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Abstract

Stochastic frontier models have been considered as an alternative to deterministic

frontier models in that they attribute the deviation of the output from the produc-

tion frontier to both measurement error and inefficiency. However, such merit is

often dimmed by strong assumptions on the distribution of the measurement error

and the inefficiency such as the normal-half normal pair or the normal-exponential

pair. Since the distribution of the measurement error is often accepted as being

approximately normal, here we show how to estimate various stochastic frontier

models with a relaxed assumption on the inefficiency distribution, building on the

recent work of Kneip and his coworkers. We illustrate the usefulness of our method

with data on Japanese local public hospitals.

1 Introduction

Productivity analysis consists in a series of analytical methods that allow to measure the

performance of production units in terms of output versus input. Efficiency in productivity

analysis is often defined as the ratio of the actual achieved output to the maximum

possible output from the input, assuming that the inefficiency of the unit is the cause

of its production not reaching its maximum output. However, from the recognition that

∗Noh’s research was supported by the Basic science research program through the National Research

Foundation of Korea funded by the Ministry of Education (NRF-2017R1D1A1A09000804).
†Van Keilegom’s research was supported by the European Research Council (2016-2021, Horizon

2020 / ERC grant agreement No. 694409).

1



January 4, 2019 2

many uncontrolled factors need to be considered in efficiency analysis, Aigner and Chu

(1968) and Meeusen and van den Broeck (1977) first proposed the stochastic frontier

analysis, which allows for both unobserved variation in output, the technical inefficiency

(u) of the production unit and the noise (v) which represents the effect of innumerable

uncontrollable factors.

Although the initial stochastic frontier analysis has the advantage of considering the

role of unforeseen/uncontrollable factors, it was assumed that the frontier function had a

specific parametric form such as the Cobb-Douglas and translog function. In addition, of-

ten specific parametric distributions for the inefficiency and the error were assumed. Over

the last 20 years, studies have been conducted to relax the assumption of a parametric

form of the frontier function in stochastic frontier analysis and there have been some re-

markable achievements such as Fan et al. (1996), Kumbhakar et al. (2007), Martins-Filho

and Yao (2015). However, much less research has been done on relaxing the parametric

assumption on the inefficiency and the noise. This is the starting point of our work. Since

the distribution of the noise is often accepted as being approximately normal, here we

focus on developing a method for estimating various stochastic frontier models with a

relaxed assumption on the inefficiency distribution.

In general, it is known that the estimate of firm level efficiency proposed in Jondrow

et al. (1982) is given by a monotonic function of the overall error (ε = v − u) estimate

when the noise (v) follows a normal distribution (see Ondrich and Ruggiero, 2001). Since

the ranking of the estimates of the overall error (ε) can be obtained through ordinary least

squares residuals as mentioned in Bera and Sharma (1999) and Parmeter and Kumbhakar

(2014), if the rank of the individual inefficiency is the main concern, we do not have to

pay much attention to the assumption on the inefficiency distribution. However, if our

main interest lies in the value itself of the production function or the inefficiency function

when the inefficiency is affected by other variables, then the appropriate modeling of

the inefficiency distribution becomes important. Motivated by this observation we will

discuss how to estimate the frontier function under relaxed assumptions on the inefficiency

distribution so that the estimation results become less sensitive to the specification of the

inefficiency distribution. The key idea of this paper is to extend the work in Kneip

et al. (2015), who studied the estimation of the constant frontier under the setting of our

interest. Actually, Hall and Simar (2002) considered a similar problem with a different

method but their method has the uncorrected bias depending on the magnitude of the

noise variance in the estimation of the frontier function, even in large samples. In contrast,

the method in Kneip et al. (2015) does not have such problem provided that the noise

follows a normal distribution.
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The rest of the paper is structured as follows. Section 2 briefly explains the method

of Kneip et al. (2015), which is important for understanding our proposals. Section 3

introduces our methods as an extension of Kneip et al. (2015)’s work and provides some

heuristics for the theoretical understanding of the proposed methods. We present the

small sample performance of the proposed methods in Section 4 and illustrate how the

proposed methods can be used for efficiency and productivity analysis in Section 5. Some

conclusions are given in Section 6.

2 Background

In this section, following Kneip et al. (2015) we briefly review how the constant frontier

can be reconstructed with a relaxed assumption on the inefficiency when the noise follows

a normal distribution. Suppose that we have i.i.d. observations Y1, Y2, . . . , Yn from the

model

Yi = τ exp(−Ui) · exp(Vi), i = 1, . . . , n, (1)

where τ > 0, Ui is a positive random variable that represents the inefficiency and whose

density makes a jump at the origin, and where Vi follows a normal distribution with mean

zero and unknown variance σ2. Note that Model (1) can be rewritten as

log Yi = τ + Vi − Ui, i = 1, . . . , n. (2)

Kneip et al. (2015) proposed a method to estimate τ and σ2 based on a penalized profile

likelihood. The estimation procedure can be summarized as follows.

Let g(·) and f(·) be the densities of the observed variable Yi and the latent variable

Xi = τ exp(−Ui), respectively. Note that the density f(·) is defined on [0, τ ] with f(τ) > 0.

As in Kneip et al. (2015), we use a sub-index 0 to indicate the true quantities. For all

y > 0, we can write the true density of Y ,

g0(y) =
1

σ0y

∫ 1

0

h0(t)φ

(
1

σ0

log
y

tτ0

)
dt, (3)

where h0(t) = τ0f0(tτ0) for 0 ≤ t ≤ 1 and φ(·) is the standard normal density. From

expression (3), we consider the following probability density model to estimate τ0 and σ2
0

based on Y1, Y2, . . . , Yn:

{gh,τ,σ(·) : h is a probability density on [0, 1], τ > 0, σ > 0} , (4)

where

gh,τ,σ(y) =
1

σy

∫ 1

0

h(t)φ

(
1

σ
log

y

tτ

)
dt. (5)
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Since gh,τ,σ(y) depends on the underlying density h(·), Kneip et al. (2015) considered the

approximation of h by{
hγ(t) = γ1I(t = 0) +

M∑
k=1

γkI(qk−1 < t ≤ qk) : γk > 0 for all k and
M∑
k=1

γk = M

}
, (6)

where qk = k/M (k = 0, 1, . . . ,M) and M is a pre-specified natural number. The final

density model is

ghγ ,τ,σ(y) =
1

σy

M∑
k=1

γk

∫ qk

qk−1

φ

(
1

σ
log

y

tτ

)
dt. (7)

Estimators τ̂ and σ̂ of τ0 and σ0 are obtained by maximizing the following penalized

likelihood:

(τ̂ , σ̂, γ̂) = arg max
τ>0,σ>0,γ∈Γ

{
n−1

n∑
i=1

log ghγ ,τ,σ(Yi)− λpen(ghγ ,τ,σ)

}
, (8)

where λ ≥ 0 is a fixed value independent of n, pen(ghγ ,τ,σ) = max3≤j≤M |γj−2γj−1 +γj−2|
and Γ =

{
γ = (γ1, . . . , γM)> : γk > 0 for all k and

∑M
k=1 γk = M

}
.

3 Our Proposals

In this section, building upon the work of Kneip et al. (2015), we propose how to estimate

the frontier function with a relaxed assumption on the inefficiency for three stochastic

frontier models. Additionally, we provide some heuristics for the theoretical understanding

of the proposed methods.

3.1 Linear model

Assume the stochastic frontier model with a linear frontier function

Yi = β0 + X>i β + εi = β0 + X>i β + Vi − Ui, i = 1, . . . , n, (9)

where β = (β1, . . . , βp)
> and Xi = (X1,i, . . . , Xp,i)

>. Concerning Ui and Vi, we make the

same assumption as in Kneip et al. (2015). Our interest lies in estimating both β0 and

β. Horrace and Parmeter (2011) considered the same model with the same assumption

on Vi but they tried to estimate the density of Ui with a relaxed assumption on Ui, which

is that the distribution of Ui is a member of the family of ordinary smooth densities (see

Fan, 1991).
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Since Yi = (β0 − E(Ui)) + X>i β + (Vi − (Ui − E(Ui)) with ε∗i = Vi − (Ui − E(Ui))

having zero mean, we can estimate β and β0−E(Ui) via least squares using the fact that

E(ε∗i |Xi) = 0, provided that Vi and Ui are independent of Xi. Once we have obtained

β̂, we calculate Yi − X>i β̂, which is expected to be similar to β0 + Vi − Ui. From the

observation

exp(Yi −X>i β̂) ≈ exp(β0) exp(−Ui) exp(Vi), (10)

we apply the estimation method of Kneip et al. (2015) with exp(Yi − X>i β̂) to obtain

the estimate of exp(β0) and σV =
√
V ar(Vi). After obtaining exp(β0)

∧

, we can obtain

β̂0 = log(exp(β0)
∧

), E(Ui)
∧

= β̂0 − β0 − E(Ui)
∧

, ε
∧
i = Yi − (β̂0 + X>i β̂). If we are only

interested in ranking production units or in ranking firm-specific inefficiency estimates,

the estimate β̂ is enough and we don’t need to go further with the method of Kneip et al.

(2015). However, if we have specific interest in firm level inefficiency, then it is necessary

to have the estimate ε̂i for which the distributional assumption about the inefficiency is

usually utilized. We propose here how to obtain ε̂i with the relaxed assumption on the

inefficiency. Traditionally, one estimates the firm-specific inefficiency using the formula

of E(Ui|εi) derived from the distributional assumption on Ui and Vi. In our case, instead

of using the formula of E(Ui|εi) we use the best linear predictor of Ui given εi, a + b εi,

which was analyzed in detail in Waldman (1984). A simple calculation leads to b =

−V ar(Ui)/(V ar(Ui) + V ar(Vi)) and a = E(Ui)(1 + b).

3.2 Partially linear model

Another stochastic frontier model that we would like to consider is the model that Parme-

ter et al. (2017) studied. They considered the same model as in Section 3.1 but assume

that the inefficiency is directly influenced by observable exogenous determinants, Zi:

Yi = β0 + X>i β + εi = β0 + X>i β + Vi − Ui, i = 1, . . . , n, (11)

where Vi ∼ N(0, σ2
V ), Ui ≥ 0, E(Ui|Xi, Zi) = E(Ui|Zi) = g(Zi). For simplicity, we assume

that Zi is a scalar. We will deal with the case where Zi is a vector of dimension q in

Section 3.3. Model (11) can be rewritten as

Yi = β0 + X>i β − g(Zi) + ε∗i = β0 + X>i β − g(Zi) + (Vi − (Ui − g(Zi))). (12)

Since E(ε∗i |Xi, Zi) = 0 provided Vi is independent of (Xi, Zi), we can estimate β and g(·)
using estimation techniques for partially linear models. More precisely, the conditional

mean function g(·) representing the inefficiency can be estimated up to a constant because

it is mixed up with the intercept β0. Parmeter et al. (2017) discussed that the intercept β0
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cannot be separately identified from g(Zi) but this is not a concern as differences between

g(Zi) across firms can be used as measures of relative inefficiency. However, if we would

like to evaluate the exact impact of the exogenous determinants on the inefficiency, we

have to know the value of β0 so that we can estimate the function g(·) consistently. Here

we try to estimate the exact level of β0 and g(·) applying the method in Kneip et al.

(2015). The idea is to calculate Yi − X>i β = β0 + Vi − Ui. Let β̂ be the estimator of

β obtained from the partial linear model fitting of Model (11). Then, since β̂ is
√
n-

consistent under appropriate regularity conditions, Yi − X>i β̂ is expected to be similar

to β0 + Vi − Ui. So we apply the method of Kneip et al. (2015) to estimate β0 and

σV =
√
V ar(Vi) with exp(Yi−X>i β̂) as in Section 3.1. In our simulation, we implemented

the method in Speckman (1988) to estimate the partially linear model but used two

smoothing parameters as proposed in Aneiros-Pérez et al. (2004). We chose the two

smoothing parameters based on generalized cross-validation.

3.3 Partially linear single-index model

In this section, we consider a similar stochastic frontier model to the one in Section 3.2

but we assume that there is more than one observable determinant which affects the

inefficiency, i.e. Zi = (Z1,i, . . . , Zq,i) ∈ Rq. In this case, we could consider various models

for g(Zi) such as additive models, single-index models and so on. Here we consider the

single-index model where g(Zi) can be expressed as g1(Z>i α) for a certain univariate

function g1(·) and a q-dimensional vector α. Specifically, our stochastic frontier model

can be written as

Yi = β0 + X>i β + εi = β0 + X>i β + Vi − Ui, i = 1, . . . , n, (13)

where E(Ui|Xi,Zi) = E(Ui|Zi) = g1(Z>i α). A more convenient form for estimation is

Yi = β0 + X>i β − g1(Z>i α) + ε∗i = β0 + X>i β − g1(Z>i α) + (Vi − (Ui − g1(Z>i α))). (14)

Since E(ε∗i |Xi,Zi) = 0 provided Vi is independent of (Xi, Zi), we can estimate β, g1(·) (up

to a constant) and α using estimation techniques for partially linear single-index models.

Following the same idea as in Sections 3.1 and 3.2, we can estimate β0 and σV =
√
V ar(Vi)

from application of the method of Kneip et al. (2015) to exp(Yi−X>i β̂). In our simulation,

we implemented the method in Liang et al. (2010) to estimate the partially linear single-

index model. We used 5-fold cross-validation to choose the bandwidth for the single-index

estimation.
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3.4 Theoretical understanding of the proposed methods

Let us now look at some asymptotic properties of the proposed estimators. Following

the results in Kneip et al. (2015) we first need to show that H2(ĝ, g0) = OP (M−2
n ) (see

their Theorem 3.1), where for any densities g1 and g2 the Hellinger distance H2(g1, g2) is

defined by

H2(g1, g2) =
1

2

∫ (√
g1(y)−

√
g2(y)

)2
dy,

and where ĝ = ghγ̂ ,τ̂ ,σ̂ and M = Mn is the number of grid points used to estimate

the function h. To prove that Theorem 3.1 in Kneip et al. (2015) remains valid in our

context, we need to check what changes in the proof of this theorem when Yi is replaced

by Yi −X>i β̂. Since β̂ converges to β with parametric rate, it can be seen that β̂ does

not disturb the rate of H2(ĝ, g0), and so the result of Theorem 3.1 in Kneip et al. (2015)

remains valid provided the regularity conditions (A1)-(A4) hold true. Next, Theorem 3.2

in Kneip et al. (2015), which states the main result of the paper, namely that

σ̂V − σV = OP ((log n)−2) and β̂0 − β0 = OP ((log n)−3/2)

remains valid in our context since it only requires that the result of Theorem 3.1 is valid.

In particular, our estimator β̂0 has a logarithmic rate of convergence, as in the case where

the variance σ2
V would be known.

4 Simulation Evidence

In this section, we present the small sample performance of the proposed methods.

4.1 Simulation setup

Our data generating process follows the simple stochastic frontier model:

Yi = β0 + β1 log I1,i + β2 log I2,i + Vi − Ui, i = 1, . . . , n,

where X1,i = log I1,i, X2,i = log I2,i. For all the settings below, Vi is distributed i.i.d.

N(0, σ2
V ). The vector (I1,i, I2,i,W1,i,W2,i) is i.i.d. multivariate normal with all the corre-

lations being ρ = 0.5. The mean vector for the covariates is (4, 8, 0, 0) and all four random

variables have unit variance. We define observable determinants as Z1,i = Φ(W1,i) and

Z2,i = Φ(W2,i), where Φ(·) is the distribution function of a standard normal variable.
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To generate the inefficiency Ui, we consider a positive random variable U∗i , which fol-

lows an exponential distribution Exp(λ) or a half-normal distribution N+(µ, σ2). Here,

U∗i ∼ Exp(λ) means that the density of U∗i is

fU∗(u) = λ−1 exp(−λ−1u)I(u > 0),

and U∗i ∼ N+(µ, σ2) means that the density of U∗i is given as

fU∗(u) =
Φ−1(µ/σ)√

2πσ
exp

{
−1

2

(
u− µ
σ

)2
}
I(u > 0).

We consider three scenarios for U∗i : (1) N+(0, 0.52) (2) N+(0.25, 0.42) (3) Exp(0.3014).

Depending on the type of model of interest, we define Ui as a function of U∗i , Z1,i and Z2,i.

Finally, we set the vector of β’s as β0 = 5, β1 = 1.5 and β2 = 2 and choose σV = ρntsσU

with ρnts = 0.05, 0.25, 0.5 and σU =
√
V ar(Ui).

4.1.1 Linear model

For this model, we simply let Ui = U∗i .

4.1.2 Partially linear model

In this model, we define the inefficiency Ui as Ui = 0.2 exp(Z1,i)U
∗
i . Hence, g(Z1,i) =

E(Ui|Xi, Z1,i) = 0.2E(U∗i ) exp(Z1,i) provided U∗i is independent of (Xi, Z1,i).

4.1.3 Partially linear single-index model

In this model, we define the inefficiency Ui as Ui = sin(
√

2Z1,i +
√

2Z2,i)U
∗
i . Hence,

g(Z1,i, Z2,i) = E(Ui|Xi, Z1,i, Z2,i) = E(U∗i ) sin(
√

2Z1,i +
√

2Z2,i) provided U∗i is indepen-

dent of (Xi, Z1,i, Z2,i).

4.2 Evaluation of the performance of β̂0 and σ̂V

For the three simulation models, we perform 500 Monte Carlo experiments with n equal

to 100, 200 or 400, and ρnts equal to 0.05, 0.25 or 0.5. In Table 1 to Table 18 we

display the Root Mean Squared Error (RMSE) of β̂0 and σ̂V over the grid log10 λ =

−4,−3,−2,−1, 0, 1, 2, 3, 4 for the three models. The quantity log10 λ
∗ is the value of

log10 λ that gives the smallest RMSE. For the number of bins, we used the rule M =

max(3, 2 × round(n1/5)) as in Kneip et al. (2015). Here, round(a) means the nearest

integer to a.
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The tables show that the performance is as expected: when the sample size increases

the performance of the estimators improves for both β0 and σV . When increasing the

noise from ρnts = 0.05 to 0.50, the performance deteriorates. This effect is stronger for

estimating β0 than for estimating σV as observed in Kneip et al. (2015). Finally, the

selection of the penalty parameter λ seems not to be crucial for the performance. This

phenomenon will also be observed in our data analysis in Section 5.
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4.3 Comparison with the fully nonparametric method

For estimation of the frontier function in the linear model of Section 4.1.1, we can consider

the fully-nonparametric estimation method proposed by Kneip et al. (2015), which relies

on some “local linear” approximation of the frontier function. Hence, we would like to

compare our proposal with their method. For comparison, we consider the same model

as in Section 4.1.1. In our method, we first obtain the estimates β̂0 and β̂ and construct

the estimate of the frontier function as τ̂(Xi) = β̂0 + X>i β̂. In contrast, Kneip et al.

(2015) estimate nonparametrically the frontier function at a given point Xi combining

the idea of local linear approximation and the recovery of a constant frontier function

in the presence of measurement error. Since both function estimators are presumably

expected to have the same logarithmic rates of convergence, one may think that our

method and the method of Kneip et al. (2015) will not show a significant difference in

estimation performance. To check this, we estimate the frontier function at every data

point Xi and calculate n−1
∑n

i=1(τ̂(Xi) − τ(Xi))
2 as a measure of performance. The

sample size n equals 100, 200 or 400 and ρnts is fixed to 0.5. For the inefficiency we use

Ui ∼ N+(0, 0.52). The other components of the model are the same as in the model of

Section 4.1.1. Finally, we display the performance measure for the two estimation methods

over the grid log10 λ = −4,−3,−2,−1, 0, 1, 2, 3, 4 in Table 19 (the quantity log10 λ
∗ is the

value of log10 λ that gives the best performance). The results suggest that our method has

better performance than Kneip’s method when the frontier function is linear. However,

the difference in performance gets smaller as the sample size increases.
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5 Data Analysis

In this section, we illustrate how the proposed methods can be used for efficiency and pro-

ductivity analysis. We will analyze an administrative dataset for financial variables and

selected characteristics of Japanese local public hospitals, which is available in the R pack-

age rDEA, and we will estimate the inefficiency function of the observable environmental

variable using the method described in Section 3.2.

The dataset contains anonymous observations for 958 local public hospitals, identified

by a researcher-generated variable “firm-id”. The output variable (Yi) is the logarithm

of the sum of the annual number of inpatients and outpatients, where an inpatient is a

hospital patient who occupies a bed for at least one night and an outpatient is a patient

who receives treatment at a hospital but does not spend the night there. The two input

variables (X1,i and X2,i) are the logarithm of the total labor cost per year (total number of

employees times per capita annual salary) and the logarithm of the total capital cost (total

number of beds times the sum of depreciation and interest per bed). The environmental

variable (Zi) is the number of examinations per patient, which represents the severity of

the illness in which each hospital is primarily responsible for treatment. We assume the

following partially linear model in Section 3.2 for this dataset:

Yi = β0 + β1X1,i + β2X2,i + Vi − Ui
= β0 + β1X1,i + β2X2,i − g(Zi) + (Vi − (Ui − g(Zi)))

≡ β0 + β1X1,i + β2X2,i − g(Zi) + ε∗i , (15)

where Ui is the inefficiency, Vi ∼ N(0, σ2
V ) is the noise that is supposed to be indepen-

dent of (X1,i, X2,i, Zi) and E(Ui|Xi, Zi) = E(Ui|Zi) = g(Zi) is the inefficiency function.

Since some hospitals are known to have characteristics that are different from those of

other hospitals in this dataset, we conduct outlier detection and remove 26 observations

before fitting Model (15). The method used for outlier detection consists in first ob-

taining the residuals by fitting the partially linear median regression model to the data

(Yi, X1,i, X2,i, Zi), and then doing univariate outlier detection based on the residuals ap-

plying the methods available in the R package extremevalues.

First, we estimate β1 and β2 using the method in Speckman (1988), which yields

β̂1 = 0.240 and β̂2 = 0.500. Then, we estimate β0 using the method outlined in Section

3.2 and obtain the estimates of β0 given in Table 20, depending on the tuning parameter

λ. After estimating β0 by the average value of all β̂0(λ), which is -3.106, we estimate the

inefficiency function g(·) using local linear regression. In Figure 1, we plot the estimate of

the inefficiency function g(Zi) using our method (solid curve) and the method of Parmeter
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log10 λ -4 -3 -2 -1 0 1 2 3 4

β̂0(λ) -3.184 -2.283 -3.309 -3.257 -3.184 -3.184 -3.184 -3.184 -3.184

Table 20: The estimates of β0 depending on the tuning parameter λ.

0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 1: The estimates of the inefficiency function g(·). The solid curve is obtained using

our method and the dotted one is from Parmeter et al. (2017) assuming β0 = 0.

et al. (2017) assuming β0 = 0 (dotted curve). As expected, in both cases the inefficiency

function increases as the severity of illness increases (actually, the two estimated curves

have only a constant difference). The result suggests that if we ignore β0 by assuming

that β0 = 0, then we overestimate the level of the inefficiency function. In this aspect,

our method provides a useful tool to evaluate the impact of the exogenous determinants

on the inefficiency without stringent assumptions on the inefficiency.

6 Conclusion

This paper proposes a new method to estimate various stochastic frontier models with

a relaxed assumption on the inefficiency distribution. Previous research relied on the

work of Hall and Simar (2002), which is known to work well in low noise settings only.

Instead, we proposed estimators building on the recent work of Kneip and his coworkers

and showed in the numerical study that the proposed methods work well for various levels

of the noise.
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