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Abstract

In survival analysis observations are often right censored and this complicates

considerably the analysis of these data. Right censoring can have several underlying

causes: administrative censoring, loss to follow up, competing risks, etc. The (latent)

censoring times corresponding to the latter two types of censoring are possibly related

to the survival time of interest, and in that case this should be taken into account

in the model. In this paper we present a unifying model that is able to take the

different natures of these censoring mechanisms into account in one single model,

and that is also able to incorporate the effect of covariates on these times. We model

each time by means of some kind of transformed accelerated failure time model, with

the particularity that the error terms of the transformed times follow a multivariate

normal distribution allowing for non-zero correlations. We show that the model is

identified and estimate the model parameters by means of a maximum likelihood

approach. The performance of the proposed method is investigated through finite

sample simulations. Finally, the model and the estimation method are illustrated by

means of the analysis of data coming from a prostate cancer clinical trial.
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1 Introduction

In survival analysis observations are often right censored and this complicates considerably

the analysis of these data. Right censoring can have several underlying causes. First, sub-

jects who are alive at the end of the study are subject to so-called administrative censoring.

This type of right censoring is usually unrelated to anything else, and in particular it can

be safely assumed that this administrative censoring time is independent of the survival

time. Second, subjects might be lost to follow up or might drop out from the study. For

this type of censoring, one needs to be cautious, as the reason for the drop out might be

indirectly related to the survival time. This relation can be negative (e.g. when people

drop out because they are feeling healthy and decide to no longer follow a treatment) or

positive (e.g. when people are too ill to be treated any longer). Assuming that the drop-out

time is independent of the survival time would therefore lead to biased results in this case.

Finally, a third common type of right censoring is caused by competing risks, namely the

occurrence of another event, like e.g. death from another cause or disease, which prevents

the occurrence of the event of interest. Often, these mutually exclusive competing events

are dependent of each other. For instance, the occurrence of cancer and cardiovascular

diseases share some common risk factors, like fat intake and general fitness. Consider-

ing competing risks as being independent, would therefore be an unrealistic assumption.

Moreover, censoring by a competing risk is conceptually quite different from censoring due

to end of study or loss to follow-up. In the latter case, the subject may still die at a

later (unknown) time, whereas in the former case the subject died of another disease, and

so is no longer at risk for the event of interest. Trying to describe the occurrence of the

event of interest in the hypothetical world where the competing event did not happen, is

therefore often not very meaningful. This is especially the case when events are related to

each other or when there is some biological process that influences the occurrence of both

events. Trying to eliminate the occurrence of the competing event, will then also influence

the occurrence of the event of interest. For that reason, in the context of competing risks,

one is often more interested in modelling the ‘real-world’ probability that the smallest of

all latent failure times is the failure time of interest (given by the so-called cumulative

incidence function), than in modelling the ‘hypothetical’ probability of the failure time of

interest, which considers all competing failures as censored (given by the classical survival

function).

From the above discussion it is clear that censoring can have several underlying driving

forces, and that one should take these into account. In fact, each of the three types of cen-
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soring described above, require a different approach. In this paper we present a unifying

model that is able to take the different natures of these censoring mechanisms into account

in one single model, and that is also able to incorporate the effect of covariates on these

event times. We model each event time by means of some kind of transformed accelerated

failure time model, with the particularity that the error terms of the transformed event

times follow a multivariate normal distribution allowing for non-zero covariances. Hence,

we will also be able to identify and estimate the correlations between the competing event

times. This is somewhat surprising given that we only observe the smallest of all failure

times, but never two or more failure times of the same subject. From the unifying model

it will be easy to formulate and estimate the usual quantities of interest, like marginal

survival or hazard function, cumulative incidence (or subdistribution) function, cause spe-

cific hazard function, subdistribution hazard function, etc. They all have easy obtainable

formulas. Our model is fully parametric but flexible and assumes that after a proper trans-

formation of each failure time, the corresponding regression function is linear. Additional

flexibility could be incorporated in the regression function by using splines, kernel methods

or orthogonal series, but we prefer to focus here on the basic modeling idea.

The literature on regression models for competing risks contains a variety of proposals.

When interest lies in the cause specific hazard or quantities that can be easily derived from

it, an extension of the popular Cox proportional hazards model (Cox (1972)) has been

studied extensively (see e.g. Lunn and McNeil (1995), Fiocco et al. (2005), Fiocco et al.

(2006), Haller et al. (2013), among others). Belot et al. (2010) proposed a flexible approach

to model the cause specific hazard rates. Despite its popularity and the fact that a lot of

theory and software has been developed for inference in this model, a drawback of these

models is that the cumulative incidence function, which is very important in the context

of competing risks, cannot be interpreted in an easy way in these models. Therefore, Fine

and Gray (1999) proposed an alternative extension of the Cox model which is tailored

for the latter function, and which assumes proportionality of the subdistribution hazards.

Latouche et al. (2005) and Beyersmann and Schumacher (2008) studied the incorporation

of time-dependent covariates into a subdistribution hazards regression model. A frailty

subdistribution hazards regression model was suggested by Katsahian et al. (2006) to

analyse multicentre clinical data. Another subdistribution hazards model for correlated

data was proposed later by Dixon et al. (2011). Geskus (2011) and Zhang et al. (2011)

investigated extensions allowing for left-truncated data. Andersen and Keiding (2012)

questioned the usefulness of the subdistribution hazard, since it keeps individuals in the
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risk set for later time points after they have died. An alternative estimation approach for

direct modeling of the effects of covariates on the cumulative incidence function is given

in Andersen et al. (2003) and Klein and Andersen (2005), and is based on using pseudo

values from a jackknife of the cumulative incidence function in a generalized linear model.

A nice tutorial on competing risks is given in Putter et al. (2007), whereas textbooks on

competing risks and related topics have been written by Pintilie (2006) and Geskus (2016).

The related (but more general) research area of dependent censoring has also been

studied a lot in the past. According to Tsiatis (1975), the joint distribution of unobserved

failure times is not identifiable from the joint distribution of the follow-up time and the

cause of failure (identified minimum) when we have dependent competing risks. Therefore,

to identify the joint distribution of unobserved failure times, we need extra information

about their dependence. Zheng and Klein (1995) and Rivest and Wells (2001) proposed

a copula function for the joint distribution of dependent competing risks, and suggested

a consistent estimator of the marginal survival functions when the dependence parameter

in the copula model is known. However, prior information on the dependence is usually

not available, and the estimation of the dependence structure from the observed data is

often the primary aim of research. Other authors put a parametric restriction on the

joint distribution of unobserved failure times to identify the possible dependence between

the failure times (see Basu and Ghosh (1978), Basu (1988) and Emoto and Matthews

(1990)). Even when the functional form of the underlying failure times is known, the

joint distribution may or may not be identified, i.e., the parameter values may not be

determined by the distribution of the identified minimum (see, for example, the Block and

Basu (1974) model given in Basu and Ghosh (1978)). Motivated by these papers, Deresa

and Van Keilegom (2018) proposed a parametric model for bivariate dependent failure times

under which the dependence between the failure times is identified. The current paper will

extend the latter paper in several directions, allowing e.g. for multivariate competing risks,

administrative censoring and dependent censoring caused by loss to follow up.

Our paper is organized as follows. In Section 2 we describe our models and state the

main results regarding their identifiability. We also explain how to estimate and how to

do inference for the model parameters. We distinguish two models: the first one allows for

general dependent censoring and administrative censoring, and the second one focuses on

the competing risks context. In Section 3 we perform a detailed simulation study to show

that our proposed model works well for finite samples. Section 4 presents the analysis of

data on prostate cancer to demonstrate the usefulness and the good performance of our
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model. We finish our paper with some discussions in Section 5, whereas the Appendix

contains the proofs of the identifiability results of Section 2.

2 Models

We will consider first a model for the case where survival data are subject to (univari-

ate) dependent censoring and to administrative censoring. The case of competing risks,

involving one or more dependent and competing event times, will be considered next. For

didactical reasons we prefer to present these two models separately, although they can be

combined into one single model in a straightforward way.

2.1 Dependent censoring and administrative censoring

Denote the survival time of interest by T , the dependent censoring time by C and the

administrative censoring time by A. The censoring time C represents e.g. the time until

a subject is lost to follow-up, which is in certain situations related to the survival time

of interest, as we have explained in the introduction. Apart from the examples given

there, dependent censoring also occurs e.g. in transplant studies, where the length of time

a patient has to wait before he gets transplanted depends on his/her medical condition,

in unemployment studies, where unemployed people with low chances on the job market

might decide to go abroad to improve their chances, or in medical cost studies, where the

cost of a treatment is censored if a patient leaves the study for whatever reason, and where

the censored cost is related to the real cost via the person specific cost accumulation rate.

Throughout the paper we refer to T,C and A on the log scale, i.e. they take values in

(−∞,+∞). Let X = (1, X̃T )T (of dimension p) be the covariates that influence T , and

let W = (1, W̃ T )T (of dimension q) be the covariates related to C. They can have certain

covariates in common, but they can also be completely different. We allow T and C to

depend on each other, even after conditioning out the effect of the covariates X and W , but

they are assumed to be conditionally independent of A, given X and W . In this situation,

it is important to treat the survival and censoring time jointly while taking into account

the effect of administrative censoring appropriately. We consider the following model on

T and C: {
Λθ(T ) = XTβ + εT

Λθ(C) = W Tη + εC ,
(2.1)
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whereas the distribution of A is left completely unspecified. Here, {Λθ : θ ∈ Θ} with

Θ ⊂ R is a parametric class of monotone increasing transformations, and β and η are the

vectors of regression coefficients. The vector of error terms (εT , εC) has a bivariate normal

distribution:(
εT

εC

)
∼ N2(0,Σ), with Σ =

(
σ2
T ρσTσC

ρσTσC σ2
C

)
, (2.2)

where Σ is assumed to be a positive definite matrix, i.e. σT > 0, σC > 0, |ρ| < 1. Note that

transformations of the response often lead to approximate normality, homoscedasticity and

additivity of the regression function, hence we believe that the above model, although it is

fully parametric, can accommodate a wide range of data structures. We shall assume that

(A1) (εT , εC , A) and (X,W ) are independent.

(A2) (T,C) and A are independent given (X,W ).

(A3) The matrices Var(X̃) and Var(W̃ ) have full rank.

For identifiability reasons, the family of transformations {Λθ : θ ∈ Θ} needs to be

defined on the whole real line, and its image is also required to be the whole real line.

Hence, we assume that

(A4) The family {Λθ : θ ∈ Θ} is a family of strictly increasing transformations defined on

the whole real line, and that satisfies limt→±∞ Λθ(t) = ±∞ for all θ in Θ.

The Box-Cox transformation (depending on a parameter θ) maps a positive random

variable to a variable defined on (−1/θ,+∞) for θ > 0 and (−∞,+∞) for θ = 0, and

hence it can not be used in this context. On the other hand, it is easily seen that the

family of power transformations proposed by Yeo and Johnson (2000) maps (−∞,+∞) to

(−∞,+∞) provided 0 ≤ θ ≤ 2. It is an extension of the Box-Cox family to the whole real

line, and is defined as follows:

Λθ(t) =


{(t+ 1)θ − 1}/θ t ≥ 0, θ 6= 0

log(t+ 1) t ≥ 0, θ = 0

−{(−t+ 1)2−θ − 1}/(2− θ) t < 0, θ 6= 2

− log(−t+ 1) t < 0, θ = 2.

(2.3)

Note that θ = 1 corresponds to the identity transformation, and hence Λθ(T ) is the log

of the survival time in that case. When 1 < θ ≤ 2, the function Λθ(·) lies entirely above

the identity transformation and is convex, whereas when 0 ≤ θ < 1, it lies completely
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below the identity function and it is concave. We refer to Yeo and Johnson (2000) for

more details and properties of this flexible family of transformations. Another family

that satisfies the requirements is the family of sinh-arcsinh transformations defined by

Λθ(t) = sinh(sinh−1(t) + θ), θ ∈ R, t ∈ R; see Jones and Pewsey (2009) for more details

about this family.

Due to the presence of censoring we observe only the follow-up time Z given by Z =

min(T,C,A), and the censoring indicators (∆, ξ) given by ∆ = I(Z = T ) and ξ = I(Z =

C), where I(·) is the indicator function. It is assumed that the observed data consist of n

i.i.d. replications (Zi,∆i, ξi, Xi,Wi), i = 1, . . . , n of (Z,∆, ξ,X,W ). We make the following

additional assumptions:

(A5) The probabilities P (Z = T ), P (Z = C) and P (Z = A) are all strictly positive.

(A6) The censoring by A is non-informative for (T,C) given X and W , i.e. the distribution

of A does not depend on any of the model parameters θ, β, η, σT , σC and ρ.

Let FT |X(·|x) and FC|W (·|w) be the conditional distributions of T given X = x and

of C given W = w, respectively. Then, under assumption (A1) we easily obtain that

the conditional density of T given X = x equals fT |X(t|x) = σ−1
T φ
(

Λθ(t)−xT β
σT

)
Λ′θ(t), and

similarly for the conditional density fC|W (c|w) of C given W = w, where φ is the density

function of a standard normal variable.

Denote the parameter vector by α = (θ, β, η, σT , σC , ρ) ∈ Rp+q+4. Our first result will

be the identifiability of the above model. The identifiability of the correlation coefficient ρ

is a non-trivial and somewhat surprising result, since we never observe both T and C for

the same subject. To show this result, we first need to derive the sub-distribution function

of the triplet (Z, δ, ξ) given X and W , which we denote by FZ,∆,ξ|X,W (·, ·, ·|x,w;α) for a

given α. When Z = T we have

FZ,∆,ξ|X,W (z, 1, 0|x,w;α)

= P (Z ≤ z,∆ = 1, ξ = 0|X = x,W = w)

= P (T ≤ z, C > T,A > T |X = x,W = w)

=

∫ z

−∞
P (C > t|X = x,W = w, T = t)P (A > t) fT |X(t|x) dt,
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and hence

fZ,∆,ξ|X,W (z, 1, 0|x,w;α) =
d

dz
FZ,∆,ξ|X,W (z, 1, 0|x,w;α)

= P (C > z|X = x,W = w, T = z)P (A > z)fT |X(z|x)

= P (εC > Λθ(z)− wTη|X = x,W = w, εT = Λθ(z)− xTβ)P (A > z)fT |X(z|x)

= fT |X(z|x)
[
1− Φ

(Λθ(z)− wTη − ρσC
σT

(Λθ(z)− xTβ)

σC(1− ρ2)1/2

)]
P (A > z), (2.4)

where Φ is the distribution of a standard normal variable. Similarly, when Z = C we

obtain

fZ,∆,ξ|X,W (z, 0, 1|x,w;α)

= fC|W (z|w)
[
1− Φ

(Λθ(z)− xTβ − ρσT
σC

(Λθ(z)− wTη)

σT (1− ρ2)1/2

)]
P (A > z). (2.5)

Finally, if A is observed, then

FZ,∆,ξ|X,W (z, 0, 0|x,w;α) = P (A ≤ z, T > A,C > A|X = x,W = w)

=

∫ z

−∞
P (T > a,C > a|X = x,W = w)fA(a) da,

and hence

fZ,∆,ξ|X,W (z, 0, 0|x,w;α) = P (T > z,C > z|X = x,W = w)fA(z)

= Φ̄
(Λθ(z)− xTβ

σT
,
Λθ(z)− wTη

σC
; ρ
)
fA(z), (2.6)

where Φ̄(·, ·; ρ) is the tail probability of a standard bivariate normal distribution with

correlation parameter ρ.

Let the parameter space be S = {(θ, β, η, σT , σC , ρ) : θ ∈ Θ, β ∈ Rp, η ∈ Rq, σT >

0, σC > 0,−1 < ρ < 1}. With this parameter space, we now show the identification of

model (2.1)-(2.2). The proof is given in the Appendix.

Theorem 2.1. Assume (A1)-(A6). Then, model (2.1)-(2.2) with parameter space S is

identifiable. This means that if for j = 1, 2, the pair (Tj, Cj) satisfies model (2.1)-(2.2)

with parameter vector αj = (θj, βj, ηj, σTj , σCj , ρj) ∈ S, and if for Zj = min(Tj, Cj, Aj),

∆j = I(Zj = Tj) and ξj = I(Zj = Cj) it holds that fZ1,∆1,ξ1|X,W (·, `1, `2|x,w;α1) ≡
fZ2,∆2,ξ2|X,W (·, `1, `2|x,w;α2) for `1, `2 = 0, 1 and for almost every (x,w), then

θ1 = θ2, β1 = β2, η1 = η2, σT1 = σT2 , σC1 = σC2 , ρ1 = ρ2.
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We now propose to estimate the model parameters α = (θ, β, η, σT , σC , ρ) by maximiz-

ing the following joint likelihood, which is derived from (2.4)-(2.6):

L(α) =
n∏
i=1

{
fT |X(Zi|Xi)

[
1− Φ

(Λθ(Zi)−W T
i η − ρσCσT (Λθ(Zi)−XT

i β)

σC(1− ρ2)1/2

)]}∆i

×
{
fC|W (Zi|Wi)

[
1− Φ

(Λθ(Zi)−XT
i β − ρσTσC (Λθ(Zi)−W T

i η)

σT (1− ρ2)1/2

)]}ξi
×
{

Φ̄
(Λθ(Zi)−XT

i β

σT
,
Λθ(Zi)−W T

i η

σC
; ρ
)}1−(∆i+ξi)

, (2.7)

since assumption (A6) implies that the density and distribution of A can be discarded

from the likelihood. This likelihood will be maximized over the parameter space S, and

we define

α̂ = (θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂) = arg max
α∈S

L(α). (2.8)

Note that the above likelihood cannot be factorized into a factor only depending on

the parameters of the model for T , and a second factor only depending on the parameters

of the model for C. Also note that the likelihood does not depend on the distribution of

A. Since our model is fully parametric, the weak consistency and asymptotic normality of

the maximum likelihood estimator α̂ follow from the results in White (1982).

2.2 Competing risks

We suppose now that we have m latent times T1, . . . , Tm, of which we only observe the

smallest, and we like to propose an appropriate model that relates these times to certain

covariate vectors X1, . . . , Xm. Suppose that the first k of these latent variables represent

competing risks and the remaining variables are censoring variables representing loss to

follow up, administrative censoring or other censoring mechanisms. We are interested in

doing inference for the competing risks, when the censoring variables are possibly depen-

dent on these competing risks. As far as we know, the context of competing risks with

dependent censoring has not been considered before in the literature. To keep the pre-

sentation simple, the administrative censoring time is considered to be one of the possibly

dependent variables T1, . . . , Tm, whereas in practice this is usually assumed to be indepen-

dent of everything else. If needed, the approach followed in Section 2.1 can be used for the

administrative censoring instead.

Suppose T1, . . . , Tm are m survival and or censoring times on the log-scale. These times

are allowed to depend on each other even after conditioning out the effect of covariates.
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We propose the following model:

Λθ(Tj) = XT
j βj + εj, j = 1, . . . ,m, (2.9)

where βj is a pj × 1 vector of regression parameters and Xj = (1, X̃T
j )T is a vector of

covariates. As before, we assume that {Λθ : θ ∈ Θ} is a family of transformations that

satisfies condition (A4) above. Suppose that the vector of error terms (ε1, . . . , εm) has a m-

variate normal distribution with zero mean and with positive definite variance-covariance

matrix Σ with diagonal elements equal to σ2
j and off-diagonal elements equal to σjσkρjk for

j, k = 1, . . . ,m. Note that model (2.9) reduces to the model studied by Basu and Ghosh

(1978), Section 5, in the absence of covariates, when the responses are not transformed

and when m = 3.

We define Z = min(T1, . . . , Tm) and ∆j = I(Z = Tj) for j = 1, . . . ,m. Let ∆∗ =

(∆1, . . . ,∆m) and X∗ = (XT
1 , . . . , X

T
m)T . Then the observed data consist of n i.i.d. copies

(Zi,∆
∗
i , X

∗
i ), i = 1, ..., n of (Z,∆∗, X∗). In what follows we study the identifiability of

model (2.9) from the distribution of (Z,∆∗) given X∗. The identifiability of the association

parameters ρjk will allow us to study the pairwise associations between the competing risks.

This is an important result since we will be able to identify these association parameters

despite the fact that we only observe the smallest of T1, . . . , Tm, and never two or more

variables. We shall assume throughout that

(B1) (ε1, . . . , εm) and (XT
1 , . . . , X

T
m)T are independent.

(B2) The matrices Var(X̃j) have full rank, j = 1, . . . ,m.

(B3) The probabilities P (Z = Tj) are all strictly positive, j = 1, . . . ,m.

We next derive some formulas, which will be needed to show the identifiability of the

model and to set up the likelihood function. Let the parameter vector be denoted by α =

(θ, β1, . . . , βm, σ
2
1, . . . , σ

2
m, ρ12, . . . , ρm−1,m). The sub-distribution FZ,∆∗|X∗(z, 1, 0, . . . , 0|

x1, . . . , xm;α) of (Z,∆∗) given X∗ is given by

FZ,∆∗|X∗(z, 1, 0, . . . , 0|x1, . . . , xm;α) (2.10)

= P
(
T1 ≤ z, T2 > T1, . . . , Tm > T1|X1 = x1, . . . , Xm = xm

)
= P

(
ε1 ≤ Λθ(z)− xT1 β1, ε2 > ε1 + xT1 β1 − xT2 β2, . . . , εm > ε1 + xT1 β1 − xTmβm

)
=

1

σ1

∫ Λθ(z)−xT1 β1

−∞
P
(
ε2 > t+ xT1 β1 − xT2 β2, . . . , εm > t+ xT1 β1 − xTmβm|ε1 = t

)
φ
( t

σ1

)
dt.

We refer to Johnson and Wichern (2007) and Basu and Ghosh (1978) for details on how

to derive the conditional distribution in this integral from the formula of the multivariate
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normal distribution. Then by differentiating both sides of (2.10) we obtain the following

sub-density for the first component:

fZ,∆∗|X∗(z, 1, 0, . . . , 0|x1, · · · , xm;α) (2.11)

=
1

σ1

Φ̄
(Λθ(z)−m2.1

s2.1

, . . . ,
Λθ(z)−mm.1

sm.1
; ρ23.1, . . . , ρm−1,m.1

)
φ
(Λθ(z)− xT1 β1

σ1

)
Λ′θ(z),

where Φ̄(t2, . . . , tm; ρ23.1, . . . , ρm−1,m.1) = P (Y2 > t2, . . . , Ym > tm) with (Y2, . . . , Ym) a (m−
1)-variate normal random vector with zero mean, variances equal to one and covariances

equal to ρjk.1 for 2 ≤ j < k ≤ m. Moreover, for k = 2, . . . ,m,

mk.1 = xTk βk + ρ1k
σk
σ1

(
Λθ(z)− xT1 β1

)
, sk.1 = σk(1− ρ2

1k)
1/2,

and for 2 ≤ j < k ≤ m,

ρjk.1 =
ρjk − ρ1jρ1k{

(1− ρ1j)2(1− ρ1k)2
}1/2

,

which are partial correlation coefficients (see Kendall and Stuart (1961)). Furthermore,

the symmetric matrix formed by all partial correlations ρjk.1 is a (m−1)× (m−1) positive

definite matrix. The formulas of the sub-distribution and sub-density of (Z,∆∗) given X∗

when ∆j = 1 for j > 1 can be derived in much the same way as for j = 1.

We are now ready to state the identifiability of model (2.9) based on the density fZ,∆∗|X∗

of the observable random variables given in (2.11). Let the parameter space be denoted by

S =
{

(θ, β1, ..., βm, σ
2
1, ..., σ

2
m, ρ12, ..., ρm−1,m) : θ ∈ Θ, βj ∈ Rpj , the matrix consisting

of all variances σ2
j and covariances σjσkρjk is positive definite (j, k = 1, . . . ,m)

}
.

Theorem 2.2. Assume (B1)-(B3) and (A4). Then, model (2.9) with parameter space S is

identifiable. This means that if for j = 1, 2, the pair (T1j, . . . , Tmj) satisfies model (2.9) with

parameter vector αj ∈ S, and if for Zj = min(T1j, . . . , Tmj) and ∆∗j =

(I(Zj = T1j), . . . , I(Zj = Tmj)) it holds that fZ1,∆∗
1|X∗(·, `1, . . . , `m|x1, . . . , xm;α1) ≡

fZ2,∆∗
2|X∗(·, `1, . . . , `m|x1, . . . , xm;α2) for `1, . . . , `m = 0, 1 and for almost every (x1, . . . , xm),

then α1 = α2.

The proof is given in the Appendix.

Next, note that if we order the variables T1, . . . , Tm in such a way that the first k vari-

ables represent competing risks, and the remaining m−k variables are censoring variables,

then we can easily calculate functions common in the literature on competing risks, like
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the cumulative incidence function I1(t|X∗) = P (T ≤ t,D = 1|X∗) and the cause specific

hazard function

λ1(t|X∗) = lim
∆t↓0

P (t < T ≤ t+ ∆t,D = 1|T ≥ t,X∗)

∆t
, (2.12)

where T = min(T1, . . . , Tk) and D = j if T = Tj, j = 1, . . . , k. The former function

can be calculated similarly as (2.10) but with m replaced by k, whereas the latter equals

λ1(t|x∗) = f1(t|x∗)/S(t|x∗), where f1(t|x∗) = (d/dt)I1(t|x∗) and

S(t|x∗) = P (T > t|X∗ = x∗) = P (T1 > t, . . . , Tk > t|X∗ = x∗)

= Φ̄
(Λθ(t)− xT1 β1

σ1

, . . . ,
Λθ(t)− xTk βk

σk
; ρ23, . . . , ρk−1,k

)
.

This shows that model (2.9) allows the straigthforward calculation of quantities related

to competing risks, while at the same time correcting for dependent censoring caused by

subjects that are lost to follow up for reasons related to their survival time or for other

reasons that are known to induce dependent censoring.

The estimation of the parameters can now be done by maximizing the likelihood func-

tion. For each observation (Zi,∆
∗
i , X

∗
i ), i = 1, . . . , n, we obtain its contribution to the

likelihood function from the formula of the density fZ,∆∗|X∗ given in (2.11). This gives us

the following likelihood function:

L(α) =
n∏
i=1

m∏
j=1

fZ,∆∗|X∗(Zi,∆
∗
i |X∗i ;α)∆ij . (2.13)

Note that when ρjk = 0 for all j < k, we find back the usual likelihood for the multivariate

normal distribution in the independent competing risks case. The likelihood in (2.13) will

be maximized over the parameter space S:

α̂ = arg max
α∈S

L(α).

As for model (2.1) the asymptotic properties of this estimator can be derived from White

(1982).

3 Simulation study

The objective of this simulation study is to study the performance of the proposed models

and estimation methods under various scenarios.
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3.1 Example 1

In order to investigate the performance of the proposed model in the presence of dependent

and administrative censoring, we generate data as follows:{
Λθ(T ) = β0 + β1X1 + β2X2 + εT

Λθ(C) = η0 + η1X1 + η2X2 + εC ,

where Λθ(·) is the Yeo-Johnson transformation with θ = 0.5, X1 ∼ Bern(0.5) and X2 ∼
U [−2, 2]. The regression parameters are set as follows: β0 = 3.5, β1 = −0.55, β2 = 1.5, η0 =

3, η1 = 0.7 and η2 = 1. We generate the administrative censoring variable A from a uniform

distribution on [0, K], independent of everything else, where K is chosen to yield 20% and

33% of administrative censoring. For each simulation scenario, a total of 1500 replications

with a sample size of n = 400 is considered. We estimate the models in R software using the

nonlinear optimization package nloptr for optimization and numDeriv for computing the

Hessian matrix. In Tables 1–4 we report the bias, the empirical standard deviation (SD),

the root mean squared error (RMSE), and the coverage rate of 95% confidence intervals

(CR) to compare the performance of the fitted models. Note that the confidence intervals

for the regression parameters and the transformation parameter are based on the Wald

statistic, whereas for the variances and the correlation the confidence interval is based on

the logarithm and on Fisher’s Z transformation, respectively, where their corresponding

standard errors are obtained using the delta method. Then, the confidence interval limits

are transformed back to the original scale.

Scenario 1: Under this first scenario we will compare our model with the model that

assumes that T and C are independent. We will do this when ρ = 0, in which case both

models are correct, and when ρ 6= 0, in which case the independence model is expected to

behave badly. We draw pairs of errors (εT , εC) from a bivariate normal distribution with

mean equal to zero and with σT = 2 and σC = 1. Then, we evaluate the independent and

dependent censoring model for three different values of ρ, namely ρ = 0, 0.4 and 0.8. For

each simulated data, the model parameters are estimated under the dependent censoring

model using the likelihood function given in (2.7), and under the independent censoring

model corresponding to ρ = 0 in (2.7). Table 1 presents the bias, SD, RMSE and CR when

the proportion of administrative censoring is 20%. The table shows that when ρ = 0 the

dependent censoring model has a larger bias than the model under independence, but the

coverage rate is very close to the nominal level of 95% for both models. Also, our proposed

model is a bit inefficient at ρ = 0 compared to the model that assumes independence, since
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it has a larger RMSE. A rule of thumb in evaluating bias is that biases do not have a

substantial negative effect on inferences unless the standardized bias (bias as a percentage

of the SD) exceeds 40% (Olsen and Schafer, 2001). The parameter estimators obtained

from the dependent censoring model are below this threshold, and hence we can argue

that our model is useful even when there is no correlation between T and C conditionally

on the covariates. As we increase the correlation to ρ = 0.4 and ρ = 0.8, we see that

the dependent censoring model performs much better than the model under independence,

since it has a much smaller bias and the coverage rate is very close to the nominal level of

95% for all parameters. By the rule of thumb to evaluate the biases, almost all parameter

estimators under the independent censoring model have biases larger than the acceptable

limit for ρ = 0.4 and ρ = 0.8.

The simulation results for 33% of administrative censoring are shown in Table 2. The

table again shows that the proposed dependent censoring model performs very well for

ρ = 0.4 and ρ = 0.8. Comparing the results for 20% and 33% of administrative censoring,

we notice that the biases are slightly inflated for the case of 33%. This increase in bias is

expected, since in the latter case we have a smaller number of observations for which we

observe T or C. Note that in terms of coverage rates, there is no big difference between

the two settings.

Comparing these results to those for n = 600 (see Tables 7 and 8 of the Supplementary

Material), we notice for the dependent censoring model that the absolute bias and the

RMSE become smaller as the sample size increases, as could be expected. However, for the

independent censoring model, the increase in sample size does not lead to a decrease in the

absolute bias, which shows the inconsistency of the parameter estimators when non-zero

association exists between T and C. Also, the coverage rates for the independent censoring

model do not improve as we increase the sample size.

Scenario 2: In this setting, we study the sensitivity of our model to a misspecification

of the error distribution. To investigate this issue, we generate data similar to those under

Scenario 1 with 20% of administrative censoring, except that the errors (εT , εC) follow a

mixture of two bivariate normal distributions, specified by

(εT , εC) ∼ pN2

(( −1

−1

)
,
( 3 1.30

1.30 1

))
+ (1− p)N2

(( 1

1

)
,
( 1.5 0.92

0.92 1

))
,

which represents a weak deviation from normality, and

(εT , εC) ∼ pN2

(( −2

−2

)
,
( 2 1.10

1.10 1

))
+ (1− p)N2

(( 2

2

)
,
( 1 0.75

0.75 1

))
,
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Table 1: Bias, standard deviation (SD), root mean squared error (RMSE) and coverage

rate (CR) of 95% confidence intervals for samples of size n = 400, when dependent and

administrative censoring is present and when the proportion of administrative censoring is

20%.

ρ = 0 ρ = 0.4 ρ = 0.8

Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR

Dependent censoring model

β0 -0.041 0.265 0.268 0.941 -0.033 0.294 0.296 0.940 -0.019 0.281 0.281 0.947

β1 0.011 0.161 0.161 0.951 0.008 0.181 0.181 0.940 0.003 0.177 0.177 0.954

β2 -0.016 0.115 0.116 0.944 -0.015 0.122 0.123 0.936 -0.008 0.128 0.128 0.947

η0 -0.033 0.220 0.223 0.932 -0.025 0.225 0.226 0.931 -0.013 0.216 0.217 0.941

η1 -0.018 0.220 0.221 0.945 -0.015 0.244 0.245 0.941 -0.005 0.253 0.253 0.951

η2 -0.002 0.124 0.124 0.949 -0.003 0.127 0.127 0.942 -0.002 0.124 0.124 0.946

σT -0.006 0.085 0.085 0.942 -0.003 0.078 0.078 0.951 -0.008 0.080 0.081 0.953

σC -0.032 0.146 0.149 0.941 -0.026 0.148 0.150 0.940 -0.021 0.138 0.140 0.949

ρ 0.025 0.317 0.318 0.946 -0.013 0.287 0.287 0.960 -0.013 0.116 0.117 0.970

θ -0.007 0.046 0.047 0.950 -0.008 0.045 0.046 0.940 -0.005 0.044 0.044 0.947

Independent censoring model

β0 -0.008 0.215 0.215 0.950 0.210 0.238 0.318 0.893 0.634 0.271 0.689 0.341

β1 -0.004 0.131 0.131 0.955 -0.146 0.140 0.203 0.852 -0.465 0.151 0.489 0.105

β2 -0.004 0.113 0.113 0.947 0.025 0.122 0.124 0.945 0.136 0.134 0.191 0.843

η0 -0.014 0.210 0.211 0.934 0.079 0.224 0.237 0.942 0.199 0.238 0.310 0.898

η1 0.001 0.193 0.193 0.959 0.171 0.213 0.272 0.901 0.586 0.252 0.638 0.371

η2 -0.005 0.107 0.107 0.938 -0.094 0.110 0.145 0.833 -0.250 0.116 0.276 0.439

σT -0.011 0.076 0.077 0.946 0.017 0.081 0.082 0.947 -0.030 0.079 0.085 0.929

σC -0.019 0.123 0.125 0.949 0.079 0.133 0.155 0.925 0.216 0.149 0.262 0.687

θ -0.005 0.044 0.044 0.947 -0.018 0.045 0.048 0.930 -0.021 0.045 0.050 0.922

which represents a strong deviation from normality. In both cases the mixing probability

p equals 0.5. The mixture in this error distribution may be caused by the omission of

an important binary covariate in the model. For each set of simulated data, the model

parameters are estimated under the dependent censoring model. Table 3 presents the bias,

SD, RMSE and CR. The table shows that under a weak deviation from normality the

parameter estimators have a small bias and their coverage rate is close to the 95% nominal

level. Comparing this to the case where the error terms are correctly specified, we see an

increase in absolute bias due to the misspecification, but it does not seem to have a serious
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effect on the inference. However, when the deviation from normality becomes stronger,

we see an increase in bias and a decrease in efficiency and in coverage rates, as could be

expected.

Table 2: Bias, standard deviation (SD), root mean squared error (RMSE) and coverage

rate (CR) of 95% confidence intervals for samples of size n = 400, when dependent and

administrative censoring is present and when the proportion of administrative censoring is

33%.

ρ = 0 ρ = 0.4 ρ = 0.8

Bias SD RMSE CR Bias SD RMSE CR Bias SD RMSE CR

Dependent censoring model

β0 -0.045 0.280 0.284 0.942 -0.039 0.309 0.312 0.937 -0.020 0.302 0.303 0.942

β1 0.014 0.169 0.170 0.949 0.011 0.188 0.189 0.940 0.004 0.186 0.186 0.951

β2 -0.017 0.121 0.122 0.938 -0.018 0.128 0.129 0.942 -0.009 0.136 0.136 0.936

η0 -0.038 0.234 0.237 0.927 -0.032 0.239 0.241 0.935 -0.017 0.232 0.233 0.941

η1 -0.017 0.232 0.232 0.945 -0.015 0.255 0.255 0.945 -0.001 0.271 0.270 0.947

η2 -0.003 0.130 0.130 0.947 -0.005 0.133 0.133 0.939 -0.004 0.130 0.131 0.943

σT -0.006 0.089 0.089 0.946 -0.003 0.082 0.082 0.951 -0.010 0.085 0.085 0.945

σC -0.034 0.154 0.158 0.938 -0.030 0.156 0.159 0.940 -0.023 0.148 0.149 0.951

ρ 0.023 0.339 0.339 0.946 -0.016 0.304 0.304 0.960 -0.018 0.130 0.131 0.976

θ -0.009 0.051 0.052 0.939 -0.010 0.051 0.052 0.943 -0.007 0.050 0.051 0.948

Independent censoring model

β0 -0.010 0.229 0.230 0.946 0.207 0.254 0.327 0.904 0.626 0.292 0.691 0.424

β1 -0.002 0.140 0.140 0.953 -0.141 0.150 0.205 0.875 -0.445 0.161 0.473 0.193

β2 -0.004 0.120 0.120 0.944 0.025 0.128 0.131 0.949 0.136 0.143 0.198 0.863

η0 -0.018 0.222 0.222 0.932 0.077 0.237 0.250 0.948 0.206 0.256 0.328 0.905

η1 0.003 0.202 0.202 0.957 0.167 0.222 0.278 0.919 0.570 0.264 0.628 0.449

η2 -0.006 0.113 0.113 0.939 -0.089 0.116 0.146 0.863 -0.234 0.121 0.263 0.519

σT -0.012 0.079 0.080 0.943 0.016 0.084 0.085 0.947 -0.027 0.083 0.087 0.929

σC -0.021 0.129 0.131 0.947 0.075 0.140 0.159 0.935 0.211 0.157 0.263 0.728

θ -0.006 0.049 0.049 0.947 -0.019 0.050 0.053 0.932 -0.020 0.051 0.055 0.929
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Table 3: Simulation results based on the dependent censoring model when the errors are

in reality a mixture of two bivariate normals whereas normality is assumed.

Weak deviation Strong deviation

Bias SD RMSE CR Bias SD RMSE CR

β0 0.103 0.339 0.376 0.941 -0.178 0.433 0.468 0.849

β1 -0.080 0.312 0.322 0.940 0.045 0.387 0.390 0.902

β2 0.051 0.140 0.149 0.943 -0.074 0.170 0.186 0.890

η0 0.088 0.218 0.235 0.945 -0.141 0.260 0.295 0.883

η1 0.074 0.306 0.315 0.933 -0.083 0.432 0.440 0.845

η2 -0.008 0.182 0.182 0.932 -0.022 0.190 0.191 0.919

σT 0.087 0.142 0.166 0.918 -0.032 0.126 0.130 0.976

σC 0.024 0.164 0.165 0.938 -0.056 0.139 0.150 0.974

ρ -0.017 0.215 0.215 0.959 0.070 0.085 0.110 0.832

θ 0.008 0.051 0.051 0.937 -0.032 0.036 0.049 0.921

Scenario 3: We are also interested in studying the sensitivity of the proposed model to

the violation of the homogeneous variance assumption. To study this problem, we consider

a model in which the variances of the error terms depend on the covariates. The effect of

heteroscedasticity on the parameter estimators will be tested in the following two cases:

Var(Λθ(T )|X) = 1 + 0.1X2
2 and Var(Λθ(C)|X) = 1 + 0.2X2

2 (weak heteroscedasticity), and

Var(Λθ(T )|X) = 1 + 0.3X2
2 and Var(Λθ(C)|X) = 1 + 0.6X2

2 (strong heteroscedasticity).

In both cases a constant correlation ρ = 0.7 is assumed. The other model parameters are

the same as under Scenario 1 with 20% of administrative censoring, and we work with

samples of size n = 400. In Table 4 we report the bias, SD, RMSE and CR. The table

shows that under weak heteroscedasticity the parameter estimators have a small bias and

their coverage rates are close to the 95% nominal level. However, when heteroscedasticity

becomes stronger, we notice a larger bias for some regression parameters and the coverage

rate is also underestimated for some parameters. Compared to the case when the het-

eroscedasticity is weak, there is an increase in the bias and a decrease in the efficiency and

the coverage rates. In sum, our proposed method is still useful for heteroscedastic data as

long as the amount of heteroscedasticity is not very strong. The development of a model

that takes heteroscedasticity of the errors into account is feasible, but will be left as future

research.
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Table 4: Simulation results based on the dependent censoring model when the models for

T and C are in reality heteroscedastic whereas homoscedasticity is assumed.

Weak heteroscedasticity Strong heteroscedasticity

Bias SD RMSE CR Bias SD RMSE CR

β0 0.090 0.310 0.323 0.934 0.259 0.367 0.449 0.858

β1 -0.027 0.214 0.215 0.943 -0.091 0.248 0.264 0.918

β2 0.034 0.140 0.144 0.927 0.094 0.155 0.182 0.869

η0 0.066 0.209 0.219 0.939 0.177 0.237 0.295 0.883

η1 0.044 0.287 0.291 0.927 0.134 0.344 0.370 0.905

η2 0.021 0.142 0.144 0.924 0.046 0.161 0.167 0.897

ρ -0.045 0.208 0.213 0.939 -0.088 0.237 0.253 0.897

θ 0.013 0.048 0.050 0.922 0.036 0.048 0.060 0.856

3.2 Example 2

In this simulation study we will evaluate the performance of the competing risks model

proposed in Section 2.2 by comparing it with standard approaches for competing risks

analysis. One of the quantities of interest in the context of competing risks is the cumulative

incidence function (CIF) defined by Ij(t|X) = P (T ≤ t,D = j|X), where T is the smallest

event time among all competing risks and D is the cause of death. When the values

of X correspond to the different subgroups of the population, the CIF can be estimated

non-parametrically by

Îj`(t) =
∑
i:t`i≤t

λ̂j`(t`i)Ŝ`(t`,i−1),

where t`i denotes the i-th ordered event time in subgroup `, Ŝ`(t) is the Kaplan-Meier

estimator of the overall survivor function at time t in subgroup ` including all types of

events, and λ̂j` estimates the function λj`(·) = λj(·|X = `) defined in (2.12) and is given

by λ̂j`(t`i) = dj`i/n`i, where dj`i is the number of failures of type j at time t`i in subgroup

`, and n`i is the risk set at time t`i in subgroup `, i.e. the number of patients who were

not censored and have not failed from any cause up to time t`i (see details in Gray (1988),

Putter et al. (2007)). This non-parametric estimator of the CIF is included in the R library

cmprsk provided by Gray (2015) and can be calculated using the cuminc function. Note

that the non-parametric estimation of the CIF does not require the independence among

the competing risks and does not impose any parametric assumption on the different causes

of failure. On the other hand, it assumes that the censoring time is independent of the
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failure times, which might not be valid in practice.

In order to compare our estimator of the CIF with the nonparametric estimator given

above, we generate competing risks data from model (2.9) when we have two causes of

failure (T1 and T2), one dependent censoring time (T3) and two treatment groups. The

data generating model is given by

Λθ(Tj) = β0j + β1jX + εj, j = 1, 2, 3,

where the treatment indicatorX follows a binomial distribution with equal probability. The

error vector (ε1, ε2, ε3) is simulated from a trivariate normal distribution with zero mean

and with σ1 = 1.5, σ2 = 1.2, σ3 = 1, ρ12 = 0.65, ρ13 = 0.55 and ρ23 = 0.70. The other model

parameters are given by (β01, β11) = (4.1, 0.5), (β02, β12) = (4, 0.5), (β03, β13) = (4.6,−0.5)

and the transformation Λθ equals the Yeo-Johnson transformation with θ = 0.5. The

average proportion of dependent censoring in the simulated data is approximately 32%.

We generate 500 data sets of size n = 400, and for each data set we estimate the CIF

for each cause of failure within a treatment group using the non-parametric approach and

using the proposed parametric method. Summaries of the empirical mean and standard

deviation (SD) are shown for different time points in Table 5. The table shows that the

empirical means obtained from our proposed method are very close to the expected CIF,

whereas the corresponding non-parametric estimates deviate much from the expected CIF.

This can be explained by the fact that censoring is not independent of the failure times

in the simulated model, whereas the nonparametric estimator is constructed based on the

assumption of independent censoring. Comparing the two approaches in terms of their

SD, the proposed method is more efficient than the non-parametric approach, because it

is a fully parametric approach, and the parametric model is satisfied in this simulation.

On the other hand, as was shown in Example 3.1, the behavior of the parametric method

deteriorates when one or several components of the model are not correctly specified.
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Table 5: The empirical mean and standard deviation (SD) of the estimated cumulative

incidence probabilities for cause j = 1 (C1) and j = 2 (C2) estimated based on the non-

parametric estimator and the proposed estimator for group ` = 1 (G1) and ` = 2 (G2) at

time t = 4, 8, 12 and 14 years. The expected value Ij`(t) of the CIF at these time points is

also given.

Non-parametric method Proposed method

t 4 8 12 14 4 8 12 14

C1-G1 I11(t) 0.1192 0.3159 0.4039 0.4161 0.1192 0.3159 0.4039 0.4161

Mean 0.1201 0.3233 0.4330 0.4549 0.1196 0.3148 0.4027 0.4150

SD 0.0243 0.0348 0.0385 0.0394 0.0213 0.0317 0.0354 0.0362

C1-G2 I12(t) 0.0670 0.2068 0.2715 0.2800 0.0670 0.2068 0.2715 0.2800

Mean 0.0667 0.2356 0.3766 0.4251 0.0673 0.2053 0.2706 0.2793

SD 0.0178 0.0333 0.0475 0.0563 0.0144 0.0274 0.0316 0.0324

C2-G1 I21(t) 0.0665 0.2759 0.4034 0.4241 0.0665 0.2759 0.4034 0.4241

Mean 0.0679 0.2845 0.4446 0.4838 0.0673 0.2769 0.4046 0.4251

SD 0.0185 0.0318 0.0384 0.0412 0.0153 0.0280 0.0342 0.0353

C2-G2 I22(t) 0.0314 0.2069 0.3993 0.4517 0.0314 0.2069 0.3993 0.4517

Mean 0.0262 0.1516 0.2971 0.3531 0.0313 0.2030 0.3907 0.4438

SD 0.0115 0.0579 0.101 0.120 0.0113 0.0637 0.1061 0.1126

Moreover, the means of the CIF estimates obtained from 500 generated data sets for

both causes of failure and for both treatment groups are displayed in Figure 1. Again,

the results presented in the figure show a very good agreement between the estimates

obtained from the proposed method and the expected CIF. However, the non-parametric

CIF deviates much from the two lines, particularly at later time points. Hence, under

dependent censoring the non-parametric CIF gives biased results. On the other hand,

simulations under independent censoring (not shown here) show a very good agreement

between the estimators of the CIF obtained from the non-parametric and the proposed

parametric method.
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Figure 1: The empirical mean of the estimated cumulative incidence function Ij`(t) for

cause j = 1 (C1) and j = 2 (C2) estimated for group ` = 1 (G1) and ` = 2 (G2) based on

the non-parametric estimator (solid black curve) and the proposed estimator (dashed grey

curve), overlaid with the true CIF (dot-dashed black curve).

4 Data analysis

We illustrate the proposed method by using data obtained from a randomized clinical trial

conducted to compare treatments for prostate cancer (Byar and Green, 1980). In total,

506 patients with stage III and IV prostate cancer were randomized to receive either a

placebo or one of three dose levels of the active treatment diethylstilbestrol (DES). In this

trial, patients could die of prostate cancer or of other non-cancer causes. Due to fatal side

effects (such as cardiovascular-related or other types of diseases) of DES, the assessment of

the effect of the treatment should take into account not only the death time from prostate
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cancer but also from other diseases. Here the risk of non-cancer death serves as a competing

event since a patient will not be observed to die of prostate cancer once he or she died of

non-cancer diseases.

The data have been analysed by many authors, see for example Kleinbaum and Klein

(2012) and Deng et al. (2017). We consider the following eight covariates in our analysis:

Rx is the binary treatment covariate coding subjects receiving the placebo or 0.2 mg of

DES as 0 (placebo group) and coding subjects receiving 1.0 or 5.0 mg of DES as 1 (active

treatment group); Pf is the performance status (0 for normal, 1 for limitation of activity);

Hx is the history of cardiovascular disease (0 for no, 1 for yes); Wt is the standardized

weight; Hg is the hemoglobin in µg/100 ml; Age is the age of the patient at diagnosis;

SZ is the size of primary lesion estimated in cm2 from rectal examinations; and SG is the

combined index of tumour stage and histological grade.

Dropping 23 subjects with missing information, we will analyse the data of the remain-

ing 483 patients: 125 of them died of prostate cancer during the study period, another 219

patients died of cardiovascular-related or other diseases (non-prostate cancer diseases),

while 139 were alive at the end of the study. Here the primary event of interest is prostate

cancer deaths. We consider the non-cancer death as a competing event for cancer death.

Hence, they should be modelled jointly rather than treating them as independent. Since

censoring only occurs at the end of the study, it seems safe to assume that the censoring

time is independent of the failure times. Hence, we will assume bivariate normality for

the two event times T1 and T2 (conditionally on the covariates), while considering the ad-

ministrative censoring time A as being independent of everything else. Our objective is

to study the effect of active treatment on cancer death after adjusting for other covariate

information.

Our first preliminary analysis consists in comparing the cumulative incidence functions

(CIF) estimated by our method to those obtained by using the nonparametric approach

explained in Section 3.2. This should give us an idea of whether our parametric model

provides a good fit. In this preliminary analysis we only consider the treatment covariate,

which is binary. In Figure 2, we present the non-parametric and the proposed parametric

estimates of the CIF for the two competing types of events. For the latter estimates, we use

the Yeo-Johnson family of transformations. It is clear from the figure that the estimates

based on the proposed method are very close to their non-parametric counterparts for

both types of events. Roughly speaking, the closeness of the non-parametric CIF and the

parametric CIF suggests that the proposed parametric model is good at describing the
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prostate data distribution. For cancer deaths, it seems that there is a very good beneficial

effect of receiving the active treatment in reducing the risk of cancer death compared to

those in the placebo group. For example, the estimated probability of dying in the first

5 years after randomisation is 20% and 31% for the active treatment and the placebo

group, respectively, based on the proposed method. However, for non-cancer deaths, those

receiving the active treatment were at higher risk than those in the placebo group, but it

seems the difference between the two risk groups is not that pronounced.
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Figure 2: Cumulative incidence functions for cancer (left) and non-cancer (right), for

placebo (grey) and active treatment (black), based on the proposed method (smooth curve)

and the non-parametric method (step function).

Next, we analyse the prostate cancer data by taking all covariates into account. Since

a few survival times in the data set equal zero, we consider the logarithm transformation

after adding one to each observation. Then, the parametric competing risks model is fitted

to the data. The variable weight was removed from the joint model since it is not significant

in neither the cancer nor the non-cancer component of the fitted model. The results of the

model fit are summarized in Table 6, which provides the parameter estimates, standard

errors (SE) and P-values. Note that the P-values are computed based on a Wald test

using the model based standard errors. Five covariates in the table, namely treatment
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group, performance status, hemoglobin level, size of the primary lesion and tumor stage,

are significantly related to time to prostate cancer deaths. And four covariates, namely

performance status, history of cardiovascular disease, level of hemoglobin and age, are

significant for the time to death from non-cancer diseases. The cancer related covariates

are significant in time to cancer deaths, but not in time to non-cancer deaths, which

corresponds with our expectation. These results are similar to the ones obtained by Deng

et al. (2017) for Kendall’s τ = 0.5 and to the ones obtained by Kleinbaum and Klein (2012)

based on Fine and Gray (1999) model. Although the corresponding coefficient estimates

and standard errors are somewhat different from their outputs, the corresponding P-values

are reasonably similar. We found the estimated transformation parameter θ = 1.46 and

the association parameter ρ = 0.46 for our competing risks model. This is a moderate

correlation (but significant with close to borderline P-value= 0.043) that will probably

induce bias in the parameter estimates if it is not correctly acknowledged in the joint

model.

Table 6: Parameter estimates (Est.), model standard errors (SE) and P-values for the

proposed competing risks model.

Est. SE P-value Est. SE P-value

Cancer death Non-cancer death

Rx 0.742 0.321 0.010 -0.121 0.267 0.324

Pf 0.689 0.419 0.050 0.824 0.465 0.038

Hx -0.239 0.301 0.214 -1.205 0.360 0.000

Hg 0.439 0.153 0.002 0.305 0.146 0.018

Age 0.031 0.146 0.415 -0.690 0.202 0.000

SZ -1.573 0.460 0.000 -0.516 0.475 0.139

SG -2.469 0.649 0.000 0.106 0.345 0.379

θ 1.455 0.153 0.000

ρ 0.457 0.267 0.043

From this study, we conclude that the treatment of prostate cancer with high doses

of diethylstilbestrol significantly reduces the risk of prostate cancer deaths (P-value =

0.01), but there is no difference between those who received the active treatment and those

who received the placebo in reducing the risk of non-cancer deaths. This agrees with the

conclusions drawn in the above preliminary data analysis. These results help us gain more

confidence in the conclusions of Kleinbaum and Klein (2012) and Deng et al. (2017).
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5 Discussion and future research

As far as we know, this paper is the first paper to propose a model for competing risks that

are not only subject to administrative censoring or other types of independent censoring,

but also to censoring mechanisms that depend on the competing risks, and that will lead

to biased results if not accounted for in an appropriate way. We propose transformed

accelerated failure time models for each competing risk and each censoring time, of which

the error terms have a multivariate normal distribution. By allowing the covariances of

this normal vector to be non-zero, we take the dependent censoring into account. We show

the identifiability of the proposed model, and show how to estimate quantities commonly

used in the context of competing risks.

The application of the proposed approach is not only restricted to biomedical applica-

tions, but can also be used for the analysis of data on life insurances for instance, where

a company issues policies on several lives, most commonly on the lives of a husband and

a wife. Such a policy pays a benefit to the survivor at the time of the first death. Hence,

the time of death is the minimum of two lifetimes, which represent competing risks (Mar-

shall and Olkin, 2007). Since husbands and wives share many risks such as common living

conditions, similar diets, etc., their lifetimes are positively dependent.

As a topic of future research, one could adapt the proposed model to semi- or nonpara-

metric regression functions, using splines, orthogonal series or kernel methods, and/or to

nonparametric transformations. Another topic for future research is to show the identifi-

ability of the model under more general classes of error distributions. The current proof

is however tailored for the multivariate normal distribution, and it is for the moment not

clear whether and how the proof can be adapted to other error distributions.

Supplementary materials

Tables 7-8 are available on Github (https://github.com/N2143/Supplementarymaterials2).
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Appendix: Proofs of the identifiability results

Proof of Theorem 2.1. The proof is inspired by the proof of Theorem 1 in Deresa

and Van Keilegom (2018), which holds when the only source of censoring is dependent

censoring. Hence, we will focus on what changes in this proof when T can be censored

either by C or A. Consider the joint likelihood given in (2.7) for a single observation and

define a pair of parameters αj = (θj, βj, ηj, σTj , σCj , ρj) ∈ S, for j = 1, 2. By assumption

(A5) we know that P (Z = T ) > 0 and so we can consider ∆ = 1 and ξ = 0. From (2.7) it

follows that

fT |X(z|x; θ1, β1, σ1)
[
1− Φ

((1− ρ1
σC1

σT1
)Λθ1(z)− (wTη1 − xTβ1)

σC1(1− ρ2
1)1/2

)]
= fT |X(z|x; θ2, β2, σ2)

[
1− Φ

((1− ρ2
σC2

σT2
)Λθ2(z)− (wTη2 − xTβ2)

σC2(1− ρ2
2)1/2

)]
(5.1)

for all z, x and w. Assume for now that γ11 = 1 − ρ1σC1/σT1 > 0 and γ21 = 1 −
ρ2σC2/σT2 > 0. The case where one or both quantities are zero or negative will be con-

sidered later. Then taking the limit as z tends to −∞ on both sides of (5.1), we get

limz→−∞ fT |X(z|x; θ1, β1, σ1)−1fT |X(z|x; θ2, β2, σ2) = 1 for almost every z and (x,w). Ap-

plying Proposition 1 of Deresa and Van Keilegom (2018) to the latter limit implies that

θ1 = θ2, β1 = β2, σT1 = σT2 . Following the same arguments, when we consider ∆ = 0

and ξ = 1, we identify η1 = η2, σC1 = σC2 provided γ12 = 1 − ρ1σT1/σC1 > 0 and

γ22 = 1 − ρ2σT2/σC2 > 0. Finally, to identify the correlation, let ∆ = 0 and ξ = 0,

then from (2.7) we have

Φ̄
(Λθ1(z)− xTβ1

σT1
,
Λθ1(z)− wTη1

σC1

; ρ1

)
= Φ̄

(Λθ2(z)− xTβ2

σT2
,
Λθ2(z)− wTη2

σC2

; ρ2

)
for almost every (x,w) and z, from which it follows that ρ1 = ρ2. The cases where some

of the coefficients γ11, γ12, γ21 or γ22 are zero or negative can be treated in the same way

as in the proof of Theorem 1 in Deresa and Van Keilegom (2018). We refer to the latter

paper for details. Hence, model (2.1) is identifiable. 2

Proof of Theorem 2.2. To ease the exposition, we will give the proof for m = 3. The

proof for other values of m is similar, but notationally more complex. Assume for now that

γ`jk = 1− ρjk`
σj`
σk`

> 0 for 1 ≤ j < k ≤ 3 and ` = 1, 2. (5.2)
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The case where one or several of these quantities are zero or negative will be considered

later. Then by (2.11) we have

fZ`,∆∗
` |X∗(z, 1, 0, 0|x∗;α`)

=
1

σ1`

Φ̄
(γ`12Λθ`(z)− µ`2.1

s`2.1
,
γ`13Λθ`(z)− µ`3.1

s`3.1
; ρ`23.1

)
φ
(Λθ`(z)− xT1 β1`

σ1`

)
Λ′θ`(z), (5.3)

where µ`j.1 = xTj βj` − ρ1j`σj`/σ1` and s`j.1 = σj`(1 − ρ2
1j`)

1/2 for j = 2, 3 and ` = 1, 2.

Note that ρ`23.1 is the partial correlation coefficient between Λθ`(T2`) and Λθ`(T3`) where

the effect of Λθ`(T1`) has been taken out. In a similar way, we can obtain the formulas of

fZ`,∆∗
` |X∗(z, 0, 1, 0|x∗;α`) and fZ`,∆∗

` |X∗(z, 0, 0, 1|x∗;α`).
Note that since (Z1,∆

∗
1) and (Z2,∆

∗
2) have the same conditional distribution, we have

from (5.3),

1

σ11

Φ̄
(γ1

12Λθ1(z)− µ1
2.1

s1
2.1

,
γ1

13Λθ1(z)− µ1
3.1

s1
3.1

; ρ1
23.1

)
φ
(Λθ1(z)− xT1 β11

σ11

)
Λ′θ1(z)

=
1

σ12

Φ̄
(γ2

12Λθ2(z)− µ2
2.1

s2
2.1

,
γ2

13Λθ2(z)− µ2
3.1

s2
3.1

; ρ2
23.1

)
φ
(Λθ2(z)− xT1 β12

σ12

)
Λ′θ2(z). (5.4)

Taking the limit as z tends to −∞ on both sides of (5.4) yields that limz→−∞ fT11|X1(z|x1)−1

fT12|X1(z|x1) = 1 for almost every z and x1. Applying Proposition 1 in Deresa and Van Kei-

legom (2018) to the latter limit now implies that θ1 = θ2, β11 = β12 and σ11 = σ12.

By following the same derivations for the density fZ`,∆∗
` |X∗(z, 0, 1, 0|x∗;α`) (` = 1, 2),

we can show that β21 = β22 and σ21 = σ22. Similarly, when we consider the density

fZ`,∆∗
` |X∗(z, 0, 0, 1|x∗;α`) (` = 1, 2), we obtain that β31 = β32 and σ31 = σ32.

Finally, to identify the correlation parameters, note that we need to identify first the

partial correlations. From (5.4), we have that

Φ̄
(γ1

12Λθ1(z)− µ1
2.1

s1
2.1

,
γ1

13Λθ1(z)− µ1
3.1

s1
3.1

; ρ1
23.1

)
= Φ̄

(γ2
12Λθ2(z)− µ2

2.1

s2
2.1

,
γ2

13Λθ2(z)− µ2
3.1

s2
3.1

; ρ2
23.1

)
for almost every z and (x1, x2, x3). Hence, by Theorem 2 in Basu and Ghosh (1978),

we have that ρ1
23.1 = ρ2

23.1. Similarly we can show that ρ1
12.3 = ρ2

12.3 and ρ1
13.2 = ρ2

13.2.

Now, using the relationship between partial correlations and correlations (see, for example,

Kendall and Stuart (1961), exercise 27.1, p.343 and Basu and Ghosh (1978)), we have that

ρ1
12 = ρ2

12, ρ
1
13 = ρ2

13 and ρ1
23 = ρ2

23.

Thus, the theorem is proved when all γ`jk > 0, ` = 1, 2, 1 ≤ j < k ≤ 3. The cases where

some of the coefficients γ`jk are zero or negative can be treated in a similar way as in Basu

and Ghosh (1978). We omit the details. This finishes the proof. 2
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