriminate between birds in a very similar manner, indicates that they all go 

through a very similar learning process. This learning process very likely consists of 

subordinate-level training. As has been shown in previous studies (e.g. Scott et al., 2006, 

2008), subordinate-level training leads to a better discrimination performance between 



3 | Mental representational space 

86 
 

individual exemplars, which is what the experts in this study demonstrated. Furthermore, this 

type of training allows for a greater generalization to new exemplars (Gauthier et al., 1998; 

Tanaka et al., 2005), which could facilitate learning about new bird species for experts.   

 

3.4.2 Top-down influences 

The effect of expertise on the structure of the representational space of birds was more 

pronounced in the expertise-related species task compared to the non-related visual task, 

indicating the influence of top-down factors. This result was in line with studies in the field of 

perceptual learning which have shown that task context can alter the similarity relations 

between objects (e.g. Nosofsky, 1987; Van Gulick & Gauthier, 2014). Perhaps this effect is 

even more pronounced in the context of visual expertise. We know that perceptual similarity 

is an important concept in the field of perceptual learning, however, the arrangements made 

by the experts suggest that past the initial learning phase, it is not just visual similarity that 

plays a role. This leads us to the following question: we draw lines between perceptual 

learning and visual expertise, but how ‘perceptual’ is visual expertise? In the expertise-related 

task, experts made more fine-grained distinctions between the birds compared to judgments 

based on visual appearance alone, clearly indicating the influence of semantic information or 

abstract knowledge. Even in the non-related visual task, experts were not able to discard 

species information when making judgments based on visual similarity.  

To answer the question about how much perceptual, bottom-up effects contribute to 

acquiring visual expertise and to what extent top-down process play a role, we should 

investigate a domain of expertise in which (at least for a subset of the objects belonging to 

that category) perceptual information and semantic information are dissociated from each 

other. In the current study, we attempted to make this dissociation by creating the bird 

triplets, however, visual and semantic features were not orthogonal to each other. This was 

mainly because bird species belonging to the same bird order or bird family are not only 

related in the context of taxonomy, they also share visual features (e.g.: wading birds 

generally have long legs), which is likely also the reason why even novices were able to group 

the birds into their respective bird orders. Disconnecting perceptual from semantic 

information in order to assess the influence of semantic knowledge on the structure of the 
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similarity space of an object category is a very difficult task to carry out with a real-world 

domain of expertise. Therefore it would be useful to revert to artificially created object 

categories (e.g. Behrmann, Marotta, Gauthier, Tarr, & McKeeff, 2005; Gauthier & Tarr, 1997, 

2002; Gauthier et al., 1998; Wong, Palmeri, & Gauthier, 2009). Participants can be extensively 

trained in a new category in which visual features and semantic characteristics (like name, 

family relations etc.) are orthogonal to each other. The drawback of this kind of approach is 

that subjects participating in training studies cannot reach the level of real-world experts. 

However, this could be a good way to study the intermediate step between the initial phase 

of perceptual learning and complete visual expertise; perhaps structural changes in a 

representational space due to expertise emerge gradually, or perhaps they appear abruptly. 
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Visual expertise changes the neural representation and processing of objects of expertise. 

Studies investigating the neural correlates of visual expertise have focused on the neural 

response underlying the expert object category. However, behavioral research has 

demonstrated that experts are especially proficient at identifying and classifying objects 

within a specific category, at a more subordinate level compared to novices. In the present 

study, we apply multi-voxel pattern analyses to investigate the neural responses that are 

elicited by the individual objects of expertise, in both experts and novices. This way, we aim 

to investigate the influence of expertise on the neural representational space of objects of 

expertise in low-level visual cortex, high-level visual cortex and the frontal lobe. Results 

indicated quantitative enhancements of the representations of objects of expertise in experts 

compared to novices in the higher-level regions. Nevertheless, the overall structure of the 

neural representational space was not altered by expertise. Finally, we compared the neural 

representational spaces of both experts and novices to their mental representational spaces 

that were presented in chapter three. 
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4.1 INTRODUCTION 

 

The effects of visual expertise, extensive visual experience with a specific category of objects, 

on the neural representations of objects of expertise have been studied for almost two 

decades in a large number of fMRI and EEG studies (starting from Gauthier et al., 1999, 2000). 

Although the exact nature of neural expertise effects and the exact location of these effects 

are still up for debate (e.g. McKone and Kanwisher, 2005; Curby and Gauthier, 2010; Harel et 

al., 2013), it has become clear that visual expertise changes the way in which objects of 

expertise are represented in the brain. For example, the neural activation elicited by images 

of cars in the brain of a car expert will differ from a novice’s neural response to those same 

images. 

Studies have focused on a wide range of domains of visual expertise, like bird expertise, chess, 

radiology, car expertise, expertise with musical instruments and notation, expertise in 

computer programming and so on (e.g. Gauthier et al., 2000; Xu, 2005; Haller and Radue, 

2005; Harley et al., 2009; Wong and Gauthier, 2010; Harel et al., 2010; Bilalić et al., 2011, 

2014; Hoenig et al., 2011; McGugin et al., 2012; Floyd et al., 2017; Martens et al., 2018). Many 

fMRI studies investigating real-world expertise have reported an increase in neural activation 

for the expert object category in experts compared to novices, or a correlation between 

neural activation and level of expertise. These effects have been found in visual regions like 

the lateral occipital complex (LOC, e.g. Jiang et al., 2007; Harel et al., 2010), the fusiform face 

area (FFA) and regions around it (e.g. Gauthier et al., 2000; Rhodes et al., 2004; Xu, 2005; van 

der Linden et al., 2008; Harley et al., 2009; McGugin et al., 2012), and early visual cortex (EVC, 

e.g. Harel, Gilaie-Dotan, Malach, & Bentin, 2010; Martens, Bulthé, van Vliet, & Op de Beeck, 

2018), in areas outside of the visual cortex like the auditory cortex (e.g. Hoenig et al., 2011), 

and in prefrontal regions (e.g. Harel et al., 2010; Krawczyk, Boggan, McClelland, & Bartlett, 

2011; Moore et al., 2006). Expertise-related neural changes have also been induced by 

extensively training participants in recognizing and categorizing novel objects (e.g. Gauthier 

et al., 1999; Moore et al., 2006; Op de Beeck et al., 2006; Brants et al., 2011, 2016). In addition 

to fMRI studies, EEG studies have demonstrated the presence of neural expertise effects in 

the form of an enhanced N170 response to objects of expertise, for both real-world domains 
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of expertise (e.g. Tanaka and Curran, 2001; Gauthier and Curby, 2005) and for laboratory-

trained participants (e.g. Rossion et al., 2002; Scott et al., 2006, 2008).   

Although widely varying methods and research designs have been used in the search for 

neural expertise effects, all these studies share one commonality: they investigated the neural 

activation underlying the expert object category. However, experts show a superior 

performance in identifying and classifying visually similar objects within a specific domain, at 

a more subordinate level compared to novices (Tanaka & Taylor, 1991). For example, when 

presented with an image of a bird, an ornithologist will preferentially identify this bird at the 

level of its species (e.g. a Western yellow wagtail) while a novice will simply identify this 

animal as a “bird”. This subordinate-level expert processing has been the focus of many 

behavioral studies on perceptual learning and expertise (e.g. Gauthier and Tarr, 1997; Tanaka 

et al., 2005; Scott et al., 2006; Wong et al., 2009). Several learning studies have shown that 

training participants to identify or categorize objects within a specific domain at the individual 

or subordinate level greatly improves their ability to discriminate these objects, in contrast to 

participants that were trained at the basic level. These effects have been found for real-world 

categories (e.g. birds, Tanaka et al., 2005; Scott et al., 2006) as well as for artificial objects 

(e.g. Ziggerins, Wong et al., 2009).  

As a logical consequence, all studies investigating visual expertise and its neural basis have 

included experts that were very proficient at making fine-grained distinctions between 

visually similar objects within a specific domain, whether they were laboratory-trained or 

already had several years of experience. However, almost none of these studies have actually 

investigated neural expertise effects at the subordinate level. While it is certainly valuable to 

investigate the neural responses that are triggered by the expert object category, important 

effects might be missed by this lack of specificity at the neural level (Martens et al., 2018). 

Exploring the effects of expertise on the neural representations of the individual objects of 

expertise would better approximate expert behavior and improve the ecological validity. 

Discriminating representations at this fine level is a challenge though, even for advanced 

methods such as multi-voxel pattern analysis (MVPA), as has been illustrated by an earlier 

study with laboratory training (Brants et al., 2016) and by a study on distinguishing 

subordinate object distinctions in general (Eger, Ashburner, Haynes, Dolan, & Rees, 2008). A 

few studies have resorted to the method of fMRI adaptation to resolve these problems 
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(Folstein et al., 2013; Gillebert et al., 2008; Panis, Vangeneugden, Op de Beeck, & Wagemans, 

2008), but this indirect method of measuring neural selectivity has important interpretational 

problems. 

In the current study, we aim to investigate through MVPA whether and how visual expertise 

changes the way in which individual objects of expertise are represented in the brain. Our 

goal is to gain insight into the effects of a real-world domain of visual expertise, in this case 

ornithology or bird expertise, on the neural representational space of objects of expertise, 

birds. To do this, we will use MVPA to distinguish the distributed neural responses to 

individual birds in object-selective cortex. These neural representations will be combined in a 

representational space, which we will then compare between bird experts and bird novices. 

Furthermore, we aim to compare this neural representational space to the mental 

(behavioral) representational space of the same individual objects, for both experts and 

novices (see chapter 3). 

 

 

4.2 MATERIAL AND METHODS 

 

4.2.1 Participants 

The same 40 subjects that took part in the behavioral study on the mental representational 

space of objects of expertise (see chapter 3), also participated in this fMRI study. Twenty 

ornithologists (average age: 28.3 years, 5 females, 11.1 years of experience on average) and 

twenty control participants (average age: 28.6 years, 6 females, no experience with birds) 

were extensively tested for their level of knowledge concerning birds by means of a 

perceptual discrimination task and a semantic naming task. More details concerning the 

selection procedure can be found in section 3.2.1 of chapter three. The two subject groups 

consisted of healthy adults with normal or corrected-to-normal vision, without a neurological 

background. They provided a written informed consent for the fMRI scan. The study was 

approved by the Medical Ethical Committee of KU Leuven. 
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4.2.2 Stimuli 

During the fMRI experiment, participants were presented with images of 24 birds that were 

also used in the MOA tasks of the behavioral experiment (see chapter 3). The selected birds 

consisted of 8 triplets (Figure 4.1). Within these triplets, visual appearance and species of the 

birds were manipulated. Each triplet consisted of two birds belonging to the same species but 

that were visually different (birds A and B, e.g.: a visually differing male and female or a 

species with differing summer and winter plumage) and a third bird (bird C) from a different 

species that was visually similar to bird B. Of these 24 birds, 13 were songbirds (5 different 

songbird families, 9 different species), 5 were wading birds (2 different bird families, 3 

different species) and 6 were birds of prey (2 different bird families, 4 different species).  

 

 

 

 

 

 

 

 

 

Figure 4.1. Stimuli. The 24 birds that were presented to the participants during the scan task were the 
same as the birds that were selected for the MOA tasks (see chapter 3). The birds are arranged into 8 
triplets. In each triplet, birds A and B belong to the same species but are visually different, while birds 
B and C belong to different bird species but are visually similar. The bird species are grouped into bird 
families, which are indicated by rectangular frames. Furthermore, the bird families belong to three 
large bird orders: the birds in yellow are songbirds, the birds in blue are wading birds and the birds in 
red belong to the order of birds of prey. 
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4.2.3 Apparatus 

We collected neural data at the Department of Radiology of the University Hospitals Leuven 

using a 3T Philips Ingenia CX scanner with a 32-channel head coil. Functional images were 

acquired via an EPI sequence with a TR of 3 s, TE of 30 ms, 54 slices, 2.5 x 2.56 mm in plane 

voxel size, slice thickness of 2.5 mm, inter-slice gap of 0.2 mm, flip angle of 90⁰ and an 84 x 

82 acquisition matrix, covering the whole cerebral cortex. A high-resolution T1-weighted 

anatomical image was collected for each participant (182 slices, 0.98 x 0.98 x 1.2 mm 

resolution, TR of 9.6 ms, TE of 4.6 ms, 256 x 256 acquisition matrix). The stimuli were 

presented with a custom-made script using PsychToolbox 3 (Brainard, 1997) in Matlab and 

they were projected onto a screen which could be viewed through a mirror mounted on the 

head coil. 

 

4.2.4 fMRI procedure and experimental design 

The functional data were collected using an event-related design consisting of 24 conditions 

representing the 24 birds (see “stimuli”). The experiment included 10 to 12 runs, each lasting 

6 min and 12 s (126 volumes per run). Runs started with a 9 second fixation screen. Then each 

of the 24 conditions was presented 4 times per run, these 96 trials were interspersed with 96 

fixation trials ranging from 1 to 9 seconds. We rapidly presented 4 different colored images 

of the same condition (bird) per trial: one of these 4 images was exactly the same image as 

was used in the MOA tasks, the other 3 images were pictures taken from different viewpoints 

(Figure 4.2). Each image was presented for 500 ms without inter-stimulus interval (resulting 

in a 2 s presentation per trial) on a uniform gray background at a uniform size of 500 x 500 

pixels. We created 12 separate event-related optimized sequences using Optseq2 (Greve, 

2002, available at: http://surfer.nmr.mgh.harvard.edu/optseq), these 12 designs were 

counterbalanced across runs and across participants. Participants were asked to perform a 

one-back similarity judgment task (without specifying whether they should pay attention to 

the species or visual appearance of the birds) by pressing a button from 1 to 4, 1 meaning 

“not at all similar” and 4 meaning “very similar”. The order of the buttons was 

counterbalanced across runs. 
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Figure 4.2. Schematic overview of the design of one experimental run. Images of the 24 conditions 
(birds) were presented in an event-related design. In each trial, 4 different images of the same bird 
species were presented for 500 ms, resulting in a 2 s presentation per trial. Each condition was 
presented 4 times per run. Participants were asked to perform a one-back similarity judgment task. 

 

4.2.5 Preprocessing and statistical analysis 

The Statistical Parametric Mapping software package (SPM12, Welcome Department of 

Cognitive Neurology, London) was used to preprocess and analyze all imaging data. The 

following preprocessing steps were applied to the functional images: slice timing correction 

to the first slice, spatial realignment (to the mean image) to correct for head movements, 

coregistration of the anatomical image and the functional images (using the default SPM 

settings), spatial normalization to the standard Montreal Neurological 152-brain average 

template, resampling to a voxel size of 2.5 x 2.5 x 2.5 mm and spatial smoothing using a 

Gaussian kernel of 5 mm FWHM. We controlled for excessive head motion during scanning 

by discarding all functional runs in which movement in successive images exceeded 2.5 mm 

(1 voxel size), overall 1 run had to be discarded. For each participant, a general linear model 

(GLM) was fitted, including regressors for each of the 24 conditions (birds) and the 6 motion 

realignment parameters to control for signal variation due to head motion. 
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4.2.6 Regions of interest 

We delineated three bilateral anatomically defined regions of interest (ROIs) in each 

participant: low-level visual cortex (LVC; Brodmann areas (BA) 17 and 18 which included V1 

and nearby cortical regions, average size of 719 ± 205 voxels), high-level visual cortex (HVC; 

BA 36, 37 and 20, average size of 572 ± 132  voxels) and the frontal lobe (FL; average size of 

4453 ± 2055  voxels). The anatomical masks that defined these three regions were created 

using the WFU PickAtlas Toolbox (Wake Forrest University PickAtlas, 

fmri.wfubmc.edu/cms/software). We selected all voxels located within these masks that were 

significantly active above an uncorrected threshold of p < 0.001 for the contrast [all conditions 

- fixation]. 

 

4.2.7 Multi-voxel pattern analyses 

We applied correlational multi-voxel pattern analyses (MVPA) to investigate the neural 

representational space of the 24 birds in the three selected ROIs in both ornithologists and 

control participants. For each subject and for each ROI, we created a neural dissimilarity 

matrix consisting of the pairwise (dis)similarities between the neural response patterns of the 

24 birds. The following steps describe the creation of a dissimilarity matrix for one subject 

and one ROI. We extracted the parameter estimates of the responses per voxel for each 

condition and for each run. The response in each voxel was normalized by subtracting the 

average response across all conditions per run. This way, per run a multi-voxel selectivity 

pattern was obtained for each condition. Next, the runs were randomly divided into two 

independent subsets (repeated 100 times and results averaged across all 100 iterations): for 

each condition, the response pattern in the first subset was correlated with the response 

patterns of all conditions in the second subset. This resulted in an asymmetrical 24 x 24 

correlation matrix which we made symmetrical by averaging both halves and which was 

transformed into a dissimilarity matrix (1-correlation). For subsequent analyses, only the 

upper half of the matrix was used. To test whether reliable information about the 24 birds 

was present in the neural response patterns, we compared the diagonal values of the 

dissimilarity matrix (within-condition dissimilarities) to the off diagonal values (between-

condition dissimilarities); the within-condition dissimilarities should be significantly lower 

than the between-condition dissimilarities.  
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We applied representational similarity analyses (RSA) to compare the neural dissimilarity 

matrices of both subject groups to the behavioral dissimilarity matrices that were created 

based on the arrangements made by the participants in the MOA tasks (see chapter 3). We 

calculated partial correlations (Pearson’s r) between the group neural RDMs of the three ROIs 

on the one hand and the group behavioral RDMs of the species and visual MOA task on the 

other.   

 

 

4.3 RESULTS 

 

4.3.1 Distinctiveness and between-subject consistency of neural representations of 

objects of expertise  

To investigate the influence of expertise on the neural representations of objects of expertise 

in low-level visual cortex, high-level visual cortex and the frontal lobe, we presented the same 

24 bird images to a group of bird experts (n = 20) and a group of control participants (n = 20) 

while collecting neural data. We defined three ROIs that are intended to capture the visual 

information processing that unfolds through the ventral visual stream from primary visual 

cortex (LVC) to more anterior lateral and medial occipitotemporal cortex (HVC) and from 

there to frontal cortex (FL). 

First of all, we tested whether reliable information about the 24 conditions (birds) was present 

in the neural response patterns within each ROI. Since these conditions all belonged to the 

same category and therefore were visually similar, it could be the case that multi-voxel 

pattern analysis was not sensitive enough to distinguish the neural representations of the 

different birds from each other. For each participant and for each ROI, we compared the 

within-condition dissimilarities (diagonal cells of the dissimilarity matrices) to the between-

condition dissimilarities (off diagonal values). For both the ornithologists and the control 

participants, in all three ROIs the average within-condition dissimilarities were significantly 

smaller than the average between-condition dissimilarities (pairwise t tests, for all 
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comparisons: p < 0.0001), indicating that the multi-voxel patterns conveyed information 

about the presented conditions (Table 4.1).  

 

 LVC HVC FL 
 within-con between-con within-con between-con within-con between-con 
Ornithologists 0.60 ± 0.10 1.02 ± 0.00 0.85 ± 0.08 1.01 ± 0.00 0.89 ± 0.06 1.00 ± 0.00 

Controls 0.61 ± 0.13 1.01 ± 0.00 0.88 ± 0.06 1.01 ± 0.00 0.93 ± 0.05 1.00 ± 0.00 
 

Table 4.1. Within- and between-condition dissimilarities. Average within-condition dissimilarities 

(diagonal values) and between-condition dissimilarities (off diagonal values) of the neural 

representational spaces of ornithologists and control participants in low-level visual cortex (LVC), high-

level visual cortex (LVC) and the frontal lobe (FL). Table shows averages across subjects ± sd. For both 

subject groups and in all three ROIs, the average within-condition dissimilarities were significantly 

smaller than the average between-condition dissimilarities (for all comparisons: p < 0.0001). 

 

As a quantitative indication for the distinctiveness of the response patterns, we calculated for 

each subject and each ROI the difference between the within-condition dissimilarities and the 

between-condition dissimilarities (Figure 4.3). In LVC and HVC, there was no difference 

between ornithologists and control participants in the distinctiveness of the multi-voxel 

response patterns (between-condition – within-condition, LVC: t(19) = 0.38, p = 0.71; HVC: 

t(19) = 1.15, p = 0.26). However, in FL, the neural representations of the different birds were 

more distinct in the experts compared to the novices (t(19) = 2.15, p = 0.04).  

Additionally, we asked ourselves how consistent the neural representational spaces of 

ornithologists and control participants were within and between groups. For each ROI, we 

calculated the within-group and between-group correlations between the neural RDMs for 

each participant. Results are shown in Figure 4.4. In LVC, there was no difference in 

consistency between the two subject groups (t(19) = 0.21, p = 0.83). However, in HVC and in 

FL, there was a significant difference between the within-group correlations of ornithologists 

and control participants (HVC: t(19) = 3.92, p = 0.0009; FL: t(19) = 7.94, p < 0.0001). The neural 

representational space for the 24 birds in ornithologists was more consistent compared to 

the representational space in control participants for these higher-level ROIs.  
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Figure 4.3. Distinctiveness of neural response patterns. Bar graph depicting the average between-
condition dissimilarity (off diagonal values of RDM) minus the average within-condition dissimilarity 
(diagonal values of RDM) for experts and novices in the three ROIs (low-level visual cortex, high-level 
visual cortex and frontal lobe). Error bars display the standard deviation. Significant differences are 
indicated by an asterisk. 

 

 

 

 

 

 

 

 

 

Figure 4.4. Consistency of neural representational spaces. Bar graph depicting the average within- 
and between-group correlations of the neural representational spaces of ornithologists (ORN) and 
controls (CON) in the low-level visual cortex, high-level visual cortex and the frontal lobe. Error bars 
display the standard deviation. In the two higher-level regions, the neural representational space for 
the 24 birds was more consistent among ornithologists compared to control participants. 
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Figure 4.5. Representational dissimilarity matrices. Matrices representing the average pairwise 
dissimilarities (1-correlation) between the neural response patterns underlying the 24 birds for 
ornithologists and control participants in the low-level visual cortex (LVC), the high-level visual cortex 
(HVC) and the frontal lobe (FL). Smaller dissimilarities are visualized with reddish shades and larger 
dissimilarities with bluer shades. The matrices are sorted in such a way that they reflect the taxonomy 
of the birds. Songbirds are indicated by yellow brackets, wading birds by blue brackets and birds of 
prey by red brackets. The bird codes match the codes used in Figure 4.1. 

Control participants Ornithologists 

LVC 

HVC 

FL 
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Figure 4.6. MDS-plots of the neural representational spaces. Plots displaying the average neural 
representational space for ornithologists and control participants in low-level visual cortex (LVC), high-
level visual cortex (LVC) and the frontal lobe (FL). Plots were visualized using 2-D multidimensional 
scaling with metric stress in Matlab R2013a. Birds in yellow are songbirds, blue birds are wading birds 
and birds in red are birds of prey. 
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4.3.2 Neural representational space of objects of expertise 

The RDMs showing the pairwise dissimilarities between the neural response patterns for the 

24 birds are presented in Figure 4.5. Furthermore, we depicted the neural representational 

spaces in each ROI and for both subject groups using multi-dimensional scaling (Figure 4.6). 

Interestingly, visual inspection of the MDS-plots showed that for both subject groups, 

information about the bird orders seemed to strengthen from the lower-level to the higher-

level regions. In LVC, the neural representational spaces of both experts and novices did not 

reveal any striking structure, while in HVC and particularly in FL, a distinction between 

songbirds on the one hand and wading birds and birds of prey on the other hand became 

visible.  

We checked whether we could find evidence of a qualitative difference between the 

representational spaces of both subject groups. In the previous paragraph we reported two 

quantitative group differences: the neural representations of the 24 birds in FL were more 

reliable in experts compared to novices and the representational spaces of ornithologists 

were more consistent in HVC and FL. However, this tells us nothing about the structure of the 

neural representational spaces in the two subject groups. Expertise potentially influences the 

mutual relationships between the neural representations of the presented birds in one or 

more ROIs, in such a way  that the representations of  specific bird pairs move closer or further 

away from each other. Another possibility is that expertise simply enhances the neural 

representations (like we have shown in the frontal lobe) but leaves the structure of the 

representational space untouched. We compared the average correlation between groups to 

a reference value which lies in between the within-group correlations of the relevant ROI. 

This reference was calculated as the square root of the product of the two within-group 

correlations (e.g. Op de Beeck, Deutsch, Vanduffel, Kanwisher, & DiCarlo, 2008). If the 

structure of the representational spaces of the two subject groups would be different, we 

would expect the between-group correlation to be lower than the reference value (see also 

chapter 3). However, the between-group correlations did not differ from the expected 

reference value in any of the ROIs (see Fig. 4.4; LVC: t(19) = 0.18, p = 0.86; HVC: t(19) = 0.96, 

p = 0.35; FL: t(19) = 1.33, p = 0.20). This indicates that the structure of the neural 

representational space of the 24 birds was not influenced by expertise: the mutual 
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relationships between the birds were similar for novices and experts. The absence of any 

group differences in this overall correlation does not give a reason to do further exploratory 

analyses at the level of bird order and bird family. For completeness we performed such 

analyses, but did not find any group differences. 

In addition, we analyzed the similarity between birds at the level of the triplets. First of all, 

we checked whether the neural response patterns of the birds within each triplet were 

reliably distinct from each other. Per triplet, we compared the average within-condition 

dissimilarity (average dissimilarity when comparing each of the 3 birds with itself) to the 

average between-condition dissimilarity (which was the average dissimilarity between the 

neural representations of birds A and B, birds B and C, and birds A and C). The results were 

averaged across the 8 triplets (Table 4.2). In all three ROIs and for both subject groups, the 

within- and between-condition dissimilarities were significantly different, indicating that the 

multi-voxel patterns conveyed information about the different birds even within the triplets 

(pairwise t tests: LVC: Orn.: t(19) = 17.28, p < 0.0001; Con.: t(19) = 12.79, p < 0.0001; HVC: 

Orn.: t(19) = 5.46, p < 0.0001; Con.: t(19) = 6.61, p < 0.0001; FL: Orn.: t(19) = 3.58, p = 0.002; 

Con.: t(19) = 3.60, p = 0.002).  

 

 LVC HVC FL 
 within-con between-con within-con between-con within-con between-con 
Ornithologists 0.60 ± 0.10 0.97 ± 0.04 0.85 ± 0.08 0.94 ± 0.03 0.89 ± 0,06 0.94 ± 0.04 

Controls 0.61 ± 0.13 0.95 ± 0.04 0.88 ± 0.06 0.97± 0.03 0.93 ± 0,05 0.97 ± 0.03 
 

Table 4.2. Within- and between-condition dissimilarities within the triplets. Average within-condition 
dissimilarities (diagonal values for each triplet: A-A, B-B and C-C ) and between-condition dissimilarities 
(off diagonal values for each triplet: A-B, B-C and A-C)  averaged across the 8 triplets, for ornithologists 
and control participants in low-level visual cortex (LVC), high-level visual cortex (LVC) and the frontal 
lobe (FL). Table shows averages across subjects ± sd. For both subject groups and in all three ROIs, the 
within-condition dissimilarities were significantly smaller than the between-condition dissimilarities. 
Note that the within-condition dissimilarities are of course the same as the within-condition 
dissimilarities shown in Table 4.1. 

 

The fact that the multi-voxel patterns of the birds within the triplets were distinguishable 

from each other, allowed us to further investigate the relation between the neural 

representations of birds A and B (same species, visually different) on the one hand and of 
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birds B and C (different species, visually similar) on the other hand in both ornithologists and 

control participants (Figure 4.7). We performed a three-way repeated measures ANOVA on 

the average distance between birds A and B and birds B and C with ROI (3 levels: LVC, HVC 

and FL) and bird pair (2 levels: pair A-B and pair B-C) as within-subjects factors and subject 

group (2 levels: ornithologists and controls) as between-subjects factor.  

 

 

 

 

 

 

 

 

 

Figure 4.7. Dissimilarities between bird pairs. Graph depicting the average pairwise dissimilarities 
between the neural response patterns underlying birds A and B (dark grey) and birds B and C (light 
grey) for ornithologists and control participants in low-level visual cortex (LVC), high-level visual cortex 
(HVC) and the frontal lobe (FL). Birds A and B belong to the same bird species but are visually different, 
and birds B and C are visually similar but belong to different bird species. 

 

Results showed a main effect of ROI (F(2,76) = 12.97, p < 0.0001); in general (across bird pairs 

and across subject groups) the neural representations in LVC were more similar compared to 

HVC and FL (average distances: LVC: 0.922, HVC: 0.957, FL: 0.950). We also found an 

interaction effect of ROI and subject group (F(2,76) = 6.86, p = 0.002): in the low-level visual 

ROI, the distances (across bird pairs) were larger in ornithologists than they were in control 

participants, while in the higher-level regions (HVC and FL), the opposite was true (Orn.: LVC: 

0.927, HVC: 0.938, FL: 0.932; Con.: LVC: 0.917, HVC: 0.976, FL: 0.969). Most importantly, the 

analysis showed an interaction effect of ROI and bird pair (F(2,76) = 3.42, p = 0.038). In the 

low-level visual ROI, the neural representations of birds B and C were more similar compared 

Same species (A-B) 

Visually similar (B-C) 
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to birds A and B, while in the high-level visual region and in the frontal lobe, the multi-voxel 

patterns of the birds A and B were more closely related (A-B: LVC: 0.931, HVC: 0.950, FL: 

0.943; B-C.: LVC: 0.912, HVC: 0.963, FL: 0.958). This was true across the two subject groups. 

These results show that the manipulation of the visual appearance and the species of the 

birds was also reflected in their neural representations: visually similar birds were 

represented in a similar manner in low-level visual regions, while the “semantically” similar 

birds were represented more similarly in the higher-level regions. We were mostly interested 

in the interaction between subject group and bird pair: are the visually similar birds and the 

semantically similar birds represented differently in the brains of experts compared novices? 

Unlike the behavioral effect of expertise that was present in the species MOA task, we did not 

find differences between the neural representations of the two subject groups.   

 

4.3.3 Correlations between neural and behavioral representational spaces 

We applied RSA to investigate whether the neural representational spaces of both experts 

and novices were related to their respective behavioral dissimilarity matrices of the same 24 

birds. These behavioral RDMs were created by having the participants perform two MOA 

tasks: one in which they judged the birds’ similarity based on their taxonomy or bird species 

(species task) and one in which they judged the birds’ visual similarity (see chapter 3). We 

calculated the correlation (Pearson’s r) between the group neural dissimilarity matrices of 

both groups in each of the three ROIs on the one hand and the behavioral dissimilarity 

matrices of both tasks on the other hand. To account for the variance explained by both tasks, 

we calculated partial correlations. We tested whether the resulting group correlations 

significantly differed from zero by also calculating the partial correlations for each subject 

separately and performing one-sample t-tests for each subject group, ROI and task. As shown 

in Table 4.3, the neural representational space of ornithologists in the low-level visual ROI 

was showing non-significant correlations with behavioral similarity in the two tasks (species: 

t(19) = 1.22, p = 0.237; visual: t(19) = 1.98, p = 0.062). The control participants’ neural RDM in 

LVC was significantly related to the behavioral RDM resulting from the species task (t(19) = 

4.47, p = 0.0003), but there was no relation to the visual task (t(19) = 1.97, p = 0.064). This 

result was in accordance with the observation that there was no clear structure (no 

information about the bird orders) to the neural dissimilarity matrices of both subject groups 
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in LVC. For the higher-level regions we found more consistent positive correlations between 

neural and behavioral similarity spaces. In HVC, the behavioral dissimilarity matrices of both 

tasks were significantly correlated with the neural dissimilarity matrix of experts and novices, 

respectively (Orn.: species: t(19) = 4.24, p = 0.0004; visual: t(19) = 4.17, p = 0.001; Con.: 

species: t(19) = 2.82, p = 0.011; visual: t(19) = 3.64, p = 0.002). The same was true for the 

frontal lobe (Orn.: species: t(19) = 3.91, p = 0.001; visual: t(19) = 4.86, p = 0.0001; Con.: 

species: t(19) = 2.34, p = 0.03; visual: t(19) = 2.50, p = 0.022). These results were likely due to 

the presence of bird order information that could be found in the neural representational 

spaces in the higher-level regions for both subject groups. We did not find an effect of 

expertise on the relation between the neural and the behavioral representational spaces. 

 

 

Table 4.3. Partial correlations between neural and behavioral RDMs. For both ornithologists and 
control participants, partial correlations (Pearson’s r) are shown between the group neural RDMs in 
low-level visual cortex (LVC), high-level visual cortex (HVC) and the frontal lobe (FL) on the one hand 
and the behavioral RDMs of the species task and the visual task on the other hand. To test whether the 
group correlations significantly differed from zero, partial correlations were also calculated for each 
subject separately (table shows averages across subjects ± sd). Significant partial correlations are 
indicated in bold. 

 

 

4.4 DISCUSSION 

 

In the present study, we investigated the influence of visual expertise in ornithology on the 

neural representations of individual objects of expertise. The results indicated a quantitative 

enhancement of the representations of objects of expertise in experts compared to novices. 

The neural representations in the higher-level regions were more consistent among experts. 

Furthermore, in the frontal lobe, the experts’ neural response patterns for the individual 

  LVC HVC FL 
  Species Visual Species Visual Species Visual 
Ornithologists group -0.03 0.08 0.12 0.11 0.17 0.18 
 per subject 0.03 ± 0.11 0.04 ± 0.08 0.09 ± 0.10 0.07 ± 0.07 0.11 ± 0.13 0.10 ± 0.10 

Controls group 0.10 -0.01 0.14 0.03 0.18 0.14 
 per subject 0.06 ± 0.06 0.03 ± 0.07 0.05 ± 0.08 0.05 ± 0.07 0.05 ± 0.10 0.05 ± 0.09 
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objects of expertise were more distinctive. Nevertheless, the structure of the neural 

representational space was similar in the two groups.  

 

4.4.1 Neural representations of individual objects of expertise 

This is the first study to investigate neural expertise effects at the more detailed, subordinate 

level. So far, research on the neural basis of expertise has mostly focused on the neural 

activity underlying the expert object category instead of the individual objects of expertise 

(e.g. Bilalić et al., 2014, 2011; Floyd et al., 2017; Gauthier et al., 2000; Gauthier & Tarr, 2002; 

Harel et al., 2010; Harley et al., 2009; Martens et al., 2018; Mongelli et al., 2017). The reason 

for this is that the neural representations of visually similar exemplars within a specific 

category are very hard to differentiate. While selective neural responses to moving dot arrays 

(Larocque, Riggall, Emrich, & Postle, 2017) and to visually similar man-made objects have 

already been detected using multi-voxel analyses (Eger et al., 2008), the current study is the 

first to demonstrate that it is possible to distinguish individual objects belonging to the same 

animate category. Given this background, our findings are a very important step towards a 

fuller understanding of how expertise changes the representation of objects of expertise. 

An important finding in this study is that the multi-voxel patterns that represent the objects 

of expertise in the frontal lobe are more distinctive in experts compared to novices, meaning 

that the individual birds are better distinguished from each other in the brains of experts. This 

result is in line with the idea of subordinate-level categorization, a behavioral hallmark of 

visual expertise which states that experts are very proficient at discriminating between 

visually similar objects within the same expert object category (Tanaka & Taylor, 1991). Our 

results show that experts do not only make more fine-grained distinctions between objects 

of expertise at the behavioral level (chapter 3), this feature can also be replicated with the 

neural data in the frontal lobe, pointing towards the influence of top-down factors in making 

these detailed distinctions (Harel et al., 2010; Martens et al., 2018).  

Furthermore, the representational similarity spaces in the higher-level regions were more 

consistent among experts compared to novices. In other words: the relations between the 

neural response patterns representing the different birds (whether some birds are 

represented by very similar multi-voxel patterns while others are very different) are much 
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more regular among the ornithologists. This result is in line with the behavioral results 

presented in chapter three, which showed that the experts created arrangements of the 24 

birds that were more consisted compared to the arrangements made by novices, in both the 

species and the visual task. This might suggest that bird experts gain their knowledge or 

experience in a very similar manner. Again, the fact that this difference in consistency 

between experts and novices only occurred in the higher-level regions and not in the low-

level visual area indicates that conceptual knowledge plays a role and that the 

representational spaces in these regions are not purely based on visual features (see also 

below). 

We found no qualitative or structural differences between the neural representational spaces 

of experts and novices. This result seemingly indicates that expertise does not influence the 

structure of the neural representational space of the objects of expertise. However, two 

alternative factors might underlie this absence of an effect at the neural level. First of all, 

while in the scanner, participants were not specifically instructed to judge the birds’ similarity 

based on their species, an expertise-related task, instead they were free to perform the task 

in a way that they deemed to be most fitting. The behavioral results that were presented in 

chapter three showed that when bird experts and novices are explicitly asked to judge the 

similarity between birds based on their bird species, a more subordinate-level structure 

emerges in the mental representational space of experts compared to those of novices. 

However, there were no structural differences between the mental RDMs of the two subject 

groups when they were asked to arrange the birds based solely on their visual similarity, a 

non-related task. It is possible that any potential structural changes in the neural 

representational space due to expertise could have been amplified by instructing the subjects 

to perform an expertise-related species task while in the scanner. Secondly, the method of 

MVPA might simply not be sensitive enough to pick up subtle changes in the mutual relations 

between the neural representations of the objects of expertise. Even though we were able to 

distinguish the neural representations of the individual objects of expertise (even within the 

triplets of birds, which are especially selected for their visual and or semantic similarity), it is 

even more challenging to measure differences in those representations between subject 

groups. It could be the case that expertise-related structural changes to the neural 
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representational space are present but that we simply cannot detect them using the multi-

variate methods and data quality that we currently have.  

 

4.4.2 More structured representational spaces in higher-level regions 

The neural data indicates that for both experts and novices, semantic information about the 

birds strengthens going from lower to more high-level cortical regions. We visualized the 

neural representational spaces of the birds using multi-dimensional scaling, for both subject 

groups and in the three ROIs: low-level visual cortex, high-level visual cortex and the frontal 

lobe. In LVC, no clear structure seems to be present in the neural representational space of 

either subject group. Given the established role of LVC in the representation of low-level 

physical dimensions such as contrast, color, and local spatial frequency content, this finding 

indicates that the representational structure in the other regions cannot easily be explained 

by such dimensions. However, in HVC and in FL, the overall structure of the representational 

spaces seems to be following the lines of the bird orders, indicating an emergence of more 

high-level information at the larger scale. This visual observation is further supported by the 

fact that also at the more fine-grained level of the bird triplets, semantic information becomes 

more important in the higher-level ROIs. In LVC, the neural response patterns to the visually 

similar birds (B-C) were more similar, while in HVC and FL the representations of the 

semantically similar birds (A-B) were more alike. Again, this was true for both subject groups, 

we found no effect of expertise in this regard.  

 

4.4.3 Relation between mental and neural representations 

Finally, we also investigated the relation between the neural representational spaces and the 

mental (behavioral) spaces of the same individual objects of expertise, that were presented 

in chapter three. For both subject groups we found significant partial correlations between 

the similarity judgments of the visual and the species task on the one hand, and the neural 

representational spaces in the two higher-level regions on the other. Previous studies have 

already demonstrated the relation between participants’ scores on tasks measuring their 

level of expertise and their neural responses to the expert object category (e.g. Gauthier et 

al., 2000; Gauthier & Tarr, 2002; Harley et al., 2009; Martens et al., 2018). However, none of 
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these studies investigated the mental representational space of the individual objects of 

expertise in such detail, nor did they try to relate behavioral similarity judgments to the neural 

similarities between the response patterns of the individual objects.  

In this case, we found not only a correlation between the mental (species and visual task) and 

neural (LVC and FL) representational space for the experts, but also for the novice group. One 

possible hypothesis was that the neural representational space of experts would be more 

related to their behavioral similarity judgments in the expertise-related species task, 

compared to when they performed the (unrelated) visual task. For novices the opposite could 

be expected, since they are guided more by the visual aspects of the birds than by species 

information, as was indicated by the behavioral results from chapter three. However, the 

demonstrated correlations reflect the presence of the large-scale bird order information that 

is present in the neural representational spaces of HVC and FL, of experts and novices. The 

absence of a difference between the two subject groups, particularly in terms of which ROIs 

were correlated with the mental representational spaces, suggests that the brain areas 

responsible for the representation of birds in bird experts already had the same overall 

representational content among novices. The representations become more distinctive and 

more consistent in experts, but show no qualitative change in what they represent. These 

effects might again be contingent upon the non-expertise-related task that participants were 

performing in the scanner.  

Further studies could tackle this issue by having the subjects perform two different tasks while 

in the scanner: one expertise-related task and one unrelated task with the same objects of 

expertise (e.g. Harel, Gilaie-Dotan, Malach, & Bentin, 2010). In this case, the neural 

representational space resulting from the expertise-related task might be more related to the 

behavioral similarity judgments from the expertise-related task and vice versa. This approach 

would be time consuming, since enough neural data needs to be collected for each individual 

object of expertise in each of the two tasks.  
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The study of expertise helps us to understand how our neural functioning is altered by 

experience and learning. Experts in visual object recognition provide an excellent foundation 

to examine the way in which learning modifies our visual perception, both at the behavioral 

and the neural level.  

Previous research has shown that visual expertise changes the representation of objects in 

the brain. These neural changes have been found in many different brain regions inside and 

outside of the visual cortex, with varying results across different studies. A first aim of this 

thesis (chapter 2) was to clarify the interaction between the specific domain of visual 

expertise under investigation and the underlying neural expertise effects. To this end, we 

compared the neural expertise-related changes for two different domains of expertise: 

ornithology and mineralogy.  

Visual experts are very skilled at the identification of and discrimination between individual 

objects belonging to the same, visually homogeneous, object category. In this thesis, both 

behavioral and neural effects of visual expertise were examined at this more detailed level of 

processing. In chapter three, the influence of expertise on the perceived similarity between 

individual objects of expertise was explored. We compared the mental representational 

spaces of objects of expertise, birds, for both bird experts and novices. The final objective of 

this thesis was to investigate the representational space of the objects of expertise at the 

neural level (chapter 4). We compared the neural responses elicited by the individual objects 

of expertise in both experts and novices. This was the first study in which neural effects of 

visual expertise were examined at such a fine scale. Moreover, we compared the neural 

representational spaces of both experts and novices to their mental representational spaces 

that were presented in chapter three. 

In the first part of this general discussion I will present the main findings and implications of 

the studies described above, as well as the strengths of the applied methodology and the 

limitations. Furthermore, a broader view of neural effects of expertise in general will be 

discussed. Finally, some suggestions for future research are offered. 
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5.1 MAIN FINDINGS AND IMPLICATIONS 

 

5.1.1 Expertise-related neural changes for different domains of expertise 

In the first study presented in this dissertation, we conducted a large-scale fMRI study to 

systematically compare the neural expertise effects related to two domains of visual 

expertise: ornithology and mineralogy. Both univariate and multivariate analyses were used 

to probe the neural responses to the respective expert object categories (birds and minerals) 

and to compare these responses to each other and to a third group of control participants. 

These neural changes were investigated at the whole-brain level, so as not to miss any 

potential expertise effects.  

Both univariate and multi-voxel pattern analyses demonstrated the presence of large-scale 

distributed effects of expertise for ornithology. These effects were spread out across low-

level and high-level visual areas, including all of the functionally defined ROIs, and extended 

into the frontal lobe. In comparison, the expertise effects underlying the domain of 

mineralogy were far more modest: multivariate effects were found in high-level visual areas, 

but univariate analyses did not indicate a general expertise-related increase of response 

anywhere in the brain. The bird and mineral expertise effects did not only differ in effect size, 

we also found that the peak voxel of activation for the two domains were in different locations 

in the high-level visual cortex. Moreover, a multivariate generalization analysis indicated that 

the effects for the two domains of expertise that were found in the high-level visual area were 

domain-specific. These results indicate that different domains of expertise induce different 

expertise-related neural changes. Therefore, it is not surprising that the large body of 

literature investigating the neural correlates of many different domains of visual expertise has 

generated such widely differing results (for reviews, see: Curby & Gauthier, 2010; Harel, 

Kravitz, & Baker, 2013; McKone & Kanwisher, 2005).  

Contrary to the domain-specific expertise effects in the high-level visual area, we found 

evidence for domain-general effects in the frontal lobe, meaning that the neural changes 

elicited by the two different domains of expertise in this ROI significantly overlapped. The fact 

that the expertise effects even extended into the frontal lobe, indicates that expertise causes 

changes in neural processing that are widespread and distributed inside and outside of visual 
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regions, rather than inducing dramatic local changes in neural responses. This contradicts the 

expertise hypothesis, which predicts that expertise-related neural changes are restricted to 

local populations of neurons, more specifically in the FFA (Gauthier et al., 2000, 1999; 

Gauthier & Tarr, 1997; Sigala & Logothetis, 2002). The results of this study are more in line 

with the interactive view on expertise; not only did we demonstrate the presence of 

widespread neural changes, both inside and outside the FFA, the effects in the frontal lobe 

also suggest the involvement of top-down factors. Furthermore, the fact that different 

domains cause different kinds of expertise effects signifies that expertise-related neural 

changes are at least in part domain-specific and are therefore not (solely) process-specific, as 

suggested by the expertise hypothesis. Note that this does not exclude the involvement of a 

specific type of expert processing, like for example holistic processing. We did not explicitly 

test the two expert groups for holistic processing of their expert object category. 

 

5.1.2 Mental representational space of objects of expertise 

In chapter three, we examined the influence of expertise on the mental representational 

space of objects of expertise by comparing the similarity spaces of these objects created by 

both experts and novices. Perceptual similarity between exemplars is an important notion in 

the field of categorization and perceptual learning and has been extensively studied. 

Nevertheless, this is the first study to examine perceptual similarity of objects belonging to a 

real-world domain of expertise. 

Both experts and novices provided similarity judgments of a select set of birds in two multiple 

object arrangement tasks: an expertise-related task in which participants were asked to 

arrange the birds based on their taxonomy and a non-related task in which the birds had to 

be arranged according to purely visual features. Based on these similarity judgments we 

created representational dissimilarity matrices for the two tasks and for both subject groups.  

First of all, we found a quantitative effect of expertise: the arrangements made by experts 

were more consistent compared to those made by novices, and this was true for both tasks.  

It is remarkable that even in the non-related visual task, for which no special knowledge of 

birds was necessary, experts judged the similarity between the different birds in a more 

consistent manner compared to novices. Research has shown that naming or labelling objects 
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can affect the perceptual similarity and categorization of these objects (e.g. Hendrickson, 

Kachergis, Gureckis, & Goldstone, 2010; Lupyan, 2009; Winawer et al., 2007). The label can 

be seen as a feature of the object which influences similarity judgments in a quantifiable 

manner (Sloutsky, Lo, & Fisher, 2001). Furthermore, it has been proposed that domain-

specific knowledge about relevant dimensions is necessary to discern similarity between 

objects (Sloutsky et al., 2001; Wellman & Gelman, 1992). In our experiment, we tested 

whether experts and novices were able to name the birds that were included in the MOA 

tasks. Experts were familiar with the large majority of the used stimuli, while novices were 

not able to label the birds. The fact that experts possessed knowledge of the labels of the 

stimuli could have influenced their similarity judgments, even in a purely perceptual task. This 

could explain the discrepancy in consistency of the arrangements between the two groups in 

the non-related task.  

Apart from the quantitative difference between the two subject groups, we also showed the 

presence of qualitative differences in the form of more fine-grained, subordinate-level 

distinctions in the experts’ mental representational space when performing an expertise-

related task. Contrary to novices, experts were  able to consistently distinguish between the 

birds at the intermediate level of the bird families and at the subordinate level of bird species. 

Subordinate-level processing is the (behavioral) signature of visual expertise (Tanaka & 

Taylor, 1991). Research has shown that training to discriminate stimuli belonging to different 

categories can induce a within-category perceptual effect: exemplars belonging to the same 

category but to differing sub-clusters within that category also become better distinguishable 

(Gureckis & Goldstone, 2008). Additionally, when learning to categorize objects, the stimulus 

dimensions that successfully predict categorization acquire distinctiveness, while other 

features that are less relevant are de-emphasized (Folstein, Palmeri, & Gauthier, 2014; 

Goldstone, 1994b, 1998; Livingston & Andrews, 1995; Nosofsky, 1986). In our study, experts 

appeared to attach less importance to a priori salient features such as color when performing 

the expertise-related task, and more importance to subtle features which discriminate 

between the birds based on their taxonomy and which were not evident to novices. It could 

be that these changes are entirely due to strategic choices. However, it could also be the case 

that they are not completely voluntary (Goldstone, 1998). The different use of dimensions by 

experts in the expertise-related task, resulting in structural changes in the mental 
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representational space, appeared to not be a purely voluntary choice but also reflected a 

change in perception. We found evidence for this in the results of the non-related, visual task: 

experts still took taxonomy of the birds into account (at the level of the bird species) when 

they were asked to arrange the birds based on purely visual features, even though that was 

not particularly helpful, suggesting that they did so unknowingly. 

 

5.1.3 Neural expertise effects at the subordinate level 

In the final study presented in this dissertation, we applied MVPA and representational 

similarity analyses to investigate the neural representational space of objects of expertise for 

the two subject groups in low-level visual cortex, high-level visual cortex and the frontal lobe. 

This was not only the first study to investigate neural responses at the subordinate level in a 

real-world domain of expertise, it was also the first study to demonstrate that MVPA can be 

used to distinguish between individual objects belonging to the same animate category.   

Similar to the mental representational spaces presented in chapter three, we found evidence 

for hierarchical representations of multiple levels (bird order and family) that differentiate 

birds and that differ between brain regions. The neural representations of objects of expertise 

were enhanced in a quantitative manner in experts compared to novices. The 

representational spaces in the higher-level regions showed a higher consistency in the expert 

group. This was in line with the behavioral results, which also showed a higher consistency 

between the similarity arrangements made by the experts. Furthermore, the experts’ neural 

response patterns for the individual objects of expertise in the frontal lobe were more 

distinctive compared to those of novices. Several studies have suggested that perceptual 

expertise enables more efficient mental representations of information and enhances the 

ability to store more detailed representations in working memory (Gobet et al., 2001; 

Humphreys, Hodsoll, & Campbell, 2005; Scolari, Vogel, & Awh, 2008). Furthermore, Moore 

and colleagues (2006) have linked improved working memory performance for objects of 

expertise to increased responses in lateral prefrontal cortex. Therefore, the more distinctive 

neural representations that were found in the frontal lobe of experts could represent the 

more efficient mental representations in working memory for objects of expertise.  
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The overall structure of the neural representational spaces in the three ROIs was not altered 

by expertise.  This was in line with results from the first study which showed that expertise 

did not influence the representational similarity between the expert object category and 

other non-expert categories. However, visual expertise consists of the ability to make detailed 

within-category discriminations instead of discriminating the expert object category from 

other, unrelated, categories. Furthermore, the mental representational spaces of the same 

birds created by the experts and novices did show a clear effect of expertise on the overall 

structure, particularly in the expertise-related task. In section 4.4.1 of this thesis, we discussed 

two factors that might explain the absence of structural changes in the neural 

representational spaces.  

 

 

5.2 METHODOLOGICAL STRENGTHS AND LIMITATIONS 

 

5.2.1 Methodological strengths 

Throughout this dissertation we applied a wide array of different methods to probe the 

behavioral and neural correlates of visual expertise. The combination of behavioral and 

neuroimaging techniques ensured a high external validity (Gegenfurtner, Kok, Van Geel, De 

Bruin, & Sorger, 2017) and allowed us to significantly extend our current knowledge. In the 

second and third study  (chapters 3 and 4) we implemented a very similar paradigm, one 

behavioral version and one neuroimaging version, and we used the exact same stimuli. This 

allowed us to make a direct comparison between the way in which visual expertise is 

expressed at the behavioral and the neural level. Several other studies have related the neural 

responses to the expert object category to behavioral measures of expertise, like we also did 

in the first study (e.g. Gauthier et al., 2000; Gauthier & Tarr, 2002; Harley et al., 2009; 

McGugin, Gatenby, Gore, & Gauthier, 2012; McGugin, Van Gulick, Tamber-Rosenau, Ross, & 

Gauthier, 2015). However, never before has such a linear comparison been made between 

the behavioral and neural representations of objects of expertise.   
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Particularly at the neural level, we introduced some methodological innovations into the field 

of visual expertise. So far, most studies that looked into the neural basis of visual expertise 

have used univariate techniques to measure the average neural response to a specific expert 

object category (e.g. Bilalić, Langner, Ulrich, & Grodd, 2011; Gauthier et al., 2000; Gauthier & 

Tarr, 2002; Haller & Radue, 2005; Harel, Gilaie-Dotan, Malach, & Bentin, 2010; Harley et al., 

2009; McGugin, Gatenby, Gore, & Gauthier, 2012; McGugin, Newton, Gore, & Gauthier, 2014; 

Xu, 2005). More recently, some studies have also applied multivariate methods to compare 

the neural response patterns of experts and novices (e.g. Bilalić, 2016; Bilalić, Grottenthaler, 

Nagele, & Lindig, 2014; Floyd, Santander, & Weimer, 2017). In the first study described in this 

dissertation, we used a combination of both univariate and multivariate analyses to probe the 

neural activation underlying bird and mineral expertise (other studies that also combined 

univariate and multivariate methods are: Bilalić, 2016; Bilalić et al., 2014). As already 

described in the introduction (section 1.3.3): multivariate analyses provide an answer to the 

limitations of univariate analyses, they can uncover effects that would otherwise remain 

undetected. This was also the case in our study: using univariate analyses, we were not able 

to indicate the presence of expertise-related neural changes underlying mineral expertise. 

However, multi-voxel pattern analyses, in the form of a subject classification and 

generalization paradigm, clearly showed an effect of mineral expertise on the neural response 

patterns underlying the expert object category in the high-level visual region and in the frontal 

lobe.  

Some of the analyses we used to investigate expertise-related neural activation were never 

before applied in the field of visual expertise. This was true for the subject classification 

analysis and the generalization analysis (which have been used in different fields: e.g. Bulthé 

et al., 2018; Peters, Bulthé, Daniëls, Op de Beeck, & De Smedt, 2018). A similar approach to 

the subject generalization analysis was implemented in the study by Bilalić and colleagues 

(2014). They tested generalization across two different categories (faces and X-rays) within a 

group of radiologists (and a group of medical students) to uncover any shared processes. This 

method differed from our approach in the sense that we generalized across categories and 

across subject groups. Our results showed that the subject generalization analysis is a very 

promising method to uncover similar neural (multivariate) mechanisms that are at work in 
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different subject groups and that might express themselves in a different way at the 

behavioral level.  

A final methodological strength lies in the number of participants that were included in the 

different studies. Our first study consisted of three subject groups of 20, 20 and 17 

participants respectively, creating a total of 57 participants. Also in the remaining two studies, 

two subject groups of 20 participants each were compared. The sample sizes of a lot of studies 

investigating the neural correlates of expertise were smaller (between 6 and 15 participants 

per subject group; e.g. Bilalić et al., 2011; Gauthier et al., 2000; Harel et al., 2010; Harley et 

al., 2009; Krawczyk, Boggan, McClelland, & Bartlett, 2011; Xu, 2005). Only in more recent 

years a trend towards larger sample sizes has become evident (between 12 and 24 

participants per group; e.g. Bilalić, 2016; Bilalić et al., 2014; Mongelli et al., 2017). Increasing 

the sample size improves the power of the study (Button et al., 2013; Zandbelt et al., 2008). 

Even so, it remains important to carefully select participants and to ensure that the collected 

data is of high quality (e.g. discard runs with too much motion), as well as applying the correct 

corrections (Lieberman & Cunningham, 2009). 

 

5.2.2 Limitations 

In the discussion sections of the experimental chapters (2, 3 and 4), we already described 

limitations that are specific to the presented study. In this section, limitations that are 

relevant for multiple chapters are discussed. 

Throughout this dissertation we described several results pointing towards top-down 

influences of expertise, both at the behavioral and at the neural level. In chapters 2 and 4 we 

demonstrated the presence of neural expertise effects in the frontal lobe, suggesting the 

involvement of attentional control and conceptual knowledge (Corbetta & Shulman, 2002; 

Harel, 2015, 2016; Harel et al., 2010). However, these results can only provide indirect 

evidence, since we did not explicitly test the influence of top-down factors on the neural 

responses underlying objects of expertise. A few studies have applied task manipulations to 

investigate whether top-down controlled mechanisms modulate the neural expression of 

expertise; they compared tasks in which objects of expertise were either task-relevant or -

irrelevant (Harel et al., 2010), tasks with a high or low cognitive load (McGugin et al., 2014) or 
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tasks with or without added clutter (McGugin et al., 2015). Overall, these studies showed that 

neural expertise effects were still present when attention was diverted away from the objects 

of expertise, albeit to a (far) lesser extent compared to when objects of expertise were 

directly attended. In the studies presented in this dissertation, we were not able to implement 

task manipulations due to practical constraints. However, it would have added a very 

interesting aspect, especially in the study described in the fourth chapter. Our results 

indicated that the structure of the neural representational space of objects of expertise was 

no different in experts compared to novices. However, the participants were not explicitly 

asked to perform an expertise-related task. One possibility would have been to ask both 

experts and novices to perform two separate tasks: one expertise-related task in which 

attention would be maximally engaged by the actual objects of expertise (e.g. judge the 

similarity between two subsequent birds based on their taxonomy). The second task would 

have served to divert attention away from the actual objects of expertise (e.g. judge the 

similarity of size between two subsequently presented stimuli).  

This brings us to the second limitation: the apparent null results that were found (or not 

found) in the two neuroimaging studies. One of these null results was just mentioned; the 

absence of expertise-related structural changes in the neural representational space of 

experts. However, absence of evidence does not necessarily mean evidence of absence. In 

the case of the lack of structural changes in the neural representational space, different 

possible explanations have already been addressed. A second analysis which apparently 

demonstrated a null result were the whole-brain and ROI-based univariate analyses of 

mineral expertise effects described in chapter two. These analyses seemed to demonstrate 

that there were no expertise-related neural changes for mineral expertise present in the low-

level visual region, the high-level visual region or the frontal lobe. Again, this absence of 

evidence did not mean evidence of absence, as was demonstrated by the significant 

multivariate changes related to mineral expertise in (some of) these brain regions. These 

apparent null results might be a consequence of a lack of power. Even though we tried to 

include a large number of participants in the different studies, research has shown that the 

statistical power of studies in the neurosciences is very low, partly because the effect size of 

relatively complex cognitive processes is rather small (Button et al., 2013; Ioannidis, 2005). 
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This emphasizes the importance of replication studies and systematic reviews. Up until now, 

no large-scale meta-analyses have been performed in the field of visual expertise.  

 

 

5.3 THE BIGGER PICTURE 

 

In this dissertation, we focused on the neural changes underlying visual expertise. In chapter 

two, we demonstrated the presence of domain-specific neural changes in high-level visual 

cortex as well as domain-general neural changes in the frontal lobe, for two domains of visual 

expertise. However, as was already described in the introduction, many other types of 

(perceptual) expertise exist outside of the visual domain and they all leave their specific 

neural marks (Bilalić, 2017; Bilalić, Langner, Campitelli, Turella, & Grodd, 2015). In this section, 

I will demonstrate by means of some examples that the finding that visual expertise is 

supported by a combination of domain-specific and domain-general changes in neural 

processing, can be extended to other domains of expertise.  

Different fields of expertise can be found in all the sensory modalities (vision, hearing, smell, 

taste and touch). In most of these widely varying domains neural expertise effects can be 

found in those brain regions that are relevant for the specific domain (domain-specific effects) 

as well as in brain-regions that support more general high-level cognitive functions like 

attentional control and retrieval of conceptual knowledge. These domain-general effects are 

generally situated in prefrontal cortex.  

Auditory expertise is, besides visual expertise, one of the more extensively researched 

domains. Researchers investigating auditory expertise have mainly focused on musicians, 

both at the behavioral and at the neural level (e.g. overviews: Peretz & Zatorre, 2003, 2005; 

Sloboda, 1991). Research has shown that musicians with absolute or relative pitch (the ability 

to identify a tone) engage the superior temporal sulcus (STS) and the inferior frontal gyrus, 

which are part of the dorsal and ventral auditory streams respectively, when performing an 

expertise-related task (Zatorre, Perry, Beckett, Westbury, & Evans, 1998). Neural responses 

when listening to piano tones are larger in the auditory cortex of musicians compared to 

nonmusicians, and this domain-specific effect appears to be more pronounced for tones from 
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each musician’s own type of instrument (Pantev, Engelien, Candia, & Elbert, 2003; 

Tervaniemi, 2003). Neural effects of musical expertise that reflect more domain-general 

processes were found in DLPFC (Zatorre et al., 1998). This region has, among other things, 

been associated with attributing a verbal label, in this case to a musical note (Bermudez & 

Zatorre, 2005; see also section 5.1.2). Furthermore, level of musical improvisation training 

was associated with functional connectivity of DLPFC, premotor cortices and 

presupplementary areas. This last finding demonstrates that musical expertise is not purely 

restricted to the auditory domain, it can also induce expertise-related changes in motor 

performance and in visual regions (reading of musical notation; e.g. Mongelli et al., 2017; 

Wong & Gauthier, 2010).  

A second domain in which neural expertise-related changes are found is olfactory expertise 

(for an overview of behavioral and neural effects, see Royet, Plailly, Saive, Veyrac, & Delon-

Martin, 2013). Plailly, Delon-Martin and Royet (2012) compared expert perfumers to novices 

while they were imagining odors. They found that expertise was negatively correlated with 

activation in the piriform cortex (primary olfactory cortex) as well as in brain regions involved 

in memory and the formation of complex sensory associations (OFC and hippocampus).  

Gustatory expertise is closely related to olfactory expertise and very few studies have focused 

on the neural correlates of expertise in taste. Castriato-Scanderbeg and colleagues (2005) 

demonstrated that brain regions involved in taste, like the insula and orbitofrontal cortex 

(OFC) were activated in both sommeliers and in novices when tasting wine. However, effects 

of expertise were mainly expressed through a higher activation of DLPFC.  The only other 

study to ever compare the neural activations of experts in wine tasting (or any other domain 

of gustatory expertise) to those of novices found expertise-related activations in a whole set 

of brain regions, including the insula (Pazart, Comte, Magnin, Millot, & Moulin, 2014). 

Furthermore, they showed an overall reduction of activated brain regions in experts 

compared to novices. 

Finally, tactile expertise in itself is difficult to investigate, since touch perception is usually 

accompanied by or even dominated by visual perception. Therefore, expertise in touch 

perception is usually studied in the blind. However, the perception of tactile stimuli by blind 

people does not primarily activate the somatosensory cortex like in sighted people, it also 

elicits activation in the low-level and high-level visual cortex (e.g. Sadato et al., 1996; Sadato, 
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Okada, Kubota, & Yonekura, 2004), and the same is true for auditory stimuli (van den Hurk, 

Van Baelen, & Op de Beeck, 2017). Reading Braille, which requires fine-grained 

discriminations between tactile dot patterns, is a specific domain of tactile expertise in which 

blind people are very proficient. Therefore, the differences in neural activation in the visual 

cortex between blind participants and blindfolded sighted participants that discriminate 

tactile dot patterns represent domain-specific effects of tactile expertise. For example: 

increased activation has been found in lateral occipital cortex and fusiform cortex (Cattaneo 

et al., 2014). Furthermore, domain-general neural effects have also been found in DLPFC, 

which showed a more extensive activation in the blind compared to sighted people (Cattaneo 

et al., 2014). A recent study in which sighted participants underwent a short-term tactile 

training of Braille reading and were scanned before and after training, indicated that the 

strongest domain-specific effects of expertise were to be find in primary somatosensory 

cortex, contrary to the results shown in the blind (Debowska et al., 2016). Outside of the 

somatosensory system, they also demonstrated changes in the fusiform gyrus, the medial 

frontal gyri and inferior parietal lobule.   

This short overview illustrates that also for very different fields of expertise, domain-specific 

and domain-general expertise effects can be found in the brain. The presence of domain-

general effects were indicated by the expertise-related neural changes that can be found in 

prefrontal cortex. However, note that none of the above-mentioned studies explicitly tested 

whether the expertise effects in prefrontal cortex represented similar or overlapping 

processes between different types of expertise, like we demonstrated for ornithology and 

mineralogy in chapter two.   

 

 

5.4 SUGGESTIONS FOR FUTURE RESEARCH 

 

In this dissertation we used a variety of different paradigms and state-of-the-art analyses to 

improve our understanding of the neural basis of visual expertise. However, some questions 

remain unexplored and form the basis of potentially fruitful further research. 
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5.4.1 Additional examination of subordinate-level neural effects 

In chapter four we provided significant new insights into the influence of expertise on the 

neural representational space of objects of expertise in low-level visual cortex, high-level 

visual cortex and the frontal lobe using methods that are novel to the field. Inevitably, our 

findings also raised new questions. It would be interesting to extend the current findings in 

two different ways. The first way to extend the study was already described in the limitations 

section (5.2.2): the implementation of a task manipulation to directly investigate the influence 

of top-down factors on the neural representational space of objects of expertise. To increase 

the chances of finding top-down expertise-related changes, it is important to maximize the 

difference in attentional engagement and relevance of conceptual knowledge between the 

expertise-related task and a non-related task, for example by using a non-related task that 

does not revolve around the actual objects of expertise (e.g. Harel et al., 2010). 

Secondly, it would be interesting to investigate potential quantitative or qualitative neural 

changes in the representations of individual objects of expertise in different category-

selective ROIs. In chapter two, we already demonstrated that FFA, LO, pFs, PPA, a Living and 

a Nonliving region all show neural expertise effects for the expert object category of birds and 

are therefore relevant to investigate. Even though all these regions were influenced by 

expertise, it could be the case that expertise effects at the more fine-grained, subordinate 

level are more pronounced in those regions that are the most informative for the domain of 

expertise. This would be in line with the finding that the heightened activation for the bird 

category in bird experts compared to novices was positively correlated with the general 

selectivity for birds across the different ROIs (see Fig. 2.7C). Note that discriminating between 

neural representations of different objects that are visually homogeneous using multi-voxel 

analyses is a difficult task that has only been accomplished in very few studies. As we already 

demonstrated in chapter two (section 2.5.2), applying MVPA in smaller ROIs with a limited 

number of voxels generates less reliable results compared to larger ROIs, meaning that this 

analysis might encounter the limits of MVPA. 

A different way to identify smaller brain regions where quantitative or structural changes in 

the neural representational space of objects of expertise can be found, is by using a 

searchlight analysis (Kriegeskorte, Goebel, & Bandettini, 2006). Bilalić and colleagues (2014) 

used the searchlight technique to identify brain regions related to radiological expertise. They 
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found a large number of brain areas that showed expertise effects, in occipitotemporal 

regions (e.g. fusiform gyrus, middle temporal gyrus, middle occipital gyrus), frontal regions 

(e.g. inferior frontal gyrus) and others. In their study, the neural activation underlying the 

expert object category (X-rays) was investigated, while in the case of our study, we would 

apply a searchlight analysis to examine the neural representations of the individual objects of 

expertise. The searchlight analysis could also be used to differentiate between brain regions 

in experts where the correlation between the neural representational space and the mental 

representational space of the expertise-related task is higher compared to the non-related 

task and vice versa.   

 

5.4.2 Expertise-related functional connectivity 

In this dissertation, we only focused on expertise-related neural changes in separate brain 

regions, without taking into account that the interplay between different brain regions might 

be influenced by expertise as well. With functional connectivity analyses it is possible to 

investigate the way in which neural responses in different brain regions are related to each 

other, by calculating the correlation between the timeseries of the neural responses in the 

different regions. Functional connectivity analyses can be performed on resting-state fMRI 

data (e.g. Fauvel et al., 2014; Lotze, Erhard, Neumann, Eickhoff, & Langner, 2014), as well as 

on task-related activation.  

Mongelli and colleagues (2017) compared the task-related functional connectivity of expert 

musicians and control participants looking at stimuli with musical notation. They 

demonstrated that a set of fronto-temporo-parietal regions was functionally connected to a 

region in visual cortex selective for musical notation, and that this network was stronger and 

more extensive in musicians compared to control participants. They concluded that musical 

expertise ensured the development of functional connectivity between a visual “music 

region” and areas involved in auditory, semantic or motor knowledge. Furthermore, expertise 

in musical improvisation was also found to be positively associated with functional 

connectivity of DLPFC, dorsal premotor cortices and presupplementary areas (Pinho, de 

Manzano, Fransson, Eriksson, & Ullen, 2014). Similar results, meaning an increase in 

functional connectivity in experts compared to novices among task- and domain-related brain 
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regions and frontal regions, were also found for professional race-car drivers (Bernardi et al., 

2013, 2014).  

The influence of a domain of visual expertise on the functional connectivity between domain-

related brain regions has not been studied often, even though functional connectivity seems 

to be prominent in other domains of expertise. Therefore, it would be interesting to 

investigate whether visual expertise increases the task-related functional connectivity 

between brain regions that are relevant for the specific domain of expertise. It is important 

to identify a set of brain regions that might be relevant for the domain of expertise in visual 

cortex, e.g. LOC, FFA and early visual regions, as well as frontal regions like DLPFC, which has 

popped up in many different studies of (visual) expertise. Furthermore, an additional task 

manipulation (expertise-related vs. non-related task) might offer additional insights into the 

mechanisms of functional connectivity in visual expertise: it could be the case that increases 

in connectivity are more prominent and more extensive for task-related neural activation 

induced by an expertise-related task compared to a non-related task. Finally, it is important 

to note that since functional connectivity is essentially a correlation between the neural 

activation in different brain regions, no conclusions can be made about the direction or the 

causality of the connectivity between two brain regions.  

 

5.4.3 Conclusion 

These suggestions for future research offer additional ways to increase our insights into the 

neural correlates of visual expertise, and to further our understanding of learning effects on 

the sensory cortices in general. Although research on expertise-related neural changes 

underlying the category of (visual) expertise has been well developed, we have only scratched 

the surface when it comes to subordinate-level neural changes of expertise. Furthermore, 

only by combining different behavioral and neural methods like behavioral discrimination, 

similarity judgments, univariate whole-brain and ROI analyses of neural data, correlational 

and decoding multivariate analyses, functional connectivity, searchlight analyses, structural 

analyses and so on, can we advance our comprehension of the neural basis of expertise and 

ultimately of the functionality of the brain in general. 
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