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A direct, catalytic conversion of benzene to phenol would have
wide-reaching economic impacts. Fe zeolites exhibit a remarkable
combination of high activity and selectivity in this conversion,
leading to their past implementation at the pilot plant level. There
were, however, issues related to catalyst deactivation for this
process. Mechanistic insight could resolve these issues, and also
provide a blueprint for achieving high performance in selective
oxidation catalysis. Recently, we demonstrated that the active site
of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an
unusually reactive Fe(IV)=O species. Here, we apply advanced
spectroscopic techniques to determine that the reaction of this
Fe(IV)=O intermediate with benzene in fact regenerates the re-
duced Fe(II) active site, enabling catalytic turnover. At the same
time, a small fraction of Fe(III)-phenolate poisoned active sites
form, defining a mechanism for catalyst deactivation. Density-
functional theory calculations provide further insight into the ex-
perimentally defined mechanism. The extreme reactivity of α-O
significantly tunes down (eliminates) the rate-limiting barrier for
aromatic hydroxylation, leading to a diffusion-limited reaction co-
ordinate. This favors hydroxylation of the rapidly diffusing ben-
zene substrate over the slowly diffusing (but more reactive)
oxygenated product, thereby enhancing selectivity. This defines
a mechanism to simultaneously attain high activity (conversion)
and selectivity, enabling the efficient oxidative upgrading of
inert hydrocarbon substrates.

zeolites | spectroscopy | catalysis

The direct conversion of benzene to phenol remains an out-
standing challenge in modern chemistry (1). Fe zeolites ex-

hibit remarkable performance in this application, hydroxylating
benzene catalytically with 95+% selectivity for phenol––even at
high levels of conversion (30–45%) (2–6). This is the critical step
in the AlphOx process of Panov, implemented in a Solutia pilot
plant (2–5). Catalyst deactivation at elevated temperature re-
mains a crucial problem (4, 7, 8). Mechanistic insight could re-
solve this issue, and provide a blueprint for developing selective
oxidation catalysts with high reactivity and selectivity. However,
despite three decades of effort, direct experimental data clari-
fying the catalytic mechanism are limited (9). We recently
showed the active site of selective hydrocarbon hydroxylation,
called α-Fe(II) (2), is a mononuclear S = 2 square planar Fe(II)
center (10, 11). α-Fe(II) is activated by nitrous oxide to form α-O
(2), a mononuclear square pyramidal S = 2 Fe(IV)=O in-
termediate with a constrained coordination geometry that im-
parts exceptional reactivity, enabling H-atom abstraction from
CH4 at room temperature (10, 11). In this study, we investigate
the single-turnover reactivity of α-O with C6H6 using advanced
spectroscopic techniques from bioinorganic chemistry. Spectro-
scopic data show the reduced α-Fe(II) active site is regenerated
following single turnover. The phenol product is thus released
from the active site quantitatively at room temperature, but not
overoxidized. At the same time, we find a small fraction of

partially oxidized, deactivated Fe(III)-phenolate sites are gen-
erated. These data, coupled to density-functional theory (DFT)
calculations, define a catalytic mechanism leading to high activity
(conversion) and selectivity, along with a competing mechanism
leading to catalyst deactivation.

Results and Discussion
Defining the Product of Single Turnover. Direct experimental data
tracking the state of the α-O active site in its reaction with
benzene are lacking. We therefore used Mössbauer spectroscopy
as a quantitative probe of iron speciation in iron-exchanged ze-
olite beta (Fe-BEA) under single-turnover conditions. As shown
in Fig. 1A, reacting α-O in Fe-BEA (gray trace) with C6H6 vapor
at room temperature results in the quantitative formation of a Q:10

species labeled α-C6H6 (red trace) with 6K Mössbauer parame-
ters characteristic of high spin (S = 2) Fe(II) (isomer shift, IS;
quadrupole splitting, QS; IS = 1.30, QS = 3.90), but distinct from
those previously defined for α-Fe(II) (precursor to α-O; blue
trace) (10, 11). The larger quadrupole splitting of α-C6H6 indi-
cates this site no longer has the square planar geometry of α-Fe
(II), suggesting an axial ligand is now present.

Significance

Fe zeolites are heterogeneous catalysts that show potential in
a number of important industrial applications, including the
selective partial oxidation of methane to methanol at room
temperature, and the selective conversion of benzene to phe-
nol. There are practical limitations associated with Fe-zeolite
catalysts that may be resolved with mechanistic insight; how-
ever, reliable experimental data on Fe zeolites are limited. This
study defines the mechanism of selective benzene hydroxyl-
ation catalyzed by Fe zeolites, clarifying the relationship be-
tween active site structure and catalytic performance (activity,
selectivity). Mechanistic insight from this study represents an
important step toward synthetic control over function in se-
lective hydrocarbon oxidation catalysis.

Author contributions: B.E.R.S., R.A.S., B.F.S., and E.I.S. designed research; B.E.R.S., M.L.B.,
H.M.R., P.V., L.H.B., A.B., J.J.Y., R.G.H., J.T.B., M.Y.H., J.Z., and E.E.A. performed research;
B.E.R.S., B.H., K.O.H., R.A.S., B.F.S., and E.I.S. analyzed data; and B.E.R.S., R.A.S., B.F.S., and
E.I.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Published under the PNAS license.
1Present address: Department of Chemistry, University of California, Berkeley, CA 94720.
2Present address: Division of Chemistry and Chemical Engineering, California Institute of
Technology, Pasadena, CA 91125.

3To whom correspondence may be addressed. Email: robert.schoonheydt@biw.kuleuven.
be, bert.sels@biw.kuleuven.be, or edward.solomon@stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1813849115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1813849115 PNAS Latest Articles | 1 of 6

CH
EM

IS
TR

Y

1
2
3

4
5
6

7
8
9

10
11
12
13

14
15
16

17
18
19

20
21
22
23

24
25
26

27
28
29

30
31
32

33
34
35
36

37
38
39

40
41
42

43
44
45
46

47
48
49

50
51
52

53
54
55

56
57
58
59

60
61
62

63
64
65

66
67
68

69
70
71

72
73
74
75

76
77
78

79
80
81

82

90
91

92
93
94

95
96
97
98

99
100
101

102
103
104

105
106
107
108

109
110
111

112
113
114

115
116
117

118
119
120
121

122
123
124

Q:1; 2; 3; 4; 5; 6; 7; 8

http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:robert.schoonheydt@biw.kuleuven.be
mailto:robert.schoonheydt@biw.kuleuven.be
mailto:bert.sels@biw.kuleuven.be
mailto:edward.solomon@stanford.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813849115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813849115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1813849115


To define the ligation of α-C6H6, we employed a combination
of Fe K-edge X-ray absorption spectroscopy (XAS) coupled to 57

Fe nuclear resonance vibrational spectroscopy (NRVS). NRVS
is a synchrotron-based technique that selectively probes vibra-
tions of Fe sites in metalloenzymes and zeolites (11, 12). Im-
portantly, NRVS and XAS are sensitive to S = 2 Fe(II) centers,
which can be difficult (or impossible) to resolve in optical ab-
sorption, resonance Raman, and electron paramagnetic reso-
nance spectroscopy. As shown in the X-ray absorption near-edge
region in Fig. 1B, the reaction of α-O (gray trace) with C6H6 (red
trace) results in loss of the intense α-O preedge features at
7,110–7,115 eV (Inset), as well as a downshift in the rising edge
energy by ∼3 eV. These changes are consistent with reduction of
α-O to an Fe(II) species distinct from α-Fe(II) (blue trace, with a
low-energy 1s–4p transition at 7,120 eV that is characteristic of
square planar geometry) (11). In the extended X-ray absorption
fine structure (EXAFS) region in Fig. 1C, the Fourier transform
(FT) shows a loss of first-shell intensity moving from α-O (gray)
to α-C6H6 (red). Comparing the first-shell EXAFS fits of α-C6H6
in Fig. 1C and of α-O from Snyder et al. (11) shows this is due to
loss of the short 1.63-Å scattering path from the reactive ter-
minal oxo ligand (see SI Appendix, Fig. S2 for full EXAFS fits).
The first coordination sphere of α-C6H6 was fit with 4 ± 1 oxygen
ligands at 2.10 Å. However, the EXAFS fit does not clarify the
nature of the axial ligand. (See SI Appendix, Fig. S2; this ligand
could contribute to the 2.10-Å shell or, alternatively, be weakly
bound and not significantly contribute to the experimental data.)
To resolve this ambiguity, we directly synthesized candidates

for α-C6H6 by binding either phenol (product) or C6H6 (sub-
strate, present in excess under reaction conditions) to α-Fe(II).
As shown in SI Appendix, Fig. S1, in each case this leads to
quantitative conversion of α-Fe(II) to a new S = 2 Fe(II) species
with Mössbauer parameters that are highly similar to α-C6H6.
However, XAS and NRVS data presented in Fig. 2 show sig-
nificant differences for benzene- and phenol-ligated α-Fe(II). FT
EXAFS data in Fig. 2A show excess first-shell intensity for the
phenol-bound site (black trace; see 1–2-Å region) relative to
α-C6H6 (red trace). The EXAFS fit given in the inset indicates
this is due to the presence of a fifth oxygen ligand at 2.09 Å. The
XANESQ:11 region presented in SI Appendix, Fig. S2 shows the
phenol-bound site also does not reproduce the α-C6H6 preedge
or rising edge. Finally, as shown in Fig. 2B, the phenol-bound
site (black trace) does not reproduce the distribution of
NRVS intensity for α-C6H6 (red trace) in the 0–250-cm−1 region,
which contains FeL5 core modes that are highly sensitive to

coordination geometry (11). In this region, α-C6H6 shows a dis-
tinct peak at 165 cm−1, while the phenol-bound site has a plateau
from 165 to 210 cm−1. The experimental Mössbauer, EXAFS,
and NRVS data of the phenol-bound site are reproduced by the
S = 2 Fe(II) DFT model presented in SI Appendix, Fig. S3. Al-
ternatively, EXAFS data in Fig. 2C, NRVS data in Fig. 2D, and
XANES data in SI Appendix, Fig. S2 demonstrate the spectro-
scopic features of C6H6-ligated α-Fe(II) (blue traces) overlay
with the features of α-C6H6 (red traces). The experimental

Fig. 1. (A) 57Fe MössbauerQ:27 spectrum of α-O in Fe-BEA (82%, gray trace) collected at 6K, compared with data collected after its reaction with C6H6, forming
α-C6H6 (83% red trace). Past data (11) from the reduced α-Fe(II) active site are included for reference (73%, blue trace). (Inset) The associated Mössbauer
parameters are reported. (B) Fe K-edge X-ray absorption near-edge spectra of α-O (gray trace) and α-C6H6 (red trace), showing an ∼3-eV downshift in the
rising edge coupled to loss of the intense preedge features of α-O (Inset). Past data (11) from α-Fe(II) are included for reference (blue trace). (C) Comparison of
FT EXAFS spectra of α-O (gray trace) and α-C6H6 (red trace, with fit in dashed black). (Inset) The EXAFS spectrum of α-C6H6 (experimental data: red; fit: dashed
black), with the first shell fit summarized below. The full EXAFS fit is presented in SI Appendix, Fig. S2.

Fig. 2. (A) Comparison of FT EXAFS of α-C6H6 (red trace) and phenol-bound
α-Fe(II) (dark-gray trace). (Inset) The phenol-bound k3-weighted EXAFS is
shown (solid gray, fit in dashed black), with the first shell fit parameters
given below. (B) Comparison of NRVS spectra of α-C6H6 (red trace) and
phenol-bound α-Fe(II) (dark-gray trace). A structural model of the phenol-
bound site is illustrated at the right of the figure, based on correlation of
spectroscopy to DFT (SI Appendix, SI Methods). (C) Comparison of FT EXAFS
of α-C6H6 (red trace) and benzene-bound α-Fe(II) (blue trace). (Inset) The
benzene-bound k3-weighted EXAFS is shown (solid red, fit in dashed black),
with the first shell fit parameters given below. (D) Comparison of NRVS
spectra of α-C6H6 (red trace) and benzene-bound α-Fe(II) (blue trace). A
structural model of the benzene-bound site, based on correlation of spec-
troscopy to DFT (SI Appendix, SI Methods), is illustrated at the right of the
figure.
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Mössbauer, EXAFS, and NRVS spectroscopy of α-C6H6 are
reproduced by an S = 2 DFT model of α-Fe(II) with a weakly
bound π-η2-C6H6 ligand (see SI Appendix, Fig. S3 for detail). As
shown in SI Appendix, Fig. S4, the C6H6 ligand desorbs from
α-C6H6 at room temperature, consistent with a weak bonding
interaction.
The quantitative conversion of α-O to the substrate-bound

reduced active site at room temperature has significant mecha-
nistic implications. α-C6H6 is not a reaction intermediate, and its
formation requires α-Fe(II) to release the phenol product before
binding the excess C6H6 in the reactant stream. These results
contradict earlier studies suggesting product desorption from the
active site is rate limiting (13, 14), and/or driven by subsequent
activation of N2O (2, 14). High temperatures are therefore not
required to regenerate the active site, but do assist in the sub-
sequent desorption of phenol from the zeolite lattice [see
temperature-programmed desorption (TPD) data in SI Appen-
dix, Fig. S5]. The absence of overoxidized products (2, 3) indi-
cates the released phenol does not go on to react with α-O.
Interestingly, α-O does react directly with phenol vapor at room
temperature to form diphenols––see SI Appendix, Fig. S6 and
ref. 15. This suggests the benzene substrate is able to outcompete
the phenol product, despite its lower activation toward electro-
philic aromatic substitution reactions. The reactivity of α-O is
therefore different from other mononuclear Fe(IV)=O inter-
mediates: α-O achieves high levels of selectivity (95+%) at high
levels of conversion (40+%) (6), while other Fe(IV)=O inter-
mediates attain lower levels of selectivity (0–70%) at lower levels
of conversion (<10%) (16–18). The clean regeneration of the
α-Fe(II) active site following aromatic hydroxylation also raises
an important contrast to methane hydroxylation in Fe zeolites,
which is not catalytic (9), and where past Mössbauer studies
show single-turnover results in a heterogeneous distribution of
Fe species (SI Appendix, Fig. S7) (10). DFT studies presented
below clarify the unique features of α-O leading to its unusually
high reactivity and selectivity in aromatic hydroxylation.

A Mechanism Leading to Catalyst Deactivation. The regeneration of
α-Fe(II) following aromatic hydroxylation in Fe-BEA contrasts
with studies of Fe-ZSM-5, where phenolate-ligated products are
proposed (19–22). A C6H6/α-O formed spectroscopic product
with a broad absorption band at 13,900 cm−1 has been identified
in Fe-ZSM-5, assigned as a binuclear Fe(III)-phenolate species
based on rRQ:12 data (20). This is proposed to be either a catalytic
intermediate, a poisoned state of the active site, and/or precursor
to coke formation (19–23). We used a range of spectroscopies to
clarify the nature of this putative Fe(III) phenolate and its re-
lation to the α-O active site. Mössbauer spectra in SI Appendix,
Fig. S8 show the reaction of C6H6 with Fe-ZSM-5 parallels the
Fe-BEA reaction, resulting in near-quantitative formation of a
single Fe(II) product, with <5% Fe(III) present. However, as
shown in Fig. 3, this also results in the 13,900-cm−1 AbsQ:13 band
assigned to an Fe(III)2 phenolate by Xia et al. (20) (Fig. 3A).
Tuning a laser into the 13,900-cm−1 absorption feature en-

hances a number of Raman vibrations shown in Fig. 3B, with
frequencies and intensities consistent with those in ref. 20.
Reacting 18O-labeled α-O (see ref. 24 and Materials and Meth-
ods) with C6H6 results in the rR isotope shifts given in paren-
theses in Fig. 3B, which are diagnostic of a bound phenolate
ligand. (An analogous 15,200-cm−1 Abs feature forms in Fe-
BEA––see SI Appendix, Fig. S8. Issues with fluorescence pre-
cluded rR studies of this system.) 18O labelQ:14 incorporation indi-
cates the phenolate ligand is correlated with the active site (i.e.,
unrelated to spectator sites).
We used variable-temperature variable-field magnetic circular

dichroism (VTVH-MCD) (9, 25) to define the electronic struc-
ture of this phenolate-bound species. As shown in Fig. 3C, the
13,900-cmQ:15

−1 Room-temperature (RT) Abs band resolves into

two components at 11,600 cm−1 and 13,300 cm−1 in 3K MCD
spectroscopy. VTVH-MCD isotherms collected from these
bands overlay within error, suggesting they derive from the same
species. The 11,600-cm−1 VTVH-MCD isotherms in Fig. 3D
require a spin-Hamiltonian fit with an S = 5/2 ground state,
consistent with a high-spin mononuclear Fe(III) phenolate [but
not an oxo- or hydroxo-bridged 2Fe(III) site, which would have
an integer-spin, likely singlet ground state (26)]. Compared with
other mononuclear S = 5/2 Fe(III) phenolates, the 647-cm−1 Fe-
OC6H5 stretching frequency from rR is high [typically 570–
620 cm−1 for S = 5/2 Fe(III) phenolates] (27, 28), indicating a
strong binding interaction. Finally, the reaction of α-O with
phenol results in >95% regeneration of Fe(II) (SI Appendix, Fig.
S6), and the formation of diphenols (15). The small amount of
Fe(III) phenolate that forms during the benzene reaction is
therefore unrelated to small contributions from overoxidation.
Site-selective spectroscopy therefore characterizes the geometric
and electronic structure of this S = 5/2 Fe(III) phenolate, and
shows this is a poisoned state of the α-Fe(II) active site gener-
ated during productive turnover. The absence of an Fe(III) sig-
nal in Mössbauer indicates <5% of sites are poisoned following
single turnover, while analysis of DR Q:16-UV-vis band intensi-
ties indicates >0.2% poisoning (see Materials and Methods
for detail). This would lead to 20–100% deactivation after
100 turnovers. DFT calculations presented below suggest phe-
nolate poisoning occurs via H-atom loss from a bound catalytic
intermediate.

A Mechanism Enabling High Reactivity and Selectivity. To define
features of α-O contributing to its high reactivity and selectivity
in aromatic hydroxylation, we constructed a DFT reaction co-
ordinate that cleanly regenerates the reduced α-Fe(II) active

Fig. 3. (A) DR-UV-vis spectra of α-O in Fe-ZSM-5 (gray) and α-C6H6 (red),
showing the appearance of an intense 13,900-cm−1 band. (B) rR data from
laser excitation into the high-energy shoulder of the 13,900-cm−1 band,
showing vibrations with frequencies and corresponding 18O isotope shifts
(given in parentheses) characteristic of a phenolate ligand. The Fe-O and C-O
stretching modes are indicated. (C) 3K Q:28variable-field MCD spectra of C6H6-
reacted Fe-ZSM-5. (D) VTVH-MCD isotherms from the 11,600-cm−1 MCD band
(±1-σ error bars in black; spin Hamiltonian fit in red), and associated spin
Hamiltonian parameters.
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site, as required by experiment. Reactivity occurs entirely on the
S = 2 surface (SI Appendix, Fig. S10), and starts with electrophilic
attack of α-O (intermediate 1 in Fig. 4) on C6H6. As shown in the
blue inset, an electron is transferred from C6H6 into the Fe 3dz2-
derived α-LUMOQ:17 of α-O in this step, forming a new C–O bond.
The resulting σ-complex (intermediate 2) contains an S = 5/2
Fe(III) antiferromagnetically coupled to an S = 1/2 substrate
radical. A significant and unique reactivity feature of α-O is the
absence of a barrier for CO bond formation. [In contrast, this is
the rate-limiting step for electrophilic aromatic hydroxylation in
Fe metalloenzymes (29–31) and homogeneous catalysts (32).]
From the analysis presented in SI Appendix, SI Methods, two
factors contribute to the elimination of this barrier in the re-
action of α-O with C6H6. First, the reduction potential of α-O is
unusually high (11), contributing an additional ∼20-kcal/mol
driving force for C–O bond formation relative to other Fe(IV)=O
intermediates. Second, the Fe=O bond of α-O is unusually co-
valent (10, 11), leading to an FMOQ:18 that is intrinsically activated
for electrophilic chemistry (9–11). Both factors derive from the
“entatic state” (33) of α-O defined in previous studies, where
rigid constraints from the zeolite lattice enforce an otherwise
unstable square pyramidal coordination geometry for this S = 2
Fe(IV)=O site with no axial ligand (9–11).
Proceeding from the σ-complex, an NIH) shift (formal 1,2-

hydride shift) (34) would occur with a low barrier (ΔH‡ =
1.2 kcal/mol). This is a generally observed mechanism of aromatic
hydroxylation by Fe(IV)=O intermediates (16, 29–31). This NIH
shift induces transfer of a second electron from the substrate (see
Fig. 4, red inset), forming 2,4-cyclohexadienone bound to the

reduced Fe(II) active site (intermediate 3). The NIH-shift barrier is
the highest on the reaction coordinate, leading to a predicted H/D
KIE Q:19; 20of α = 1.00–1.16 (seeMaterials and Methods for detail). This is
in agreement with the experimental intramolecular α=1.04–1.06
measured by Dubkov et al. (35), but different from the inverse
KIEs of α = 0.8–0.9 typically observed with other Fe(IV)=O
intermediates (32), where CO bond formation is rate limiting.
Alternative, disfavored mechanisms are evaluated and discussed
in SI Appendix, SI Methods.
While reduction to Fe(II) is facile, our experiments show a

small amount of Fe(III) phenolate is also formed during pro-
ductive turnover. DFT calculations support a strong Fe–OC6H5
bond in this poisoned active site (dFe-O = 1.79 Å), consistent with
rR. This species can be generated by homolyzing the ipso C–H
bond of the σ-complex (intermediate 2), which is very weak
(BDE Q:21= 15.6 kcal/mol), suggesting H-atom loss from the bound
substrate as a potential poisoning mechanism. We reacted α-O
with deuterated substrate to evaluate this mechanism, which
predicts an H/D KIE of 1.44–2.89 (see SI Appendix, SI Methods
for detail). As shown in SI Appendix, Fig. S9, the reaction of α-O
with C6D6 results in a 30 ± 5% decrease in the Fe(III)-phenolate
DR-UV-vis feature, reflecting an H/D kinetic isotope effect α =
1.33–1.54 in agreement with the predicted value.
Proceeding from intermediate 3 in Fig. 4, the zeolite lattice

can catalyze the tautomerization of the dienone to phenol. A
potential mechanism would involve transfer of a proton from the
dienone to one of the two adjacent Al T sites (intermediate 4),
and then back to the substrate to yield the phenol-bound Fe(II)
active site (intermediate 5). The stabilities of the dienone- and

Fig. 4. DFT reaction coordinate for benzene hydroxylation by α-O on the S = 2 surface. Enthalpy changes are given relative to (1) –α-O and gas-phase C6H6.
The associated free-energy changes (ΔG at 300 K) are reported in parentheses. In the first step of this reaction coordinate, α-O (1) oxidizes C6H6 by one
electron to form an Fe(III) σ-complex (2). The evolution of the α-LUMO during this electron transfer is shown in the blue inset. The σ-complex undergoes an
NIH shift (formal 1,2-hydride shift) to form an Fe(II)-dienone product (3). The evolution of the β-HOMOQ:29 during this second electron transfer is shown in the red
inset. The dienone rearranges to phenol (4, 5), and then desorbs regenerating α-Fe(II) (6), which binds benzene to form α-C6H6 (7).
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phenol-bound active sites are similar (ΔΔH = 2.2 kcal/mol),
despite the 13.9-kcal/mol destabilization of the free dienone
relative to phenol. The Fe(II) active site therefore binds the
dienone more strongly (ΔHdes = 28.6 kcal/mol, versus 16.9 kcal/mol
for phenol), potentially disfavoring the premature release of
this more reactive species. Phenol then desorbs, regenerating
α-Fe(II) (intermediate 6). Alternatively, the dienone may be
released from the active site and tautomerize to phenol else-
where, in a process catalyzed by a remote Brønsted site. Finally,
excess benzene present in the reactant stream is calculated to
bind weakly to α-Fe(II) (ΔH = −3.4 kcal/mol) to form α-C6H6––

the species observed experimentally after single turnover.

Conclusion
This study applies advanced spectroscopic techniques to define
the mechanism of benzene hydroxylation and Fe(III)-phenolate
poisoning in Fe zeolites. A key finding is that the RT reaction of
benzene with the Fe(IV)=O intermediate α-O in fact regener-
ates the reduced α-Fe(II) active site, explaining how catalysis is
possible for this Fe-zeolite system. This requires that benzene is
hydroxylated through an associative electrophilic mechanism.
We find the phenol product desorbs from the active site, but
TPD experiments show it remains bound to the catalyst surface.
This elucidates the mechanism of productive turnover. At the
same time, a small fraction (0.2–5%) of partially oxidized, cat-
alytically inactivated Fe(III)-phenolate sites are formed, further
defining a mechanism of active site poisoning.
Experimental data coupled to DFT calculations indicate

Fe(III)-phenolate formation occurs through H-atom loss from a
bound catalytic intermediate––likely the α-O-C6H6 σ-complex
(intermediate 2 in Fig. 4), which has a very weak ipso C–H
bond. This mechanism, which is entropically favored (over the
NIH shift), would be favored at high temperatures. Our data
show high temperatures are not required to desorb phenol from
the active site, but do aid in desorption of product from the
zeolite lattice. Moving from BEA or ZSM-5 to a different zeolite
lattice that adsorbs phenol less strongly could enhance cataly-
sis, enabling a lower-temperature process to minimize Fe(III)-
phenolate and coke formation. DFT calculations provide fur-
ther insight into the experimentally defined mechanism for
productive turnover. Due to the extreme reactivity of α-O, there
is no rate-limiting barrier for aromatic hydroxylation (Fig. 4).

Reactivity data from Fe-ZSM-5 show the apparent rate of ben-
zene hydroxylation is in fact 19× greater than that of phenol
hydroxylation (2). Combined, these insights suggest benzene is
hydroxylated selectively due to its more rapid diffusion through
the zeolite lattice––even at high levels of conversion. This model
is supported by studies that show the diffusivity of phenol
through zeolite lattices is significantly diminished relative to
benzene due to its greater polarity (36). Thus, by embedding a
highly reactive active site in a matrix that selectively limits the
diffusion of the product, it is possible to achieve high conversion
and selectivity simultaneously. These mechanistic insights eluci-
date the remarkable performance of Fe-zeolite catalysts in se-
lective hydrocarbon oxidation. It will be important to explore
how these insights can be used to enhance the catalytic hydrox-
ylation of inert hydrocarbons in microporous materials.

Materials and Methods
Zeolite samples were prepared as described in refs. 10 and 11. XAS data were
collected at beam lines 7–3 and 9–3 at the Stanford Synchrotron Radiation
Lightsource (SSRL) under ring operating conditions of 500 mA over an en-
ergy range of 6,785−7,876 eV (k = 14 Å−1). NRVS spectra were collected at
the Advanced Photon Source (APS) in Argonne, IL, at beamline 3-ID-D. DFT
calculations were performed using the Gaussian 09 software package (see SI
Appendix for citation). Details on sample preparation and spectroscopic
experiments (DR-UV-vis, rR, MCD) are included in SI Appendix.
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