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ABSTRACT—Numerical processing has been extensively
studied by examining the performance on basic number pro-
cessing tasks, such as number priming, number comparison,
and number line estimation. These tasks assess the innate
‘‘number sense,’’ which is assumed to be the breeding ground
for later mathematics development. Indeed, several studies
have associated children’s performance in these tasks with
individual differences in mathematical achievement. To date,
however, most of these studies have cross-sectional designs.
Moreover, the few longitudinal studies either use complex
tasks (e.g., story problems) or investigate only one of these
basic number processing tasks at a time. In this study, we
examine the association between the performance of children
on several basic number processing tasks and their individual
math achievement scores on a curriculum-based test mea-
sured 1 year later. Regression analyses showed that most of
the variance in children’s math achievement was predicted by
nonsymbolic number line estimation performance (i.e., esti-
mating large quantities of dots) and, to a lesser extent, the
speed of comparing symbolic numbers. This knowledge about
the predictive value of the performance of 5- to 7-year-olds on
these markers of number processing can help with the early
identification of at-risk children. In addition, this information
can guide appropriate educational interventions.

The ability to represent number has proved to be an innate
capacity that is shared by human infants and animals (Cantlon
& Brannon, 2006; Xu & Spelke, 2000). Behavioral studies have
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shown that newborns already respond to changes in numbers
and that their ability to do this improves with increasing age
(Xu & Spelke, 2000). This innate basic number processing
ability is also suggested to lie at the basis of the performance
of 5-year-olds, who had not yet been taught formal arithmetic
but can compare, add, and subtract different dot arrays or
sequences of sounds (Barth, Beckmann, & Spelke, 2008).
Later, when children are confronted with symbols to represent
numbers, these symbols acquire meaning by being associated
with this preexisting nonsymbolic representation (Mundy &
Gilmore, 2009). Indeed, in basic numerical tasks, such as
comparison, similar behavioral effects are found in studies
with nonsymbolic and symbolic numbers (Cohen Kadosh,
Lammertyn, & Izard, 2008). This resulted in the popular idea
that the innate number representation serves as the basis of
future mathematic achievement as measured by curriculum-
based tasks (e.g., Halberda, Mazzocco, & Feigenson,
2008; but see Rouselle & Noël, 2007, for an alternative
account).

Different tasks have been used to study number processing.
A first paradigm is priming (e.g., Defever, Sasanguie, Gebuis,
& Reynvoet, 2011). Here, a target stimulus is preceded by
an irrelevant prime stimulus and the numerical distance
between prime and target is manipulated. A priming distance
effect (PDE) is observed: reaction times (RTs) increase if the
numerical distance between the two presented magnitudes
(i.e., prime and target) increases. For instance, the digit
‘‘4’’ is processed faster when it is preceded by ‘‘3’’ than by
‘‘2’’ (Reynvoet, De Smedt, & Van den Bussche, 2009). The
PDE is explained by overlapping representations between
nearby numbers on the mental number line (Verguts,
Fias, & Stevens, 2005). On this mental number line, each
magnitude is represented as a Gaussian distribution around
the corresponding magnitude. This implies that, whenever a
magnitude is presented, not only the representation of that
specific magnitude will be activated but also, to a lesser
extent, the nearby magnitudes, resulting in faster RTs if both
numbers are close to one another. Developmental studies

© 2012 the Authors
Volume 6—Number 3 Journal Compilation © 2012 International Mind, Brain, and Education Society and Blackwell Publishing, Inc. 119



Predictors for Math Achievement

have shown that the PDE can be observed in kindergartners
and more importantly, remains stable through development,
indicating no differences in representational overlap from late
kindergarten onward (Defever et al., 2011).

The second, frequently used task to investigate basic
number processing, is comparison (e.g., Moyer & Landauer,
1967). In this task, participants have to indicate the larger
of two numbers. This typically results in the numerical
distance effect: error rates and RTs decrease with increasing
distance between both magnitudes. For instance, deciding
that 9 is larger than 8 takes more time than performing the
same decision on the pair 9 and 6. Originally, the numerical
distance effect was also explained by overlapping number
representations: When two close numbers are presented, their
activated representations will overlap, making it more difficult
to differentiate between them. In developmental studies, a
decreasing comparison distance effect with increasing age is
observed, which is believed to reflect the decreasing overlap
between nearby magnitudes (Holloway & Ansari, 2009).
Recently, however, several studies argued that the comparison
distance effect can alternatively be considered as the outcome
of decision processes on numbers (Holloway & Ansari, 2009;
Van Opstal, Gevers, De Moor, & Verguts, 2008). A third task
is the number line estimation task (e.g., Siegler & Booth, 2004).
In this task, participants have to indicate the position of a
number on an empty external number line. Typically, it is
found that, with increasing age, the pattern to map numbers
on the line goes from a logarithmic, with larger magnitudes
put closer together than smaller magnitudes, toward a linear
pattern.

The priming effect (Defever et al., 2011), the numerical
distance effect (Bugden & Ansari, 2011; Holloway & Ansari,
2009; Mundy & Gilmore, 2009; Sasanguie, De Smedt, Defever,
& Reynvoet, 2012), and number line estimation performance
(Booth & Siegler, 2006, 2008; Sasanguie et al., 2012; Siegler &
Booth, 2004) have all been related to individual differences in
mathematical achievement in previous studies. However, some
caveats are still present. First, these studies are largely cross-
sectional in nature and longitudinal studies are still scarce. De
Smedt, Verschaffel, and Ghesquière (2009) provided the first
longitudinal evidence that the speed of comparing Arabic
digits is related to individual differences in mathematics
achievement 1 year later. With regard to the symbolic number
line estimation task, Geary et al. (2009) showed that the
performance on this task is an important variable in the
prediction of later mathematics achievement. It should be
noted, however, that these previous studies focused exclusively
on only one of the basic number processing tasks described
earlier. Furthermore, these studies were not designed to
identify the optimal predictor for math achievement.

In this study, we therefore longitudinally examined the
relationship between the performance of a single sample of
children on multiple indices of basic number processing tasks

and their individual mathematics achievement scores on a
curriculum-based standardized math test 1 year later. This
way, we want to gain insight in which of these markers is
the best predictor for later math achievement. The children
that participated in this study performed a number priming
task, a number comparison task, and a number line estimation
task with symbolic and nonsymbolic stimuli. Age groups
(i.e., kindergartners, first graders and second graders) were
chosen based on previous findings. For example, Siegler and
colleagues (e.g., Booth & Siegler, 2006; Siegler & Booth, 2004)
showed that first and second graders are the most interesting
age groups to investigate, due to their logarithmic-to-linear
shift for the 0–100 number lines at that age. In addition,
a decreasing distance effect in symbolic and nonsymbolic
number comparison has been reported especially in these
age groups (Holloway & Ansari, 2009). Furthermore, in
line with De Smedt et al. (2009), to get a view on the
importance of informal learning experiences kindergartners
were included, because this group of children did not receive
formal instruction yet at that point.

METHOD

Participants
Participants were recruited from an elementary school
in Flanders, Belgium. For the specific details about the
participants in the three separate experimental tasks, we
refer to our previous studies (Defever et al., 2011; Sasanguie
et al., 2012). Subjects that were outliers in one of the three
experimental tasks were removed. The final sample of this
study therefore consisted of 72 typically developing children,
comprising 21 kindergartners (11 males, Mage at the initial time
of testing = 5.6 years), 25 first graders (5 males, Mage at the
initial time of testing = 6.7 years), and 26 second graders (10
males Mage at the initial time of testing = 7.6 years). None of
the children had repeated a grade.

Procedure
Children were tested in March–April 2010, in a quiet room
accompanied by two experimenters. Kindergartners were
tested in groups of 4 children and first and second graders
in groups of 7–10 children. All children first conducted the
number line estimation tasks, followed by the comparison
tasks and next the priming tasks. For each task, they always
first performed the symbolic and afterward the nonsymbolic
condition. A short break between the two conditions was
provided. After these experiments, the children received a
small reward. One year later, around February 2011, the scores
on the curriculum-based standardized tests (mathematics and
spelling performance) were collected.
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Measures
Experimental Tasks
Priming and number comparison were computerized tasks.
Number line estimation was administered with pen and
paper. Laptops with 14-inch color screens were used, running
the Windows XP operating system. Stimulus presentation
and the recording of behavioral data (RT and error rates)
were controlled by E-prime 1.1 (Psychology Software Tools,
http://www.pstnet.com). The symbolic stimuli consisted of
Arabic digits ranging from 1 to 9 (Arial font, measuring 5 mm
in width and 6 mm in height), whereas the nonsymbolic
stimuli comprised arrays of 1–9 dots. The visual properties
of the stimuli (e.g., total area occupied and item size) were
controlled using the MatLab programme as described in the
study by Dehaene, Izard, and Piazza (2005). The dots of a
single stimulus were displayed in a circle with a radius of
45 mm.

Number Priming. Prime-target pairs were created by combining
primes ranging from 1 to 9 (except 5) and targets 1, 4, 6, and 9,
resulting in 32 prime-target pairs. Sixteen trials consisted of a
prime and target that were both either smaller or larger than 5
(i.e., congruent trials), whereas the other 16 trials consisted of a
prime and target of which one was smaller than 5 and the other
larger (i.e., incongruent trials). The 16 congruent trials were
presented a second time, and during the second presentation
we switched the order of prime and target (prime became
target and vice versa) because we did not want the subjects to
notice that the numerosities 1, 4, 6, and 9 were always presented
as the second numerosity. This resulted in a total of 48 trials
(32 congruent and 16 incongruent trials). Participants were
instructed to classify both prime and target as either smaller
or larger than the standard 5 by pressing the corresponding
button. Children were asked to respond as quickly as possible
but to avoid making errors. A trial consisted of a fixation-cross
(600 ms), the prime (until response), a blank screen (200 ms),
the target (until response), and a blank screen (2000 ms).
Before each condition, subjects performed five practice trials
where feedback on accuracy was provided.

Number Comparison. All numerosities from 1 to 9 were included,
but only combinations of stimuli with a maximum distance of
5 were presented. This was done because in a previous study
(Sasanguie, Defever, Van den Bussche, & Reynvoet, 2011),
we showed that RTs decreased with increasing distance, but
from distance 5 onward, a further decrease was minimal. This
resulted in a set of 60 experimental trials per condition. On
each trial, a fixation cross was presented for 600 ms, after
which the two stimuli that had to be compared appeared, one
on the left-hand side and one on the right-hand side of the
screen. These stimuli remained on the screen until the child
responded. The intertrial interval was 1000 ms. Participants
had to select the larger of two quantities, by pressing at the

side of the largest quantity. Five practice trials were included
for each condition and feedback on accuracy was provided.

Number Line Estimation. Children were presented with 25-cm-
long lines in the center of white A4 sheets. Two different
intervals (0–10 and 0–100) were administered in both symbolic
and nonsymbolic formats. The end points of the number lines
were labeled on the left by 0 and on the right by either 10
or 100 in the symbolic condition and by an empty circle on
the left and a circle with 10 or 100 dots on the right in the
nonsymbolic condition. The to-be-positioned quantity was
shown in the center of the sheet, 2 cm above the number line.
All numbers and dot patterns, except 0 and 10 (100), had
to be positioned on the 0–10 interval, whereas for the 0–100
interval quantities were 2, 3, 4, 6, 18, 25, 48, 67, 71, and 86
(corresponding to sets A and B for the same interval used in
the study by Siegler & Opfer, 2003). The presentation order of
the quantities was randomized and each line was presented on
a separate sheet. Children were instructed to mark on the line
where they thought that the quantity had to be positioned.
To ensure that the child was aware of the interval size, the
experimenters took the first number line as an example and
pointed to each item on the sheet, while saying: ‘‘This line goes
from 0 (dots) to 10 (or 100) (dots). If here is 0 and here is 10
(or 100), where would you position this number (quantity)?’’
Afterward, the children went through all sheets at their own
pace. Kindergartners only solved a 0–10 number line task, first
graders both a 0–10 and a 0–100 task and second graders only
a 0–100 task.

Standardized Tests
Mathematics. Mathematics achievement was assessed with a
curriculum-based standardized achievement test for mathe-
matics from the Flemish Student Monitoring System (Dudal,
2000a). This test consists of 60 items covering number knowl-
edge, understanding of operations, (simple) arithmetic, word
problem solving, measurement, and geometry. Cronbach’s α

for this test was .90, .92, and .90 for the first, second and third
grades, respectively.

Spelling. The curriculum-based standardized Spelling test of
the Flemish Student Monitoring System (Dudal, 2000b) was
used to measure children’s spelling skills. This test involved
the dictation of letters, words, and sentences. Cronbach’s α of
this test was .94, .90, and .89 for the first, second, and third
grades, respectively.

RESULTS

Number Priming
The PDE was examined by analyzing the performance on
congruent trials as a function of the distance between prime
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and the target (see also Reynvoet et al., 2009). A repeated
measures analysis of variance (ANOVA) was conducted
with distance (three levels) as within-subject factor and
grade (three levels) as between-subject factor. To control
for individual differences in RTs and to capture the PDE in one
measure, a normalized measure of the PDE for each individual
was computed. Similar to previous research (Reynvoet et al.,
2009), this was done by subtracting the average RT on trials
with a prime-target distance of 1 from the average RT on trials
with a prime-target distance of 3. The RT difference was then
divided by the average RT on trials with a numerical prime-
target distance of 1. For the error rates, the average error rate
on trials with a prime-target distance of 1 was subtracted from
the average error rate on trials with a prime-target distance
of 3. A repeated measures ANOVA was conducted on this
computed measure of the PDE with stimulus notation (two
levels) as within-subject factor and grade (three levels) as
between-subject factor. The mean error rates and RTs are
presented in Table 1.

In the symbolic condition, the repeated measures analysis on
the error rates showed a main effect of prime-target distance,
F(2, 68) = 5.38, p < .01, η2

p = .14, indicating that participants
made more errors when distance between prime and target
increased. The repeated measures analysis on the RTs revealed
a main effect of prime-target distance, F(2, 68) = 5.52, p < .01,
η2

p = .14, indicating that RTs were larger when the distance
between prime and target increased. A main effect of grade,
F(3, 69) = 13.12, p < .001, η2

p = .28, was observed, showing
that RTs decreased with increasing grade.

In the nonsymbolic condition, the repeated measures
analysis on the error rates showed a main effect of prime-
target distance, F(2, 68) = 7.36, p < .01, η2

p = .18, indicating
that participants made more errors when distance between
prime and target increased. The repeated measures analysis
on the RTs revealed a main effect of prime-target distance,
F(2, 68) = 7.45, p < .01, η2

p = .18, indicating that RTs were
larger when the distance between prime and target increased.

A main effect of grade, F(3, 69) = 9.23, p < .001, η2
p = .21,

was observed, showing that RTs decreased with increasing
grade.

The repeated measures analyses with the normalized PDEs
on both the error rates and the RTs yielded no main effects of
stimulus notation (all Fs < 1), meaning that these PDEs were
similar for the symbolic and nonsymbolic notation. Moreover,
no main effects of grade (all Fs < 1) were present, suggesting
that the PDEs did not change with increasing age.

Number Comparison
In this task, RTs were adjusted to reflect both speed and
accuracy of performance by combining the RTs and error rates
using the formula RT/(1 − error). This way, the RTs remain
unchanged with 100% accuracy and increase in proportion
with the number of errors. This adjustment was made to
control for speed–accuracy tradeoffs (see also Simon et al.,
2008). The effect of distance (DE) was examined by conducting
a repeated measures ANOVA with distance as within-subject
factor (five levels) and grade (three levels) as between-subject
factor on children’s adjusted RTs. The adjusted RTs are shown
in Table 2. To examine the DE in more detail, we computed
the size of the DE for each child by calculating the slope of a
regression in which distance predicted the adjusted RTs. This
slope should be negative because the distance effect predicts
a negative relationship between distance and RT. The size of
the slope reflects the DE, with steeper slopes indicating larger
distance effects. One-sample t-tests and a one-way ANOVA
on the slopes were executed (see Sasanguie et al., 2012, for full
details).

In the symbolic condition, analyses revealed a significant
main DE on the RTs, F(4, 66) = 14.80, p < .001, σ2

p = .47.
There was also a main effect of grade, F(2, 69) = 34.02,
p < .001, σ2

p = .50, indicating that the RTs decreased with
increasing grade.

Table 1
Mean Error Rates, Mean Reaction Times (RTs), and Corresponding (Standard Deviations) for the Three Distances of the Number Priming
Task, per Notation and per Grade

Number priming task

Symbolic notation Nonsymbolic notation

d1 d2 d3 d1 d2 d3

Error rates (%)
Kindergartners 0.04 (0.06) 0.11 (0.14) 0.09 (0.10) 0.03 (0.07) 0.10 (0.11) 0.11 (0.14)

First graders 0.05 (0.06) 0.04 (0.06) 0.09 (0.09) 0.03 (0.09) 0.05 (0.08) 0.07 (0.11)
Second graders 0.05 (0.08) 0.02 (0.05) 0.10 (0.10) 0.03 (0.05) 0.06 (0.09) 0.10 (0.13)

RT (ms)
Kindergartners 1224.10 (369.14) 1371.95 (313.48) 1339 (313.56) 1138.52 (262.21) 1188.55 (351.71) 1217.45 (258.56)

First graders 1096.96 (302.66) 1142.50 (377.12) 1248.06 (330.46) 958.60 (239.57) 980.34 (226.57) 999.26 (179.97)
Second graders 897.71 (207.01) 957.61 (286.81) 949.92 (215.31) 883.63 (186.34) 904.63 (208.41) 977.94 (198.43)
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Table 2
Mean Adjusted Reaction Times and Corresponding (Standard Deviations) for the Five Distances of the Number Comparison Task, per
Notation and per Grade

Number comparison task

d1 d2 d3 d4 d5

Symbolic
Kindergartners 2122.41 (898.54) 1942.11 (692.36) 1915.16 (751.52) 1887.03 (825.82) 1677.55 (600.51)
First graders 1427.58 (356.64) 1300.88 (357.61) 1167.50 (251.14) 1163.62 (278.34) 1101.04 (255.64)

Second graders 1080.36 (207.47) 991.48 (198.47) 933.79 (167.92) 875.78 (136.57) 863.12 (171.43)
Nonsymbolic

Kindergartners 2017.43 (432.14) 1595.67 (389.05) 1450.95 (360.10) 1363.36 (328.68) 1292.74 (343.04)

First graders 1760.21 (450.92) 1314.42 (294.67) 1197.95 (315.45) 1108.89 (309.35) 1094.55 (326.78)

Second graders 1349.43 (300.95) 1095.54 (174.32) 939.04 (170.92) 938.63 (187.69) 853.00 (141.89)

In the nonsymbolic condition, analyses revealed a significant
main DE on the RTs, F(4, 66) = 87.48, p < .001, σ2

p = .84.
There was also a main effect of grade, F(2, 69) = 20.49,
p < .001, σ2

p = .37, indicating that the RTs decreased with
increasing grade.

One-sample t-tests revealed that the slopes were signifi-
cantly different from zero for all grades, in both conditions:
kindergarten symbolic, t(20) = −2.52, p = .02, and nonsym-
bolic slope, t(20) = −11.77, p < .001; first grade symbolic,
t(24) = −7.34, p < .001, and nonsymbolic slope, t(24) =
−9.07, p < .001; and second grade symbolic, t(25) = −8.89,
p < .001, and nonsymbolic slope, t(25) = −12.83, p < .001.
A one-way ANOVA revealed that the size of the distance
effect decreased with increasing grade level for the nonsym-
bolic, F(2, 69) = 4.07, p = .02, task, but not for the symbolic
(F < 1) one.

Number Line Estimation
Children’s estimation accuracies were obtained by computing
the percent absolute error per child, according to the following
equation (Siegler & Booth, 2004):

∣
∣
∣
∣

Estimate − estimate quantity

Scale of estimates

∣
∣
∣
∣

For example, if a child was asked to estimate 18 on a 0–100
number line and placed the mark at the point on the line
corresponding to 30, the percentage of absolute error (PAE)
would be (30 − 18)/100 or 12%. The mean PAE per grade and
notation are shown in Table 3. A univariate ANOVA on the
mean PAE was executed. We analyzed the pattern of estimates
of the children in more detail by fitting linear and logarithmic
functions for group means and each individual child (Siegler &
Opfer, 2003). For group means, a paired t-test was conducted
on the mean R2 linear and mean R2 logarithmic for each age
group. If the t-test indicated a significant difference between
both R2s, the best fitting model (linear or logarithmic) was
attributed to the group (see Sasanguie et al., 2012, for full
details).

Table 3
Mean Percent Absolute Error (PAE) and the Corresponding Standard
Deviations of the Number Lines, per Notation and per Grade

Number line estimation task

Symbolic
Kindergartners
First graders
Second graders

0.17 (0.05)
0.15 (0.06)
0.08 (0.04)

Nonsymbolic
Kindergartners
First graders
Second graders

0.18 (0.08)
0.18 (0.05)
0.14 (0.07)

In the symbolic condition, for the 0–10 interval, the model
with the highest R2 was linear for both the kindergartners
(R2

lin = .69) and the first graders (R2
lin = .84) and differed

significantly from the logarithmic fit in both grades, R2
log = .53;

t(20) = 5.49, p < .001 and R2
log = .68; t(24) = 10.86, p < .001,

respectively. For the 0–100 interval, the fit of the logarithmic
model was better for the first graders (R2

log = .80), but not

significantly different from the linear fit (R2
lin = .77; t < 1). For

the second graders, the fit of the linear model was the best
(R2

lin = .90) and differed significantly from the logarithmic fit,
R2

log = .86; t(25) = 2.31, p = .03.
In the nonsymbolic condition, for the 0–10 interval,

the model with the highest R2 was linear for both the
kindergartners (R2

lin = .76) and the first graders (R2
lin = .84)

and differed significantly from the logarithmic model in
both grades, R2

log = .66; t(20) = 4.99, p < .001 and R2
log = .68;

t(24) = 18.71, p < .001, respectively. For the 0–100 interval, the
fit of the logarithmic model was significantly better for the first
graders (R2

log = .88) and significantly different from the linear

fit, R2
lin = .76; t(24) = −4.74, p < .001. In second graders, the

linear model provided a better fit (R2
lin = .80), however, not

significantly different from the logarithmic fit (R2
log = .79;

t < 1).
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A univariate ANOVA on the mean PAE did not reveal a
significant difference between the kindergartners and the first
graders for the symbolic, F(1, 44) = 1.01, p = .32, σ2

p = .02,
and nonsymbolic (F < 1) 0–10 number line conditions.
Accuracy on the symbolic, F(1, 49) = 7.07, p = .01, σ2

p = .13,
and nonsymbolic, F(1, 49) = 8.28, p < .01, σ2

p = .14, 0–100
tasks increased with grade.

Correlation Analyses
We explored the correlation between the different markers
of number processing that were significantly associated with
mathematics achievement in our previous studies (i.e., the
normalized PDE in case of number priming, the slope and
the mean adjusted RTs in case of number comparison, and the
mean PAEs in case of number line estimation) and mathematics
achievement measured 1 year later. Hereby, we controlled for
grade differences because RTs speed up with grade. To be able
to compare all children in the different grades, the raw math
scores were transformed to z-scores per grade. To investigate
whether the associations between the experimental tasks
and mathematics achievement was specific to mathematics,
we also integrated the performance of the children on a
curriculum-based test of spelling as a control variable in
the analyses. The correlations (controlled for grade) between
the different markers of number processing and mathematics
achievement measured 1 year later are displayed in Table 4.

Mathematics achievement was negatively correlated with
the RTs of the symbolic comparison task, r(69) = −.31, p = .01
(Figure 1) and the mean PAE of both the symbolic, r(69) =
−.35, p < .001 (Figure 2) and the nonsymbolic number line
tasks, r(69) = −.48, p < .001 (Figure 3), indicating that
children with a high score on the math achievement test

Table 4
Partial Correlations Between the Diverse Indices of Magnitude Rep-
resentation and Mathematics Achievement 1 Year Later, Controlled
for Grade

Standardized mathematics
achievement

Priming
Priming distance effect symbolic 0.22
Priming distance effect nonsymbolic −0.00

Magnitude comparison
Comparison slope symbolic 0.08
Comparison slope nonsymbolic −0.12
Comparison mean adjusted reaction

times symbolic
−0.31∗

Comparison mean adjusted reaction
times nonsymbolic

−0.18

Number line estimation
Mean PAE symbolic −0.35∗∗
Mean PAE nonsymbolic −0.48∗∗∗

∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

Fig. 1. Scatter plot showing the significant negative correlation
between the standardized mean adjusted reaction times on the
symbolic number comparison task and the standardized mathematics
achievement scores from the curriculum-based standardized math
test 1 year later.

Fig. 2. Scatter plot showing the significant negative correlation
between the standardized mean PAE on the symbolic number
line estimation task and the standardized mathematics achievement
scores from the curriculum-based standardized math test 1 year later.

were faster in comparing symbolic magnitudes and were
more accurate in the number line estimation tasks. These
correlations remained significant when spelling ability was
controlled for, RTs symbolic comparison: r(68) = −.32,
p = .01; mean PAE symbolic: r(68) = −.38, p < .001 and mean
PAE nonsymbolic: r(68) = −.50, p < .001.

Regression Analyses
To examine whether priming, number comparison, and num-
ber line estimation predicted unique variance in the math-
ematics achievement scores, hierarchical multiple regression
analyses were conducted. Five blocks of independent variables
were added in a stepwise procedure. In Step 1, the variable
‘‘grade’’ was included to control for grade differences in RT,
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Fig. 3. Scatter plot showing the significant negative correlation
between the standardized mean PAE on the nonsymbolic number
line estimation task and the standardized mathematics achievement
scores from the curriculum-based standardized math test 1 year later.

after recoding this variable in two dummies by means of effect
recoding. Spelling performance was entered into the model
in Step 2. In Step 3, both the symbolic and the nonsymbolic
PDEs were included to determine the unique influence of
the magnitude representation level after controlling for grade
and spelling performance. Step 4 involved the entrance of the
slopes and mean adjusted RTs of the comparison tasks, to
examine the unique contribution to the variance of possible
decision processes. Finally, in Step 5, the mean PAE of the
symbolic and the nonsymbolic number line estimation tasks
were included. This way, it was possible to gain insight in the
contribution of the number–space interaction to mathematics
achievement variance.

Results of Model 1 (Table 5) revealed grade (β = .44,
p = .010), standardized spelling performance (β = .35, p <

.001), mean adjusted symbolic RT (β = −.61, p = .010), and
the mean PAE of the nonsymbolic number line estimation

(β = −.38, p = .001) as significant and unique predictors of
math achievement. As shown in Table 5, spelling performance
predicted 11% of the variance, FChange(1, 68) = 8.61, p =
.005, R2 = .07. In Step 4, decision processes (i.e., number
comparison) added significantly to the model, FChange(4, 62) =
2.85, p = .031, R2 = .18. Also the number–space interactions
added in Step 5 predicted 20% additional variance,
FChange(2, 60) = 11.74, p < .001, R2 = .39. The magnitude
representation level reflected in the priming effects added
in Step 3 was not significant.

In a second model (Model 2, Table 6), standardized
mathematics achievement measured in the same year in
which the children performed the experimental tasks was
additionally entered into the model in a sixth block. This
was done to examine the contribution of the predictors if
additionally controlled for the math achievement score of
the previous year. The results of Model 2 showed that the
additional incorporation of mathematics achievement of the
previous year into the model did not change the results pattern
observed in Model 1. However, this additional variable turned
out to be significant (β = .32, p = .002), leading to an extra
8% of explained variance, FChange(1, 59) = 10.50, p = .002,
R2 = .47.

DISCUSSION

The current longitudinal study aimed to investigate the
relationship between the performance of a single sample
of children on multiple indices of basic number processing
tasks and their individual mathematics achievement scores on
a curriculum-based standardized math test 1 year later. This
way, we wanted to investigate which of these markers are
good predictors for later arithmetic performance.

Results revealed that decision processes—especially deci-
sions on symbolic numbers—and an adequate mapping of

Table 5
Hierarchical Regression Analysis Predicting Mathematics Achievement 1 Year Later

Step Independent variables Standardized β �R2 Adjusted R2

1 Grade_dummy1 .44∗ .00 .03
Grade_dummy2 −.04

2 Spelling ability .35∗∗∗ .01∗∗ .00
3 PDE symbolic .05 .04 .09

PDE nonsymbolic −.10
4 Slope symbolic −.14 .03∗ .18

Mean adjusted RT symbolic −.61∗
Slope nonsymbolic −.12
Mean adjusted RT nonsymbolic .22

5 Mean PAE symbolic −.25 .20∗∗∗ .39
Mean PAE nonsymbolic −.38∗∗

Note. Standardized βs from the last step in the analyses are displayed.
∗p < .05. ∗∗p < .01. ∗∗∗p < .001.
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Table 6
Hierarchical Regression Analysis Predicting Mathematics Achievement 1 Year Later

Step Independent variables Standardized β �R2 Adjusted R2

1 Grade_dummy1 .32 .00 −.03
Grade_dummy2 −.03

2 Spelling ability .33∗∗∗ .11∗∗ .07
3 PDE symbolic .01 .04 .09

PDE nonsymbolic −.19
4 Slope symbolic −.11 .13∗ .18

Mean adjusted RT symbolic −.43
Slope nonsymbolic −.15
Mean adjusted RT nonsymbolic .13

5 Mean PAE symbolic −.18 .20∗∗∗ .39
Mean PAE nonsymbolic −.37∗∗

6 Math achievement year 1 .32∗∗ .08∗∗ .47

Note. Standardized βs from the last step in the analyses are displayed.
∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

numbers onto space were the strongest predictors for individ-
ual differences in mathematics achievement scores. Children
who performed well at comparing digits and who were more
precise at placing a (symbolic or) nonsymbolic number on an
external number line had a higher score on a curriculum-based
math achievement task measured 1 year later. Importantly,
these longitudinal correlations held even when controlling for
math achievement at the time the number processing measures
were tested.

Many previous studies already demonstrated that particu-
larly the performance on the symbolic tasks is related with
mathematics (e.g., De Smedt et al., 2009; Holloway & Ansari,
2009; Sasanguie et al., 2012). On the basis of these findings, it
is suggested that mathematics achievement is related to how
well children could access the corresponding magnitude from
the symbol rather than with quantity processing per se (e.g.,
Rousselle & Noël, 2007). The current finding is strongly in line
with this assumption. However, it could be argued that the per-
formance on the symbolic comparison task reflects individual
processing speed and that the latter also affects performance
in the mathematical achievement test. However, if this was the
case, the same would hold for the nonsymbolic number com-
parison performance, but no correlation was present between
the performance on this task and math achievement. More-
over, our mathematical test is an untimed standardized test,
implying that if the relation between RTs and mathematics
achievement were fully accounted by processing speed, no
correlation is expected.

No association has been found between the performance on
the nonsymbolic number comparison task and mathematics
achievement. Although this finding is in line with findings from
previous cross-sectional studies with small numbers from 1
to 9 (e.g., Holloway & Ansari, 2009; Sasanguie et al., 2012),
this contrasts with findings from other studies including large
numbers (e.g., Halberda & Feigenson, 2008; Inglis, Attridge,

Batchelor, & Gilmore, 2011). Therefore, we think that the
differences in the number ranges chosen in these studies
explain the different results.

In addition, mapping numbers onto space also predicted
a large amount of variance in mathematics achievement.
Although the results of the regression analysis revealed
that only the nonsymbolic number line performance was
a significant contributor, also the correlation between the
performance in the symbolic number line estimation task and
mathematics achievement was significant and the regression
coefficient tended to go in the same direction. These
findings show the importance of number–space mappings
for mathematical ability. Indeed, Kucian et al. (2011) already
reported that the ability of children to solve arithmetical
problems improved when they practiced their spatial abilities
of positioning a number on a number line with the game
‘‘Rescue Calcularis.’’

Finally, no predictive association was observed between
mathematics achievement and the performance on the priming
tasks. This suggests that the amount of representational
overlap of the magnitude representation is not a predictive
factor for math achievement performance.

Together, these results lead to the conclusion that
mathematical competence is, on one hand, related to efficient
symbolic decision making. These culturally determined
processes highlight the importance of formal (e.g., classroom
activities) and informal (e.g., number board games) learning
episodes in which numerals have to be associated with
their numerical meaning. On the other hand, mathematical
competence is also predicted by the ability of mapping
numbers onto space. Again, this ability is a direct reflection
of what children ‘‘learn’’ in a certain culture, in this case, the
Western one. Mathematical performance in 5- to 7-year-old
children thus especially seems to be determined by cultural
factors.
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Knowledge about the predictive value of these cognitive
markers of number processing can help in dealing with
the early identification of children at risk for mathematical
difficulties. In addition, this information can also guide
appropriate educational intervention. More specifically, our
data suggest that intervention programs should focus on
connecting symbols with their meaning and on mapping
numbers onto space. Most educational intervention programs
of which the effectiveness has been examined so far included
the association of numerical symbols with their meaning as an
important instructional principle (e.g., Griffin, 2004; Wilson
et al., 2006). In addition, some intervention programs also
focused on training with mapping numbers onto space trough
games (e.g., Kucian et al., 2011) or via a linear number-board
game (e.g., Ramani & Siegler, 2008). Intervention studies with
these programs seem promising, but it might be interesting
to investigate the impact of these programs on mathematical
achievement on larger samples.
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