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ABSTRACT 

Despite recent advances, insulin therapy remains a treatment, not a cure, for 

diabetes mellitus with persistent risk of glycemic alterations and life-threatening 

complications. Restoration of the endogenous beta cell mass through regeneration 

or transplantation offers an attractive alternative. Unfortunately, signals that drive 

beta cell regeneration remain enigmatic and beta cell replacement therapy still faces 

major hurdles that prevent its widespread application. Co-transplantation of 

accessory non-islet cells with islet cells has been shown to improve the outcome of 

experimental islet transplantation. This review will highlight current travails in beta 

cell therapy and focuses on the potential benefits of accessory cells for islet 

transplantation in diabetes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABBREVIATIONS 

ASCs: adipose-derived stem cells 
BOECs: blood outgrowth endothelial cells 
CCL: chemokine (C-C motif) ligand 
CGM: continuous glucose monitoring  
DCs: dendritic cells                                                                        
EC: endothelial cell  
E(P)Cs: endothelial (progenitor) cells 
FasL: Fas ligand 
FGF: fibroblast growth factor 
GAD: glutamic acid decarboxylase 
GM-CSF: granulocyte-macrophage colony stimulating factor 
HepSCs: Hepatic stellate cells 
HGF: hepatocyte growth factor 
IBMIR: instant blood-mediated inflammatory reaction 
IL: interleukin 
iNOS: inducible nitric oxide synthase 
KDR: kinase insert domain receptor 
MDSCs: myeloid-derived suppressor cells 
MHC: major histocompatibility complex 
MMP: matrix metalloproteinase 
MSCs: mesenchymal stem cells 
NCSCs: neural crest stem cells 
NOD: non-obese diabetic 
RA: retinoic acid 
T1D: type 1 diabetes 
T2D: type 2 diabetes 
TGF: transforming growth factor 
tol-DCs: tolerogenic dendritic cells 
(i/n)Tregs: (inducible/natural) regulatory T cells 
Tsp: thrombospondin  
VEGF: vascular endothelial growth factor 
 
 
 
 
	  



I. INTRODUCTION 

Although crucial for diabetes management, multiple daily insulin injections and 

systematic blood glucose monitoring impose a major burden on the quality of life of 

patients with diabetes mellitus. Despite therapeutic advances such as the use of 

insulin analogues, continuous glucose monitoring (CGM) systems and, more recently, 

closed loop devices or “artificial pancreases”, insulin therapy often fails to 

adequately prevent secondary complications while carrying an inherent risk of life-

threatening hypoglycemia. Strategies aimed at restoring the beta cell mass via 

transplantation or at protection of residual and/or formation of new beta cells 

(regeneration) should thus be further investigated.  

Since several decades, beta cell replacement therapy has been applied to brittle type 

1 diabetes (T1D) patients, resulting in an improvement of glycemic control and of 

micro- and macrovascular complications (1, 2). Advances in islet isolation procedures 

and in immune suppressive regimens have substantially improved the outcome of 

clinical islet transplantation to approximate that of whole organ pancreas 

transplantation (reviewed in (3)). Despite these advances, major hurdles still need to 

be overcome for islet transplantation to become a universal treatment for T1D and, 

possibly, T2D. Several pre- and post-transplantation approaches such as alternative 

islet cell sources and transplantation sites as well as novel immunosuppressives and 

graft encapsulation, have already been preclinically and clinically explored to 

improve the outcome of islet transplantation (summarized in Figure 1 and 

comprehensively reviewed in (4-6)). Here, we elaborate on the benefits of co-

engrafting accessory nonislet cells with islet cells to prevent post-transplant islet 

graft loss and dysfunction. Thanks to their pleiotropic effects, accessory cells might 

prove to be superior compared to genetic or protein-based approaches that often 

target only a single component of islet graft failure. 

 

	

	



II. POST-TRANSPLANT ISLET GRAFT LOSS AND DYSFUNCTION  

The first few days after islet transplantation are characterized by dynamic changes, 

with substantial islet cell death and dysfunction preceding tissue remodeling and 

stable engraftment (7). In mouse models, approximately 60% of syngeneic 

transplanted islet tissue is lost by beta cell apoptosis and necrosis during the first 3 

days after transplantation (8). In man, quantification of early beta cell loss after 

transplantation remains difficult due to a lack of appropriate markers. Although 

further standardization is needed, a beta cell loss varying from 5 to 47% after intra-

portal transplantation was recently estimated based on plasma glutamic acid 

decarboxylase 65 (GAD65) levels (9). However, this number might still underestimate 

the actual loss since only a fraction of GAD65 from damaged or dead beta cells is 

likely to end up in the circulation (9). To compensate for this loss, an excessively high 

number of human donor islets needs to be transplanted (10), further depleting the 

already scarce pool of donor tissue. Factors that have been implicated in graft loss 

after intraportal transplantation include: (i) insufficient graft revascularization (11) 

and reinnervation (12), (ii) an inflammatory reaction following intra-vascular islet 

infusion (a.k.a. “instant blood-mediated inflammatory response” (IBMIR)) (13), (iii) 

alloimmune rejection and recurrence/persistence of autoimmunity (14), (iv) toxicity 

of the immunosuppressive regimens (15), (v) gluco- and lipotoxicity (16, 17), (vi) 

amyloid formation (18) and (vii) liver ischemia with subsequent cytotoxicity (19). 

Angiogenic, graft-supporting and immunomodulatory properties of accessory cells 

including stem cells and an armamentarium of differentiated nonislet cell types, 

have been exploited to tackle some of these obstacles and improve islet 

transplantation outcome. An overview of the results obtained so far (summarized in 

Table 1) as well as the putative mechanism of action of each accessory cell type 

(summarized in Table 2) will be discussed in the following section.  

 

 

 



III. ACCESSORY CELLS TO PREVENT ISLET GRAFT FAILURE 

Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells capable of 

differentiation into cells of mesodermal origin. They are found in the perivascular 

space and can be isolated from virtually every adult organ and tissue. In the bone 

marrow, MSCs regulate maintenance and proliferation of hematopoietic stem cells. 

MSCs are the most extensively studied accessory cell type for islet transplantation. 

Due to their adhesive capacity, MSCs are able to "coat" islets in culture, prior to 

transplantation (20). Thanks to their pro-angiogenic (21) and anti-apoptotic effects 

(22-24), MSCs improve islet function and survival in rodents and primates (25-33) 

(see Table 1). Pro-angiogenic effects of MSCs are augmented by hypoxia and result 

from their release of angiogenic factors and proteases that degrade the extracellular 

matrix, thereby promoting endothelial cell (EC) migration and growth factor 

bioavailability (22, 23, 34), resulting in improved graft revascularization. 

Furthermore, MSCs contribute to vessel stabilization through their differentiation 

into perivascular smooth muscle cells (“pericytes”) (35). In addition, MSCs are 

immunomodulatory (36), given their ability to decrease the activation and 

proliferation of various immune-competent cells such as natural killer cells, dendritic 

cells (DCs), cytotoxic T cells and B cells (37-52), to modulate neutrophil and B cell 

function, differentiation and chemotaxis (53, 54) and to generate regulatory T cells 

(Tregs) (22, 23, 47, 50, 51, 55). Finally, MSCs protect islets from destruction 

mediated by pro-inflammatory cytokines via their secretion of a.o. hepatocyte 

growth factor (HGF) (56). Although the ability of MSCs to survive, engraft and 

suppress immune responses in an allogeneic transplantation setting has been 

questioned (57-59), a recent prospective clinical trial indicates that autologous MSCs 

infusion arrests disease progression and preserves beta cell function in new-onset 

T1D patients (60). Although larger studies with extensive follow-up are required, 

these data support the future use of MSC in new-onset T1D and as accessory cells in 

islet transplantation. 

 
 
 



Adipose-derived stem cells  

MSCs derived from adipose tissue (a.k.a. adipose-derived stem cells (ASCs)) are 

obtained from the adipose stromal vascular fraction, a population of cells obtained 

after enzymatic dissociation of adipose depots followed by density separation from 

adipocytes (61). While ASCs are functionally similar to bone marrow MSCs, they are 

more easily accessible with minimal risk to the patient. This accessibility is especially 

attractive with regard to autologous transplantation (62). Similar to MSCs, ASCs 

exposed to hypoxic conditions increase their secretion of angiogenic growth factors 

(63-65). A number of reports indicate that co-transplantation of islets with ASCs 

improves islet function and survival. Subcutaneous implantation of mouse ASCs 

combined with minced adipose tissue gives rise to a vascular-rich bed that supports 

subsequent syngeneic islet transplantation and long-term reversal of diabetes in 

immune competent mice (66). Combined transplantation of syngeneic mouse ASCs 

with a marginal allogeneic islet mass results in prolonged graft survival and glucose 

tolerance in immune competent diabetic mice (67). Hybrid grafts had a well-

preserved islet structure compared to grafts consisting of native islets alone and 

demonstrated increased revascularization. In addition, a decreased accumulation of 

CD4+ and CD8+ T cells and macrophages was observed, reflecting the anti-

inflammatory effect of co-transplanted ASCs (67, 68). Co-transplantation of rat islets 

and human ASCs within a fibrin gel improves glycometabolic outcome of 

subcutaneous xenogeneic islet transplantation in diabetic immune deficient mice, 

which was further enhanced by prior inclusion of fibroblast growth factor (FGF)-2 in 

the fibrin gel 50. ASCs improve islet viability by secreting growth factors that protect 

islets from hypoxic damage and promote neovascularization via overexpression of 

VEGF-A (69). Preconditioning of human ASCs with a mixture of acids (hyaluronic, 

butyric and retinoic acid) to increase expression/secretion of vascular endothelial 

growth factor (VEGF)-A, kinase insert domain receptor (KDR, a.k.a. VEGF-R2) and 

HGF, followed by co-culture with rat islets and intrahepatic transplantation of the 

mixed graft diabetic immune competent rats further improves graft function (70).  

 

 



 

Endothelial progenitor and blood-outgrowth endothelial cells 

Endothelial Progenitor Cells (EPCs) are a population of rare circulating cells with the 

ability to adhere to endothelium at sites of hypoxia with subsequent differentiation 

into endothelial cells (71). EPCs can be isolated from bone marrow, cord blood, 

vessel walls or peripheral blood. These beneficial effects on vasculogenesis have 

generated great clinical interest in EPCs to promote neovascularization at sites of 

hypoxia or injury as demonstrated in ischemic injury models such as myocardial 

infarction (72) and limb ischemia (73). Similar to MSCs/islet co-transplantation, 

numerous reports have shown beneficial effects on islet transplantation outcome 

when islets are co-transplanted with EPCs in rodent models of diabetes (74-78). 

Alternatively, peripheral mobilization of recipient bone marrow-derived EPCs by 

Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) enhances islet 

revascularization and engraftment in a model of syngeneic islet transplantation (79). 

EPC-derived effects are various and are mediated via direct differentiation into new 

vessels and pericytes, through secretion of paracrine factors (angiogenic and beta 

cell mitogenic (75)), via thrombospondin (Tsp)-1-mediated activation of transforming 

growth factor (TGF) beta-1, resulting in enhanced insulin secretion (80, 81) and 

through modulation of the expression of the beta cell gap junction protein connexin 

36, a key element in coordinated beta cell function (78). In addition, after 

incorporation into islet endothelium, microvesicles, released from EPCs and carrying 

proangiogenic microRNAs, enhance syngeneic islet graft function, survival and 

vascularization in diabetic mice (82). Importantly, endothelial cells readily tolerate 

contact with blood, thereby avoiding IBMIR as shown in composite pig islet- human 

endothelial cell grafts in vitro (83) and after transplantation in immune deficient 

diabetic mice (76). Similar to MSCs, incorporation into or coating of islets by EPCs 

prior to transplantation may represent an improved cell therapy approach to 

enhance function, survival and revascularization (76). 

Blood Outgrowth Endothelial Cells (BOECs) represent a late-outgrowing subtype of 

EPCs (84), derived from in vitro clonal expansion of peripheral blood mononuclear 

cells. Their endothelial commitment is evident from their cobblestone morphology 

and the presence of specific markers such as von Willebrand Factor and CD31, 



combined with their capacity for in vitro tube formation (85). In an experimental 

murine model of wound healing, BOECs have been shown to improve wound 

revascularization and subsequent healing, both by integrating into functional vessels 

and providing trophic support for angiogenesis (85). Combined with their minimally 

invasive procurement from peripheral blood (85, 86), favoring their use in 

autologous transplantation protocols, these observations inspired us to employ 

BOECs to improve post-transplantation islet graft function. Co-transplantation of rat 

islets with human BOECs in diabetic immune-deficient mice resulted in a significant 

improvement in metabolic outcome. Moreover, BOECs recipients displayed reduced 

beta cell death and increases in beta cell proliferation and graft-vessel and beta cell 

volume. Comparable metabolic benefits were observed when using BOECs derived 

from a T1D patient, thereby underscoring the clinical potential of BOECs (87).  

 

Neural crest stem cells  

Neural crest stem cells (NCSCs) are self-renewing multipotent cells located in the 

pre-migratory neural crest that give rise to neurons (88). NCSCs play a role in beta 

cell differentiation by regulating beta cell mass during development (89). NCSCs 

produce several angiogenic and neurotrophic growth factors, including VEGF-A, glial 

cell line-derived neurotrophic factor and ciliary neurotrophic factor, all exerting 

beneficial effects on islets (90-92). In addition, NCSCs secrete matrix 

metalloproteinases (MMP)-2 and -9 to promote extracellular matrix-reorganization, 

endothelial cell migration and vascularization (93). In vitro, NCSCs stimulate beta cell 

proliferation by direct cell-cell interaction (94) and protect beta cells from cytokine-

induced cell death in rodents (92). When co-transplanted with mouse pancreatic 

islets in diabetic immune competent mice, mouse NCSCs enhance insulin release and 

beta cell proliferation of the islet graft (95). Recently, mouse NCSCs were shown to 

stimulate neural and vascular engraftment as well as proliferation of human beta 

cells when co-transplanted under the kidney capsule of immune-deficient 

nondiabetic mice (96) Accordingly, surface coating of mouse pancreatic islets with 

mouse NCSCs improves islet revascularization, reinnervation and function after 

intraportal transplantation in immune competent diabetic mice (93). Notably, NCSCs 



harbor the potential for autologous use since they can be retrieved from adult 

tissues such as skin (97). 

 
 
 
Regulatory T cells  

Regulatory T cells constitute a subpopulation of CD4+ T cells that modulate the 

immune system by maintaining tolerance to self-antigens thereby preventing auto-

immune disease. While naturally occurring regulatory forkhead box P3 

(FoxP3)+CD4+CD25+ T cells (nTregs) arise in the thymus from birth onwards, inducible 

regulatory T cells (iTregs) are generated from peripheral T cells upon antigen 

encounter under tolerogenic conditions such as exposure to TGF-beta (reviewed in 

(98)). Many different subsets of inducible Tregs have been described, including T 

regulatory type 1 (Treg1) cells that constitutively produce high levels of interleukin 

(IL)-10 (99). Absence of or defects in Tregs are associated with several auto-immune 

diseases, including T1D (100). As Tregs modulate self-tolerance and autoimmunity, 

strategies have been developed to induce local tolerance through the accumulation 

of immune-suppressive Tregs at the islet transplantation site. Major 

histocompatibility complex (MHC)-mismatched mice that are intramuscularly 

engrafted with islets and a plasmid encoding chemokine (C-C motif) ligand (CCL)22, a 

Treg-attracting chemokine, display delayed graft rejection  (101). Adoptive transfer 

of expanded mouse Treg1 cells obtained by in vitro exposure to rapamycin and IL-10, 

prevents allograft rejection in immune competent diabetic mice (99, 102). Co-

aggregates of mouse Tregs and allogeneic mouse islet cells support long-term 

survival of intraportal allogeneic islet cell grafts without the use of immune-

suppressive drugs (103, 104). In line with these findings, adoptive transfer of ex vivo 

expanded human Tregs delays human islet rejection in recipient humanized immune 

competent diabetic mice (105). Mechanistically, Tregs inhibit islet infiltration of 

innate immune cells and of CD4+ T cells by downregulating islet graft-derived CCL2 

(105). 

 

 



Other tolerogenic cells 

Besides Tregs, several other cell types have been evaluated for their tolerogenic 

potential in the context of islet transplantation.  

Myeloid-derived suppressor cells (MDSCs) consist of a heterogeneous population of 

myeloid-derived cells including myeloid progenitors, immature macrophages, 

granulocytes and dendritic cells. While, during steady state, MDSCs reside in the 

bone marrow, pathological conditions such as cancer, infection and autoimmune 

disease result in MDSC expansion and mobilization from the bone marrow. Direct 

cell-cell contact is crucial for the immune-suppressive effects of MDSCs, the latter 

which involves both inducible nitric oxide synthase (iNOS) and arginase activity, 

respectively suppressing T cell function and proliferation through NO production and 

L-arginine depletion (106). In addition, MDSCs promote development of Tregs 

through the costimulatory molecule B7-H1 (107). Adoptive transfer of mouse MDSCs 

prevents onset of T1D in mouse models through Treg expansion and effector T cell 

inhibition (108). In addition, co-transplantation of mouse islets with mouse MDSCs 

prolongs islet allograft survival though iNOS-mediated T cell inhibition in immune 

competent diabetic mice (109). 

Hepatic stellate cells (HepSCs) are liver-derived pericytes that contribute to liver 

fibrosis after transdifferentiation into collagen-producing myofibroblasts. HepSCs 

store retinoic acid (RA), secrete cyto- and chemokines such as IL-17 and CCL2, and 

may act as antigen-presenting cells. HepSCs display immune-suppressive properties 

by promoting Treg cell induction through the release of RA and TGF-beta1 (110, 111). 

Furthermore, HepSCs induce T cell apoptosis and inhibit cytotoxic CD8+ T cells ((112, 

113)). In addition, mouse islet co-transplantation with mouse HepSCs induces 

immune tolerance towards islet allografts in mouse via the recruitment of MDSCs 

(107, 114, 115). Notwithstanding these apparent beneficial effects, additional 

research on the effects of HepSCs on beta cell function, replication and survival after 

co-transplantation is mandatory since in vitro co-culture of pancreatic stellate cells 

with mouse islet cells was recently shown to result in decreased beta cell 

proliferation and viability and a reduction of islet insulin content (116). 



Dendritic cells (DCs) are unique antigen-presenting cells that play a crucial role in 

innate and adaptive immunity. Tolerogenic DCs (tol-DCs) constitute a subset of DCs 

that mediate central and peripheral tolerance. Tol-DCs are immature, alternatively 

activated DCs that express several chemokine-receptors including CCR5, CCR6 and 

CCR7 while showing decreased expression of MHC II and co-stimulatory molecules. 

Tol-DCs promote tolerance through deletion of T cells, the induction of regulatory 

and anergic T cells, the expression of immune-modulatory and immune-suppressive 

molecules and, discovered only recently, the induction of regulatory B cells 

(reviewed in (117-119)). Cell therapy with ex vivo directed tol-DCs has been applied 

to T1D patients. These tol-DCs were well tolerated and up-regulated the frequency 

of B220+CD11c-B cells (120). Others have loaded autologous DCs, isolated from T1D 

patients, with insulin- and glutamic acid decarboxylase 65 antigen to induce 

hyporesponsiveness of antigen-specific T-lymphocytes (121). Currently, a beneficial 

effect of tol-DCs in clinical islet transplantation remains unexplored. Nonetheless, 

experiments in rodents have provided evidence for a potential benefit of tol-DCs in 

islet transplantation since combination of autologous tol-DCs  with short-term anti-

CD3 treatment results in permanent acceptance of pancreatic islet allografts in 

diabetic rodents (122, 123) while ex vivo exposure of murine DCs to TGF-beta 

induces tol-DCs that, upon co-engraftment, lead to long-term syngeneic islet graft 

survival in diabetic non-obese diabetic (NOD) mice(124).  

Sertoli cells are testicular cells that nourish developing sperm cells in the 

seminiferous tubules via growth factor secretion. In addition, Sertoli cells create an 

immune-privileged testicular microenvironment through secretion of immune-

protective factors such as Fas ligand (FasL) and TGF-beta1 (125). Their nourishing 

and immune-suppressive potential focused attention on Sertoli cells as accessory 

cells for islet transplantation. Prolonged survival of allogeneic rodent islets, grafted 

under the kidney capsule, occurs when co-transplanted in diabetic immune 

competent rodents with rodent Sertoli cells (126-128). However, after intraportal 

transplantation, mouse Sertoli cells tend to segregate from islets and embolize in 

smaller hepatic venules due to their smaller size compared to islets (129). This hurdle 

to potential clinical use was circumvented by generation of co-aggregates in a 



hanging drop, resulting in long-term graft survival in the absence of immune-

suppressive therapy in immune competent diabetic mice (129). 

 

IV. POTENTIAL ROADMAP FOR THE USE OF ACCESSORY CELLS 

DEPENDING ON THE TRANSPLANTATION SITE 

The ideal islet transplantation site is characterized by: (i) minimized risk for IBMIR, 

(ii) rapid and adequate revascularization and reinnervation, (iii) physiological insulin 

drainage, (iv) protection against auto- and allospecific graft rejection and (v) easy 

accessibility with the potential of full graft retrieval, considering the possibility of 

transplanting tumorigenic stem cell-derived beta(-like) cells. Unfortunately, none of 

the current clinical islet transplantation sites meet all of these criteria (Table 3). 

Taken into account the requirements of an ideal transplantation site, current site-

specific disadvantages and the characteristics of accessory cells for islet 

transplantation, a roadmap for the clinical use of a particular accessory cell type or 

combination thereof per transplantation site can be envisioned (Figure 2). 

An important disadvantage of intra-portal delivery of islets is the occurrence of  

IBMIR; a non-specific innate immune reaction triggered by graft-derived tissue factor 

and pro-inflammatory mediators (13). Subsequent activation of the coagulation- and 

complement cascades results in thrombosis and insulitis which inflicts acute and 

severe islet damage (reviewed in (130)). Islet-coating with endothelial cells prevents 

IBMIR (76, 83) and could therefore be suggested as a strategy to improve the 

outcome of clinical, intra-portal islet transplantation.   

In an attempt to circumvent IBMIR, extra-vascular transplantation sites are explored 

such as the gastric submucosal space, spleen, pancreas, kidney, genitourinary tract, 

omentum, subcutis, bone marrow, peritoneum and muscle, the latter five in human 

clinical trials (reviewed in (4)). While these sites are characterized by a minimal risk 

for IBMIR thanks to their extra-vascular location, they are inherently hampered by 

insufficient graft revascularization and innervation as well as by the risk of graft 

rejection due to allo- and recurrent/persistent autoimmunity. Similar to the intra-

portal transplantation site, these sites would therefore benefit from the use of 



accessory cells with angiogenic, neurogenic and immune-modulatory properties. In 

this context, MSCs, ASCs, EPCs/BOECs, NCSCs and tolerogenic cell types such as 

Tregs could be envisioned. Of note, combining the beneficial islet-supporting 

properties of different accessory cells might even prove superior to monotherapy. 

For example, rat islet coating with rat endothelial cells combined with Sertoli 

cell/islet co-culture or Sertoli cell infusion prior to islet transplantation in diabetic 

rats creates an active surface on islets that inhibits IBMIR, stimulates endothelial cell 

proliferation and survival, reduces immunogenicity and subsequently promotes graft 

survival and revascularization in the renal subcapsular space (130).  

Finally, to bypass immune-rejection, immune-privileged sites such as testis (131), 

brain(132), thymus (133, 134) and the ocular space (135) have been investigated. 

While being deprived from IBMIR and immune-rejection, these sites are still likely to 

benefit from trophic stimuli derived from graft-supporting cells such as MSCs, ASCs, 

EPCs/BOECs and NCSCs. 

 

V. POTENTIAL (REGULATORY) BARRIERS TO THE USE OF ACCESSORY 

CELLS 

Although promising experimental results have been obtained by the use of accessory 

cells in islet transplantation, several important barriers need to be considered prior 

to clinical translation (136). Since most of the islet transplantation sites are size-

restricted, rigorous preclinical dose titration experiments (including infusion 

frequency) need to be performed for accessory cell transplantation to support rather 

than preclude transplantation of a sufficient beta cell mass. As with islet 

transplantation, the potential clinical benefit of accessory cell transplantation should 

outweigh its risk. Features that contribute to this risk include a potential of 

prolonged, deleterious biological activity after a single administration as well as 

immunogenicity of the accessory cell type. Preclinical safety trials should thus be 

performed in appropriate animal species to evaluate tumorigenicity and migration 

potential of a particular accessory cell type (in particular stem cells). If possible, 

autologous rather than allogeneic accessory cells should be used as the latter might 

elicit adverse immune reaction and jeopardize the outcome of future allogeneic 



transplantations due to antibody formation. Accessory cell types that could easily be 

obtained for autologous transplantation include MSCs, ASCs, EPCs, BOECs, NCSCs, 

Tregs, Tol-DCs and MDSCs. For clinical trials using these cells, it is important to have 

clinical grade cell isolation, expansion and/or cryopreservation protocols available 

that are compliant with Good Manufacturing Practice (GMP) regulations. If prior 

culture of these cells is needed, long-term expansion should be avoided to prevent 

cellular senescence, genomic alterations and loss of viability, homing capacity and 

function (37). Topical rather than systemic delivery can be envisioned to prevent 

side-effects of cellular therapy in off-target organs or tissues and to overcome 

insufficient extravasation and homing to the target site. To circumvent some of 

these potential problems, accessory cells with proliferative and immunogenic 

potential could be grafted, enclosed in a retrievable device as currently proposed in 

the first Phase I/II clinical trial with ESC-derived beta-like cells (Clinical Trial, 

Registration number NCT02239354, clinicaltrials.gov).   

 

VI. CONCLUDING REMARKS 

Over the past decade, substantial progress has been made in the beta cell therapy 

field. Yet, several important hurdles still need to be overcome. Optimization of islet 

isolation from selected donor organs and development of alternative beta cell 

sources would allow for a significant surge in the currently available cell mass for 

transplantation. When combined with approaches that significantly improve graft 

survival and function, a realistic and universally applicable cure for both T1D and a 

subset of T2D patients would ensue. Compared to genetic modulation and (single) 

growth factor application, multi-modal effects of accessory cells make them an 

interesting and likely superior tool to improve islet transplantation outcome and 

alleviate donor organ burden. Nonetheless, additional research is advocated to 

determine stability, safety, efficacy and optimal dosing. We speculate that 

autologous MSCs will be the first accessory cell type to reach clinical translation as 

they were recently shown to arrest disease progression in early-onset T1D patients. 
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Table	1.	
Acc. Cell 
Type 

Islet origin Acc.  cell 
origin 

Recipient 
Species 

Recipient 
Immune Status 

Recipient Metabolic 
Status 

Transplant Site  Transplant type Beneficial Effects of Co-Transplantation Ref 

MSCs Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Syngeneic Graft survival, glucose homeostasis, 
revascularization rate  

Borg DJ et al., 2014 (25) 

Normal Diabetic: C57BL/6-

Ins2Akita/J 

Hepatic vein Syngeneic 

Immune deficient Non diabetic AC eye Syngeneic 

Rat Rat Rat Normal Diabetic: STZ Omentum Syngeneic 
 

Graft survival, glucose homeostasis  Solari MG et al., 2009  (26) 

Normal / Immune 

suppressed 

Omentum Allogeneic Graft survival, glucose homeostasis, 

immunomodulation  

Mouse Mouse Mouse Normal with 

isolated graft 

Diabetic Intraperitoneal Syngeneic 

 

Graft function  Kerby A et al., 2013  (27) 

Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Syngeneic Glucose homeostasis, preserved islet 

structure, vascularization  

Rackham CL et al, 2011  (28)  

Nonhuman 

primate 

Nonhuman 

primate 

Nonhuman 

primate 

Normal Diabetic: STZ Intraportal Allogeneic Islet engraftment and function  Berman DM et al, 2010 (29) 

Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Syngeneic Glucose homeostasis, vascularization 

 

Sakata N et al, 2010 (30) 

Rat Rat Mouse Immune deficient Diabetic: NOD SCID Kidney capsule Xenogeneic Glucose homeostasis, preserved islet 

structure, vascularization 

Ito T et al, 2010 (31) 

Rat Rat Rat Normal Diabetic: STZ Kidney capsule Syngeneic Glucose homeostasis, vascularization  Figliuzzi M et al, 2009 (32) 

Mouse Mouse Mouse Normal Diabetic: STZ Intramuscular Syngeneic Immunomodulation Yoshimatsu G et al, 2015 (36) 

ASCs Mouse Mouse  Mouse  

 

Normal Diabetic: STZ Kidney capsule Allogeneic islets 

Syngeneic acc. cell 

Graft survival, glucose homeostasis, 

revascularization,  immunomodulation 

Ohmura Y et al., 2010 (67) 

Rat Human Mouse Immune deficient Diabetic: STZ Subcutaneous in 
fibrin gel 

Xenogeneic Graft survival, glucose homeostasis, 
revascularization 

Bhang S et al., 2013 (69) 

Rat Human Rat Normal Diabetic: STZ Portal vein Syngeneic islets 

Xenogeneic acc. cell 

Glucose homeostasis, revascularization Cavallari G et al., 2011 (70) 

E(P)Cs 
 

 

 
 

 

 

        
BOECs 

Rat Rat Rat Normal Diabetic: STZ Kidney capsule Syngeneic Graft Survival, glucose homeostasis, 
revascularization 

Song HJ et al., 2010 (74) 

Pig Human Mouse Immune deficient Diabetic: STZ Kidney capsule Xenogeneic Graft survival, glucose homeostasis, 

revascularization, beta cell proliferation, 

protect against IBMIR 

Kang S et al., 2012  

Kim JH et al., 2011 

(75)  

(76) 

Rat Rat Rat Normal Diabetic: STZ Kidney capsule Allogeneic Graft survival, glucose homeostasis, 

vascularization, increased insulin secretion. 

Li Y et al., 2013 (130) 

Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Syngeneic Graft survival, glucose homeostasis, 
increased insulin secretion, 

revascularization 

Oh BJ et al., 2013 
Penko D et al., 2015 

(77) 
(78) 

Rat Human Mouse Immune deficient Diabetic: ALX Kidney capsule Xenogeneic Graft survival, glucose homeostasis, reduced 

beta cell death, beta cell proliferation 

Coppens V et al., 2013 (87) 

NCSCs Mouse Mouse Mouse Normal Diabetic: ALX Portal vein Syngeneic Glucose homeostasis, revascularization, 

reinnervation 

Lau J  et al., 2014 (93) 

Mouse Mouse Mouse Normal Diabetic: ALX Kidney capsule Syngeneic Graft survival, glucose homeostasis, beta 

cell proliferation 

Olerud J et al., 2009 (95) 

Human Mouse Mouse  Immune deficient Normal Kidney capsule Xenogeneic islets 

Syngeneic  acc. cell 

Beta cell proliferation, revascularization, 

reinnervation 

Grapensparr L et al., 
2015 

(96) 

Tregs Mouse Mouse Mouse Normal Diabetic: STZ Portal vein 
 

Allogeneic islets  
Syngeneic acc. Cell 

Graft survival, glucose homeostasis,  Takemoto T  et al., 2015 (103) 

MDSCs Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Allogeneic islet Graft survival, glucose homeostasis, Treg Chou HS et al., 2012 (107) 



Syngeneic acc. cell expansion Arakawa Y et al., 2014 (109) 

HepSCs Mouse Mouse Mouse Normal Diabetic: STZ Kidney capsule Allogeneic  Graft survival, glucose homeostasis, prevent 
infiltration of innate immune cells. 

Zhang ZY et al., 2014 
Chou HS  et al., 2011 

(114) 
(115) 

Tol-DCs No co-transplantation experiments only adoptive infusion of DC prior to islet graft transplantation Baas MC et al., 2014 (122) 

Sertoli 
cells 

Rat Rat Rat Normal Diabetic: STZ Kidney capsule Allogeneic Graft survival, glucose homeostasis, reduced 
infiltration of innate immune cells. 

Korbutt GS  et al.1997 (126) 

Mouse Mouse Mouse Normal Diabetic: NOD Kidney capsule Syngeneic Graft survival, glucose homeostasis Suarez-Pinzon W et al., 
2000 

(128) 

Mouse Mouse Mouse Normal Diabetic: STZ Portal vein Allogeneic Graft survival, glucose homeostasis Takemoto N et al.,  2014 (129) 

	



Table	2.		
Acc. Cell 
Type 

Function Mechanism Responsible factors and molecules Ref 

MSCs Immunomodulation Decreased activation and proliferation of T, B, DC and NK cells. PD-(L)1  

PGE2 
 

 

IDO 
TGF-beta 

 

 
NO 

MMPs 

Galectins 

HLA-G5 
IL-6 

 

 
HGF 

 

Halvorsen T et al., 2000 

Tse WT et al., 2003 
Chen L et al., 2007 

Sotiropoulou PA et al., 2006 

Krampera M et al., 2006 
Di Nicola, M et al., 2002 

Aggarwal, S et al., 2005 

Casiraghi, F et al., 2008 
Sato K et al., 2007 

Ding Y et al., 2009 

Sioud M et al., 2011 

Selmani Z et al., 2008 
Jiang XX et al., 2005 

Engela AU et al., 2013 

Crop MJ et al., 2010 
Di Nicola M et al., 2002 

Sotiropoulou PA et al., 2006 

(37) 

(38) 
(39) 

(40) 

(41) 
(42) 

(43) 

(44) 
(45) 

(46) 

(47) 

(48) 
(49) 

(50) 

(51) 
(52) 

(40) 

Modulation of neutrophil and B cell function, differentiation and chemotaxis Downregulation of chemokine receptor 
CXCR4, CXCR5, and CCR7 

IL-6, TGF-beta 

Corcione A et al., 2006 
 

Raffaghello L et al., 2008 

(53) 
 

(54) 

Treg cell activation and IL-10 production TGF-beta 

IL-10 
 

Galectins 

Peng Y et al., 2004 

Engela AU et al., 2013 
Crop MJ et al, 2010 

Sioud M et al, 2011 

(55) 

(50) 
(51) 

(47) 

Pro-angiogenic Secretion of angiogenic factors  
Secretion of matrix metalloproteinases 

Differentiation into pericytes 

VEGF-A, IL-6, IL-8, HGF, PDGF,  
MMP-2, MMP-9 

TGF-beta1  

Sakata N et al., 2010, Burlacu A et al., 
2013 

Au P  et al., 2008 

(30, 34)  
 

(35) 

Anti-apoptotic Increased expression of anti-apoptotic signaling molecules, a.o. XIAP, Bcl-2, Bcl-xL HGF, TGF-beta,  Yeung TY et al.,2012 (56) 

ASCs Pro-angiogenic Secretion of angiogenic factors  
 

Differentiation into endothelial cells and pericytes 

VEGF-A, HGF, EGF 
  

Rehman J et al., 2004, Kuo YR  et al., 
2015 

Merfeld-Clauss M et al.,2014 

(63) 
(64) 

(65) 

Anti-apoptotic Secretion of anti-apoptotic factors HGF, TGF-beta, GM-CSF Rehman J et al., 2004 (63) 

Immunomodulation Decreased activation and infiltration of CD4+ and CD8+ T cells TSG-6  Kato T  et al., 2014 (68)  

E(P)Cs Prevention of IBMIR     Lower platelet consumption and C3a level.  

Protection against complement-mediated lysis & activation of coagulation  

IL-8 Kim JH  et al., 2011 (76) 

Pro-angiogenic Direct differentiation into vasculature,  incorporation into  vascular network and 

release of angiogenic factors  

HGF 

VEGF-A, Ang-2, PlGF, PDGF-B, MMP-1, 

MMP-9, MMP-14  
 

microRNAs (MiR-126, MiR-296) 

Kang S et al., 2012 

Oh BJ et al., 2013, Hendrickx B et al., 

2010, Coppens V et al., 2013 
 

Cantaluppi V et al., 2012  

(75) 

(77) 

(85)  
(87) 

(82) 

Stimulation of beta cell 

proliferation 

Production of basement membrane                                                                                                                       HGF Kang S  et al., 2012 (75) 

Increased beta cell function Modulation of connexin 36 expression    

Thrombospondin-1-mediated activation of TGF-beta1                                   

Connexin 36 

Thrombospondin-1 

Penko D et al., 2015 

Olerud J  et al., 2011 

(78) 

(80) 

NCSCs Beta cell proliferation Production of trophic factors  GDNF Grouwels G et al., 2012 (94) 

Anti-apoptotic Production of protective factors  GDNF  Mwangi SM et al., 2011 (90) 

Pro-angiogenic/-neurogenic Release of angiogenic and neurotrophic factors.  VEGF-A, MMP-2, MMP-9 Lau J et al., 2015 (93) 

Tregs Immunomodulation Suppress activation, proliferation and function of CD4+ and CD8+ T cells. 

Inhibition of immune infiltration by downregulation of islet graft-derived CCL2. 

TGF-beta , IL-10, IL-5  
CTLA-4, IL-2 

Battaglia M et al., 2006 

Xiao F et al., 2014 

(102) 

(105) 



MDSCs Immunomodulation APC function and induction of Tregs  
Suppression of T cell function and proliferation  

MHC class II  
iNOS and Arg1 

Yin B  et al., 2010  
Arakawa Y  et al., 2014 

(108) 
(109) 

HepSCs Immunomodulation Suppression of T-lymphocytes 

T cell apoptosis 

Promote Treg induction  
MDSC induction 

TGF-beta 

TRAIL, PD-(L)1 

RA, TGF-beta 
IFN-γ 

Zhang ZY  et al., 2014 

Yang HR  et al., 2010, Yu MC  et al., 

2004, 
Dunham RM  et al., 2013 

Chou HS  et al., 2011 

(114) 

(112, 113) 

(110) 
(115) 

Tol-DCs Immunomodulation Deletion of CD4+ and CD8+ T cells, induction of anergic T cells and Tregs. Decreased MHC II and costimulatory 
signals 

Turnquist HR et al., 2007, Baas MC  et 
al., 2014, Thomas DC et al., 2013,  

(119, 122) 
(124) 

Sertoli 
cells 

Immunomodulation 
Protect beta cells from cell 

death 

Production of immune-suppressive factors 
Production of protective factors 

FAS-L, TGF-beta 
TGF-beta 

Korbutt GS et al., 1997, Li Y  et al., 
2013Suarez-Pinzon W et al.,2000 

(126, 130)  
(128) 

	
	 	



Table	3.	
 

IDEAL SITE REQUIREMENTS : 
  LIVER OMENTUM 

BONE 

MARROW 
SUBCUTIS MUSCLE 

1. MINIMAL RISK FOR IBMIR   - + + + + 

2. PHYSIOLOGICAL INSULIN RELEASE   + + - - - 

3. VASCULARIZATION   +/- + + +/- + 

4. IMMUNOPROTECTION   - +/- - - - 

5. ACCESSIBILITY & RETRIEVABILITY   - + +/- + + 

	
	


