Tutorial: Uncovering and Mitigating
Side-Channel Leakage in Intel SGX Enclaves

Jo Van Bulck and Frank Piessens

imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium
{jo.vanbulck,frank.piessens}@cs.kuleuven.be

Abstract. The inclusion of the Software Guard eXtensions (SGX) in
recent Intel processors has been broadly acclaimed for bringing strong
hardware-enforced trusted computing guarantees to mass consumer de-
vices, and for protecting end user data in an untrusted cloud environment.
While SGX assumes a very strong attacker model and indeed even safe-
guards enclave secrets against a compromised operating system, recent
research has demonstrated that considerable private data (e.g., full text
and images, complete cryptographic keys) may still be reconstructed by
monitoring subtle side-effects of the enclaved execution.

We argue that a systematic understanding of such side-channel leakage
sources is essential for writing intrinsically secure enclave applications, and
will be instrumental to the success of this new trusted execution technology.
This tutorial and write-up therefore aims to bring a better understanding
of current state-of-the-art side-channel attacks and defenses on Intel SGX
platforms. Participants will learn how to extract data from elementary
example applications, thereby recognizing how to avoid common pitfalls
and information leakage sources in enclave development.

Keywords: Side-channel - Enclave - SGX - Tutorial.

1 Introduction

Trusted Execution Environments (TEEs), including Intel SGX, are a promising
new technology supporting secure isolated execution of critical code in dedicated
enclaves that are directly protected and measured by the processor itself. By
excluding vast operating system and hypervisor code from the trusted computing
base, TEEs establish a minimalist hardware root-of-trust where application
developers solely rely on the correctness of the CPU and the implementation
of their own enclaves. Enclaved execution hence holds the promise of enforcing
strong security and privacy requirements for local and remote computations.
Modern processors unintendedly leak information about (enclaved) software
running on top, however, and such traces in the microarchitectural CPU state
can be abused to reconstruct application secrets through side-channel analysis.
These attacks have received growing attention from the research community
and significant understanding has been built up over the past decade. While
information leakage from side-channels is generally limited to specific code or



2 Van Bulck et al.

data access patterns, recent work [11,10,4,8,5,9] has demonstrated significant side-
channel amplification for enclaved execution. Ultimately, the disruptive real-world
impact of side-channels became apparent when they were used as building blocks
for the high-impact Meltdown, Spectre, and Foreshadow speculation attacks
(where the latter completely erodes trust on unpatched Intel SGX platforms [7]).
Intel explicitly considers side-channels out of scope, clarifying that “it is the
enclave developer’s responsibility to address side-channel attack concerns” [2].
Unfortunately, we will show that adequately preventing side-channel leakage is
particularly difficult — to the extent where even Intel’s own vetted enclave entry
code suffered from subtle yet dangerous side-channel vulnerabilities [3]. As such,
we argue that side-channels cannot merely be considered out of scope for enclaved
execution, but rather necessitate widespread developer education so as to establish
a systematic understanding and awareness of different leakage sources. To support
this cause, this tutorial and write-up present a brief systematization of current
state-of-the-art attacks and general guidelines for secure enclave development.
All presentation material and source code for this tutorial will be made
publicly available at https://github.com/jovanbulck/sgx-tutorial-spacel8.

2 Software Side-Channel Attacks on Enclaved Execution

We consider a powerful class of software-only attacks that require only code execu-
tion on the machine executing the victim enclave. Depending on the adversary’s
goals and capabilities, the malicious code can either be executing interleaved
with the victim enclave (interrupt-driven attacks [11,10,4,8,9]), or launched con-
currently from a co-resident logical CPU core (HyperThreading-based resource
contention attacks [5]). In the following, we overview known side-channels.

Memory Accesses. Even before the official launch of Intel SGX, researchers showed
the existence of a dangerous side-channel [11] within the processor’s virtual-to-
physical address translation logic. By revoking access rights on selected enclave
memory pages, and observing the associated page fault patterns, adversaries
controlling the operating system can deterministically establish enclaved code and
data accesses at a 4 KiB granularity. This attack technique has been proven highly
practical and effective, extracting full enclave secrets in a single run and without
noise. Following the classic cat-and-mouse game, subsequent proposals to hide
enclave page faults from the adversary led to an improved class of stealthy attack
variants [10] that extract page table access patterns without provoking page
faults. It has furthermore been demonstrated [8] that privileged adversaries can
mount such interrupt-driven attacks at a very precise instruction-level granularity,
which allows to accurately monitor enclave memory access patterns in the time
domain so as to defeat naive spatial page alignment defense techniques [2,8].

A complementary line of SGX-based Prime-+Probe cache attacks exploit
information leakage at an improved 64-byte cache line granularity [6]. Adversaries
first load carefully selected memory locations into the shared CPU cache, and
afterwards measure the time to reload these addresses to establish code and data


https://github.com/jovanbulck/sgx-tutorial-space18

Tutorial: Uncovering Side-Channels in Intel SGX Enclaves 3

evictions by the victim enclave. As with the paging channel above, these attacks
commonly exploit the adversary’s control over untrusted system software to
frequently interrupt the victim enclave and gather side-channel information at a
maximum temporal resolution [8]. This is not a strict requirement, however, as it
has been demonstrated that even unprivileged attacker processes can concurrently
monitor enclave cache access patterns in real-time [6].

In summary, the above research results show that enclave code and data
accesses on SGX platforms can be accurately reconstructed, both in space (at a
4KiB or 64-byte granularity) as well as in time (after every single instruction).

Instruction-Level Leakage. It has furthermore been shown that enclave-private
control flow leaks through the CPU’s internal Branch Target Buffer (BTB) [4].
These attacks essentially follow the general principle of the above Prime+Probe
attacks by first forcing the BTB cache in a known state. After interrupting the
enclave, the adversary measures a dedicated shadow branch to establish whether
the secret-dependent victim branch was executed or not. Importantly, unlike the
above memory access side-channels, such branch shadowing attacks leak control
flow at the level of individual branch instructions (i.e., basic blocks).

Apart from amplifying conventional side-channels, enclaved execution attack
research has also revealed new and unexpected sub-cache level leakage sources.
One recent work presented the Nemesis [9] attack that measures individual
enclaved instruction timings through interrupt latency, allowing to partially
reconstruct a.o., instruction type, operand values, address translation, and cache
hits/misses. MemJam [5] furthermore exploits selective instruction timing penal-
ties from false dependencies induced by an attacker-controlled spy thread to
reconstruct enclave-private memory access patterns within a 64-byte cache line.

Speculative Execution. In the aftermath of recent x86 speculation vulnerabili-
ties, researchers have successfully demonstrated Spectre-type speculative code
gadget abuse against SGX enclaves [1]. Recent work furthermore presented Fore-
shadow [7] which allows for arbitrary in-enclave reads and completely dismantles
isolation and attestation guarantees in the SGX ecosystem. Intel has since revoked
the compromised attestation keys, and released microcode patches to address
Foreshadow and Spectre threats at the hardware level.

3 Enclave Development Guidelines and Caveats

Existing SGX side-channel mitigation approaches generally fall down in two
categories. One line of work attempts to harden enclave programs through a
combination of compile time code rewriting and run time randomization or checks,
so as to obfuscate the attacker’s view or detect side-effects of an ongoing attack.
Unfortunately, as these heuristic proposals do not block the root information
leakage in itself, they often fall victim to improved and more versatile attack
variants [10,8,5]. A complementary line of work therefore advocates the more
comprehensive constant time approach known from the cryptography community:



4 Van Bulck et al.

eliminate secret-dependent code and data paths altogether. While this approach
is relatively well-understood for small applications, in practice even vetted crypto
implementations exhibit non-constant time behavior [10,6,5]. In the context of
SGX, it has furthermore been shown [11,9] that enclave secrets are typically not
limited to well-defined private keys, but are instead scattered throughout the
code and hence much harder to manipulate in constant time.

We conclude that side-channels pose a real threat to enclaved execution, while
no silver bullet exists to eliminate them at the compiler or system level. Depending
on the enclave’s size and security objectives, it may be desirable to strive for
intricate constant time solutions, or instead rely on heuristic hardening measures.
However, further research and raising developer awareness are imperative to
make such informed decisions and adequately employ TEE technology.

Acknowledgments. This research is partially funded by the Research Fund KU Leu-
ven. Jo Van Bulck is supported by the Research Foundation — Flanders (FWO).

References

1. Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., Lai, T.H.: SgxPectre attacks:
Leaking enclave secrets via speculative execution. arXiv:1802.09085 (2018)

2. Intel: Software guard extensions developer guide: Protection from side-channel
attacks. https://software.intel.com/en-us/node/703016 (June 2017)

3. Intel: Intel Software Guard Extensions (SGX) SW Development Guidance for
Potential Edger8r Generated Code Side Channel Exploits (March 2018)

4. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: Proceedings of the
26th USENIX Security Symposium. Vancouver, Canada (August 2017)

5. Moghimi, A., Eisenbarth, T., Sunar, B.: Memjam: A false dependency attack against
constant-time crypto implementations in SGX. In: Cryptographers’ Track at the
RSA Conference. pp. 21-44. Springer (2018)

6. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard., S.: Malware guard
extension: Using SGX to conceal cache attacks. In: Detection of Intrusions and
Malware, and Vulnerability Assessment. DIMVA (2017)

7. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F.,
Silberstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-order execution. In: Proceedings
of the 27th USENIX Security Symposium. USENIX Association (August 2018)

8. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: A practical attack framework for
precise enclave execution control. In: Proceedings of the 2nd Workshop on System
Software for Trusted Execution. pp. 4:1-4:6. SysTEX’17, ACM (October 2017)

9. Van Bulck, J., Piessens, F., Strackx, R.: Nemesis: Studying microarchitectural
timing leaks in rudimentary CPU interrupt logic. In: Proceedings of the 25th ACM
Conference on Computer and Communications Security. CCS’18, ACM (2018)

10. Van Bulck, J., Weichbrodt, N., Kapitza, R., Piessens, F., Strackx, R.: Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In: Proceedings of the 26th USENIX Security Symposium. USENIX (August 2017)

11. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In: 2015 IEEE Symposium on Security
and Privacy. pp. 640-656. IEEE (2015)


https://software.intel.com/en-us/node/703016

	Tutorial: Uncovering and Mitigating Side-Channel Leakage in Intel SGX Enclaves

