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Abstract. In this paper we describe how to swap two 2 × 2 blocks in a real Schur form and a
generalized real Schur form. We pay special attention to the numerical stability of the method. We
also illustrate the stability of our approach by a series of numerical tests.

1. Introduction. The real Schur form of a standard eigenvalue problem λIn−A
is an orthogonal matrix decomposition that plays a fundamental role in numerical
linear algebra. It is an upper block triangular form AS that can be obtained under
an orthogonal similarity transformation U :

AS := UTAU =


A11 A12 . . . A1k

0 A22
. . . A2k

...
. . .

. . .
...

0 . . . 0 Akk

 , (1.1)

where the diagonal blocks Aii, i = 1, . . . , k are of dimension 1×1 or 2×2. This form is
not only useful for computing the spectrum of A but also for computing an invariant
subspace of the matrix A with a spectrum constrained to a particular region in the
complex plane (see, e.g., [1, 3, 7, 8]). For this, one needs to reorder the Schur form
AS by updating the orthogonal transformation U such that the diagonal blocks with
their spectrum inside the considered region, appear first in the block triangular form.
Such a reordering can always be performed by a series of swappings of two adjacent
blocks in the real Schur form, as was shown in [6, 7].

There is a corresponding matrix decomposition known as the generalized real
Schur form of a so-called regular pencil λB − A, implying that det(λB − A) is not
identically zero. The equivalent generalized Schur form is upper block triangular and
can be obtained under orthogonal equivalence transformations:

λBS −AS := ZT (λB −A)Q

= λ


B11 B12 . . . B1k

0 B22
. . . B2k

...
. . .

. . .
...

0 . . . 0 Bkk

−


A11 A12 . . . A1k

0 A22
. . . A2k

...
. . .

. . .
...

0 . . . 0 Akk

 ,

where the subpencils (λBii − Aii), i = 1, . . . , k are of dimension 1 × 1 or 2 × 2 and
where BS is upper triangular. The concept corresponding to an invariant subspace
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here is that of a deflating subspace, and again one needs to reorder the blocks in the
generalized Schur form by updating the orthogonal transformations Q and Z such
that the diagonal blocks (λBii − Aii) with their spectrum inside the relevant region,
appear first in the decomposition. The swapping problem for two consecutive blocks
in the generalized Schur form was discussed in, e.g., [5, 8, 9].

The swapping of a scalar block with another scalar block or with a 2×2 block, were
addressed adequately in the papers [7–9], for both the standard and the generalized
Schur form. But the problem of swapping two 2 × 2 blocks still remains a delicate
problem, which can fail when restricting oneself to a direct method [1]. In this paper
we revisit the problem of swapping two 2 × 2 blocks in both the standard and the
generalized Schur form. This problem gained a renewed interest because of its use in
the new rational QZ method [2,4] which makes extensive use of the swapping of 2×2
blocks that may be poorly conditioned. It is therefore needed to ensure that these
swappings can be performed in a numerically reliable manner.

In Sections 2 and 3 we revisit the swapping problem for the standard real Schur
form, and for the generalized real Schur form and we present a new method to perform
the swapping. In both sections we perform a detailed error analysis to bound the
relative norm of the off diagonal errors, after the swapping operation. In case these
errors are not sufficiently small, we show how to update the swapping by an iterative
process to further reduce these errors. In Section 4 we compare the different possible
approaches for swapping 2×2 blocks and we show statistics for the accuracy and need
for iterative refinement.

2. The standard eigenvalue problem. The problem we address in this section
is the swapping of two 2 × 2 blocks in a matrix A in real Schur form. We restrict
ourselves to the case of a 4× 4 matrix A

A :=

[
A11 A12

0 A22

]
=


× × × ×
× × × ×
0 0 × ×
0 0 × ×

 , (2.1)

where the spectra of A11 and A22 are disjoint and not real

Λ(A11) := {α1 ± β1} 6= Λ(A22) := {α2 ± β2} , βi 6= 0, i = 1, 2.

We are looking for a real orthogonal transformation Q such that the transformed
matrix Ã := QTAQ has the form

Ã :=

[
Ã11 Ã12

0 Ã22

]
=


× × × ×
× × × ×
0 0 × ×
0 0 × ×

 ,

with Λ(Ã11) := Λ(A22), Λ(Ã22) := Λ(A11).
The suggested construction is to find an orthonormal basis for the invariant sub-

space of A corresponding to the spectrum Λ(A22), and to complete this to an orthonor-
mal matrix Q. This can be obtained by the following method described in [1, 6].

Lemma 2.1. Let A ∈ R4×4 be given as in (2.1), where the spectra of A11 and A22

are disjoint. Then the invariant subspace of A corresponding to the spectrum of A22

is spanned by the matrix[
−X
I2

]
, where A11X −XA22 = A12. (2.2)
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Moreover, the orthogonal similarity transformation Q swaps the spectra of A11 and
A22 if and only if [

−X
I2

]
= Q

[
R
0

]
, (2.3)

where R is square and invertible.
The error analysis of Bai and Demmel [1] holds for the algorithmic implementation

where X is first solved from the Sylvester equation (2.2), and then Q is constructed
from the QR factorization (2.3).

Lemma 2.2 (Theorem 2 in [1]). Let X̂ be the computed solution of the Sylvester
equation (2.2), let E := −A12−A11X̂+X̂A22 be its residual and let Q̂ be the computed
factor of the QR factorization [

−X̂
I2

]
= Q̂

[
R̂
0

]
.

Then the computed similarity transformation satisfies[
Ã11 Ã12

∆ Ã22

]
:= Q̂T

[
A11 A12

0 A22

]
Q̂, (2.4)

where

‖∆‖2 ≤ ‖E‖F /[1 + σ2(X)22].

It is pointed out in [1] that their error analysis does not imply that ‖∆‖2 ≤ εM‖A‖2,
where εM is the machine precision of the computer used. Nevertheless, the bound is
often pessimistic and the observed errors often allow ∆ to be safely dismissed.

In the rational QZ algorithm [2, 4] O(n2) swaps are executed, and failures occa-
sionally happen due to inaccurate swaps of 2 × 2 blocks. In this paper, we try to
address this problem when the above direct approach does not work properly.

For this we propose two adaptations of the so-called direct approach. The first one
is the construction of the transformation Q from (2.3), the second one is an iterative
refinement step to get ∆ from (2.4) as small as possible.

If we perform a singular value decomposition of X then we obtain such a factor-
ization from

X = UXΣXV T
X =⇒ Q =

[
UX 0
0 VX

] [
CX SX

−SX CX

]
, R = −S−1

X V T
X ,

where SX := (I + Σ2
X)−

1
2 and CX := ΣXSX are diagonal matrices that can be

computed elementwise from ΣX . The recommended procedure for computing the
diagonal elements ci, si (i = 1, 2) of CX and SX is{

si := 1/
√
1 + σ2

i , ci := si · σi, if σi ≥ 1,

ci := 1/
√
1 + 1/σ2

i , si := ci/σi, if σi < 1,

because this computes the smallest quantities to a higher relative accuracy. In the
numerical examples given below, we show that this alternative construction for the
transformation Q often gives better results than the use of a simple QR factorization.
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But even for this approach, there is no guarantee that the similarity transforma-
tion (2.4) yields a negligible off-diagonal block ∆. We recommend then to perform
an updating similarity to further reduce the norm of the block ∆ in Ã. This can be
done by applying a similarity transformation:

QT
upÃQup =

[
Â11 Â12

0 Â22

]
, Qup :=

[
I Y T

−Y I

] [
RY 0
0 RY T

]
,

where RY and RY T are normalizations to make Qup orthonormal, and where Y is
computed from the quadratic matrix equation

Y Ã12Y + Ã22Y − Y Ã11 −∆ = 0.

Since the updating transformation Qup is assumed to be close to the identity, ‖Y ‖2 is
very small and can then be well approximated by the solution of the linear equation

Ã22Y − Y Ã11 = ∆.

The solution Y of this linear system can again be computed using Kronecker prod-
ucts, and the implementation of the rotation is best performed via the singular value
decomposition of Y since Y := UY ΣY V

T
Y implies

Qup =

[
VY 0
0 UY

] [
CY SY

−SY CY

]
, RY = C−1

Y V T
Y , RY T = C−1

Y UT
Y ,

where CY := (I + Σ2
Y )

− 1
2 and SY := ΣY CY are diagonal matrices that can be com-

puted elementwise from ΣY using the procedure described earlier. The updating
transformation will not yield a new off-diagonal black that is exactly zero, but its
norm can be expected to be of the order of ‖∆‖22, since this is the Riccati equation
approach for computing invariant subspaces. This would imply that in most cases,
one updating transformation Qup is enough to be able to dismiss the new off-diagonal
block. The numerical experiments given below, support this claim.

3. The generalized eigenvalue problem. In the corresponding problem for
pencils of matrices we need to swap two 2× 2 pencils in a pencil λB−A in real Schur
form, with B and A like

[
B11 B12

0 B22

]
=


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 ,

[
A11 A12

0 A22

]
=


× × × ×
× × × ×
0 0 × ×
0 0 × ×

 . (3.1)

Since we are looking for two pairs of disjoint complex conjugate eigenvalues, the
matrix B is invertible and the spectrum of the above 4 × 4 pencil is the union of
Λ(B−1

11 A11) := {α1 ± β1} , β1 6= 0 and Λ(B−1
22 A22) := {α2 ± β2} , β2 6= 0.

We are looking for two real orthogonal transformations Q and Z such that the
transformed pencil λB̃ − Ã := ZT (λB −A)Q has B̃ and Ã of the form

[
B̃11 B̃12

0 B̃22

]
=


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 ,

[
Ã11 Ã12

0 Ã22

]
=


× × × ×
× × × ×
0 0 × ×
0 0 × ×

 ,
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with Λ(B̃−1
11 Ã11) := Λ(B−1

22 A22), Λ(B̃−1
22 Ã22) := Λ(B−1

11 A11). The suggested con-
struction is to find a pair of orthonormal bases for the right and left deflating sub-
spaces of λB−A corresponding to the spectrum of B−1

22 A22 and B−1
11 A11, respectively,

and to complete these bases to orthonormal transformations Q and Z, respectively.
This can be obtained by the following direct method, described in [5].

Lemma 3.1. Let the pencil λB − A be given as in (3.1), where the spectra of
B−1

11 A11 and B−1
22 A22 are disjoint. Then the right and left deflating subspaces of λB−A

corresponding to the spectrum of B−1
22 A22 and B−1

11 A11, respectively, are spanned by
the columns and rows of the matrices[

−X
I2

]
,

[
I2 Y

]
, where

{
A11X − Y A22 = A12,
B11X − Y B22 = B12.

(3.2)

Moreover, the orthogonal equivalence transformations Q and Z swap the spectra of
the diagonal blocks in ZT (λB −A)Q if and only if[

−X
I2

]
= Q

[
RX

0

]
, and

[
I2 Y

]
=

[
0 RY

]
ZT , (3.3)

where RX and RY are square and invertible.
The error analysis of K̊agström’s algorithm [5] holds again for a particular algo-

rithmic implementation where X and Y are first solved from the generalized Sylvester
equations (3.2), and then Q and Z are constructed from the QR factorizations (3.3).

Lemma 3.2 (Theorem 3.1 in [5]). Let X̂ and Ŷ be the computed solutions of
the generalized Sylvester equation (3.2), let E := −A12 − A11X̂ + Ŷ A22 and F :=
−B12 − B11X̂ + Ŷ B22 be their residuals and let Q̂ and Ẑ be the computed factors of
the QR factorizations[

−X̂
I2

]
= Q̂

[
R̂X

0

]
,

[
I2
Ŷ T

]
= Ẑ

[
0

R̂T
Y

]
.

Then the computed equivalence transformation satisfies[
λB̃11 − Ã11 λB̃11 − Ã12

λ∆B −∆A λB̃22 − Ã22

]
:= ẐT

[
λB11 −A11 λB12 −A12

0 λB22 −A22

]
Q̂,

where

‖∆A‖2 ≤ ‖E‖F /
√
(1 + σ2(X)22) (1 + σ2(Y )22),

‖∆B‖2 ≤ ‖F‖F /
√
(1 + σ2(X)22) (1 + σ2(Y )22).

It is again pointed out in [5] that this error analysis does not imply that the off-
diagonal block λ∆B −∆A can be dismissed. We therefore recommend to apply the
same techniques here as for the standard eigenvalue problem: an alternative manner
of computing the transformation and an iterative refinement step.

For the constructions of Q and Z from the matrices X and Y we thus recommend
to first compute the singular value decompositions

X = UXΣXV T
X , Y T = UY ΣY V

T
Y
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from which we can construct

Q =

[
UX 0
0 VX

] [
CX SX

−SX CX

]
, RX = −S−1

X V T
X ,

where SX := (I +Σ2
X)−

1
2 and CX := ΣXSX , and

Z =

[
VY 0
0 UY

] [
CY −SY

SY CY

]
, RT

Y = C−1
Y V T

Y ,

where CY := (I +Σ2
Y )

− 1
2 and SY := ΣY CY .

The updating of the equivalence transformation to further reduce the norm of the
block λ∆B −∆A in λB̃ − Ã can be done by applying an equivalence transformation[

λB̂11 − Â11 λB̂12 − Â12

0 λB̂22 − Â22

]
:= ZT

up

[
λB̃11 − Ã11 λB̃11 − Ã12

λ∆B −∆A λB̃22 − Ã22

]
Qup,

Qup :=

[
I XT

−X I

] [
RX 0
0 RXT

]
, Zup :=

[
I Y T

−Y I

] [
RY 0
0 RY T

]
,

where RX , RXT RY and RY T are normalization factors to make Qup and Zup or-
thonormal. The (X,Y ) are computed from the system of quadratic matrix equations

∆̃A − Ã22X + Y Ã11 − Y Ã12X = 0, ∆̃B − B̃22X + Y B̃11 − Y B̃12X = 0.

These can be approximated by the system of linear equations

∆̃A = Ã22X − Y Ã11, ∆̃B = B̃22X − Y B̃11,

since ‖X‖2 and ‖Y ‖2 are very small. The solution (X,Y ) of this linear system can
be computed using Kronecker products.

4. Numerical results. In the numerical experiments, we limit ourselves to the
standard eigenvalue problem because most perturbation phenomena can already be
observed there and the numerical examples are easy to generate. We have randomly
generated 4×4 block triangular matrices with two pairs of complex conjugate eigen-
values. The diagonal blocks are generated as:

A11 =

[
a bk

−b/k a

]
, A22 =

[
a+ r1g (b+ r2g)k

−(b+ r2g)/k a+ r1g

]
, (4.1)

with a, b, r1 and r2 random values drawn from the standard normal distribution.
We abuse notation and denote by λ1 the complex pair of eigenvalues a ± b and
by λ2 the pair (a + r1g) ± (b + r2g); with |λ1 − λ2| we denote the maximum of
the difference of the corresponding eigenvalues. We use the parameters g and k to
change respectively the gap |λ1 − λ2| and the condition number of the eigenvector.
Both |λ1 − λ2| and k are varied from 10−12 up to 1012 in 30 logarithmically spaced
increments. For every combination, 20 random matrices have been generated for
which the eigenvalues are swapped. Figure 4.1 shows the percentage of times the
swap needed iterative refinement when Q was either computed from the SVD of X

or from the QR factorization of

[
−X
I

]
. Figure 4.1 indicates that the first method
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Fig. 4.1. Percentage of times the swap required iterative refinement.
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Fig. 4.2. Relative backward error of the swap.

outperforms the second. Figure 4.2 shows the relative backward error for both cases.
This figure indicates backward stability in both cases, but again the first method
outperforms the second.

Finally, Figures 4.3 and 4.4 show the relative forward errors on the eigenvalues
after the swap for respectively the SVD and QR update.

The right part of Figure 4.4 shows that there are two regions in the parameter
domain where the relative forward error on λ̂2, computed with the QR update, is of
the order of 10−12 which is significantly higher than the error with the SVD update
which is of order 10−15.

5. Concluding remarks. In this paper we have revisited the problem of swap-
ping two 2×2 blocks on the diagonal of a standard or generalized Schur form. We have
introduced two simple modifications of the direct swapping techniques introduced and
analyzed in [1,5,6]. The modifications are based on the use of the generalized signular
value decomposition of an orthogonal matrix, and the iterative refinement of invariant
and deflating subspaces, based on Riccati equations and their linear approximations.
These modifications reveal substantial improvements.
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