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Abstract. A number of tests have been proposed for assessing the location-scale assumption that
is often invoked by practitioners. Existing approaches include Kolmogorov-Smirnov and Cramér-
von-Mises statistics that each involve measures of divergence between unknown joint distribution
functions and products of marginal distributions. In practice, the unknown distribution functions
embedded in these statistics are typically approximated using non-smooth empirical distribution
functions. In a recent article, Li, Li & Racine (2017) establish the benefits of smoothing the
empirical distribution function for inference, though their theoretical results are limited to the
case where the covariates are observed and the distributions unobserved, while in the current
setting some covariates and their distributions are unobserved (i.e., the test relies on population
error terms from a location-scale model) which necessarily involves a separate theoretical approach.
We demonstrate how replacing the non-smooth distributions of unobservables with their kernel-
smoothed sample counterparts can lead to substantial power improvements, and extend existing
approaches to the smooth multivariate and mixed continuous and discrete data setting in the
presence of unobservables. Theoretical underpinnings are provided, Monte Carlo simulations are
undertaken to assess finite-sample performance, and illustrative applications are provided.

1. Introduction

Assuming independence of the predictors and error in a location-scale regression model is a

common assumption. The independence assumption is for instance needed for certain bootstrap
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2 THE POWER OF SMOOTHING

procedures (see Neumeyer (2008), Neumeyer (2009), Neumeyer & Van Keilegom (2018)). There

is also an extensive literature on testing procedures that use the independence between the error

and the covariates, and that are based on a comparison between a nonparametric estimator of the

error distribution and an estimator under the null hypothesis. We refer for instance to Van Keile-

gom, González-Manteiga & Sánchez-Sellero (2008) and Dette, Neumeyer & Van Keilegom (2007)

for goodness-of-fit tests for the parametric form of the regression and the variance function, respec-

tively, to Pardo-Fernández, Van Keilegom & González-Manteiga (2007) for tests for the equality of

regression curves, and to Escanciano, Pardo-Fernández & Van Keilegom (2018) for distribution-free

tests in this context. A testing procedure for the location-scale structure having high power would

be particularly appealing.

A variety of tests have been proposed for assessing the appropriateness of the location-scale

assumption that is often invoked in applied settings; see by way of illustration Akritas & Van Kei-

legom (2001) and Racine & Li (2017), who adopt the location-scale framework, and see Einmahl &

Van Keilegom (2008), Birke, Neumeyer & Volgushev (2017) and Neumeyer, Noh & Van Keilegom

(2016) for various approaches that have been proposed to test the location-scale assumption in

a range of settings. These approaches employ test statistics that are based on conditional mean

models, in particular, the di↵erence between the joint distribution of the predictor and error and

the product of the marginal distributions of the predictor and error, and include the Kolmogorov-

Smirnov (Kolmogorov 1933, Smirnov 1948), Cramér-von-Mises (Cramér 1928, von Mises 1928) and

Anderson-Darling (Anderson & Darling 1952) statistics, among others. In this literature, the un-

known joint and marginal distributions are estimated using the respective non-smooth empirical

distribution functions (EDFs). However, it turns out that substantial power gains can be realized

by replacing the non-smooth EDFs with their kernel-smoothed counterparts. We demonstrate that

we retain all of the desirable features of this testing framework yet can realize substantial improve-

ments to existing procedures from the vantage point of finite-sample power without impacting size.

Though we consider inference for location-scale models, the results contained herein are of broad

applicability and ought to appeal to a wide audience, particularly practitioners concerned with

power properties associated with this popular class of test statistics.
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The remainder of this paper proceeds as follows: Section 2 outlines the location-scale framework

and the proposed smooth testing procedure; Section 3 and Section 4 present the theoretical un-

derpinnings of the proposed approach; Section 5 presents simulation evidence that demonstrates

power gains achievable by a fully data-driven implementation of the proposed approach; Section

6 considers an illustrative application, while Section 7 presents some concluding remarks. The

proofs of the main results are given in Appendix A, while detailed tables outlining power gains are

presented in Appendix B and C.

2. Methodology

Consider a smooth location-scale model of the form

Y = µ(X) + �(X)✏,

where µ(·) and �(·) � 0 are unknown smooth location and scale functions, X is a vector of pre-

dictors, and ✏ has zero mean, unit variance, and is otherwise an unknown error process with

distribution F✏ that is independent of X. We observe n independent copies of (XT, Y ), denoted by

(XT
1 , Y1), . . . , (X

T
n , Yn).

The location-scale assumption is often invoked as it confers a number of useful properties on

the resulting estimator, including i) simpler asymptotic properties than its unstructured counter-

part,1 ii) the ability to nonparametrically estimate the error distribution at a
p
n-rate (Akritas &

Van Keilegom 2001, Escanciano & Jacho-Chávez 2012), and iii) more e�cient estimation of the

conditional distribution of Y given X than its unstructured counterpart.

Even though the independence of the predictors X and error ✏ is a common assumption (see e.g.,

Akritas & Van Keilegom (2001) and Racine & Li (2017)), particularly in Econometrics, it might

be too strong, hence a testing procedure having high power is particularly appealing. For what

follows, we define FX(x) = P (X  x), F✏(t) = P (✏  t), and FX,✏(x, t) = P (X  x, ✏  t), and we

let

H0 : X and ✏ are independent.

1By ‘unstructured’ we mean a model of the form Yi = µ(Xi) + ✏i with E(✏i|Xi) = 0.
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Consider by way of illustration the test of Einmahl & Van Keilegom (2008) which can be used

to assess the adequacy of the location-scale assumption. In essence, Einmahl & Van Keilegom

(2008) test for independence between the predictors X and error ✏ in the location-scale model

Y = µ(X) + �(X)✏. Given kernel estimates of µ(x) = E(Y |X = x) and �2(x) = V (Y |X = x),

denoted µ̂(x) and �̂2(x), one tests for independence of Xi and ✏̂i = (Yi � µ̂(Xi))/�̂(Xi) using, for

instance, a Kolmogorov-Smirnov test statistic of the form

(1) TKS =
p
n sup

x,t
|F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t)|,

where F̂X,✏̂(x, t), F̂X(x) and F̂✏̂(t) are the respective EDFs. The empirical support, i.e., the Xi and

✏̂i, are used when computing the supremum in applied settings. Due to the inadequacy of using the

asymptotic distribution of TKS for inference, a simple bootstrap procedure is used instead to obtain

the null distribution from which nonparametric P -values can readily be obtained. This procedure

can be easily modified to test for the validity of a homoskedastic model Yi = µ(Xi)+✏i with ✏i being

independent of Xi, which is also a common assumption in Econometrics, or to test the validity of a

transformation model of the form �(Yi) = µ(Xi) + �(Xi)✏i as outlined in Neumeyer et al. (2016),

where �(·) is some parametric monotone transformation. See Neumeyer (2008) who demonstrate

consistency of the bootstrap in the kernel-smoothed case, while Neumeyer & Van Keilegom (2018)

address the open question of whether a classical non-smooth residual bootstrap is asymptotically

valid in this context, and show that the non-smooth residual bootstrap is consistent.

We note in passing that the Cramér-von-Mises statistic, which is also popular in applied settings,

is given by

TCM = n

Z Z �
F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t)

�2
dF̂X(x) dF̂✏̂(t).

We propose replacing the EDFs in these statistics with their kernel-smoothed counterparts and

the unknown error term with its kernel estimate using an approach similar to Li et al. (2017)

that is briefly described below. One major di↵erence between the results established here and

those in Li et al. (2017) is that, here, some covariates and distributions involve unobserved error

terms that need to be estimated by ✏̂i = (Yi � µ̂(Xi))/�̂(Xi), which results in markedly di↵erent

asymptotics and finite sample performance from that reported in Li et al. (2017). Like Li et al.

(2017), our approach is multivariate in nature and allows for mixed datatypes, but the presence
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of unobservables leads to results that to the best of our knowledge have not been exploited in the

literature. Related work includes Conover (1999, pp. 396–406) who considers a smooth two-sample

Kolmogorov-Smirnov test,2 Bowman, Hall & Prvan (1998) who consider bandwidth selection for

univariate kernel smoothed CDFs and Wang et al. (2013) who consider a plug-in bandwidth proce-

dure for smooth univariate kernel smoothed CDFs with a focus on the construction of simultaneous

confidence bands.

2.1. Kernel Estimation of FX(x), F✏(t), and FX,✏(x, t) with Mixed Data. Though Einmahl

& Van Keilegom (2008) and others restrict attention to the scalar predictor case, in applied set-

tings one would expect to encounter multivariate predictors that, in addition, might consist of

both discrete and continuous datatypes. Though the Kolmogorov-Smirnov and Cramér-von-Mises

statistics were developed under the assumption that the random variables possessed continuous

distributions F (·) and have been extended to instead admit discrete distributions (Conover 1972,

Gleser 1985, Choulakian, Lockhart & Stephens 1994, Lockhart, Spinelli & Stephens 2007), to the

best of our knowledge they are unable to handle the multivariate mix of continuous and discrete

data often found in regression settings. Our approach tackles this shortcoming by leveraging recent

work on nonparametric kernel estimation of distributions involving a mix of discrete and continuous

variables.

Li et al. (2017) propose an estimator of a joint distribution function defined over a mix of observed

continuous and discrete random variables, which we will explain by means of the vector of covariates

X. We suppose that Xj (j = 1, . . . , n) is a (q + r)-dimensional vector of covariates, consisting of q

continuous covariates denoted by Xc
j = (Xc

j1, . . . , X
c
jq) and r (ordered) discrete covariates denoted

by Xd
j = (Xd

j1, . . . , X
d
jr). Likewise, X consists of a q-dimensional vector of continuous covariates

Xc
1, . . . , X

c
q and an r-dimensional vector of discrete covariates Xd

1 , . . . , X
d
r . The support of X is

denoted by RX = RXc ⇥RXd , where RXc is supposed to be a compact subset of Rq. We consider

smooth kernel-based estimators of FX(x) = P (X  x) = P (Xc  xc, Xd  xd) (where inequalities

should be understood componentwise).

2This approach compares two kernel smoothed univariate distributions; see the function KS.test in the R package
Qiu (2014) which implements this procedure using Wang, Cheng & Yang’s (2013) plug-in bandwidth and uses the
asymptotic distribution for critical values which is known to be problematic.
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We consider discrete variables distributed over a finite grid, and without loss of generality assume

that Xd
js takes values in {0, 1, . . . , cs � 1} (s = 1, . . . , r), where cs � 2 is a positive integer. Let

�s denote the bandwidth for the s-th discrete variable. We use the kernel function l(xds , X
d
js,�s) =

⌘s
P

zdsxd
s
�
|Xd

js�zds |
s , with �0

s = 1, 00 = 1, �s 2 [0, 1], and ⌘s a normalizing factor such that l(cs �

1, cs� 1,�s) = 1. Write the product (discrete variable) cumulative kernel function as L�(xd, Xd
j ) =

Qr
s=1 l(x

d
s , X

d
js,�s).

Let hs be the bandwidth associated with Xc
s (s = 1, . . . , q). The product cumulative kernel func-

tion used for the continuous variables is given by Kh(xc, Xc
j ) =

Qq
s=1

R xc
s

�1 h�1
s k((zcs �Xc

js)/hs) dz
c
s,

where k(·) is a univariate density kernel function for a continuous variable such as the stan-

dard Epanechnikov or Gaussian kernel function.3 The cumulative kernel function for the vec-

tor of mixed variables is simply the product of Kh(·) and L�(·) defined above and is given by

G�(x,Xj) = Kh(xc, Xc
j ) ⇥ L�(xd, Xd

j ), where � = (h,�). Li et al. (2017) consider the mixed-

datatype kernel estimator of FX(x) defined by

(2) F̂X(x) =
1

n

nX

j=1

G�(x,Xj).

Next, to estimate F✏(t), we assume that ✏ is continuous and hence F✏(t) can be estimated by

a (univariate) continuous cumulative kernel estimator. However, unlike the case considered by Li

et al. (2017), ✏ is not observed, so we first need to estimate it. To estimate µ(x) and �(x), we use

local polynomial smoothing for the continuous covariates (see Fan & Gijbels (1996) or Ruppert &

Wand (1994), among others), and for the discrete covariates, we use a variation on Aitchison &

Aitken (1976)’s kernel function defined by

v(xds , X
d
js, ⌫s) =

8
<

:
1 if xds = Xd

js

⌫s otherwise.

The range of ⌫s is [0, 1]. Note that when ⌫s = 0 the above kernel function becomes an indicator

function, and when ⌫s = 1, it is a constant function. The product kernel function for the vector xd

3As noted by a referee, by working with kernel estimators we obtain a test that is not invariant to transformations of
the regressors. A remedy could be to replace k((xc

s �Xc
s)/hs) by nearest neighbor windows of the form k((F̃Xc

s
(xc

s)�
F̃Xc

s
(Xc

s))/hs), where F̃Xc
s
is the non-smoothed empirical distribution of Xc

s . It is clear that this is invariant under
any monotone transformation of Xc

s .
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of discrete covariates is then given by

V⌫(x
d, Xd

j ) =
rY

s=1

⌫
1�1(xd

s=Xd
js)

s .

Combining this with local polynomial smoothing of the continuous covariates (of which the order

p will depend on the dimension q and will be determined later – see assumption (A2) in Appendix

A), we define µ̂(x) = �̂0, where �̂0 is the first component of the vector �̂, which is the solution of

the local minimization problem

(3) min
�

nX

j=1

n
Yj � Pj(�, x

c, p)
o2

qY

s=1

1

gs
k
⇣xcs �Xc

js

gs

⌘
V⌫(x

d, Xd
j ),

where Pj(�, xc, p) is a polynomial of order p built up with all 0  k  p products of factors of

the form Xc
js � xcs (s = 1, . . . , q). The vector � is the vector of length

Pp
k=0 q

k, consisting of all

coe�cients of this polynomial. Here, g = (g1, . . . , gq) is a q-dimensional bandwidth vector. To

estimate �2(x), define �̂2(x) = �̂0, where �̂0 is defined in the same way as �̂0, but with Yj replaced

by (Yj � µ̂(Xj))2 in (3) (j = 1, . . . , n).

Then, let ✏̂j = (Yj � µ̂(Xj))/�̂(Xj) be the j-th residual, and define

(4) F̂✏̂(t) =
1

n

nX

j=1

Z t

�1

1

b
k
⇣s� ✏̂j

b

⌘
ds,

where b = bn is the bandwidth for smoothing the residuals. Finally, let

(5) F̂X,✏̂(x, t) =
1

n

nX

j=1

G�(x,Xj)

Z t

�1

1

b
k
⇣s� ✏̂j

b

⌘
ds

be an estimator of the joint distribution FX,✏(x, t) of (X, ✏).

Bandwidth selection proceeds via minimization of a cross-validation function, which we explain

for the distribution FX (for F✏ and FX,✏ similar ideas apply):

(6) CV (�) =
1

nnj

nX

i=1

njX

j=1

n
111(Xi  xej)� F̂X,�i(x

e
j)
o2

,

where xej , j = 1, . . . , nj , denotes evaluation points, and where F̂X,�i(x) is the estimator defined

in (2) except that the i-th data point is removed from the sample. The number of evaluation
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points can be fixed at, say, nj = 100. This grid of evaluation points plays a role not unlike the

number/position of points used for numerical integration. Under quite general conditions and using

the cross-validated bandwidths, Li et al. (2017) obtain the result that

p
n

 
F̂X(x)� FX(x)� 2

2

qX

s=1

h2s
@2

@(xcs)
2
FX(x)�

rX

s=1

�sBs(x)

!
d�! N(0, V ),

where V = F (x)(1� F (x)), 2 =
R
u2k(u) du, and

(7) Bs(x) = EXd

h X

zdxd

111(Xd
�s = zd�s)P (Xd

s = zds )FXc|Xd(xc|Xd)
i
,

with FXc|Xd(xc|xd) the conditional distribution of Xc given Xd, Xd
�s contains all components of Xd

except the s-th component, and equalities and inequalities should be understood componentwise.

Li et al. (2017) deliver a smooth nonparametric estimator that, like its non-smooth EDF counter-

part, achieves a dimension-free
p
n rate of convergence. The important point to note is that when

the underlying distribution is itself smooth, the kernel estimator is capable of delivering estimators

that outperform their non-smooth counterparts in finite-sample settings; see Li et al. (2017) for

details. In a typical location-scale model with a continuous response and predictor, smoothness of

the joint and marginal distributions of the predictor and error term can be safely assumed in a

wide range of applications.

3. Asymptotic Properties

We start with a preliminary result that gives an iid representation for the estimators F̂X(x),

F̂✏̂(t) and F̂X,✏̂(x, t). The regularity conditions mentioned below, as well as the proofs of the results

of this section, can be found in Appendix A.

Define 2 =
R
u2k(u) du, and more generally for p � 0, let p+1 be the first element of the vector

S�1(sp+1, . . . , s2p+1)T , where S is the (p+ 1)⇥ (p+ 1) matrix whose (i, j)-th entry is si+j�2, with

sj =
R
ujk(u) du. Also, let

Cs(x) =
X

zd

h
1(zds 6= xds)

Y

t 6=s

1(zdt = xdt )µ(x
c, zd)� µ(x)

i
fX(xc, zd),
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Ds(x) =
X

zd

h
1(zds 6= xds)

Y

t 6=s

1(zdt = xdt )�
2(xc, zd)� �2(x)

i
fX(xc, zd),

for s = 1, . . . , r, where fX(x) is the joint probability density function of X.

Theorem 1. Assume (A1)–(A6). Then, under H0 and for any x and t,

F̂X(x)� FX(x) =
1

n

nX

i=1

111(Xi  x)� FX(x) +
2
2

qX

s=1

h2s
@2FX(x)

@(xcs)
2

+
rX

s=1

�sBs(x) +Rn,X(x),

F̂✏̂(t)� F✏(t) =
1

n

nX

i=1

h
1(✏i  t)� F✏(t) + f✏(t)

n
✏i +

t

2
(✏2i � 1)

oi

+ f✏(t)

Z
1

�(z)

n p+1

(p+ 1)!

qX

s=1

gp+1
s

@p+1

@(zcs)
p+1

µ(z) +
rX

s=1

⌫sCs(z)
o
dFX(z)

+
t

2
f✏(t)

Z
1

�2(z)

n p+1

(p+ 1)!

qX

s=1

gp+1
s

@p+1

@(zcs)
p+1

�2(z) +
rX

s=1

⌫sDs(z)
o
dFX(z)

+
2
2
b2f 0

✏(t) +Rn,✏(t),

F̂X,✏̂(x, t)� FX,✏(x, t) =
1

n

nX

i=1

h
111(Xi  x, ✏i  t)� FX,✏(x, t) + f✏(t)111(Xi  x)

n
✏i +

t

2
(✏2i � 1)

oi

+ f✏(t)

Z x

�1

1

�(z)

n p+1

(p+ 1)!

qX

s=1

gp+1
s

@p+1

@(zcs)
p+1

µ(z) +
rX

s=1

⌫sCs(z)
o
dFX(z)

+
t

2
f✏(t)

Z x

�1

1

�2(z)

n p+1

(p+ 1)!

qX

s=1

gp+1
s

@p+1

@(zcs)
p+1

�2(z) +
rX

s=1

⌫sDs(z)
o
dFX(z)

+
2
2

qX

s=1

h2s
@2FX(x)

@(xcs)
2

F✏(t) +
rX

s=1

�sBs(x)F✏(t) +
2
2
b2FX(x)f 0

✏(t)

+Rn,X,✏(x, t),

where supx2RX
|Rn,X(x)| = oP (n�1/2), supt2R |Rn,✏(t)| = oP (n�1/2) and supx2RX ,t2R |Rn,X,✏(x, t)| =

oP (n�1/2).

An immediate consequence of this theorem is the following corollary. Note that instead of

assuming condition (A3) which says that h, � and b should tend to zero su�ciently fast, we only

require that h, �, and b ! 0. This is because the bias coming from the smoothing of the empirical

distribution functions disappears in the formula of F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t).
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Corollary 2. Assume h,�, b ! 0, (A1)-(A2) and (A4)-(A6). Then, under H0 and for any x and

t,
p
n
�
F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t)

�
=

1p
n

nX

i=1

H(Xi, ✏i, x, t) + b(x, t) +Rn(x, t),

where

H(Xi, ✏i, x, t) = 111(Xi  x, ✏i  t)� FX,✏(x, t)� F✏(t)
�
111(Xi  x)� FX(x)

 

� FX(x)
�
1(✏i  t)� F✏(t)

 
+ f✏(t)

�
111(Xi  x)� FX(x)

 n
✏i +

t

2
(✏2i � 1)

o
,

b(x, t) = f✏(t)

Z �
111(z  x)� FX(x)

� 1

�(z)

n p+1

(p+ 1)!

qX

s=1

cp+1
g,s

@p+1

@(zcs)
p+1

µ(z) +
rX

s=1

c⌫,sCs(z)
o
dFX(z)

+
t

2
f✏(t)

Z �
111(z  x)� FX(x)

� 1

�2(z)

n p+1

(p+ 1)!

qX

s=1

cp+1
g,s

@p+1

@(zcs)
p+1

�2(z) +
rX

s=1

c⌫,sDs(z)
o
dFX(z),

and supx2RX ,t2R |Rn(x, t)| = oP (1).

Remark 3. Note that some of the bias terms appearing in Theorem 1 cancel out in Corollary 2.

Indeed, the biases arising from smoothing the distribution functions F̂X(x), F̂✏̂(t) and F̂X,✏̂(x, t),

disappeared in Corollary 2. Hence, the asymptotic representation of
p
n
�
F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t)

�
is

the same as in the case where the empirical distributions are not smoothed (see Einmahl & Van Kei-

legom (2008)). However, inspection of the proof of Theorem 2.2 in the latter paper reveals that their

iid expansion of
p
n
�
F̂X,✏̂(x, t) � F̂X(x)F̂✏̂(t)

�
does not contain the term f✏(t)n�1/2Pn

i=1

�
111(Xi 

x)�FX(x)
 �

✏i+
t
2(✏

2
i � 1)

 
that shows up in the formula of n�1/2Pn

i=1H(Xi, ✏i, x, t) given above.

This is because the second statement in their Lemma A.1 is wrong, in the sense that the expression

on the left hand side is not centered, and so it is certainly not oP (n�1/2). The correct version of

their Theorem 2.2 can be obtained from Corollary 4 below by using undersmoothing of the bandwidth

g1 (and taking q = 1 and r = 0).

We are now ready to state the weak convergence of
p
n
�
F̂X,✏̂�F̂X F̂✏̂

�
as a process in `1(RX⇥R),

and the limiting distribution of our test statistics TKS and TCM . Here, `1(RX ⇥R) is the set of

bounded functions from RX ⇥R to R, equipped with the uniform norm.

Corollary 4. Assume h,�, b ! 0, (A1)-(A2) and (A4)-(A6).
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(i) Under H0, the process
p
n
�
F̂X,✏̂(x, t) � F̂X(x)F̂✏̂(t)

�
converges weakly in `1(RX ⇥R) to a

Gaussian process Z(x, t) with mean function b(x, t) and covariance function

Cov
�
Z(x1, t1), Z(x2, t2)

�
= E

⇥
H(X, ✏, x1, t1)H(X, ✏, x2, t2)

⇤

for x1, x2 2 RX and t1, t2 2 R.

(ii) Under H0,

TKS
d! sup

x2RX ,t2R
|Z(x, t)| and TCM

d!
Z Z

Z2(x, t) dFX(x) dF✏(t).

4. Second Order Properties

We now analyze the source of the power gains that arise from smoothing by considering higher

order expansions (we are grateful to an anonymous referee who suggested that we address this

issue). Below we demonstrate that the smoothed process has smaller MISE than the non-smoothed

process which arises primarily due to a reduction in variance, which in turn leads to the finite-

sample power gains that are evident in the simulations reported in Section 5 below. For notational

convenience we shall restrict attention to the case of one continuous covariate (so q = 1 and r = 0),

but the result can be readily extended to the general case.

We use the notations F̃✏̂(t) = n�1Pn
i=1 1(✏̂i  t) and F̃X,✏̂(x, t) = n�1Pn

i=1 1(Xi  x, ✏̂i  t) for

the non-smoothed estimators of F✏(t) and FX,✏(x, t) respectively.

Theorem 5 below demonstrates that the MISE of the smoothed process dominates that of the

non-smoothed process, and the reduction in MISE translates into improved power for our proposed

procedure.

Theorem 5. Assume h, b ! 0, ng7(log n)�1 ! 1, p � 3, (A1)-(A2) and (A4)-(A6). Then,

n1/2
�
F̂X,✏̂(x, t)� F̂X(x)F̂✏̂(t)

�
= n�1/2

nX

i=1

Z Z
H(Xi, ✏i, x� uh, t� vb)k(u)k(v) du dv + b(x, t)

+ R̂(x, t)

:= Ĝ(x, t) + b(x, t) + R̂(x, t)

n1/2
�
F̃X,✏̂(x, t)� F̃X(x)F̃✏̂(t)

�
= n�1/2

nX

i=1

H(Xi, ✏i, x, t) + b(x, t) + R̃(x, t)
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:= G̃(x, t) + b(x, t) + R̃(x, t),

where supx,t |R̂(x, t)| = OP ((ng)�1/6 log n) and supx,t |R̃(x, t)| = OP ((ng)�1/6 log n).

In addition,

Z
Var(Ĝ(x, t)) dx dt =

h
A� h (k)

ih
B � b (k)

i
+O(h2 + b2)

Z
Var(G̃(x, t)) dx dt = AB +O(h2 + b2),

where

A =

Z
FX(x)(1� FX(x)) dx > 0

B =

Z n
F✏(t)(1� F✏(t)) + E

h
2
�
I(✏  t)� F✏(t)

 
Q(t, ✏) +Q2(t, ✏)

io
dt > 0

Q(t, ✏) = f✏(t)
n
✏+

t

2
(✏2 � 1)

o

 (k) = 2

Z
uK(u)k(u) du > 0.

Note that the remainder terms R̂(x, t) and R̃(x, t) are of the order OP (n�1/6n1/[6(2p+2)] log n)

uniformly in x and t if we take cg,s > 0 in condition (A2). Since p � 3, this is OP (n�7/48 log n) in

the worst case (i.e., when p = 3). On the other hand, if h is e.g. proportional to n�1/4 (but any

larger bandwidth is also fine), then h1/2 ⇠ n�1/8, and this is larger than n�7/48 log n (and similarly

for b1/2). Hence, the remainder terms are of negligible order. Since  (k), A,B > 0 the above result

shows that the smoothed process has smaller MISE than the non-smoothed process. The proof of

Theorem 5 can be found in Appendix A.

The astute reader may have noted that the first term in the expansion of
p
n(F̂X,✏̂ � F̂X F̂✏̂)

di↵ers from that in Corollary 2, and perhaps a few words are in order. In Corollary 2 we were

only interested in first-order asymptotic properties, and so we only needed to demonstrate that the

order of the remainder term is oP (1). In Theorem 5 however, we want to show that the smoothed

estimator has better second-order properties than the non-smoothed estimator, and that requires

a finer analysis. The main term in the i.i.d. expansion in Theorem 5 is actually equal to the main

term in the i.i.d. expansion in Corollary 2, except for some terms that are of smaller order and

that are absorbed in the remainder term Rn in Corollary 2. In Theorem 5 we cannot absorb these
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terms in the remainder term simply because we need them to show that the smoothed estimator

outperforms the non-smoothed one in second order. This explains why the two representations are

di↵erent.

5. Finite-Sample Performance

5.1. The Univariate Continuous Predictor Setting. In order to assess the finite-sample per-

formance of our proposed approach, we replace the EDFs in (1) with their kernel-smoothed coun-

terparts described in Section 2.1.4 Bandwidth selection is obtained via cross-validation for h, b and

� (i.e., minimization of Equation (6) above) and via least squares cross-validation for g and ⌫, and

the Epanechnikov kernel function is employed. There are various data-driven permutations one

might consider for bandwidth selection, namely a) separate bandwidths for the joint and marginal

distributions, b) common bandwidths taken from the joint distribution, and c) common bandwidths

taken from the marginal distributions. From the perspective of assessing size, one might expect

that the same bandwidths used for estimating the joint distribution be used for the construction of

the marginal distributions, otherwise the estimated joint distribution might systematically diverge

from the product of the estimated marginals under the null. We investigate this issue empirically

and on this basis recommend b) to practitioners.

To assess finite-sample performance, we simulate data for which X is uniform [0, 1] and Y has

location µ(x) = sin(2⇡x) and scale �(x) that is determined from the error distributions specified

below, i.e.,

Yi = sin(2⇡Xi) + �(Xi)✏i(Xi).

We consider three DGPs in the simulations that follow. For the first the errors are mixtures of

two Gaussians, N(�1, 0.52) and N(1, 0.52) with mixing probabilities 1� �x and �x. For the second

the errors are drawn from a heavy-tail mixture of two t-distributions, one having a mode at 2

and the other at �2, both having 5 degrees of freedom with the same mixing probabilities as for

the Gaussian mixture. For the third the errors are drawn from the Beta distribution with shape

parameters s1 = 1 + �10x and s2 = 11 � �10x where x 2 [0, 1]. These errors are then rescaled

4We proceed with the Kolmogorov-Smirnov statistic by way of illustration as the Cramér-von-Mises statistic requires
multivariate integration for its computation while the Kolmogorov-Smirnov statistic does not. However, as will be
demonstrated for the Kolmogorov-Smirnov approach, replacing the non-smooth distribution functions in the Cramér-
von-Mises statistic with their kernel-smoothed counterparts would be expected to reveal similar power gains.
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to have unconditional mean zero and unit variance thereby maintaining a constant signal-to-noise

ratio across DGPs and across the range of values for � considered. In all cases, when � = 0 the

model is a location-scale DGP (i.e., the distribution of ✏ is not a function of x) while when � > 0 it

is a location-shape DGP (i.e., the distribution of ✏ is a function of x). Figure 1 presents the density

of ✏(x) for various levels of x 2 [0, 1] when � = 1.

For what follows we consider M = 1, 000 Monte Carlo replications drawn from each DGP.

For each Monte Carlo replication, we compute each test statistic TKS (non-smooth and smooth,

respectively) along with the B = 399 (Davidson & MacKinnon 2000) null bootstrap replicates

T ⇤
b,KS , b = 1, . . . , B (based on resamples drawn from the (non-smooth) distribution functions),

then we compute the empirical P -value as B�1PB
b=1 1(T

⇤
b,KS > TKS), where 1(A) is the usual

indicator function taking value one when A is true and zero otherwise. Finally, based on the

M = 1, 000 P -values, we compute empirical rejection probabilities for the non-smooth and smooth

test statistics for nominal levels ↵ = (0.01, 0.05, 0.10). To assess size we set � = 0, and to assess

power we let � 2 (0, 1]. Size (i.e., empirical rejection probability when � = 0) is summarized in

Table 1.

Table 1 indicates that both the non-smooth and smooth versions of the test appear to be correctly

sized, hence we can proceed to compare their power curves.5 Next, we vary � 2 [0, 1], and present

power curves for the Beta errors in Figure 4 (Figures 2 and 3 present results for the Gaussian and

Student-t mixtures).

The percentage gain in power is reported in the tables in Appendix B, and these figures and tables

reveal that the improvements in power arising from replacing the EDF with its kernel-smoothed

counterpart can be upwards of 100% or more, depending on the nominal size of the test, sample

size, and degree of departure from the null. Furthermore, if anything the smooth test appears to

be slightly conservative relative to its non-smooth counterpart, particularly for the Beta error case

for the smaller sample sizes considered (a positive feature as it has a lower probability of a Type I

error than its non-smooth counterpart under the null yet higher power under the alternative).

5If anything, the non-smooth version appears to be slightly over-sized for smaller n and the smooth version slightly
under-sized for smaller n, but this admits a fair comparison of power curves.
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Figure 1. Density of ✏(x) for various levels of x 2 [0, 1], � = 1, for the Gaussian
mixture, Student-t mixture and Beta (the error density for computing size, � = 0,
corresponds to the density when x = 0 i.e., the solid black density).

5.2. The Multivariate Continuous Predictor Setting. To assess finite-sample performance in

the multivariate continuous predictor setting, we simulate data for which X1 and X2 are uniform

[0, 1] and Y has location µ(x) = sin(⇡(x1 + x2)) and scale �(x1 + x2)/2 that is determined from
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Table 1. Size for the Non-smooth and Smooth Tests (Empirical Rejection Probabil-
ities Under the Null, � = 0, Univariate Continuous Predictor Setting, see Appendix
B for Power).

n ↵ = 0.01 ↵ = 0.05 ↵ = 0.10
Non-smooth, Gaussian Mixture

100 0.008 0.041 0.101
200 0.008 0.045 0.089
400 0.006 0.048 0.089
800 0.006 0.045 0.102

Smooth, Gaussian Mixture
100 0.011 0.045 0.104
200 0.006 0.046 0.093
400 0.007 0.057 0.110
800 0.010 0.047 0.092
Non-smooth, Student-t Mixture

100 0.009 0.051 0.081
200 0.009 0.050 0.104
400 0.005 0.039 0.095
800 0.006 0.038 0.089

Smooth, Student-t Mixture
100 0.009 0.048 0.101
200 0.010 0.052 0.095
400 0.010 0.045 0.092
800 0.008 0.042 0.095

Non-smooth, Beta
100 0.012 0.049 0.090
200 0.008 0.050 0.105
400 0.008 0.038 0.099
800 0.011 0.048 0.098

Smooth, Beta
100 0.011 0.042 0.074
200 0.012 0.051 0.095
400 0.008 0.054 0.110
800 0.013 0.054 0.104

the error distributions specified below, i.e.,

Yi = sin(⇡(Xi1 +Xi2)) + �(Xi1 +Xi2)✏i(Xi1 +Xi2).

We consider three DGPs in the simulations that follow. For the first the errors are mixtures of two

Gaussians, N(�1, 0.52) and N(1, 0.52) with mixing probabilities 1� �(x1+x2)/2 and �(x1+x2)/2.

For the second the errors are drawn from a heavy-tail mixture of two t-distributions, one having a

mode at 2 and the other at �2, both having 5 degrees of freedom, with the same mixing probabilities
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Figure 2. Power curves for the non-smooth and smooth versions of the test, Gauss-
ian mixture. Solid lines are for the smooth version, dashed the non-smooth version.

as for the Gaussian mixture. For the third the errors are drawn from the Beta distribution with

shape parameters s1 = 1+ �5(x1 + x2) and s2 = 11� �5(x1 + x2). Per above, these errors are then

rescaled to have unconditional mean zero and unit variance.

Table 2 reveals that both the non-smooth and smooth version of the test perform adequately

and appear to possess reasonable size when there exist multivariate continuous predictors.
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Figure 3. Power curves for the non-smooth and smooth versions of the test,
Student-t mixture. Solid lines are for the smooth version, dashed the non-smooth
version.

5.3. The Multivariate Mixed Continuous and Discrete Predictor Setting. To assess finite-

sample performance in the multivariate mixed continuous and discrete predictor setting, we simulate

data for whichX1 is uniform [0, 1], X2 is a discrete uniform variable taking value 0, 1/10, 2/10, . . . , 1,

Y has location µ(x) = sin(2⇡x1)+x2 and scale �(Xi) that is determined from the error distributions
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Figure 4. Power curves for the non-smooth and smooth versions of the test, Beta
errors. Solid lines are for the smooth version, dashed the non-smooth version.

specified below, i.e.,

Yi = sin(2⇡Xi1) +Xi2 + �(Xi1 +Xi2)✏i(Xi1 +Xi2).

We consider three DGPs in the simulations that follow. For the first the errors are mixtures of two

Gaussians, N(�1, 0.52) and N(1, 0.52) with mixing probabilities 1� �(x1+x2)/2 and �(x1+x2)/2.
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Table 2. Size for the Non-smooth and Smooth Tests (Empirical Rejection Prob-
abilities Under the Null, � = 0, Multivariate Continuous Predictor Setting, see
Appendix C for Power).

n ↵ = 0.01 ↵ = 0.05 ↵ = 0.10
Non-smooth, Gaussian Mixture

100 0.007 0.042 0.100
200 0.007 0.042 0.094
400 0.012 0.038 0.075
800 0.005 0.037 0.075

Smooth, Gaussian Mixture
100 0.005 0.033 0.091
200 0.008 0.048 0.087
400 0.006 0.032 0.072
800 0.006 0.037 0.073
Non-smooth, Student-t Mixture

100 0.018 0.056 0.116
200 0.018 0.080 0.121
400 0.012 0.053 0.107
800 0.008 0.055 0.095

Smooth, Student-t Mixture
100 0.023 0.078 0.140
200 0.016 0.085 0.140
400 0.017 0.068 0.111
800 0.012 0.057 0.109

Non-smooth, Beta
100 0.005 0.042 0.100
200 0.021 0.074 0.118
400 0.018 0.062 0.124
800 0.019 0.064 0.108

Smooth, Beta
100 0.011 0.057 0.104
200 0.015 0.059 0.121
400 0.020 0.070 0.127
800 0.018 0.060 0.112

For the second the errors are drawn from a heavy-tail mixture of two t-distributions, one having a

mode at 2 and the other at �2, both having 5 degrees of freedom, with the same mixing probabilities

as for the Gaussian mixture. For the third the errors are drawn from the Beta distribution with

shape parameters s1 = 1+ �5(x1 + x2) and s2 = 11� �5(x1 + x2). Per above, these errors are then

rescaled to have unconditional mean zero and unit variance.

Table 3 reveals a curious feature of the non-smooth test – in the presence of discrete predictors,

the test displays extreme size distortions rendering it completely unsuited for practical application
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Table 3. Size for the Non-smooth and Smooth Tests (Empirical Rejection Probabil-
ities Under the Null, � = 0, Multivariate Mixed Continuous and Discrete Predictor
Setting).

n ↵ = 0.01 ↵ = 0.05 ↵ = 0.10
Non-smooth, Gaussian Mixture

100 0.285 0.545 0.678
200 0.625 0.836 0.918
400 0.950 0.994 0.998
800 1.000 1.000 1.000

Smooth, Gaussian Mixture
100 0.009 0.046 0.090
200 0.013 0.056 0.100
400 0.015 0.058 0.116
800 0.024 0.081 0.159
Non-smooth, Student-t Mixture

100 0.361 0.632 0.752
200 0.773 0.933 0.974
400 0.993 1.000 1.000
800 1.000 1.000 1.000

Smooth, Student-t Mixture
100 0.014 0.054 0.096
200 0.013 0.061 0.108
400 0.014 0.063 0.125
800 0.012 0.074 0.140

Non-smooth, Beta
100 0.518 0.782 0.877
200 0.951 0.991 0.998
400 1.000 1.000 1.000
800 1.000 1.000 1.000

Smooth, Beta
100 0.006 0.027 0.074
200 0.004 0.040 0.084
400 0.012 0.051 0.124
800 0.023 0.110 0.200

(its empirical rejection probability under the null approaches 1 as n increases for all conventional

levels). However, the smooth version of the test appears to be reasonably sized. The former is

perhaps not too surprising given the literature on discrete/discontinuous distributions (Conover

1972, Gleser 1985, Choulakian et al. 1994, Lockhart et al. 2007). Given the extreme size distortions

present, we make no attempt at power comparisons.



22 THE POWER OF SMOOTHING

6. Application

Racine & Li (2017) impose a location-scale quantile model structure on a novel nonparametric

quantile estimator that is based on kernel smoothing of a parametric quantile function in a particular

manner. A practitioner concerned with their imposition of the location-scale structure might wish

to use a pre-test approach, proceeding with the location-scale model if it is deemed appropriate

versus an alternative model that does not rely on the location-scale assumption otherwise. They

present two illustrative applications, one in which the covariate is continuous and one in which it

is discrete, so these illustrations will serve to highlight the potential application of the proposed

procedure.

We first consider an Italian gross domestic product (GDP) growth panel for 21 regions covering

the period 1951-1998 (millions of Lire, 1990=base). There are n = 1, 008 observations on 2 variables,

‘year’ and ‘gdp’, and ‘year’ is a discrete predictor and is treated as such in what follows. Next we

consider Canadian cross-section wage data consisting of a random sample taken from the 1971

Canadian Census Public Use Tapes for male individuals having common education (grade 13).

There are n = 205 observations in total on two variables, ‘logwage’ (logarithm of the wages)

and ‘age’, age being treated as a continuous predictor. We report the test statistics and their

bootstrapped P -values in Table 4 based on B = 999 bootstrap replications.

Table 4. Application of the Proposed Test to the Italian GDP Dataset and to
the Canadian Cross-Section Wage Dataset.

Dataset TKS P -value
Canadian Wage 0.4637124 0.3413413
Italian GDP 1.174512 < 2e� 16

Table 4 reveals that the location-scale presumption is inappropriate for the Italian GDP data,

but is appropriate for the Canadian wage data (though it is possible, given the small sample size of

n = 205, that this is a Type II error). These results indicate that practitioners can use Racine &

Li’s (2017) quantile approach for the latter but ought to exercise caution when applying it to the

former, which is consistent with the findings presented in Racine & Li (2017) which used instead

the non-smooth testing approach of Einmahl & Van Keilegom (2008).
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7. Concluding Remarks

Numerous tests have been proposed that rely on the non-smooth empirical distribution function

for their implementation; see Einmahl & Van Keilegom (2008), Birke et al. (2017) and Neumeyer

et al. (2016) by way of illustration. We demonstrate how the use of smooth estimators of distribution

functions rather than their non-smooth counterparts can deliver tests having superior power profiles,

which ought to be particularly appealing for practitioners.
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p
n-uniformly consistent density estimation in nonparametric regression

models’, Journal of Econometrics 12, 305–361.

Fan, J. & Gijbels, I. (1996), Local Polynomial Modelling and Its Applications, Chapman & Hall.

Gijbels, I., Van Keilegom, I. & Zhao, Y. (2018), Gaussian copulas adjusted for nonparametric regression, Working

paper, KU Leuven.

Gleser, L. J. (1985), ‘Exact power of goodness-of-fit tests of Kolmogorov type for discontinuous distributions’, Journal

of the American Statistical Association 80(392), 954–958.

Jones, M. (1990), ‘The performance of kernel density functions in kernel distribution function estimation’, Statistics

& Probability Letters 9(2), 129–132.

Kolmogorov, A. (1933), ‘Sulla determinazione empirica di una legge di distributione’, Giornale dell’Istituto Italiano

degli Attuari 4, 1–11.

Li, C., Li, H. & Racine, J. S. (2017), ‘Cross-validated mixed-datatype bandwidth selection for nonparametric cumu-

lative distribution/survivor functions’, Econometric Reviews 36(6-9), 970–987.

Li, Q. & Racine, J. S. (2004), ‘Cross-validated local linear nonparametric regression’, Statistica Sinica 14, 485–512.

Lockhart, R., Spinelli, J. & Stephens, M. (2007), ‘Cramér-von Mises statistics for discrete distributions with unknown

parameters’, Canadian Journal of Statistics 35(1), 125–133.

Neumeyer, N. (2008), ‘A bootstrap version of the residual-based smooth empirical distribution function’, Journal of

Nonparametric Statistics 20(2), 153–174.

Neumeyer, N. (2009), ‘Smooth residual bootstrap for empirical processes of non-parametric regression residuals’,

Scandinavian Journal of Statistics 36, 204–228.

Neumeyer, N., Noh, H. & Van Keilegom, I. (2016), ‘Heteroscedastic semiparametric transformation models: estima-

tion and testing for validity’, Statistica Sinica 26, 925–954.

Neumeyer, N. & Van Keilegom, I. (2010), ‘Estimating the error distribution in nonparametric multiple regression

with applications to model testing’, Journal of Multivariate Analysis 101, 1067–1078.

Neumeyer, N. & Van Keilegom, I. (2018), ‘Bootstrap of residual processes in regression: to smooth or not to smooth?’,

Biometrika (to appear) .
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