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The idea that adaptation to stimulus or response conflict can operate over different time scales takes a
prominent position in various theories and models of cognitive control. The mechanisms underlying
temporal variations in control are nevertheless poorly understood, which is partly due to a lack of
appropriate empirical measures. Inspired by reinforcement learning models, we developed a method to
quantify the time scale of control behaviorally, by computing trial-by-trial effects that go beyond the
preceding trial. Briefly, we extended the congruency sequence effect from 1 trial to multiple trials into
the past and quantified the influence of previous trials on current-trial performance as a function of trial
distance. The rate at which this influence changes across trials was taken as a measure of the time scale
of control. We applied the method to a flanker task with different conflict frequencies and volatility.
Results showed that the time scale of control was smaller in rare-conflict and volatile contexts, compared
to frequent-conflict and neutral contexts. This is in agreement with theories differentiating transient from
sustained control. The method offers new opportunities to reveal temporal differences in control modes
and can easily be applied to various empirical paradigms.

Public Significance Statement

People can apply cognitive control at different time scales. However, behavioral measures of such
temporal variations are lacking. Here we provide a new method to quantify the time scale of cognitive
control and use it to differentiate between contexts with rare and frequent conflict. The method is easily
applicable in a broad range of paradigms and opens new possibilities to characterize differences in control

time scale within individuals, between individuals, and between groups.
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The ability to flexibly adjust behavior to environmental de-
mands is crucial for efficient goal achievement. For example,
when faced with conflicting response options, we need cogni-
tive control to overcome automatic response tendencies in favor
of more appropriate behavior. Several theories have suggested
that cognitive control can operate on different time scales (e.g.,
Braver, 2012; Jiang, Heller, & Egner, 2014; Ridderinkhof,
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2002). These scales can range from a fast-changing adjustment
of control on a trial-by-trial basis (e.g., Gratton, Coles, &
Donchin, 1992) to a more stable control mode that is sustained
over multiple trials (e.g., Bugg & Chanani, 2011; Jimura,
Locke, & Braver, 2010). Temporal variations are often used to
explain differences in cognitive control between individuals
and conditions (e.g., Appelbaum, Boehler, Davis, Won, &
Woldorff, 2014; Funes, Lupiafiez, & Humphreys, 2010; Pur-
mann, Badde, & Wendt, 2009). However, the lack of a behav-
ioral quantification of the time scale of control has hampered
progress in this field.

Several measures of cognitive control have been introduced
over the past decades. The congruency effect (CE), for example,
reflects slower response times (RTs) and lower accuracy on con-
flict trials (i.e., incongruent trials), compared to trials without
conflict (i.e., congruent trials). A classic example of the CE is the
Stroop effect, where ink color and word name can be congruent
(e.g., the word red printed in red) or incongruent (e.g., the word
red printed in green; Stroop, 1935).
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Modulations of the CE are often used to infer the time scale of
control. The CE is for example subject to trial-by-trial adaptations,
meaning that conflict not only affects performance on the current
trial but also on the next one. This is reflected in the congruency
sequence effect (CSE), which entails a smaller CE when the
preceding trial is incongruent, compared to congruent (Gratton et
al., 1992; for reviews, see Duthoo, Abrahamse, Braem, Boehler, &
Notebaert, 2014; Egner, 2007). The CSE has been ascribed to
conflict-driven adaptation of control (Botvinick, Braver, Barch,
Carter, & Cohen, 2001). After an incongruent trial, control is
increased, which diminishes interference on the subsequent incon-
gruent trial. A congruent trial results in a decrease of control and
hence increases the vulnerability to conflict on the next trial. In a
way, the CSE can be thought of as a continuation of control across
two trials and in this sense as indexing anticipatory or sustained
control. However, it fluctuates from trial to trial and in that sense
is fast-changing or transient. In fact, it has been argued that the
CSE partly results from a carryover of within-trial control adjust-
ments, which would imply that it reflects an even shorter time
scale of control (Nigbur, Schneider, Sommer, Dimigen, &
Stiirmer, 2015; Scherbaum, Fischer, Dshemuchadse, & Goschke,
2011). Regardless, the range of the CSE is small, capturing fast
trial-by-trial adjustments and not variations in control over a
longer time scale.

Other studies have demonstrated that the CE is not only affected
by previous-trial congruency but also by trials preceding the pre-
vious trial. For example, the CE decreases when the number of
incongruent trials in the previous three to four trial increases
(Horga et al., 2011; Jiménez & Méndez, 2013). This is in accor-
dance with models that predict that control on the current trial
results from the accumulated effect of previously encountered
incongruent trials (Botvinick et al., 2001; Verguts & Notebaert,
2008) and it shows that trial-congruency can have effects that
exceed the adjacent trial.

Extending this scope even further, it is also well known that the
CE is modulated by the general conflict context, or the proportion
of (in)congruent trials within a block (Bugg & Crump, 2012;
Logan & Zbrodoff, 1979). The proportion congruency effect
(PCE) entails that the CE is larger in blocks with mainly congruent
(MCQ) trials than in blocks with mainly incongruent (MI) trials.
This has been interpreted as a behavioral marker for transient
control in MC blocks, involving short upregulations of control in
response to rare incongruent trials, and sustained control in MI
blocks, involving stable control that is less subject to trial-by-trial
adaptations (e.g., De Pisapia & Braver, 2006; Kane & Engle,
2003). Although this explanation for the PCE has been challenged
by accounts referring to item-specific control (Jacoby, Lindsay, &
Hessels, 2003) and contingency learning (Schmidt & Besner,
2008), recent findings do emphasize a role for block-wide strategic
control in the PCE (e.g., Bugg, Diede, Cohen-Shikora, &
Selmeczy, 2015; Bugg, McDaniel, Scullin, & Braver, 2011; Entel,
Tzelgov, & Bereby-Meyer, 2014; Torres-Quesada, Funes, & Lu-
piafiez, 2013). The exact mechanism behind this effect is never-
theless still unclear. While the CSE is bound to the previous trial
by definition, the behavioral extent of the PCE is not delineated.
For example, it is not known how many trials in the past drive the
PCE or how the influence of previous trials on the current trial is
affected by the temporal distance between them. Hence, with the

CSE and PCE, we have two measures at our disposal that each lack
sensitivity to identify variations in the time scale of control.

The evaluation of temporally different control modes is ham-
pered by this empirical ambiguity. This is problematic because
variations in time scales are assumed in several models of cogni-
tive control. The dual mechanisms of control model, for example,
explains the PCE by two control mechanisms that operate on
different time scales (i.e., reactive and proactive control; Braver,
2012; De Pisapia & Braver, 2006). Other models suggest control is
adjusted based on a weighted average of conflict on all preceding
trials, explaining both the CSE and PCE in a single cognitive
control system (Botvinick et al., 2001; Verguts & Notebaert,
2008). A time scale parameter then determines the relative impor-
tance of recent versus more remote trials (Botvinick et al., 2001).
The Bayesian model by Jiang and colleagues (2014) in addition
allows this time scale parameter to adapt as a function of trial
history.

Summing up, although time scale variations are crucial in mod-
els and theories of cognitive control, no behavioral measurement
of this time scale exists. To fill this gap, we introduce a method
based on a statistical model for the effect of the previous trial on
the current trial (i.e., CSE) and extend this to the effects of more
remote trials. Briefly, the trial-by-trial adaptation captured by the
CSE is reflected in the interaction between current and previous
congruency, C; X C,_,, where variable C,; indicates congruency
status (0 = congruent, 1 = incongruent) on trial i (Notebaert &
Verguts, 2007). In our method, regressors are added to this statis-
tical model to capture the interaction between current congruency
and congruency on more remote trials (C; X C,_,, C; X C,_5,
etc.). We then assess how strongly the effects of previous trials
decrease as a function of trial distance (see Figure 1). In this way,
the degree to which previous trials affect the current trial as a
function of trial distance can be computed.

Inspiration for this method was found in the reinforcement
learning literature (e.g., Behrens, Woolrich, Walton, & Rushworth,
2007; Bromberg-Martin, Matsumoto, Nakahara, & Hikosaka,
2010; Silvetti, Seurinck, van Bochove, & Verguts, 2013). Here,
models predict reward learning rates based on the outcome of
previous trials. The learning rate can be conceptualized as a
“window size,” or the number of previous trials that is taken into
account. The smaller the window size, the fewer trials in the past
are used to predict current reward. In a similar vein, window size
can be used as a measure for the time scale of control. In this case,
a small window (steep curve in Figure 1, dashed line) entails that
performance on the current trial is mostly affected by conflict on
the preceding trial and less by more remote trials. This is indicative
of a transient control mode operating on a short time scale. A large
window (flatter curve in Figure 1, solid line) entails that perfor-
mance on the current trial is also affected by conflict on more
remote trials. This is indicative of a more sustained control mode
operating over a longer time scale.

The use of window size as a measure of the time scale of
cognitive control builds on the assumption that the CSE is an
indicator of cognitive control. This interpretation of the CSE is not
without controversy. Alternatively, it has been claimed that the
CSE is due to associative mechanisms driven by the repetition or
integration of stimulus or response features (i.e., repetition ac-
count; Hommel, Proctor, & Vu, 2004; Mayr, Awh, & Laurey,
2003). Current consensus however seems to be that the CSE
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Figure 1. Hypothetical influence of previous conflict on the current trial.
The plot shows conflict adaptation (i.e., the interaction between current and
previous congruency) as a function of trial distance. For example, when
trial distance is 5, the corresponding value on the y-axis represents the
interaction between congruency on the current trial and congruency on the
fifth trial back (i.e., C; X C,_s). The dashed curve represents a situation
where the current trial is mainly affected by the most recent trials (i.e.,
trials with a small distance to the current trial). The steep slope of this curve
indicates that effects of previous trials quickly decline with increasing trial
distance, which reflects a small window of control. This implies that
control is applied over a short time scale. The solid curve represents a
situation where, compared to the dashed curve, performance on the current
trial is less affected by recent trials and more by remote trials. The gradual
decline of this curve indicates a large window, or the exertion of control
over a longer time scale.

embodies both stimulus-specific repetitions and cognitive control
mechanisms (for reviews, see Duthoo et al., 2014; Egner, 2007)
and it has been proposed that cognitive control is in fact built on
repetitions of stimulus, response, and control features (Abrahamse,
Braem, Notebaert, & Verguts, 2016; Verguts & Notebaert, 2009).
Moreover, in the current study we investigate differences in time
scales between conditions with varying proportion congruency and
volatility. While natural from a cognitive control perspective, there
seems to be no a priori reason why repetition accounts would
predict differences in time scales between these conditions. Hence,
our method may also inform this discussion in the literature.

We applied our method using a flanker task with four different
blocks with varying proportions of congruent and incongruent
items: (a) a neutral block with 50% congruent items; (b) an MC
block with 80% congruent items; (c) an MI block with 20%
congruent items; and (d) a volatile block, where the proportion
congruency changed every 20 trials. We hypothesized that in MC
blocks, control would operate on a short time scale, reflected in
fast adjustments in control and hence a small window. In MI
blocks, slower updating and thus a larger window was expected,
indicating control operating over a longer time scale (De Pisapia &
Braver, 2006). A volatile block was added because it has been
suggested that volatility increases learning rates (Behrens et al.,

2007; Jiang et al., 2014) and hence may also elicit shorter time
scales of control.

Method

Participants

Forty-five participants were recruited from the participant pool
at the Vrije Universiteit Brussel. All participants gave written
informed consent and received a course credit or monetary reward
for participation. Participants with overall error rates larger than
25% were excluded (n = 3), leaving 42 participants included for
analysis (32 female, mean age = 22.29 = 5.77).

Material and Procedure

An arrow flanker task was used consisting of a central target
arrow flanked by two distractor arrows on both sides. Congruent
(i.e., <<<<< and >>>>>>) and incongruent (e.g., <<><<
and >><>>) flanker stimuli (4° wide and 1° high) were pre-
sented in white against a black background in the center of the
screen. Participants were instructed to press a left or right button
on a response box (Cedrus RB-830; Cedrus Corporation, San
Pedro, CA) with their corresponding index finger as fast and as
accurately as possible in response to the central target arrow. Each
trial started with a 500-ms fixation cross, followed by a 500-ms
blank screen. This was followed by the flanker stimulus, which
remained on the screen until the participant responded. No feed-
back was given.

Four different blocks of 160 trials each were created with
different proportions of congruent and incongruent trials. In the
neutral, MC, and MI block, the ratio congruent:incongruent trials
was 50:50, 80:20, and 20:80, respectively. In the volatile block, the
overall ratio was 50:50, but the ratio changed every 20 trials
between 80:20 and 20:80. Presentation of the trials in each block
was random. Each participant completed all block types; block
order was counterbalanced across participants using a Latin
square. Blocks were separated by a 60-s pause.

Before the experiment, we explained to participants that there
were easy (i.e., congruent) and difficult (i.e., incongruent) trials,
and blocks with mainly easy, mainly difficult, or an equal number
of easy and difficult trials. Participants were asked after each block
whether they thought the previous block contained mainly easy
trials, an equal number of easy and difficult trials, or mainly
difficult trials. Answers were given on a scale from 1 to 3 (1 =
mainly easy, 3 = mainly difficult). Prior to the main experiment,
participants completed 16 practice trials (50% congruent) with
accuracy feedback, followed by a practice question about the ratio
of easy and difficult trials.

Analysis

The following trials were excluded: the first trial of each block
(0.63%), error trials (2.79%), trials following errors (2.59%), and
trials faster than 250ms (0.03%) or slower than 1500ms (0.32%).
Next, RTs (in ms) were inverse transformed (1/RT) to better
approximate the normal distribution (Kinoshita, Mozer, & Forster,
2011). Inverse transformed RTs were multiplied by —10,000 to
restrict the number of decimal places. This way, larger inverse RTs
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reflect slower responses and uninformative decimals are lost, thus
facilitating interpretation (Kinoshita et al., 2011).

First, conventional analyses of the PCE and CSE were per-
formed. The mean RTs were entered in a repeated measures
analysis of variance (ANOVA) with Block Type (neutral, MC, MI,
or volatile), Current-Trial Congruency (congruent or incongruent),
and Previous-Trial Congruency (congruent or incongruent) as
within-subjects factors. A Greenhouse—Geisser correction was ap-
plied when the assumption of sphericity was violated.

Second, for the time scale analyses, the RTs were analyzed at
two consecutive (and hierarchically related) levels. At the first
level, multiple regression was performed with RT on each separate
trial as dependent variable. The regression was performed sepa-
rately for each block of trials within every participant (R and SPSS
code available in Supplemental Material). The predictors included
in the model were congruency of the current trial (C;), congruency
of the k preceding trials (C,_, where k represents the trial distance
from the current trial 7), and the interactions between current-trial
congruency and preceding-trial congruency (C,C;_,). All available
trials were included, implying that the number of trials included to
estimate each regressor depended on the trial distance that the
regressor was associated to. For example, for regressors with Trial
Distance 4 (i.e., C;_, and C,C;_,), no data is available for the first
four trials of each block, as only trials with at least four preceding
trials can be included for these regressors. This resulted in the
statistical model

RT =B+ BiC;+ . +Bx1Cimg T Br2GCimy +
+Bog+1CiCiks

when we modeled influences until K trials back. Each variable C;
could take on the value of 0 (congruent) or 1 (incongruent). Of key
interest were the effects of previous trials on the current trial,
reflected in the interaction terms C,C,_,. These interaction terms
capture the degree to which congruency on trial i — k affects
adaptation on the current trial (7). It can be considered an extension
of the CSE from one trial into the past to K trials into the past
(while controlling for the other variables in the model). First, we
performed the regressions per block type within each participant
with K = 14 to investigate how far “back in the past” previous
trials had an effect on the current trial (one-sample ¢ tests). Because
this turned out to be the case until 12 trials back, we fitted a model
with K = 12 and used this model subsequently.

At the second level, the 12 regression coefficients of the inter-
action terms (C,C;_,, k = 1. ..12) estimated by the model of Level
1 for each block type and participant were entered as dependent
variables in a linear mixed model with the continuous variable trial
distance (1-12) and the factor Block Type (neutral, MC, MI, or
volatile) as fixed predictors. We will refer to this second-level
dependent variable (C,C;_,) as the conflict adaptation weight. The
conflict adaptation weight reflects the adjustment in CE depending
on congruency on previous trials. For example, with Trial Distance
1, the conflict adaptation weight (i.e., C,C;_,) corresponds to the
standard CSE, or the adjustment of the CE based on congruency of
the directly preceding trial (while controlling for the other factors
in the model). A negative conflict adaptation weight for a distance
of 1 then indicates that this CE is smaller when the preceding trial
was incongruent (i.e., the standard CSE), whereas a positive con-
flict adaptation weight indicates that this CE is larger when the

preceding trial was incongruent (i.e., a reversed CSE). When the
trial distance is 2, a negative conflict adaptation weight indicates
that the CE is smaller when the trial two trials ago was incongru-
ent.

In the second-level analysis, the predictor trial distance was log
transformed (log trial distance) to improve fit to the nonlinear
relation between trial distance and conflict adaptation weight. This
predictor was subsequently mean-centered to allow interpretation
of the intercept (i.e., the intercept then reflects the conflict adap-
tation weight of the average log trial distance). For the second-
level block type predictor, the neutral block was taken as the
reference. The linear mixed model was extended stepwise and each
model was compared to its initial model to test for significance of
the added predictor. Akaike information criterion (Akaike, 1974)
is reported as a measure of model fit with lower values indicating
a better fit. This measure penalizes model complexity and discour-
ages overfitting, which implies that more complex models are only
favored if they explain the data substantially better than the sim-
pler model. Models were statistically compared using the likeli-
hood ratio (x?). It has been proposed to keep the random effects
structure maximal (Barr, Levy, Scheepers, & Tily, 2013). How-
ever, it has also been argued that this often results in overparam-
eterized models that fail to converge (Bates, Kliegl, Vasishth, &
Baayen, 2015), which was also the case when we fitted maximal
models. Therefore, random effects were chosen such that conver-
gence was obtained for each model in every step, which resulted in
only including a random intercept for participant. All models were
fitted using maximum likelihood in the /me4 package (Bates,
Maechler, Bolker, & Walker, 2015) for R (R Core Team, 2015).

Results

Conventional Analysis of PCE and CSE

A repeated-measures ANOVA was conducted with the within-
subject factors Block Type (neutral, MC, MI, or volatile), Con-
gruency (congruent or incongruent), and Previous-Trial Congru-
ency (congruent or incongruent). A main effect of block type was
found, F(2.39, 97.98) = 3.78, p = .020, which was due to slower
RTs in the volatile compared to the MC block, #(41) = 2.86, p =
.038. Main effects of congruency, F(1, 41) = 657.04, p < .001,
and previous-trial congruency, F(1, 41) = 9.07, p = .004, were
also observed, indicating slower responses when the current trial
was incongruent (i.e., a CE), or the previous trial was incongruent
(i.e., postconflict slowing), respectively.

Block type and congruency interacted significantly, F(2.30,
94.41) = 43.57, p < .001, indicating a PCE. To study this effect
in more detail, CEs were computed and compared between blocks
using paired sample ¢ tests (see Figure 2A). This revealed that the
CE was smallest in the MI block and increased incrementally over
the neutral, volatile, and MC block. More specifically, a smaller
CE was observed in the MI block compared to all other blocks,
respectively, neutral block, #(41) = 5.22, p < .001; volatile block,
#(41) = 8.25, p < .001; MC block, #(41) = 12.64, p < .001. A
smaller CE was also found in the neutral block compared to the
volatile block, #(41) = 4.19, p < .001, and MC block, #(41) =
13.23, p < .001. The CE was also smaller in the volatile block
compared to the MC block, #41) = 10.52, p < .001.
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Figure 2. Results of conventional and time scale analyses. (A) Congruency effects (CEs) and congruency
sequence effects (CSEs) per block type, expressed in mean inverse transformed response times (i.e., —10,000/
RT). (B) Model estimates (each pair of points connected by piecewise linearly interpolated lines) of Model 4.
Each condition is plotted after subtracting its intercept. The original scale of trial distance is displayed on the
x-axis, not log trial distance (which was included in the linear mixed models for statistical testing). This way,
the nonlinear relationship between trial distance and conflict adaptation weight is maintained in the figure. (C)
Main effect of block type (i.e., the conflict adaptation weight of the average log trial distance). Error bars
represent standard errors of the mean (A, C) or of the model prediction (B). CAW = conflict adaptation weight;
MC = mainly congruent; MI = mainly incongruent. See the online article for the color version of this figure.

No two-way interaction was found between block type and
previous-trial congruency, F(2.49, 102.06) = 0.93, p = .43, but
congruency and previous-trial congruency did interact, F(1, 41) =
138.10, p < .001, pointing at a smaller CE after an incongruent
trial than after a congruent trial, or a CSE. This CSE was modu-
lated by block type, as evident in the three-way interaction be-
tween block type, congruency, and previous-trial congruency,
F(2.56, 105.12) = 6.96, p < .001. To specity this three-way
interaction, CSEs were computed and compared between blocks
using paired sample ¢ tests (see Figure 2A). A smaller CSE was
found in the MI block compared to the volatile block, #(41) = 2.81,
p = .007, and the MC block, #(41) = 3.23, p = .002. The CSE was
also smaller in the neutral block compared to the volatile block,
#(41) = 4.12 p < .001, and the MC block, #(41) = 3.74, p < .001.
The other comparisons revealed no significant effects (both ps >
.74). One-sample ¢ tests indicated that, despite these differences
between blocks, a significant CSE was obtained in every block (all
ps < .001).

The Time Scale of Control

One-sample ¢ tests were conducted on the beta weights for the
respective interaction terms (i.e., C,C;_,, averaged across blocks
and hence orthogonal to our hypothesis) to asses significance of
each regressor’s contribution to the model. Figure 3 displays the
results of these analyses for maximal trial distance K = 14. As
evident from the figure, all trial distances up to 12, except for a
distance of 9, had a significant or marginally significant contribu-
tion. Contrarily, the regression coefficients for Trial Distances 13

and 14 did not differ from 0. Hence, regressors up to Trial Distance
12 were included in the Level 1 model, resulting in the model

RT=By+B1Ci + BoCiy + . TB13Ci—12 T B1aCiCiy + .
+B2sCiCi 1o

Table 1 displays the fitted statistical models and comparisons of
each model relative to the prior one. Results show that the model
with a main effect of log trial distance (Model 1) explained the
data better than the null model with only an intercept, x*(1) =

12

t-value
[ ]

1 1 1 1 1 1 1 1 1 ) 1 1 1 )
12345678 91011121314
Trial Distance
Figure 3. One-sample ¢ values for the interaction terms of the model of
Level 1 (K = 14), plotted as a function of trial distance. The dotted line

indicates the critical 7 value ( = 1.66) for a one-sided, one-sample 7 test
with df = 167.
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Table 1
Model Comparisons (K = 12)
Model df AIC log lik. Test X2 P
0. (Intercept) 3 9,016 —4,505
1. Log trial distance 4 8,998 —4.,445 1vs. 0 119.85 <.001
2. Block type 6 8,991 —4,490 2 vs. 0 30.55 <.001
3. Log trial distance + block type 7 8,871 —4,429 3vs. 1 32.64 <.001
3vs. 2 121.94 <.001

4. Log trial distance + block type +

log trial distance X block type 10 8,869 —4,424 4vs.3 8.48 .037
Note. AIC = Akaike information criterion; log lik. = log likelihood.

119.85, p < .001. A model with a main effect of block type (Model
2) also explained the data better than the null model, x*(3) = 30.55
p < .001. Entering both main effects in one model (Model 3)
resulted in a better model fit than a model with only log trial
distance, Model 1, x*(3) = 32.64, p < .001, or only block type,
Model 2, x*(1) = 121.94, p < .001. Allowing the main effects to
interact (Model 4) further improved model fit compared to Model
3, X*(3) = 8.48, p = .037. The regression coefficients of the
optimal Model 4 are displayed in Table 2. Figure 2B displays the
estimates of Model 4, corrected for the intercept of each condition.

To check if the conflict adaptation weight varied with trial
distance for every block type, a model with log trial distance was
compared to a model without log trial distance (i.e., the null
model) for each block type separately. This revealed that trial
distance indeed predicted the conflict adaptation weight in each
block (all ps < .01).

Planned linear contrasts (one-sided) were computed for pairwise
comparisons of the slopes (i.e., time scales) of the four conditions,
estimated by Model 4. Because the neutral block was set as the
reference level, the slope of this condition is reflected in the beta
for log trial distance. The slopes of the other three conditions are
the sums of the betas for log trial distance and each interaction
term (see Table 2). For example, the slope of the MC block equals
the slope for log trial distance plus the beta for log trial distance X
Block MC. Pairwise comparisons revealed a smaller slope for the
MI block (B = 0.37) compared to the volatile block (3 = 0.65),
z =2.02, p = .022, and the MC block (3 = 0.72),z = 2.49, p =
.006, but not compared to the neutral block (B = 0.44), z = 0.50,
p = .33. The slope in the neutral block was also smaller than the

Table 2

Coefficient Estimates (Bs) of Linear Mixed Model 4 With
Conflict Adaptation Weight Predicted by Log Trial Distance,
Block Type (Neutral, MC, MI, Volatile), and Their Interaction

Variable B (SE) t
(Intercept) —.38 (.10) —3.74
Log trial distance 44 (.10) 4.56
Block MC =71 (.14) -5.20
Block volatile —.14 (.14) —1.00
Block MI —.10 (.14) =75
Log trial distance X block MC 27 (.114) 1.99
Log trial distance X block volatile 21(.14) 1.51
Log trial distance X block MI —.07 (.14) —.50

slope of the MC block, z = 1.99, p = .023. A trend toward a
smaller slope for the neutral block compared to the volatile block
was found, z = 1.51, p = .065. The volatile and MC block did not
differ in slope, z = 0.48, p = .32. These differences in slopes are
shown in Figure 2B.

Linear contrasts were also computed for pairwise comparisons
of the main effect of each block type (i.e., the conflict adaptation
weight of the average log trial distance), estimated by Model 4 (see
Figure 2C). Here, the main effects for the MC, MI, and volatile
block are computed by adding the main effect of the neutral block
(i.e., the intercept) to the main effect of the MC, MI, or volatile
block (see Table 2). Compared to the MC block (—1.09), the main
effects were smaller (i.e., less negative) in the volatile block
(—0.52), z = 4.20, p < .001, the neutral block (—0.38), z = 5.19,
p < .001, and the MI block (—0.49), z = 4.45, p < .001. No other
contrasts for the main effect of block were significant (all ps >
.32).

Proportion Congruency Awareness

Finally, we checked whether participants were aware of the
differences in proportion congruency between blocks.' Friedman’s
ANOVA revealed that this was indeed the case, X2(3) = 66.74,
p < .001. Post hoc Wilcoxon signed-ranks test showed that the
median rating for the MI block (median rating = 3) was higher
than the median ratings for the neutral block (median rating = 2),
Z = 3.56, p < .001, the volatile block (median rating = 2), Z =
4.26, p < .001, and the MC block (median rating = 1), Z = 5.07,
p < .001. Furthermore, the median rating for the neutral and
volatile blocks were higher compared to the MC block, Z = 5.06,
p < .001, and Z = 4.56, p < .001, respectively. No difference in
rating was found between the neutral and volatile block, Z = 0.23,
p = .82

Discussion

We introduced a novel method to quantify temporal variations
in control, by extending the CSE to more remote trials and com-
puting the effects of previous trials on the current trial as a function
of trial distance. The rate at which these effects decrease with trial
distance was taken as a measure of the time scale of control, with
a more gradual decline reflecting a longer time scale.

Note. MC = mainly congruent; MI = mainly incongruent. Neutral block
type served as reference level.

! These analyses were performed on 34 participants because the rating
scores of eight participants were missing due to a technical failure.
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We observed a longer time scale in the MI block than in the MC
block, suggesting an influence from more (distant) trials when
conflict is frequent. This is in agreement with models assuming
that cognitive control is relatively more affected by remote events
when conflict is frequent (i.e., sustained control) and relatively
more by recent events when conflict is infrequent (i.e., transient
control; Botvinick et al., 2001; De Pisapia & Braver, 2006). These
models generally explain differences in control modes by adjust-
ments in time scale parameters, implying that control becomes
sustained when conflict is frequent, leaving less room for trial-by-
trial variations. The method we introduced here provides a direct
empirical measure of this dissociation.

Compared to the MC block, the neutral block also showed a
longer time scale of control, but no difference was found between
the neutral and MI block. These findings suggest that differences
in control modes between MC and MI blocks are due to a switch
to a shorter time scale in the MC block rather than to a longer time
scale in the MI block. This is in contrast with the suggestion that
cognitive control over short time scales is the default mode
(Braver, Gray, & Burgess, 2007). However, it is in agreement with
the finding that participants decrease their control in response to a
cue that indicates that the next block will be MC but do not
increase their control when cued with an upcoming MI block
(Bugg et al., 2015). Furthermore, some authors have claimed that
the relaxation of control after a congruent trial drives the CSE
more than the strengthening of control after an incongruent trial
(Lamers & Roelofs, 2011; Schlaghecken & Martini, 2011), which
also suggests that at least for some tasks, sustained control is the
default mode which is abandoned in situations where congruent
trials dominate and conflict is rare.

A smaller time scale was also found for volatile compared to MI
blocks. This can be explained by a lower conflict frequency in the
volatile (i.e., 50%) than in the MI block (i.e., 80%). A trend toward
a smaller time scale in the volatile block compared to the neutral
block was also present. The volatile block is identical to the neutral
block with regard to block-wide conflict frequency, as also con-
firmed by the similar subjective evaluation of both blocks. How-
ever, the changing proportion congruency creates an instable en-
vironment which may cause a bias toward more recent information
over remote information (Behrens et al., 2007; Jiang et al., 2014).

With regard to the conventional analyses, the overall pattern of
CSEs mirrors that of the time scales. Larger CSEs in MC and
volatile blocks compared to MI and neutral blocks were found,
matching the shorter time scales in MC and volatile blocks. Al-
though this CSE pattern suggests that trial-by-trial adaptations are
smaller when conflict is frequent or the environment is predictable,
it does not reveal how conflict on recent and remote trials is
weighted to influence current conflict processing. For example,
there may be conditions where the effect of recent conflict on the
current trial is similar (i.e., equal CSEs between conditions), yet
differences emerge in the effects of more remote trials. Our time
scale approach confirms that there is indeed a larger effect of
recent trials in MC and neutral blocks but highlights that this effect
decays rapidly with increasing trial distance, resulting in smaller
time scales of control.

Other studies that went beyond the CSE have shown before that
more distant trials influence control on the current trial. Control is
generally increased when the current trial is preceded by a series of
repeated incongruent trials (Horga et al., 2011; Jiménez & Mén-

dez, 2013). An important difference with the method introduced
here is that these studies did not directly compute the effect of
previous trials on the current trial but instead computed the accu-
mulated effect of incongruency on the three or four previous trials.
The current method is more fine-grained, and also more powerful
because it exploits more data. This makes it more suitable and
sensitive to explore differences between conditions.

It has been argued that series of (in)congruent trials create
expectation and that these expectations drive adaptation on the
current trial (Duthoo, Wiihr, & Notebaert, 2013). For example,
when incongruent trial repetitions are frequent, as is the case in MI
blocks, participants might expect another incongruent trial and
prepare control accordingly. Although this is in agreement with the
original interpretation of the CSE (Gratton et al., 1992), the exact
contribution of expectancies to cognitive control is an unresolved
issue (Jiménez & Méndez, 2013). Regardless which exact mech-
anisms drive sequential adjustments in control - expectancies,
automatic adaptation, or perhaps yet another process - the main
point of the current study is that longer-time-scale effects can be
statistically modeled and can indeed be observed.

Another open question is how longer-time-scale control is sus-
tained exactly within and between trials. One possibility is that
control is steadily sustained throughout the block both at trial
presentation and in the intervals between trials. Alternatively,
control could also be routinely activated just in time at or before
trial presentation and relaxed between trials. These two mecha-
nisms are hard to differentiate, because control is only measured at
trial presentation in most experiments. Instead, a measure in the
intertrial intervals would be needed. This could for example be
achieved by unexpectedly presenting trials within the intertrial
interval or by measuring neurophysiological markers of cognitive
control such as electroencephalographic theta power (Cavanagh &
Frank, 2014). Regardless of which mechanism is active, fluctua-
tions in control at the moment of trial presentation are minimal in
both scenarios and in that sense control is stable over trials.

One possible limitation of the method we introduced is that the
Level 1 regression models included regressors for current and
previous congruency and their interactions, but not for interactions
between intermediate trials (e.g., between C,_, and C,_,) or
higher-order interactions involving several preceding trials. A
practical reason for this restriction is to prevent overfitting the
regression models (e.g., adding all first order interactions would
expand the Level 1 model with 66 regressors). However, excluding
these terms implies that the observed time scale differences can
only be interpreted independently from intermediate interactions.
Still, it is possible that the effect of congruency on Trial i—k on
Trial i is moderated by the intermediate trials instead of affecting
Trial i directly. Future research could investigate this issue, but as
a consequence of the quickly increasing number of parameters,
will not be able to look “back in time” as far as in the current study.

Apart from our proportion congruency and volatility manipula-
tions, several other factors are likely to elicit different time scales
of cognitive control. One factor (or individual difference) that has
often be linked to differences in control mode is working memory
capacity (e.g., Gulbinaite & Johnson, 2014; Meier & Kane, 2013;
Unsworth, Redick, Spillers, & Brewer, 2012). Also, clinical con-
ditions known to affect cognitive control, such as attentional
disorders (Nigg, 2005) and schizophrenia (Lesh, Niendam, Min-
zenberg, & Carter, 2011), may exhibit difficulties with adopting
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appropriate time scales in different contexts. It has also been shown
that in healthy populations, both children and older adults have
difficulties coordinating optimal control strategies (Chevalier, 2015;
Jimura et al., 2010; Paxton, Barch, Racine, & Braver, 2008), and that
task-strategy training can reduce this bias (Braver, Paxton, Locke, &
Barch, 2009; Paxton, Barch, Storandt, & Braver, 2006). Quantifying
the time scale of control may allow more straightforward evaluation
of the factors that underlie these difficulties and the time scale may
also serve as a target for cognitive training. Future research could
also address whether explicitly instructing participants to focus on
the conflict frequency, as was the case in the current study,
influences time scale measures. Finally, the influence of associa-
tive processes and strategy learning on the time-scale of control
also remains an open question, which could be addressed by
increasing the number of stimuli and using more complex
stimulus-response mappings.

In conclusion, we have successfully applied a novel method to
identify the time scale of cognitive control. Shorter time scales of
control were demonstrated when conflict was rare and when the
context was volatile. This is in line with theories assuming tran-
sient control (i.e., control over a shorter time scale) in rare-conflict
and volatile conditions, and sustained control (i.e., control over
longer time scales) when conflict is more frequent. The method
offers promising and straightforward opportunities to quantify
variations in the time scale of control between individuals and
conditions.
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