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In survival analysis it often happens that some subjects under

study do not experience the event of interest; they are considered to

be ‘cured’. The population is thus a mixture of two subpopulations :

the one of cured subjects, and the one of ‘susceptible’ subjects. In

this paper we propose a novel approach to estimate a mixture cure

model when covariates are present and the lifetime is subject to ran-

dom right censoring. We work with a parametric model for the cure

proportion (like e.g. a logistic model), while the conditional survival

function of the uncured subjects is unspecified. The approach is based

on an inversion which allows to write the survival function as a func-

tion of the distribution of the observable random variables. This leads

to a very general class of models, which allows a flexible and rich

modeling of the conditional survival function. We show the identifi-

ability of the proposed model, as well as the weak consistency and

the asymptotic normality of the model parameters. We also consider

in more detail the case where kernel estimators are used for the non-

parametric part of the model. The new estimators are compared with

the estimators from a Cox mixture cure model via finite sample sim-

ulations. Finally, we apply the new model and estimation procedure

on two medical data sets.

1. Introduction. Driven by emerging applications, over the last two
decades there has been an increasing interest for time-to-event analysis mod-
els allowing the situation where a fraction of the right censored observed
lifetimes corresponds to subjects who will never experience the event. In
biostatistics such models including covariates are usually called cure models
and they allow for a positive cure fraction, or cure rate, that corresponds
to the proportion of patients cured of their disease. For a review of these
models in survival analysis, see for instance Peng & Taylor (2014) or Amico

MSC 2010 subject classifications: Primary 62N01, 62N02; secondary 62F12, 62G05

Keywords and phrases: Asymptotic normality, bootstrap, kernel smoothing, logistic re-

gression, mixture cure model, semiparametric model

1

http://www.imstat.org/aos/


2 V. PATILEA, I. VAN KEILEGOM

& Van Keilegom (2018). Economists sometimes call such models split pop-
ulation models (see Schmidt & Witte 1989), while the reliability engineers
refer to them as limited-failure population life models (Meeker 1987).

At first sight, a cure regression model is nothing but a binary outcome,
cured versus uncured, regression problem. The difficulty comes from the
fact that the cured subjects are unlabeled observations among the censored
data. Then one has to use all the observations, censored and uncensored, to
complete the missing information and thus to identify, estimate and make
inference on the cure fraction regression function. We propose a general ap-
proach for this task, a tool that provides a general ground for cure regression
models. The idea is to start from the laws of the observed variables and to
express the quantities of interest, such as the cure rate and the conditional
survival of the uncured subjects, as functionals of these laws. These general
expressions, that we call inversion formulae and that we derive with no par-
ticular constraint on the space of the covariates, are the vehicles that allow
for a wide modeling choice, parametric, semiparametric and nonparamet-
ric, for both the law of the lifetime of interest and the cure rate. Indeed,
the inversion formulae allow to express the likelihood of the binary outcome
model as a function of the laws of the observed variables. The maximum
likelihood estimator of the parameter vector of the cure fraction function is
then simply the maximizer of the likelihood obtained by replacing the laws
of the observations by some estimators. With at hand the estimate of the pa-
rameter of the cure fraction, the inversion formulae will provide an estimate
for the conditional survival of the uncured subjects. For the sake of clarity,
we focus on the so-called mixture cure models with a parametric cure frac-
tion function, the type of model that is most popular among practitioners.
Meanwhile, the law of the lifetime of interest is left unspecified.

The paper is organized as follows. In Section 2 we provide a general de-
scription of the mixture cure model and next we introduce the needed no-
tation and present the inversion formulae on which our approach is built.
We finish Section 2 by a discussion of the identification issue and some new
insight in the existing approaches in the literature on cure models. Section
3 introduces the general maximum likelihood estimator, while in Section 4
we derive the general asymptotic results. A simple bootstrap procedure for
making feasible inference is proposed. Section 4 ends with an illustration of
the general approach in the case where the conditional law of the observa-
tions is estimated by kernel smoothing. In Section 5 we calculate the efficient
score, which is needed for obtaining an efficient estimator of the parameters
in the model. In Sections 6 and 7 we report some empirical results obtained
with simulated and two real data sets. Our estimator performs well in sim-
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ulations and provides similar or more interpretable results in applications
compared with a competing logistic/proportional hazards mixture approach.
The proofs of the main results are relegated to the Appendix, while some
technical details are collected in an online Supplement.

2. The model.

2.1. A general class of mixture cure models. Let T denote (a possible
monotone transformation of) the lifetime of interest that takes values in
(−∞,∞]. A cured observation corresponds to the event {T = ∞}, and in
the following this event is allowed to have a positive probability. Let X be a
covariate vector belonging to X a general covariate space. The covariate vec-
tor could include discrete and continuous components. The survival function
FT ((t,∞] | x) = P(T > t | X = x), can be written as

(2.1) FT ((t,∞] | x) = 1− φ(x) + φ(x)FT,0((t,∞) | x), t ∈ R, x ∈ X ,

where 1 − φ(x) = P(T = ∞ | X = x) is the cure rate and FT,0((t,∞) |
x) = P(T > t | X = x, T <∞). Depending on which model is used for φ(x)
and FT,0(· | x), one obtains a parametric, semiparametric or nonparametric
model, called a ‘mixture cure model’. In the literature, one often assumes
that φ(x) follows a logistic model, i.e. φ(x) = exp(a+x>b)/[1+exp(a+x>b)]
for some (a, b>)> ∈ R1+d. (Here and in the following, a vector is a column
matrix and for any matrix A, A> denotes its transpose.) Recently, semi-
parametric models (like a single-index model as in Amico et al. 2018) or
nonparametric models (as in Xu & Peng 2014 or López-Cheda et al. 2017)
have been proposed. As for the survival function FT,0(· | x) of the suscepti-
ble subjects, a variety of models have been proposed, including parametric
models (see e.g. Boag 1949, Farewell 1982), semiparametric models based on
a proportional hazards assumption (see e.g. Kuk & Chen 1992, Sy & Taylor
2000, Fang et al. 2005, Lu 2008; see also Othus et al. 2009) or nonparametric
models (see e.g. Taylor 1995, Xu & Peng 2014).

In this paper we propose to model φ(x) parametrically, i.e. we assume
that φ(·) belongs to the family of conditional probability functions {φ(·, β) :
β ∈ B}, where φ(·, β) takes values in the interval (0, 1), β is the parameter
vector of the model and B is the parameter set. This family could be the
logistic family or any other parametric family. For the survival function
FT,0(· | x) we do not impose any assumptions in order to have a flexible and
rich class of models for FT (· | x) to choose from. Later on we will see that
for the estimation of FT,0(· | x) any estimator that satisfies certain minimal
conditions can be used, and hence we allow for a large variety of parametric,
semiparametric and nonparametric estimation methods.
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As is often the case with time-to-event data, we assume that the lifetime
T is subject to random right censoring, i.e. instead of observing T , we only
observe the pair (Y, δ), where Y = T ∧ C, δ = 1{T ≤ C} and C is a
real-valued random variable, called the censoring time. Some identification
assumptions are required to be able to identify the conditional law of T from
the observed variables Y and δ. Let us assume that

(2.2) C ⊥ T | X and P(C <∞) = 1.

The conditional independence between T and C is an usual identification
assumption in survival analysis in the presence of covariates. The zero prob-
ability at infinity condition for C implies that P(C < ∞ | X) = 1 almost
surely (a.s.). This latter mild condition is required if we admit that the ob-
servations Y are finite, which is the case in the common applications. For
the sake of simplicity, let us also consider the commonly used condition

(2.3) P(T = C) = 0,

which implies that P(T = C | X) = 0 a.s.

2.2. Some notations and preliminaries. We start with some preliminary
arguments, which are valid in general without assuming any model on the
functions φ, FT and FC .

The observations are characterized by the conditional sub-probabilities

H1((−∞, t] | x) = P(Y ≤ t, δ = 1 | X = x)

H0((−∞, t] | x) = P(Y ≤ t, δ = 0 | X = x), t ∈ R, x ∈ X .

Then H((−∞, t] | x)
def
= P(Y ≤ t | X = x) = H0((−∞, t] | x) +H1((−∞, t] |

x). Since we assume that Y is finite, we have

(2.4) H((−∞,∞) | x) = 1, ∀x ∈ X .

For j ∈ {0, 1} and x ∈ X , let τHj (x) = inf{t : Hj([t,∞) | x) = 0} denote the
right endpoint of the support of the conditional sub-probability Hj . Let us
define τH(x) in a similar way and note that τH(x) = max{τH0(x), τH1(x)}.
Note that τH0(x), τH1(x) and τH(x) can equal infinity, even though Y is
finite. For x ∈ X and −∞ < t ≤ ∞, we define the conditional probabilities

FC((−∞, t] |x)= P(C ≤ t |X= x) and FT ((−∞, t] |x)= P(T ≤ t |X= x).

Let us show how the probability of being cured could be identified from
the observations without any reference to a model for this probability. Under
conditions (2.2)-(2.3) we can write

H1(dt |x)= FC([t,∞) | x)FT (dt |x), H0(dt |x)= FT ([t,∞] | x)FC(dt |x),
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and H([t,∞) | x) = FT ([t,∞] | x)FC([t,∞) | x). These equations could be
solved and thus they allow to express the functions FT (· | x) and FC(· | x)
in an unique way as explicit transformations of H0(· | x) and H1(· | x). For
this purpose, let us consider the conditional cumulative hazard measures

ΛT (dt | x) =
FT (dt | x)

FT ([t,∞] | x)
and ΛC(dt | x) =

FC(dt | x)

FC([t,∞) | x)
, x ∈ X .

The model equations yield

(2.5) ΛT (dt | x) =
H1(dt | x)

H([t,∞) | x)
and ΛC(dt | x) =

H0(dt | x)

H([t,∞) | x)
.

Then, we can write the following functionals of H0(· | x) and H1(· | x) :

FT ((t,∞] | x) =
∏
s≤t
{1− ΛT (ds | x)},

FC((t,∞) | x) =
∏
s≤t
{1− ΛC(ds | x)}, t ∈ R,(2.6)

where
∏
s∈A stands for the product-integral over the set A (see Gill and

Johansen 1990). Let us point out that

(2.7) P(T =∞|x) =
∏
t∈R
{1− ΛT (dt |x)} =

∏
t∈R

{
1− H1(dt |x)

H([t,∞) |x)

}
.

Moreover, if τH1(x) <∞, then

P(T > τH1(x) | x) =
∏

t∈(−∞,τH1
(x)]

{1− ΛT (dt | x)},

but there is no way to identify the conditional law of T beyond τH1(x).
Therefore, we will impose

(2.8) P(T > τH1(x) | x) = P(T =∞ | x),

i.e.
∏
t∈R{1 − ΛT (dt | x)} =

∏
−∞<t≤τH1

(x){1 − ΛT (dt | x)}. Note that if

τH1(x) = ∞, condition (2.8) is no longer an identification restriction, but
just a simple consequence of the definition of ΛT (· | x). Finally, the condition
that P(C < ∞) = 1 in (2.2) can be re-expressed by saying that we assume
that H0(· | x) and H1(· | x) are such that, ∀x ∈ X ,

(2.9) P(C =∞ | x) =
∏
t∈R
{1− ΛC(dt | x)} =

∏
t∈R

{
1− H0(dt | x)

H([t,∞) | x)

}
= 0.
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This condition is satisfied only if τH1(x) ≤ τH0(x). Indeed, if τH1(x) > τH0(x)
then necessarily τH0(x) < τH(x) and so H([τH0(x),∞) | x) > 0. Hence,
ΛC(R | x) = ΛC((−∞, τH0(x)] | x) <∞, and thus P(C =∞ | x) > 0, which
contradicts (2.9).

It is important to understand that any two conditional sub-probabilities
H0(· | x) and H1(· | x) such that H0(R | x) +H1(R | x) = 1, ∀x ∈ X , define
uniquely FT (· | x) and FC(· | x). If H0(· | x) and H1(· | x) are such that
conditions (2.2) and (2.3) hold true, then FT (· | x) is precisely the probability
distribution of T given X = x, with all the mass beyond τH1(x) concentrated
at infinity provided condition (2.8) holds true. In general, FT (· | x) and
FC(· | x) are only functionals of H0(· | x) and H1(· | x).

We will assume conditions (2.2), (2.3) and (2.8) throughout the paper.

2.3. A key point for the new approach: the inversion formulae. Write

H([t,∞) | x) = FT ([t,∞] | x)FC([t,∞) | x)

= FT ([t,∞) | x)FC([t,∞) | x) + P(T =∞ | x)FC([t,∞) | x),

and thus

(2.10) FT ([t,∞) | x) =
H([t,∞) | x)− P(T =∞ | x)FC([t,∞) | x)

FC([t,∞) | x)
.

Consider the conditional cumulative hazard measure for the finite values of
the lifetime of interest:

ΛT,0(dt | x)
def
=

FT,0(dt | x)

FT,0([t,∞) | x)
=

FT (dt | x)

FT ([t,∞) | x)

for t ∈ R. Since H1(dt | x) = FC([t,∞) | x)FT (dt | x), using relationship
(2.10) we obtain

ΛT,0(dt | x) =
H1(dt | x)

H([t,∞) | x)− P(T =∞ | x)FC([t,∞) | x)
.(2.11)

Next, using the product-integral we can write

(2.12) FT,0((t,∞) | x) =
∏
s≤t
{1− ΛT,0(ds | x)}, t ∈ R, x ∈ X .

Note that, by construction, FT,0(R | x) = 1.
Let us recall that FC(· | x) can be written as a transformation of H0(· | x)

and H1(· | x), see equations (2.5) and (2.6). This representation is not
surprising since we can consider C as a lifetime of interest and hence T
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plays the role of a censoring variable. Hence, estimating the conditional
distribution function FC(· | x) should not be more complicated than in a
classical conditional Kaplan-Meier setup, since the fact that T could be equal
to infinity with positive probability is irrelevant when estimating FC(· | x).

Finally, the representations of FC(· | x) and P(T =∞ | x) given in equa-
tions (2.6) and (3.3), respectively, plugged into equation (2.11), allows to
express in a unique way ΛT,0(· |x), and thus FT,0(· |x), as maps of the mea-
sures H0(· |x) and H1(· |x). This will be the key element for providing more
insight in existing approaches and the starting point of our new approach.

2.4. Model identification issues. Recall that our model involves the func-
tions FT,0(· | x), FC(· | x) and φ(·, β), and the assumptions (2.2), (2.3), (2.8).

Let FY,δ(·, · | x) denote the conditional law of (Y, δ) given X = x. More-

over, let F βY,δ(dt, 1 | x) = φ(x, β)FC((t,∞) | x)FT,0(dt | x), and

F βY,δ(dt, 0 | x) = [FT,0([t,∞) | x)φ(x, β) + 1− φ(x, β)]FC(dt | x).

These equations define a conditional law for the observations (Y, δ) based
on the model. More precisely, for a choice of FT (· | x), FC(· | x) and β, the
model yields a conditional law for (Y, δ) given X = x. If the mixture cure
model is correctly specified, there exists a value β0 such that

(2.13) FY,δ(·, · | x) = F β0Y,δ(·, · | x), ∀x ∈ X .

The next question is whether FT,0(· | x), FC(· | x) and β0 are identifiable.

Proposition 2.1. Consider a cure mixture model as in equation (2.1).
Assume that conditions (2.2), (2.3), (2.8) are met. Moreover, assume that
the cure rate model {φ(·, β) : β ∈ B} is correct and satisfies the condition

(2.14) ∀β, β̃ ∈ B such that P(φ(X,β) = φ(X, β̃)) = 1, we have β = β̃.

Then FT,0(· | x), FC(· | x) and β0 are identifiable.

The proof is given in the Appendix.

2.5. Interpreting the previous modeling approaches. We suppose here
that the function φ(x) follows a logistic model, and comment on several
models for FT,0 that have been considered in the literature.
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2.5.1. Parametric and proportional hazards mixture model. In a para-
metric modeling, one usually supposes that τH0(x) = τH1(x) = ∞ and
ΛT,0(· | x) belongs to a parametric family of cumulative hazard functions,
like for instance the Weibull model; see Farewell (1982). Several contribu-
tions proposed a more flexible semiparametric proportional hazards (PH)
approach; see Fang et al. (2005), Lu (2008) and the references therein. In
such a model one imposes a PH structure for the ΛT,0(· | x) measure. More
precisely, it is supposed that

ΛT,0(dt |x) =
H1(dt | x)

H([t,∞) |x)− P(T =∞ | x)FC([t,∞) |x)
= exp(x>γ)Λ0(dt),

where γ is some parameter to be estimated and Λ0(·) is an unknown baseline
cumulative hazard function. Our inversion formulae reveal that the param-
eters γ and Λ0 depend on the conditional measures H0(· | x), H1(· | x), but
these parameters are also connected to the parameter β used to model the
cure rate P(T =∞ | x). The same is true for the parametric models.

2.5.2. Kaplan-Meier mixture cure model. Taylor (1995) suggested to es-
timate FT,0 using a Kaplan-Meier type estimator. With such an approach
one implicitly assumes that the law of T given X and given that T < ∞
does not depend on X. This is equivalent to supposing ΛT,0(· | x) = ΛT,0(·).
Next, to estimate ΛT,0(·) one has to modify the unconditional version of the
inversion formulae (2.5) to take into account the conditional probability of
the event {T =∞}. Following Taylor’s approach we rewrite (2.11) as

ΛT,0(dt) =
H1(dt | x)

H1([t,∞) |x)+
∫
[t,∞)

{
1− 1−φ(x,β)

φ(x,β)FT,0([s,∞))+1−φ(x,β)

}
H0(ds | x)

.

Next, assume that the last equality remains true if H0(dt | x) and H1(dt | x)
are replaced by their unconditional versions, that is assume that

(2.15) ΛT,0(dt)=
H1(dt)

H1([t,∞))+
∫
[t,∞)

{
1− 1−φ(x,β)

φ(x,β)FT,0([s,∞))+1−φ(x,β)

}
H0(ds)

.

See equations (2) and (3) in Taylor (1995). The equation above could be
solved iteratively by a EM-type procedure: for a given β and an iteration

F
(m)
T,0 (·), build Λ

(m+1)
T,0 (dt) and the updated estimate F

(m+1)
T,0 (·); see Taylor

(1995) for the details. Let us point out that even if (T,C) is independent
of X given that T < ∞, the subdistributions H0(· | x) and H1(· | x) still
depend on x, since

H0(dt | x) = FT ([t,∞] | x)FC(dt)
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= {P(T <∞ | x)FT,0([t,∞)) + P(T =∞ | x)}FC(dt),

and

H1(dt | x) = FC([t,∞))FT (dt | x) = P(T <∞ | x)FC([t,∞))FT,0(dt).

Hence, a more natural form of equation (2.15) is

ΛT,0(dt) =
H1(dt | x)

H1([t,∞) |x)+
∫
[t,∞)

{
1− 1−φ(x,β)

φ(x,β)FT,0([s,∞))+1−φ(x,β)

}
H0(ds |x)

.

The investigation of an iterative procedure based on this alternative identity
will be considered elsewhere.

3. Maximum likelihood estimation. Let (Yi, δi, Xi) (i = 1, . . . , n)
be a sample of n i.i.d. copies of the vector (Y, δ,X). We use a likelihood
approach based on formulae (2.6), (2.11) and (2.12) to build an estimator of
φ(·, β). To build the likelihood we use estimates Ĥk(· | x) of the subdistri-
butions Hk(· | x), k ∈ {0, 1}. We consider that for each x, Ĥ(· | x) = Ĥ0(· |
x) + Ĥ1(· | x) is a proper distribution. These estimates are constructed with
the sample of (Y, δ,X), without reference to any model for the variables T ,
C or for the conditional probability P(T < ∞ | x). At this stage it is not
necessary to impose a particular form for Ĥk(· | x). One could, for instance,
use nonparametric estimators as proposed by Stone (1977) separately for
δ = 1 and δ = 0. To derive the asymptotic results we will only impose that
these estimators satisfy some mild conditions.

Let F̂T,0(· | x) be defined as in equations (2.11) and (2.12) with Ĥ0(· | x)

and Ĥ1(· | x) instead of H0(· | x) and H1(· | x), that is ∀t ∈ R, ∀x ∈ X ,

(3.1) F̂T,0((t,∞) |x) =
∏
s≤t

{
1− Ĥ1(ds | x)

Ĥ([s,∞) |x)− ̂P(T =∞ |x)F̂C([s,∞) |x)

}
,

where

(3.2) F̂C((t,∞) | x) =
∏
s≤t

{
1− Ĥ0(ds | x)

Ĥ([s,∞) | x)

}
,

and the estimator of the cure rate is derived from equation (3.3), i.e.

(3.3) ̂P(T =∞ | x) =
∏
t∈R

{
1− Ĥ1(dt | x)

Ĥ([t,∞) | x)

}
.
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By construction, for each x, F̂T,0(· | x) = 0 is a proper distribution function

and F̂T,0((t,∞) | x) = 0 for any t such that Ĥ1((t,∞) | x) = 0, provided

Ĥ1(· | x) puts a positive mass at the right endpoint of its support. See
Lemma 8.1 in the Appendix for the proof of this result.

Let fX denote the density of the covariate vector with respect to some
dominating measure. The contribution of the observation (Yi, δi, Xi) to the
likelihood when δi = 1 is then

φ(Xi, β)F̂T,0({Yi} | Xi)fX(Xi)F̂C((Yi,∞) | Xi),

while the contribution when δi = 0 is

F̂C({Yi} | Xi)fX(Xi)[φ(Xi, β)F̂T,0([Yi,∞) | Xi) + 1− φ(Xi, β)].

Since the law of the covariate vector does not carry information on the
parameter β, and since F̂C(· | x) and F̂T,0(· | x) could be directly com-

puted from Ĥ0(· | x) and Ĥ1(· | x), we can drop the factors F̂T,0({Yi} |
Xi)fX(Xi)F̂C((Yi,∞) | Xi) and F̂C({Yi} | Xi)fX(Xi). Hence the criterion
to be maximized with respect to β ∈ B is L̂n(β) where

L̂n(β) =

n∏
i=1

φ(Xi, β)δi
{
φ(Xi, β)F̂T,0([Yi,∞) | Xi) + 1− φ(Xi, β)

}1−δi
.

The estimator we propose is

(3.4) β̂ = arg max
β∈B

log L̂n(β).

The existence and the unicity of β̂ could be guaranteed using the same
conditions one would impose when considering the binary outcome regres-
sion model {φ(·, β) : β ∈ B} and when observing the outcomes.

4. General asymptotic results. Little assumptions were needed so
far. To proceed further with the asymptotic results we need to be more
specific with respect to several aspects. In order to prove consistency, we
have to control the asymptotic behavior of L̂n(β) along sequences of values
of the parameter β. Such a control requires a control of denominators like

Ĥ([t,∞) | x)− ̂P(T =∞ | x)F̂C([t,∞) | x)

on the support of H1(· | x), uniformly with respect to x. A usual way to
deal with this technical difficulty is to consider a finite threshold τ(x), that
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could depend on the covariate vector value x, beyond which no uncensored
lifetime is observed, i.e., for each x,

(4.1) τ(x)
def
= τH1(x) = inf

t
{H1((t,∞) | x) = 0} <∞.

Moreover, to be able to keep denominators, such as in equation (3.1), away
from zero, we require the condition

(4.2) inf
x∈X

H1({τ(x)} | x)H0((τ(x),∞) | x) > 0.

In particular, this condition implies τH0(x) > τ(x), ∀x ∈ X . Moreover,
given condition (2.3), necessarily H0({τ(x)} | x) = 0, ∀x. This means that
FC({τ(x)} | x) = 0, ∀x. This constraint on H0({τ(x)} | x) could be re-
laxed at the expense of suitable adjustments of the inversion formulae. For
simplicity, we keep condition (2.3). Let us also notice that condition (4.2)
implies infx FC((τ(x),∞) | x) > 0, and infx FT,0({τ(x)} | x) > 0.

Conditions like in equations (4.1)-(4.2) are more or less explicitly used
in the literature of cure models, where so far the threshold τ was always
considered independent of the covariate values. Sometimes τ is justified as
representing a total follow-up of the study. For instance, Lu (2008) supposes
that Y = min{T,min(C, τ)} and δ = 1{T ≤ min(C, τ)}, where T = ηT ∗ +
(1− η)∞, with T ∗ <∞ and η ∈ {0, 1}. The conditional probability of being
cured is precisely the conditional probability of the event {η = 0}. Next, Lu
(2008) supposes that infx P(τ ≤ T ≤ C | x) > 0, and Λ0(τ) < ∞, where
Λ0(·) is the cumulative hazard function of T ∗. All these conditions together
clearly imply our conditions (4.1)-(4.2).

Fang et al. (2005) implicitly restrict the uncensored lifetimes to some com-
pact interval [0, τ ] and suppose E(δ1{Y ≥ τ}) > 0. This could be possible
only ifH1({τ} | x) > 0 for a set of values x with positive probability. In a pro-
portional hazards context with the covariates taking values in a bounded set,
as assumed by Fang et al. (2005), this is equivalent to H1({τ} | x) ≥ c > 0
for almost all x, for some constant c.

The fact that technical conditions similar to our conditions (4.1)-(4.2)
could be traced in the cure models literature is not unexpected in view of our
Section 2.5. Indeed, the existing approaches could be interpreted through our
inversion formulae and thus the technical problems we face in the asymptotic
investigation are expected to be also present in the alternative approaches.

4.1. Consistency. Let us sketch the arguments we use for proving the
consistency of β̂. On one hand, if the conditional subdistributions Hk(· | x)
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are given, one can build the purely parametric likelihood

(4.3) Ln(β) =
n∏
i=1

φ(Xi, β)δi {φ(Xi, β)FT,0([Yi,∞) |Xi) + 1− φ(Xi, β)}1−δi .

By construction, Ln(β) is a functional of H0(· | x) and H1(· | x), x ∈
X , while L̂n(β) is a functional of the estimated versions of H0(· | x) and
H1(· | x). Hence, for deriving the consistency of β̂, first we show that β0
defined by equation (2.13) is a well-separated maximum of the function
β 7→ E[logLn(β)] and that supβ∈B |logLn(β)− E [logLn(β)]| = oP(n). Next,
we check that

(4.4) sup
β∈B
| log L̂n(β)− logLn(β)| = oP(n).

We then have that logLn(β̂) ≥ supβ∈B logLn(β) − oP(n). From this we

will derive the consistency of β̂ using results from Section 5.2 in van der
Vaart (1998). To prove condition (4.4), we have to guarantee the uniform
convergence of Ĥk −Hk, k ∈ {0, 1}, as stated in Assumption (AC1) below.

Formally, to prove the consistency of β̂, we use the following assumptions:

(AC1) For τ(x) appearing in conditions (4.1)-(4.2),

sup
x∈X

sup
t∈(−∞,τ(x)]

|Ĥk([t,∞) | x)−Hk([t,∞) | x)| = oP(1), k ∈ {0, 1}.

(AC2) The parameter set B ⊂ Rp is compact.
(AC3) There exist some constants a > 0 and c1 > 0 such that∣∣φ(x, β)− φ(x, β′)

∣∣ ≤ c1‖β − β′‖a, ∀β, β′ ∈ B, ∀x, x′ ∈ X ,

where ‖A‖ is the Euclidean norm of any vector A.
(AC4) infβ∈B infx∈X φ(x, β) > 0.

Theorem 4.1. Assume that (AC1)-(AC4) and (2.2), (2.3), (2.8), (2.14),
(4.1) and (4.2) hold true. Moreover, assume that there exists a unique value
β0 in the parameter set B such that (2.13) is true. Then, β̂ − β0 = oP(1).

Let us point out that the consistency result is stated in terms of the
subdistributions of the observations and the conditional probability model
{φ(·, β) : β ∈ B}. If the model is correctly specified, φ(x, β̂) consistently
estimates the cure probability P(T = ∞ | x) for all x in the support of
X. Let us also notice that condition (AC3) guarantees the Glivenko-Cantelli
property we use in the proof and it will be satisfied in the common modeling
situations. Condition (AC4) is a weak condition on the model φ(x, β) and
is e.g. satisfied for the logistic model if X and B are compact.
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4.2. Asymptotic normality. For the asymptotic normality we use the ap-
proach in Chen et al. (2003), Section 3.2. For this purpose we use the deriva-
tive of log L̂n(β) with respect to β and we embed the nuisance functions
Hk([·,∞) | ·) (k = 0, 1) in a functional space H equipped with a pseudo-
norm ‖ · ‖H. Both the space H and its pseudo-norm ‖ · ‖H will be chosen
depending on the estimators Ĥk([·,∞) | ·), k = 0, 1, and have to satisfy
certain conditions, given below. The true vector of nuisance functions is

η0(t, x) = (η01(t, x), η02(t, x)) = (H0([t,∞) | x), H1([t,∞) | x)).

For each x ∈ X and for each η1, η2 ∈ H, let η(dt, x) = (η1(dt, x), η2(dt, x))
be the measures associated to the functions η(·, x) = (η1(·, x), η2(·, x)).

Let ∇β denote the vector-valued partial differentiation operator with re-
spect to the components of β. First, note that the vector of partial derivatives
of the log-likelihood log L̂n(β) with respect to the components of β equals

∇β log L̂n(β) =
1

n

n∑
i=1

m(Yi, δi, Xi;β, η̂), η̂ = (Ĥ0, Ĥ1),

and

(4.5) m(t, d, x;β, η) =

{
d

φ(x, β)
− (1− d)T (η)(t, x)

1− φ(x, β)T (η)(t, x)

}
∇βφ(x, β).

The map η 7→ T (η)(·, ·) is given by

(4.6) T (η)(t, x) = FT,0((−∞, t] | x)

and defines FT,0 as a functional of H0 and H1 via the composition

(H0, H1)(· | ·) 7→(P(T =∞ | ·), (FC , H0, H1)(· | ·)) 7→ΛT,0(· | ·) 7→FT,0(· | ·).

The maps in the above composition are defined in equations (3.3)-(2.5)-(2.6),
(2.11) and (2.12), respectively. We also define

Mn(β, η) =
1

n

n∑
i=1

m(Yi, δi, Xi;β, η) and M(β, η) = E[m(Y, δ,X;β, η)].

Hence, we have that M(β0, η0) = 0 and ‖Mn(β̂, η̂)‖ = infβ∈B‖Mn(β, η̂)‖,
where η̂(t, x) = (η̂1(t, x), η̂2(t, x)) = (Ĥ0([t,∞) | x), Ĥ1([t,∞) | x)).

Next, we have to investigate the derivatives of M(β, η) with respect to β
and η. We will show in the proof of Theorem 4.2 below that

∇βM(β0, η0) = −E
{
W (X)∇βφ(X,β0)∇βφ(X,β0)

>
}
,(4.7)
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with the positive function W (·) given by

W (x) =

∫
(−∞,τ(x)] FC((t,∞) | x)FT,0(dt | x)

P(T <∞ | x)

+

∫
(−∞,τ(x)]

F 2
T,0((−∞, t] | x)FC(dt | x)

1− P(T <∞ | x)FT,0((−∞, t] | x)
.

Further, define the Gâteaux derivative of M(β, η0) in the direction [η − η0]

∇ηM(β, η0)[η − η0] = lim
τ→0

1

τ

[
M(β, η0 + τ(η − η0))−M(β, η0)

]
.

We show in the proof of Theorem 4.2 below how to compute this derivative.
We make the following assumptions:

(AN1) The value β0 is an interior point of the compact set B ⊂ Rp. For
any x ∈ X , the function β → φ(x, β), β ∈ B, is twice continuously
differentiable and the first and second order partial derivatives are
bounded uniformly in (x, β) ∈ X ×B.

(AN2) Hk([·,∞) | ·) ∈ H for k = 0, 1.
(AN3) The matrix E

{
∇βφ(X,β0)∇βφ(X,β0)

>} is positive definite.

(AN4) For k = 0, 1, the estimator Ĥk([·,∞) | ·) satisfies the following :

(i) P(Ĥk([·,∞) | ·) ∈ H)→ 1;

(ii) ‖(Ĥk −Hk)([·,∞) | ·)‖H = oP(n−1/4);

(iii) For some functions ψjk, j = 1, . . . 5, k = 0, 1, defined in (8.3) in
the Appendix, there exist functions Ψ1 and Ψ2, such that

1∑
k=0

E∗
[
ψ1k(Y,X)

∫
(−∞,Y )

ψ2k(u,X)d
(

(Ĥk −Hk)([u,∞) |X)
)]

=
1

n

n∑
i=1

Ψ1(Yi, δi, Xi) +R1n,

and

1∑
k,`=0

E∗
[
ψ3k(Y,X)

∫
(−∞,Y )

ψ4k(u,X)ψ5k

(
(Ĥk−Hk)([u,∞) |X), X

)
× dH`(u | X)

]
=

1

n

n∑
i=1

Ψ2(Yi, δi, Xi) +R2n,
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where E∗ denotes conditional expectation given the sample, taken
with respect to the generic variables Y, δ,X. Moreover,

E[Ψ1(Y, δ,X)] = E[Ψ2(Y, δ,X)] = 0, ‖R1n‖+‖R2n‖= oP(n−1/2).

(AN5) The classH satisfies
∫∞
0

√
logN(ε,H, ‖ · ‖H)dε <∞, where N(ε,H, ‖·

‖H) is the ε-covering number of the space H with respect to the norm
‖ · ‖H, i.e. the smallest number of balls of ‖ · ‖H-radius ε needed to
cover the space H.

Theorem 4.2. Assume that β̂ − β0 = oP(1) and that (AN1)-(AN5) and
(2.2), (2.3), (2.8), (2.14), (4.1) and (4.2) hold true. Then,

n1/2
(
β̂ − β0

)
⇒ N

(
0, {∇βM(β0, η0)}−1 V {∇βM(β0, η0)}−1

)
,

where V = Var
(
m(Y, δ,X;β0, η0) + Ψ1(Y, δ,X) + Ψ2(Y, δ,X)

)
, ∇βM(β0, η0)

is given in (4.7), and Ψ1 and Ψ2 are defined in Assumption (AN4)(iii).

The structure of the asymptotic variance of β̂ reveals the differences with
a standard binary outcome regression. The expression of the functions ∇βM
and m include terms depending on H0 and H1 which account for the un-
certainty on the censored observations, which could correspond to cured or
uncured subjects. The expression of the variance V includes the functions
Ψ1 and Ψ2 which account for the fact that H0 and H1 are unknown and
have been estimated from the data.

4.3. Bootstrap consistency. Although in principle one can use Theorem
4.2 above for making inference, the asymptotic variance of β̂ has a compli-
cated structure, and estimating it would not only be cumbersome, but the
precision of the estimate for small samples could moreover be rather poor.
In this section we show that a bootstrap procedure can be used to estimate
the asymptotic variance of β̂, to approximate the whole distribution of β̂ or
to construct confidence intervals or test hypotheses regarding β0.

Here, we propose to use a naive bootstrap procedure, consisting in draw-
ing triplets (Y ∗i , δ

∗
i , X

∗
i ), 1 ≤ i ≤ n, randomly with replacement from the

data (Yi, δi, Xi), 1 ≤ i ≤ n. Let Ĥ∗k be the same estimator as Ĥk (k =
0, 1) but based on the bootstrap data, and for each (β, η) let M∗n(β, η) =
n−1

∑n
i=1m(Y ∗i , δ

∗
i , X

∗
i ;β, η). Define the bootstrap estimator β̂∗ to be any

sequence satisfying ‖M∗n(β̂∗, η̂∗)−Mn(β̂, η̂)‖ = infβ∈B‖M∗n(β, η̂∗)−Mn(β̂, η̂)‖,
where η̂∗(t, x) = (η̂∗1(t, x), η̂∗2(t, x)) = (Ĥ∗0 ([t,∞) | x), Ĥ∗1 ([t,∞) | x)).

The following result shows that the bootstrap works, in the sense that it
allows to recover correctly the distribution of n1/2(β̂ − β0).
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Theorem 4.3. Assume that β̂−β0 = oP(1) and that (AN1)-(AN5) hold
true. Moreover, assume that ∇βM(β, η) is continuous in η (with respect to

‖ · ‖H) at (β, η) = (β0, η0), and that (AN4) holds true with Ĥk−Hk replaced
by Ĥ∗k − Ĥk (k = 0, 1) in P∗-probability. Then,

sup
u∈Rp

∣∣∣P∗(n1/2(β̂∗ − β̂) ≤ u
)
− P

(
n1/2(β̂ − β0) ≤ u

)∣∣∣ = oP(1),

where P∗ denotes probability conditionally on the data, and where the in-
equality sign means the component-wise inequality for vectors.

4.4. Verification of the assumptions for kernel estimators. Next, we illus-
trate the verification of the assumptions of our asymptotic results when the
conditional subdistributions Hk are estimated by means of kernel smoothing.

Consider the case where X is composed of continuous and discrete com-
ponents, that is X = (Xc, Xd) ∈ Xc×Xd ⊂ Rdc ×Rdd , with dc + dd = d ≥ 1.
For simplicity, assume that the support Xd of the discrete subvector Xd is
finite. We also assume that the lifetime T has not been transformed by a
logarithmic or other transformation, so that its support is (0,∞]. The sub-
distributions Hk([t,∞) | x) are assumed continuous in both arguments t and
x and are estimated by means of a kernel estimator:

(4.8) Ĥk([t,∞) | x) =

n∑
i=1

K̃hn(Xi − x)∑n
j=1 K̃hn(Xj − x)

I(Yi ≥ t, δi = k),

where for any (xc, xd) ∈ Xc×Xd, K̃hn(Xi−x) = Khn(Xc,i−xc)I(Xd,i = xd),
hn is a bandwidth sequence, Kh(·) = K(·/h)/hdc , K(u) = k(u1) · . . . · k(udc)
and k(·) is a probability density function.

Nonparametric smoothing of continuous covariates is possible for dimen-
sions dc larger than 1. However, the technical arguments necessary to verify
the assumptions used for the asymptotic results are tedious. Therefore, in
the following we consider dc = 1. The discrete covariates do not contribute
to the curse of dimensionality, and therefore dd could be larger than 1. How-
ever, for simplicity, below we do not consider discrete covariates.

To satisfy assumption (AN4), we impose the following conditions:

(C1) The sequence hn satisfies nh4n→0 and nh3+ζn /log n→∞ for some ζ > 0.
(C2) The support X of X is a compact subset of R and the density fX(·)

of X is bounded and bounded away from zero.
(C3) The probability density functionK has compact support,

∫
uK(u)du =

0 and K is twice continuously differentiable.
(C4) There exists τ such that supx τ(x) < τ < infx τH0(x) ≤ ∞.
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Further, let F1 be the space of functions from [0, τ ] to [0, 1] with variation
bounded by 0 < M < ∞, and let F2 be the space of continuously differen-
tiable functions f from X to [−M,M ] that satisfy supx∈X |f ′(x)| ≤ M and
supx1,x2∈X |f

′(x1)− f ′(x2)|/|x1 − x2|ε ≤M for some 0 < ε < 1. Let

H =
{

(t, x)→ η(t, x) : η(·, x) ∈ F1,
∂

∂x
η(·, x) ∈ F1 for all x ∈ X ,

and η(t, ·) ∈ F2 for all 0 ≤ t ≤ τ
}
.

We define the following norm associated with the space H : for η ∈ H,
let ‖η‖H = sup0≤t≤τ supx∈X |η(t, x)|. Then, it follows from Propositions 1

and 2 in Akritas and Van Keilegom (2001) that P(Ĥk ∈ H) → 1 pro-

vided nh3+ζn (log n)−1 → ∞, with ζ > 0 as in condition (C1). Moreover,
supx,t |Ĥk([t,∞) | x)−Hk([t,∞) | x)| = OP((nhn)−1/2(log n)1/2) = oP(n−1/4)
(see Proposition 1 in Akritas and Van Keilegom 2001). The class H satisfies
assumption (AN5) thanks to Lemma 6.1 in Lopez (2011). It remains to show
the validity of assumption (AN4)(iii). We will show the first statement, the
second one can be shown in a similar way. Note that the left hand side equals

1∑
k=0

Ei
[
ψ1k(Y,X)

∫
(0,Y )

ψ2k(u,X)
1

n
f−1X (X)

×
n∑
i=1

Khn(Xi −X) d
(
I(Yi ≥ u, δi = k)−Hk([u,∞) |X)

)]
+ oP(n−1/2)

=
1∑

k=0

Ei
[
ψ1k(Y,X)

fX(X)

1

n

n∑
i=1

Khn(Xi −X)
{
− ψ2k(Yi, X)I(Yi ≤ Y, δi =k)

−
∫
(0,Y )

ψ2k(u,X) dHk([u,∞) | X)
}]

+ oP(n−1/2)

=
1

n
Ψ1(Yi, δi, Xi) + oP(n−1/2 + h2n),

where Ei[·] = E[· | Yi, δi, Xi], Ei[· | X = Xi] = E[· | Yi, δi, Xi, X = Xi] and

Ψ1(Yi, δi, Xi) = −
1∑

k=0

{
Ei(ψ1k(Y,Xi)I(Yi ≤ Y, δi = k)|X = Xi)ψ2k(Yi, Xi)

−
∫
Ei(ψ1k(Y,Xi)I(u ≤ Y, δi = k) |X = Xi)ψ2k(u,Xi)dH((−∞, u] |Xi)

}
.

which is of the required form. Moreover, the oP(·) rates hold uniformly with
respect to i, and we have E[Ψ1(Yi, δi, Xi)] = 0.
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Plugging the estimators Ĥ0, Ĥ1 and β̂ into the equations (2.11) and (2.12),
we obtain an estimator for FT,0. Then, under the additional conditions (C1)

to (C4), with ̂P(T =∞ | x) defined in equation (3.3), uniformly in 0 < t ≤ τ
and x ∈ X , we have the following i.i.d. representation:

F̂T,0((0, t] | x)− FT,0((0, t] | x)(4.9)

=
FT,0((t, τ ] | x)

fX(x)

× 1

n

n∑
i=1

Khn(h−1n (x−Xi))

{
δiI(Yi ≤ t)
H([Yi,∞) |x)

−
∫
(0,t∧Yi]

H1(ds | x)

H2([s,∞) |x)

}
−
{

̂P(T =∞ | x)− [1− φ(x, β0)]
}

Υ(t, x;H0, H1, β0)

+oP((nhn)−1/2),

uniformly in x and t. The expression of the functional Υ, as well as the i.i.d.

representation of the nonparametric estimator ̂P(T =∞ | x), are given in
the Supplementary Material. As a consequence of the i.i.d representation

(4.9), weak convergence theorems for
√
nhn

(
F̂T,0 − FT,0

)
could be derived

by standard arguments, that we omit for the sake of brevity.

5. Efficiency aspects. Our modeling situation belongs to the general
information loss model framework, see van der Vaart (1998), section 25.5.2.
Here the observed variables (Y, δ,X) are a measurable transformation of
the (partially) unobservable variables (T,C,X). In order to separate the
parametric and nonparametric parts of our semiparametric model, let us
introduce a latent finite lifetime T0 ∈ R and a latent binary variable ∆
such that T = T0 when ∆ = 1 and T = ∞ when ∆ = 0. Thus we have
{T < ∞} = {∆ = 1}. Let us assume ∆ ⊥ (T0, C) | X and T0 ⊥ C |
X, which guarantees the conditional independence assumption (2.2). The
infinite dimensional parameters of the model are given by the laws of C, X
and T0. Given the structure of the likelihood, and assuming that the laws
of C and X do not carry any information on the parameter of interest β,
we could only consider submodels in the direction of FT,0. Then the score
function for the path induced in our model by a submodel in the direction
of FT,0, with score function b(·), is given by

(5.1) g(Y, δ,X) = E [b(T0, X) | Y, δ,X]

= δb(Y,X) + (1− δ)φ(X,β)

∫
(Y,∞) b(t,X)dFT,0(t | X)

1− φ(X,β)FT,0((−∞, Y ] | X)
.
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The tangent set, say T , in the nonparametric direction of FT,0 is composed
of vector-valued functions g(·) depending on the observations and defined
by squared norm integrable centered vector-valued functions b(T0, X). To
project the score of the parametric part of our model

m0(Y, δ,X) =

{
δ

φ(X,β0)
−

(1− δ)FT,0((−∞, Y ] | X)

1− φ(X,β0)FT,0((−∞, Y ] | X)

}
∇βφ(X,β0)

onto the tangent set T , we have to find a function b0(T0, X), yielding
g0(Y, δ,X) defined as in equation (5.1), such that

E [{m0(Y, δ,X)− g0(Y, δ,X)} g∗(Y, δ,X)] = 0

for all g∗(Y, δ,X) defined by score functions b∗(T0, X). In the Supplementary
Material, we show that this equation is an integral equation with a solution
that could be approximated numerically.

With this solution we then obtain the efficient score

Seff(Y, δ,X;β0, η0) = m0(Y, δ,X)− g0(Y, δ,X).

A semi-parametrically efficient estimator could be obtained by solving the
equation

n−1
n∑
i=1

Seff(Yi, δi, Xi;β, η̂) = oP(n−1/2)

for β. The solution β̂eff will have the following i.i.d. representation:

β̂eff − β0 = n−1
n∑
i=1

[
E(Seff,iS

>
eff,i)

]−1
Seff,i + oP(n−1/2)

where Seff,i = Seff(Yi, δi, Xi;β0, η0).

6. Simulations. In this section we will investigate the small sample
performance of our estimation method. We consider the following model.
The covariate X is generated from a uniform distribution on [−1, 1], and the
conditional probability φ(x, β) of not being cured follows a logistic model :
φ(x, β) = logit(β1 + β2x), for any −1 ≤ x ≤ 1. We will work with β0 =
(β01, β02) = (1.75, 2) and (1.1, 2), corresponding to an average cure rate of
20% respectively 30%. The conditional distribution function FT,0(·|x) of the
uncured individuals is constructed as follows. For a given X = x, we draw
T from a Weibull distribution: FT,0([t,∞)|x) = exp(−tk(x) exp(γ0 + γ1x)),
where k(x) = k+a(1/(1+x)−1/2). We take k = 0.75, γ0 = 0.5 and γ1 = 1,
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and a ∈ {0, 1, 2}. Next, in order to respect condition (4.2), we truncate
this distribution at τ(x), where τ(x) ≡ τ equals the quantile of order 0.97
of FT,0(y|0) when a = 0, and the quantile of order 0.97 of FT,0(y|x) when
a = 1 or 2. Note that the Cox model is only verified if a = 0, and in that
case we have a baseline cumulative hazard function given by exp(γ0)t

k for
t ≤ τ and given by infinity for t > τ .

Next, we generate the censoring variable C as follows: FC([t,∞)|x) =
exp(−tk(x) exp(γ0 + γ1x)/pC), where pC = (1− pcens)/(pcens − pcure), with
pcens the proportion of censored subjects in the population when a = 0 and
pcure the proportion of cured subjects in the population when a = 0. When
pcure = 0.20 we take pcens = 0.25 (model 1) and 0.35 (model 2) and when
pcure = 0.30 we take pcens = 0.35 (model 3) and 0.45 (model 4).

In what follows we will compare our estimator of β with the estimator
proposed by Lu (2008) which assumes a Cox model for the uncured individ-
uals. The estimated β coefficients under the Cox model are obtained using
the R package smcure.

For our estimation procedure we used the kernel estimators given in Sec-
tion 4.4, and we programmed β̂ using the optimization procedure optim in R.
The details of the maximization procedure we used are provided in the Sup-
plementary Material. The results of our maximization procedure are given
in Table 1 for the case where β0 = (1.75, 2) (model 1 and 2), and in Table
2 for the case where β0 = (1.1, 2) (model 3 and 4). A total of 1020 samples
of size n = 200 and n = 400 are generated, and the tables show the bias
and the variance of the estimators β̂1 and β̂2 obtained under the Cox model
and from our procedure. For stability reasons, the results are truncated in
the sense that the lowest and highest 1% of the estimators are omitted, and
so the actual number of samples is 1000. The kernel function K is taken
equal to the Epanechnikov kernel : K(u) = (3/4)(1 − u2)I(|u| ≤ 1). For
the bandwidth h of the kernel estimators Ĥk(·|Xi) (k = 0, 1), defined as in
equation (4.8), we used the cross-validation (CV) procedure proposed by Li
et al. (2013) for kernel estimators of conditional distribution functions. The
CV procedure is implemented in the package np in R. For each sample in
our simulation, we calculated these bandwidths for Ĥ0 and Ĥ1 and used the
average of these two bandwidths, truncated to the interval [n−2/7, 5n−2/7]
in order to verify regularity condition (C1).

The tables show that our estimator outperforms the one that is based
on the Cox model when the Cox model is not verified (a = 1 or a = 2),
whereas when the model is satisfied (so when a = 0) the two estimators
behave rather similarly.

Next, we look at the estimation of the quartiles of the distribution FT,0(·|x)

R
smcure
optim
R
np
R
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Model 1 Model 2
New Cox New Cox

n a Par. Bias Var Bias Var Bias Var Bias Var

200 0 β1 .010 .059 .044 .063 -.001 .092 .080 .111
β2 -.034 .175 .061 .186 -.038 .258 .116 .305

1 β1 .025 .058 .063 .053 .032 .088 .087 .082
β2 -.068 .180 -.350 .175 .093 .273 -.590 .245

2 β1 .027 .058 .093 .053 .030 .079 .085 .074
β2 -.076 .180 -.489 .172 -.097 .247 -.593 .220

400 0 β1 .005 .032 .027 .034 -.001 .045 .039 .051
β2 -.039 .088 .032 .091 -.045 .125 .051 .134

1 β1 .020 .031 .054 .029 .022 .044 .067 .039
β2 -.082 .090 -.372 .086 -.133 .129 -.637 .113

2 β1 .021 .031 .086 .029 .025 .045 .135 .042
β2 -.087 .090 -.515 .083 -.142 .131 -.842 .111

Table 1
Bias and Var of β̂1 and β̂2 for two sample sizes and three values of a. Here,

P(cured) = 0.2 and P(censoring) is either 0.25 (model 1) or 0.35 (model 2) for a = 0. The
Cox model is satisfied for a = 0.

when x = −0.5. We estimate these quartiles by means of our nonparametric
estimator F̂T,0(·|x) and by means of the Cox model studied in Lu (2008).
The results given in Figure 1 for n = 200 show that, as could be expected,
when the Cox model is satisfied (i.e. when a = 0) our quantile estimators

Model 3 Model 4
New Cox New Cox

n a Par. Bias Var Bias Var Bias Var Bias Var

200 0 β1 .002 .039 .024 .040 -.009 .059 .053 .069
β2 -.039 .136 .039 .138 -.026 .195 .096 .220

1 β1 .017 .038 .057 .036 .017 .059 .076 .058
β2 -.049 .136 -.255 .140 -.052 .212 -.427 .198

2 β1 .018 .038 .085 .037 .020 .060 .129 .063
β2 -.052 .136 -.366 .138 -.056 .214 -.599 .200

400 0 β1 -.006 .020 .008 .021 -.004 .030 .023 .032
β2 -.040 .064 .024 .067 -.034 .099 .047 .102

1 β1 .006 .020 .044 .019 .014 .029 .066 .028
β2 -.065 .066 -.266 .067 -.094 .100 -.459 .096

2 β1 .007 .020 .073 .019 .015 .029 .123 .031
β2 -.069 .066 -.377 .066 -.100 .100 -.632 .096

Table 2
Bias and Var of β̂1 and β̂2 for two sample sizes and three values of a. Here,

P(cured) = 0.3 and P(censoring) is either 0.35 (model 3) or 0.45 (model 4) for a = 0. The
Cox model is satisfied for a = 0.
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Fig 1. Boxplots for quantile estimators.

have a larger variance than those obtained under the Cox model, whereas
the bias is similar for both estimators. On the other hand, when the Cox
model is not satisfied (i.e. when a = 1 or 2), the estimated quartiles ob-
tained under the Cox model are heavily biased. This shows the importance
of having a model that does not impose any assumptions on the distribution
of the uncured individuals and which still provides very accurate estimators
for the logistic part of the model.

We also verify how close the distributions of β̂1 and β̂2 are to a normal
distribution. We know thanks to Theorem 4.2 that the estimators converge
to a normal limit when n tends to infinity. In the Supplementary Material
we provide simulation results showing that the asymptotic normal approxi-
mation is already quite accurate for n = 200.

Next, we verify the accuracy of the naive bootstrap proposed in Section
4.3. Figure 3 shows boxplots of the variance of β̂1 and β̂2, centered around the
empirical variance of the estimators of β1 and β2. The boxplots are obtained
from 500 bootstrap resamples for each of 1000 samples of size n = 200.
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The boxplots show that the bootstrap variance is well centered around the
corresponding empirical variance.

−
0.

10
0.

00
0.

10
0.

20

n = 200 , model =  1

−
0.

10
0.

00
0.

10
0.

20
−

0.
10

0.
00

0.
10

0.
20

−
0.

10
0.

00
0.

10
0.

20
−

0.
10

0.
00

0.
10

0.
20

−
0.

10
0.

00
0.

10
0.

20
−

0.
10

0.
00

0.
10

0.
20

          a=0           a=1           a=2

β1 β2

−
0.

1
0.

1
0.

2
0.

3
0.

4

n = 200 , model =  2

−
0.

1
0.

1
0.

2
0.

3
0.

4
−

0.
1

0.
1

0.
2

0.
3

0.
4

−
0.

1
0.

1
0.

2
0.

3
0.

4
−

0.
1

0.
1

0.
2

0.
3

0.
4

−
0.

1
0.

1
0.

2
0.

3
0.

4
−

0.
1

0.
1

0.
2

0.
3

0.
4

          a=0           a=1           a=2

β1 β2

−
0.

05
0.

05
0.

10
0.

15

n = 200 , model =  3

−
0.

05
0.

05
0.

10
0.

15
−

0.
05

0.
05

0.
10

0.
15

−
0.

05
0.

05
0.

10
0.

15
−

0.
05

0.
05

0.
10

0.
15

−
0.

05
0.

05
0.

10
0.

15
−

0.
05

0.
05

0.
10

0.
15

         a=0          a=1          a=2

β1 β2

−
0.

1
0.

0
0.

1
0.

2
0.

3

n = 200 , model =  4

−
0.

1
0.

0
0.

1
0.

2
0.

3
−

0.
1

0.
0

0.
1

0.
2

0.
3

−
0.

1
0.

0
0.

1
0.

2
0.

3
−

0.
1

0.
0

0.
1

0.
2

0.
3

−
0.

1
0.

0
0.

1
0.

2
0.

3
−

0.
1

0.
0

0.
1

0.
2

0.
3

          a=0           a=1           a=2

β1 β2

Fig 2. Boxplots of the bootstrap variance of β̂1 and β̂2, centered around the empirical
variance of the estimators of β1 and β2. The boxplots are obtained from 500 bootstrap
resamples for each of 1000 samples of size n = 200, using the new estimation method.

We also obtain percentile bootstrap confidence intervals for β1 and β2,
and calculate the coverage probability and average length of these intervals.
The results are given in Table 3 and show that the coverage is very close to
the desired 95% and that the results are better for n = 400 than for n = 200.

In the last simulation study, we investigate what happens when the model
is misspecified. More precisely, we generate data from a model containing two
covariates, and we want to know how our estimator and the estimator under
the Cox model behave when fitting a mixture cure model containing only one
of the two covariates. The results provided in the Supplementary Material
show that our nonparametric model on FT,0 is able to compensate better for
the forgotten covariate than the Cox model. This is what is expected given
that our model on FT,0 is nonparametric and hence more flexible than the
Cox model.
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n = 200 n = 400
Model Model

a Par. 1 2 3 4 1 2 3 4

0 β1 Cov 0.97 0.96 0.96 0.96 0.95 0.96 0.95 0.96
Len 1.07 1.31 0.85 1.05 0.73 0.90 0.58 0.73

β2 Cov 0.95 0.97 0.96 0.97 0.96 0.96 0.96 0.95
Len 1.77 2.12 1.53 1.87 1.21 1.46 1.04 1.29

1 β1 Cov 0.97 0.96 0.95 0.96 0.95 0.96 0.95 0.97
Len 1.07 1.31 0.85 1.05 0.73 0.89 0.58 0.73

β2 Cov 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.95
Len 1.81 2.23 1.56 1.96 1.25 1.52 1.07 1.34

2 β1 Cov 0.97 0.97 0.95 0.96 0.95 0.96 0.95 0.96
Len 1.07 1.31 0.85 1.05 0.73 0.89 0.58 0.73

β2 Cov 0.95 0.97 0.95 0.96 0.95 0.95 0.95 0.96
Len 1.81 2.22 1.56 1.97 1.24 1.52 1.07 1.34

Table 3
Coverage probability (Cov) and average length (Len) of bootstrap confidence intervals for

β̂1 and β̂2 for two sample sizes and three values of a, using the new estimation method.

7. Data analysis. Let us now apply our estimation procedure on two
medical data sets. The first one is about 286 breast cancer patients with
lymph-node-negative breast cancer treated between 1980 and 1995 (Wang
et al. (2005)). The event of interest is distant-metastasis, and the associated
survival time is the distant metastasis-free survival time (defined as the time
to first distant progression or death, whichever comes first). 107 of the 286
patients experience a relapse from breast cancer. The plot of the Kaplan-
Meier (KM) estimator of the data is given in Figure 3(a) and shows a large
plateau at about 0.60. Furthermore, a large proportion of the censored ob-
servations is in the plateau, which suggests that a cure model is appropriate
for these data. As a covariate we use the age of the patients, which ranges
from 26 to 83 years and the average age is about 54 years.

We estimate β using our estimator and using the estimator based on the
Cox model. The bandwidth h is selected using cross-validation, as in the sim-
ulation section. The estimated intercept is -0.168 (with standard deviation
equal to 0.502 obtained using a naive bootstrap procedure), and the esti-
mated slope parameter is -0.006 (with standard deviation equal to 0.009).
Under the Cox model the estimated intercept and slope are respectively
0.063 and -0.010. A 95% confidence interval is given by (−1.152, 0.815) for
the intercept and (−0.024, 0.012) for the slope, where the variance is again
based on the naive bootstrap procedure. The graph of the two estimators
of the function φ(x) is given in Figure 3(b). The estimated coefficients and
curves are quite close to each other, suggesting that the Cox model might be
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Fig 3. Analysis of the breast cancer data : (a) KM estimator; (b) Graph of the proposed
estimator of φ(x) (solid curve) and of the estimator based on the Cox model (dashed curve);
(c) Estimation of 1 − FT,0(·|x) using the proposed estimator (solid curve) and using the
estimator based on the Cox model (dashed curve) when x = 48; (d) Idem when x = 60.

valid. This is also confirmed by Figure 3(c)-(d), which shows the estimation
of the survival function of the uncured patients for x = 48 and x = 60 based
on our estimation procedure and the one based on the Cox model. The figure
shows that the two estimators are close for both values of x.

Next, we analyse data provided by the Medical Birth Registry of Nor-
way (see http://folk.uio.no/borgan/abg-2008/data/data.html). The data set
contains information on births in Norway since 1967, related to a total of
53,558 women. We are interested in the time between the birth of the first
and the second child, for those mothers whose first child died within the
first year (n = 262). The covariate of interest is age (X), which is the age of
the mother at the birth of the first child. The age ranges from 16.8 to 29.8
years, with an average of 23.2 years. The cure rate is the fraction of women
who gave birth only once. Figure 4(a) shows the Kaplan-Meier estimator,
and suggests that a cure fraction is present.
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Fig 4. Analysis of the second birth data : (a) KM estimator; (b) Graph of the proposed
estimator of φ(x) (solid curve) and of the estimator based on the Cox model (dashed curve);
(c) Estimation of 1 − FT,0(·|x) using the proposed estimator (solid curve) and using the
estimator based on the Cox model (dashed curve) when x = 21; (d) Idem when x = 25.

Again, we analyse these data using the approach proposed in this paper,
and also using the Cox mixture cure model. The estimated intercept equals
2.119 using our model and 0.034 using the Cox model. The bootstrap con-
fidence interval for the intercept is (−1.306, 5.544) (the estimated standard
deviation equals 1.747). The estimated slope equals -0.048 respectively 0.052
using the two models. For our estimation procedure the confidence interval is
given by (−0.195, 0.099) (with estimated standard deviation equal to 0.075).
Figure 4(b) shows that the two estimators of the function φ(x) are quite dif-
ferent, and have opposite slopes. Moreover, the survival function 1−FT,0(·|x)
of the uncured patients is given in Figure 4(c)-(d) for x = 21 and x = 25. We
see that the estimator based on the Cox model is quite different from ours,
suggesting that the Cox model might not be valid for these data, although
a formal test would need to confirm this. A possible test statistic could be
the L∞ or L2 distance between our nonparametric estimator of FT,0 and the
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estimator under the Cox model or under any other parametric or semipara-
metric model. The development of this testing procedure is however beyond
the scope of this paper. Also note that the estimator of the cure proportion
is increasing under our model and decreasing under the Cox model. It seems
however natural to believe that the probability of having no second child
(so the cure proportion) is increasing with age, which is again an indication
that the Cox model is not valid for these data.

8. Appendix: Proofs.

Lemma 8.1. Assume that conditions (2.2), (2.3) and (2.8) are met. Fix
x ∈ X arbitrarily. Assume that H1(· | x) puts a positive mass at the right
endpoint of its right-bounded support. Then, FT,0 is a proper distribution

function (df) and FT,0((t,∞) | x) = 0 if H1((t,∞) | x) = 0. If Ĥ1(· | x) puts

a positive mass at the right endpoint of its right-bounded support, then F̂T,0
is a proper df and F̂T,0((t,∞) | x) = 0 if Ĥ1((t,∞) | x) = 0.

Proof of Lemma 8.1. We show the statement for FT,0, the case of F̂T,0
follows by the same arguments. Let τ(x) be the right endpoint of the support
of H1(· | x). Then, H1({τ(x)} | x) > 0 and hence condition (2.3) implies
that FC([τ(x),∞) | x) = FC((τ(x),∞) | x). Then we have

H([τ(x),∞) | x)− P(T =∞ | x)FC([τ(x),∞) | x)

= H([τ(x),∞) | x)− P(T =∞ | x)FC((τ(x),∞) | x)

= H([τ(x),∞) | x)−H((τ(x),∞) | x)

= H({τ(x)} | x) = H1({τ(x)} | x).

By virtue of formula (2.12), FT,0((τ(x),∞) | x) = 0 and hence FT,0((t,∞) |
x) = 0 when H1((t,∞) | x) = 0. Moreover, FT,0 is a proper distribution
function by Theorem 11, case (a), of Gill & Johansen (1990).

Proof of Proposition 2.1. Equations (2.6) and (2.5) show that FC(· |
x) is uniquely recovered from FY,δ(·, · | x). From condition (2.14) and the
identity (3.3) it follows that β0 is identifiable. Finally, the identities (2.11)
and (2.12) guarantee that FT,0(· | x) is identifiable.

The following lemma is needed for the proof of Theorem 4.1. The proof
is provided in the Supplementary Material.

Lemma 8.2. Let conditions (4.2), (AC1) and (AC4) hold true. Then,

sup
x∈X

sup
t∈(−∞,τ(x)]

|F̂C([t,∞) | x)− FC([t,∞) | x)| = oP(1),
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sup
x∈X

sup
t∈(−∞,τ(x)]

|T1(Ĥ0, Ĥ1)(t, x)− T1(H0, H1)(t, x)| = oP(1),

where T1(H0, H1)(t, x) = H([t,∞) | x) − P(T = ∞ | x)FC([t,∞) | x), and
T1(Ĥ0, Ĥ1) is defined similarly, but with H0, H1 replaced by Ĥ0 and Ĥ1,
respectively. Moreover,

sup
x∈X

sup
t∈(−∞,τ(x)]

|F̂T,0([t,∞) | x)− FT,0([t,∞) | x)| = oP(1).

Proof of Theorem 4.1. First, we show the consistency of β̃ defined as
the maximizer of Ln(β), see equation (4.3). Let

log p(t, δ, x;β) = δ log p1(t, x;β) + (1− δ) log p0(t, x;β),

with p1(t, x;β) = φ(x, β)FT,0(dt | x)FC((t,∞) | x) and

p0(t, x;β) = FC(dt | x)[φ(x, β)FT,0([t,∞) | x) + 1− φ(x, β)].

Following a common notational convention, see Gill (1994), here we treat dt
not just as the length of a small time interval [t, t+dt) but also as the name
of the interval itself.

Let us notice that log p(t, δ, x;β0) = δ logH1(dt | x)+(1−δ) logH0(dt | x)
and the difference E[log p(Y, δ,X;β)] − E[logLn(β)] does not depend on β.
Hence, a minimal condition for guaranteeing the consistency of the likeli-
hood estimation approach is that β0 is the maximizer of the limit likelihood
criterion β 7→ E[log p(Y, δ,X;β)], or equivalently of the log-likelihood ratio
β 7→ E[log{p(Y, δ,X;β)/p(Y, δ,X;β0)}]. This is proved in the following. By
the properties of the likelihood of a Bernoulli random variable given that
Y ∈ dt and X = x, for any β ∈ B we have (with the convention 0/0 = 1)

E
[
δ log

φ(x, β)FT,0(dt | x)FC((t,∞) | x)

H1(dt | x)

+(1−δ) log
FC(dt |x) [φ(x, β)FT,0([t,∞) |x) +1−φ(x, β)]

H0(dt | x)

∣∣∣∣Y ∈dt,X = x

]
≤ 0.

Integrate with respect to Y and X and deduce that

E [log p(Y, δ,X;β)] ≤ E [log p(Y, δ,X;β0)] .

If there exists some β 6= β0 such that the last inequality becomes an equality,
then necessarily p1(Y,X;β) = 1 almost surely. Then, by the identity H1(dt |
x) = FC([t,∞) | x)FT (dt | x) and condition (2.14), necessarily β = β0.
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Assumptions (AC3) and (AC4) and condition (2.14) guarantee that β0 is a
well-separated maximum of the continuous map β 7→ E[logLn(β)], β ∈ B.

Next, let us rewrite logLn(β) =
∑n

i=1 q(Yi, δi, Xi;H0, H1, β), where

q(t, d, x;H0, H1, β) = d log φ(x, β)

+ (1− d) log{φ(x, β)FT,0([t,∞) |x) + 1− φ(x, β)}.

Given our assumptions, it is easy to check that for any t ∈ (−∞, τ(x)],
d ∈ {0, 1}, x ∈ X ,∣∣q(t, d, x;H0, H1, β)− q(t, d, x;H0, H1, β

′)
∣∣ ≤ C‖β − β′‖a, ∀β, β′ ∈ B,

with a > 0 from Assumption (AC3) and some constant C depending only on
c1 from Assumption (AC3) and the positive values infx∈X H1({τ(x)} | x) and
infx∈X H0((τ(x),∞) | x). It follows that the class of functions {(t, d, x) →
q(t, d, x;H0, H1, β) : β ∈ B} is Glivenko-Cantelli. Hence,

sup
β∈B

∣∣n−1 logLn(β)− E
[
n−1 logLn(β)

]∣∣ = oP(1).

Finally, Lemma 8.2 guarantees that supβ∈B n
−1
∣∣∣log L̂n(β)− logLn(β)

∣∣∣ =

oP(1). Gathering facts, by standard asymptotic results, see Section 5.2 in
van der Vaart (1998), we deduce that β̂ − β0 = oP(1).

Proof of Theorem 4.2. We show the asymptotic normality of our es-
timator by verifying the high-level conditions in Theorem 2 in Chen et al.
(2003). First of all, for the consistency we refer to Section 4.1, whereas
condition (2.1) in Chen et al. (2003) is satisfied by construction. Next, we
compute the matrix ∇βM(β0, η0). Note that for each x ∈ X ,

E(δ | X = x) = φ(x, β0)

∫
(−∞,τ(x)]

FC((t,∞) | x)FT,0(dt | x),

E(1− δ | Y = t,X = x) = 1− φ(x, β0)FT,0((−∞, t] | x) and∫
(−∞,τ(x)]

FC((t,∞) | x)FT,0(dt | x) =

∫
(−∞,τ(x)]

FT,0(−∞, t] | x)FC(dt | x).

Hence, we have

E
[

δ

φ(X,β0)
− (1− δ)T (η0)(Y,X)

1− φ(X,β0)T (η0)(Y,X)
| X
]

= 0 almost surely.
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It is now easy to see that ∇βM(β0, η0) is given by (4.7). Hence, the matrix is
negative definite, and thus condition (2.2) in Chen et al. (2003) is satisfied, as
long as the matrix −E

{
∇βφ(X,β0)∇βφ(X,β0)

>} has this property, which is
the case thanks assumption (AN3). Thus, we do not need more assumptions
than the ones usually considered in with observed binary outcomes.

Next, for condition (2.3), note that using the equation (4.5), we have

∇ηM(β, η0)[η − η0]

= − lim
τ→0

1

τ
E
[

1− δ
{1−φ(X,β)T (η0)(Y,X)}{1−φ(X,β)T (η0+τ(η − η0))(Y,X)}

× {T (η0 + τ(η − η0))(Y,X)− T (η0)(Y,X)}∇βφ(X,β)
]
.

By equation (4.6) and the formulae in section (2.1), we can also write

T (η0)(t, x) = 1−
∏

−∞<s≤t

{
1− H1(ds | x)

H([s,∞) |x)− P(T =∞ | x)FC([s,∞) |x)

}
= 1−

∏
−∞<s≤t

{
1− η02(ds, x)

T1(η0)(s, x)

}

with T1(η)(t, x) = η1(t, x) + η2(t, x)− T2(η)(x)T3(η)(t, x),

T2(η)(x) =
∏
t∈R

{
1− η2(dt, x)

η1(t, x) + η2(t, x)

}
,

T3(η)(t, x) =
∏

−∞<s≤t

{
1− η1(ds, x)

η1(s, x) + η2(s, x)

}
.

Using Duhamel’s formula (see Gill and Johansen 1990) and the dominated
convergence theorem, we have

∇ηM(β, η0)[η − η0] = −E
[

(1− δ)∇ηT (η0)[η − η0](Y,X)

{1− φ(X,β)T (η0)(Y,X)}2
∇βφ(X,β)

]
= E

[∫
(−∞,Y )

1− T (η0)(Y,X)

T1(η0)(u,X)− η02({u}, X)

×
{

(η2 − η02)(du,X)− ∇ηT1(η0)[η − η0](u,X)

T1(η0)(u,X)
η02(du,X)

}
× 1− δ
{1− φ(X,β)T (η0)(Y,X)}2

∇βφ(X,β)

]
,
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where

(8.2) ∇ηT1(η0)[η − η0](y, x) = (η1 − η01)(y, x) + (η2 − η02)(y, x)

−∇ηT2(η0)[η − η0](x)T3(η0)(y, x)− T2(η0)(x)∇ηT3(η0)[η − η0](y, x),

and the expressions of ∇ηT2(η0)[η − η0](x) and ∇ηT3(η0)[η − η0](y, x) are
provided in the Supplementary Material.

Note that the map y 7→ T1(η0)(y, x) is decreasing on (−∞, τ(x)]. More-
over, by condition (4.2), infx∈X T1(η0)(τ(x), x) > 0. Finally, let us note that
by construction for any y ∈ (−∞, τ(x)), H({y} | x) = H0({y} | x)+H1({y} |
x) ≥ P(T =∞ | x)FC({y} | x) +H1({y} | x), and thus

H([y,∞) | x)− P(T =∞ | x)FC([y,∞) | x)−H1({y} | x)

≥ H((y,∞) | x)− P(T =∞ | x)FC((y,∞) | x).

Then, infx∈X infy∈(−∞,τ(x))[T1(η0)(y, x) − H1({y} | x)] > 0. Hence, all de-
nominators in ∇ηM(β, η0)[η − η0] are bounded away from zero. By tedious
but rather elementary Taylor expansions, it now follows that∇ηM(β, η0)[η−
η0] satisfies the second property in condition (2.3) of Theorem 2 in Chen
et al. (2003). Similarly, by decomposing Tj(η) − Tj(η0) − ∇ηTj(η0)[η − η0]
(j = 1, 2, 3) using Taylor-type arguments (in η), the first property in condi-
tion (2.3) is easily seen to hold true.

Next, conditions (2.4) and (2.6) of Theorem 2 in Chen et al. (2003) are
satisfied thanks to Assumption (AN4) and because it follows from the above
calculations of ∇ηTj(η0)[η − η0] (j = 1, 2, 3) that

(8.3)

∇ηM(β0, η0)[η−η0] =

1∑
k=0

E

[
ψ1k(Y,X)

∫
(−∞,Y )

ψ2k(u,X)d ((ηk − η0k)(u,X))

]

+
∑

k,`∈{0,1}

E

[
ψ3k(Y,X)

∫
(−∞,Y )

ψ4k(u,X)ψ5k

(
(ηk − η0k)(u,X)

)
dH`(u | X)

]

for certain measurable functions ψjk (j = 1, . . . , 5; k = 0, 1).
It remains to verify condition (2.5) of Theorem 2 in Chen et al.. Note that

|m(t, δ, x;β2, η2)−m(t, δ, x;β1, η1)|≤ C1(t, δ, x)‖β2−β1‖+C2(t, δ, x)‖η2−η1‖H

for some Cj satisfying E[C2
j (Y, δ,X)] <∞ (j = 1, 2), and hence (2.5) follows

from our assumption (AN5) and Theorem 3 in Chen et al. (2003).
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Proof of Theorem 4.3. To prove this theorem we will check the con-
ditions of Theorem B in Chen et al. (2003), which gives high level conditions
under which the naive bootstrap is consistent. The only difference between
their setting and our setting is that we are proving bootstrap consistency
in P-probability, whereas their result holds true a.s. [P]. As a consequence,
in their high level conditions we can replace all a.s. [P] statements by the
corresponding statements in P-probability.

First of all, it follows from assumption (AN2) that condition (2.2) in
Chen et al. (2003) holds with η0 replaced by any η in a neighbourhood of
η0, and from the proof of Theorem 4.2 it follows that the same holds true
for condition (2.3). Next, conditions (2.4B) and (2.6B) in Chen et al. follow
from the fact that we impose that assumption (AN4) continues to hold true
if we replace Ĥk −Hk by Ĥ∗k − Ĥk (k = 0, 1). It remains to verify condition
(2.5’B) in Chen et al. This follows from Theorem 3 in Chen et al., whose
conditions have been verified already for our Theorem 4.2.
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SUPPLEMENT

The supplement contains five appendices, and is organized as follows.
Appendix A contains the proof of the i.i.d. representation (4.9), Appendix
B shows the calculation of the efficient score function, Appendix C contains
details on the maximization procedure used in the simulations, Appendix
D collects additional simulation results, and Appendix E collects proofs of
technical lemmas and equations.
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