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Abstract

The ongoing construction of large-scale quantum computers gives rise to unique
threats. By exploiting the peculiar properties of quantum particles, these
computers can solve particular problems exponentially faster than their classical
counterparts. Widely-deployed public key cryptosystems such as RSA and
ECDH are vulnerable to quantum attacks.

In particular, Shor’s celebrated quantum algorithms solve the integer
factorization and discrete logarithm problems in polynomial time, thus breaking
the public key cryptosystems that rely on them. Moreover, the adversarial
model has an important impact on the validity of security proofs. Many classical
security proofs fail when quantum adversaries are considered, even if they start
from computational problems that are hard for quantum computers.

The design of post-quantum cryptosystems therefore requires a two-pronged
approach: On the one hand, in the mathematical layer, the foundational hard
problems should be computationally expensive on quantum computers as well
as on classical ones. On the other hand, in the provable security layer, the
reduction showing that a successful adversary implies a hard problem solver
should rely only on proof techniques that hold for a quantum attacker model.

This dissertation presents a series of contributions to both layers. More
specifically, on the mathematical side, the contributions are as follows.

e Chapter 6 § 6.1 presents a new construction for obtaining an efficiently-
invertible encryption map from multivariate quadratic (MQ) polynomials.
This expands the toolbox of the MQ cryptosystem designer.

e Chapter 6 § 6.4 introduces a new plausibly post-quantum hard problem,
called the Short Solutions to Nonlinear Equations (SSNE) Problem, which
boasts a better scaling behavior than its progenitors.
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In terms of provable security, several independent results are spread out across
two papers and the general overview.

e Chapter 6 § 6.3 introduces the notion of constrained linear signature
scheme and shows that many post-quantum signature schemes are special
cases. Moreover, this paper presents a transformation to shrink the public
key at the expense of a larger signature, in order to reduce their combined
size. This trade-off makes sense in the context of public key infrastructure.

e In the paper of Ch. 7 § 7.2 syntax and a security notion for noisy
key agreement (NKA) protocols are introduced. We demonstrate that
the correct security game for NKA protocols is the adaptation of the
decisional Diffie-Hellman problem to the noisy case, which we call noisy
key distinguishing (NKD). Moreover, we provide a transformation for
obtaining a key encapsulation mechanism (KEM) from an NKA protocol,
and we provide a proof of security valid in the quantum-accessible random
oracle model.

e To enable a refined reasoning about queries made to the random oracle,
the same paper introduces the aggregate quantum query amplitude as a
measure for the degree to which a quantum adversary makes a particular
query. While the notion is implicit in other works, the standalone definition
presented here is what enables the refined argumentation.

o Part I § 3.4 presents a comprehensive summary of the state of the art in
terms of results related to quantum random oracle model. It puts the
aggregate quantum query count at the center where it connects to many
other extant results.

Lastly, fusing both mathematical and provable security layers into a coherent
whole, the following concrete cryptosystems are proposed.

o Chapter 6 § 6.2 presents a blind signature scheme based on MQ primitives.
A blind signature scheme enables the generation of a signature by a signer
who remains ignorant of the message that is signed. It is a useful tool for
untraceable cash and privacy-preserving protocols.

e Chapter 7 § 7.1 presents a digital signature scheme based on SSNE. This
result positively answers the question left open at the end of Ch. 6 § 6.4
which introduced the hard problem but merely conjectured that it was
useful for public key cryptography.

e Chapter 8 presents a key encapsulation mechanism relying on sparse
integer arithmetic in a Mersenne ring. This relatively new hard problem
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is similar in spirit to the lattice-based Ring Learning with Errors (RLWE)
but its hardness is independent of the difficulty of lattice reduction. This
cryptosystem was submitted to the NIST PQC project [75] without security
proof. Its security is established in a rather generic fashion by the results
in Ch. 7§ 7.2.






Beknopte samenvatting

De voortdurende constructie van grootschalige kwantumcomputers vormt een
unieke bedreiging. Door de eigenaardige eigenschappen van quantumdeeltjes
te benutten, kunnen deze computers bepaalde problemen exponentieel sneller
oplossen dan hun klassieke tegenhangers. Publieke-sleutel-cryptosystemen zoals
RSA en ECDH, die op grote schaal geimplementeerd zijn, zijn kwetsbaar voor
quantumaanvallen.

In het bijzonder lossen de breed gewaardeerde quantumalgoritmen van Shor
de integerfactorisatie en discrete logaritmeproblemen op in polynomiale tijd,
waardoor de publieke sleutel cryptosystemen die daarop steunen, als gebroken
moeten worden beschouwd. Dit model van de tegenstander heeft bovendien
een belangrijke invloed op de geldigheid van veiligheidsbewijzen. Veel
klassieke veiligheidsbewijzen falen wanneer ze geconfronteerd worden met
quantumtegenstanders, zelfs als ze beginnen met een rekenkundig probleem dat
moeilijk is voor quantumcomputers.

Het ontwerp van post-quantum cryptosystemen vereist daarom een tweeledige
benadering: aan de ene kant, in de wiskundige laag, zouden de fundamentele
moeilijke problemen rekenkundig duur moeten zijn op zowel quantumcomputers
als klassieke. Aan de andere kant, in de laag van bewijsbare veiligheid, moet de
reductie die aantoont dat een succesvolle tegenstander een oplosser impliceert
voor het moeilijke probleem, enkel berusten op bewijstechnieken die gelden voor
een quantummodel van de aanvaller.

Dit proefschrift presenteert een reeks bijdragen aan beide lagen. Meer specifiek
zijn de bijdragen als volgt aan de wiskundige kant.

e Hoofdstuk 6 § 6.1 presenteert een nieuwe constructie voor het verkrijgen
van een efficiént-inverteerbare afbeelding op basis van multivariate
kwadratische (MQ-) veeltermen. Dit breidt de toolbox uit van de
ontwerper van MQ-cryptosystemen.
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o Hoofdstuk 6 § 6.4 introduceert een nieuw plausibel post-quantum moeilijk
probleem, het “Short Solutions to Nonlinear Equations” (SSNE) probleem,
dat een beter schalingsgedrag heeft dan zijn voorlopers.

In termen van bewijsbare beveiliging zijn de verschillende onafhankelijke
resultaten verdeeld over twee artikelen en het algemene overzicht.

o Hoofdstuk 6 § 6.3 introduceert het begrip begrensd lineair handtekening-
schema en toont aan dat veel post-quantum digitale handtegekingschema’s
speciale gevallen zijn. Bovendien presenteert dit document een transfor-
matie om de publieke sleutel te verkleinen ten koste van een grotere
handtekening, om de gecombineerde grootte te reduceren. Deze afweging
houdt steek in de context van publieke-sleutel-infrastructuur.

e In het artikel van Hoofdstuk 7 § 7.2 wordt een syntaxis en een veiligheids-
begrip voor noisy key agreement (NKA) protocollen geintroduceerd. We
tonen aan dat het juiste beveiligingsspel voor NKA-protocollen de analoge
is van het Diffie-Hellman-beslissingsprobleem maar met ruis; we noemen
dit probleem noisy key distinguishing (NKD). Bovendien bieden we een
transformatie voor het verkrijgen van een sleutel-inkapselingsmechanisme
(key encapsulation mechanism, KEM) uit een NKA-protocol en we leveren
een veiligheidsbewijs dat geldig is in het quantumtoegankelijke random
orakelmodel.

e Om een verfijnde redenering mogelijk te maken over de query’s die aan het
random orakel gemaakt worden, introduceert datzelfde artikel de aggregate
quantum query amplitude als een grootheid voor de mate waarin een
quantumvijand een bepaalde query maakt. Hoewel het begrip impliciet
is in andere werken, is de afzonderlijke definitie hier wat de verfijnde
argumentatie mogelijk maakt.

e Deel I § 3.4 presenteert een uitgebreide samenvatting van de stand van de
techniek in termen van resultaten gerelateerd aan het quantum random-
orakel-model. Het plaatst de aggregate quantum query amplitude in het
centrum waar het verbinding maakt met vele andere bestaande resultaten.

Ten slotte worden de volgende concrete cryptosystemen voorgesteld, waarbij
zowel wiskundige als bewijsbare veiligheidslagen worden samengevoegd tot een
samenhangend geheel.

e Hoofdstuk 6 § 6.2 presenteert een schema voor geblindeerde digitale
handtekeningen gebaseerd op MQ-primitieven. Een dergelijk schema
maakt het mogelijk voor een ondertekenaar om een handtekening aan te
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maken voor een bericht waarvan hij onkundig blijft. Het is een handig
hulpmiddel voor ontraceerbaar digitaal geld en privacybeschermende
protocollen.

e Hoofdstuk 7 § 7.1 presenteert een schema voor digitale handtekeningen op
basis van SSNE. Dit resultaat geeft een positief antwoord op de vraag aan
het einde van Hoofdstuk 6 § 6.4, dat het moeilijke probleem introduceerde
maar slechts vermoedde dat het ook nuttig was voor publieke sleutel
cryptografie.

o Hoofdstuk 8 presenteert een sleutel-inkapselingsmechanisme, gebaseerd
op spaarse gehele getallen en hun rekenkunde in een Mersenne-ring. Dit
relatief nieuw moeilijk probleem lijkt qua geest op het roostergebaseerde
Ring Learning with Errors (RLWE), maar de moeilijkheid is onafhankelijk
van de moeilijkheid van roosterreductie. Dit cryptosysteem werd ingediend
bij het NIST PQC-project [75], maar zonder veiligheidsbewijs. De
veiligheid ervan werd op een generieke wijze vastgelegd door de resultaten
van Hoofdstuk 7 § 7.2.
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Chapter 1

Introduction

Cryptography, in the first sense of the word, is the science of protecting
information. The objective of this practice is formulated in terms of precisely
defined properties of the information that its protection should guarantee; the
collection of these properties may be referred to as security. The space of
adversaries capable of bypassing or nullifying the protections must be bounded
only by assumptions that are realistic. This preference for realism eliminates
the need for trust to the greatest possible extent, which is after all the goal
implied by the need to protect anything at all. The protections themselves are
put into effect by tools specifically designed for the purpose; cryptography, in
the second sense of the word, refers to the collection of these tools.

Cryptography is often associated with secrecy, which is the security property
that aims to prevent the adversary from reading a transmitted message or
learning anything about it. However, for the purpose of formalizing precise
security properties, this term is rather vague. For instance, the secrecy of the
content of a message is known more precisely as confidentiality, whereas the
secrecy of its authorship is known as anonymity. One can even go a step further
and require unobservability, which keeps secret whether or not the message was
sent in the first place. More importantly, secrecy fails to capture the quality
of information that renders it immune to modification by third parties; this
property is known as integrity. More generally, the property of a message that in
addition to integrity guarantees that its source is who it claims to be (however
identity is defined), is known as authenticity. Furthermore, some protocols are
orders of magnitude more complex than simple message transfer and require
accordingly complex definitions of security properties.
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Any cryptographic tool or cryptosystem comes with an adversarial model, which
captures the class of adversaries against which the system guarantees the claimed
security. Generally, only adversaries with constrained resources are considered,
for instance with constraints in terms of computing time, computing power, or
number of particular protocol interactions. A natural design strategy is then to
guarantee that any violation of security properties necessarily implies a resource
constraint violation on the part of the adversary. No guarantee is offered against
adversaries not contained in the model, for instance adversaries with access to
side channel information such as timing information or power traces; or against
active adversaries capable of injecting faults.

For instance, a cryptosystem may be considered secure if breaking it requires
solving a computational problem whose optimal solving time is larger than the
time frame that is available to the adversary. Relying on the computational
complexity of certain hard problems is indeed a popular strategy, but it generally
requires an additional hardness assumption as hardness proofs are exceedingly
rare in the field of computational complexity. Nevertheless, the benefit of
reducing the insecurity of a cryptosystem to a violation of the hardness
assumption comes from the mathematical statement of the hard problem that is
independent of the cryptosystem, thus enabling and inviting independent study
and hence a stronger hardness argument. The term provable security refers to
the property of a cryptosystem having such a security proof, as well as to the
study and development of security proofs. In many cases cryptosystems require
interactive hardness assumptions, where the task is not to solve a non-interactive
problem but rather to win an interactive game, and in other cases still there is
no independent assumption to speak of.

1.1 Symmetric and Public Key Cryptography

The distinction between symmetric and public key cryptography is drawn based
on the distribution of secret key material. When all participants are in possession
of the same secret information and the adversary is not, then the situation
is captured by symmetric cryptography. In contrast, in the case of public key
cryptography, the secret information is distributed asymmetrically, for instance
by distributing the encryption key to the public and keeping the decryption key
secret. In this model, anyone can encrypt a message that only the intended
recipient can decrypt.

The obvious benefit of public key encryption over symmetric encryption is
the reduced burden associated with key management. In the symmetric key
scenario, a user and each of his intended communication partners must be in
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possession of a unique key that was shared beforehand. In contrast, in the
public key scenario, a user can decide ad hoc whom to communicate with. After
all, the transmission of the public encryption key and of the preceding request
for it can occur over a public channel, assuming a passive adversary, i.e., one
who eavesdrops only.

A similar asymmetry benefits key management in the setting of an active
adversary, i.e., one who can alter, block and forge messages. Before the user
can encrypt a message under a public key, he must verify that the given public
key was indeed generated by the intended recipient and is not the clever forgery
of a malicious adversary. To facilitate a straightforward authentication test,
the public encryption key can be transmitted along with a digital signature
which is efficiently verifiable under a public key but can only be generated by
the matching secret key. To test the authenticity of that public key, the user
can verify another signature under another public key, and so on, traversing
a tree of signature-public key links whose root is a public key that is already
known to the user. Using this public key infrastructure, the user can verify
the authenticity of an exponential number of public keys by simply storing
a small number of root public keys. The best strategy attainable using only
symmetric cryptography requires either interacting iteratively with a trusted
third party or else obtaining and storing all keys of all parties the user might
want to communicate with.

Where techniques for symmetric cryptography excel in comparison to their
public key counterparts is in their performance. Symmetric primitives like
block ciphers and hash functions are orders of magnitude faster than typical
public key primitives. This comparatively poor performance on the part of
public key algorithms is due to their need to achieve functionality through the
preservation of homomorphic properties. The most pertinent use of public key
cryptography in practice is to establish a shared symmetric key, after which
point the symmetric key is used to secure communication much less expensively.
In fact, key agreement protocols are public key protocols that are tailored to this
use case by virtue of omitting the transmission of public keys and ciphertexts
in favor of a pair of protocol contributions and deriving an identical symmetric
key from the one party’s secret key and the other party’s contribution.

The examples covered so far —public key encryption, digital signatures, and
key agreement— constitute only a small subset of functionalities classifiable
as public key protocols, although they are certainly the most used and most
deployed public key schemes. For example, homomorphic public key encryption
enables operations on ciphertexts that remain meaningful after decryption.
Zero-knowledge proofs are protocols that enable one party to prove the truth of
a statement to another party without revealing anything beyond the fact that
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the claim is true. Blind signatures mimic the physical placement of a signature
on an envelope made of carbon paper by digitally enabling a credential issuer
and receiver to jointly generate a signature that is unlinkable to the issuer’s
view of the process. Most generally, multiparty computation (MPC) protocols
enable any number of participants, each holding a potentially different secret
input, to compute the value of a function of their inputs. There is no shortage
of complex public key protocols achieving specific functionalities in a way that
is more efficient than applying generic MPC. Likewise, there are a wide range
of properties of public key schemes beyond encryption and digital signatures
that might be desirable in specific contexts, as well as proposed cryptosystems
to achieve them.

The previous description benefits from an explanatory example. To this end,
one cannot do better than review the textbook RSA cryptosystem [118]. This
cryptosystem presents a trapdoor function': a function that is easy to evaluate
but hard to invert by anyone ignorant of the secret trapdoor information. In
the case of RSA, this function is exponentiation in Z,, the ring of integers
modulo a product of large primes n = pq. Specifically, given x € Z,, and given
an exponent e € Z it is easy to compute ¢ modn; but it is difficult to compute
z from e and x° mod n.

EXAMPLE 1. TEXTBOOK RSA ENCRYPTION

e Key Generation. Pick two large primes p and ¢ and set n = pgq;
compute A = lem(p — 1,¢ — 1); pick a random public exponent
e and compute d = e~ ! mod A\. The public key is (n,e), and the
private key is d.

e FEncryption. To encrypt a message m € Z, compute ¢ = m® mod n.

o Decryption. To decrypt a ciphertext ¢, compute m = ¢ modn.

The label “textbook” in “textbook RSA” refers to the fact that the present
description may be sufficient to convey intuition about how and why the
cryptosystem works, but ultimately falls short of achieving concrete security
properties. For instance, since encryption is deterministic, the same plaintext
will be mapped to the same ciphertext, which is enough already for an attacker
to determine whether the same message was sent twice. Other attacks exploit
the following homomorphic property of ciphertexts: cico = (m$)(m§) =
(mym2)¢ modn and so by tricking the user into decrypting the ciphertext cjca,
the attack obtains the product of plaintexts. In order to implement a rigorously

ITrapdoor functions are sometimes also called trapdoor one-way functions, a terminology
I intentionally avoid because trapdoor functions are not one-way.
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secure version of the RSA cryptosystem, we refer to the OAEP construction of
Bellare and Rogaway [21], to Shoup’s RSA key encapsulation mechanism [124],
or to PKCS#1 [88].

The RSA cryptosystem is actually quite unique because it presents a trapdoor
function that is bijective. Where the injective property is used for decryption,
the surjective property can be used for signature generation in a digital signature
scheme. This next example additionally requires a hash function H : {0,1}* —
Z,, which informally speaking is a deterministic map of bitstrings of any length
to random-looking elements of a target range. Usually this target range is the
set of bit strings of length x but in the case of the RSA signature scheme it is
the ring of integers modulo n.

EXAMPLE 2. RSA SIGNATURE SCHEME

e Key Generation. Pick two large primes p and ¢ and set n = pq;
compute A = lem(p — 1,¢ — 1); pick a random public exponent
e and compute d = e~ mod A\. The public key is (n,e) and the
private key is d.

o Signature Generation. To sign a document m € {0, 1}*, compute
its hash A = H(m), and compute the signature s = h? mod n.

e Signature Verification. To verify a signature s on a document m,
test whether s¢ = H(m) mod n.

The RSA cryptosystems, when securely implemented, derive security from the
computational hardness of inverting the RSA function f. : Z, — Zp,x —
z¢ mod n. Currently, the best-performing attack on this problem is the number
field sieve to factorize n [92]. This algorithm heuristically runs in time

L, [%, ‘\3/% = exp (( ¢S+ 0(1)) (Inn)3(Inin n)%) For a 3072-bit modulus,

this amounts to roughly 2!3%-7* elementary operations, or 6.13 - 10! billion

years on a single 3 gigahertz processor. (For reference: the universe is only 13.8
billion years old, at the time of writing.) Compare this attack complexity with
the running time for legitimate users, as measured on my own Intel 2.4 GHz
quadcore machine running OpenSSL: 34.0 milliseconds for generating a key
pair, 7.0 milliseconds for generating signatures and 3.1 milliseconds for verifying
them.

Note that the public and private operations of the RSA cryptosystems can be
expressed as elementary group-theoretical operations. RSA is not alone in this
reliance on group theory; other widely-deployed systems such as Diffie-Hellman
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key exchange [106], DSA [74], and their elliptic curve counterparts have it as
well. Even the first cryptosystems with fancy properties like homomorphic
encryption or blind signatures have the same feature. This early skew towards
using group theory for public key cryptography is no accident: group theory
provides an abundance of useful one-way homomorphisms, especially compared
to competing branches of mathematics for public key cryptography. However, in
the context of adversaries capable of performing quantum computations, having
an abundance of homomorphic properties seems to be a fatal flaw rather than a
selling point.

1.2 Quantum Computers

In the early 1980’s Richard Feynman gave a talk [57] in which he made the
observation that simulating quantum physics on classical computers seemed
like, and likely was, an intractable task. He followed up this observation
by conjecturing that quantum computers, i.e., physical devices whose inner
mechanics relied on quantum phenomena, would be good candidates for
simulating quantum mechanics. Soon after, David Deutsch formalized the
notion of a quantum Turing machine and showed that it was universal: a
quantum Turing machine can simulate any quantum mechanical process with
small overhead and independently of the substrate [44].

The question then arises, are there natural computational problems (beyond
simulating quantum physics or contrived problems) that quantum computers can
solve faster than classical computers can? Shor’s influential 1994 paper answered
this question positively: he presented polynomial-time quantum algorithms to
solve the integer factorization and discrete logarithm problems [123] — problems
for which, to date, no efficient classical algorithms exist. The impact on public
key cryptography should be obvious: large enough quantum computers break
factorization-based cryptosystems (such as RSA) as well as cryptosystems based
on the discrete logarithm (such as elliptic curve cryptosystems).

But are quantum computers realistic? Only time will tell. A once-common
criticism is that the presence of noise and decoherence will restrict the power of
quantum computations in practice. This criticism is less common today because
quantum error-correcting codes have been shown to enable the encoding of a
single logical qubit into multiple physical qubits and its error-correction, should it
have been disturbed by noise, without affecting the logical qubit’s value [32, 128].
Consequently, it is possible to sustain a quantum state arbitrarily long and
compute quantumly on that state, provided that the additive noise rate remains
below a nonzero threshold [6, 84, 85]. These results strongly indicate that
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Figure 1.1: Extrapolation of progress on quantum computer construction.
Sources: [38, 141, 153, 105, 94, 149, 71, 77, 72, 82, 76].

large-scale quantum computers are, at least in theory, practically feasible, and
“merely” a massive engineering challenge.

Many research groups around the world, including Google, IBM, Intel, are
working on the construction of quantum computers. The present worldwide
revenue of the supercomputer market is estimated at $4 billion [127], and
Dave Wecker of Microsoft’s QuArC Group estimates that 50% of it is spent
on simulation of quantum many-body systems for chemicals, pharmaceuticals
and materials science [143]. These are tasks that stand to benefit dramatically
from even moderate-scale quantum computers and the potential economic gains
are sure to guarantee continued funding for research into their construction for
many years to come. Meanwhile, the claims made by these research groups
are getting stronger and stronger: a straightforward extrapolation of progress
suggests that quantum computers will provide the required 1754 logical qubits?
to break currently deployed elliptic curve cryptosystems within 35 years. If
Moore’s law holds for qubits as it does for transistors, this event will occur
much sooner.

Despite the appearance of progress, some noteworthy computer scientists
such as Gil Kalai remain skeptical about the possibility of scalable quantum

2Estimated using the circuit of Roetteler et al. [119] to attack NIST standard curve
P-192 [74, §D.2.1].
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computers [78, 79, 80]. Kalai argues that on quantum computers there will
be a strong tendency for errors to synchronize, like metronomes on a floating
board. As a result of this synchronization, the errors will entangle and corrupt
many qubits at once, instead of the occasional somewhat isolated qubit that
quantum error-correcting codes allow for. Preskill responds to this criticism
by showing that scalable fault-tolerant quantum computing is possible for a
large class of correlated error models [116]. The question remains open whether
there are noise models that are compatible with quantum mechanics but make
scalable fault-tolerant quantum computation impossible, and if noise of that
type is likely to occur in practice.

However, even if the skepsis of the doubters is well-founded, they must associate a
nonzero probability, no matter how small, to the physical realization of a scalable
quantum computer within 20 years. The exact magnitude of this probability
is important because it should be factored in into a security calculation. A
quantum-skeptic cryptographer who estimates the odds of scalable quantum
computation as inconceivably low as 1072 cannot simultaneously claim a 128
bit security level for a cryptosystem that is known to be vulnerable to an efficient
quantum attack.

1.3 Post-Quantum Cryptography

Post-quantum cryptography refers to the science of protecting information
against both quantum and classical attacks, as well as to the collection of tools
that accomplish this task. The field consists of many branches such as the
study of quantum-secure hard problems, the design of concrete cryptosystems
relying on them, quantum attack algorithms, provably security against quantum
attackers, secure implementations, et cetera. Post-quantum cryptography is
steadily gaining more and more traction among cryptographers, as evidenced by
the attendance of the now-yearly Post-Quantum Crypto conference rising year
after year [135, 90, 89]; the approval of the PQCRYPTO and PROMETHEUS
projects by the EU [136, 24]; and the PQC project by the US National Institute
for Standards and Technology (NIST) which has the express intention of issuing
a standard within five years [75].

Unfortunately, the adoption of post-quantum cryptography is not cost-free. The
post-quantum hard problems (except for hash inversion) have been studied less
than integer factorization and the discrete logarithm problem. Consequently,
a post-quantum hard problem inevitably confers a weaker security assurance
compared to a pre-quantum alternative due to the greater potential of future
improvements on attacks. Additionally, many of the hard problems that hold
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promise of resisting attacks on quantum computers require far greater memory
and bandwidth, impeding their adoption into cryptosystems for low-cost devices.
Additionally, these hard problems sometimes introduce the potential for failure
events (e.g. decryption failures) despite honest, non-malicious, usage — in
which case developing a security proof is a tricky endeavor. Other branches of
post-quantum mathematics do not have security proofs to begin with, although
this might be merely due to the laziness or lack of intelligence of the researchers
that study them. At any rate, there are many challenges to be answered before
the end-goal of securing the information flows against quantum attacks in
today’s economy can be realized.

Nevertheless, there is a compelling argument to be made that developing and
deploying post-quantum cryptography is an urgent task rather than a back-up
plan to be executed when the time comes. Michele Mosca’s most poignant
articulation of this argument asks to consider the following time periods [104].

— How long must sensitive data remain cryptographically protected? Call
this number z. For instance, ones present financial situation might be
hardly relevant ten years from now, whereas ones health profile might be
just as sensitive forty years from now.

— How long does it take to deploy new cryptography? Call this number y.
How long does it take to replace all bank cards and terminals?

— How long does it take for quantum computers to break current
cryptography? Call this number z. The 35 years extrapolation derived
above is just one estimate; Mosca himself estimates the probability of
quantum computers breaking RSA-2048 by 2031 at 50% [104].

If © +y > z, there is a problem. Sensitive information will be exposed to
quantum attacks before the updated cryptography is deployed.

The argument is even more compelling in the special case of encryption. An
adversary capable of intercepting and storing messages in transit can store them
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indefinitely. At a future point in time when quantum computers are available,
the encrypted messages in the storage database can be decrypted. Therefore, in
order to protect the confidentiality of transmissions today against the quantum
computers of the future, we must already be using post-quantum encryption.

1.3.1 What Post-Quantum Cryptography is Not

Quantum Cryptography. An important restriction with respect to post-
quantum cryptography is its reliance on classical hardware to execute the
cryptographic algorithms. An alternative strategy that is appropriately called
quantum cryptography is to replace the hardware so as to produce quantum
phenomena that are then engineered to protect information [23, 53]. While
a fascinating subject in its own right, with its own list of promised features,
challenges and constraints, quantum cryptography is ultimately very different
from (and should not be confused with) post-quantum cryptography precisely
because it mandates instantiation on different physical devices. Quantum
cryptography is entirely out of the scope of this dissertation.

Symmetric Key. Post-quantum cryptography is chiefly concerned with public
key cryptography due to the structure embedded in its hard problems, i.e., the
same structure that enables Shor’s algorithms and similar quantum attacks. In
contrast, symmetric key primitives are, by and large, designed to break any
and all structure. As a consequence, Shor’s algorithms fail and as far as we can
tell no derivative thereof achieves the same exponential speedup against block
ciphers such as AES or DES or their common modes of operation. However,
quantum computers can speed up the solution of generic search problems. In
particular, Grover’s algorithm [64] requires O(v/N) queries to find a single
marked element from a set of N. So in order to guarantee a minimum attack
complexity of 2F of a key search attack using Grover’s algorithm, it suffices to
use 2k key bits, assuming the cipher under attack has no exploitable structure.
With respect to the k bits required to guarantee the same security level against
a classical brute force attack, this security measure amounts to a doubling of
the key size.

Scott Fluhrer goes a step further [60] and observes that in contrast to classical
brute force searches, Grover’s algorithm is inherently sequential. The running
time cannot be reduced in exchange for more parallelism except at a very
disadvantageous rate. A security measure should take this sequential nature
into account and furthermore it should require that an attack run in less than,
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say, 200 years. With these constraints, an adequate security measure needs only
increase in the number of key bits by a relatively small constant.

However, it is not obvious that Grover’s algorithm always is the most efficient
attack against a symmetric primitive running on a quantum computer. A nice
little result by Bart Mennink and myself shows that in the particular case of the
XOR of pseudorandom permutations, a popular construction of pseudorandom
functions from pseudorandom permutations, there is a quantum attack that
actually outperforms Grover [99]. Hosoyamada and Sasaki show similar results
for a variety of symmetric key constructions [67, 68]. The commonality between
these quantum attacks and those on public key cryptosystems is that the
interaction between the attacker and the user (or more precisely: between the
attacker and the secret key material) is classical; however, the attacker has a
quantum computer at his disposal with which he can accelerate computations.
From this point of view, engineering security for symmetric cryptosystems in
this regime is properly a branch of post-quantum cryptography. However, the
quantum attacks in this context are much less worrisome because they are all
still exponential in some security parameter, and by tweaking this parameter
appropriately the attacks can be made infeasible without impacting usability
too much.

Cryptography on Quantum Computers. What happens if the quantum-
enabled attacker is allowed quantum access to secret key material? In this
context, the security of many modes of operation as well as MAC constructions
fail completely [86, 87, 81, 13, 120]. The common basis for these attacks
is Simon’s quantum algorithm [126], which is a cousin of, and precursor
to, Shor’s algorithms. The design of symmetric key primitives retaining
security even against quantum attackers that interact quantumly with the
secret key material is a fascinating subject area. However, these algorithms
must potentially be executed on quantum computers to support an advantage
over standard symmetric key techniques, whereas for practical cryptography, the
target platform is classical hardware. Nevertheless, in the context of white-box
cryptography and trusted platform modules, where the user is presented with
obfuscated code, this is a relevant attacker model. Additionally, an algorithm
that is secure in this context will also be secure in the weaker setting where the
interaction must be classical. Therefore, this security model constitutes a valid
target for overkill design.
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1.4 Outline

This dissertation presents a selection of results relating to mathematical and
provable security aspects of post-quantum cryptography obtained over the last
couple of years. These results are presented in Part I as papers, most of which
have been published in peer-reviewed conference proceedings, but some of which
are at the time of writing still unpublished manuscripts.

The purpose of the rest of this general overview is to provide the reader with a
crash course on the necessary background with which to read, interpret, and
critically assess the papers in Part I1. To this end, Chapter 2 covers the necessary
concepts of quantum computation, which is the standard computing model
for quantum attackers. Next, Chapter 3 covers the basics of provable security,
starting with some functionality descriptions and security definitions, followed
by a generic explanation on how to show that a security definition is met by a
concrete system, and concluding with an enumeration of and discussion about
proof techniques in the quantum random oracle model. In Chapter 4 we survey
some of the hard problems that promise simultaneously to resist attacks on
quantum computers and allow for public key cryptography. Finally, this general
overview is brought to a conclusion in Chapter 5 with a short summary and a
discussion about open problems and potential research topics.



Chapter 2

Quantum Computation

The advantage of quantum computers over classical ones derives from
interference in configuration space. This concept joins two phenomena that
have classical counterparts.

Interference is the process by which multiple wave sources generate patterns
through cancellation and reinforcement, as opposed to the uniform non-patterns
associated with one or zero wave sources. At any given point, two arriving waves
exist in superposition: together they form a single waveform whose amplitude is
given by the sum of the components’ amplitudes. If the two waves are in phase,
the amplitudes have the same sign and are reinforced; if they are out of phase
the sign is opposite and the amplitudes are canceled. Interference patterns are
exhibited by all waves that we know of.

Configuration space is the set of all possible configurations in a probabilistic
process. A single coin has two configurations: face up or face down. Ten
coins have 2'0 configurations. Probability theory requires that the sum of
all configurations’ probabilities equals one. Configurations are identifiable
with events but in the context of computation it is helpful to think of them as
potential states because the next computational step can depend on the previous
state and alter the resulting distribution differently. From this perspective,
probabilistic computations amount to manipulations of a probability density
distribution. In order to be valid, these manipulations must retain the property
of probability distributions that they integrate to one.

Turning to quantum mechanics, the Schrédinger equation describes the evolution
of a wave in configuration space. The amplitude of this wave in a particular

13
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configuration is identifiable with that configuration’s probability, except the
amplitude is a complex number whereas probabilities are real numbers between
zero and one. In particular, complex numbers can cancel whereas positive ones
cannot. As a result, quantum processes exhibit interference in configuration
space, in contrast to classical ones. Instead of all configurations’ amplitudes
summing to one, their squared norms sum to one. Phrased differently, quantum
operations preserve the Euclidean length of unit-length state vectors.

Mysterious qualities have been ascribed to the phenomenon of quantum
measurement and entanglement. Albert Einstein famously referred to the
implied faster-than-light transmission of effect on borne probabilities as spooky
action at a distance [52]. Roger Penrose argues that measurement is an inherently
uncomputable phenomenon and may be the origin of consciousness [15]. In
the many-world interpretation of quantum mechanics popularized by Everett,
quantum measurements do not exist — they can be explained as the result
of entanglement with quantum particles that exist outside of the considered
system [69]. However, despite their counter-intuitive consequences, what
quantum measurement and entanglement describe is not so different from
classical processes with unknown variables described by observation and
correlation. Before a classical system is observed, its state is drawn from a
probability distribution. Observing the system enables the observer to collapse
this probability distribution to a single point, in accordance with the observed
variable. Measuring only a part of the system partially collapses the distribution
to a refinement that is in accordance with the partial observation. For a pair of
correlated coins, the observer of one coin at one end of the universe will know
instantly whether the other coin at the other end of the universe is heads or
tails. What separates probabilistic processes from quantum processes is that
quantum amplitude distributions seem to exist — whereas classical probability
distributions might be merely an abstraction invented by humans to cope with
a lack of information. The keyword here is “might” because there is no way of
distinguishing the world in which classical probability distributions exist as a
physical entity from the world in which they do not.

This characterization of quantum mechanics suggests a dangerously simple —but
perfectly valid— description of quantum computation: quantum computation is
probabilistic computation that preserves the {o-norm of the system’s state instead
of its £1-norm. A formal proof of this fact is presented by Lucien Hardy [65]. A
much more accessible and fun to read text [2] by Scott Aaronson tackles the
related question, what is so special about the £ and /5 norms, that Nature would
choose to preserve these metrics rather than others? The following summary
follows the inimitable approach of Nielsen and Chuang by building quantum
computation from the ground up, starting with the postulates [108]. While this
summary does cover the essentials, it is not complete. For a comprehensive
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treatment the Nielsen and Chuang book is the go-to resource.

2.1 State Vector Formulation

A qubit is a physical carrier of a unit of quantum information, in the same sense
that a flip-flop is a physical carrier of a unit of classical information, this unit
being called a bit. The classical mechanism that allows one to identify a flip-flop
or a classical memory register with the value contained therein does not translate
to the quantum world. In particular, one cannot copy quantum information
from one carrier to another without changing it in general; this principle is
known as the No Cloning Theorem [147, 45]. Therefore, it is important to make
the distinction between the physical substrate, and its state at a given point in
time. We refer to a collection of qubits jointly used for a particular purpose as
a quantum register.

Postulate 1. The state of a quantum register of k qubits is
given by a state vector |1) € H C C2" of 2% complex numbers
which has unit length in the £5-norm.

The notation |-) is called ket notation; it stands in contrast to (| which is a bra
and denotes the same vector’s conjugate transpose. The space H where the
state vectors live is a Hilbert space, meaning that it is a vector space that is
equipped with an inner product, which in this case allows for the aesthetically
pleasing bra-ket notation (-|-). This notation is sometimes also called Dirac
notation, after its inventor.

It is clear that a complete description of a quantum system requires not just a
vector but also a basis for the Hilbert space. The most convenient computational
basis is given by {|bo), |b1), ..., |bax_1)} where |b;) represents the padded binary
expansion of the number i € {0,...,2F —1}. Often times the |b;) will be
substituted for something more descriptive like |15) or |a) to refer to the
computational basis vector associated with the padded binary expansion of the
number fifteen or with the bitstring a.

Generic quantum systems are not described by computational basis vectors. In
this case |[¢) = > a;]b;) is said to be a superposition of all bitstrings b; whose
amplitude c; is nonzero. Whether a quantum system is in superposition or not,
depends on the basis with which its state vector is considered.
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Postulate 2. Closed quantum systems evolve via the action of
unitary matrices on the state vector. In particular, if |¢)) and
|¢) describe the same system at different points in time, then

there is some unitary matrix U € C2*2" such that [y = Ulg).

Unitary matrices preserve the fo-norm of vectors they act on; in fact, this
is one way to define unitarity. An alternate definition is the description of
the inverse of a unitary matrix as its complex conjugate transpose Ut, i.e.,
UU' = UTU = I. The invertibility of unitaries translates to the reversibility of
quantum computation.

Postulate 3. Quantum measurement is defined with respect
to a collection {M,,} of measurement operators acting on H,
one for each possible event m. The probability of observing

event m is given by Pr[m] = (¢|M] M,,|); after observing
M |9)

(WM, M |9

The collection of measurement operators satisfies completeness:

S MM, = 1.

this event the state of the system is given by

An important special case of measurement is measurement in the computational
basis. In this case M,, = |b,,)(b.| and the state after measuring the bitstring
m is given simply by |b,,). There are other special cases of measurement
such as projective measurements or positive operator-valued measure (POVM)
measurements, but ultimately these are all equivalent to the application of some
unitary transformation followed by a measurement in the computational basis.

Postulate 4. The state [hap) of the composition of two
quantum systems A and B with states |¢Y4) and [|[¢¥g),
respectively, is given by the tensor product [ ap) = |A) ® |V B).

The tensor product, or Kronecker product, of two column vectors a € C™ and
b € C" is simply the vector of mn complex elements identical to the elements
of the matrix ab', enumerated in some particular order. The tensor product of
unit-length vectors (in the ¢3-norm) is automatically unit-length as well. The
symbol ® is overloaded to apply to the state spaces as well: Hap = Ha ® Hp.

Out of convenience, the ® symbol is often dropped. The expressions, |a) ® |b),
|a)|b) and |a,b) denote the same meaning.

In addition to these four postulates of quantum mechanics, a foundation for
quantum computation requires a mechanism for translating the description of an
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algorithm into a sequence of applications of the postulates. Such a foundation
is provided by the circuit model of quantum computation. In this model, a
quantum algorithm describes a quantum circuit, consisting of quantum gates
operating on a quantum register. Each gate operates only on a small number
of qubits and is equipped with a unitary matrix describing its behavior. The
operation of the entire circuit is given by the composition and tensor product
of all gates’ unitary matrices. Section 2.3 describes a set of quantum gates.

2.2 Density Operator Formulation

The state vector description of quantum mechanics already gives a complete
mathematical framework for analyzing quantum algorithms. So why bother
with another one? The answer is two-fold: First, often times the physical device
that produces quantum states is not perfectly reliable and rather than always
outputting a given state exactly, its output is a distribution of states. While
the state vector formulation is well-equipped to handle a single state [¢)), it
is rather cumbersome to adapt it to apply to a probability ensemble of states
{pi,|¥i)} where with probability p; the state is given by |1;). Second, in many
applications one does not care about a large portion of the quantum system
and only a select few qubits are relevant for the present concern. The density
operator formulation offers an elegant framework to describe partial quantum
systems.

A density operator or density matriz of a pure state [¢) is given by |¥) (4.
The density operator of a probability ensemble of states {p;, [¢;)} is given by
> Dili)(i]. While it is useful to think of density operators as somewhat
redundant matrix versions of state vectors, it is worth noting that there are
equivalent postulates without references to state vectors, that nevertheless
provide a complete description of quantum mechanics.

Postulate 1. A quantum system of k qubits is completely
described by its density matriz p € €2"%2" guch that Tr(p) =1
and such that for any vector |p) € H, (¢|plp) > 0.

Recall that the trace of a square matrix, denoted by Tr(-), is simply the sum of
its diagonal elements.

Postulate 2. Closed systems evolve via the action of a unitary

matrix U € C2"*2" that sends the system’s density operator p
to o = UpUT.
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Postulate 3. Quantum measurement is defined with respect
to a collection {M,,} of measurement operators, one for each
possible event m. When applied to a system with density
operator p, the probability of observing event m is given by

Pr[m] = Tr(M] M,,p) and after observing m the system is
M, pM],
Tr(Mmvafn)
{M,,} satisfies completeness: Y. M} M,, = I.

described by the density operator . The collection

Postulate 4. The density operator pap of the composition of
two pure quantum systems A and B with density operators pa
and pp is given by their tensor product pap = pa ® pp.

A quantum system is pure when it is not a non-trivial probability ensemble of
different states. In other words, it is pure when exactly one p; is one and all the
others are zero. This is formalized without reference to state vectors as follows:
a system described by density operator p is pure if and only if Tr(p?) = 1.

The Kronecker product L ® R € CF™*!" of two matrices L € C**! and R €
C™*"™ is the following block matrix, whose blocks are scalar multiples of R.
Here L; ; denotes the element at row i and column j of the matrix L with
indexation starting at zero.

LooR | ---| Lo;—1R

L®R= (2.1)

Ly 1oR |- | Ly—11 R

To obtain the density operator of a subsystem A of a composite system A + B,
one applies the partial trace operator to “trace out” B. Let pap be the density
operator for the system A+ B. Then the reduced density operator that describes
subsystem A is given by pa = Trp(pap) where for any |a1), |az) € Ha and
|b1>7 ‘b2> € Hp,

Tri(la1)(az| @ |b1)(b2]) = Tr(|b1)(ba|)|a1)(az| = (b2[b1)|a1)(az]| . (2.2)

The density operator formulation has another selling point, namely its ability
to capture the difference between two quantum states or ensembles into a
single quantity called the trace distance. The trace distance between two states
or ensembles described by density operators p; and ps is simply half of the
trace norm of the difference of the matrices. The trace norm of a matrix
p € C™" is given by Tr(y/pfp) and so the trace distance is TD(py, p2) =
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1Tr(v/(p1 — p2)T(p1 — p2)). The arguments of the TD(-,-) operator can also
be kets or named registers, but in this case the density operator of the given
ket or the reduced density operator of the given register is meant. From a
computational perspective, the trace distance, like its classical analogue, the
statistical distance, captures the advantage of a computationally unbounded
adversary in distinguishing two ensembles.

2.3  Quantum Circuits

A circuit is a directed acyclic graph whose nodes are gates and whose edges are
wires. The wires contain values and the gates compute a function of its input
wires’ values. In the case of quantum circuits, it is misleading to think of a
circuit being laid out in space because that would imply that every point of the
wire has the same value. Instead, quantum circuits are laid out in time. Every
wire represents a qubit and these qubits may hold different quantum states at
different time slices. The gates therefore have as many inputs as outputs, and
come with unitary matrices that describe the effect on the affected qubits.

Out of convention, time flows forward from left to right. Single lines represent
qubits or registers of qubits and double lines represent either classical information
or quantum registers containing classical information.

The following list of gates covers some of the most-used quantum gates, but is
by no means exhaustive. Indeed, one can build new gates by composing smaller
ones.

Swap. When it is possible to identify a wire with a bit, it is tempting to draw
extra wires to move the bits around and generate the right configuration of
inputs to a particular gate. However, qubits are not spread out evenly across
wires but are instead localized in space, even if this location is given by a
wave function. In order to engineer the right configuration of input qubits to a
subsequent quantum gate, it might be necessary to physically move them, or
if their positions are fixed, to cause them to interact to switch values. Both
operations are captured by the swap gate, whose diagram and properties are
shown in Fig. 2.1.

Toffoli. A Toffoli gate, also known as a controlled-controlled-not gate, flips the
third qubit if and only if the first two are set. It can be used to simulate classical
and-gates and, given the availability of two qubits that are set to |1), classical
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|a,b) = [b,a)

OO O
o = o o
o o= O
— o O O

Figure 2.1: Swap gate: diagram, function description, and unitary matrix.

not-gates. It is therefore universal with respect to classical computations. The
diagram and functional description is shown in Fig. 2.2.

alblcllalb]ec
0loloololoO 1000000 O
A———— olol1]o]o]1 01 0000TO00
ol1]ofo]1]o 00100000
B ol1l1llol1]1 00010000
tlololl1]o]o 000071000
tlol1)1]lo]1 0000O0T1TUO0O0
C —d—— tl1loll1l1l1 000O0GO0GO0TO 01
1111110 0000O0GO0TO
in out

Figure 2.2: Toffoli gate: diagram, truth table, and unitary matrix.

Hadamard. A Hadamard gate is the quantum analogue of a coin toss, except
instead of letting the coin land and assume a definite state, face up or face
down, it is left in mid-toss. It is the most straightforward way to put a qubit
into a superposition of |0) and |1). The diagram and description is shown in
Fig. 2.3.

1 1 /1 1
—{H}— |a>»—>\}§0>+(\;2) ) ﬂ(l _1)

Figure 2.3: Hadamard gate: diagram, function description, and unitary matrix.

Phase Shift. In some cases, for instance in the quantum Fourier transform, it
is useful to manipulate the phase of a qubit only if it is set to 1. A 7/8 gate,
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also called a T gate, rotates this phase by /4 radians!, but in principle this
angle can be arbitrary. The diagram and description is shown in Fig. 2.4.

|G>H{ 0 if a=0 ((1) 62.79/4>

A1) it a=1

Figure 2.4: T gate: diagram, function description, and unitary matrix.

Controlled-Unitary. A controlled-unitary gate consists of a circuit, which can
be any composition of gates, and a control. The circuit is applied to the
indicated register if the control qubit is set; otherwise nothing happens. The
diagram and description is shown in Fig. 2.5.

. 110
0 @la) i c=0 ( )
c)®la) — . 01U
[€)Sla) {|1>®<U|a>> it o=
Figure 2.5: Controlled-unitary gate: diagram, function description, and unitary
(block) matrix.

Measurement. Measurement is how information is extracted from the
quantum system. Upon measurement, the state collapses to classical information
in accordance with the measured value; this explains the double arrow. The
diagram is shown in Fig. 2.6.

e

Figure 2.6: Measurement gate: diagram.

2.4 General Remarks

Complexity. The circuit model of quantum computation suggests three simple
characterizers of complexity of quantum algorithms, namely a) required number
of qubits, b) circuit size, and c) circuit depth. While these indicators do offer a
good first approximation, they can be misleading because in practice quantum

1Or alternatively, it rotates the phase associated with |0) by —/8 radians and the phase
associated with |1) by -+ /8 radians, hence the name.
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computation is inherently noisy: qubits decohere over time and gates only apply
an approximation of the unitary matrix they purport to apply. Consequently,
there is a distinction between physical qubits, referring to the physical particles
that contain the actual noisy quantum amplitudes, and logical qubits, the units
of quantum information in the next layer of abstraction. Practical construction
of quantum computers will involve quantum error correction performed by the
physical qubits to simulate clean, perfect qubits. Depending on the substrate
used for the physical layer, the overhead of quantum error correction can be
several orders of magnitude.

Oracles. Quantum computers can compute any function classical computers
can, despite the requirement that quantum computations be invertible. It turns
out there is a rather simple trick to turn any computable function into a function
that is computable reversibly. Let H : {0,1}* — {0,1}* be a computable
function from bitstrings of any length to bitstrings of any length. Then the
unitary transformation Uy that operates on registers () and R (possibly short for
“query” and “response”) and sends |gq, ) to |g,r ® H(gq)) is invertible — indeed,
it is its own inverse. This is the standard construction of oracle-algorithms, i.e.,
quantum algorithms that have black box access to a subprocedure with a given
description but that is unknown to the algorithm itself. For example, H may
represent a hash function that is modeled as a random function, and like in
the classical case, the intuition that the algorithm knows nothing about the
description of H is captured by the oracle interface. The algorithm sends two of
its registers to the black box, the black box applies its unitary transformation,
and the two registers are sent back.

Measurement and entanglement. Measurement is indistinguishable from
entanglement with qubits that are traced out. To see this, consider the simple
example sketched in Fig. 2.7. Consider the effect of the left and right hand

|0) —P—

"+ —F

A ——eo——
Figure 2.7: Equivalence between measurement and outside qubits.

side circuits on the register A, which at the start contains the state «|0) + §|1).
In the circuit on the left, the measurement collapses the state to |0) with
probability ||a|? and |1) with probability ||3]|?, concisely described as the
density matrix ||a||?|0)(0] + || 3]|?|1)(1]. The circuit on the right sends the input



GENERAL REMARKS 23

state a|0, 0) + 8|1, 0) to |0,0) + 3|1,1), which may be described by the density
matrix p = aa’|0,0)(0, 0|+ B4T|1,1)(1,1|. Tracing out the top qubit (“T"”) gives
Trr(p) = ||l|?|0)(0] + [|B]I?|1)(1], or exactly the same density operator that
comes out of the circuit on the left. This observation allows one to transform
any quantum circuit that contains measurement gates into one with more qubits
but whose measurement gates are located at the end.

No Cloning Theorem. It is impossible to clone an unknown quantum state.
This can be immediately derived from the unitarity of operators. Suppose to
the contrary that there is a unitary matrix U that maps |¢) ® |0) — |¢) ® |¢)
for all |¢) € H. Then choose another ket |¢) € H and observe that (¢|y) =
((gl@ (0D (¥)@0)) = ((¢|@(ONUTU (j4) @10)) = (6] @ (8])([9) @) = (ol)*.
The equation (¢|y)) = (¢|1)? cannot be satisfied for all kets |¢), [1)) € H, take
for example a pair of kets that are 45° apart. Therefore, such a unitary matrix
cannot exist. A slightly more complex argument shows that the same holds for
any combination of unitary transformations and measurement.

Nevertheless, in some special cases, cloning information is possible. For example
the unitary matrix that maps |a,b) — |a,b@® a) copies the bitstring a when
b = 0. However, the point is that the left-hand register’s reduced density
operator changes as a result of this operation. What is being copied is the
classical bitstring a, and not the quantum ket |a). It is possible to copy classical
information, but it is impossible to copy quantum information. Any operation
that would extract information from an unknown quantum state necessarily
changes it.






Chapter 3

Provable Security

How does one prove that a cryptosystem is secure? To answer that question,
it must first be clear what is meant by the opposite, i.e., what makes a
cryptosystem insecure. Specifically, one must define which events constitute
a security violation, or attack. Additionally, one must specify the adversarial
model, i.e., the class of adversaries the security statement is supposed to cover.
Given these two elements, one can proceed to state propositions such as “for
all adversaries that fit the model, the attack fails” and prove them by showing
that their negations imply a contradiction.

Often times the adversarial model contains only polynomial-time algorithms;
this restriction captures the intuition that an attack should be efficient in order
to be valid. In this case a security statement and proof can additionally
rely on a computational hardness assumption. The derived contradiction
then shows that either an efficient attack does not exist, or else that the
considered hardness assumption is false. If that assumption pertains to a well-
established mathematical problem that is and has been studied independently
from its cryptographic applications, then the hard-earned belief in that problem’s
hardness is leveraged in support of the cryptosystem’s security.

The adversarial model in the context of post-quantum cryptography is restricted
to polynomial-time algorithms capable of performing quantum computations
offline. That is to say, any messages exchanged with other participants in the
protocol that is under attack consist of classical information. In contrast, the
computations between interactions may be quantum, and the attacker may even
keep quantum memory across interactions. Any function can be evaluated in

25
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a superposition of inputs, provided that the attacker possesses the complete
function description.

A security definition takes the form of program code! describing either a two-
player game between the adversary and a challenger or a protocol in which the
adversary is one of many participants [22]. The adversary itself is treated as a
black box; its code is not defined and it is only invoked abstractly in the way
that a subprocedure is invoked. The adversary may retain a secret and even
quantum state across invocations; in this case the program code must record it
and pass it as an argument to the adversary at the next call. The program code
outputs a single bit, indicating whether the attack was successful (1) or not
(0). The cryptosystem is secure if the program outputs 1 only with a negligible
probability, over all the random coins involved.

A security proof then consist of a sequence of patches to the program code. Each
patch is accompanied by an argument showing that the output distribution
changes only by a negligible amount. After all patches have been applied, the
program code is identical to the description of a problem whose hardness is
assumed, preferably up front. The various stages of the program code are referred
to as games; this patchwork methodology of security proofs in cryptography is
known as a sequence of games approach [125].

3.1 Asymptotic and Concrete Notions.

The previous description of security definitions and proofs make reference to the
notion of negligible quantities. Formally, a function negl : N — R>( is negligible
if and only if it drops faster than any polynomial’s reciprocal. Conversely, a
function noti : N — R is noticeable if it drops slower than some positive
polynomial’s reciprocal. Formally:

Vp(z) € Ryo[z].IN € N.¥n > N .negl(n) < ﬁ ) (3.1)
Ip(x) € R>p[z].3IN € N.Vn > N .noti(n) > %n) . (3.2)

1 Actually, many security definitions in the literature do not present code but a complex
probability expression. However, without loss of generality, any security definition can be
translated into pseudocode.
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Additionally, a probability is overwhelming if its distance from 1 is negligible.
In the context of security definitions and proofs, the argument of noticeable
and negligible functions is generally speaking the security parameter .

While very intuitively accessible, asymptotic security does have its disadvantages.
For instance, the square root of a negligible quantity is still negligible, but
a 27128 probability of successful attack is a far greater concern than if the
same probability is only 2725, The previous definitions can be used to capture
whether a cryptosystem is secure, but we often wish to know how much security it
offers. The concrete security framework, pioneered by Bellare and Rogaway [18]
aims to answer this question by capturing security losses in explicit and exact
terms called insecurity functions that grow with the resources expended by
the adversary and capture the amount of security lost as a function of these
resources.

For instance, the one-wayness insecurity function, which is defined as
InSeco™ (Q) 2 maxa Pr[H(AH(H(z))) = H(x) |z & {0,1}*], captures the
maximum success probability across all adversaries A with @ queries and
unbounded time to find an inverse of H(z) under the function H, provided
as an oracle. Here z is a random input and H(z) is its matching image, and
the adversary also wins if he outputs a different preimage =’ # z as long as
H(z') = H(z). The acronym OW stands for the one-wayness game, which is
captured by the probability expression. When H : {0,1}* — {0,1}* is a random
function and only classical queries are allowed, then InSecQ™ (Q) = (Q + 1)/2*.

Suppose there is a sequence-of-games proof that involves two games, G; and
Gz, and suppose moreover that the event £, “Gf outputs 1 but G5 outputs 0”
occurs only when the adversary queries H on a preimage to H(z). Then there
is an extractor algorithm E that simulates G; or G, only to look at the list of
queries made by A to H and resulting responses; if this list contains a preimage
to H(z) then E outputs it and halts, and if it does not then E outputs L and
halts. Naturally, E’s success probability is bounded by InSecQ™ (Q) — but this
is also a bound on the probability of event £. This translates to a concrete
bound on the difference in output distributions of G; and Go, namely

|Pr[G; outputs 1] — Pr[G, outputs 1]| < InSecSV(Q) . (3.3)
3.2 Functionalities

A public key functionality follows a syntax that describes its usage. The purpose
of this syntax is to abstract away the mathematical foundations that make the
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cryptosystem work and that make it secure. Additionally, the security definition
is presented in terms of the provided syntax. Here are some of the most basic
public key functionalities along with common security definitions. This list is
far from exhaustive.

3.2.1 Digital Signature Scheme.

A digital signature scheme allows a user to bind himself to a document in a
way that makes later repudiation impossible, similar to physically signing a
contract or note except digitally. A digital signature simultaneously provides
authenticity and integrity: the source of the signature must be the holder of
the secret key that matches the public key, and the signature is not valid for
any other message than the one that was signed.

A digital signature scheme (KeyGen, Sign, Verify) is a triple of polynomial-time
algorithms with the following properties.

o KeyGen takes a security level A (provided in unary notation); and outputs
two values: sk and pk, the secret key and the public key, respectively.

« Sign takes a secret key sk and a document d; and outputs a signature sig.

o Verify takes a public key pk, a document d, and a signature sig; and
outputs 0 or 1.

e The scheme is correct, i.e., whenever a secret key is used to sign a document,
the resulting signature is valid with respect to the matching public key
with overwhelming probability. Formulaically:

vd € {0,1}*. (3.4)

Pr[Verify(pk, d, Sign(sk, d)) = 1| sk, pk < KeyGen(1*)] > 1 — negl()\) .

Realistic security definitions involve chosen message attacks (CMA), i.e., the
adversary A is allowed to query a signature oracle on a message d of his choosing.
This oracle models the capacity of an attacker to trick the user into signing
something.

In the universal unforgeability under chosen message attack (UUF-CMA) game,
the adversary is presented with a single message that he must find a signature
to. The signature oracle refuses to answer if this message was queried.
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In the existential unforgeability under chosen message attack (EUF-CMA ) game,
the adversary gets to choose which message he forges a signature for. However,
if this message was one of the queries to the signature oracle then the adversary
will be penalized. In other words: he only wins if he forges a signature on an
entirely new message.

Game 3.1: UUF-CMA Game 3.2: EUF-CMA
1. sk, pk <+ KeyGen(1%) 1. sk, pk < KeyGen(1%)
2.m ﬁ {0, l}poly()\) 2.D+ o
3. define S(d) as: 3. define 5(d) as:
4. if d = m then: 4. D«<D U_{d}
5. | return L 5. return Sign(sk, d)
6. else: 6. m, sig < A(pk)
7. | return Sign(sk,d) 7.return [Verify(pk,m,sig) =1 A m ¢ D]
8. sig + A(pk,m)
9. return Verify(pk, m, sig)

Security is defined with respect to an UUF-CMA or EUF-CMA insecurity
function, namely by requiring them to be negligible functions. Formally, the
definitions are as follows.

Definition 1 (UUF-CMA security of digital signature schemes). A digital
stgnature scheme S is secure in the UUF-CMA model if for all polynomial-
time adversaries A the insecurity InSeca’FMA(A) 2 PrlUUF-CMA*(1*) = 1] is
negligible in X, i.e., InSeca’™“MA(A) < negl()\), where UUF-CMA is shown in
Fig. 3.1.

Definition 2 (EUF-CMA security of digital signature schemes). A digital
stgnature scheme S is secure in the EUF-CMA model if for all polynomial-

time adversaries A the insecurity InSec50TMA(A) 2 Pr[EUF-CMAA (1Y) = 1] is
negligible in A, i.e., InSecEUF'CMA(A) < negl(\), where EUF-CMA is shown in
Fig. 3.2.

Two other chosen message attack games go by the acronym SUF-CMA. The
selective unforgeability under chosen message attack game is a hybrid between
UUF-CMA and EUF-CMA whereby the adversary is allowed to choose the
message he forges a signature for, but this message must be fixed before the
signature oracle is queried. A universal forger implies a selective forger, which
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in turn implies an existential forger. The strong (existential) unforgeability
under chosen message attack game is a relaxation of EUF-CMA where the
list D records the message-and-signature pairs of all queries, instead of just
the messages. The strong unforgeability adversary wins if he produces a new
signature, possibly on an already-signed message; in contrast, the existential
unforgeability adversary must produce a new message with signature. An
existential forger implies a strong existential forger, meaning that the strong
unforgeability game is the strongest notion. However, it is not clear that this
stronger notion is necessary; most of the time, EUF-CMA is sufficient. For
instance, the NIST call for proposals states that EUF-CMA captures what will
be considered relevant attacks [75]. Nevertheless if an attack is discovered that
works only in the strong unforgeability model, it will be a cause for concern.

3.2.2 Key Encapsulation Mechanism.

Public key encryption is much more expensive than symmetric encryption, and
consequently public key encryption is usually only used for securely transporting
symmetric keys. (One important exception is homomorphic encryption.) If the
purpose is key establishment anyway, then transporting keys may be overkill; a
shared symmetric key may also be computed from mutual protocol contributions
so long as the passive adversary cannot compute it also. The key encapsulation
mechanism (KEM) formalism captures this rigorously. A key encapsulation
mechanism K = (KeyGen, Enc, Dec) is a triple of polynomial-time algorithms
with the following properties.

o KeyGen takes a security level A (provided in unary notation); and outputs
two values, sk and pk, the secret and the public key, respectively.

o Enc (“encapsulate”) takes a public key pk and generates a ciphertext ctxzt
and a symmetric key k.

o Dec (“decapsulate”) takes a secret key sk and a ciphertext ctzt and outputs
a symmetric key k.

e The mechanism is correct, i.e., whenever a secret key decapsulates a
ciphertext, decapsulation produces the same symmetric key that was
produced during encapsulation provided it was encapsulated with the
matching public key. Formulaically:

Pr[Dec(sk, ctzt) = k| sk, pk + KeyGen(1*); ctxt, k + Enc(pk)] > 1 — negl()) .
(3.5)
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The security notions for KEMs are indistinguishability games: the adversary has
to decide whether a given ciphertext decapsulates to the given key, or whether
the ciphertext decapsulates to something else and the given key was drawn
uniformly at random from the symmetric key space SKSpace. The adversary
is in possession of the public key and therefore he can generate ciphertexts as
he pleases. The label “chosen-plaintext attack” is confusing in the context of
KEMs because there are no plaintexts. Nevertheless the notion is analogous
to the likewise-named notion for public key encryption (PKE) schemes. In the
chosen-ciphertext attack, the adversary has the additional capacity to query a
decapsulation oracle.

Game 3.3: IND-CPA for KEMs Game 3.4: IND-CCA for KEMs

1. sk, pk < KeyGen(1%)
2.6 & {0,1}

3. ko ﬁ SKSpace . ko i SKSpace
4. ¢, ki + Enc(pk) . ¢, k1 <+ Enc(pk)

1. sk, pk <+ KeyGen(1*)
2
3
4
5.0 < A(pk, ky, ) 5. define D(q) as:
6
7
8
9

b & 0,1}

6. return [b = 0'] if g =creturn L
else return Dec(sk, q)
b — APO) (pk, Ky, c)
.return [b =]

Definition 3 (IND-CPA security of KEMs). A KEM K is secure in the
IND-CPA model if for all polynomial-time adversaries D the advantage

AdVNDCPAD) 2 Pr(IND-CPAP(1Y) = 1] — 1| is negligible in A, ie.,

Advi¥P-PA(D) < negl(\), where the game IND-CPA is shown in Game 3.3.

Definition 4 (IND-CCA security of KEMs). A KEM K is secure in the

IND-CCA model if for all polynomial-time adversaries D the advantage
AdVNPCAD) £ Pr[IND-CCAP(1Y) = 1] — L is negligible in X, ic.,
AdvINP-CA(D) < negl()), where the game IND-CPA is shown in Game 3.4.

3.2.3 Zero-Knowledge Proofs.

Zero-knowledge proofs are an indispensable tool in the design of cryptographic
protocols because they enable one participant to prove to others that his protocol



32 PROVABLE SECURITY

contribution is honest and correctly formed despite its encryption. The term
zero-knowledge refers to the fact that the verifier, after engaging with and being
convinced by the prover, has obtained zero knowledge about the the claim that
is proven beyond the fact that it is true. One can think of a zero-knowledge
proof as the encryption of a proof — it is no less valid, but in contrast to proofs
in mathematics, even mathematicians cannot decipher them. Non-interactive
zero-knowledge proofs form a popular design methodology to generate digital
signature schemes.

Formally, an interactive proof system II = (P,V) for a language £ € NP is
a protocol between two polynomial time algorithms, called the prover P and
verifier V, respectively, both of which receive a string ¢ € {0,1}* for input.
The prover has an additional secret input, namely the witness v € {0,1}* that
certifies that £ € L, i.e., Rg(¢,v) = 1. An execution of the protocol is denoted
by (V(¢) < P(v,£)), the verifier’s output by outy((V(¢) <> P(v,¢))), and this
output is 1 if he accepts and 0 if he rejects. The transcript T < (P(v,£) <> V({))
consists of all messages sent between the two parties. A zero-knowledge proof
system satisfies three properties:

1. Completeness. For every ¢ € L and matching witness v, P convinces V
with high probability:

Ve e 0,1}, v € {0,1}* . Re(C,v) =1
= Prlb=1b+ outy((V(£) < P(v,0)))] > 1—¢ . (3.6)

In this expression € represents the completeness error and should be a
negligible function of |¢|.

2. Soundness. For every { & L no prover B is likely to convince the verifier:
Ve & L.VB.Prlb=1|b+ outy((B(¢) < V()] <o . (3.7)

The quantity o represents the soundness error and should be small but
not necessarily negligible.

2*. Witness-extractability, or knowledge-soundness. In addition to being a
zero-knowledge proof system, IT is a proof system for proofs of knowledge
if there is a polynomial-time extractor machine E who, given black-box
access to any sufficiently successful prover B, can compute the witness v
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with noticeable probability & > noti(|¢]).

JE.VB.Priouty((V(¢) <> B(¥))) =1] > ¢
— Pr[Re(6,v) =1|v«EB(O)] > ¢ . (3.8)

Phrased differently, if the probability of extraction £ is not noticeable, then
B’s success probability is upper-bounded by the knowledge error <, which
should also be small but not necessarily negligible.

In the post-quantum setting, B and EB are allowed to be quantum
algorithms. Proof systems satisfying this lifted property of quantum-
witness-extractability generate quantum proofs of knowledge (QPoK) [138].
Black box oracle access for quantum computers is defined as follows. The
prover’s computations before and between sending and receiving messages
are described by a sequence of invertible quantum circuits B1,..., By
acting on a secret quantum register S which is initially set to some
quantum input |¥). The extractor can apply these circuits as well as their
inverses but has no access to S. All interaction happens by writing and
reading information to and from a designated message register. These
messages follow the format of the proof system and are thus classical.

3. Honest-verifier zero-knowledge. There is a polynomial-time simulator
S capable of producing a transcript T' <— S(¢) of the protocol without
knowledge of the witness v such that T is indistinguishable from authentic
transcripts. Indistinguishability is satisfied when all polynomial-time
distinguishers D have at most a negligible advantage, i.e., Advg (D) <
negl(|¢|), where

AdvZK(D) £ |Pr[D(T) = 1|T + (P(v,£) > V(£))]—
Pr[D(T) =1|T « S(0)]| . (3.9)

The protocol additionally satisfies special honest-verifier zero-knowledge
if the simulator S cannot choose the verifier’s messages. Specifically,
the messages from the verifier in the transcript T < S({,¢q,...,cn) are
exactly ¢1,...,cn, where N is the number of messages sent by the verifier.

In contrast to digital signature schemes, PKEs, and KEMs, zero-knowledge proof
systems have two insecurity functions: the zero-knowledge advantage AdvﬁK(D),
and the soundness error o or, when applicable, the knowledge error ¢. Both
functions must be negligible in a practical instantiation. Proof systems with
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non-negligible soundness or knowledge errors can still be useful as a building
block to build larger proof systems where these quantities are negligible.

3.3 Security Reductions

A lot of the pieces are in place for a demonstration proving the security of the
RSA signature scheme of Example 2. Recall that this cryptosystem derives
security from the hardness of inverting the RSA function f. : Z,, — Zp,x —
x° mod n. Moreover, it requires a hash function H : {0,1}* — Z,,, which for the
purposes of the proof is modeled as a random oracle, i.e., a function drawn
uniformly at random from {f|f : {0,1}* — Z,} and presented as an oracle.
The proof of Example 3 is a reformulation of that of Coron [41]. It features
a single game transition: Game; is the EUF-CMA game, and Game, is the
RSA inversion problem. A more complex proof will have several more games.
Nevertheless, this example suffices to illustrate many relevant aspects.

This proof also serves as an excellent opportunity to introduce the syntax and
semantics of the python-like dictionary notion, which I use elsewhere as well.
Formally, a dictionary is a variable representing a list of (key, value) pairs such
that for every key there is at most one matching value. If D is a dictionary,
then DI[k] represents the unique value v such that (k,v) is in this list. The
notation D[k] < v, or D[k] & S, inserts the pair (k,v) where v is either given
explicitly or drawn uniformly at random from &, into the list. If necessary, the
prior element where k& was the key is removed. The set of key values is denoted
by D.keys(), thus enabling a concise expression to determine if the list contains
a pair where k is the key: k € D.keys().

Several remarks about the theorem and proof of Example 3 are in order.

o Running time. The proof ignores the running time of the simulator B, but
this is actually a crucial concern. If B’s running time were much larger
than that of A, it could be argued that B’s ability to invert the RSA
function was the result of his larger running time and not of A’s capacity
to break the signature scheme, thus nullifying the argument for security.
Nevertheless, it is clear from inspection of Example 3 that B incurs only a
small linear overhead over the running time of A. In other security proofs,
the running time may require explicit attention.

e Classical random oracle model. The hash function H is modeled as a
random oracle. However, any given concrete hash function used in practice
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EXAMPLE 3. RSA SIGNATURE SCHEME — SECURITY PROOF

Theorem 1. Let A be a winning adversary against the RSA Signature
Scheme of Example 2 with Qs signature queries and Qp hash queries in
the EUF-CMA and random oracle models. Then there is an algorithm B
such that

Qs
InSeckgi iy (A) < (1+ é) Qs +1) - Pr[BA(z,m,e) = 71 (2)] .
(3.10)

(Note that this bound is independent of Qp.)

Proof. The input to the algorithm B is the RSA public key (n,e) as
well as the image 2 for which B must find f*(x), which is its output.
The strategy B employs is as follows: he runs the EUF-CMA game
and invokes A as part of it, thus enabling him to leverage A’s winning
probability to his own advantage. A is allowed to make queries to a
signing oracle S(-) and to a random oracle H(-); B must answer these
queries without the matching secret key to the public key (n,e).

To overcome this difficulty, B maintains two dictionaries G and H, both
of which are initially empty. H represents the query-response pairs of
the random oracle H, whereas G stores, for every such (query, response)
pair, either the pair (query, f~!(response)) or (query, x - f~1(response))
where f is the RSA function and z is the given image. Additionally, B
maintains a set D which is also initially empty, but later represents the
set of documents queried by A to the signing oracle S. B answers A’s
oracle queries as follows. The parameter p will be determined later.

1. define H(q) as: 1. define S(d) as:

2. if ¢ & H.keys() then: 2. D+ DU{d}

3. Glal &, 3 if d & G .keys() then:

4, u & [0:1] 4. gld) & z,

5. if u > p then: 5 H[d] + G[d]® mod n
6. | HMlg] < z-Glg]*modn 6 return G[d]

7. else:

8. | Hlq] < Glg]°modn

9. return H|[q]

Queries to the random oracle H are answered in accordance with the
dictionary H. If a new query-response pair is needed for the query g,
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EXAMPLE 3 — CONTINUED

then B samples G[g] at random and sets H[q] to x - G[q]® modn with
probability 1 — p and to G[g]® mod n with probability p. The exception
is when a new query-response pair is needed in the course of answering
a signature oracle query; in this case H[q] is set to G[¢]¢ modn with
certainty.

At this point, B simulates the adversary by invoking AM>(n,e), i.e.,
simulating A on the input (n,e) with oracle access to H(-) and S(-) as
described above. The simulation fails if the adversary A first makes a
random oracle query that triggers line 6 and then queries the signature
oracle on the same input, because the returned signature will be invalid.
Call this event F. Since the outputs of H(-) are uniform, Pr[—~F] = p@-
and

Pr[A success N ~F] = InSec%USFA_CygA(A) pQe (3.11)

In the event of adversarial success, A outputs a pair (m, sig) such that
H(m) = sig® modn and m ¢ D. Without loss of generality, m € H.keys(),
because otherwise B can query H(m) himself. At the point of A’s
termination, the condition m ¢ D implies that H[m] must have been set
by line 6 or line 8 of H(g). If it was line 6 then the returned value sig
satisfies sig® = - G[m]® modn or equivalently, sig® - (G[m]~1)¢ modn,
meaning that sig - G[m]~! = f.}(x). Therefore, B outputs this value
and then his success probability is bounded via

Pr[A success A = F] = Pr[=F A H(m) = sig®] (3.12)
= Pr[~F A sig® = x - G[m]®] + Pr[-F A sig® = G[m|°| (3.13)

1
= T Pr[BA(z,n,e) = f~(x)] . (3.14)
The last equality holds because, as the outputs of H are identically
distributed, the event sig® = G[m|® is p/(1 — p) times as likely as the
event sig® = - G[m|°. The latter implies that B wins. Therefore,

Qs
InSec%USFA_CS'\ng(A) = <Zl)> . ﬁ - Pr[BA(z,n,e) = f1(z)] . (3.15)

The theorem statement follows from choosing the value for p € [0;1]

that minimizes this expression, i.e., p = % =1- ﬁ O
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cannot be chosen uniformly at random from the space of functions with
the right domain and range. From a rigorous perspective then, the proof
is proving the wrong thing: it is proving the security of some abstract
construction rather than the one that is used in practice. However, this
sleight of hand is justifiable to some extent if the best attack on the given
hash function is no better than a generic attack on a real random oracle.
Also, in the proof, the random oracle is simulated by @) maintaining a list
of query-response pairs, and b) sampling the responses lazily, i.e., when
they are needed and not sooner. While both points lead to a range of
effective arguments in security proofs, they rely on the query consisting of
classical information only. In a post-quantum context where the adversary
can make queries in superposition and receive superposition responses
in return, these techniques fail. Section 3.4 elaborates on the quantum
random oracle model, which addresses this concern.

o Tightness. The bound is not tight: there is a gap between the best possible
attack and the given insecurity, owing to the factor Q. If the signature
scheme is expected to generate, say, @, = 228 signatures, and if the RSA
modulus takes some 228 time steps to factor, then the bound shows
“only” 100 bits of security. Nevertheless, as far as security bounds go, a
linear security degradation is acceptable. A square-root degradation is not
uncommon, particularly in the context of post-quantum provable security
or as a result of the Forking Lemma [19]. A major task in provable security
is to find better proof techniques to establish tighter bounds, or to tweak
constructions so as to enable a tighter bound. Nevertheless, loose bounds
do not indicate the existence of an attack that meets the bound but
certainly do indicate the nonexistence of attacks running in polynomial
time, so even loose bounds are still asymptotically sound security bounds.

e Random self-reducibility. The proof relies on the fact that the returned
results of the hash oracle H(-) are all uniformly distributed. While this
is true, it derives from a property of the underlying RSA function called
random self-reducibility, and not from the proof itself. Random self-
reducibility is the property of a class of problems that enables translating
a given instance into another, random instance. The RSA inversion
problem is most illustrative: given the instance x, its inverse can be found
from r and the inverse of r¢x. As long as the solver chooses 7 at random,
the instance r€x is uniformly random. It is what guarantees that the
adversary cannot behave differently with respect to hash queries where he
is being tricked into solving the RSA inversion problem. As this security
proof relies on random self-reducibility, it does not apply to generic hash-
and-sign constructions unless they feature random self-reducibility as well.
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Generally speaking, post-quantum hash-and-sign signature schemes do
not have random self-reducibility.

3.4 Quantum Random Oracle Model

To develop post-quantum cryptography, it is not sufficient to exchange pre-
quantum hard problems for post-quantum hard problems and still employ the
same construction strategy. The reason is that quantum attacks do not target
only the hard problem; they target the security proof as well. This fact is
particularly evident in the case of proofs in the random oracle model.

The random oracle is an indispensable tool for the construction and provable
security of cryptographic functions and protocols [58, 20]. Informally, random
oracles represent truly random functions, and therefore accurately capture
the ideal situation in which the adversary knows nothing about the function’s
value for inputs that were not evaluated. In addition to EUF-CMA proofs
like that of Example 3, random oracles are used in the all-or-nothing OAEP
construction [21], the Fujisaki-Okamoto transform for generating CCA-secure
cryptosystems from CPA ones [61], and transforms for obtaining signature
schemes and non-interactive zero-knowledge proofs from interactive ones [58, 59].

However, this list of examples contains only classical, pre-quantum systems.
Security proofs based on the random oracle model tend to break down in
the context of adversaries capable of performing computations on quantum
computers. This was first observed by Boneh et al. [28], who argue that however
well a hash function approximates a random oracle, it must also be accessible
to the quantum attacker and therefore it must receive and answer superposition
queries. The classical random oracle model therefore fails to capture security
against quantum adversaries. Instead, Boneh et al. recommend a gquantum
random oracle model. In this model, all parties are presented with query-access

to an oracle that computes a random function H & {f1f:{0,1}* = {0,1}*}
of arbitrary-length bit strings to arbitrary-length bit strings, selected at the
start of the protocol. To query the oracle, the adversary sends it two registers
(Q, R). The oracle then maps |g, ) — |g,®H(q)) before returning the registers
to where they came from.

Unfortunately, several powerful proof strategies that work in the classical random
oracle model break down in the quantum random oracle model.

o Adaptive programmability. Adaptive programmability refers to the
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capability of the simulator to change the input-output behavior of the
random oracle while the protocol is running. Classically, the outputs
of unqueried inputs may be considered undefined as they have not
been selected yet. Quantumly, however, the adversary can query the
superposition of all bitstrings and the result should be a superposition of
all matching responses, thus fixing every input-output pair at once.

e Query collection. Classically, the simulator can keep a list of query and
response pairs as they come. After the simulation is done and the simulator
needs to know the matching preimage to a given hash, he can simply
browse the list of queries. Quantumly, this strategy fails because of the
No-Cloning Theorem: unless the query represents classical information,
the adversary cannot copy any information from it without affecting
its state. Consequently, an adversary that is not being simulated may
behave differently from the same adversary when it is being simulated by
a simulator that is trying to extract the queries.

o Lazy sampling. In the classical setting, outputs to yet-unqueried inputs
may be sampled dynamically, ¢.e., no sooner than when they are necessary.
This enables the simulator to reflect on the previously received queries
—from all simulation oracles— and select outputs that conform to a
consistent adversarial view. The key point is that the correct value of
the outputs may depend on previous query values. Quantumly, however,
the entire list of input-output maps must be fixed at the onset of the
simulation.

e Rewinding. Some proof techniques require collecting the output of
an adversarial computation, then rewinding the adversary to some
intermediate point, and then replaying it but relative to a different random
oracle. Collecting the output and then rewinding presents a challenge
in and of itself thanks to the No Cloning Theorem. More importantly,
replaying the adversary relative to a different random oracle is in conflict
with the requirement that the entire list of input-output pairs be fixed at
the time of the first query.

On the up side, the same paper by Boneh et al. [28] presents a positive result
for history-free reductions. The technical definition is rather cumbersome for its
length and specificity, but informally it requires that the random oracle answers
queries independently of its history. In other words, no part of the simulator’s
memory is allowed to change as a result of answering queries. From this point of
view, maybe the term memory-free would have been a more descriptive choice
of words. Random oracle proofs that are history-free, or memory-free, do hold
in the quantum computing model.
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3.4.1 Providing Oracle Access.

The first question to ask is how a polynomial-time simulator can provide access
to a random function that potentially fixes an exponentially-large list of query-
response pairs at the point of first query. Unruh answers this question as
follows [140]. The simulator S, in addition to whatever other return value,
outputs a description of the circuit for H. The simulated adversary A then has
oracle access to H over the course of its computation. Since S runs in polynomial
time, the description of H can be at most polynomial in size whereas random
functions require an exponentially large description (probably). So H cannot
have the same distribution as a truly random function. However, this is not
a problem because A is only allowed to make a polynomial number, say QH
of queries. The question is not whether H is distinguishable from a random
function, but whether H is distinguishable from a random function given oracle
access and at most QH queries. A complementary result by Zhandry shows that
2QH -wise independent functions are perfectly indistinguishable from random
functions from at most QH quantum queries [152]. Since random polynomials
of degree at most 2QH — 1 are 2QH -wise independent, the most straightforward
strategy for S is to simply choose such a random polynomial of degree at most
ZQH — 1 and output a circuit for its evaluation as the description of H.

Personally, T find this approach inelegant. First, it requires that S knows On
or at least an upper bound on this number. However, it is not clear that this
upper bound can be computed by S if it only has black-box access to A, who
might decide dynamically to make more queries. Second, a random polynomial
over the field Fyx lends naturally to a random function {0,1}* — {0,1}*, but
careful construction is required if the desired function signature is instead
{0,1}* — {0,1}" with & > A. Third, in many cases the random oracle must
be programmed to give certain responses to certain queries. Finding a random
bounded-degree polynomial subject to these constraints requires expensive
interpolation and constitutes a needless simulation overhead.

Instead, I propose the following approach whereby the simulator S also has
access to a random oracle H — a different one but with the same function
signature. Then S must produce an interface to H for A, which is a description
of a circuit that computes H but relative to H’, and that moreover takes into
account the necessary programmed responses. Suppose for example that S has
compiled a dictionary D of to-be-programmed query-response pairs. He can
then provide A with the following interface to H.
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1. define H(q) as:

2 if ¢ € D.keys() then:
3. | return D[q]

4 else:

5 | return H'(q)

Formally, the simulator S is required to output this description of H to a separate
tape before the simulation of the adversary A begins.

3.4.2 Aggregate Quantum Query Amplitude

In the classical random oracle model, it is often useful to consider the list
of queries and their matching responses, and argue about the probability of
particular queries or responses being members of this list. In the quantum
random oracle, this list is ill-defined because a single query might contain a
superposition of all possible queries, each with a negligible absolute amplitude.
However, it turns out it is possible to salvage the spirit behind arguments
involving the probability of particular queries being made at some point in an
adversarial computation. This leads to the definition of the aggregate quantum
query amplitude as a metric for the degree to which members of a list S of
possible bit strings have been queried.

Definition 5 (aggregate quantum query amplitude [134]). Let A" be a quantum
algorithm with oracle access to H making Q queries. In particular, A consists of
Q + 1 unitary transforms Uy, . . ., UQ operating on a triple of quantum registers
S,Q, R, and interleaved with unitary circuits H operating only on Q, R and
sending |q,r) — |q,r ® H(q)). Let pg represent the reduced density matriz with
respect to QQ tmmediately after query k, with query indexation starting at zero.
Then the aggregate quantum query amplitude as associated with a set S of
potential queries is

as =Y > (slols) - (3.16)

In the same paper where Reza Reyhanitabar, Bart Preneel, and I define the
notion, we provide lemmata for easy usage. The first two bound the aggregate
quantum query amplitude for larger, respectively smaller, sets. The third shows
that the aggregate quantum query amplitude is an upper bound on the trace
distance (and hence maximum distinguishing probability) of the final state of
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an oracle algorithm with respect to an oracle whose outputs differ only in a set
S. Proofs can be found in the original paper [134].

Lemma 1. For any two sets S1,S2 C {0,1}*, ds, < ds,us,-

Lemma 2. For any two sets S1,S2 C {0,1}*, if s, < 1 and ds, < 1 then
as,us, < as, +as,-

Lemma 3. Let D be a quantum distinguisher making at most Q queries to one
of two oracles Hy, Hy, whose outputs differ only on a set S of inputs. Then the
trace distance of the distinguishers’ final states is bounded by

TD(D"1(),D™2()) < 2as . (3.17)

3.4.3 One-way to Hiding Lemma

Random oracle proofs often rely on the adversary’s ignorance of responses to
queries that were not made. It turns out that this intuition can be lifted to
the quantum random oracle model. Unruh’s One-Way to Hiding Lemma [139]
formalizes the argument by introducing an extractor machine who waits until
a randomly chosen query-and-response interaction and measures the query
register at that point. An adversary that does know the given response can only
learn it from making a query, and so it gives rise to a successful query extractor.
The following lemma, which explicitly relates to the aggregate quantum query
amplitude, states the lemma in terms of an oracle algorithm trying to determine
which of two almost-identical oracles it has access to. This is in contrast to
Unruh’s formulation, which states the lemma in terms of an algorithm tasked
with determining whether its input (z,y) is consistent with respect to the

single oracle H, i.e., whether H(z) < y. Nevertheless, the first step in Unruh’s
proof is to translate the lemma into a distinguishing task with respect to two
almost-identical oracles.

Lemma 4 (multi-target one-way to hiding [134]). Let Hy and H; be identical
oracle functions except when their inputAbelongs to a set S, and let A be a
quantum adversary that makes at most Qu queries to either Hy or Hy. Let

E be the following algorithm: select b & {0,1} and k & {0,.. L, OQn — 1} at
random, simulate AM until the kth query, measure the query register in the
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computational basis, and output the result. Then

(25.4 (A““(%A“l()))2 < (qs )2 <PrEAOM () =se8] . (3.18)

Qn

The left inequality is simply a restatement of Lemma 3. The inequality on
the right follows from a straightforward description of the probability that E
outputs some s € S in terms of the reduced density operator ka of the state of
A with respect to the query register @ at query k. Namely:

Qu—1
Pr[EAHoH() = 5 € 8] = Z ZPr[EA’HO’Hl() = s A Echoosesk]  (3.19)

k=0 seS

Qn-1

= 3 Yt 5 (3.20)

k=0 seS

which in conjunction with the following application of Jensen’s inequality gives
the lemma statement:

Qu—1 QH 1
as—z > (slofls) = Q ~ 2 Rl @2
seS seS
Qu—1

< Qu Z Z sl (3.22)

H ses

3.4.4 Preimage Search

One of the best-used properties of random oracles is the difficulty of finding
preimages satisfying certain criteria. Three games in particular capture this
intuition. Informally:

o One-Wayness. The adversary is given a list of targets Y = {y1,...,yp}
and his task is to find a preimage  such that H(z) € ). One-wayness is
used e.g. to achieve the hiding of information if an adversary, capable of
learning the information despite its being hidden, can be made to break
one-wayness.
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o Second Preimage Resistance. The adversary is given a list of first preimages

X = {z1,...,2,} and his task is to find another preimage = such that
x & X but for some i € {1,...,p}, H(z) = H(z;). This captures the
security requirement for, e.g., Merkle trees: an adversary who produces a
new authentication path has found a second preimage for some node.

Marked Element Search. The adversary is given access to a marking
function mark : Domain(H) x Range(H) — {0, 1} that determines if a given
input-output pair is valid, and his task is to find an input x such that
mark(z,H(z)) = 1. This captures the security of, e.g., the Fiat-Shamir
transform for making interactive proofs non-interactive. For a given
commitment, a fraudulent adversary can answer only a small fraction
of challenges. When the challenge is determined as the hash of the
commitment, then the adversary must find a commitment that leads to a
challenge he can answer.

In fact, the three games can be used to define the insecurity functions of a hash
function family H = {Ho,H1,...,Hxg—1} C {f|f: {0,1}* — {0,1}*}. When
H={f]f:{0,1}* — {0,1}*} then the same insecurity applies to “the” random
oracle. Formal descriptions of the games are shown in Games 3.5, 3.6, and 3.7.
The acronyms abbreviate single-function, multi-target one-wayness (SM-OW),
single-function, multi-target second preimage resistance (SM-SPR), and marked
element search (MES).

Game 3.5: SM-OW Game 3.6: SM-SPR
3 3
1.H&H 1LH&H
2. for i from 1 to p do: 2. for ¢ from 1 to p do:
3. ;& Range(H) 3. L ;& Range(H)
4. yi < H(x) 4.2’ Az, .. 2p)
5.2 < AH(y1,...,y,) 5.return [Ji.H(z') = H(z;) A 2’ # ;]

6. return [Ji.H(z') = y;]

Game 3.7: MES

LHEH
2.2 «— AH,mark()
3. return mark(z’, H(z))
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Definition 6 (one-wayness insecurity). The one-wayness insecurity of a hash
function family H is defined as the maximum success probability in the SM-OW
game (Game 8.5) with p targets across all unbounded adversaries A making at
most Q queries:

InSec3MW(Q, p) 2 maxa Pr[SM-OW"() = 1] . (3.23)

Definition 7 (second preimage resistance insecurity). The second preimage
resistance insecurity of a hash function family H is defined as the mazimum
success probability in the SM-SPR (Game 3.6) game with p targets across all
unbounded adversaries A making at most Q queries:

InSecSMSPR(Q, p) £ maxa Pr[SM-SPRA() = 1] . (3.24)

Definition 8 (marked element search insecurity). The marked element search
insecurity of a hash function family H and a marking function mark is defined
as the maximum success probability in the MES game (Game 3.7) across all
unbounded adversaries A making at most Q queries:

InSechES . (Q) 2 maxa Pr[MESA™ () = 1] . (3.25)

mark

The first to show an upper bound on the insecurity of preimage search in the
quantum-accessible oracle model was Unruh [140]. Instead of counting the
number of targets or of marked elements, this result is articulated in terms of
the ratio of the number of targets to elements in the output space, or of marked
elements. The following paraphrases and re-proves Unruh’s result, starting
from the aggregate quantum query amplitude and casts it into the language of
insecurity functions.

Definition 9 (Bernoulli function search). Let B, be a Bernoulli distribution of
functions B : {0,1}* — {0,1} such that every B(zx) is independently distributed
with Prg ;[B(x) = 1] = +. The Bernoulli function search (BFS) insecurity is the
mazimum probability of finding an x such that B(x) = 1 across all unbounded
adversaries with at most Q quantum queries:

InSec™(Q) 2

> max Pr[B(AB()) =1] . (3.26)

Lemma 5 (insecurity of Bernoulli function search).

InSec®™(Q) <2(Q +1)/7 - (3.27)
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Proof. Let N : {0,1}* — {0,1},2 — 0 be the constant zero function. We
assume the existence of a BFS adversary A making Q queries and use it to build
a distinguisher D between the oracles B and N. Let S = {z|B(z) = 1}. The
distinguisher D simulates A, obtains the candidate preimage x, and queries his
oracle on this value and returns the result. The success probability when the
oracle is N is

Prgs[D*N() =0/ =1, (3.28)

because no possible return value z from A can make N(z) = 1. When the oracle
is B then the success probability is

Prg.5[D*B() = 1] = InSec™(Q) , (3.29)

because that is the probability that A returns a value x € S, whose membership
in S guarantees that B(z) = 1. So in summary,

[Prgs[D*B() = 1] — Prg.s[D*N() = 1]| = InSec>>(Q) | (3.30)

where the probabilities are taken both over the randomness involved in the
selection of B, and over the random tape of D (and hence A). In fact, it pays to
separate the two sources of randomness. Since the selection of B is independent
from the random tapes, this gives:

InSec5">(Q ZPr -|Pr[DAB() = 1] = Pr[DAN() =1]] . (3.31)

Each term in the right hand side of Eqn. 3.31 is in turn bounded by the trace
distance of D’s final state across both worlds. This enables a bound on this
quantity via Lemma 3:

ZPr - [Pr[DAB() = 1] — Pr[DAN() = 1| < ZPr - TD(D*B(),DAN())
(3.32)
< Z Pr[B] - 2as (3.33)

Q
=S pr-2Y ) S slp2s) -
B k=0

seS
(3.34)
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The middle sum runs from k =0 to k = Q because D makes one query more
than A. Remember that & = S(B) = Sg is determined by B. Continue with
switching the summation order:

Q
=23 > PrfBl- [ (slofls) (3.35)

k=0 B sESE

<22 ZPr > " (slpf?ls) (3.36)

sESE

Q
=23 > P8l > B@)(alfla) (3:37)
k=0 B

ze{0,1}'@

Q
:22 Z x|p |z) ZPr (x) (3.38)

k=0 \l ze{o0,1}'@

—22 > (wlpfle) - EB() (3.39)

k=0 \/ ze{0,1}'@

=9 Z Z $|pk (3.40)

k=0 \l ze{o0,1}'@

Q
23 K Y @l (3.41)

k=0 z€{0,1}'Q
Q
=23 4 (3.42)
k=0
=2(Q+1)y7 - (3.43)

The inequality is an application of Jensen’s inequality. Here lg is the number of
qubits in the query register @), and the squared-amplitudes associated with all
possible [g-bit basis vectors sum to one because of the law of total probability.

O
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H={f|f:{0,1}* — {0,1}*} is the random oracle function family, then the
function B : {0,1}* — {0, 1},

[Zi.H(z") = vi] in the case of SM-OW,
2’ — { [Fi.H(') =H(z) A 2’ #x;] in the case of SM-SPR,
mark(z’, H(x)) in the case of MES,

is very close to the distribution B of Lemma 5. To see this, observe that in
every case its value depends on H(z'), which is sampled at random with H. The
ratio of the number of H(z’) that satisfy the predicate to #Range(H) is exactly
~. Therefore, an adversary solving SM-OW, SM-SPR, or MES is simultaneously
solving BFS. We can therefore use the upper bound on BFS insecurity to upper
bound the adversary’s success probability of its original game:

InSec3W(Q, p) < InSecg/F;Range(H)(QA) (3.44)
InSecs>PR(Q, p) < InSecE}:;Range(H)(Q) (3.45)
lnsecg-/ltl,zriark(Q) < lnsecg}:;/S;tRange(H)(QA) . (346)

In the last equation, and more generally in the context of MES, p =
max, #{y | mark(z,y) = 1} is the maximum number of outputs that could
make a given input into a marked element.

Note that this reduction is different in terms of form from standard reductions
in provable security. There we expect to transform one adversary that solves,
e.g., SM-OW (analogous arguments hold for SM-SPR and MES), into another
adversary that solves BFS for a given function B. Presently, B is not a given
argument to the reduction, but determined not just by H but also by the chosen
values for z;. We are saved, however, by working in the random oracle model.
The argument to the reduction is not a concrete sample B but a distribution B.
While the concrete samples H and {z;}; determine a concrete sample B, the
distributions they are drawn from induce a distribution B’ and the reduction
holds in the random oracle model if B = B.

Another important note is that the induced distribution B’ is not a Bernoulli
function distribution as per Definition 9. It is true that for a given sample B,
Pr,[B(z)] = . However, for a given B, the values B(z) are not independent for
different « because the number #S = #{z|B(z) = 1} is bounded away from
zero — in fact, if no collisions occur, this number is exactly p. In contrast, there
is a nonzero probability of sampling the constant zero function N : x — 0 from
a true Bernoulli function distribution B,.
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However, the inequalities 3.44—3.46 do hold for conditional probability
distributions where #S8 is fixed or where this number follows a given distribution.
Moreover, the proof of Lemma 5 can be made to work even for such a conditional
probability distribution. The crucial transition is between Eqns. 3.39 and 3.40,
which requires that Eg[B(z)] = v for all z € {0,1}2. This equality clearly
holds for a Bernoulli function distribution B, because

Eg . [B(z)] = Eg lz Prx[l‘]B(x)] (3.47)

= Eg [#{z|B(z) = 1}/2'?] (3.48)
= Eg [Pr; [B(z) = 1]] (3.49)
=Es[y] =7, (3.50)

and since this value is independent of z, Eg ,[B(z)] = Eg[B(z)].

However, if Eg[B(x)] # 7 but still independent of x, then the same derivation
of Lemma 5 holds provided that one replaces v with Eg[B(x)] or whichever
symbol is used to denote this value. This motivates the following symbol abuse.

Definition 10 (BFS, amended). Let B, be a distribution of functions B :
{0,1}* — {0,1} where for all x € {0,1}* we have E[B(z)] = v. The BFS
insecurity for B, is defined as the maximum probability of finding an x such that
B(z) = 1 across all unbounded adversaries given at most Q quantum queries to
B~ By:

InSec®F5(Q) 2

> max Pr[B(AB()) =1] . (3.51)

With this redefinition of the symbol InSecst(Q), the bounds of Lemma 5 and
of Eqns. 3.44, 3.45 and 3.46 hold without reservation. One may imagine the “B”
to stand for “Boolean” to stress the distinction between Defs. 9 and 10, or once
again for “Bernoulli” to hide it.

Hiilsing et al. have a somewhat stronger result [70]. They start? with the
original BFS distribution B, of Def. 9, apply a theorem by Zhandry [151, Thm.
7.2] to it, and obtain

2In fact, the description of the distribution Dy on [70, page 9] is technically speaking
distinct from B of Def. 9, but the authors have confirmed in private communication that it
was meant to be identical. Indeed, the proof of Thm. 2 only works for B, .
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Theorem 2 ([70]). For all adversaries A with at most Q quantum queries to
a oracle mapping {0,1}" — {0,1}, and for the family of distributions B, of
Def. 9,

Prg.s, [B(AB() = 1] < 8y(Q +1)* . (3.52)

Of course, by restricting to this family of distributions, Hiilsing et al. run into
the problem identified earlier that the induced distribution is different from
the one defined. They circumvent this obstacle by restricting attention to the
random oracle function family H = {f|f : {0,1}™ — {0,1}"}, and to the
regime where p < 2™ < 2™. Under these assumptions, Hiilsing et al. provide
reductions showing that,

InSec3MOW(Q, p), InSec3M>PR(Q, p) € O((Q + 1)p/2") (3.53)

where the Landau notation hides quantities that are negligible in the regime
p K 2" <« 2™. Beullens, Preneel, and I show that for the same random oracle
function family and for any marking function that marks at most p outputs
for a given input, d.e., p = max, #{y|mark(z,y) = 1}, InSec%Fﬁark(Q) <
InSec3MOW(Q, p) [26]. And so InSec%Fgark(Q) € 0((Q 4+ 1)p/2") as well.

The bounds of Unruh and of Hiilsing et al. cannot both be true, can they?
Strictly speaking, no contradiction is implied. Both bounds are compatible with
the intuition derived from Grover’s algorithm that the success probability is
large only for a number of iterations that is on the order of 1/,/7. From a closer
inspection of Grover’s algorithm, one would expect the success probability to
rise with Q2 and in multiples of ~, but only for small values for both. The
Hiilsing et al. bound applies only if «y is sufficiently small, and moreover only if
2™ > 2" Inside this regime, Hiilsing et al.’s bounds are preferable. Outside
of this regime, those of Unruh are. It remains an interesting open problem to
determine the degree to which other regimes Hiilsing et al.’s bounds can be
lifted.

3.4.5 Preimage-awareness.

Another important technique enables the simulator to know the preimage of a
given image. He can then proceed, for instance, to invert a commitment function
and compute the witness in a zero-knowledge proof of knowledge, or answer
decryption queries despite being ignorant of the secret key in an IND-CCA
game. In the classical world, the simulator needs only look at the list of queries
made by the adversary, and search for the query that yields the given response.
In the quantum world this list cannot exist. However, the simulator can present
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the adversary with a trapdoored random oracle that is indistinguishable from
an authentic one but for which the simulator can efficiently compute the list of
candidate preimages. In fact, the possibility of achieving preimage-awareness
vindicates to some degree the random-polynomial approach (as opposed to the
interface-approach).

In particular, a random polynomial p € Fax[z] of degree at most 2@ —1is 2@—
wise independent and thus perfectly indistinguishable from a uniformly random
function from {f|f : {0,1}* — {0,1}"} by any adversary that is restricted
to at most Q queries. However, the simulator, who knows the coefficients,
can efficiently factor the polynomial p(z) — y and obtain a list of at most
2@ candidate preimages to the image y. This approach was first used by
Unruh [140].

The simulator does incur a simulation overhead as a result of this technique:
he has to factor polynomials and test all elements in a list of candidates. A
rigorous concrete proof must take this time cost into account. Asymptotically,
both operations can be done in polynomial time. Moreover, both tasks can be
formulated in a manner that is independent of the hard problems or cryptosystem
underlying the construction; as a result, the extra time spent on answering
queries is unlikely to hide extra time spent attacking the hard problem or
cryptosystem. It may be argued then, that it is safe to ignore this time
overhead.

A greater drawback of this technique is that it is restricted to length-preserving
random oracles. Otherwise the list of candidate preimages explodes and can no
longer be computed in polynomial time.






Chapter 4

Hard Problems

4.1 Multivariate Quadratic

Informally, the MQ problem asks to find a satisfying assignment to the variables
in a list of multivariate quadratic polynomials over a finite field. The problem
is known to be NP-hard in the worst case as well as empirically hard on
average when the number of equations m is approximately equal to the number
of variables n. It serves as the hard problem in a host of post-quantum
cryptosystems [83, 109, 49, 51, 35]. Formally, the problem is stated as follows.

Hard Problem 4.1: MQ Problem
Parameters: number of equations m, number of variables n, field size q.

Given: alist P € (Fy[x]<2)™ of m polynomials of degree at most 2 in n
variables (x1,...,2,) = x' over a finite field F,,.

Task: Find a solution x € [}y such that P(x) = 0.

The matching hardness assumption is essentially one-wayness of evaluation
of random MQ systems, where “random” means selecting every coefficient
uniformly at random from F,. Formally, the M(Q) Assumption states that if
m = n, for all quantum polynomial-time adversaries S, the success probability

53
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is negligible, i.e., Succ%vgm (S) < negl(n), where

Succ?,lwgmvn(S) = Pr[P(x1) =0|P & (Fqlx]<2)™; x0 < F7;
x1 < S(P(x) — P(x0))] . (4.1)

In this expression S(P(x) — P(xg)) represents the output of S when given a
complete description of the list of polynomials P(x) — P(x¢) as input.

4.1.1 Algebraic Attack

The best attack against generic instances of the MQ problem consists of a mixture
of guessing variables and computing Grobner bases of the ideals spanned by
the resulting lists of polynomials. To see why a Grobner basis might be useful
for solving the problem, recall the following definitions.

Definition 11 (polynomial ideal). A polynomial ideal Z is the algebraic span
of a list of polynomials p1(X),...,pm(x) € Fy[x]:

x)eZ & Fou(x),...,oam(x) € Fyx].q(x) = Zai(x)pi(x) . (4.2)
i=1
For convenience we write T = (p1,...,pm)-

Definition 12 (monomial ordering; leading term, monomial, and coefficient).
A monomial ordering is a relation > on the all monomials of Fy[x] satisfying:

(1) totality: for every pair of monomials l,r € Fy[x] either i =1, =7, or
l<r;
(i1) if Il = r then for any monomial m € Fy[x], ml = mr; and

(iii) well-ordering: every non-empty subset of monomials of Fy[x] has a smallest
element under .

A monomial order determines the largest term of a polynomial p(x), we write
this leading term lt(p(x)). Its coefficient is the leading coeflicient le(p(x)) and
its monomial is the leading monomial Im(p(x)).
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Definition 13 (Grobner basis). A Groébner basis G for an ideal Z with respect
to a monomial ordering > is a list of polynomials g1(x), ..., gr(x) € Fy[x] such
that (91(x), ..., gk(x)) = I and such that for every polynomial q(x) € Z, there
is a polynomial g;(x) in the list G with a leading monomial that divides that of
q(x). Symbolically, this condition is

Vg(x)eZ.Fe{l,...,k}.lm(g;(x))|lm(q(x)) . (4.3)

A Grobner basis generalizes the echelon form of linear systems of equations.
For linear equations in echelon form, any additional linear equation is either
linearly independent from the previous ones, or else it can be reduced to zero
by adding scalar multiples of each previous equation. Similarly, for Grébner
bases, any additional polynomial is either algebraically independent from the
basis elements (and thus outside the ideal) or else it can be reduced to zero
by adding scalar multiples of the basis elements. By identifying a polynomial
p(x) with the equation p(x) = 0 and vice versa, one extends Grébner bases to
systems of polynomial equations. The analogy with echelon form motivates the
following analogue of the reduced echelon form.

Definition 14 (reduced Grobner basis). A reduced Grobmer basis G is a
Gréobner basis g1(x), ..., gx(x) € Fy[x] such that a) all le(g;) = 1; and b) for
all g;(x) and all terms t(x) of gi(x), t(x) & (IL(G\{g:(x)})).

And just as solutions can be read out from a list of linear equations put into
reduced echelon form, so too can solutions be read out from a reduced Grébner
basis. This is particularly obvious in the case of a lexicographical monomial
ordering where z¢z?, , = z§,, for any a,c,b € N\{0}. Then the reduced
Grobner basis is triangular: Vj3i.i < j A gi1(x),...,0:(x) € Fglz1,...,2;].
So a sequence of greatest common divisor calculations, univariate polynomial
factorizations to find roots, and back-substitutions, generates a complete and
consistent assignment to all the variables. In the case of generic monomial
orderings, the trick is to incrementally refine the ordering and update the
Grobner basis accordingly. Every step makes the first iteration of this elimination
and back-substitution procedure possible. For details the reader is referred
to [43, Ch. 3].

In cryptographic applications, a nice representation of the set of all solutions,
or a complete enumeration of all its members, is rarely important. Instead,
an attacker wins if he finds just one solution. Even if he has to find a specific
solution, where specific means something that is not easily expressible in terms
of algebraic equations, the complexity of finding an arbitrary solution may be
indicative of the complexity of finding the specific one.
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With this in mind, it makes sense to restrict attention to ideals whose solution
set is zero-dimensional. This restriction is without loss of generality: an attacker
can always fix some variables’ values randomly until the number of variables
equals the number of equations. Unless the system exhibits non-trivial algebraic
dependencies, this makes the system of equations determined.

Another technique that reduces the complexity of a Grobner basis calculation
is to adjoin the field equations =] — z; = 0 to the system of equations. The
polynomial on the left hand side evaluates to 0 in every element of Fy, so this
adjoining does not destroy solutions. Conversely, this polynomial is nonzero
in some extension field elements z € Fye, but the attacker is not looking for
solutions of that form to begin with. The reason why this technique helps is
that ! —z; can be used to reduce the degree of polynomials in the computation,
particularly if ¢ is small. For large ¢, adjoining the field equations is akin to
adding dead weight.

In terms of cryptanalytic applications, the state of the art of Grébner basis-

like algorithms is a position shared jointly by Fy/Fs, MXLs, and PWXL.

All three methods explicitly relate the problem at hand to linear algebra.

This relation relies on two observations. First, any list of polynomials P =

(P1(x),...,pm(x)) € (Fy[x]<q)™ can be identified with a so-called Macaulay
+1

matrix Mp € ]FZLX "/ containing the polynomials’ coefficients. In particular,

each row of the Macaulay matrix corresponds to one polynomial, and each
column of the Macaulay matrix corresponds to a monomial. For example, the
following system of polynomial equations is identifiable with the Macaulay
matrix below.

p1(x) =maze+ 23+ +23+1=0
pa(x) = a3 + xoxs + 23 +1=0 (4.4)
pS(X) :$%+$2I3+I§+Z:0

!

xf 1Ty T1T3 z% Tols a:% T X2 x3 1
p1 0 1 0 0 0 1 1 0 1 1
P2 1 0 0 0 1 O 0 0 0 1 (4.5)
D3 0 0 0 1 1 1 0 0 1 0

Second, any system P of polynomial equations can be extended by adjoining
new equations obtained from multiplying old ones by monomials. While this
may increase the maximum degree across all polynomials, and thus widen the
Macaulay matrix, it will also generate new rows. A subsequent reduction to
echelon form may bring the polynomial system into Grébner basis, or if a
single solution is desired, the echelon form may produce a linear triangular
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system that determines the assignments to the variables. In fact, the original
Buchberger’s algorithm [31] for computing a Grobner basis can be seen to be a
specialization of these principles: the S-polynomial S(p;, p;) = fem(tm (p:).lm(p;))

lt(pi)
i — % - pj is exactly a linear combination of extensions of p; and
J

p; and the remainder of this S-polynomial modulo the other polynomials is
exactly what is computed by the echelon reduction. Nevertheless, Buchberger’s
algorithm is just one way to specialize these principles; the Fy/F5, MXLs and
PWXL algorithms share this linear algebra perspective but differ in important
respects.

Fy/F5. Where Buchberger’s algorithm adjoins one extended polynomial at
a time, Faugere’s Fy algorithm [55] adjoins batches of S-polynomials before
reducing all of them simultaneously. An important factor affecting complexity
is the strategy by which the batch of S-polynomials is chosen. A straightforward
constraint is to restrict attention in every step to those S-polynomials of lowest
degree, as this guarantees that the Macaulay matrix is never larger than it needs
to be. This degree is referred to as the step degree. The Fj algorithm [54] presents
another optimization. First, the algorithm computes a sequence of Grébner
bases: one for (p1), then for (p1,p2), and so on. Second, every polynomial in the
computation is stored with a signature that details how it was obtained from
the original list. This pair of modifications enables a very stringent criterion
for selecting critical pairs from which to compute S-polynomials; in particular,
this criterion guarantees that no time is spent on redundantly reducing an
S-polynomial to zero provided the system is regular (see below). While both Fy
and Fy can be implemented with sparse polynomials, the implementation in
the Magma computer algebra system [29] uses dense linear algebra. Moreover,
Faugere indicates that the sparsity is lost in the course of large computations [34,

§ 3.

MXLs. The MXLs algorithm [100] works specifically for ideals with zero-
dimensional varieties!, or equivalently, for determined systems of polynomial
equations. Where the Fj/F5 algorithms are extremely selective in their choices
of which polynomials to extend and adjoin, the XL family of algorithms [42, 148]
employs a rather brute strategy. All polynomials are extended via multiplication
by all monomials such that the resulting degrees are equal to the current working
degree. At this point, the Macaulay matrix is brought into reduced row-echelon
form. If there are univariate polynomials, they are factored and a root is
selected and back-substituted. Otherwise, the working degree is incremented.
Eventually, all variables receive an assignment. What makes the subfamily of
Mutant-XL algorithms [46, 101, 9] special is the attention devoted to mutants,
i.e., algebraic combinations of starting polynomials resulting in an unexpected

LA wariety is the set of all solutions to all polynomials in the ideal.
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degree drop. Since their degree is lower than the working degree, they can be
extended again, thus providing more material with which to reduce the next
polynomial. The novelty of MXLg is that the univariate factorization is dropped.
As a result, MXLj3 actually outputs a proper Grébner basis rather than a single
solution, although it is only guaranteed to work if the ideal in question defines
a zero-dimensional variety.

PWXL. The WXL algorithm [103] drops Gaussian elimination altogether in favor
of a sparse linear system solver — in particular, the Wiedemann algorithm [144]
or a blockwise generalization thereof due to Coppersmith [39]. After extending
the original polynomials to working degree d, some random rows of the Macaulay
matrix are dropped so as to make it square. If this square matrix A is non-
singular, then 2("+S+1) matrix-vector and vector-vector products suffice to
compute the matrix’s minimal polynomial, after which a rearranging of the
intermediate results and summing with appropriate weights yields the solution
X = (:cil,x‘li_lxg, ...,x,)7 to the linear system of equations AX = b. If A is
singular, then try another random selection of rows. If A remains consistently
singular then increment the working degree d. The “P” in PWXL indicates
that the matrix-vector products are computed in a parallel fashion. While
PWXL has a lower complexity than Fy/F5 and MXL3 asymptotically speaking,
in practice it occasionally terminates at a higher working degree. This makes
for a larger running time in practice.

Clearly, the various algorithms for performing an algebraic attack are related —
and so are their complexities. They all boil down to performing sparse
linear algebra on an extended Macaulay matrix. The complexity is therefore
determined by the size of this matrix and, by proxy, the degree to which the
polynomials are extended. Determining this degree is therefore an important
aspect of estimating the complexity of algebraically solving a system of
polynomial equations.

Degree of Regularity. These paragraphs recycle text from my answer in
response to a question on Stack Exchange [146].

There are a couple of definitions in the literature that each aim to capture
an aspect of the degree d to which a system of polynomial equations must be
extended before linear algebra on its Macaulay matrix will yield a solution.
Some of them are confusingly referred to as the degree of regularity, despite
denoting logically different notions. For random MQ systems, we are interested
in the index of regularity or the degree of semi-regularity.

Index of Regularity. The index of regularity is defined using the Hilbert
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polynomial and sequence of an ideal Z [43, Ch.9 Sect.3.]. Denote the
set of polynomials in Z of degree s or lower as Z<; and the same for
Fy[x]<s. The Hilbert function HF; : N — N of an ideal Z is defined
as HFz(s) = dim(F,[x]<s/Z<s) and it follows immediately that HFz(s) =

dim(Fy[x]<s) — dim(Z<,). For sufficiently large s, the Hilbert function of 7

is identical to a polynomial HPz(s) = Zf:() bi(,>;) for some b; € Z and

by € N\{0}, called the Hilbert polynomial. The index of regularity is the
smallest sg such that for all s > sg, HFz(s) = HPz(s). This value is also called
the Hilbert reqularity [145].

Degree of Semi-Regularity. A sequence of polynomials (p1(x),...,pm(x)) is
reqular if g-p; € (p1,...,pi-1) = g € (p1,...,pi—1)- Regular systems capture
the worst case of polynomial systems in terms of their solving complexity. The
Hilbert series of an ideal Z is defined as the formal power series HSz(z) =
Yooeo HFz(s)z®. The Hilbert series of the ideal Z = (p1,...,p;) spanned

by a regular sequence of homogeneous polynomials (p1,...,pn) is given by
™1 pdes(py)
HSz(z) = 1—1((172)71 ) It is known [16] that the degree of the highest-

degree elements in a degree-reverse lexicographical Grobner basis is bounded
(up to a linear change of variables) by the Macaulay bound: > " (deg(p;)—1)+1.
This bound can be used to estimate the complexity of Grobner basis algorithms
for regular (i.e., worst-case) systems. If m = n, the sequence is regular if and
only if HS7 is a polynomial [1]. This means that for some bound sy and all
s > sg, HFz(s) = 0 and so HPz(s) = 0. In this case, so = deg(HSz) + 1 is
exactly the index of regularity.

Unfortunately, regular systems do not exist when m is larger than n. In
this case, one must assume the ideal defines a zero-dimensional variety, and
given that this is the case one can adapt the definition of regular sequences as
follows. A list of polynomials (p1,...,pm) is d-regular if for all g € F,[x] with
deg(g) < d — deg(p:), g-pi € (p1,---,Pi-1) = g € (p1,...,pi—1). The list
(p1,---,Dm) is semi-regular if and only if it is sp-regular, where sq is the index
of regularity [16]. For a semi-regular system the Hilbert series HSz(z) will not
be a polynomial but it can always be written as a formal power series (i.e. a
polynomial with an unlimited number of terms). In this case s¢ is the degree of
the first term in this formal power series whose coefficient is zero or negative.
Treating random systems of quadratic polynomial equations as semi-regular
seems to be empirically justified, but there is no proof that random systems are
indeed semi-regular with high probability.

Complexity. The first step of an algebraic attack is to choose random
assignments to variables until the resulting system has as many equations
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as free variables. However, when the number of variables is more than twice the
number of equations, we can do even better. Thomae and Wolf show that an
MQ system with n variables and m equations can be reduced to another MQ
system but with m — | > | 41 equations and as many variables [137]. Moreover,
in the case of random MQ systems, guessing more than n — m variables causes
a drop in the degree of semi-regularity that compensates for the cost of having

to retry if the guess was incorrect.

In the case of random systems, the expression for the degree of semi-regularity
is preferable to alternative degree of regularity notions. To this end, assume
that random lists of polynomials behave the same way that regular sequences of
homogeneous polynomials do. Recall that the Hilbert Series of such a sequence
of polynomials p1,...,pm € Fy[x] is given by

[T, (1 — zdee(Pi))

i=1

HS(z) = 1=

(4.6)
The degree of semi-regularity is the degree of the first term in this power series

whose coefficient is zero or negative. When ¢ = 2, the modified series

(I+2)"
H:’;l(]_ -+ zdeg(Pi))

HS'(z) = (4.7)

must be used instead [17]. Note that n should be substituted with n — k as
k variables are guessed first. As k increases, the degree of semi-regularity
decreases, but at the expense of the probability of making the correct guess.

Having determined the degree of regularity, the third step is to compute the
complexity of doing linear algebra on a Macaulay matrix whose polynomials
have this degree. Let dre4(k) denote this degree. The number of monomials of
degree d is (d?_’;l), as is easily visualized via the stars and bars argument. For
example, if n =4 and d = 5, then there are n + d — 1 positions for d stars and

n — 1 bars.

31374 — * % % | | x| %

The number of monomials of degree d or less is (d:"). One can always adjoin
an extra homogenizing variable z that is multiplied with every term until it
is of the requisite degree; this number is therefore the same as the number of
monomials in n + 1 variables of degree d.
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After guessing k variables, the width of the extended Macaulay matrix is
N = (dm‘?(s)_'*;g”_k). Gaussian elimination in this matrix requires N3 field
operations. If fast matrix multiplication techniques are used, the exponent is
a = 2.373 [62]. For the Wiedemann method the exponent is 2 but the complexity
accrues another factor ("gk). In particular, this method requires 2(d"69(fb)j€”7k)
matrix-vector and inner product multiplications, where the size of the vectors

is (d"fg(k):"_k) and the matrix has at most (”7;”3) nonzero elements, thus

e
2

making for a complexity of O(("#QHS) (dwy(s)fknfk) ). The Landau notation

hides the constant associated with the blockwise aspect as well as terms deriving

from non-bottleneck processing.

The k guessed variables correspond to a solution with probability ¢=*. On a
quantum computer, one can Groverize this guessing to find a correct solution
after only ¢*/2 iterations, where one iteration requires performing the entire
Grobner basis algorithm. So an estimate of the total complexity is given by

CMQ(k):()(qk/Q_(n—z;m) (dreg(l;)j;—k)?) s

or rather, the minimum of this quantity for various k.

Figure 4.1 plots the complexity of an algebraic attack on a system of quadratic
equations with various values for the field size ¢ and for the number of equations
m. The number of variables is chosen as n = m because this parameter choice
leads to the hardest to solve system.

4.1.2 Isomorphism of Polynomials

Another hard problem that pops up frequently in the context of MQ
cryptography is the isomorphism of polynomials (IP) problem [110]. Informally,
the task is to find a pair of linear or affine transforms that, composed on either
side of one given multivariate quadratic polynomial map, yields the other given
multivariate quadratic polynomial map. A formal definition follows.

There are many subtle variants. The decision variant asks only to decide whether
such a pair (T, 5) exists. The homogeneous variant allows only terms of degree
exactly two, and moreover requires dropping the constant part of the affine
transforms, i.e., T' € GL,(Fy) and S € GL,(FF,), because otherwise the problem
is easy. Furthermore, in the isomorphism of polynomials with one secret (IP1S)
problem, T = Id; and the morphism of polynomials (MP) [111] considers generic
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Figure 4.1: Complexity of Grobner basis attack.

Hard Problem 4.2: TP Problem
Parameters: number of polynomials m, number of variables n.

Given: two lists F,P € (F,[x]<2)™ of m polynomials of degree at most
2 in n variables (z1,...,7,) = x' over a finite field F, such that
for some invertible affine transformations T' € AGL,,(F,) and
S e AGL,(F,),P=ToFoS.

Task: Find a pair (T, S) € AGL,, (Fyq) x AGL,, (Fy) such that P = ToFoS.

matrices S and 7', not necessarily invertible and possibly not even square. Most
importantly, in the extended isomorphism of polynomials (EIP) problem?, the
solver is not given two lists of polynomials, but one. Instead of finding a pair of
affine transformation that turns the given system of polynomials into another
one, the transformations should turn the system of polynomials into one with
a particular structure — structure that may be used by the secret key holder
to efficiently find inverses to given images, as reflected by Fig. 4.2. If the EIP
problem is hard for a given structural mechanic for computing inverses, then it
may be argued that the given public key is indistinguishable from a random

2The first mention of this problem I could find was in Petzoldt’s dissertation [113, §2.3.2.]
but essentially all bipolar MQ cryptosystems rely on the hardness of this problem — even the
ones that came before.
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MQ map. This generates a trapdoor function, because from the point of view
of the adversary, inversion is hard.

encryption or signature verification

public knowledge

private knowledge

decryption or signature generation

Figure 4.2: Bipolar construction for multivariate quadratic cryptosystems.

To date, the best attack on IP is due to Bouillaguet et al. [30], which has a
heuristic complexity of ~ ¢"/2. However, there are many caveats. For instance,
as g rises, at some point an algebraic search for (S,T) whereby the coefficients
of these matrices are variables will outperform this attack; at this point the
complexity is largely independent of ¢. When m = 1 the problem is trivial
because quadratic forms admit a canonical representation; also when m = 2 an
algorithm by Plit et al. solves the problem in polynomial time [115]. In the
case of the EIP problem, the best attack depends on the particular strategy
for computing inverses, because this strategy induces the structure on the
polynomials that might make EIP easy. Indeed, one of the most generic open
questions in MQ cryptography is how to generate MQ maps that enable efficient
inverse computation but for which EIP is hard.

4.2 Lattices

A lattice is the discrete analogue of an infinite subspace. As such, they pop up
in various places in the context of discrete algebra and number theory. A lattice
L is given by a set of vectors by,..., b, € Z™ called a spanning set or, if they
are linearly independent, a basis. A basis for a given lattice is not unique, and
some are more useful than others.

Definition 15 (lattice). A lattice £ C R™ is the set of integer linear
combinations of a spanning set or basis {b1,...,by}: L={>"" zb;| 2z € Z}.
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Lattice basis reduction is the non-trivial task of finding another basis for the
same lattice but composed of short vectors, usually in the #5 norm. Lattice
reduction algorithms such as LLL [93] and BKZ [122] are the go-to tool for
attacking number-theoretic cryptosystems where small portions of information
are leaked, such as factorizing of RSA moduli if a part of one of the prime
factors is known [40], or computing the secret key from ECDSA signatures
where the nonces are partially known [107].

However, in high dimensions, i.e., several hundreds or more, lattice reduction
seems hard — even for quantum computers. The canonical lattice problem,
the approximate shortest vector problem (SVP,), of finding a short vector
whose length is at most a given factor 7 off from the shortest nonzero vector, is
NP-hard? for constant approximation factors [8], and empirically infeasible for
polynomial ones.

Hard Problem 4.3: SVP,
Parameters: an approximation factor v € R.g.
Given: a lattice L.

Task: find a vector v € L such that ||v]s < v A (L) where \(£) =
minye s fo} ([[V][2)-

It stands to reason then, that the cryptosystems whose most effective attack is
lattice reduction in high dimension achieve post-quantum security.

4.2.1 SIS and LWE

The Short Integer Solution (SIS) and Learning with Errors (LWE) hard problems
are popular source material for the generation of public key cryptosystems for
at least two reasons. First, they are expressible in the language of simple
linear algebra. Second, they both enjoy a worst case to average case reduction.
This reduction guarantees average case hardness, assuming that the underlying
lattice problem is hard.

Informally, the SIS problem asks to find a short solution to a under-determined
system of linear equations. Conversely, the LWE problem asks to find a solution
to an over-determined system of noisy linear equations, i.e., equations that hold
up to some small noise.

3This NP-hardness result holds with respect to randomized reductions. Standard NP-
hardness results hold for deterministic reductions.
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In the present context of lattice problems, and generally in contexts where a
vector’s length is important, the field F, over which the equations are defined,
is a prime field. This allows one to identify integers with the coordinates of the
vector and thus to define its length in a straightforward way.

Hard Problem 4.4: SIS Problem
Parameters: dimensions m and n with n > m, length-bound 8 € Rsg.
Given: a matrix A € Fy"™".

Task: find a vector x # 0 such that Ax = 0mod ¢ and such that ||x||z <
B.

Hard Problem 4.5: LWE Search Problem
Parameters: a discrete Gaussian distribution 1 over F, of “small” elements.

Given: query-access to a sample-generator G that outputs samples (a;, b;)

where b; = a]s + e; mod ¢ with a; & Fy and e; ~ ¢ and for some
unknown but constant s € Fy.

Task: find s.

The link with lattices is readily observed. The set of solutions to Ax = 0 mod g
is a lattice; SIS solutions are short vectors in this lattice. Likewise, the vectors
(ay;, b; —e;) lie in a lattice. These lattice points are hidden precisely by the added
noise e;, but the adversary who manages to separate the noise from the lattice
point for enough samples can rapidly recover the secret vector s. The link with
lattices is even more apparent from the worst case to average case reductions.
Ajtai [7] shows that an algorithm that solves random SIS instances can be made
to efficiently solve a given instance of SVP,, for a polynomial approximation
factor, i.e., with v = n® for some constant c¢. Regev [117] shows that, when
q > 2n, an algorithm that solves LWE can be used by a quantum algorithm
to efficiently solve a given instance of SVP with approximation factor O(n /)
where a € (0, 1) is a parameter related to the distribution v of small elements.

The description of SIS and LWE instances does consist of large matrices of
roughly m x n random coefficients, where in the case of LWE, m is the number
of samples queried or queriable by the solver. However, it is by no means clear
that any security is lost by switching to structured matrices, such as cyclic
or nega-cyclic matrices for every n x n block. A user can therefore get away
with storing only the first row or column as the other elements can be inferred
from this. Algebraically, this corresponds to arithmetic in the polynomial
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ring Zg4[z]/{z™ £ 1); the names for the corresponding problems have converged
to Ring-SIS and Ring-LWE [95, 112, 129, 96]. Endowing this algebra again
with a module-structure further generalizes the problems to Module-SIS and
Module-LWE [91]. This last pair of variants have the bandwidth advantage
of its immediate ring-based predecessors, while salvaging to some extent the
potential security gains associated with unstructured lattices.

4.2.2 Lattice Reduction

LLL. Following standard practice in the context of the LLL algorithm, we
consider basis vectors as row vectors: b; € Z1X™. A given basis {b1,...,b,}
for a lattice £ may be identified with a basis matrix B € Z™*™ obtained by
stacking the row-vectors on top of each other. In this case £ = {zB |z € Z'*"}.
Two basis matrices By and Bs define the same lattice if and only if there is a
unimodular matrix, i.e., with integer elements and determinant £1, such that
By = UBs. An equivalent formulation of the task of lattice basis reduction
is to find a unimodular matrix such that the resulting basis matrix is small.
The volume, or determinant, of a lattice is an invariant defined as, for any
basis matrix B, Vol(£) = /det(BBT). Incidentally, this quantity is also the
volume of the fundamental parallelepiped, and this correspondence leads to the
observation that a somewhat short basis must also be somewhat orthogonal
and vice versa.

Recall the Gram-Schmidt method for obtaining an orthogonal basis (b3, ..., b})

from a given basis (by,...,b,) € (R'*™)". The process is inductively defined

as computing f; ; = éEE’) for 1 <i<j <mnandbj=Db;— Zf;ll i b

7

starting with by = b;. 'Drop the p; ; appropriately in the (j,¢) position of
a lower-triangular square matrix M, and observe that M B = B*, B* has
orthogonal rows, and det(M) = 1. However, neither B* nor M are guaranteed
to be integer matrices, and so B* will not span the same lattice. The next best
thing is to round the coefficients y; ; to the nearest integer and find the new

basis vectors b; = b; — 25:1 |11 ;1b; with by = by.

The celebrated LLL algorithm [93] combines this rounded Gram-Schmidt
procedure with a criterion for swapping the order of an adjacent pair of
basis vectors. In particular, the LLL algorithm procedurally computes the
rounded Gram-Schmidt “orthogonalization” (by,...,bg_1) for k going from 2
to n + 1. However, it only proceeds to the next increment of k if the condition
b+ ek, k—1bj_1 |2 > n||bj_, |2 is satisfied; otherwise by, _; and by, are swapped
and k is decremented —unless it is already 2— and the new by_; is Gram-
Schmidt reduced instead. When & = n + 1 the algorithm terminates. The 7
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in the swapping criterion is a parameter that is usually set to 0.99 in practice,
and polynomial running time is guaranteed when it lies in the interval (0.25,1).

The unreasonable effectiveness of the LLL algorithm for small-scale Diophantine
problems —which include plenty of practical cryptanalyses— stems from the

rather innocuous LLL bound on produced basis vectors. The shortest vector
(n—1)/4
produced by LLL satisfies ||by| < (m -Vol(£)Y/". Compare this
bound to the Minkowski bound which guarantees that there is a nonzero
lattice vector v whose length is bounded by ||v|| < /7 - Vol(£)'/™. If the
(n—1)/4
4 ) /

dimension n is small enough such that the relative difference (m

is much smaller than Vol(£)'/", then LLL will find the shortest solution with
overwhelming probability.

vn

The story is completely different for large n, because then the difference between
the LLL bound and the Minkowski bound explodes. In order to find short
vectors, one has to switch to another lattice basis reduction algorithm.

BKZ and Core SVP Hardness. The Block Korkin-Zolotarev (BKZ) algo-
rithm [122] combines LLL with calls to an SVP oracle. At each iteration, the
SVP is computed in the projected sub-lattice of dimension equal to or less than
the block dimension b, spanned by the next b working basis vectors, or fewer if
there are not so many independent vectors left. If this SVP solution is equal
to the next basis vector, the algorithm increments a counter and shifts the
window of vectors spanning the sub-lattice by one. Otherwise the SVP solution
is inserted into the basis, LLL is run, and the counter is set to zero and the
window shifted back to the start. In this way, the BKZ algorithm progressively
builds a basis that is reduced in a much stronger sense than the outputs of
the LLL algorithm. However, this improved basis comes at the expense of an
exponential running time. The BKZ 2.0 algorithm [37] provides a number of
improvements to make the SVP oracle faster, and additionally comes with a
parameter determining the number of iterations. In practice this number is set
to something feasible, trading running time for quality of the output basis.

The reliance on the SVP oracle spurred the authors of the celebrated NewHope
cryptosystem [12] to propose a pessimistic estimation of the complexity of
lattice problems, which has since seen widespread adoption [10]. The summary
here applies some simplifications. The name “core SVP” stems from the fact
that the argument considers the complexity of only one SVP oracle query; the
number of times such a query is made within the BKZ algorithm is ignored.
The type of algorithm that solves the SVP is assumed to be a sieve: sieve type
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algorithms have asymptotically better running time, though in practice the
alternative of enumeration performs better. The complexity of the sieve for
classical attackers is estimated at roughly 2°-2920: an attacker capable of using
quantum computations can leverage Grover search and drop this to 20-265
In a more paranoid situation, the attacker can perform faster-than-quantum
computations but as sieve algorithms still require explicitly building lists of
20-2075b jtems, one can use this number as a lower bound on the complexity.

The next question is, for which value of the block size b will BKZ output the
desired short vector? From the point of view of the attacker, this short vector
should be either equivalent to the secret key or else capable of undermining the
security of the cryptosystem in another way. In either case, for a well-designed
system, this vector will be short enough to force the attacker to choose a rather
large b to find it, and in turn to force him to run a very expensive SVP solver.
Let s denote this secret short vector.

The quality of a reduced lattice basis, such as those output by the LLL or
BKZ algorithms, can be characterized by the root-Hermite factor § [63], which
is defined via ||by |2 = 6™ Vol(£)Y/™, where by is the shortest nonzero vector
in the basis. Under the geometric series assumption [121], the Gram-Schmidt
vectors of the output of BKZ have length ||b?|| = 6™~2"+1.Vol(L)'/™. Moreover,
Chen [36] gives an asymptotic limit for ¢ under the same assumption: as n

1
1\ 2(6—1)

approaches infinity, § = (T;(wb) b . The secret short vector s will be

found if its projection onto the last b Gram-Schmidt vectors is shorter than
*

r_p- Approximating the size of this projected vector as \/% - ||s|, this leads
to the criterion for success

\/% Is|| < §%m L vol(L)Y™ (4.9)

For SIS and LWE problems, the lattice is generally g-ary, meaning that for all

v € Z™ the membership question v é L is determined by v modgq. For g-ary
lattices with prime ¢ and of dimension n and embedding dimension m, the
volume is given by Vol(£) = ¢™ ™. Figure 4.3 plots the quantum complexity as
a function of the lattice dimension n and the modulus ¢q. The remaining free
parameters are fixed to typical values: the embedding dimension is m = 2n
and length of the secret short vector is y/mn /27 corresponding to a standard
deviation of o = /3= for the LWE distribution ¢ [11].

The top three lines halt abruptly because in those cases no block size b can
satisfy Eqn. 4.9. One possible perspective on the cause of this phenomenon is
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Figure 4.3: Complexity of lattice reduction attack.

that the rule of thumb equating the standard deviation to o = /3% results
in a rather large value, which then causes the right hand side to always be
larger than its left hand counterpart; indeed, the NewHope parameters specify
o =V8 <« \/% = % ~ 163.0. The constraint ¢ > \/% stems from a
requirement to resist the Arora-Ge linearization attack [14]. However, this
attack only applies when the attacker has access to an unlimited number of
samples, which is not the case for an attack on the NewHope cryptosystem. An
interesting open question is therefore whether the NewHope security estimation
can be lifted to the regime where Arora-Ge does apply, or which alternative
should be used there instead.

4.3 Other Hard Problems

Algorithms for computing Grébner bases and reducing lattice bases are versatile
tools in the toolbox of the algebraic cryptanalyst. Their complexities are limiting
factors on the parameter selection for various cryptosystems. This raises the
tantalizing possibility of post-quantum hard problems for which both basis
strategies either fail completely or are so infeasible that something else is the
limiting factor.
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This is obviously the case for the other branches of post-quantum cryptography.
In particular:

e Hash-based cryptography relies on the collision resistance and second
preimage resistance properties of hash functions to generate signature
schemes such as SPHINCS [25]. While these hash functions can be attacked
algebraically, the very high degree polynomials make for an infeasible
Grobner basis computation. There is no lattice to speak of. In practice,
the best performing attacks are either symmetric cryptanalysis or generic
black box attacks.

e Code-based cryptography relies on the difficulty of decoding noisy
codewords of a random error-correcting code. The classic example is the
McEliece cryptosystem [98]. It is possible to identify a lattice with these
cryptosystems but with regards to lattice-based cryptography there are
two important differences. First, the secret is a short vector with respect
to the Hamming weight rather than the Euclidean norm, meaning that
all nonzero coefficients may be arbitrarily large*. Second, the dimension
is typically an order of magnitude larger than the lattice dimension for
lattice-based cryptosystems. Both differences conspire to make lattice
reduction wildly infeasible and in practice combinatorial methods such as
information set decoding [97] are the bottleneck attack.

o Isogeny-based cryptography relies on the difficulty of finding isogenies
between elliptic curves over finite fields, and features homomorphisms that
makes key exchange possible [56, 33]. There is no lattice to speak of. An
algebraic attack first needs to decide on the targeted representation of the
isogenies. If the fractional map representation is targeted, a Grobner basis
attack would have to use an exponential number of variables. Otherwise,
if it is targeting the coeflicients for the torsion subgroup generators P and
@, it would have to find a way to mix elements from different algebras.
The former task is infeasible, the second is ill-defined.

In the course of my research, I have paid particular attention to two rather new
hard problems which in my estimation belong in this list. In both cases, it is
possible to identify a lattice with the space of solutions, although not all lattice
points correspond to solutions. However, in both cases this lattice contains
parasitical solutions — lattice vectors that are shorter than the sought-after
secret. This presence of parasitical solutions makes a lattice reduction procedure
irrelevant as it is destined to find vectors that are too small. Among the vectors
in the lattice that are of the right size, there are too many to choose from, and
only an insignificant proportion of them correspond to the secret.

4But since these lattices are g-ary also, “arbitrarily large” means at most max({0, ...,q—1}).
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4.3.1 Short Solutions to Nonlinear Equations.

The Short Solutions to Nonlinear Equations (SSNE) problem was introduced
by myself and Bart Preneel at NuTMiC 2017 as the logical merger of the
MQ and SIS problems [133]. Algebraic attacks fail because Grobner basis
algorithms cannot distinguish between solutions and short solutions, whereas
lattice reduction fails because it cannot distinguish between solutions and
non-solutions. It is possible to identify a region of parameter space where
——conjecturally, but quite plausibly— brute force search is the best performing
attack.

Hard Problem 4.6: SSNE Problem

Parameters: number of polynomials m, number of variables n, length bound

B € Ro.
Given: alist P € (Fy[x])" of m non-affine® polynomials in n variables
(z1,...,7,) = X" over a prime field F,.

Task: find a solution x € Z™ such that P(x) = 0 mod ¢ and such that
[x[lo < 5.

“In this context, non-affine means: at least one of the polynomials has degree at
least two.

We identify 6 design principles to take into account to ensure the problem is
hard. The amendment to principle 2 is adopted from a follow-up paper on
obtaining zero-knowledge proofs and signature schemes from SSNE [131], and
this amendment makes principle 4 superfluous. The principles for targeting
bits of security against classical computers are:

L. B> kK;
2". m(logy g — logy B) > K;
3. ||x||3 > ¢ for all solutions x;

5. rank(WT + W) > dim(V(P)) if the length constraint is generalized to
x"Wx < %

6. 0> m = " CEMlog, g > \/n+log, B, where 0 = max, s.t. m(o+1)/2 <

n and o < n.

The non-linearity of the equations, along with design principle 3, is an essential
property in order to thwart lattice reduction attacks. Polynomial equations in
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the variables x = (x1,...,2,)' can always be considered as linear equations
in the extended vector of variables (1,21,...,7n, 2%, 2172,...). If there is a
solution to the polynomial equations such that the extended vector is small, then
lattice reduction algorithms can find it. However, design principle 3 guarantees
that this extended vector is larger than ¢; since this is not at all short, lattice
basis reduction will find other vectors instead — vectors that do not correspond
to solutions to the polynomial equations. In principle, this constraint can
be relaxed to require only that ||x||2 is significantly larger than the length of
solutions that may be expected from the Gaussian heuristic. It remains an open
question, however, whether this relaxation comes with a material benefit from
the designer’s point of view.

4.3.2 Sparse Integers in a Mersenne Ring.

Let n = 2P — 1 be a Mersenne prime. Arithmetic in the ring Z/nZ is somewhat
Hamming weight preserving: aw(a + b) < aw(a) + BW(b) and HW(a X b) <
HW(a) X HwW(b) where aw : Z/nZ — Z denotes the Hamming weight of the
integers’ binary expansion. This somewhat homomorphic property suggests
the possibility for a noise-based key encapsulation mechanism or public key
encryption scheme, similar to the noisy schemes put forward by the lattice and
coding theory branches of post-quantum cryptography.

These observations were first made by Aggarwal et al. in a paper published
on TACR ePrint [4] where they also propose a cryptosystem similar in spirit
to NTRU [66] but relying on the arithmetic of this Mersenne ring. A later
version of that ePrint paper [5] updates the design strategy from NTRU-like to
resembling a noisy Diffie-Hellman protocol, matching the authors’ submission
to the NIST project called Mersenne-756839 [3]. Independently, I developed
essentially the same noisy Diffie-Hellman based cryptosystem and submitted it
under the moniker “Ramstake” [130].

The most salient feature of the noisy Diffie-Hellman protocol, shown in Fig. 4.4, is
its simplicity. The algebra involved is just multiplication and addition of integers;
no vectors or matrices or polynomials are involved. Even modular reduction is
child’s play: in the ring of integers modulo a Mersenne number n, reduction is
performed by splitting the binary expansion into chunks of p bits, and summing
the chunks. If the Hamming weight bound w is sufficiently small, i.e., an order
of magnitude smaller than p, then Alice and Bob will agree approximately on
the same number. In particular, the binary expansions of F4 = acG + ad and
Ep = acG + be are roughly 4w? bits apart. However, going from approximately
equal secrets to exactly equal secrets requires transmitting an additional message
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that involves an error-correcting code, and this transformation makes the system
rather more complex as well as necessarily interactive.

Alice Bob

agree on random G € Z/nZ

a,b & {z € Z/nZ|aW(x) = w} ¢ d & {r € Z/nZ|aW(2) = w}
Ej + a(cG +d) Ep < c(aG +b)

Figure 4.4: Noisy Diffie-Hellman protocol in a Mersenne ring.

The hard problem for the NTRU-like cryptosystem is to find low Hamming
weight integers f and g such that their fraction is equal to a given non-
sparse integer H. The noisy Diffie-Hellman protocol requires the hardness
of what is essentially an affine version of this problem, called the Low Hamming
Combination (LHC) Problem. It additionally requires that the analogues of the
computational and decisional Diffie-Hellman problems are hard; these problems
are called Low Hamming Diffie-Hellman Search (LHDHS) Problem and Low
Hamming Diffie-Hellman Decision (LHDHD) Problem, respectively. These
requirements follow from a straightforward depiction of the protocol such as
that of Fig. 4.4.

Hard Problem 4.7: LHC Problem
Parameters: Mersenne prime n, weight bound w < n.

Given: two integers G, H € Z/nZ

Task: find two integers a, b € Z/nZ such that Bw(a) < w and HW(b) < w
and aG +b=H.
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Hard Problem 4.8: LHDHS Problem
Parameters: Mersenne prime n, weight bound w < n, noise threshold t.

Given: three integers G, H, F' € Z/nZ such that there are sparse integers
a,b,c,d € Z/nZ of Hamming weight at most w such that aG +b =
Hand cG+d=F.

Task: find an integer E € Z/nZ such that the Hamming distances
HD(E,aF) <t and aD(F,cH) < t.

Hard Problem 4.9: LHDHD Problem
Parameters: Mersenne prime n, weight bound w < n, noise threshold ¢.

Given: four integers G, H, F, E € Z/nZ such that there are sparse integers
a,b,c,d € Z/nZ of Hamming weight at most w such that aG+b =
Hand cG+d=F.

Task: decide whether the Hamming distances HD(E,aF) < ¢ and
HD(E,cH) < t.

To date, the best performing attack against these hard problems is the so-called
slice-and-dice attack due to Beunardeau et al. [27]. The attack targets the LHC
problem and attempts to recover a,b from G, H. It starts by choosing a random
partition of the binary expansions of a and b. Each partition is identified with
a new variable a; or b; such that a =), 2%iaq, and b =), 2°*ib;, where s, ;
and s, ; are the starting positions that define the partition. Then the single
equation aG 4+ b = H corresponds to a multivariate equation in terms of the a;
and bz

However, half the parts are labeled inactive and the other half active. If it is
true that all the 1-bits of the binary expansions of a and b happen to lie in
active partitions, then the value of all inactive variables is zero. This means in
turn that the equation

( Z 25""’7%) G+ < Z 25b'ibi> =H (4.10)

activet activei

has a solution, which can be found using LLL [93].

The running time of this attack is determined by the probability that a partition
and labeling is correct. This event occurs with probability 272% as there are 2w
bits that have to lie in active intervals, which make up half the possible space.
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Figure 4.5: Partition and successful labeling in Beunardeau et al.’s slice-and-dice
attack.

Ignoring the cost of running LLL, this makes for a classical running time of
2% Quantumly, one may expect to Groverize the random guess and obtain a
running time of 2.

Note that while this attack does involve lattice basis reduction, it is not
the bottleneck. If a brilliant student has a breakthrough result dramatically
decreasing the complexity of the SVP oracle, the security of this cryptosystem
will remain unaffected. In a classification of cryptosystems by the hard problem
they rely on, the Mersenne-756839 and Ramstake cryptosystems cannot be
classified as lattice-based.

Nevertheless, it is possible to identify a lattice with the space of solutions and in
this lattice the vector that is identifiable with the solution (a, b) is short. Consider
the basis of (2n + 1)-dimensional row-vectors (K -2!G,0,...,0,1,0,...,0) where
the 1 is in position i + 1 for i € {0,...,n—1}, (K-2%0,...,0,1,0,...,0) where
the 1 is in position n +i+ 1 for i € {n,...,2n — 1}, and (K - n,0,...,0), all
for a sufficiently large integer K. Then, using the bit expansion of @ and b, the
vector (0, a,b) is a short vector in this lattice, obtained by applying the weight
vector (a,b, —1). This lattice basis is constructible by the adversary from public
information. However, this lattice contains parasitical solutions: by subtracting,
say, 2 times the second basis vector from the third one we obtain a vector with
norm /5. Even if the adversary manages to find a sufficiently short reduced
basis for this lattice —quite the challenge, given the dimension— the solution
(0, a,b) with length v/2w? will fail to stand out from the multitude of vectors
whose norms are smaller.






Chapter 5

Conclusions

The threat of future (and possibly present) quantum computers poses a unique
challenge for designers of public key cryptosystems. When they are built,
quantum computers will be able to efficiently solve a class of computational
problems that has proved nigh indispensable for the generation of public key
cryptosystems. These will be broken as a consequence of this efficient solution.
It is therefore fitting and timely to adapt the field of public key cryptography
to take this threat into account.

On the one hand, the foundational hard problems from which public key
cryptosystems derive their security must be made to resist attacks that run
on quantum computers. This means exchanging problems like the integer
factorization problem and the discrete logarithm problem for hard problems
based on systems of polynomial equations or based on noisy linear algebra, to
name just a few popular choices. This is the eponymous mathematical aspect
of post-quantum cryptography.

9

On the other hand, the security proofs that demonstrate the cryptosystems
security must be reconsidered as well. Up until recent years, security proofs have
implicitly considered a classical computing model for the adversary. However,
when adversaries in the quantum computing model are considered, many of these
proofs and proof techniques are invalid. A complete argument for post-quantum
security therefore mandates security proofs and proof techniques that hold in
the quantum computing model, in addition to the classical one. This is the
provable security aspect of post-quantum cryptography.

This introduction, being an introduction, can only touch on so many topics

7
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without becoming a comprehensive treatment. Instead, this text opts to convey
only the basic principles of quantum computation, provable security, and only
two branches of hard mathematical problems. Sophisticated quantum algorithms
for specific computational problems and new proof techniques for the quantum
computing model are a recurring feature of post-quantum themed conferences.
The omission is starker still where the hard problems are concerned: aside
from MQ-based and lattice-based problems, three branches of post-quantum
problems have only been touched superficially, and cryptography based on
non-commutative groups has not been mentioned at all (until now). The
focus on the most basic functionalities reflects the urgent demand. However,
fancy constructions like homomorphic encryption, multi-party computation,
and blind signatures are a major staple of public key cryptography whose lifting
to the post-quantum domain has remained largely restricted to lattice-based
cryptosystems in the classical random oracle model.

With respect to the topics that are covered, this introduction represents a
summary of the state of the art. While some aspects may be less likely
than others to see change in coming years, progress is virtually certain. It
is worthwhile then, to pause and reflect on some open issues.

Quantum Algorithms. The field of quantum algorithms is very much an
active topic, but the intersection between quantum algorithm designers and
cryptographers or computer algebra specialists remains rather small. In light
of the increasing attention being paid to the quantum adversarial model, the
exact quantum hardness of hard problems is a question of prime concern.
Breakthroughs of the magnitude of Shor’s algorithm are unlikely because low-
hanging fruit of this kind has been made rare. However, it remains likely
that careful quantum optimizations may improve standard attack strategies in
non-fatal ways, and consequently mandate updates to recommended key sizes.

Quantum Random Oracle Model. The chief objective in provable security
is to find better proof techniques allowing tighter bounds. In the case of the
quantum random oracle model, the bounds are notoriously untight due to the
pervasive square root. One question is whether these square roots are indeed
a necessary feature of working in the quantum computing model, or whether
there is a clever reduction that allows for their elimination. Even if they cannot
be eliminated, however, they might be shifted to terms where they have less
impact.

There remain classically-valid proof techniques that are invalid in the quantum
random oracle model, and that have no obvious translation to the QROM. A
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major open question is therefore to determine which proof techniques can be
saved, and which are inherently anti-quantum. It is conceivable that there be
various QROM translations of the same principle, each with their pros and
cons depending on the context. In the end, the holy grail remains a complete
replacement of all quantum random oracles with concrete functions, along with
a demonstration that this replacement does not degrade security.

Constructions and Transformations. The set of available proof techniques
determines which constructions can be reduced to hard problems, and
which functionalities can be constructed out of more basic primitives. For
instance, to date there is only one post-quantum interactive-to-non-interactive
transformation for zero-knowledge proofs of knowledge, namely that of
Unruh [140]. This transformation applies only to commitment-based interactive
protocols and even requires first transforming a non-commitment-based protocol
into a commitment-based one before making it non-interactive. An alternative
to the Unruh transform may come with significant bandwidth improvements
for post-quantum signatures.

Another example is the hash-and-sign paradigm, which is presently provably
secure only if the underlying trapdoor permutation has random reducibility.
However, many post-quantum hash-and-sign signature schemes have been
proposed and they seem secure despite the lack of any such proof. On a similar
note, an alternative to finding an outright EUF-CMA proof for hash-and-sign
protocols is to find a upgrade transform to obtain EUF-CMA secure signature
schemes from UUF-CMA ones. However, such an upgrade is unavailable even
in the classical random oracle model.

MQ. With respect to multivariate quadratic systems, they key question
remains the quantification of their solving difficulty. While the complexity
of solving random MQ systems is well understood, most MQ cryptosystems
employ the bipolar construction to hide a trapdoor and in this case the resulting
public key is far from random. For the specific case of HFE_ systems there are
upper bounds on the first fall degree, which in turn is upper-bounded by the
degree of semi-regularity [47, 48, 50]. However, these bounds are not tight and
constrain in the wrong direction from the designer’s point of view. For HFE;
systems in particular, and for bipolar constructions in general, provable security
is a major open question.

Another issue related to provable security is the exact problem definition. The
MQ problem is a search problem but there is a decision variant that is NP-
complete. The hardness estimates apply to the search variant and while it
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is conceivable that the decision variant is equally hard, this search-decision
equivalence remains conjectural. Additionally, the present formulation of the
MQ problem is technically speaking not a non-interactive problem but an
interactive game: it describes the process that generates the attacker’s view
rather than describing the instance itself. This is similar to the formulation
of the SIS and LWE problems but in those cases at least there is a reduction
from SVP,,, which does have a non-interactive formulation. The average-case
hardness of SIS and LWE follows from the worst-case hardness of SVP,. In the
case of MQ, no such worst-to-average-case reduction is known and as a result,
the average-case hardness of MQ must be assumed.

With respect to usability, a major downside of MQ systems is the large public
key. This public key represents all the coefficients of a system of m quadratic
equations in roughly as many variables, leading to a O(m?) scaling. In practice,
public keys tend to be on the order of hundreds of kilobytes or even megabytes,
which is far too large for resource constrained devices. A natural question
therefore is whether, to what degree, and at what cost this public key can be
shrunk.

Lastly, the absence of homomorphic properties makes the generation of public
key cryptosystems with fancy properties a challenging task. Recent years have
seen some progress for blind and ring signatures using the additivity of public
keys [114, 102]. Beyond that, however, properties like homomorphic encryption
or threshold signature generation remain unexplored.

Lattices. With respect to lattice-based cryptography, a major question remains
determining the concrete quantum hardness of lattice basis reduction. The
hardness argument of NewHope should at the very least be complemented with
another argument in order to cover the complete parameter space and avoid the
abrupt stoppage of Fig. 4.3. Another point of concern is that the quality of the
bases output by BKZ is significantly better than the theoretical bounds [37].



Bibliography

[1]
[2]

3

[4

5

6

[7

8

9

(10]

(11]

(12]

(13]

On the complexity of the F5 Grobner basis algorithm. In J. Symbolic Computation
(2015), pp. 49-70.

AARONSON, S. Quantum Computing Since Democritus, chapter 9: Quantum. Cambridge
University Press, 2013.

AGGARWAL, D., Joux, A., PRAKASH, A., AND SANTHA, M. Mersenne-756839. Submission
to the NIST PQC project.

AGGARWAL, D., Joux, A., PRAKASH, A., AND SANTHA, M. A new public-key
cryptosystem via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481,
2017. https://eprint.iacr.org/2017/481 — version of May 30 2017.

AGGARWAL, D., Joux, A., PRAKASH, A., AND SANTHA, M. A new public-key
cryptosystem via Mersenne numbers. Cryptology ePrint Archive, Report 2017/481,
2017. https://eprint.iacr.org/2017/481 — version of December 6 2017.

AHARONOV, D., AND BEN-OR, M. Fault-tolerant quantum computation with constant
error. In ACM STOC 97 (1997), F. T. Leighton and P. W. Shor, Eds., ACM, pp. 176—
188.

Aytal, M. Generating hard instances of lattice problems (extended abstract). In ACM
STOC 1996 (1996), G. L. Miller, Ed., ACM, pp. 99-108.

Autal, M. The shortest vector problem in Lg is NP-hard for randomized reductions
(extended abstract). In ACM STOC 1998 (1998), J. S. Vitter, Ed., ACM, pp. 10-19.

ALBRECHT, M. R., Cip, C., FAUGERE, J., AND PERRET, L. On the relation between
the MXL family of algorithms and Grébner basis algorithms. J. Symb. Comput. 47, 8
(2012), 926-941.

ALBRECHT, M. R., CURrTIs, B. R., DEO, A., DAVIDSON, A., PLAYER, R., POSTLETHWAITE,
E. W., VIrDIA, F., AND WUNDERER, T. Estimate all the {LWE, NTRU} schemes! In
SCN 2018 (2018), D. Catalano and R. D. Prisco, Eds., vol. 11035 of LNCS, Springer,
pp. 351-367.

ALBRECHT, M. R., PLAYER, R., AND SCcOTT, S. On the concrete hardness of learning
with errors. J. Mathematical Cryptology 9, 3 (2015), 169-203.

ALkiM, E., Ducas, L., POPPELMANN, T., AND SCHWABE, P. Post-quantum key exchange
- A new hope. In USENIX Security 2016. (2016), T. Holz and S. Savage, Eds., USENIX
Association, pp. 327-343.

ANAND, M. V., TAarcHI, E. E.; TABIA, G. N.; AND UNRUH, D. Post-quantum security
of the CBC, CFB, OFB, CTR, and XTS modes of operation. In PQCrypto 2016 (2016),
T. Takagi, Ed., vol. 9606 of LNCS, Springer, pp. 44-63.

81


https://eprint.iacr.org/2017/481
https://eprint.iacr.org/2017/481

82

BIBLIOGRAPHY

(14]

(15]
(16]

(17]

(18]

(19]

20]

21]

(22]

23]

[24]

(25]

[26]

27]

(28]

29]

(30]

(31]

ARORA, S., AND GE, R. New algorithms for learning in presence of errors. In ICALP
2011, Part I (2011), L. Aceto, M. Henzinger, and J. Sgall, Eds., vol. 6755 of LNCS,
Springer, pp. 403-415.

ATMANSPACHER, H. Quantum approaches to consciousness, 2015. https://plato.
stanford.edu/entries/qt-consciousness/.

BARDET, M., FAUGERE, J.-C., AND SALVY, B. On the complexity of Grébner basis
computation of semi-regular overdetermined algebraic equations. In ICPSS 2004 (2004).

BARDET, M., FAUGERE, J.-C., SALVY, B., AND YANG, B.-Y. Asymptotic behaviour of
the index of regularity of quadratic semi-regular polynomial systems. In MEGA 05
(2005), Citeseer, pp. 1-14.

BELLARE, M., DEsAI, A., Jokipil, E., AND ROGAWAY, P. A concrete security treatment
of symmetric encryption. In FOCS 97 (1997), IEEE Computer Society, pp. 394—-403.

BELLARE, M., AND NEVEN, G. Multi-signatures in the plain public-key model and a
general forking lemma. In ACM CCS 2006 (2006), A. Juels, R. N. Wright, and S. D. C.
di Vimercati, Eds., ACM, pp. 390-399.

BELLARE, M., AND ROoGAWAY, P. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS ’93 (1993), D. E. Denning, R. Pyle, R. Ganesan, R. S.
Sandhu, and V. Ashby, Eds., ACM, pp. 62-73.

BELLARE, M., AND ROGAWAY, P. Optimal asymmetric encryption. In EUROCRYPT
’94 (1994), A. D. Santis, Ed., vol. 950 of LNCS, Springer, pp. 92-111.

BELLARE, M., AND RocawAy, P. Code-based game-playing proofs and the security of
triple encryption. JACR Cryptology ePrint Archive 2004 (2004), 331.

BENNETT, C. H., AND BRASSARD, G. An update on quantum cryptography. In CRYPTO
’84 (1984), G. R. Blakley and D. Chaum, Eds., vol. 196 of LNCS, Springer, pp. 475-480.

BENOIT LIBERT (COORDINATOR). PROMETHEUS. http://prometheuscrypt.gforge.
inria.fr/. accessed 2018-05-27.

BERNSTEIN, D. J., Hopwoop, D., HULsING, A., LANGE, T., NIEDERHAGEN, R.,
PAPACHRISTODOULOU, L., SCHNEIDER, M., SCHWABE, P., AND WILCOX-O’HEARN, Z.
SPHINCS: practical stateless hash-based signatures. In EUROCRYPT 2015 Part I
(2015), E. Oswald and M. Fischlin, Eds., vol. 9056 of LNCS, Springer, pp. 368-397.

BEULLENS, W., PRENEEL, B., AND SZEPIENIEC, A. Public key compression for
constrained linear signature schemes. JACR Cryptology ePrint Archive 2018 (2018),
670. Also available in Part II, §. 6.3.

BEUNARDEAU, M., CONNOLLY, A., GERAUD, R., AND NACCACHE, D. On the hardness
of the mersenne low hamming ratio assumption. TACR Cryptology ePrint Archive 2017
(2017), 522.

BONEH, D., DAGDELEN, O., FISCHLIN, M., LEHMANN, A., SCHAFFNER, C., AND ZHANDRY,
M. Random oracles in a quantum world. In ASTACRYPT 2011 (2011), D. H. Lee and
X. Wang, Eds., vol. 7073 of LNCS, Springer, pp. 41-69.

Bosma, W., CANNON, J.; AND PravyousT, C. The Magma algebra system. I. The user
language. J. Symbolic Comput. 24, 3-4 (1997), 235-265. Computational algebra and
number theory (London, 1993).

BoulLLAGUET, C., FOUQUE, P., AND VEBER, A. Graph-theoretic algorithms for the
"isomorphism of polynomials" problem. In EUROCRYPT 2013 (2013), T. Johansson
and P. Q. Nguyen, Eds., vol. 7881 of LNC'S, Springer, pp. 211-227.

BUCHBERGER, B. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, 1965.


https://plato.stanford.edu/entries/qt-consciousness/
https://plato.stanford.edu/entries/qt-consciousness/
http://prometheuscrypt.gforge.inria.fr/
http://prometheuscrypt.gforge.inria.fr/

BIBLIOGRAPHY 83

(32]

(33]

(34]

(35]

(36]

37]

(38]
(39]

[40]

[41]
[42]
(43]
44]

[45]
[46]

[47]
(48]

[49]

[50]

[51]

CALDERBANK, A. R., AND SHOR, P. W. Good quantum error-correcting codes exist.
Physical Review A 54, 2 (1996), 1098.

CASTRYCK, W., LANGE, T., MARTINDALE, C., PANNY, L., AND RENES, J. CSIDH: an
efficient post-quantum commutative group action. JACR Cryptology ePrint Archive
2018 (2018), 383.

CHEN, C.-H. O., YANG, B.-Y., AND CHEN, J.-M. The limit of XL implemented with
sparse matrices. In PQCrypto 2006 (2006), pp. 215-225.

CHEN, M., HULSING, A., RIJNEVELD, J., SAMARDJISKA, S., AND SCHWABE, P. From
5-pass M@ -based identification to M@ -based signatures. In ASTACRYPT 2016 Part
IT (2016), J. H. Cheon and T. Takagi, Eds., vol. 10032 of LNCS, pp. 135-165.

CHEN, Y. Reduction de reseau et securité concréte du chiffrement complétement
homomorphe. PhD thesis, 2013.

CHEN, Y., AND NGUYEN, P. Q. BKZ 2.0: Better lattice security estimates. In
ASIACRYPT 2011 (2011), D. H. Lee and X. Wang, Eds., vol. 7073 of LNCS, Springer,
pp. 1-20.

CHUANG, I. L., GERSHENFELD, N., AND KUBINEC, M. Experimental implementation of
fast quantum searching. Phys. Rev. Lett. 80 (Apr 1998), 3408-3411.

COPPERSMITH, D. Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation 62, 205 (1994), 333-350.

CoPPERSMITH, D. Finding a small root of a bivariate integer equation; factoring with
high bits known. In EUROCRYPT ’96 (1996), U. M. Maurer, Ed., vol. 1070 of LNCS,
Springer, pp. 178-189.

CoRON, J. On the exact security of full domain hash. In CRYPTO 2000 (2000),
M. Bellare, Ed., vol. 1880 of LNCS, Springer, pp. 229-235.

Courrois, N., KLimov, A., PATARIN, J., AND SHAMIR, A. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In EUROCRYPT
2000 (2000), B. Preneel, Ed., vol. 1807 of LNCS, Springer, pp. 392-407.

Cox, D., LITTLE, J., AND O’SHEA, D. Ideals, Varieties, and Algorithms, 2 ed. Springer.

DeutscH, D. Quantum theory, the Church—Turing principle and the universal quantum
computer. Proc. R. Soc. Lond. A 400, 1818 (1985), 97-117.

Dieks, D. Communication by epr devices. Physics Letters A 92, 6 (1982), 271-272.

DiNg, J., CABARCAS, D., ScHMIDT, D., BUCHMANN, J., AND TOHANEANU, S. Mutant
grobner basis algorithm. In SCC 2008 (2008), pp. 23—-32.

Ding, J., AND HoDGES, T. J. Inverting HFE systems is quasi-polynomial for all fields.
In CRYPTO 2011 (2011), P. Rogaway, Ed., vol. 6841 of LNCS, Springer, pp. 724-742.

Ding, J., AND KLEINJUNG, T. Degree of regularity for HFE-. JACR Cryptology ePrint
Archive 2011 (2011), 570.

Ding, J., AND ScHMIDT, D. Rainbow, a new multivariable polynomial signature scheme.
In ACNS 2005 (2005), J. Ioannidis, A. D. Keromytis, and M. Yung, Eds., vol. 3531 of
LNCS, pp. 164-175.

DiNgG, J., AND YANG, B. Degree of regularity for HFev and HFEv-. In PQCrypto 2013
(2013), P. Gaborit, Ed., vol. 7932 of LNCS, Springer, pp. 52-66.

Ding, J., Yana, B., CHENG, C., CHEN, C. O., AND DuBo0I1S, V. Breaking the symmetry:
a way to resist the new differential attack. TACR Cryptology ePrint Archive 2007
(2007), 366.



84

BIBLIOGRAPHY

[52]
53]
[54]
[55]
[56]
[57]

(58]

[59]

[60]

[61]

[62]
63
[64]
[65]

(6]

[67]

(68]

(69]
[70]

[71]

EINSTEIN, A., BORN, M., BOrN, H., ET AL. Born-Einstein letters. M. Born, Ed., Walker,
p- 158.

EkERT, A. K. Quantum cryptography based on Bell’s theorem. Physical review letters
67, 6 (1991), 661.

FAUGERE, J.-C. A new efficient algorithm for computing Grébner bases without
reduction to zero (fs). In ISSAC 2002 (2002), ACM, pp. 75-83.

FAUGERE, J.-C. A new efficient algorithm for computing Grébner bases (F4). Journal
of pure and applied algebra 139, 1-3 (1999), 61-88.

FEo, L. D., Jao, D., AND PLUT, J. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Mathematical Cryptology 8, 3 (2014), 209-247.

FEYNMAN, R. P. Simulating physics with computers. International journal of theoretical
physics 21, 6-7 (1982), 467—-488.

F1AT, A., AND SHAMIR, A. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO ’86 (1986), A. M. Odlyzko, Ed., vol. 263 of
LNCS, Springer, pp. 186-194.

FiscHLIN, M. Communication-efficient non-interactive proofs of knowledge with online
extractors. In CRYPTO 2005 (2005), V. Shoup, Ed., vol. 3621 of LNCS, Springer,
pp. 152-168.

FLUHRER, S. R. Reassessing Grover’s algorithm. TACR Cryptology ePrint Archive 2017
(2017), 811.

Fusisaki, E., AND OkaMoTO, T. How to enhance the security of public-key encryption
at minimum cost. In PKC ’99 (1999), H. Imai and Y. Zheng, Eds., vol. 1560 of LNCS,
Springer, pp. 53—68.

GALL, F. L. Powers of tensors and fast matrix multiplication. In ISSAC ’14 (2014),
K. Nabeshima, K. Nagasaka, F. Winkler, and A. Szant6, Eds., ACM, pp. 296-303.

GAMA, N., AND NGUYEN, P. Q. Predicting lattice reduction. In EUROCRYPT 2008
(2008), N. P. Smart, Ed., vol. 4965 of LNCS, Springer, pp. 31-51.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In ACM
STOC 1996 (1996), G. L. Miller, Ed., ACM, pp. 212-219.

HARrDY, L. Quantum theory from five reasonable axioms. arXiv preprint quant-
ph/0101012 (2001).

HOFFSTEIN, J., PIPHER, J., AND SILVERMAN, J. H. NTRU: A ring-based public key
cryptosystem. In ANTS 1998 (1998), J. Buhler, Ed., vol. 1423 of LNCS, Springer,
pp. 267-288.

HosovyaMADA, A.; AND SASAKI, Y. Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. JACR Cryptology ePrint
Archive 2017 (2017), 977.

HosovAMADA, A., AND SASAKI, Y. Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In CT-RSA 2018 (2018),
N. P. Smart, Ed., vol. 10808 of LNCS, Springer, pp. 198-218.

HUGH EVERETT III. The theory of the universal wave function. PhD thesis, 1973.

HULsING, A., RIINEVELD, J., AND SONG, F. Mitigating multi-target attacks in hash-
based signatures. In PKC 2016, Part I (2016), C. Cheng, K. Chung, G. Persiano, and
B. Yang, Eds., vol. 9614 of LNCS, Springer, pp. 387—416.

IBM. IBM builds its most powerful universal quantum computing processors. https:
//www-03.ibm.com/press/us/en/pressrelease/52403.wss. accessed 2018-05-26.


https://www-03.ibm.com/press/us/en/pressrelease/52403.wss
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss

BIBLIOGRAPHY 85

[72]

[73]

[74]

[75]
[76]
[77)
(78]
[79]
(80]
(81]

(82]

(83]
(84]

(85]

(86]
(87]

(88]

(89]

[90]
(91]

IBM. IBM raises the bar with a 50-qubit quantum computer. https:
//www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-
quantum-computer/. accessed 2018-05-26.

IKEMATSU, Y., PERLNER, R. A., SMITH-TONE, D., TAKAGI, T., AND VATES, J. HFERP
- A new multivariate encryption scheme. In PQCrypto 2018 (2018), T. Lange and
R. Steinwandt, Eds., vol. 10786 of LNCS, Springer, pp. 396—416.

INFORMATION TECHNOLOGY LABORATORY, N. Digital Signature Standard (DSS). https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. Federal Information
Processing Standards (FIPS) 186-4.

INFORMATION TECHNOLOGY LABORATORY, N. Post-quantum cryptography. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography. accessed 2018-05-27.

INTEL. 2018 CES: Intel advances quantum and neuromorphic computing re-
search. https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-
computing-research/. accessed 2018-05-26.

INTEL. Intel delivers 17-qubit superconducting chip with advanced packag-
ing to QuTech. https://newsroom.intel.com/news/intel-delivers-17-qubit-
superconducting-chip-advanced-packaging-qutech/. accessed 2018-05-26.

Karal, G. Detrimental decoherence. arXiv abs/0806.2443 (2008).

KaAral, G. How quantum computers fail: Quantum codes, correlations in physical
systems, and noise accumulation. arXiv abs/1106.0485 (2011).

Karal, G. The quantum computer puzzle. Notices of the AMS 63, 5 (2016), 508-516.

KAPLAN, M., LEURENT, G., LEVERRIER, A., AND NAYA-PLASENCIA, M. Breaking
symmetric cryptosystems using quantum period finding. In CRYPTO 2016, Part II
(2016), M. Robshaw and J. Katz, Eds., vol. 9815 of LNCS, Springer, pp. 207-237.

KELLY, J., AND GOOGLE. A preview of Bristlecone, Google’s new quantum pro-
cessor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-
new.html. accessed 2018-05-26.

Kipnis, A., PATARIN, J., AND GOUBIN, L. Unbalanced oil and vinegar signature schemes.
In EUROCRYPT 99 (1999), J. Stern, Ed., vol. 1592 of LNCS, Springer, pp. 206—222.

KiTAEV, A. Y. Quantum error correction with imperfect gates. In Quantum
Communication, Computing, and Measurement. Springer, 1997, pp. 181-188.

KNiILL, E., LAFLAMME, R., AND ZUREK, W. H. Resilient quantum computation: error
models and thresholds. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences (1998), vol. 454-1969, The Royal Society, pp. 365-384.

KuwakADO, H., AND MORII, M. Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In IEEFE ISIT 2010 (2010), IEEE, pp. 2682-2685.

KuwakADO, H., AND MORII, M. Security on the quantum-type even-mansour cipher.
In ISITA 2012 (2012), IEEE, pp. 312-316.

LABORATORIES, R. PKCS #1 v2. 2: RSA Cryptography Standard. https:
//www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-
standard-wp.pdf. accessed 2018-05-27.

LANGE, T., AND STEINWANDT, R., Eds. PQCrypto 2018 (2018), vol. 10786 of LNCS,
Springer.
LANGE, T., AND TakAcI, T., Eds. PQCrypto 2017 (2017), vol. 10346 of LNCS, Springer.

LANGLOIS, A., AND STEHLE, D. Worst-case to average-case reductions for module
lattices. Des. Codes Cryptography 75, 3 (2015), 565-599.


https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/
https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/
https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/
https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf
https://www.emc.com/collateral/white-papers/h11300-pkcs-1v2-2-rsa-cryptography-standard-wp.pdf

86

BIBLIOGRAPHY

(92]

(93]

[94]

[95]

[96]

[97]

(98]
[99]

[100]

[101]

[102]

[103)]

[104]

[105]

[106]

[107]

LENSTRA, A. K., AND LENSTRA, H. W., Eds. The development of the number field
steve. LNCS. Springer, 1993.

LENSTRA, A. K., LENSTRA, H. W., AND LovAsz, L. Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 4 (1982), 515-534.

Lucero, E., BARENDS, R., CHEN, Y., KELLY, J., MARIANTONI, M., MEGRANT, A.,
O’MALLEY, P., SANK, D., VAINSENCHER, A., WENNER, J., ET AL. Computing prime
factors with a josephson phase qubit quantum processor. Nature Physics 8, 10 (2012),
719.

LYUBASHEVSKY, V., AND MICCIANCIO, D. Generalized compact knapsacks are collision
resistant. In ICALP 2006, Part II (2006), M. Bugliesi, B. Preneel, V. Sassone, and
I. Wegener, Eds., vol. 4052 of LNCS, Springer, pp. 144-155.

LYUBASHEVSKY, V., PEIKERT, C., AND REGEV, O. On ideal lattices and learning with
errors over rings. J. ACM 60, 6 (2013), 43:1-43:35.

MAy, A., AND OzERrROV, I. On computing nearest neighbors with applications to
decoding of binary linear codes. In EUROCRYPT 2015 Part I (2015), E. Oswald and
M. Fischlin, Eds., vol. 9056 of LNCS, Springer, pp. 203—228.

MCcELIECE, R. J. A public-key cryptosystem based on algebraic. Coding Thv 4244
(1978), 114-116.

MENNINK, B., AND SZEPIENIEC, A. XOR of PRPs in a quantum world. In PQCrypto
2017 (2017), T. Lange and T. Takagi, Eds., vol. 10346 of LNCS, Springer, pp. 367-383.

MoOHAMED, M. S. E., CABARCAS, D., DING, J., BUCHMANN, J. A., AND BULYGIN, S.
MXL3: An efficient algorithm for computing Grébner bases of zero-dimensional ideals.
In ICISC 2009 (2009), D. H. Lee and S. Hong, Eds., vol. 5984 of LNCS, Springer,
pp. 87-100.

MouaMED, M. S. E., MouaMED, W. S. A. E., DING, J., AND BUCHMANN, J. A.
MXL2: solving polynomial equations over GF(2) using an improved mutant strategy.
In PQCrypto 2008 (2008), J. A. Buchmann and J. Ding, Eds., vol. 5299 of LNCS,
Springer, pp. 203-215.

MOHAMED, M. S. E., AND PETZOLDT, A. Ringrainbow - an efficient multivariate
ring signature scheme. In AFRICACRYPT 2017 (2017), M. Joye and A. Nitaj, Eds.,
vol. 10239 of LNCS, Springer, pp. 3—20.

MouaMED, W. S. A., DiNg, J., KLEINJUNG, T., BULYGIN, S., AND BUCHMANN, J.
PWXL: A parallel Wiedemann-XL algorithm for solving polynomial equations over GF
(2). In Conference on Symbolic Computation and Cryptography (2010), C. Cid and
J. Faugere, Eds., pp. 89—-100.

Mosca, M. Cybersecurity in an era with quantum computers: will we be ready?
Cryptology ePrint Archive, Report 2015/1075, 2015. https://eprint.iacr.org/2015/
1075.

NEGREVERGNE, C., MAHESH, T. S., Ryan, C. A., Dirty, M., CYR-RACINE, F., POWER,
W., BouraNT, N., HaverL, T., Cory, D. G., AND LAFLAMME, R. Benchmarking
quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96 (May 2006),
170501.

NETWORK WORKING GROUP, I. Internet Key Exchange (IKEv2) Protocol. http:
//wwu.ietf.org/rfc/rfc4306.txt, 2005. IETF RFC 4306.

NGUYEN, P. Q., AND SHPARLINSKI, I. E. The insecurity of the elliptic curve digital
signature algorithm with partially known nonces. Des. Codes Cryptography 30, 2 (2003),
201-217.


https://eprint.iacr.org/2015/1075
https://eprint.iacr.org/2015/1075
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt

BIBLIOGRAPHY 87

[108)]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]
[117]
[118]

[119]

[120]
[121]

[122]

[123]
[124]
[125]

[126]

NIELSEN, M. A., AND CHUANG, L. L. Quantum computation and quantum information.
Cambridge university press, 2010.

PaTARIN, J. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In EUROCRYPT 96 (1996), U. M. Maurer,
Ed., vol. 1070 of LNCS, Springer, pp. 33—48.

PaTARIN, J. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In EUROCRYPT 96 (1996), U. M. Maurer,
Ed., vol. 1070 of LNCS, Springer, pp. 33—48.

PATARIN, J., GOUBIN, L., AND CouRrTOIs, N. Improved algorithms for isomorphisms
of polynomials. In EUROCRYPT ’98 (1998), K. Nyberg, Ed., vol. 1403 of LNCS,
Springer, pp. 184-200.

PEIKERT, C., AND ROSEN, A. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC 2006 (2006), S. Halevi and T. Rabin, Eds.,
vol. 3876 of LNCS, Springer, pp. 145-166.

PETZOLDT, A. Selecting and reducing key sizes for multivariate cryptography. PhD
thesis, Darmstadt University of Technology, Germany, 2013.

PETZOLDT, A., SZEPIENIEC, A., AND MOHAMED, M. S. E. A practical multivariate blind
signature scheme. In FC 2017 (2017), A. Kiayias, Ed., vol. 10322 of LNCS, Springer,
pp- 437-454. Also available in Part II, §. 6.2.

PLOT, J., FOUQUE, P., AND MACARIO-RAT, G. Solving the "isomorphism of polynomials
with two secrets" problem for all pairs of quadratic forms. CoRR abs/1406.83163 (2014).

PRrESKILL, J. Sufficient condition on noise correlations for scalable quantum computing.
Quantum Information & Computation 13, 3-4 (2013), 181-194.

REGEV, O. On lattices, learning with errors, random linear codes, and cryptography.
In ACM STOC 2005 (2005), H. N. Gabow and R. Fagin, Eds., ACM, pp. 84-93.

RivesT, R. L., SHAMIR, A., AND ADLEMAN, L. M. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21, 2 (1978), 120-126.

ROETTELER, M., NAEHRIG, M., SVORE, K. M., AND LAUTER, K. E. Quantum resource
estimates for computing elliptic curve discrete logarithms. In ASTACRYPT 2017, Part
IT (2017), T. Takagi and T. Peyrin, Eds., vol. 10625 of LNCS, Springer, pp. 241-270.

SANTOLI, T., AND SCHAFFNER, C. Using simon’s algorithm to attack symmetric-key
cryptographic primitives. Quantum Information € Computation 17, 1&2 (2017), 65-78.

SCHNORR, C. Lattice reduction by random sampling and birthday methods. In STACS
2003 (2003), H. Alt and M. Habib, Eds., vol. 2607 of LNCS, Springer, pp. 145-156.

SCHNORR, C., AND EUCHNER, M. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. In FCT 1991 (1991), L. Budach, Ed., vol. 529 of
LNCS, Springer, pp. 68-85.

SHOR, P. W. Algorithms for quantum computation: Discrete logarithms and factoring.
In FOCS 1994 (1994), IEEE Computer Society, pp. 124-134.

SHOUP, V. A Proposal for an ISO Standard for Public Key Encryption. http://shoup.
net/iso/.

SHOUP, V. Sequences of games: a tool for taming complexity in security proofs. JACR
Cryptology ePrint Archive 2004 (2004), 332.

SIMON, D. R. On the power of quantum computation. In FOCS 1994 (1994), IEEE
Computer Society, pp. 116-123.


http://shoup.net/iso/
http://shoup.net/iso/

88

BIBLIOGRAPHY

[127]

[128]

[129]

[130]
[131]
[132]

[133]

[134]

[135]
[136]

[137]

[138)
[139)

[140]

[141]

[142]

[143]

[144]

[145]

STATISTA. Worldwide revenue from the supercomputer market from 2015 to 2021
(in billion U.S. dollars). https://www.statista.com/statistics/568431/hpc-server-
revenue-worldwide/. accessed: 2018-05-25.

STEANE, A. Multiple-particle interference and quantum error correction. Proc. R. Soc.
Lond. A 452, 1954 (1996), 2551-2577.

STEHLE, D., STEINFELD, R., TANAKA, K., AND XAGAawa, K. Efficient public key
encryption based on ideal lattices. In ASTACRYPT 2009 (2009), M. Matsui, Ed.,
vol. 5912 of LNCS, Springer, pp. 617-635.

SZEPIENIEC, A. Ramstake. Submission to the NIST PQC project. Also available in
Part II, §. 8.1.

SZEPIENIEC, A., ABIDIN, A., AND PRENEEL, B. A digital signature scheme from short
solutions to nonlinear equations, 2018. Also available in Part II, §. 7.1.

SZEPIENIEC, A., BEULLENS, W., AND PRENEEL, B. MQ signatures for PKI. In PQCrypto
2017 (2017), T. Lange and T. Takagi, Eds., vol. 10346 of LNCS, Springer, pp. 224-240.

SZEPIENIEC, A., AND PRENEEL, B. Short solutions to nonlinear systems of equations.
In NuTMiC 2017, Revised Selected Papers (2017), J. Kaczorowski, J. Pieprzyk, and
J. Pomykala, Eds., vol. 10737 of LNCS, Springer, pp. 71-90. Also available in Part II,
§. 6.4.

SZEPIENIEC, A., REYHANITABAR, R., AND PRENEEL, B. Key encapsulation from noisy
key agreement in the quantum random oracle model, 2018. Also available in Part II,
§. 7.2.

Takacl, T., Ed. PQCrypto 2016 (2016), vol. 9606 of LNCS, Springer.

TANJA LANGE (COORDINATOR). PQCRYPTO. https://pqcrypto.eu.org/. accessed
2018-05-27.

THOMAE, E., AND WoLF, C. Solving underdetermined systems of multivariate quadratic
equations revisited. In PKC 2012 (2012), M. Fischlin, J. A. Buchmann, and M. Manulis,
Eds., vol. 7293 of LNCS, Springer, pp. 156—171.

UNRUH, D. Quantum proofs of knowledge. In EUROCRYPT 2012 (2012), D. Pointcheval
and T. Johansson, Eds., vol. 7237 of LNCS, Springer, pp. 135-152.

UNRUH, D. Revocable quantum timed-release encryption. In EUROCRYPT 2014
(2014), P. Q. Nguyen and E. Oswald, Eds., vol. 8441 of LNCS, Springer, pp. 129-146.

UNRUH, D. Non-interactive zero-knowledge proofs in the quantum random oracle model.
In EUROCRYPT 2015 Part II (2015), E. Oswald and M. Fischlin, Eds., vol. 9057 of
LNCS, Springer, pp. 755-784.

VANDERSYPEN, L. M., STEFFEN, M., BREYTA, G., CONSTANTINO S YANNONI, SHERWOOD,
M. H., aAND CHUANG, I. L. Experimental realization of shor’s quantum factoring
algorithm using nuclear magnetic resonance. Nature 414, 6866 (2001), 883.

WaNG, Y., IKEMATSU, Y., DuoNG, D. H., AND TakAcI, T. Efficient decryption
algorithms for extension field cancellation type encryption schemes. In ACISP (2018),
W. Susilo and G. Yang, Eds., vol. 10946 of LNCS, Springer, pp. 487-501.

WECKER, D. Achieving practical quantum computing. https://www.youtube.com/
watch?v=ms0AS67LrPs&t=0s&1list=PLPf_zcX3mNAwVYO_bohkVIIQ8d2mssyL4&index=10,
40:30, 2018. Invited Presentation at PQCrypto 2018.

WIEDEMANN, D. H. Solving sparse linear equations over finite fields. IEEE transactions
on information theory 32, 1 (1986), 54-62.

WIKIPEDIA. Hilbert series and Hilbert polynomial. https://en.wikipedia.org/wiki/
Hilbert_series_and_Hilbert_polynomial. retrieved 2018-07-18.


https://www.statista.com/statistics/568431/hpc-server-revenue-worldwide/
https://www.statista.com/statistics/568431/hpc-server-revenue-worldwide/
https://pqcrypto.eu.org/
https://www.youtube.com/watch?v=msOAS67LrPs&t=0s&list=PLPf_zcX3mNAwVYO_bohkVIIQ8d2mssyL4&index=10
https://www.youtube.com/watch?v=msOAS67LrPs&t=0s&list=PLPf_zcX3mNAwVYO_bohkVIIQ8d2mssyL4&index=10
https://en.wikipedia.org/wiki/Hilbert_series_and_Hilbert_polynomial
https://en.wikipedia.org/wiki/Hilbert_series_and_Hilbert_polynomial

BIBLIOGRAPHY 89

[146]

[147]
[148]

[149]

[150]

[151]

[152]

[153]

W00A0923 (INTERNET ALIAS). Degree vs index of regularity. https:
//crypto.stackexchange.com/questions/60375/degree-vs-index-of-regularity/
60459#60459. retrieved 2018-07-18.

WOoOTTERS, W. K., AND ZUREK, W. H. A single quantum cannot be cloned. Nature
299, 5886 (1982), 802—-803.

YANG, B., AND CHEN, J. All in the XL family: Theory and practice. In ICISC 2004
(2004), C. Park and S. Chee, Eds., vol. 3506, Springer, pp. 67-86.

Yao, X.-C., WaNG, T.-X., CHEN, H.-Z., GAo, W.-B., FOWLER, A. G., RAUSSENDORF,
R., CHEN, Z.-B., Liu, N.-L., Lu, C.-Y., DENG, Y.-J., ET AL. Experimental
demonstration of topological error correction. Nature 482, 7386 (2012), 489.

YAsupA, T., AND SAKURAI, K. A multivariate encryption scheme with rainbow. In
ICICS 2015 (2015), S. Qing, E. Okamoto, K. Kim, and D. Liu, Eds., vol. 9543 of LNCS,
Springer, pp. 236-251.

ZHANDRY, M. How to construct quantum random functions. In FOCS 2012 (2012),
IEEE Computer Society, pp. 679-687.

ZHANDRY, M. Secure identity-based encryption in the quantum random oracle model.
In CRYPTO 2012 (2012), R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of LNCS,
Springer, pp. 758-775.

ZHAO, Z., CHEN, Y.-A., ZHANG, A.-N., YanG, T., BRIEGEL, H. J., AND PAN, J.-

W. Experimental demonstration of five-photon entanglement and open-destination
teleportation. Nature 430, 6995 (2004), 54.


https://crypto.stackexchange.com/questions/60375/degree-vs-index-of-regularity/60459#60459
https://crypto.stackexchange.com/questions/60375/degree-vs-index-of-regularity/60459#60459
https://crypto.stackexchange.com/questions/60375/degree-vs-index-of-regularity/60459#60459




Chapter 6

Published Papers

6.1 Extension Field Cancellation: A New Central
Trapdoor for Multivariate Quadratic Systems

Publication data

Alan Szepieniec and Jintai Ding and Bart Preneel. “Extension Field
Cancellation: A New Central Trapdoor for Multivariate Quadratic Systems”
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, pp. 182-196, 2016.

Contributions

Principal author.

Notes

This paper is the product of a collaboration with prof. Jintai Ding, whom I
visited in August 2015. The key idea behind the construction came from me,
but prof. Ding quickly observed that it was similar enough to HFE, form for

91



92 PUBLISHED PAPERS

the HFE, bounds to apply. Consequently, he suggested to omit equations as a
countermeasure against attacks.

In hindsight, the present argument for security is rather weak. The HFE
bounds are only upper bounds on the first fall degree, and are known not to
be tight. Moreover, the bounds lose more tightness as there are twice as many
equations as in the HFE, case. And 80 bits of security is a rather low target.

Ludovic Perret has privately informed me that in his direct algebraic attack
using the Fj algorithm, the step degree never exceeds 4. This is terrible news
because that would mean that the 80 bits is off by an order of magnitude.
Nevertheless, the apparently bounded step degree might be merely an artifact of
the proposed parameters rather than the construction as a whole. Additionally,
in combination with the Rainbow-Plus technique [150, 73], it is likely that the
number a of dropped polynomials can be decreased, thus allowing a larger field
and hence a smaller public key while improving security. Also, it is worth noting
that this paper is the subject of follow-up work by other authors [142], who
target a higher security level. Moreover, this follow-up work establishes that
the degree of regularity does rise with a, thus validating the soundness of the
design.
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Abstract. This paper introduces a new central trapdoor for multivari-
ate quadratic (MQ) public-key cryptosystems that allows for encryption,
in contrast to time-tested M(Q primitives such as Unbalanced Oil and
Vinegar or Hidden Field Equations which only allow for signatures. Our
construction is a mixed-field scheme that exploits the commutativity of
the extension field to dramatically reduce the complexity of the exten-
sion field polynomial implicitly present in the public key. However, this
reduction can only be performed by the user who knows concise descrip-
tions of two simple polynomials, which constitute the private key. After
applying this transformation, the plaintext can be recovered by solving a
linear system. We use the minus and projection modifiers to inoculate our
scheme against known attacks. A straightforward C++ implementation
confirms the efficient operation of the public key algorithms.

Keywords: MQ, multivariate, quadratic, public-key, post-quantum,
encryption, mixed-field, trapdoor

1 Introduction

Since the inception of public-key cryptography, cryptographers have
made a huge effort to find new and better computational problems
that feature the elusive trapdoor — a small piece of information that
can turn an otherwise hard to invert function into one that can easily
be inverted. This on-going search effort has lead to a tremendous
diversification of the computational problems that underpin public-
key cryptography. This diversification is a good thing: by keeping all
the eggs in separate baskets, a breakthrough in one area is unlikely
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to spill over to other areas, thus limiting the catastrophic potential
of scientific advances.

Of particular interest to this paper is the class of problems known
as multivariate quadratic (MQ) systems of equations. Not only do
cryptosystems based on this primitive offer performance advantages
over well-established ones such as RSA or systems based on elliptic
curves, MQ cryptography is also conjectured to be post-quantum
— that is to say, it holds promise of resisting attacks on quantum
computers. From this point of view, MQ cryptography is certainly a
promising line of research.

The key challenge in the design of M(Q cryptosystems is to find
a suitable central mapping F : Fy — F" which should be easily in-
vertible in addition to being expressible in terms of multivariate
quadratic polynomials. The trapdoor information cannot be recov-
ered efficiently from the public key as it is hidden by two affine
transformations. Many central mappings have been proposed, most
of which fall in two main categories [31]: single field schemes, such
as UOV [16], Rainbow [7] and the triangular variants [30], where
the central polynomial system is chosen to have a particular struc-
ture that enables efficient inversion; and mixed field schemes, such
as C* [18], HFE [21] and Multi-HFE [3], where arithmetic in the
base field is mixed with arithmetic in an extension field. However,
despite the abundance of proposals, MQ cryptography has an awful
track record as most of these proposals have been broken [2,14,17,
27,28, 31].

Consequently, much research in the area of MQ cryptography
has been devoted to patchwork — finding small modifications to
existing systems that render specific attacks infeasible. A few exam-
ples among many that fall into this category are the minus modifier
(“=") [24], which inoculates HFE-type systems against Grobner ba-
sis attacks and linearization attacks; vinegar variables (“v”) [16],
which combines elements from different trapdoors and like “minus”
is capable of making a Grobner basis attack prohibitively expensive;
and projection (“p”) [9] which appears to successfully thwart the
Dubois et al. differential attack [10,11] on SFLASH.

However, the search for modifications to fix broken systems has
an equally bad track record. Many of the MQ systems that were
supposedly inoculated against some attack by the introduction of
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a modification, were broken by minor variants of that same attack.
For example, both the multivariate generalization and the odd field
characteristic variant of HFE were introduced and designed specif-
ically to thwart the algebraic attack on HFE [14]; however, neither
variant has managed to withstand cryptanalysis [2]. Another exam-
ple is given by the fate of SFLASH, one of the three recommended
signature schemes of the NESSIE project [1]. The addition of the
minus modifier to the basic C* construction did not save the scheme
from a new type of differential attack [10, 11]. The rapid spawn of
attacks that break the inoculated systems seems to suggest the need
for a more prudent design strategy: searching for fundamentally dif-
ferent basic principles for MQ trapdoors, rather than tinkering on
the edges of existing ones.

Related work. Encryption schemes have been the bane of multivari-
ate quadratic cryptography. No MQ encryption scheme has with-
stood the test of time, while several MQ signature schemes have.
However, some very recent results and proposals in this area pose
new and interesting challenges for cryptanalysts.

Porras et al. proposed a new central trapdoor which they call
ZHFE [23]. Up until this point, the extension field polynomial in
HFE-based cryptosystem required the number of nonzero coefficients
to be small and its degree to be relatively low, so as to allow efficient
root calculation. The idea of Porras et al. exchanges this single low-
degree polynomial for a pair of high-degree polynomials that make
up the central map. Additionally, these polynomials are chosen such
that there exists a third polynomial, ¥(X'), which is a function of the
first two and yet has low degree. In order to invert a given image,
it suffices to factorize this third polynomial. As the degree of the
polynomials increases, so does the degree of regularity of the system.
This increase in the degree of regularity, in turn, renders a direct
algebraic attack infeasible, even though the very same attack broke
the regular HFE cryptosystem.

Tao et al. proposed a multivariate quadratic encryption scheme
called Simple Matrix Encryption, or simply ABC Encryption [26].
Their construction is based on a fundamentally new idea: embedding
polynomial matrix arithmetic inside the central trapdoor function.
The trapdoor can be inverted with high probability because the ma-
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trix, albeit evaluated in a single point, can be reconstructed from the
output. With high probability this matrix can be inverted, giving rise
to a system of linear equations which describe the input.

Our contributions. We introduce a new central trapdoor for multi-
variate quadratic encryption schemes. Our proposal is a mixed-field
scheme — similar to the C* and HFE string of proposals because
we use an embedding function to pretend as though a vector of vari-
ables in the base field were actually a single variable in the extension
field. However, our proposal is notably different from its predecessors,
where the restriction on the degree of this embedded polynomial was
key both to their efficiency and to their demise; our proposal allows
for a high-degree embedded polynomial and undoes this complex-
ity by exploiting the commutative property of the extension field.
Our proposal allows for encryption, in stark contrast to most other
members of the HFE family.

Like the ABC Encryption Scheme, decryption of a ciphertext
consists of essentially solving linear systems. This linear system is
parameterized by the particular ciphertext or message: every possi-
ble ciphertext or message implicitly defines a unique linear system.
Knowledge of the private key allows the user to obtain the linear
system efficiently, while the adversary who attacks the system with-
out this crucial information has no advantage to solve the quadratic
system.

Like ZHFE, the central map consists of two high-degree extension
field polynomials that satisfy a special relation which is obviously
hidden from the adversary. The decryption algorithm exploits this
relation to turn the otherwise hard inversion problem into an easy
one.

Another important similarity between our map and both ABC
and ZHFE is that all three are expanding maps, i.e., Fy — F" where
m = 2n. This commonality is no accident, because in order allow
unique decryption, the map must be injective. However, if m ~ n, the
differential of this nearly-bijective map is readily differentiable from
that of a random one — not a desirable property for multivariate
quadratic maps to have.

Despite these similarities, the main advantage of our scheme is
that its construction is notably different from ABC and ZHFE. Con-
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sequently, as-yet undiscovered weaknesses or even attacks that affect
ABC or ZHFE may leave our scheme intact. Furthermore, this diver-
sification opens the door for a combination of strategies whose end
result reaps the benefits of both worlds. Certainly the case of HFEv
proves that such a combination may indeed increase both security
and performance.

In line with a common theme throughout MQ cryptography, we
are unable to prove the security of our scheme or even to reduce it to a
plausible computational assumption. An exhaustive list of all known
attacks on MQ systems and why they fail against our system is be-
yond the scope of this paper. Nevertheless, we identify several perti-
nent attacks that may be launched against a naive implementation
of our scheme, and we propose strategies to thwart them. Patarin’s
linearization attack [20] is foiled by the minus modifier and repeated
applications of the same modifier make the extended MinRank at-
tack [4,17] as well as the direct algebraic attack [14] prohibitively
inefficient. The scheme seems naturally resistant to Dubois et al.’s
differential attack [10,11], but we nevertheless recommend to use the
projection modifier, which is the proper countermeasure against this
attack.

Outline. We introduce notation and recall basic properties of MQ
systems as well as of extension field embeddings in Section 2. Next,
Section 3 defines the trapdoor proposed in this paper as well as
several necessary modifiers. We recommend parameters for 80 bits
of security in the first part of Section 4 and afterwards discuss the
efficiency of our scheme, both from a theoretical point of view and by
referencing timing results from a software implementation. Section 5
concludes the text.

2 Preliminaries

2.1 Notation and Definitions

We use small case letters (s) to denote scalars in the base field;
extension field elements are denoted by calligraphic capital letters
(C); small case bold letters (v) denote column vectors; and regular
capital letters are used for matrices (M).
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Let F, denote the finite field with ¢ elements, which we call the
base field. With any combination of a finite field F, with a polynomial
f(x) € F,[z] one can associate a finite ring E = F [z]/(f(x)) of
residue classes after division by f(x). If f is irreducible over F, and
has degree n, then E = Fy» is a finite field we call the extension field.
There exists a natural homomorphism ¢ : (F,)"” — F,» that maps
a vector v = (vy,...,v,)" € F onto an element V € Fyn of the
extension field. We can apply this embedding function to the vector
of indeterminates x in order to get the extension field indeterminate

X = p(x).

2.2 Multivariate Quadratic Systems

The public key of an MQ cryptosystem is a system of quadratic
polynomials mapping n input variables to m output variables: P :
[y — F'; the public operation consists of evaluating this system of
polynomials in a point. The secret key consists of a pair of invertible
affine mappings on the input and output variables, S and 7', and an
alternate quadratic system of polynomials, F : Fj — Fi", such that
P =ToFolS. The affine transformations are trivially inverted; the
central system F is constructed in such a way that it is also easy to
invert. However, the attacker cannot efficiently recover F from P and
calculate the inverse as F is hidden by the affine transformations. A
schematic overview is given in Fig. 1.

encryption or signature verification

7]
public knowledge
private knowledge
s —1~]

decryption or signature generation

Fig. 1: Schematic representation of multivariate quadratic cryptosys-
tems.
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Given a central trapdoor F it is easy to construct a multivariate
quadratic cryptosystem by composing it with two affine transforma-
tions. This process is out of the scope of the present paper. Rather,
we restrict our attention to the construction of the central trapdoors.

3 Central Map

3.1 The Basic Construction

Let A € ™" be a random matrix over the base field. Then Ax €
(F,[x])™ represents a vector where each element is a linear polynomial
in x. And then a(x) = p(Ax) is an extension field element. The
square matrix that represents multiplication by «(x) is denoted by
am(x) € FP*™. We use a(X) to stress the fact that a may also
be considered as a univariate polynomial in X over the extension
field, regardless of its representation, although the degree of this
polynomial is larger than one.

Similarly, let 3(x) = ¢(Bx) for a random n x n matrix B € Fp*".
With these polynomials o and 3, we define the central trapdoor as
follows:

FiF 5 F2 o x (%:(X)X) . (1)

(x)x

. d :
To see how we are able to invert F(x) = 1) , consider first the

d,

equality a(x)5(x) = B(x)a(x) which holds due to the commutativity
of the extension field. We can proceed to construct a system of linear
equations in x:

6m(x)d1 - am(X)dZ =0 . (2)

While Gaussian elimination is in this case guaranteed to find a
solution, this solution need not be unique. Nevertheless, this set of
solutions is expected to be small, in accordance with the number of
solutions to random linear systems. Moreover, this set can be pruned
by iteratively plugging the potential solution into the function F and
verifying that the correct output image (d;;ds) is produced.
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3.2 Modifiers

The trapdoor as described above is insecure. In particular, it is bro-
ken by the bilinear attack, the MinRank attack, as well as an al-
gebraic attack using fast Grobner basis algorithms. We apply the
“minus” to inoculate basic EFC against these attacks. While not
strictly necessary, “projection” may guard against new differential
attacks at very little cost whereas “Frobenius tail” drastically drops
the cost of decryption.

Minus.

Although Patarin’s linearization attack [20] was originally conceived
to attack C*, it also applies to unprotected EFC. Indeed, Equa-
tion 2 describes a bilinear polynomial in the plaintext and cipher-
text, whose coefficients can be calculated using linear algebra after
obtaining enough plaintext-ciphertext pairs. Once these coefficients
are known, obtaining a plaintext that matches a given ciphertext
is easy. However, dropping just one polynomial from the public key
is enough to foil this attack. In this case, the attacker must guess
the missing information for every plaintext-ciphertext pair, making
them useless for exact linear algebra.

This “minus” modifier, which consists of removing one or more
polynomials from the public key [22], is more than just a countermea-
sure against Patarin’s attack. A pair of important results by Ding et
al. [6,8] indicates that this modifier is much better thought of as a
fundamental building block of multivariate quadratic cryptosystems
rather than a mere patch. Indeed, not only does the first application
of this modifier block Patarin’s linearization attack; every repeated
application increments by one the rank of the quadratic form asso-
ciated with the extension field polynomial, rendering the MinRank
attack due to Kipnis and Shamir [17] as well as its subsequent im-
provement by Courtois [4] that much more infeasible. Furthermore,
this rank increase in turn increases the degree of regularity of the
system, resulting in a similarly infeasible algebraic attack.

The use of this modifier does come at the cost of a performance
penalty. In particular, the decryption algorithm must first guess the
values of the missing polynomials before undoing the output trans-
formation 7. Under this guess, it can proceed to the linear system
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in Equation 2 and compute the potential matching plaintext x. If
indeed F(x) = (d;; da), then the correct plaintext was found. If not,
then the guess was wrong and the algorithm must start all over again
with a new one.

Fortunately, as long as the number of dropped polynomials a
is small enough, the correct plaintext will still be found with over-
whelming probability. In order for the decryption algorithm to pro-
duce the wrong plaintext x upon decrypting the ciphertext y, there
must exist at least two guesses g; € Fy and gy € Fy such that both
(v;81) and (y;g2) are in the range of P. If P is to be modeled as
a random function Fy — F 3"*“, then its range is a uniform subset
of Fg"*“ of size ¢, and then the probability of this event is approx-
imately ¢ x ¢~2"t% = ¢+, Consequently, as long as a < n, the
probability of decryption error remains astronomically small.

Fig. 2 offers empirical validation of this argument. It shows the
probability of decryption error for various even values for a as a
function of n. Only when a and n are on the same order of magnitude,
is this probability noticeable; when n rises to practical values, this
probability does indeed drop to zero.

a=10 a=12

0.6 - 1

error rate

Fig. 2: Observed decryption error rate.
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In similar fashion to C*~ and HFE™, this modifier will be de-
noted by the superscript “—", i.e., EFC™. The number of dropped
polynomials will be denoted by a.

Projection.

The differential symmetry attacks by Dubois et al. [10,11] on
SFLASH, a C* variant, show that the minus operator is not enough
to secure it. Dubois et al. identify a symmetry in the differential of
the C* map F:

DF(Lx,y)+ DF(x,Ly) = AF(x,y)

for some matrices L and A. The presence of this symmetry proved
fatal.

Fortunately, Ding et al. [9] show experimentally that a small
tweak by the name of “projection” completely foils this line of at-
tack. In particular, pSFLASH projects the input vector x onto a
lower-dimensional space before passing it through the central map.
Smith-Tone [25] has since offered a theoretical basis for the efficacy of
this modifier. At the core of Smith-Tone’s argument is the following
theorem:

Theorem 1 (Smith-Tone, [25]). A polynomial f : Fyn — Fyn with
a bilinear differential has the multiplicative symmetry if and only if
it has one quadratic monomial summand.

While the components of EFC do have bilinear differentials, they
do not consist of a single quadratic monomial but of a sum of
them. For example, the first component is described by a(X)X =
S A X T where the coefficients A; are with overwhelming prob-
ability not all but one equal to zero. Therefore, by Smith-Tone’s the-
orem, the differential multiplicative symmetry is absent with over-
whelming probability.

Nevertheless, in anticipation of more general attacks using a sim-
ilar differential invariant, we follow a perspective offered at the con-
clusion Smith-Tone’s paper: projection does not destroy the differen-
tial symmetry, but pushes it down to a subfield. Since this modifier
is cheap in terms of performance and cannot degrade security, we
choose to err on the side of safety and ensure that no such subfield
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can exist. In particular, we guarantee that the matrices A and B
have rank n — 1, and that n is a prime number. Moreover, the ker-
nels of A and B do not intersect except at the origin. This modifier
will be denoted by the subscript p, e.g. EFC,.

Frobenius Tail in Characteristic Two (or Three).

The trapdoor as described so far can be implemented over any
base field and unless the minus operator is applied, the rank of the
quadratic forms associated with the extension field is two. However,
if we restrict to characteristic two, we can naturally increase this
rank by adding an extra “tail” term to both expressions. In turn,
we must drop fewer equations to ensure the same level of security,
and this results in a significant speedup of the decryption algorithm.
We will use the subscript #? to denote the use of this technique, e.g.
EFCie.

This trick exploits the following property of fields of character-
istic two. Let f(X) be a linear function, then f(X)? is a quadratic
function and multiplication by f(X) gives f(X)* which is once again
a linear function.

Let o and 8 be defined as earlier. Then this enhancement adds
the quadratic terms a(X')? and B(X)? as follows:

. 2 a(X)X + B(X)°
F :Fon > F5 : X (B(X)X+a()()3> . (3)

In order to decrypt F(X) = (D;; Ds), the user solves the linear
system

a(X)Dy — B(X)D1 = a(X)! = B(X)* . (4)

Afterwards, the set of solutions is pruned based on F(X) = (Dy; Ds).
A similar trick is possible in fields of characteristic three. For
linear functions f(X) the term f(X)? is quadratic and multiplication
by f(X) gives f(X)? which is once again a linear function. Although
this particular Frobenius tail does destroy the common factor in the
two polynomials, it merely increases the rank of the quadratic form
to three. The use of this trick will be denoted by the subscript #3.
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4 Efficiency

4.1 Recommended Parameters

We predict that the most efficient attack on our system is the alge-
braic attack using efficient Grobner basis algorithms such as Faugere’s
F4 or F5 [12,13]. Taking this attack into account, we propose param-
eters to ensure at least 80 bits of security.

We follow the argument due to Ding et al. [5,8], who develop an
upper bound for the degree of regularity of HFE™ systems. In this
line of reasoning, the degree of regularity D,e, is intricately linked
to the rank r of the quadratic form associated with the extension
field polynomial. Moreover, a applications of the minus modifier ef-
fectively increases this rank by a. Especially for small base fields, the
degree of regularity is expected to lie near its upper bound:

(g—1(r+a)
2

This argument applies to a single quadratic form. However, the
central map of EFC consists of two quadratic forms. Nevertheless,
we argue that the effect of minus is replicated across both quadratic
forms. The polynomials are dropped after the output transforma-
tion 7' is applied, meaning that the effect of the missing information
passes through 7! and is not isolated to one quadratic form but
spread across both. Although this reasoning underscores the follow-
ing parameter recommendations, we note it is not perfectly rigorous
and warrants further study.

Considering the two components of our central map separately,
we see that their rank is » = 2. If the Frobenius tail modifiers are
applied, this is increased to r = 4 and r = 3 for characteristics 2
and 3, respectively. For a security level of 80 bits, we recommend to
ensure this adjusted rank is at least 12 for I, and 8 for Fj.

10 ¢=2,n=283, EFC;
a=<¢8 q=2,n=283EFC, . (6)
6 qg=3,n=0>59, EFC;

Dreg S +2. (5)

Then we can estimate the degrees of regularity for these base fields:

(@-Dr+a)  ,_[8 q=2
Do < LI T8 170 ™
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The running time of efficient Grobner basis algorithms is domi-
nated by Gaussian elimination in the matrix of coeflicients associated
with the monomials of degree D,.,. We can use this bottleneck to
estimate the algorithm’s total complexity. In particular, the num-
ber of monomials of this degree is given by T' = ( D’;g) ~ 2% both
for n = 83,q = 2 as well as n = 59,¢ = 3. Moreover, the number
of nonzero monomials is on the order of 7 = (Z) > 210 Assuming
a Wiedemann-type algorithm [29] for sparse Gaussian elimination,
this amounts to 772 > 2% in both cases.

Fig. 3 offers some experimental evidence in support of this ar-
gument. It plots the running time of MAGMA’s F, algorithm to
recover the plaintext from the ciphertext and the public key. The
graph on the left starts out with ¢ = 2,n = 35 and a = 1; from
there on out, the parameter a increases. The graph on the right lets
n vary from 15 to 38 with ¢ = 2, and keeps a constant at 10 for the
basic trapdoor EFC, (blue circles) and at 8 for the Frobenius tail
equivalent EFC_, (red crosses).

The graphs indicate two things. First, the minus modifier en-
hances security with (nearly) every application, occasionally lifting
the system into the next degree of regularity. Second, the Frobenius
tail modifier enhances security, even compensating for the rank drop
associated with going from a = 10 to a = 8.

4.2 Complexity

The basic trapdoor, as well as all the modified variants, feature only
quadratic terms. Therefore, the transformations 7" and S should be
linear and not affine, and consequently also the public key will consist
of only quadratic terms.

The public key consists of 2n — a polynomials of degree 2 in
n variables. Thus the number of coefficients from [, in the public
key is (2n — a) x @ = n® — (a + 1)n® + an = O(n?) because
a < n. However, we note that there is a considerable amount of
redundancy in the public key which we expect can be exploited to
produce smaller keys.

The private key consists of two linear transformations S and T,

along with a degree-n irreducible polynomial (z), and matrices A
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Fig. 3: Running time of algebraic attack for various parameters.

and B. This amounts to n* + (2n)* + 2(n?) + n = Tn* + n = O(n?)
coefficients in F,.

The most computationally intensive part of the key generation
algorithm is the symbolic matrix-vector multiplication — once in
¢(Ax)x and once in ¢(Bx)x. Both procedures require n* polynomial-
multiplications, each of which consists of n multiplications in [F,.
Since the other steps in the key generation algorithm are less com-
plex, the asymptotic time complexity of this entire algorithm is
O(n?). For the Frobenius tail modifier, this complexity is worse
because the additional extension field products ¢(Ax)(QAx) and
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©(Bx)(QBx) (where @ is the matrix associated with the Frobenius
map = — z°) have dense right-side multiplicands. Consequently, the
cost of polynomial multiplication rises to n? multiplications and the
total time complexity of the key generation to O(n?).

Encryption consists of evaluating 2n — a quadratic polynomials
in n variables. This comes down to two time steps with unlimited
parallelism. Without parallelism, however, each of the (2n — a) X
(n(n — 1) + 2n) base field operations must be executed sequentially
and the time complexity is therefore O(n?).

Decryption consists of the following steps for ¢* different guesses,
which may be executed in parallel if the resources are available: (1)
inversion of T', which requires (2n)? operations; (2) computation of
©(d;) and ¢(ds), which requires n vectorized additions for a total
of n? operations; (3) two matrix multiplications of n?® operations
each, followed by a matrix subtraction; (4) a Gaussian elimination
of some 2n?/3 operations; (5) inversion of S requiring some n? op-
erations; and finally (6) pruning, which has an almost constant ex-
pected running time. Thus, decryption has an expected running time
of O(¢*n?®). While this expression does involve an exponential factor,
the exponent is rather small — on the order of a = logn, so that
decryption is still practically speaking a polynomial-time algorithm.

Fig. 4 emphasizes this exponential behavior by logarithmically
plotting the decryption time as a function of a. Even a moderate
increase in the number of dropped parameters can make decryption
impractically slow.

4.3 Speed

Table 1 shows some timing results obtained from a straightforward
C++ implementation on a 64-bit 3.3 GHz Intel CPU. Despite the
scheme’s obvious capacity for parallelism, it is not exploited beyond
bit packing and vectorized addition (byte-wise xor) for Fy. The only
other optimization that was used was the compiler’s optimization
flag. For ¢ = 3, the sizes are computed by representing elements of
IF5 by two bits.
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Fig. 4: Decryption time as a function of a for n = 83 and ¢ = 2.

Table 1: Implementation results — timings of key generation, en-
cryption and decryption algorithms along with public key, secret
key and ciphertext size.

[construction Hsec. key‘pub, key‘ctxt,‘key gen.‘ enc. ‘ dec. ‘

EFC, ,q = 2,n = 83,a = 10][48.3 KB[ 509 KB [20 B[ 2.45 s ]0.004 s 9.074 s
EFC_,,q=2,n = 83,a = 8[[48.3 KB| 523 KB [20 B| 3.982 s [0.004 s| 2.481 s
EFC, g =3,n=59,a =6 ||48.8 KB| 375 KB |28 B| 2.938 5 |0.004 s[12.359 s

5 Conclusion

Extension Field Cancellation (EFC) is a new construction for central
trapdoors in MQ cryptosystems which exploits the commutativity of
the extension field in order to cancel the complexity of the extension
field polynomials. After cancellation, the plaintext can be obtained
by solving a linear system. We anticipate several known attacks and
use the projection and minus modifiers to inoculate EFC against
these attacks.

We estimate parameters associated with 80 bits of security from
the running time of an algebraic attack and offer some experimen-
tal validation of its complexity. Our implementation confirms the
correctness of our schemes as well as their practical efficiency. En-
cryption can be done in only a few milliseconds, on par with other
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post-quantum cryptosystems such as NTRU [15] and McEliece [19].
However, due to the missing information from the minus modifier,
decryption takes several seconds.

This minus modifier is an obvious candidate for improvement.
While it is necessary for security, any significant number of dropped
polynomials constitutes an onerous cost on the decryption function
because its running time is exponential in this number. In fact, the
minus modifier is ideally suited for MQ signature schemes, but ill-
suited for MQ encryption schemes. The reason is that for signatures,
any assignment to the missing variables will do; in contrast, the
decryption algorithm must iterate over all possible assignments in
order to find the correct plaintext. Any alternative modifier that
has the same effect on security but obviates the need for exhaustive
search can drastically accelerate decryption.

Another question is to determine to which extent the public keys
can be shrunk. While it is difficult to shrink the secret keys without
throwing away entropy, the public keys contain a large amount of
redundancy. Even a relatively moderate reduction in the public key
size can make the cryptosystem a feasible option for applications
where the public key size is critical and currently too large.
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Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of multivariate signature schemes with special
properties such as blind, ring and group signatures. In this paper, we
propose a technique to transform the Rainbow multivariate signature
schemes into a blind signature scheme. The resulting scheme satisfies the
usual blindness criterion and a one-more-unforgeability criterion adapted
to MQ signatures, produces short blind signatures and is very efficient.

Keywords: Multivariate Cryptography, Blind Signatures, Rainbow Signature
Scheme

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [25], DSA [14] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The rea-
son for this is Shor’s algorithm [29], which solves number theoretic problems like
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on hard mathematical problems not affected by quantum com-
puter attacks (so called post-quantum cryptosystems).

The increasing importance of research in this area has recently been empha-
sized by a number of authorities. For example, the american National Security
Agency has recommended governmental organizations to change their security
infrastructures from schemes like RSA to post-quantum schemes [17] and the
National Institute of Standards and Technologies (NIST) is preparing to stan-
dardize these schemes [18]. According to NIST, multivariate cryptography is one
of the main candidates for this standardization process. Multivariate schemes

113



are in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices like smart cards and RFID
chips [5,6]. However, while there exist many practical multivariate standard sig-
nature schemes such as UOV [15], Rainbow [9] and Gui [24], there is a lack of
multivariate signature schemes with special properties such as blind, ring, and
group signatures.

Blind signature schemes allow a user, who is not in charge of the private signing
key, to obtain a signature for a message d by interacting with the signer. The
important point is that this signer, who holds the secret key, receives no informa-
tion about the message d that is signed nor about the signature s that is created
through the interaction. Nevertheless, anyone with access to the public verifi-
cation key is capable of verifying that signature. Because of these unlinkability
and public verifiability properties, blind signature schemes are an indispensable
primitive in a host of privacy-preserving applications ranging from electronic
cash to anonymous database access, e-voting, and anonymous reputation sys-
tems.

In this paper, we present a technique to transform Rainbow, a multivariate
quadratic (MQ) signature scheme, into a blind signature scheme. This trans-
formation is accomplished by joining the MQ signature scheme with the zero-
knowledge MQ-based identification scheme of Sakumoto et al. [28]. The user
queries the signer on a blinded version of the message to be signed; the signer’s
response is then combined with the blinding information in order to produce
a non-interactive zero-knowledge proof of knowledge of a pre-image under the
public verification key, which is a set of quadratic polynomials that contains the
signer’s public key in addition to a large random term. The only way the user
can produce such a proof is by querying the signer at some point for a partial
pre-image; however, because it is zero-knowledge, this proof contains no infor-
mation on the message that was seen and signed by the signer, thus preventing
linkage and ensuring the user’s privacy.

We obtain one of the first multivariate signature schemes with special proper-
ties and more generally one of the very few candidates for establishing prac-
tical and secure post-quantum blind signatures. In terms of security require-
ments, our scheme satisfies the usual blindness notion, but an adapted one-
more-unforgeability one which we call universal-one-more-unforgeability. This
change is justified by the observation that the usual one-more-unforgeability no-
tion generalizes existential unforgeability for regular signatures; however, MQ
signatures can only be shown to offer universal unforgeability and hence require
a universal one-more-unforgeability generalization. While our technique applies
to some other MQ signature schemes also, we instantiate our scheme with the
Rainbow signature scheme and propose parameters targeting various levels of
security.

The rest of this paper is organized as follows. Section 2 recalls the basic con-
cepts of blind signatures and discusses the basic security notions. In Section 3
we recall the basic concepts of multivariate cryptography and review the Rain-
bow signature scheme, Sakumoto’s multivariate identification scheme [28], and
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its transformation into a digital signature scheme due to Hiilsing [12]. Section 4
presents our technique to extend multivariate signature schemes such as Rain-
bow to blind signature schemes, while Section 5 discusses the security of our
construction. In Section 6 we give concrete parameter sets and analyze the effi-
ciency of our scheme. Furthermore, in this section, we describe a proof of concept
implementation of our scheme and compare it with other existing (classical and
post-quantum) blind signature schemes. Finally, Section 7 concludes the paper.

2 Blind Signatures

Blind signature schemes as proposed by David Chaum in [3] allow a user, who is
not in charge of the private signing key, to obtain a signature for a message d on
behalf of the owner of the private key (called the signer). The key point hereby
is that the signer gets no information about the content of the message d.

The signature generation process of a blind signature scheme is an interactive
process between the user and the signer. In the first step, the user computes
from the message d a blinded message d* and sends it to the signer. The signer
uses his private key to generate a signature o* for the message d* and sends it
back to the signer. Due to certain homomorphic properties in the inner structure
of the blind signature scheme, the user is able to compute from o* a valid sig-
nature o for the original message d. The receiver of a signed message can check
the authenticity of the signature o in the same way as in the case of a standard
signature scheme. Figure 1 shows a graphical illustration of the signature gener-
ation process of a blind signature scheme.

Formally, a blind signature scheme BS is a three-tuple, consisting of two poly-

user: d , pk signer: sk

compute blinded
message d* d”

_~ , compute signature
. o* o* for d*
compute signature -
o for d

Fig. 1. Signature Generation Process of a Blind Signature Scheme

nomial time algorithms KeyGen and Verify and an interactive signing protocol
Sign [13].

— KeyGen(1"): The probabilistic algorithm KeyGen takes as input a security
parameter x and outputs a key pair (sk, pk) of the blind signature scheme.
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— Sign: The signature generation step is an interactive protocol between the
User, who gets as input a message d and a public key pk and the Signer
who is given the pair (pk, sk) generated by algorithm KeyGen. At the end
of the protocol, the Signer outputs either “completed” or “non-completed”,
while the user outputs either “failed” or a signature o.

— Verify((d, o), pk): The deterministic algorithm Verify takes as input a mes-
sage/signature pair (d, o) and the public key pk. It outputs TRUE, if o is
a valid signature for the message d and FALSE otherwise.

In the following, we assume the correctness of the blind signature scheme BS: If
both the User and the Signer follow the protocol, the Signer outputs always
“completed”, independently of the message d and the output (sk,pk) of the
algorithm KeyGen. Similarly, the User always outputs a signature ¢ and we have

Pr[Verify((d,o),pk) = TRUE] = 1.

The basic security criteria of a blind signature scheme are Blindness and One-
More-Unforgeability.

— Blindness: By signing the blinded message d*, the signer of a message gets
no information about the content of the message to be signed nor about the
final blind signature o. More formally, blindness can be defined using the
following security game.

Game[Blindness]:

1. The adversary A uses the algorithm KeyGen to generate a key pair
(sk, pk) of the blind signature scheme. The public key pk is made public,
while A keeps sk as his private key.

2. The adversary A outputs two messages dy and dy, which might depend
on sk and pk.

3. Let up and u; be users with access to the public key pk but not to the se-
cret key sk. For a random bit b that is unknown to A, user ug is given the
message dp, while the message dj_p is sent to user u;. Both users engage
in the interactive signing protocol (with A as signer), obtaining blind
signatures oy and oy for the messages dy and d;. The message/signature
pairs (dg,00) and (dy,01) are given to the adversary A.

4. A outputs a bit b. He wins the game, if and only if b = b holds.

The blind signature scheme BS is said to fulfill the blindness property, if the
advantage
Adviindness(4) = 2. Pr[t) = b] — 1|

for every PPT adversary A is negligible in the security parameter.
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— One-More-Unforgeability: Even after having successfully completed L
rounds of the interactive signing protocol, an adversary A not in charge of
the private key sk cannot forge another valid blind signatures for a given
message. More formally, we can define One-More-Unforgeability using the
following game.

Game [Universal-One-More-Unforgeability]
1. The algorithm KeyGen is used to generate a key pair (sk, pk). The pub-

lic key pk is given to the adversary A, while sk is kept secret by the
challenger.

2. The adversary A engages himself in polynomially many interactive sign-
ing protocols with different instances of Signer. Let L be the number of
cases in which the Signer outputs completed.

3. A outputs a list £ of L message / signature pairs. The challenger checks
if all the message / signature pairs are valid and pairwise distinct.

4. The challenger outputs a message d* not contained in the list £. The
adversary wins the game, if he is able to generate a valid blind signature
o for the message d*, i.e. if Verify((d*, o), pk) = TRUE holds.

The blind signature scheme BS is said to provide the One-More-Unforgeability
property, if the success probability

Pr[A wins]

is, for any PPT adversary A, negligible in the security parameter.

We note that this formalism is different from the standard security game for
blindness, where the adversary is allowed to choose his own message but is
required to forge at least L + 1 valid and distinct signatures. We choose to
restrict the adversary’s choice to accurately reflect the similar lack of choice
in the standard security model for MQ signatures: universal unforgeability as
opposed to existential unforgeability.

In the existential unforgeability game, the adversary wins whenever he is capable
of producing any forgery, regardless of which message is signed. In contrast,
in the universal unforgeability game the adversary obtains a message from the
challenger and the adversary only wins if he can forge a signature for that specific
message. Nevertheless, the universal adversary is allowed to query signatures
after obtaining the target message; just not signatures on the same message.
The reason why our formalism of universal-one-more-unforgeability does not
allow blind-signature queries after delivering the target message to the adversary
is precisely because the signature-queries are blind: the challenger should not be
able to tell if it is the target message that is being blind-signed or something
else.

3 Multivariate Cryptography
The basic objects of multivariate cryptography are systems of multivariate quad-
ratic polynomials. Their security is based on the MQ Problem: Given m multi-

variate quadratic polynomials p(*) (x), ..., p(™ (x) in n variables z1, ..., z,, find
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a vector X = (Z1,...,Z,) such that pM(x) = ... = p(™(x) = 0.

The MQ problem is proven to be NP-hard even for quadratic polynomials over
the field GF(2) [11]. Moreover, it is widely assumed as well as experimentally
validated that solving random instances of the MQ problem (with m ~ n) is a
hard task, see for example [31].

To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : F* — F™ (central map). To hide
the structure of F in the public key, one composes it with two invertible affine
(or linear) maps & : F™ — F™ and T : F* — F™. The public key of the scheme
is therefore given by P = SoFoT : F* — F™. The private key consists of S, F
and 7 and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem, but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the decomposition of P.

In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Figure 2.

Signature Generation

-1 —1 —1
wE]FmLXEIFm yeF”L»ze]F”

P

Signature Verification

Fig. 2. Standard workflow of multivariate signature schemes

Signature generation: To sign a message w € F™, one computes recursively
x=8Yw) e ™, y = F(x) € F* and z = T !(y). The signature of the
message w is z € F". Here, F~!(x) means finding one (of possibly many) pre-
image of x under the central map F.

Verification: To check the authenticity of a signature z € F"™, one simply com-

putes w' = P(z) € F™. If w' = w holds, the signature is accepted, otherwise
rejected.
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3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [9] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:

Let F = F, be a finite field with g elements, n € N and v; < vy < ... < v, <
ve+1 = n be a sequence of integers. We set m =n — vy, O; ={v; +1,...,v;11}

and V; ={1,...,v;} (i=1,....,0).

Key Generation: The private key of the scheme consists of two invertible affine
maps S : F — F™ and 7 : F* — F” and a quadratic map F(x) = (f("1+V(x),
ooy f(x)) : F* — F™. The polynomials ) (i = v +1,...,n} are of the form

=S o ment Y A mems X o men® )

k,leV; keV;,leO; keV;u0;

with coefficients randomly chosen from F. Here, j is the only integer such that
i € 0. The public key is the composed map P =SoFoT : F" — ™.

Signature Generation: To generate a signature for a document w € F™ | we
compute recursively x = S71(w) € F™, y = F}(x) € F* and z = T }(y).
Here, F~!(x) means finding one (of approximately ¢”*) pre-image of x under
the central map F. This is done as shown in Algorithm 1.

Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F, vector x € F™.
Output: vector y € F" such that F(y) = x.
1: Choose random values for the variables yi, ..., y», and substitute these values into
the polynomials f® (i=wv +1,...,n).
2: for k=1to ¢ do
3: Perform Gaussian Elimination on the polynomials f ® (7 € Ok) to get the values
of the variables y; (i € O).
4: Substitute the values of y; (i € Op) into the polynomials f9 G e
{vk+1 +1,... ,n}.
5: end for

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for ¥y, ..., Y,
and start again. The signature of the document w is z € F".

Signature Verification: To verify the authenticity of a signature z € F”, one

simply computes w' = P(z) € F™. If w = w holds, the signature is accepted,
otherwise rejected.
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3.2 The MQ-based Identification Scheme

In [28] Sakumoto et al. proposed an identification scheme based on multivariate
polynomials. There exist two versions of the scheme: a 3-pass and a 5-pass vari-
ant. In this section we introduce the 5-pass variant.

The scheme uses a system P of m multivariate quadratic polynomials in n vari-
ables as a public parameter. The prover chooses a random vector s € F™ as his
secret key and computes the public key v € F™ by v = P(s).

To prove his identity to a verifier, the prover performs several rounds of the
interactive protocol shown in Figure 3.

Here,

G(x,y) =P(x+y) - P(x) - Ply) + P(0) (2)

is the polar form of the system P.

The scheme is a zero-knowledge argument of knowledge for a solution of the
system P(x) = v.

The knowledge error per round is % + i. To decrease the impersonation prob-

ability below 277, one therefore needs to perform r = | rounds

—1n
log2(1/2+1/2qﬂ
of the protocol. For identification purposes, n ~ 30 may be sufficient, but for

signatures we require 77 to be at least as large as the security level.

Prover: P,v,s Verifier: P, v

ro,to €Er F", eo €g F™
rs =8 —7To
co = Com(ro, to, eo)

c1 = Com(r1,G(to,r1) +eo0) (co,c1)

o a€erF
t1 = aro — to
_ _ (t1,e1)
o1 = aP(r0) ~ o e o
ch
If ch = 0, resp = ro D
Else, resp = r1 resp

— = If ch =0, check
co z Com(ro, arg — t1,
aP(ro) —e1)
If ¢ch = 1, check
o = Com(ry,a(v —P(r1))
—G(t1,r1) —e1)

Fig. 3. The 5-pass MQ identification scheme of Sakumoto et al. [28].
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3.3 The MQDSS signature scheme

In [12], Hiilsing et al. developed a technique to transform (2n+1) pass identifi-
cation schemes into signature schemes. The technique can be used to transform
the above described 5-pass multivariate identification scheme into an EU-CMA
secure signature scheme.

To generate an MQDSS signature for a message d, the signer produces a tran-
script of the above identification protocol over r rounds. The challenges ay, . . ., a;,
and chy, ..., ch, are hereby computed from the message d and the commitments
(using a publicly known hash function ). Therefore, the signature has the form

g = (00,17 cl,la ey cO,’I’a Cl,T’a tl,l? el,la e 7t1,T‘7 el,'r’7 respy, ..., respr)'

To check the authenticity of a signature o, the verifier parses ¢ into its compo-
nents, uses the commitments to compute the challenges «; and ch; (i =1,...,7)
and checks the correctness of the responses resp, as shown in Figure 3 (for
i=1,...,7r).

4 Our Blind Signature Scheme

In this section we present MBSS, construction for blind signatures based on
Rainbow. We chose to restrict our attention to Rainbow due to its short signa-
tures and good performance. Moreover, the key sizes of Rainbow are acceptable
and can be further reduced by the technique of Petzoldt et al. [22].
Nevertheless, our technique applies to any MQ signature scheme relying on the
construction of Fig. 2, i.e., relying on the hiding of a trapdoor to a quadratic
map behind linear or affine transforms. As the other MQ signature schemes rely
on the same construction, our technique applies to those cryptosystems as well.
We do not use any property of Rainbow that is not shared by, e.g., HFEv™ [24],
pC* 7], or UOV [15]. The exceptions are the MQ signature schemes that do not
have the construction of Fig. 2, such as Quartz [19] and MQDSS [12].

4.1 The Basic Idea

The public key of our scheme consists of two multivariate quadratic systems
P:F* - F"™ and R : F™ — . Hereby, P is the Rainbow public key, while R
is a random system. The signer’s private key allows him to invert the system P
using the algorithm from Section 3.1.

In order to obtain a blind signature for a message (hash value) w € F™, the
user chooses randomly a vector z* € F™, computes w = w — R(z*) and sends
w to the signer. The signer uses his private key to compute a signature z for the
message W and sends it to the user. Therefore, the user obtains a solution (z, z*)
of the system P(x1) + R(x2) = w. However, the user can not publish (z,z*)
as his signature for the document w since this would destroy the blindness
of the scheme. Instead, the user has to prove knowledge of a solution to the
system P(x1)+R(x2) = w using a zero knowledge protocol. We use the MQDSS
technique (see Section 3.3) for this proof.
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4.2 Description of the Scheme

In this section we give a detailed description of our blind signature scheme. As
every blind signature scheme, MBSS consists of three algorithms KeyGen, Sign
and Verify, where Sign is an interactive protocol between user and signer.

Parameters: Finite field T, integers m,n and r (depending on a security pa-
rameter k). r hereby determines, how many rounds of the identification scheme
are performed during the generation of a signature.

Key Generation: The signer chooses randomly a Rainbow private key (consisting
of two affine maps S : F™ — F™ and T : F* — F™ and a secret central map
F : F* — F™). He computes the public key P as P = SoFo T : F* — F™
(see Section 3.1) and uses a CSPRNG to generate the system R = CSPRNG(P) :
F™ — F™. The public key of our blind signature scheme is the pair (P,R), the
signer’s private key consists of S, F and 7. However, since R can be computed
from the system P, it is not necessary to publish R (if the CSPRNG in use is
publicly accessible).

Signature Generation: The interactive signature generation process of our blind
signature scheme can be described as follows: To get a signature for the message
d with hash value H(d) = w € F™, the user chooses randomly a vector z* € .
He computes w* = R(z*) € F™ and sends w = w — w* € F™ to the signer. The
signer uses his private key (S,F,7) to compute a signature z € F" such that
P(z) = w and sends z back to the user, who therefore obtains a solution (z,z*)
of the system P(x) = P(x1) + R(x2) = w.

To prove this knowledge to the verifier in a zero knowledge way, the user gen-
erates an MQDSS signature for the message w. As the public parameter of the
scheme he hereby uses the system P(x) = P(x;) + R(x2), which is a system of
m quadratic equations in n+m variables. Furthermore, G(x,y) is the polar form
of the system P, i.e. G(x,y¥) = P(x +y) — P(x) — P(y) + P(0). In particular,
the user performs the following steps.

1. Use a publicly known hash function H to compute C = H(P||w) and D =

H(C||w).
2. Choose random values forrg 1,...,ror, to.1,.-,to € F™" ™ €g1,...,€0, €
F™, set r1; = (z||z*) —ro; (i =1,...,7) and compute the commitments
CO,i = Com(ro,,i?to,i, e()’,j) and
6177; = C’om(rl_,i, g(to,i, rl,i) — eo,i) (Z = 1, ceey 7‘).
Set COM = (co,1,€1,1,€0,2,€1,25 - - -, COr CLyr)-

w

. Derive the challenges ay,...,a, € F from (D,COM).

4. Compute tl,i = 04 Yo — tO,i S ]Fm+n and €1, = «; * 75(1‘0’2') — €0,i (Z =
1, ce ,’f’). Set R8p1 = (tl,ly €1.1,--- 7t1,’r7 elw).

. Derive the challenges (chy,...,ch,) from (D,COM, Rsp,).

6. Set Rsp2 = (rch1,17 ceey rchmr)-

ot
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7. The blind signature o for the message w € F™ is given by
o= (C,COM, Rspy, Rsps).
The length of the blind signature o is given by

|o| =1 - |hash value| + 2r - [Commitment| + r - (2n 4+ 3m) F—elements.

Figure 4 shows the full protocol for obtaining a blind signature.

Signature Verification: To check the authenticity of a blind signature o for a
message d with hash value w € F™ the verifier parses o into its components
and computes D = H(C||w). He derives the challenges o; € F from (D,COM)
and ch; from (D,COM,Rspy) (i =1,...,r).

Finally, he parses COM into (0071, €1,1,€0,2,€C1,25- -+, C0,r, 01’7«)7 R8p1 into tl, ey,
..., by, e, and Rsps intory,...,r, and checks if, foralli = 1,...,r, r; is a correct
response to ch; with respect to COM, t; and e;, i.e.

Co,i 2z Com(ri, a; - 13 — ty, 0 - P(ry) —€;) (for ch; = 0)

2

c1i = Com(ry, a; - (w — P(ri)) = G(ti,ri) —ei) (for ch; =1). 3)

If all of these tests are fulfilled, the blind signature o is accepted, otherwise re-
jected.

Note: As the resulting blind signature depends on the randomness sampled
for generating the zero-knowledge proof, there may be many signatures asso-
ciated to one tuple (z,z*). To prevent a malicious user from reusing the same
preimage to P(X1) + R(X2), two signatures to messages dy,ds are considered
essentially different whenever wi = H(dy) # w2 = H(dz2). In other words, the
zero-knowledge proof is taken into account for validity but not for distinctness.

4.3 Reducing the Signature Length

In this section we present a technique to reduce the length of the blind signature
o, which was already mentioned in [28] and [12].

Instead of including all of the commitments cg 1,¢1,1,. .., ¢, C1,r into the sig-
nature, we just transmit COM = H(co1]|c11 - - cor||c1,r). However, in this sce-
nario, we have to add (¢1_chy 1, - -+ C1—ch, ) t0 Rsps. In the verification process,
the verifier recovers (cep, 1, - -, Cen,,r) by equation (3) and checks if

COM = H(cor,c11, -y Com i)
is fulfilled. By doing so, we can reduce the length of the blind signature o to

|o| = 2 - |hash value| + r - (2n + 3m) F elements + r - |Commitment| .
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User: P,R,H,d Signer: S, 7, F,P,R

w=H(d) € F",

z* €R ]Fm7
w* = R(Z*) c ]F'm,7
w=w-—-w"'eF" . w e F™
z € F® Z:T’lo}'flosfl(\fv)

P(z,2z*) = P(z) + R(z*) < w, abort if not true

G(x.y) = P(x+y) = P(x) = Ply) + P(0),
C = H(P||w) and D = H(C||w),
ro1,..,T0mt0,1,...,t0 ERF"T™ eo1,...,€0, € F™,
ri,; = (2||z*) —ro,i, 1 €{1,...,7},
co,i = Com(ro,i, to,:,€0,:),
c1,i = Com(r1,i,G(to,i,r1,:) —eo0,i), i € {1,...,7},
COM = (c0,1,€1,1,€0,2,C1,2,« -+, CO,r, C1,1)
(D,COM) = ai,...,a, €T,
ti1,i =y -ro; —to: € Fmtn
e, =a; P(ro;)—eo; (i=1,...,7),
Rsp1 = (t1,1,€1,1,.-.,t1,0,€1,0),
(D,COM, Rsp1) = (chi,...,ch:),
Rsp2 = (Yehy 15+ Tehy,r)s
o= (C,COM, Rsp1, Rsp2).

Fig. 4. Our blind signing protocol.
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4.4 Correctness

Theorem 1. Blind signatures generated by honest participants in the protocols
of our multivariate blind signature scheme will be accepted with probability 1.

Proof. The proof consists out of two steps. In the first step we show that, at
the end of the interactive process, the user obtains a solution (z,z*) of the
system P(x1) + R(x2) = w. This can be seen as follows. In the course of the
interactive protocol, the (honest) user chooses randomly a vector z*, computes
w* = R(z*) and W = w — w* and sends W to the signer. The (honest) signer
uses his private key to compute a vector z such that P(z) = w. Altogether, we
get P(z) + R(z*) = w + w* = w — w* + w* = w, which means that (z,z*) is
indeed a solution of the public system P(x) = P(x1) + R(x2).

In the second step we simply use the correctness proof of the MQDSS [12] to
show that an MQDSS signature produced by an honest signer knowing a solution
to the public system P is, by an honest verifier, accepted with probability 1.

5 Security

In this section, we analyze the security of our construction, assuming abstractly
that Rainbow is secure. (For a concrete security analysis of the underlying Rain-
bow scheme we refer to [21].) For this, we have to show the blindness and one-
more-unforgeability of the derived scheme.

5.1 Blindness

Theorem 2. Assume that the distribution of R(x) for uniform x € Fy is com-
putationally indistinguishable from uniform, and assume that a perfectly hiding
commitment scheme is used. Then our multivariate blind signature scheme pro-
vides blindness against any computationally bounded adversary. In particular,
for all PPT adversaries A, their advantage in the blindness game (of Section 2)
for our scheme is at most negligible:

VA. Adviingees(A) < negl .

Proof. The adversary has to link w from one interaction, to the pair (d, o) from
another interaction. Due to the perfect zero-knowledge property of the perfectly
hiding commitment scheme, o contains no information about the solution (z, z*)
and hence no information about R(z*) or P(z). Therefore the adversary’s task
is equivalent linking W to d, since knowledge of o gives him no advantage. How-
ever, z* is chosen uniformly at random and so R(z*) is computationally indis-
tinguishable from uniform. As a result, the blinded message w = w — R(z*) is
computationally indistinguishable from uniform and no polynomial-time adver-
sary can compute any predicate of w from w with more than a negligible success

probability. This includes the predicate H(d) Zwor any similar predicate that
would allow the adversary to link w to d.
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5.2 Universal One-More-Unforgeability

Theorem 3. If Rainbow is secure and if finding a solution (x1,%2) to P(x1)+
R(x2) = 0 for a randomly chosen quadratic map R : F" — Fj* and a Rainbow
public key P : Fy — FJ' is a hard problem, then our multivariate blind signa-
ture scheme satisfies universal-one-more-unforgeability against computationally
bounded adversaries. That is to say, for all PPT adversaries A, their advantage
in winning the universal-one-more-unforgeability game (of Section 2) is at most
negligible:
VA.Advjcti\zlaeésglfonefmorefunforgeability(A) < negl )

Proof. We present a sequence of games argument showing that any adversary
winning the Universal-One-More-Unforgeability game logically implies that the
mentioned hard problem is efficiently solvable.

Let Game 0 be the universal-one-more-unforgeability game as defined in Sec-
tion 2. By assumption, we have an adversary A who wins with noticeable prob-
ability in polynomial time.

Let Game 1 be the universal-one-more-unforgeability game but for the modified
blind signature scheme where for each signature knowledge of (z,z*) satisfying
P(z) + R(z*) = H(d) is proven interactively using the protocol of Section 3.2,
instead of producing a non-interactive proof . The simulator can win this game
by simulating an instance of Game 0 and presenting the Game 0-adversary
with a random oracle that is programmed to respond with the same challenge-
message that the simulator receives from the challenger.

Let Game 2 be the universal-one-more-unforgeability game for the modified
scheme that drops blindness altogether. Instead of proving knowledge of (z,z*)
in zero-knowledge, knowledge is proven straightforwardly by simply sending this
pair to the challenger. The simulator can win this game by simulating Game 1
and using the extractor machine associated with the zero-knowledge proof to
obtain (z,z*).

Let Game 3 be the universal unforgeability under chosen message attack game
for the signature scheme whose public key is (P, R), with the additional option
for the adversary to query inverses under P as long as the message d*, the mes-
sage for which a signature is to be forged, was not yet sent. The simulator wins
this game by simulating Game 2. The blind-signature requests are answered by
querying for an inverse under P. After the adversary outputs his list £ of mes-
sage / signature pairs, the simulator requests the message d* from the challenger
for which a signature is to be forged. This message is relayed to the simulated
adversary.

Let Game 4 be the proper universal unforgeability under chosen message at-
tack game for the signature scheme whose public key is (P, R), i.e., without the
ability to query for inverses under P. Heuristically, the same adversary that wins
Game 3 should win Game 4. The reason is that the ability to query inverses
under P before d* is known does not help the adversary at all. Since P is a
Rainbow public key and Rainbow is secure in its own right, the ability to query
inverses should not help the adversary to either recover the secret key or find
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his own inverses. Otherwise it would be possible to mount an attack exploiting
this fact.

Let Game 5 be the following non-interactive game, or problem: given (P, R),
find (x1,x2) € Fy x F® such that P(x;) + R(x2) = 0. The simulator can solve
this problem by picking a random s €g F". He then simulates Game 4 and
presents its adversary with (P, R + s) and with access to the backdoored ran-
dom oracle H'(z) = P(Hi(z)) + R(Hz2(x)) + s, where H; : {0,1}* — Fy and
Hy : {0,1}* — F* are true random oracles. Under the (very reasonable) assump-
tion that the distribution of H’ is computationally indistinguishable from that of
a true random oracle, the adversary’s winning probability is still significant. The
simulator answers a signature query d € {0, 1}* with (x1,x2) where x; = H1(d)
and x2 = Ha(d), which is necessarily a valid signature from the point of view
of the adversary who can verify that P(x1) + R(x2) +s = H/'(d). When the
adversary indicates he is done with querying signatures, the simulator chooses a
new message d*, programs H'(d*) = s, and sends d* to the adversary. A winning
adversary therefore solves P(x1) + R(x2) + s = s, which is hard because it is
equivalent to solving P(x1) + R(x2) = 0. This concludes the proof of Thm. 3.

One of the premises of Thm. 3 remains to be shown: that finding a solution
to the system P(x) = P(x;) + R(x2) = 0, which is a system of m quadratic
equations in n + m variables, is a difficult task. We have no rigorous proof for
this (such a proof would imply P # NP) but we justify making this assumption
based on common hardness arguments from MQ cryptography. In particular,
there are two attack strategies known against multivariate systems:

Direct Attacks: In a direct attack, one tries to solve the system P(x) = 0
as an instance of the MQ Problem. Since the system P is underdetermined,
there are two possibilities to do this. One can use a special algorithm against
underdetermined multivariate systems [30] or, after fixing n of the variables, a
Grobner Basis algorithm such as Faugéres Fy [10]. For suitably chosen parame-
ters, both approaches are infeasible.

The second possibility to solve a multivariate system such as P’ are the so
called Structural Attacks. In this type of attack one uses the known structure
of the system P in order to find a decomposition P into easily invertible maps.
Note that, in our case we can write

P(x) = P(x1) + R(x2)
=SoFoT(x1)+SoS ' oR(xa)
R/
=So(F+R)oT(x),
——
F/
where the matrix T’ representing the linear transformation 77 is given by

m
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In order to solve the system P using a structural attack, we have to use the
known structure of the map 7' = F + S~! o R to recover the linear maps S
and 7" (or, since the structure of 7' is mostly known, the matrix T"). However,
since the coefficients of both § and R are chosen uniformly at random, the
map R’ = S ! o R is a random quadratic map over F™. The only structure
we can use for a structural attack therefore comes from the map F, which is
the central map of the underlying multivariate signature scheme. Therefore, we
are in exactly the same situation as if attacking the underlying multivariate
scheme using a structural attack. This means that a structural attack against
our blind signature scheme is at least as hard as a structural attack against the
underlying multivariate signature scheme. By choosing the parameters of the
underlying scheme in an appropriate way, we therefore can prevent this type of
attack against our blind signature scheme.

5.3 Quantum Security

The technique proposed in [12] is capable of transforming (2n + 1)-pass zero-
knowledge proofs into non-interactive zero-knowledge proofs that are secure
against classical adversaries in the random oracle model. However, the behaviour
of this transform against quantum adversaries is not well understood because
the random oracle should be accessible to the quantum adversary and answer
queries in quantum superposition, and many standard proof techniques do not
carry over to this setting. See Boneh et al. [2] for an excellent treatment of proofs
that fail in the quantum random oracle model.

Formally proving soundness against quantum adversaries seems to be a rather
involved task beyond the scope of this paper. Instead, we are content to con-
jecture that there exists a commitment scheme such that the technique of [12]
results in a non-interactive zero-knowledge proof that is secure against quantum
adversaries as well as classical ones. This conjecture is implicit in the works of
Sakumoto et al. [28], and Hiilsing et al. [12].

6 Discussion

6.1 Parameters

In this section we propose concrete parameter sets for our blind signature scheme.
As observed in the previous section, we have to choose the parameters in a way
that

a) solving a random system of m quadratic equations in m variables is infeasible,

b) inverting an MQ public key with the given parameters is infeasible, and

c¢) a direct attack against a system of m quadratic equations in n+m variables
is infeasible.

Since condition (a) is implied by (c), we only have to consider (b) and (c). In order
to defend our scheme against attacks of type (b), we follow the recommendations
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of [21]. Regarding (c), we have to consider that the system P(x1) + R(x2) =w
is highly underdetermined (in the case of P being a Rainbow public key, the
number of variables in this system exceeds the number of equations by a factor
of about 3). As a result of Thomae et al. shows, such systems can be solved
significantly faster than determined systems.

Proposition 1. [30] Solving an MQ system of m equations in n = w - m vari-
ables is only as hard as solving a determined MQ system of m—|w]|+1 equations.

According to this result, we have to increase the number of equations in our
system by 2 (compared to the parameters of a standard Rainbow instance).
Table 1 shows the parameters we propose for our scheme for various targeted
security levels.

security parameters # rounds|public key|private key |blind sig.

level (bit)| (F, (v1,01,02)) size (kB) | size (kB) [size (kB)
80 (GF(31),(16,18,17))| 84 29.4 20.1 11.5
100 [(GF(31),(20,22,21))| 105 54.6 36.6 17.6
128  |(GF(31),(25,27,27))| 135 106.8 70.2 28.5
192 |(GF(31),(37,35,35))| 202 342.8 219.0 63.2
256  |(GF(31),(50,53,53))| 269 802.4 507.1 111.9

Table 1. Proposed parameters for our blind signature scheme (GF(31)).

6.2 Efficiency

During the interactive part of the signature generation process, the signer has
to generate one Rainbow signature for the message w = w — w*.

For the user, the most costly part of the signature generation is the repeated
evaluation of the system P(x) = P(x1) + R(xz). During the computation of the
commitments co; and ¢;; (¢ = 1,...,7) (step 2 of the signature generation
process) this has to be done 3 - r times (one evaluation of G corresponds to
3 evaluations of P). In step 4 of the process (computation of e; ;) we need r
evaluations of P. Altogether, the user has to evaluate the system 47 times.
During verification, the verifier has to compute the commitments ccp,; (¢ =
1,...,7). If ch; = 0, he needs for this 1 evaluation of P, in the case of chy = 1 he
needs 4 evaluations. On average, the verifier needs therefore - (1 +4) =2.5-r
evaluations of the system P.

While the system P consists of m quadratic equations in m + n variables, the
inner structure of the system can be used to speed up the evaluation. In fact,
the system P is the sum of two smaller systems P : F* — F™ and R : F™ — F™.
Therefore, we can evaluate P by evaluating P and R separately and adding the
results.
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6.3 Implementation

We implemented all functionalities in Sage [27] to prove concept validity. Ta-
ble 2 contains the timing results for the matching parameter sets of Table 1,
demonstrating that our scheme is somewhat efficient and practicable even for
very poorly-optimized Sage code. These results were obtained on a 3.3 GHz Intel
Quadcore with 6,144 kB of cache.

Despite of these relatively large numbers, we are very optimistic about the
speed of our blind signatures when implemented in a less abstract and more
memory-conscious programming language. For instance, Hiilsing et al.’s opti-
mized MQDSS manages to generate (classically) 256-bit-secure signatures in
6.79 ms and verify them in even less time [12]. As the MQDSS represents the
bottleneck of our scheme, a similarly optimized implementation could potentially
drop signature generation and verification time by several orders of magnitude.

‘sec. lvl.HKey Gen.‘Sign (Signer)‘Sig. Gen. (User)‘Sig. Veriﬁcation‘

80 4,007 7 2,018 1,424
100 || 9,392 13 3,649 2,656
128 || 25,517 19 7,760 5,505
192 || 87,073 11 23,602 16,040
256 || 613,968 103 86,540 59,669

Table 2. Timing results of a Sage implementation of our blind signature scheme. All
units are milliseconds, except for the security level.

6.4 Comparison

Table 3 shows a comparison of our scheme to the standard RSA blind signature
scheme and the lattice-based blind signature scheme of Riickert [26]. The RSA
blind signature scheme does not offer any security against quantum computers.
The public keys of Riickert’s scheme are smaller than those of our scheme, al-
though ours are still competitive. Like the standard RSA blind signature scheme,
our scheme requires 2 steps of communication between the user and the signer
in order to produce the blind signature. This is in contrast to Riickert’s scheme
where this number is 4. More importantly, our scheme outperforms that of Riick-
ert in terms of signature size.

At this point, an apples-to-apples comparison of operational speed is not possi-
ble. Nevertheless, regardless of speed, the main selling point of our scheme is its
reliance on different computational problems from those used in other branches
of cryptography, including lattice-based cryptography.
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Security Scheme comm. |Pub. key|Sig. size| Post-

Ivl. (bit) size (kB)| (kB) |quantum?

RSA-1229 2 1.2 1.2 X

76 Lattice-1024 4 10.2 66.9 v

Our scheme(GF(31),16,18,17)| 2 29.4 11.5 v

RSA-3313 2 3.3 3.3 X

102 Lattice-2048 4 23.6 89.4 v

Our scheme(GF(31),20,22,21)[ 2 54.6 17.6 v

Table 3. Comparison of different blind signature schemes. The secrutiy levels are
adopted from Riickert [26].

7 Conclusion

In this paper we proposed the first multivariate based blind signature scheme.
Our scheme is very efficient and produces much shorter blind signatures than
the lattice based scheme of Riickert [26], making our scheme the most promising
candidate for establishing a post-quantum blind signature scheme.

Our construction is notably generic. While we only show that it applies to Rain-
bow and MQDSS, we use their properties abstractly and it is perfectly conceiv-
able that another combination of trapdoor-based M@ signature scheme with a
non-interactive proof of knowledge of the solution to an MQ system will give
the same result. Indeed, our design demonstrates that the combination of a ded-
icated signature scheme with an identification scheme relying on the same hard
problem, is a powerful construction — and may apply in other branches of cryp-
tography as well.

Lastly, one major use case of blind signatures is anonymous identification. In this
scenario, one may reasonably dispense with the transformed signature scheme
and instead directly use the underlying interactive identification scheme, thus
sacrificing non-interactivity for less computation and bandwidth. Likewise, other
use cases such as anonymous database access require reusable anonymous creden-
tials. Our scheme can be adapted to fit this scenario as well, simply by specifying
that all users obtain a blind signature on the same public parameter.

Acknowledgements

The authors would like to thank the reviewers and the shepherd in particular for
their helpful comments. This work was supported in part by the Research Council
KU Leuven: C16/15/058. In addition, this work was supported by the European
Commission through the Horizon 2020research and innovation programme un-
der grant agreement No H2020-1CT-2014-644371 WITDOM, H2020-ICT-2014-
645622 PQCRYPTO and H2020-DS-2014-653497 PANORAMIX, and through
the SECURITY programme under FP7-SEC-2013-1-607049 EKSISTENZ. Alan
Szepieniec is being supported by a doctoral grant of the Flemish Agency for
Innovation and Entrepreneurship (VLAIO, formerly IWT).

131



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal
of Cryptology. Volume 16, Issue 3, pp. 185 - 215. Springer, Jun. 2003.

D. Boneh, O. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, M. Zhandry: Ran-
dom oracles in a quantum world. In International Conference on the Theory and
Application of Cryptology and Information Security, pp. 41-69. Springer Berlin
Heidelberg, 2011.

D. Chaum: Blind Signatures for untraceable payment. Proceedings of CRYPTO
1982, pp. 199 - 203. Plenum Press, 1983.

D.J. Bernstein, J. Buchmann, E. Dahmen (eds.): post-quantum Cryptography.
Springer, 2009.

A. Bogdanov, T. Eisenbarth, A. Rupp, C. Wolf: Time-area optimized public-key
engines: MQ-cryptosystems as replacement for elliptic curves? CHES 2008, LNCS
vol. 5154, pp. 45-61. Springer, 2008.

A.LT. Chen, M.-S. Chen, T.-R. Chen, C.-M. Cheng, J. Ding, E. L.-H. Kuo, F.
Y .-S. Lee, B.-Y. Yang: SSE implementation of multivariate PKCs on modern x86
cpus. CHES 2009, LNCS vol. 5747, pp. 33 - 48. Springer, 2009.

J. Ding, V. Dubois, B.-Y. Yang, O. C.-H. Chen, C.-M. Cheng: Could SFLASH be
repaired? International Colloquium on Automata, Languages, and Programming,
2008. pp. 691-701.

J. Ding, J. E. Gower, D. S. Schmidt: Multivariate Public Key Cryptosystems.
Springer, 2006.

J. Ding, D. S. Schmidt: Rainbow, a new multivariate polynomial signature scheme.
ACNS 2005, LNCS vol. 3531, pp. 164-175. Springer, 2005.

J.C. Faugere: A new efficient algorithm for computing Grobner bases (F4). Journal
of Pure and Applied Algebra 139, pp. 61-88 (1999).

M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company 1979.

A. Hiilsing, J. Rijneveld, S. Samardjiska, P. Schwabe: From 5-pass MQ-based iden-
tification to MQ-based signatures. Cryptology ePrint Archive: Report 2016/708
A. Juels, M. Luby, R. Ostrovsky: Security of Blind Digital Signatures. CRYPTO
1997, LNCS vol. 1294, pp. 150 - 164. Springer 1997.

D. Kravitz: Digital Signature Algorithm. US patent 5231668 (July 1991).

A. Kipnis, L. Patarin, L. Goubin: Unbalanced Oil and Vinegar Schemes. EURO-
CRYPT 1999, LNCS vol. 1592, pp. 206—222. Springer, 1999.

T. Matsumoto, H. Imai: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. EUROCRYPT 1988. LNCS vol. 330, pp. 419-
453. Springer, 1988.

D. Goodin: NSA preps quantum-resistant algorithms to head off crypto-
apocalypse. http://arstechnica.com/security/2015/08 /nsa-preps-quantum-
resistant-algorithms-to-head-off-crypto-apocolypse/.

National Institute of Standards and Technology: Report on post-quantum Cryp-
tography. NISTIR draft 8105, http://csrc.nist.gov/publications/drafts/
nistir-8105/nistir_8105_draft.pdf.

J. Patarin, N. Courtois, and L. Goubin. ”Quartz, 128-bit long digital signatures.”
Cryptographers’ Track at the RSA Conference. Springer Berlin Heidelberg, 2001.
A. Petzoldt, S. Bulygin, J. Buchmann: A Multivariate based Threshold Ring Sig-
nature Scheme. Appl. Algebra Eng. Commun. Comput. 24(3-4); 255-275 (2012).

132



21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. A. Petzoldt, S. Bulygin, J. Buchmann: Selecting Parameters for the Rainbow Sig-
nature Scheme. PQCrypto 2010, LNCS vol. 6061, pp. 218-240. Springer, 2010.

A. Petzoldt, S. Bulygin, J. Buchmann: CyclicRainbow - A Multivariate Signature
Scheme with a Partially Cyclic Public Key. INDOCRYPT 2010, LNCS vol. 6498,
pp- 33-48. Springer, 2010.

A. Petzoldt, S. Bulygin, J. Buchmann: Fast Verification for Improved Versions
of the UOV and Rainbow Signature Schemes. PQCrypto, LNCS vol. 7932, pp.
188-202. Springer, 2013.

A. Petzoldt, M.S. Chen, B.Y. Yang, C. Tao, J. Ding: Design Principles for HFEv-
based Signature Schemes. ASTACRYPT 2015 - Part 1, LNCS vol. 9452, pp. 311-
334.Springer, 2015.

R. L. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Commun. ACM 21 (2), pp. 120-126 (1978).

M. Riickert: Lattice-Based Blind Signatures. ASTACRYPT 2010 , LNCS vol. 6477,
pp- 413-430. Springer, 2010.

SageMath, the Sage Mathematics Software System (Version 7.1), The Sage Devel-
opers, 2016, http://www.sagemath.org.

K. Sakumoto, T. Shirai, H. Hiwatari: Public-Key Identification Schemes Based on
Multivariate Quadratic Polynomials. CRYPTO 2011, LNCS vol. 6841, pp. 706 -
723. Springer, 2011.

P. Shor: Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer, STAM J. Comput. 26 (5), pp. 1484 - 1509 (1997).
E. Thomae, C. Wolf: Solving Underdetermined Systems of Multivariate Quadratic
Equations Revisited. PQCrypto 2012, LNCS vol. 7293, pp. 156-171. Springer, 2012.
T. Yasuda, X. Dahan, Y-J Huang, T. Takagi, K. Sakurai: MQ Challenge: Hardness
Evaluation of Solving Multivariate Quadratic Problems. IACR Cryptology ePrint
Archive 2015 (2015): 275.

B.Y. Yang, J.M. Chen: Building secure tame-like multivariate public-key cryp-
tosystems.: The new TTS. CHES 2004, LNCS vol. 3156, pp. 371- 385. Springer,
2004.

133



134 PUBLISHED PAPERS

6.3 Public Key Compression for Constrained Linear
Signature Schemes

Publication data

Ward Beullens and Bart Preneel and Alan Szepieniec, “Public Key Compression
for Constrained Linear Signature Schemes” Selected Areas in Cryptography
- SAC 2018 - 28th International Conference, University of Calgary, Alberta,
August 15-17, 2018, Revised Selected Papers., 2018. (Page numbers not known

yet.)

Contributions

Contributing author

Notes

This paper supersedes a previous collaboration with the same co-authors, “MQ
Signatures for PKI” [132] which is essentially the same idea but specifically
for MQ signature schemes. Incidentally, that paper became the basis for a
submission to the NIST competition under the name “DualModeMS” [75] by
researchers from Paris who generously coined the term “SBP transform”. The
novelty with respect to the predecessor paper consists of the constrained-linear
signature scheme formalism and the quantum random oracle model proof. Ward
and I judged each other to have roughly equal contributions so we opted for
alphabetical author listing here.



Public Key Compression for Constrained Linear
Signature Schemes

Ward Beullens and Bart Preneel and Alan Szepieniec

imec-COSIC KU Leuven, Belgium
ward.beullens@esat.kuleuven.be, bart.preneel@esat.kuleuven.be,
alan.szepieniec@esat.kuleuven.be

Abstract. We formalize the notion of a constrained linear trapdoor as
an abstract strategy for the generation of signature schemes, concrete in-
stantiations of which can be found in MQ-based, code-based, and lattice-
based cryptography. Moreover, we revisit and expand on a transforma-
tion by Szepieniec et al. [39] to shrink the public key at the cost of a larger
signature while reducing their combined size. This transformation can be
used in a way that is provably secure in the random oracle model, and
in a more aggressive variant whose security remained unproven. In this
paper we show that this transformation applies to any constrained linear
trapdoor signature scheme, and prove the security of the first mode in the
quantum random oracle model. Moreover, we identify a property of con-
strained linear trapdoors that is sufficient (and necessary) for the more
aggressive variant to be secure in the quantum random oracle model. We
apply the transformation to an MQ-based scheme, a code-based scheme
and a lattice-based scheme targeting 128-bits of post quantum security,
and we show that in some cases the combined size of a signature and a
public key can be reduced by more than a factor 300.

Keywords: digital signatures, post-quantum, quantum random oracle model,
key size reduction

1 Introduction

Trapdoor functions are an important tool in public key cryptography due to
the computational asymmetry they bring about. On the one hand, the function
is a proper cryptographic one-way function to anyone who is ignorant of the
secret trapdoor information; but on the other hand, anyone who does know this
trapdoor information can use it to find inverse images quickly.

The case of surjective trapdoor functions is especially interesting for generat-
ing digital signature schemes. A cryptographic hash function maps a message of
any size to a random point in the trapdoor function’s output space. An inverse
of this point under the trapdoor function, or signature, testifies to the involve-
ment of the trapdoor information, or secret key, in its generation. This testimony
ensures the target property of non-repudiation of origin: the secret key holder
cannot deny generating the signature at a later date.
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Since their inception in the seminal paper by Diffie and Hellman [10], vari-
ous digital signature schemes have been deployed whose security is based on the
hardness of integer factorization [35] and the discrete logarithm problem [36,30].
However, the advent of quantum computers threatens the security of these signa-
ture schemes because both hard problems are solved efficiently by Shor’s quan-
tum algorithm [37]. This ultimatum drives the need to design, develop and de-
ploy so-called post-quantum cryptosystems, i.e., cryptography that can be run
on classical hardware but promises to resist attacks by quantum computers.

Even though the RSA trapdoor is broken by quantum computers, the hash-
and-sign construction that RSA signatures are based on seems to survive the
transition to post-quantum cryptography. To achieve post-quantum secure sig-
nature schemes it suffices to exchange the underlying trapdoor for one that
has the desired security against quantum adversaries. There is no shortage of
trapdoor-based signature schemes based on the MQ problem [21,11,34], coding
theory [8,9], or lattices [15,3,27].

Unfortunately, the public keys in these schemes are prohibitively large, mea-
surable in hundreds of kilobytes if not megabytes. In contrast, post-quantum
signature schemes derived from zero-knowledge proofs require only a one-way
function whose selection can be random or might as well be determined by a
short seed and an implicit pseudorandom generator. Signature schemes based
on zero-knowledge proofs tend to exchange tiny public keys for prohibitively
large signatures [38,7,23,18], and moreover require complicated and expansive
non-interactivity transforms to retain security against quantum attackers [40].
Although provable security in the case of hash-based signature schemes is much
more straightforward, this family of constructions follows the same pattern: tiny
public keys but huge signatures [5,4].

Szepieniec, Beullens and Preneel offer an alternative to the dilemma between
large public keys or large signatures [39], motivated by the desire to minimize
the combined size of public key and signature. This minimization is particularly
important in the context of public key infrastructure (PKI) where a chain of
signatures and public keys is transmitted in order to authenticate a message
with respect to a pre-shared root public key. The construction of Szepieniec et
al. applies specifically to MQ trapdoors and relies on the observation that ver-
ifying a couple of random linear combinations of the public key’s polynomial
equations can be as good as verifying all of them. The coefficients of this linear
combination are determined as a function of the produced signature, and the
combination itself is transmitted along with this signature in addition to infor-
mation authenticating its link to the public key. This transformation reduces
the size of public key plus that of the signature by roughly a factor three whilst
provably retaining security in the random oracle model; and by a much larger
factor at the expense of a heuristic security argument.

This article expands on the paper of Szepieniec et al. in several ways. We
observe that this transformation also applies to other post-quantum trapdoor
signature schemes, most notably code-based and lattice-based trapdoors. From
a general perspective, these three hard problems are variations on a common
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theme, which we call constrained linear signature schemes. This commonality
allows a generic presentation of the transformation. The security proofs of Szepi-
eniec et al. only work in the classical random oracle model. However, security
proofs that purport to defend against quantum adversaries should additionally
hold in the quantum random oracle model, which our proof does. Moreover, we
identify a necessary and sufficient security property, called (o, r)-hash-and-sign-
security ((o,7)-HSS), that a constrained linear signature scheme must have in
order for the more aggressive parameter choices of Szepieniec et al. to be provably
secure. This leads to an improved understanding of the security of instantiations
of this construction, which includes the DualModeMS submission of Faugere et
al. [12] to the NIST PQC standardization project [29]. To showcase the key
size improvements that can be achieved with the transformation, we apply the
transformation to a lattice-based, code-based and multivariate constrained linear
signature scheme with parameters targeting 128 bits of security against quantum
computers.

2 Preliminaries

Random oracle model. We use a hash function in our construction. For the
purpose of proving security we model it by a random oracle, which is a random
function H : {0,1}* — {0,1}" with a fixed output length, typically equal to
the security parameter. If necessary, the random oracle’s output space can be
lifted to any finite set X. We use subscripts to differentiate the random oracles
associated with different output spaces. A security proof relying on the modelling
of hash function as random oracles is said to hold in the random oracle model.
When quantum adversaries are considered, the security proofs should allow for
superposition queries to the random oracle [6]; a security proof with this property
is said to hold in the quantum random oracle model.

Trapdoor functions. A trapdoor function is a function that can be efficiently
computed in one direction, but for which it is hard to compute preimages unless
by someone who knows a secret piece of information called the trapdoor. We
associate three algorithms to a trapdoor function family:

— GenTrapdoor takes a security parameter as input and outputs a trapdoor
function f and a trapdoor t.

— Evaluate takes a description of the trapdoor function f and an argument x
as input, and returns the evaluation of f at x. In the rest of the paper, we
simply write this as f(z).

— Invert takes the function f, the trapdoor ¢ and an image y as input, and
outputs a value x such that f(z) = y.

Signature scheme. A public key signature scheme is defined as a triple of poly-
nomial-time algorithms (KeyGen, Sign, Verify). The probabilistic key generation
algorithm takes the security level £ (in unary notation) and produces a secret and
public key: KeyGen(1%) = (sk, pk); the signature generation algorithm produces
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a signature: s = Sign(sk,m) € {0,1}*. The verification algorithm takes the
public key, the message and the signature and decides if the signature is valid:
Verify(pk,m,s) € {0,1}; we refer to these outputs as “reject” and “accept”,
respectively. The signature scheme is correct if signing a message with the secret
key produces a valid signature under the matching public key:

(KeyGen(1%) = (sk,pk)) = Vm € {0,1}".Verify (pk, m,Sign(sk,m)) =1 .

Here and elsewhere we use = to denote the event of the probabilistic algorithm
on the left hand producing the output on the right hand, and = to denote
logical implication.

Security is defined with respect to the Existential Unforgeability under Cho-
sen Message Attack (EUF-CMA) game of Goldwasser et al. [17]. The adversary
A is allowed to make a polynomial number of queries m;,i € {1,...,q},q < K¢
for some ¢, which the challenger signs using the secret key and sends back:
s; + Sign(sk, m;). At the end of the game, the adversary must produce a pair of
values (m/,s’) where m’ was not queried before: m’ ¢ {m;}_,. The adversary
wins if Verify(pk,m’,s’) = 1. In the game below, the Iverson brackets [-] return
0 if the expression is False or 1 if it is True.

Game EUF-CMA

: sk, pk < KeyGen(17)

Mo

define S(m) as
M+~ MU {m}
return Sign(sk,m)

end definition

: (m,s) «— AS(pk)

: return [Verify(pk,m, s) = True Am ¢ M]

PTG

We define the insecurity function InSecECHEr;eCMA(QS; t) as the maximum win-

ning probability across all quantum adversaries that run in time ¢ and that make
at most QJs signature queries.

Hash-and-sign signature schemes. Given a trapdoor function family and a hash
function H that hashes arbitrary messages to elements in the range of the trap-
door functions we can use the hash-and-sign construction to build a (not neces-
sarily secure) signature scheme. The key generation algorithm simply calls the
GenTrapdoor function to get (f,t). The public key is then the description of f,
and the trapdoor ¢ is the private key. To sign a message m, the signer uses his
trapdoor ¢ to produce a preimage s for H(m). This preimage is the signature for
m. Lastly, to verify the validity of a signature the verifier computes H(m), uses
the public key to evaluate f at s and checks if f(s) = H(m).

Merkle tree. A Merkle tree [26] is a balanced binary tree whose root authenticates
a list of data items which are contained in the leaves. Every non-leaf node,
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including the root, has a value equal to the hash of the concatenation of its two
children. A leaf can be proven to be a member of the tree by tracing a path from
the leaf to the root and listing all siblings of nodes on that path: every step can
be verified by computing one hash. We associate three algorithms with a Merkle
tree:

— CalculateMerkleRoot takes a list of leaf items, computes the entire Merkle
tree, and returns its root.

— OpenMerklePath takes a list of leaf nodes and an index, and outputs its
authentication path: the list of all siblings of nodes on the path from the
indicated leaf node to the root.

— VerifyMerklePath takes an index, a leaf node, a Merkle path, and a root, and
decides whether the leaf node is a member of the tree with the given root.

3 Trapdoor-Based Signature Schemes

3.1 MQ Trapdoors

Multivariate quadratic (MQ) trapdoor functions date back to the C* scheme
of Matsumoto and Imai [25], which has since given rise to a number of viable
candidates including HFE; [32], UOV [21] and Rainbow [11]. The idea is to
compose a special quadratic map F : Fy — Fi* with two linear transforms,
T € GL,,,(Fy) and S € GL,,(F,) to obtain the public key P =T oF o S. A vector
s € [y that represents an assignment to the variables, is a valid signature for
the document d € {0, 1}* whenever

P(s) = H(d) . (1)

In order to find s, the signer computes z = H(d), y = T~ 'z, uses the special
structure of F to sample an inverse x such that F(x) =y, and then computes
s=S5"!x.

We focus on the Rainbow submission to the NIST PQC project [29], where
the parameter set (¢ = 256,v = 68,01 = 36,02 = 36) is proposed. In this case,
n =v+ 01+ o0y =140 and m = 01 + 0o = 72. While the proposal does not
employ Petzoldt’s compression trick [33] we note that it is possible in principle,
in which case v(v+1)/24 vo; columns of the public Macaulay matrix are set as
the output of a PRG expanding a seed of 32 bytes.! Allocating five bits per field
element, we obtain signatures of 140 bytes and public keys of 356.9 kB. Without
Petzoldt’s compression trick the public key is 694.0 kB.

3.2 Code-Based Trapdoors

The first code-based signature scheme was proposed by Courtois, Finiasz and
Sendrier (CFS) [8]; it relies on the difficulty of finding a low Hamming weight

! In fact, Petzoldt manages to fix more elements of the public key’s Macaulay matrix,
but as these elements are not arranged into columns they are incompatible with our
compression technique.
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word associated with a given syndrome. The public key in such a signature
scheme is a parity check matrix H € FS"™¥)*"_ A signature (s, i) € F1*" x Z on
a document d € {0,1}* consists of an error vector and an index; it is valid when
the error vector has Hamming weight at most ¢t and syndrome equal to the hash
of the document concatenated with the index i. The index i can be thought of
as selecting a different hash function. Formulaically:

Hs" = H(d|i) and HW(s) <t . (2)

By our calculations, a 128-bit post-quantum security level is achieved with
the parameter set m = 26, t = 15 and thus n = 2™ = 226 and n—k = tm = 390.
At this point the public key is 3.05 GB but the signatures are 390 bits. We refer to
Appendix A for a derivation of these parameters. We choose not to consider the
question whether the cryptosystem is practically usable with these parameters
and instead focus on the obtained compression factor. The CFS scheme is used
as a generic stand-in for code-based signature schemes using the hash-and-sign
paradigm and relying on the hardness of syndrome decoding.

3.3 Lattice-Based Trapdoors

A first trapdoor-based signature schemes from lattices was proposed by Goldre-
ich, Goldwasser and Halevi (GGH) at Crypto '97 [16]. The signatures of this
scheme leak information about the private key, and the scheme was broken by
Nguyen and Regev [31]. Gentry, Peikert and Vaikuntanathan [15] showed how
to sample signatures that do not leak information and constructed a provably
secure signature scheme. Later improvements by Alwen and Peikert [3] and by
Micciancio and Peikert [27] make the scheme more efficient. The main idea is the
same in all schemes: the public key is a matrix A € Fy*™ with large coefficients
but such that there exists another matrix S € Z™*™ with small coefficients with
AS = 0modg. In order to generate a signature for a document d € {0,1}*, the
signer uses the secret key S to obtain a small-coefficient vector z € Z™. It is a
valid signature whenever

Az =H(d)modq and |z|2<8, (3)

for some length bound 8 € R+g.

Using the methodology of [28], and the estimator for the concrete hardness
of the SIS problem of Albrecht et al. [1], we choose parameters for the scheme
of [27] that achieves 128 bits of security. This results in the parameters n =
321,q = 226 — 5,m = 16692 and 8 = 112296, a public key of n x m x 26 bits
= 16.6 MB, and signatures of [log,(f)] x m bits = 34.6 KB. We chose ¢ to be
prime as this is required for our security proof to work. The first half of the
matrix A can be chosen randomly, so we can fix this part with a PRG to cut the
size of the public key in half.
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3.4 A Unifying View

The above three signature schemes can be thought of as variations on a com-
mon theme. These schemes are all hash-and-sign signature schemes with a linear
trapdoor function f : Fg — F’;, but with f restricted to a domain defined by
a nonlinear constraint function nc : Fg — {True, False}. We call these trap-
door functions constrained linear trapdoor functions, and if they are used
in a hash-and-sign construction, we call the resulting signature scheme a con-
strained linear signature scheme.

For all the constrained linear signature schemes the public key is a matrix
M e ]F’;XZ with k& < ¢ which represents the trapdoor function f and a signature
is represented by a vector s € Fg. A signature is valid if Ms is equal to a target
t e IE";, which is the evaluation of a hash function at a document, and if the
vector s also satisfies the constraint nc. Symbolically:

Verify(sk,m,s) =1 <= Ms=t=H(m) A nc(s) = True .

In the case of lattice-based trapdoors, the signature is valid only if s is a short
vector. In the case of code-based trapdoors, it is valid only if the Hamming
weight of s is low. And in the case of MQ trapdoors, the matrix M is the
coefficient matrix (or Macaulay matrix) of the quadratic polynomial map P
and the signature s must be factorizable as a vector of products of n variables:
st = (22,1120, . .. ,z2). Formally, we capture this difference between MQ, code-
based, and lattice-based trapdoors with the nonlinear constraint nc, namely by
defining for

— code-based trapdoors: nc(s) = True < HW(s) < ¢;
— lattice-based trapdoors: nc(s) = True < ||s||2 < 6;

— MQ trapdoors: nc(s) = True & Jx1,...,2, € Fy.s"T = (22, 2129,...,22).

3.5 Additional security properties

We say that a surjective trapdoor function f is one-way (OW) if it is hard to find
a preimage for a randomly chosen output, and we say that f is hash-and-sign
secure (HSS) if using the trapdoor function f in the hash-and-sign construction
leads to a signature scheme that is EUF-CMA secure. If f is a constrained linear
trapdoor function we can define stronger versions of the OW and HSS security
properties that will be useful for the security analysis of the transformation.

(o, r)-one-wayness. For any two non-negative integers o > r we define (o, r)-
one-wayness and (o, r)-hash-and-sign security. To break (o, r)-one-wayness, an
adversary has to find o preimages x1,...,X, € Ffi for o vectors y1,...,¥, € F’;.
However, the adversary is allowed to make mistakes in each of the o preimages
it produces, as long as the errors f(x;) — y; are contained in a vector space
of dimension 7. The (1,0)-one-wayness property is identical to the one-wayness
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property, because the adversary only needs to find a preimage for one target and
it is not allowed to make any mistakes.

The (o, 7)-OW property is a generalization of the AMQ problem introduced
in [39]; an MQ trapdoor P is (o,r)-one-way precisely if the Approximate MQ
problem with o targets and rank r is hard for the map P.

(o, r)-hash-and-sign security. We also define a (o, r)-variant of the HSS prop-
erty. The security game behind this property is similar to the EUF-CMA game
of the hash-and-sign signature scheme induced by f. To break this property, an
adversary has to come up with a message m and o ‘signatures’ si,---,s, such
that the errors f(s;) —H(m||¢) are contained in a a subspace of dimension r. The
adversary can query a signing oracle S any (polynomially bounded) number of
times. When given a message m/, this signing oracle uses the trapdoor to pro-
duce preimages for H(m/||1),--- ,H(m/||o) and returns these o preimages. The
adversary loses the game if it returns a message m for which it has queried the
signing oracle, as is the case for the familiar EUF-CMA game.

We define the insecurity function InSecgf’r)fHSS(Qs,QH;t) as the maximal
winning probability of an adversary that plays the (o, 7)-HSS game of f, that
makes Qs queries to the signing oracle, Qy queries to the random oracle and
that runs in time ¢. The (1,0)-HSS property is equivalent to the HSS property.

Remark 1. If f is a collision-resistant preimage-sampleable trapdoor function (as
is the case for some lattice-based trapdoor functions), the one-wayness of f
can be reduced tightly to its hash-and-sign security and so OW and HSS are
equivalent [15, Prop. 6.1]. Under the same assumption on f, the security proof
of [15] can be modified to prove that (o,7)-OW and (o, r)-HSS are equivalent
forall o >r > 0.

4 Construction

4.1 Description

This section describes the transform of Szepieniec et al. but adapted to ap-
ply generically to constrained linear signature schemes. The parameters for the
transformation are:

— (KeyGen, Sign, Verify), the constrained linear signature scheme to start from.
We denote the hash function used in the verification algorithm by H; and
the nonlinear constraint by nc.

— 7, the number of leaves in the Merkle tree.

— e, the extension degree of Fse, which is the field over which the error-
correcting code is defined. This value is constrained by ¢¢ > 7.

— 1, the number of Merkle paths that are opened with each new signature.

— o, the number of signatures of the original signature scheme that is included
in each signature of the new scheme.
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Game (o,7)-OW Game (o,r)-HSS
. (f,t) « GenTrapdoor(1%) : (f,t) « GenTrapdoor(1”)
Y1,..4,yg<iIF§ Mo
X1,y Xo — A(f, Y15+, Y0) : define S(m) as
: return [dim({f(x;) —vyi):) < 7] M+~ MU {m}
for i from 1 to o do
‘ s; < Invert(f,t,H(m||i))
end for
return si,...,Ss
: end definition
DM, S1,...,S0 AH’S(‘)(f)
o d=dim({f(s;) — H(m||7)):
: return [(d <) A (m & M)]

PN W

—_ =
N = O ©

Fig. 1: The security game of the (o, ) —OW property (left) and of the (o, 7)—HSS
property (right).

OW <= (o,r)-OW

I I

HSS <« (o,r)-HSS

Fig. 2: Security properties of constrained linear trapdoor functions, and implica-
tions between them.

— Hs, a hash function that outputs a a-by-k matrix over IF,.
— Hs, a hash function that outputs a set of ¥y numbers between 1 and 7.
— Hy, a hash function used for building a Merkle tree.

The transformation outputs a new signature scheme (NEW.KeyGen, NEW.Sign,
NEW Verify) with a smaller public key but larger signatures.

Random Linear Combinations. A signature of the new signature scheme
consists of o signatures of the original signature scheme, along with some in-
formation to verify them. The ith signature is obtained by using the signature
generation algorithm of the original contrained-linear signature scheme to sign
d||i. It is not necessary to communicate the entire public key M € F’; %t Rather,
it suffices to transmit a few random linear combinations of its rows. Therefore,
part of the new signature consists of a matrix 7" that is equal to RM, where R is
drawn uniformly at random from the space of a x k matrices. Instead of check-
ing whether M's; = Hy(d||¢), the verifier can now check wheter T's; = RH; (d||).
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Obviously, if all signatures are valid, then the latter equations will also be sat-
isfied for any matrix R. Conversely, if at least one signature is invalid, i.e.,
Ms; # Hi(d||¢) for some 4, then the probability that RMs = RH;(d||7) is at
most ¢~ . By choosing « large enough, the probability of accepting an invalid
signature can be made arbitrarily small.

Determining R. In order for the above argument to work, R must be chosen
independently from s = si]|---||s,. Therefore, we determine R with a hash
function as R = Ha(d||s1]| - - - ||ss) to ensure that a forger cannot use knowledge
about R in his choice of the s;.

Verifying T'. An attacker can present the verifier with a signature containing
a matrix 7 which is totally unrelated to the matrix M. How can the verifier
be sure that the matrix 7" that is included in the signature, is really equal to
RM with R = Ha(d||s1|| - ||ss)? We solve this problem with a probabilistic
test based on an IFy-linear error correcting code. This is a code whose alphabet
consists of the elements of a finite field F,, with the property that any F,-linear
combination of codewords is again a codeword. We work with Reed-Solomon
Codes? over Fye with message length L = [£/e] (we pack e elements of F, into
each symbol), codeword length 7 and minimal codeword distance D = 7 — L.
We use Enc : ]FZEXL — FgX7 to denote the operation of encoding the rows of a
matrix.

In the key generation phase, we compute E = Enc(M). Then we commit to
this matrix E by building a Merkle tree whose leaves contain the columns of E,
which are denoted by e; for i € {1,...,7}. The new public key is the root of
this tree. If T'= RM, then by F,-linearity of the error correcting code, we have
that Enc(T) is equal to REnc(M) = RE. Conversely, if T' # RM, then Enc(T)
and RE differ in at least one row. These rows are different codewords, so they
differ in at least D of the 7 symbols. To verify that T'= RM, we now select
columns ey, -+, ep, of E with the hash function Hs and we check whether the
bi-th column of T" agrees with Rep, for all ¢ in 1,--- ;9. If T' is not equal to RM,
this will go undetected with a probability of at most (é)ﬁ.

Pseudocode. Algorithms 1, 2 and 3 present pseudocode for the new signature
scheme (NEW.KeyGen, NEW.Sign, NEW Verify) obtained from transforming the
old constrained-linear signature scheme (KeyGen, Sign, Verify).

Key and signature sizes. For a post-quantum security level of « bits, the new
public key is 2k bits in size, as it represents the Merkle root. The new signature
consists of o old signatures, « linear combinations of the rows of M (each one

2 While the original description of the transformation used MAC-polynomials, we
think it is better to describe the same transformation it in the language of Reed-
Solomon error correcting codes.
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———  Algorithm NEW.KeyGen

input: 1® — security level (in unary)
random coins
output: root — A public key
(sk, M) — A corresponding secret key

1: (sk, M) < KeyGen(1")

2: E < Enc(M) > Encode M row by row.
3: root < CalculateMerkleRoot(ey, - - - , er) > Build tree on columns of E
4

: return (root , (sk, M))

Alg. 1: The key generation algorithm

of which consists of ¢ field elements of size [log, ¢] bits), ¢ columns of Enc(M)
(each one of which consists of & field elements of e x [log, ¢] bits), and ¥ Merkle
paths of consisting of log, 7 hash images of 2« bits each. Put all together, we
have

INEW.signature| = o|OLD.signature| 4+ (ol +9ke) X [log, ¢] + 29k x logy 7 . (4)

The old signatures can be represented as ¢ field elements but in some cases a
more concise encoding is possible. For instance, CFS signatures require only the
positions of the 1-bits, and MQ signatures require only an assignment to the
variables from which the vector of quadratic monomials can be derived.

4.2 Security

Before we present the security statement and its proof, we need to introduce a
pair of security games that will be important for our security analysis. In par-
ticular, we need hash functions that are one-way and second-preimage resistant,
in both cases with respect to multiple targets. Both games are formalized with
respect to a hash function H that is randomly selected from a hash function
family H. We follow the formalisms of Hiilsing et al. [20].

— In the single-function, multiple-target one-wayness (SM-OW) game, the ad-
versary is given a list of target outputs and it wins if it can produce a single
input that maps to any one of the outputs. We write InSecalf/IISOW(Q) to de-
note the maximum success probability across all adversaries that make at
most @) queries and with respect to the hash function family H and where
P is the number of target outputs.

— In the single-function, multiple-target second-preimage resistance (SM-SPR)
game, the adversary is given a list of inputs and it wins if it can produce
a second preimage that maps to the same output as any one of the input
preimages. We write InSeca{v}SSPR(Q) to denote the maximum success proba-
bility across all adversaries that make at most () queries and with respect to
the hash function family A and where P is the number of input preimages.

145



———  Algorithm NEW.Sign

input: d — A document to sign
(sk, M) — A private key

output: (s1,--- ,80,7, Vb, , Ub,,paths) — A signature for d

1: for i from 1 to o do

2: ‘ s; < Sign(d||¢, sk)

3: end for

4: R« Ha(d|s1]| - [Iso)

5. T+ RM

6: E < Enc(M) > Encode M row by row.

72 by, by = Ha(d|lsall -+ [Iso | T)

8: paths < empty list

9: for i from 1 to ¥ do

10: | paths.append(OpenMerklePath(er, - - , er, b;))

11: end for

12: return (s1,--- ,s9,T,€p,, -+ , €, ,paths)

Alg. 2: The signature generation algorithm.

——  Game SM-OW Game SM-SPR
L HEH HEH
2: for ¢ from 1 to P do 2: for ¢ from 1 to P do
3 M & {o,1)™ 3. M & {o,1)™
4: Y; < H(M;) 4: end for
5: end for 5. M' < A"(My, ..., Mp)
6: M« A"(Y1,...,Yp) 6: return [Ji.H(M') = Y; A
7: return [Ji.H(M') = Y]] M' # M;]

Hiilsing et al. obtain values for these insecurity functions in the random oracle
model, i.e. where H is drawn uniformly at random from the set of all functions
from the given input space to the given output space. In the classical random
oracle model we have

(Q+1)P

SM-OW _ SM-SPR _
IrlseCH,P (Q) - InsecH,P (Q) - |range(H)| . (5)

In the quantum random oracle model, where the adversary is allowed Q quantum
queries, we have

. R )+ 1)%P
InSeciOW (Q) = InSecMSPR(() = © (%) . (6)
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———  Algorithm NEW.Verify

input: d — document
(s1,-++ ,89,T,Vp;," "+ , Uby,paths) — signature
root — public key

output: 1 if the signature is valid, 0 otherwise

L R« Ha(d|[s1]|- - [Iso)

2: for ¢ from 1 to o do

3 if T's; # RH1(d||%) or nc(s;) = False then
4: ‘ return 0

5: end if

6: end for

T: b1, by < Ha(d||s1]| - ||se||T)

8: for 7 from 1 to ¥ do

9: | if Enc(T).p; # Res, then
10: ‘ return 0
11: end if
12: if VerifyMerklePath(b;, ey, ,paths[i],root) = Fail then
13: ‘ return 0
14: end if
15: end for

16: return 1

Alg. 3: The signature verification algorithm.

The SM-OW game does not quite capture one of the transitions in our
security proof. The reason for this is that the adversary cannot be given a
definite list of target output images because whether an output of the hash
function is suitable for the adversary depends on the input of the hash func-
tion. We model this task by a new game, marked element search (MES), in
which the adversary does not have a list of target outputs but a marking func-
tion mark : domain(H) x range(H) — {0, 1} that determines whether the pair
(input, output) is suitable. We write InSecmgfrk(Q) to denote the maximum suc-
cess probability across all adversaries that make at most ) queries to the hash
oracle in the MES game. In the quantum random oracle model this notion is
reducible to SM-OW.

———  Game MES

LHEH
2: M+ A"()
3: return mark(M,H(M))
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Proposition 1 (SM-OW < MES). In the (quantum) random oracle model, we
have that for any marking function mark with P = maxx [{Y | mark(X,Y) = 1}|,

InSeci o (Q) < InSeci'5°™(Q) (7)

Proof. We show an algorithm, Bgy.ow in the SM-OW game, that simulates a
given algorithm Apgs for the MES game with marking function mark, and wins
with at least the same probability. The input of Bsm.ow is a list of P images
{Y1,...,Yp} and access to a random oracle H. The algorithm Bsm.ow programs
a random oracle H' that on input X returns oy (H(X)), where ox is a per-
mutation (chosen deterministically) with the property that the elements Y that
satisfy mark(X,Y) = 1 are mapped into the set {Y7,...,Yp}. By assumption,
{Y | mark(X,Y) =1}| < P, so such a permutation always exists. Note that
Bsm-ow is bounded in the number of queries it can make to H, but not bounded
in time or memory. Therefore it will be able to choose such a permutation ox.
Then, Bsy.ow invokes Aygs with the programmed random oracle H’. Since H’
only applies a permutation to the ouput of H, the ouputs of H" will be inde-
pendent and uniformly distributed. Hence, H’ is itself a perfect random oracle.
Pseudocode for Bgp_ow is given below.

AlgOI‘ithm BSM—OW

: define H'(X) as
pick ox s.t. ox({Y |mark(X,Y) =1}) C {Y1,---,Yp}
return o' o H(X)

end definition

return AK‘AE(S?()

Clearly, the number of queries that Bsy.ow makes to H is identical to the
number of queries made by the simulated algorithm Apmgs. Eventually, Apes
returns a preimage X. Aygs wins the MES game if mark(X, o' (H(X))) = True.
By our choice of ox this implies that ox (o' (H(X))) = H(X) € {Y1,---,Yp},
which shows that Bsm.ow wins his SM-OW game in this case. So InSecmlffark(Q) <
InSeca'?A};OW(Q). O

We are now in a position to state and prove our security claim.

Theorem 1. Let NEW be the signature scheme derived from applying the trans-
formation to a constrained linear scheme OLD. The mazimum winning proba-
bility across all time-t adversaries in the EUF-CMA game against NEW that
make Qs signature queries and Q1,Q2,Qs, Q4 queries to the random oracles
H1, Ho, Hs, Hy respectively is bounded by

InSechpw M (Qs. Q1, Q2. Q3. Qas 1) < InSec ™ ™55(Q,., Q1: O(1)) + InSeci 5™ (Qu)

+InSecf|1;fZ§)W (Qs) + InSecE‘I;f;g\x,Hl) (@Q2) - (8)
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Proof. We show through a sequence of four games how an adversary for the
EUF-CMA game against NEW can be transformed into an adversary for the
(o,7)-HSS property of the underlying constrained linear trapdoor function f
that wins with the same probability conditional on each of the transitions being
successful. By bounding the failure probability of each transition and summing
the terms we obtain a bound on the winning probability of the adversary against
NEW. The sequence of games is as follows:

— The first game G; is the EUF-CMA game against NEW.

The second game Gy drops the Merkle tree. Instead, the public key consists
of all the 7 columns of F, and the verifier checks directly if the columns that
are included in the signature are correct.

— The game Gz drops the codeword identity testing. Instead, the public key
is now the original public key (i.e., M), and the verifier tests directly if the
matrix 7', which is included in the signature is equal to RM.

The last game G4 drops the random linear combinations for signature validity
testing, instead G4 is won if the errors f(s;) — Hi(m||¢) are contained in a
subspace of dimension r. G4 is thus the (o, 7)-HSS game for the constrained
linear trapdoor function f.

In games Go, Gz and G4, the adversary B simulates the previous game’s
adversary A in order to win his own game. In particular, this means that B must
answer the signing queries that A makes. This is not a problem, because in all
cases B can just forward the queries that A makes to its own signing oracle,
remove some information that is not required for the game that A is playing
from the signature and pass the response back to A. In each case, we define the
transition’s failure probability as the probability that A wins but B does not. In
all cases the adversary A has unbridled access (perhaps even quantum access)
to the hash functions Hy, Ho, H3 and Hy.

The event that A wins G; but B does not win Gy occurs only if the signature
outputted by A passes the Merkle root test, but the columns included in this
signature do not agree with the columns in £ = Enc(M). This event requires
finding a second preimage for one of the 27 — 1 nodes of the Merkle tree, so the
failure probability is bounded by

SM-S
InSecy5;"1 (Qa)

Likewise, the event that A wins the Go game, but B does not win the Gg
game occurs only if the columns ey, ,--- , ey, of E in the signature outputted by
A are correct, but still 7" is not equal to RM. This implies that Enc(T) differs
from RE in at least 7 — L columns (since the rows are codewords from a code
with minimal distance 7 — L), but that none of these columns were not chosen
by the random oracle Hz. Finding m/||si||- - -||s¢||T, such that this happens is a
marked element search with marking function

False if T'=RM
marky (m||s1|| - ||se||T, b1]| - - - [|by) = < False  Rep, # Enc(T)4p, for some i
True otherwise
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Since there are at most L indices for which the columns of Enc(T) and REnc(E)
are identical, there are at most ({;) < LY marked elements for a given input.

The failure probability is therefore bounded by

s SM—0
InSeclﬁIfm.,rk1 (@3) < InSecHlfLﬁ Y (Qs).

Finally, the event that A wins game G3 but that B does not win G4 happens
when the errors span a vector space of dimension strictly larger than r (B does
not win), but that all these error lie in the kernel of R = Ha(m||s1|| - ||ss)
(otherwise A does not win). Finding m||s1]| - - ||s, such that this happens is a
marked element search for the marking function

False if R(f(s;) — Hi(ml]]i)) # 0 for some i
marky(m/||s1|| - - ||se, R) = < False if dim({f(s;) — Hi(m||¢))i=0,... ) > T

True otherwise

For a choice of m||s1]|| - - - ||ss there are only good matrices R if the space spanned
by the errors f(s;) —Hj(m||¢) has dimension at least r+ 1. If this is the case then
the good matrices R are precisely the a-by-k matrices whose kernel contains the
error space. Therefore there are at most ¢®**~"*1) good matrices for each choice

of m||si1|| - - - ||ss. Therefore the failure probability of the last step is bounded by
|nSeCI\H/12]?r§a,k2 (Q2) < |nsecal;/f;g%—v-+1) (Q2) - U

Joining Theorem 1 with Eqns. (5) and (6) gives the following corollaries.

Corollary 1. In the classical random oracle model,

InSechbw 4 (Qs, Q1 Q2, @3, Quit) < InSect” "1(Q,, Qui1) + (@2 + 1)g D
Qs+ 1)(E/7) + (Qa + 12 —1)/27

Corollary 2. In the quantum random oracle model,
InSecygw M (Qs, Q1, Qa, @3, Qas 1)< InSec}a" Q. Qust) + @ ((Qz + 1)2(1_(1(”1))
+6 ((Qs +12(0/7)") + 6 (@ + 1227 — 1)/27)

There are two ways to use the transformation. One can choose ¢ = 1 and a
large enough such that ¢®/2 reaches the required post-quantum security level,
i.e., ¢®/2 > 25 Corollary 2 with = 0 then guarantees that the resulting signa-
ture scheme is EUF-CMA secure, provided that the constrained linear trapdoor
function f that we started from is (1,0)-HSS. This assumption is equivalent to
the EUF-CMA security of the original signature scheme OLD. We also note that
in this case the security proof is tight, meaning that no security is lost (in the
QROM) by applying the transformation in this way.

One can also use the transformation with o > r, and a lower value of a such
that ¢ ("+1)/2 reaches the required security level. This reduces the size of the
public keys even further, but this comes at the cost of a stronger security as-
sumption on the constrained linear trapdoor function f. In this case Corollary 2
says that the resulting signature scheme is EUF-CMA secure, if the underlying
constrained linear trapdoor function is (o, r)-HSS.
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4.3 Applying the transformation

Table 1 presents a comparison of the transformation applied to the three con-
strained linear trapdoor signature schemes treated in Sect. 3. For the Rainbow
and Micciancio-Peikert schemes part of the public key can be generated with a
PRNG to reduce the size of the public key. This trick is compatible with our
construction, so we have taken this into account. In all cases, 128 bits of security
against quantum computers was targeted for an apples-to-apples comparison.

Table 1: Comparison of constrained linear signature schemes before and after
public key compression. Legend: NC = no compression; PS = our provably secure
technique based on the assumption that the original hash-and-sign signature
scheme is secure; SA = the approach relying on stronger assumptions.

scheme ‘ q other parameters ‘a c 9T e ‘ |pk| |sig|

Rainbow NC — 68 — 36 - - - - - 1035 MB 0.14 kB
Rainbow PS 256 T T B2 1 25223 |64 bytes 0.18 MB
Rainbow SA 02 = 2 16 252%° 3 |64 bytes 35.51 kB
CFS NC - - - - - 13.05 GB 59 bytes
CFS PS 2 m=26,t=15 256 1 71 22° 25/32 bytes 2.00 GB
CFS SA 1 256 71 2% 25|32 bytes 8.15 MB
Micciancio-Peikert NC n—321.m — 16692 - - - - - [830MB 34.64 kB
Micciancio-Peikert PS | 220 —5 - 3 v L VI - 2201 |64 bytes 0.35 MB
Micciancio-Peikert SA - 5 2 3722°1 |64 bytes 0.26 MB

The shrinkage is the most striking when k > « - 0, because this is when the
largest part of the matrix M is omitted. The mediocre shrinkage of |pk| + |sig|
for the provably secure case (o = 1) suggests that for the trapdoors considered,
k is already quite close to the lower bound k > k/log, ¢ needed for s bits of
security. The greater compression factor attained when o > 1 is due mostly to
the representation of the old signatures in far less than ¢ - log, ¢ bits.

5 Conclusion

This paper generalizes the construction of Szepieniec et al. [39] to a wide class of
signature schemes called constrained linear signature schemes. This construc-
tion transforms a constrained linear signature scheme into a new signature
scheme with tiny public keys, at the cost of larger signatures and while reducing
their combined size. We prove the EUF-CMA security of the resulting signa-
ture scheme in the quantum random oracle model, and for a more aggressive
parametrization we identify the (o, r)-hash-and-sign security notion as a suffi-
cient property for security. This improves the understanding of the security of
instantiations of this construction, which includes the DualModeMS submission
to the NIST PQC standardization project [29,12]. Finally, to showcase the gen-
erality and facilitate comparison, the construction is applied to an M Q-based, a
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code-based and a lattice-based signature scheme, all targeting the same security
level. In some cases the combined size of a signature and a public key can be
reduced by more than a factor 300.

We close with some notes on the practicality of the transformation. From
Table 1 we see that our transformation improves the practicality of state of
the art multivariate and code-based signature schemes for applications such as
public key infrastructure (PKI), where the metric |sig|+|pk| is important and the
performance of signing a message is less critical (most signatures in a PKI chain
are long-lived and need not be created often). Code-based signature schemes
remain not very practical, despite the improvements our construction makes.
For example, applying the construction to the CFS scheme results in signatures
of 8.15 MB. Still, if better code based signature schemes are developed, the
construction will likely to be able to improve the quantity |sig|+|pk|. For example,
even though the pgsigRM [22] proposal to the NIST PQC project does not have
a completely unstructured matrix as public key, our construction can still reduce
sig| + |pk| by a factor 6 from 329 kB to 60 kB in this case (with a = 4,0 = 64).
Unfortunately, comments on the NIST forum indicate that the pgsigRM proposal
might not be secure [2].

State of the art hash-and-sign lattice-based signature schemes are built on
structured lattices to achieve smaller public keys (e.g. Falcon relies on NTRU
lattices [14]). Therefore, our construction does not improve on state of the art
lattice-based schemes. Rather, our construction can be seen as an alternative to
using structured lattices that provably does not deteriorate the security of the
original schemes. In contrast, it is possible that switching to structured lattices
has a negative impact on security.
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A CFS Parameters

Perhaps surprisingly, the most efficient attack on the CFS cryptosystem is not
information set decoding (as is the case for the closely related Niederreiter cryp-
tosystem) but a generalized birthday algorithm credited to Bleichenbacher by
Finiasz and Sendrier [13]. The offline phase of this attack consists of building
three lists Lg, L1, Lo containing sums of respectively wq, w1, ws columns from H,
where t = wg + wy + ws. Next, Ly and L; are merged and pruned by taking the
sum of each pair and keeping it only if it starts with A zeros; the result of this
operation is stored in L{. In the online phase a random counter ¢ is appended
to the document and the sum of H(d|[¢) with every element of Lo that agrees
on the first A\ positions is looked up in L{, — because if this sum is present then
that means that H(d||¢) equals the sum of wy + wg + w3 = ¢ columns of H which
can be identified by tracing the origins of the elements from L, Lo, Lo, L1 that
were used. Let L} denote the list obtained from pruning the sums of elements of
Ly and H(d||7).

A single trial is successful if there is a collision between L{ and L. This is
essentially a generalized birthday problem as described by Wendl [41], and the
same result shows that the much more easily computed binomial distribution
approximates the probability of zero collisions very well when this quantity is
overwhelming. The number of pairs to consider is #L¢ X #L} and the proportion
of pairs representing a collision is 1/2¢~*. All considered pairs fail to collide with
probability (1—2*~%)#Fox#L1. By approximating #Lj ~ E[#Lg] = 27*(,, 1.,,)
and #L] = E[#L}] = 2_)‘( "2) we have a probability of success of

w:

P,=1-(1- 2A—k)2"”(wo«"+wl)(ié) )
~ 2AH (wo iw1> (52) + 022k (10)
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The online complexity is O(C - P 1). The offline complexity is dominated by
sorting the largest list of Ly, L1 and Lo, as merging Lo and L; can be done in
linear time. Therefore, the offline complexity is O (((w’}SW)IogQ(W’;SW)).

Quantumly, there is no speed-up for sorting, and so the offline phase might
as well remain classical. The online phase can be improved by applying Grover’s
algorithm to the “random” guess for the counter ¢. While sorted list lookup
requires only %(In(n) — 1) operations [19], this speed-up factor is hidden by
the big-O. The A that minimizes the online quantum complexity O(C - P;l/ 2)
is small enough to make the offline complexity the algorithm’s bottleneck. All
complexities are larger than 2'28 for the parameter set m = 26,t = 15, with
A = 31 being the smallest such value for which the offline complexity is larger
than the quantum online complexity. At this point the public key is a bit matrix
of (15-26) x 225 elements, or roughly 3.05 GB. In contrast, a signature represents a
bitstring of length 226 and of Hamming weight 15, which can be straightforwardly
represented as 15 integers of 26 bits each, by 390 bits in total.

157



158 PUBLISHED PAPERS

6.4 Short Solutions to Nonlinear Systems of Equa-
tions

Publication data

Alan Szepieniec and Bart Preneel, “Short Solutions to Nonlinear Systems
Equations” Number-Theoretic Methods in Cryptology - First International
Conference, NuTMiC 2017, Warsaw, Poland, September 11-13, 2017, Revised
Selected Papers, pp. 71-90, 2017.

Contributions

Principal author



Short Solutions to Nonlinear Systems of
Equations

Alan Szepieniec and Bart Preneel

imec-COSIC KU Leuven, Belgium
first-name.last-name@esat.kuleuven.be

Abstract. This paper presents a new hard problem for use in cryptogra-
phy, called Short Solutions to Nonlinear Equations (SSNE). This problem
generalizes the Multivariate Quadratic (MQ) problem by requiring the
solution be short; as well as the Short Integer Solutions (SIS) problem
by requiring the underlying system of equations be nonlinear. The joint
requirement causes common solving strategies such as lattice reduction
or Grobner basis algorithms to fail, and as a result SSNE admits shorter
representations of equally hard problems. We show that SSNE can be
used as the basis for a provably secure hash function. Despite failing to
find public key cryptosystems relying on SSNE, we remain hopeful about
that possibility.

Keywords: signature scheme, hard problem, post-quantum, MQ, SIS, SSNE,
hash function

1 Introduction

The widely deployed RSA and elliptic curve cryptosystems rely on the hard-
ness of the integer factorization and discrete logarithm problems respectively,
which are in fact easy to solve on quantum computers by means of Shor’s al-
gorithm [29]. These encryption and signature schemes will therefore become
insecure once large enough quantum computers are built; and as a result we
need to design, develop and deploy cryptography capable of resisting attacks by
quantum computers, despite running on classical computers.

A number of hard problems have been proposed to replace integer factoriza-
tion and discrete logarithms for precisely this purpose of offering post-quantum
security. For instance, the problem of finding short vectors in high-dimensional
lattices relates to normed linear algebra problems such as SIS [1] and LWE [27],
which in turn generate many types of public key cryptosystems. Finding satis-
fying solutions to systems of multivariate quadratic (MQ) systems of equations
seems to be hard even if the quadratic map embeds a secret trapdoor allow-
ing only the secret-key holder to generate signatures [14]. Evaluating isogenies
between elliptic curves is easy, but finding the isogeny from input and output
images is hard; this enables a rather direct adaptation of the Diffie-Hellman
key agreement protocol [20]. Even traditionally symmetric problems such as
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hash function inversion have been used to generate stateless digital signature
schemes [5]. However, in nearly all post-quantum cryptosystems to date, either
the public key or else the ciphertext or signature is huge — measurable in tens of
kilobytes if not megabytes!. In the interest of easing the transition away from the
quantum-insecure but very low-bandwidth ECDSA, designing a post-quantum
signature scheme with short signatures or ciphertexts and short public keys is a
major open problem.

In this paper, we propose a new cryptographic problem called Short Solutions
to Nonlinear Equations (SSNE) and argue that it is likely hard, even for quantum
computers. Informally, our new hard problem asks to find a short solution to
a system of non-linear multivariate polynomial equations, and thus generalizes
both the Short Integer Solution (SIS) problem where the system is linear, and
the Multivariate Quadratic (MQ) problem where the solution need not be short.
Adopting both requirements renders standard attack strategies inapplicable or
wildly inefficient.

Nevertheless, we show in Section 4 that it is possible to attack SSNE with
limited success, in a way that improves over brute force search. We take this
attack and its limitations into account and delineate a niche of parameter space
in which brute force is the most efficient attack strategy. As a result, SSNE offers
a denser encoding of computational hardness than either SIS or MQ, and if it
is possible to design public key cryptosystems that rely on this hard problem,
it holds promise of generating a smaller public keys, ciphertexts and signatures
than their MQ and SIS counterparts without incurring a security cost.

While designing a public key cryptosystem on top of SSNE remains an open
problem, designing a hash function whose security relies on SSNE does not, as
this problem is solved in Section 5. This result does not merely serve to demon-
strate design of cryptographic primitives in lieu of the comparably more difficult
end-goal of designing public key functionalities; it has standalone value as well.
From the point of view of provable security, very few hash functions come with
a security proof showing that finding a solution implies solving a hard problem
that is defined independently of the hash function itself. Therefore these not-
provably-secure hash functions offer less assurance of security than provably se-
cure hash functions whose underlying hard problems are studied independently.
Moreover, it is prudent to diversify the hard problems upon which cryptographic
primitives rely, in order to isolate the effects of cryptanalytic breakthroughs.

2 Preliminaries

Notation. We denote by F, the finite field of ¢ elements. The integer range
{a,a+1,...,b—1,b} is denoted by [a : b]. Vectors are denoted in boldface, e.g.,
x and matrices by capital letters, e.g., A, with indexation starting at zero. The

! The curious exception to this rule is the supersingular isogeny Diffie-Hellman key
agreement scheme, but even so it does not seem possible to use this construction for

small signature schemes.
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slice of A consisting of rows i—j and columns k—I is denoted by Aj;.; x4, and
we drop the , k : | when slicing from a vector instead of a matrix.

Lattices. A lattice of dimension n and embedding degree m is a discrete n-
dimensional subspace of R™; without loss of generality, we consider subspaces
of Z™. Any such lattice £ can be described as the set of integer combinations
of a set of vectors bg,...,by_1 € Z™, which is called a basis for the lattice and
is not unique for a given lattice. A lattice £ is ¢-ary whenever membership of a
point p € Z™ is decided by p mod g, i.e., with each component reduced modulo
q.

The LLL algorithm [24] takes a matrix of integers A € Z"** whose rows
span a lattice, and outputs another matrix B € Z"** whose rows span the same
lattice but are much shorter in length. Without loss of generality we assume the
LLL algorithm also outputs a unitary matrix U such that UA = B. The shortest
basis vector produced by LLL when applied to a lattice spanned by h vectors of
w elements, is bounded in length by

(w—1)/4
4 w
ol < (g5oy)  der@” o

where i < § <1 is the LLL parameter and where the determinant of the lattice
is given by det(£) = det(AAT)/2 = det(BBT)'/? if A and B have linearly
independent rows.

In the case of g-ary matrices, a basis matrix can be obtained by adjoining the
original basis matrix with ¢I. LLL will return a (w + h) X w matrix whose first
w rows consist of all zeros. The determinant of g-ary lattices of this dimension
is ¢“~" with high probability [26], which means that the length of the shortest
nonzero vector in the output of LLL is bounded by

(w—1)/4
Ibollz < (i) g @
—\46—-1

The ith successive minimum X\;(L) of a lattice £ is the smallest p € R
such that the hypersphere with radius p centered at the origin contains at least
¢ independent lattice points. According to the m-dimensional ball argument of
Micciancio and Regev [26], the first successive minimum of a random g-ary lattice
of dimension h and embedding dimension w can be approximated by

w w—n w
Ao(ﬁ)%\/%q( Wi (3)

3 Short Solutions to Nonlinear Equations

Our hard problem generalizes the Multivariate Quadratic (MQ) problem as well
as the Short Integer Solution (SIS) problem. After presenting the definitions we
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consider some straightforward attacks. In the next section we consider a more
sophisticated one.

MQ Problem. Given a quadratic map P : Fj — Fg* consisting of m poly-
nomials in n variables of degree at most 2, find a vector x € Fy such that
P(x) = 0.

The MQ problem is NP-hard in general as well as empirically hard on average
whenever m = n. The best known attack is the hybrid attack [6], which consists
of guessing some variables so as to overdetermine the system of equations and
then solving it using a Grébuner basis type solver such as Fy [16] or XL [13]. The
reduced cost of solving the overdetermined system compensates for the increased
cost of retrying a new guess whenever it leads to no solutions. The complexity of
the optimal-trade-off hybrid attack approaches 2¢4™ as n > ¢ — oo with Cy, =
w(1.38 — 0.44 wlog, ¢) and where w > 2 is the exponent of matrix multiplication
complexity [7]. However, when g > n, the cost of even one random guess beyond
the number of variable-fixes that makes the system a determined one, dominates
the attack complexity. In this case the complexity of a purely algebraic attack can
be estimated using the degree of regularity D,eg of the system. For semi-regular
quadratic systems [4,3] (which we assume random quadratic systems are), the
degree of regularity is equal to the degree of the first term with a non-positive
coefficient of the power series expansion of

1—=)m

HS(z) = i

(4)
At this point, the Grobner basis computation using Fy or XL boils down to
performing sparse linear algebra in the Macaulay matrix whose polynomials

have degree D,o;. The complexity of this task is O ((”+g“§+1)2) in terms of

re

the number of finite field operations, which in turn are polynomial in logg. In
summary, the complexity of solving the MQ problem is exponential in n = m,
but barely affected by q.

SIS Problem. Given a matrix A € Fy*™ with m > n, find a nonzero vector
x € Z"™\{0} such that Ax = 0modq and |x|2 < 8.

While not NP-hard, SIS does offer an average-case to worst-case reduction:
solving random SIS instances is at least as hard as solving the lattice-based
Shortest Independent Vectors Problem (SIVP) up to an approximation factor
of O(8+/n) in the worst case [25]. The most performant attack on SIS is indeed
running a lattice-reduction algorithm such as BKZ 2.0 [8] to find short vectors in
the associated lattice which is spanned by the kernel vectors of A. The complexity
of this task is captured by the root Hermite factor 6 > 1, which approaches 1
for more infeasible computations. For a given § the optimal number of columns
of A to take into account (i.e., by setting the coefficients of x associated to

the other columns to zero) is given by m = y/nlog, q/log, 0. At this point the
average length of the lattice points found is 22V7™'%829%829 and cryptographic
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security requires § to be smaller than this number. Albrecht et al. estimate the
complexity of obtaining lattice points of this quality as 0.009/ Iog§5 +4.1 in terms
of the base-2 logarithm of the number of time steps [2]. The key takeaway is that
the complexity of SIS grows exponentially in m and n, but polynomially in g and

8.

SSNE Problem (Short Solutions to Nonlinear Equations) Given a map
P . Fy — F' consisting of m polynomials in n variables over a prime field
F, and with deg(P) > 2, find a vector x € Z" such that P(x) = O0mod ¢ and

1x[l2 < 5.

It is clear that the attack strategies that work for MQ and SIS do not apply
out of the box to the SSNE problem. The random guess of the hybrid attack
on MQ might fix the first few variables to small values, but offers no guarantee
that an algebraic solution to the other variables is small. Alternatively, one can
drop the random guess and compute a Grébner basis for the under-determined
system. Even if the resulting Grébner basis consists of a reasonable number
of polynomials of reasonable degrees, obtaining a short vector in the variety
associated with the Grobner basis seems like a hard problem in and of itself.
Alternatively, one can linearize the system by introducing a new variable for
every quadratic term and treat the resulting matrix of coefficients as the matrix
of a SIS instance. However, in this case it is unclear how to find the correct length
bound § as it now applies to a vector of quadratic monomials. Nevertheless, we
now show under which conditions or adaptations an algebraic attack and attack
based on lattice reduction are possible.

3.1 Algebraic Attack

The constraint ||x|2 < B can be formulated algebraically. Assume 8 < ¢/2,
and let b = |B]. Then any solution x to the SSNE problem must consist of
coefficients in [—b : b]. For any such coefficient x;, the polynomial ngfb(l’i —7)
must evaluate to zero. Therefore, by appending these polynomials to P, one
obtains a less under-determined system and perhaps even a determined one. If
that is the case, XL and F, will find a short solution; however, the Grobner
basis computation must reach degree 2b for the added polynomials to make a
difference, and for sufficiently large 8 even this task is infeasible. It is possible to
generalize this strategy so as to require that the sums-of-squares of all subsets of
the coefficients of x are smaller than . This method cannot work when 5 > ¢,
but can be effective when £ is small — say, a handful of bits.

Alternatively, it is possible to run down the unsigned bit expansion of every
component of x and introduce a new variable z;; for each bit and one for
each component’s sign s;. This transformation adds n equations of the form
T, =8 Zj[li%‘m 27, ;, nflog,q] equations of the form x; ;(1 — x; ;) = 0, and n
equations of the form (s; —1)(s; +1) = 0. The advantage of having access to this
bit expansion is that the constraint ||z|2 < 5 can now be expressed as [log,q]
equations modulo ¢, even when 3 > q.
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In both cases, the system of equations becomes infeasibly large whenever 8
grows, which is exactly the intended effect from a design perspective. Phrased
in terms of the security parameter k, we have

Design Principle 1: 8 must be large: log,8 > k.

Note that § cannot be larger than y/n(q — 1)/2 because in that case any so-
lution vector x satisfies the shortness criterion, which can therefore be forgotten
at no cost in favor of a very fast algebraic solution. In fact, we want a random
solution to the system of equations to satisfy ||x||2 < S with at most a negligible
probability. Design principle 2 requires this probability to be at most 27", where
Kk is the targeted security level.

Design Principle 2: § must not be too large: nlog,q > k + nlog,f.

3.2 Lattice Attack

In the relatively small dimensions considered for SSNE, basic lattice reduction
algorithms such as LLL [23] manage to find the shortest vector in polynomial
time with all but absolute certainty. Moreover, the nonlinear system P(x) = 0
can always® be represented as a linear system PX = 0, where P is the Macaulay
matrix of P and X is the vector of all monomials in x that appear in P. If the
solution x to P(x) = 0 is short enough, then its expansion into X will also be a
solution to PXx = 0 — and might be found quickly by lattice-reducing any basis
for the kernel of P and weighting the columns as necessary.

In fact, the vector X associated with a solution x to P(x) = 0 will always lie
in the kernel of P, although not every kernel vector corresponds to a solution.
Since X is necessarily in the lattice spanned by the kernel vectors of P, the only
way to hide it from lattice-reduction is to make it long — as long as random
lattice vectors taken modulo q. The rationale behind the next design principle is
to require that some of the quadratic monomials X are of the order of magnitude
of ¢ (possibly after modular reduction).

Design Principle 3: x must not be too small: log,|x||3 > log, q.

A straightforward attack strategy to cope with this design principle is to
focus only on those columns of P that correspond to the monomials of degree 1
in X. Lattice reduction will then find short kernel vectors for this reduced matrix
P. The attack runs through linear combinations of these small reduced kernel
vectors until it finds a small linear combination ¢ such that P(c) = 0. A rigorous
argument counts the number of points in this lattice that have the correct length
and then computes the proportion of them that solve P(x) = 0, and infers from
this a success probability and hence a running time for the attack. A far simpler
but heuristic argument pretends that the nonlinear monomials of X multiply
with their matching columns from P and thus generate a uniformly random

2 This assumes that P has no constant terms, but the same arguments apply with
minor modifications even if it does.
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offset vector p. The attacker succeeds only when p + Px = 0, which can be
engineered to occur with at most a negligible probability.

Design Principle 4: The output space must be large enough: mlog, q¢ > k.

Lattice-reduction has been used in the past to find small solutions to uni-
variate and multivariate polynomial equations, for instance in the context of
factoring RSA moduli n = pg where some of the bits of p or ¢ are known. These
applications of LLL were first discovered by Coppersmith [10,9], and were then
expanded on by Howgrave-Graham [19], Jutla [21], Coron [11,12], and most re-
cently by Ritzenhofen [28]. The common strategy behind all these attacks is to
generate clever algebraic combinations of the polynomials but which must be lin-
early independent. LLL is run either on the resulting system’s Macaulay matrix
or on its kernel matrix to find either polynomial factors with small coefficients
or else short roots. However, this family of methods is only effective when the
targeted solution is short enough. In particular, if X; € Z is a bound on x;, i.e.,
|z;| < X;, then success is only guaranteed whenever for every term ¢ € F,[x] of
every polynomial of P (interpreted as ¢ € Z[x])

[t(X1,..., Xn)| <q . (5)

This success criterion is inconsistent with design principle 3.

3.3 Additional Considerations

Note that the shortness constraint ||x||2 < S does not have to apply to all
variables. Even requiring only />, ¢ 22 < 8 where the sum is taken only over

a non-empty subset S of the variables suffices to capture the hardness of the
problem. More generally, the problem can be defined with respect to any weight
matrix W € Z"*", namely by requiring that x"Wx < 42. Diagonalization of W
leads to a partitioning of the variables into one set which should be short and
one set whose length does not matter. Nevertheless, one should be careful to
ensure that the number of short variables must be larger than the dimension of
the variety. Otherwise the shortness constraint is no constraint at all because it
is possible to guess the short variables and subsequently solve for the remaining
variables using a Grobner basis algorithm.

Design Principle 5. There should be more small variables than the dimen-
sion of the variety: rank(W +WT) > dimV(P) = n —m.

Remark. The concise way to capture “the number of variables that must be
small after optimal basis change” is indeed rank(W + WT). To see this, observe
that x"TWx is a quadratic form and therefore equal to x" (W + A)x for any skew-
symmetric matrix A (i.e., square matrix such that AT = —A). Up to additions
of skew-symmetric matrices and up to constant factors we have W =W 4+ W7,
This latter form is preferred for diagonalization, which finds an invertible basis
change S such that makes ST(W + WT)S diagonal. The zeros on this diagonal
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indicate the variables whose size is unconstrained. Moreover, the rank of W+W7T
cannot change under left or right multiplication by invertible matrices such as
ST or S.

3.4 Estimating Hardness

The main selling point of the SSNE problem is that neither the algebraic solvers
nor lattice-reduction algorithms seem to apply, and as a result of this immunity
it admits a much conciser encapsulation of cryptographic hardness. In MQ prob-
lems, the hardness derives from the large number of variables and equations n
and m, and is largely independent of the field size ¢. In SIS problems, the hard-
ness derives mostly from the large lattice dimension n, although the field size ¢
and length constraint 8 are not entirely independent. Since both Grébner basis
and lattice-reduction algorithms do not apply, the hardness of SSNE problems
must be much more sensitive to the size of the search space than their MQ and
SIS counterparts. In particular, this sensitivity allows designers to achieve the
same best attack complexity while shrinking m and n in exchange for a larger
q — a trade-off that makes perfect sense because in all cases the representation
of a single problem instance is linear in logy ¢ and polynomial in m and n.

All five design principles, including design principle 6 which will be derived
in Section 4, have a limited range of applicability. No known algorithm solves
SSNE problems for which all six criteria are met, faster than the following brute
force search does. In the most optimistic scenario, no such algorithm exists. We
invite the academic community to find attacks on SSNE that outperform this
brute force search. In Section 5 we propose a hash function whose security relies
on the assumption that either such an algorithm does not exist or that if it does,
it does not beat brute force by any significant margin.

A brute force strategy must only search across Fy~™. Each guess of the first
n — m variables is followed by an algebraic solution to the remaining system
of m equations in m variables. If m is not too large then the task of finding
this solution algebraically is rather fast, and the complexity of this joint task is
dominated by O(g"~™). In quantum complexity, Grover’s algorithm [18] offers
the usual square root speed-up of O(q("~™)/2).

4 An Algebraic-Lattice Hybrid Attack

In this section we describe an attack that applies when m(m + 1)/2 < n and
manages to produce somewhat short solutions. In a nutshell, the attack treats
the polynomial system as a UOV~™ public key. A UOV reconciliation attack
recovers the secret decomposition and at this point the attacker samples vinegar
and oil variables such that the resulting “signature” is small. We consider the
various steps separately. This section uses the terms “signature” and “solution”
interchangeably because in the context of attacks on UOV they are identical.
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4.1 UOV

Unbalanced Oil and Vinegar [22] is an MQ signature scheme with parameters
n =o0-+wv, v~ 20 and m = o. The public key is a homogeneous quadratic
map P : Fy — Fg'. The secret key is a decomposition of this public map into
F :Fy — F* and S € GL,(F,) such that P = F o S. While S is a randomly
chosen invertible matrix, F must have a special structure. All m components
fi(x) partition the variables into two sets: vinegar variables xg, ..., x,_1, which
are quadratically mixed with all other variables; and oil variables x,, ..., xz,_1.
Visually, the matrix representations of these quadratic forms have an all-zero®
o x o block:

filx) =xT (6)

In order to compute a signature for a document d € {0,1}*, the signer
computes its hash y = H(d). He then chooses a random assignment to the
vinegar variables and substitutes these into the system of equations P(x) =y,
or more explicitly

—1 ‘ vl n1
Z;U‘:o i:of;flzﬁiﬂc*Z;:o szfffﬁﬁwk=yi ’ (7)

where f J(Z,z represents the coefficient of the monomial x;xy of the ¢th component
of F. The underlining indicates vinegar variables, which are substituted for their
assignments. It is clear from this indication that the system of equations has
become linear in the remaining oil variables, and since m = o, it has one easily
computed solution in the generic case. The signer chooses a different assignment
to the vinegar variables until there is one solution. At this point, the signature
s € Fy is found by computing s = S ~Ix. It is verified through evaluation of P,

ie., P(s) = H(d).

4.2 Reconciliation Attack

The reconciliation attack [15] is essentially an algebraic key recovery attack: the
variables are the coefficients of S~! and the equations are obtained by requiring
that all the polynomials be of the same form as Eqn. 6. Naively, this requires
solving a quadratic system of mo(o + 1) equations in n? variables. However,
the attack relies on the observation that there is almost always a viable §’~1

3 Or since it represents a quadratic form, skew-symmetric instead of all-zero.
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compatible with (6) but of the form

st = (8)

This observation is justified by the fact that only the coefficients of S~! that are
located in the rightmost o columns appear as indeterminates in the coefficients
that are equated to zero. Moreover, any linear recombination of these columns
also maps the oil-times-oil coefficients to zero and therefore we might as well
consider only the representative of this equivalence class (equivalence under lin-
ear recombination of the rightmost o columns) whose bottom right o x o block
is the identity matrix.

The use of this observation reduces the number of variables to v x 0. Moreover,
the key observation behind the reconciliation attack is that the o columns of §’~!
can be found iteratively, solving a new quadratic system at each step. Moreover,
the authors of this attack argue that the complexity of this strategy is dominated
by the first step, which requires solving only m equations in v variables [15].

These optimizations are no issue in our attack on SSNE. The parameters m
and n are generally small enough to make naively solving a quadratic system
of mo(o + 1)/2 equations in n? variables feasible. However, for generic systems,
whenever mo(o + 1)/2 > n? there might not exist a S~! € GL,(F,) that brings
P into the form of Eqn. 6. But choosing o to be different from m might bring a
suitable S~! back into existence. This motivates the following definition.

Definition 1 (o-reconcilable). A system P of m multivariate quadratic poly-
nomials in n variables over F, is o-reconcilable iff there exists an S € GL,,(Fy)
such that P o S partitions the n variables into v = n — o vinegar variables and o
oil variables distinguished by P o S being linear in the oil variables.

Remark. Clearly, constant and linear terms are linear in all variables under
any change of basis. Reconcilability considers only the quadratic part of the
polynomials and without loss of generality we may restrict attention to their
homogeneous quadratic part.

Theorem 1 (m-reconcilability of UOV). Let P : Fy — Fy" be the public key
of a UOV cryptosystem. Then P is m-reconcilable.

Proof. Trivial: follows from construction of P = F o §. F induces the required
partition into oil and vinegar variables. a

Theorem 2 (|n/2|-reconcilability when m = 1). Assume q is odd. Let P :
Fy — F, be a single quadratic polynomial. Then P is [n/2|-reconcilable.

Proof. Let Q, € Fy*™ be a symmetric matrix representation of P(x) via P(x) =
xTpr. Then @), is diagonalizable, i.e., there exists an invertible matrix A €
™ such that ATQ,A is nonzero only on the diagonal.
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All non-zero elements on the diagonal must be one except for the last which
might be the smallest quadratic non-residue in F,. Now choose a random sym-
metric matrix Qy € Fy*™ such that the lower right |n/2] x [n/2] block consists
of all zeros and such that rank(Qs) = rank(Q,). It is also diagonalizable: there is
an invertible matrix B € Fj*" such that BTQ¢B is a diagonal matrix consisting
of all ones except for the last element which might be the smallest quadratic
non-residue. If BTQfB = ATQPA we are done because F = P o B~ o A induces
the required partition. If BTQ¢B # ATQ,A they must differ in the last diagonal
element. So then multiply any one nonzero row of @y by any quadratic residue
and obtain another diagonalization. Now BTQ B = ATQ,A must hold and we
are done. ad

Theorem 3. In the generic case, a system of m quadratic polynomials in n
variables over Fy is o-reconcilable when m(o+1)/2 < n.

Proof. The number of coefficients of S~! that are involved in the mo(o + 1)/2
equations that set the oil-times-oil coefficients to zero is no, corresponding the
rightmost n x o block of S™!'. The other elements of S~ do not affect these
coefficients. This leads to a system of mo(o + 1)/2 quadratic equations in no
variables which generically has solutions when mo(o+1)/2 < no, or equivalently
when m(o+1)/2 < n. O

4.3 Generating Small Solutions

After obtaining an o-reconciliation (F,S), the task is to obtain a solution x
such that F(x) = 0 and such that S~1x is small. The partitioning of x into the

vinegar variables xg,...,z,_1 and the oil variables z,,...,z,_1 separates the
shortness objective into two parts. On the one hand, the vinegar contribution
-1
<S )[:,0:(1171)] X[0:(v—1)] (9)
must be small; on the other hand, the oil contribution
-1
(S ) [5,0:(n—1)] X[v:(n—1)] (10)

must be small as well. The reason for this separation is not just that the vinegar
variables and oil variables are determined in separate steps; in fact, determining
vinegar variables that lead to a small vinegar contribution is easy. The form of
Eqn. 8 guarantees that small vinegar variables will map onto a small vinegar
contribution. Therefore, the only requirement for selecting vinegar variables is
that they be small enough, say roughly ¢'/2. By contrast, the process of finding
suitable oil variables is far more involved.

A quadratic map where o > m can be thought of as a UOV™ map, i.e., a
UOV map with o —m dropped components. This gives the signer, or an attacker
who possesses the reconciliation, o — m degrees of freedom for selecting the oil
variables. Coupled with the freedom afforded by the choice of vinegar variables,
the signer or attacker can generate a vector x such that S~'x is short.
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The task is thus to find an assignment to the oil variables such that a)
F(x) = 0 is satisfied; and b) (S7') ve(n1)] Xvi(n—1) 18 small as well. Constraint
(a) is satisfiable whenever m < o (in the generic case, i.e., assuming certain
square matrices over F, are invertible). Constraint (b) requires o > m and the
resulting vector can be made shorter with growing o — m.

The matrix representation of a quadratic form is equivalent under addition
of skew-symmetric matrices, which in particular means that it is always possible
to choose an upper-triangular representation even of UOV maps such as Eqn. 6.
The ith equation of F(x) = 0 can therefore be described as

filx) =x" x+€9Tx 1, =0 (11)

T _ T
(X});(HnLi + E[:;:(n—l)]> X[v:(n—1)] = ~X[0:(0—1)] QiX[0:(v—1)] ~ Lo (o 1) X[0:(v—1)] — Ci-
(12)

All m equations can jointly be described as AXy:.(n—1)) = b for some matrix
A € F7*° and vector b € F*, because the vinegar variables xjo.(,—1)] assume

constant values. Let x(P) be any particular solution to this linear system, and let
x(()k), e ,xg’i)mfl be a basis for the right kernel of A. Any weighted combination
of the kernel vectors plus the particular solution, is still a solution to the linear

system:

V(wo, ..., Wo—m—1) € FO™ . A <x@> + > wixg’“) =b . (13)

i=0

This means we have o—m degrees of freedom with which to satisfy constraint (b).
In fact, we can use LLL for this purpose in a manner similar to the clever
selection of the vinegar variables. The only difference is that the weight associ-
ated with the vector x(P) must remain 1 because otherwise constraint (a) is not
satisfied. This leads to the following application of the embedding method.
Identify x(?) and all xM by their image after multiplication by (571) [oi(n—1)]’

thus obtaining z(?) = (5*1)[: o(n1)] x(® and 2z = (S71) x\¥) Then

[:v:(n—1)]
append ¢2 to z® and 0 to all zgk), and stack all these vectors in column form
over a diagonal of ¢’s to obtain the matrix C:

PACOLI
z(()k)T 0
C=1— zoli);fl — |0 (14)
q
q
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Run LLL on this matrix to obtain a reduced basis matrix B € Z(0—m+1+n)x(n+1)
of which the first n rows are zero, and a unimodular matrix U satisfying B = UC.
The appended ¢? element guarantees that the row associated with the particular
solution will never be added to another row because that would increase the size
of the basis vectors. As a result, there will be one row in the matrix B that ends in
¢%. Moreover, this row will be short because it was reduced by all other rows. We
now proceed to derive an upper bound for the size of this vector considering only
the first n elements, i.e., without the ¢2. Unfortunately, the best upper bound
we can prove rigorously is [4]+/n, but we can rely on the following heuristic
argument for a meaningful result.

Let s be the index of this targeted row. Without row s and omitting the last
column, the nonzero rows of B form an LLL-reduced basis for a g-ary lattice of
dimension 0 —m and embedding dimension n. We approximate the sizes of these
vectors using \;(£) &~ Ag(L). Coupled with the m-dimensional ball argument of
Micciancio and Regev for estimating the first successive minimum [26], this gives

—m n n—o-+m)/n
Il § 20772 [ gtnosmiin (15)

Moreover, row s (considered without the ¢2) cannot be much larger than this
quantity because it is LLL-reduced with respect to vectors of this size. So
IIbsll2 = ||b¢|l2- Our experiments show that this heuristic bound is followed
quite closely in practice for small m,n and large q.

The solution s = S~'x consists of two parts: the vinegar contribution and
the oil contribution. Therefore, we can bound the size of the whole thing.

lIsll2 < 11Sg bugo—1yX0:o— 1)1 ll2 + 1S a(n— 1y Xwr(n—1)ll2 (16)
5 m q1/2 + 2(ofm)/2 /%q(n70+m)/n ) (17)
Or if we treat n,m,0,v as small constants,

Isll2 € O (g =o+m7m) (18)

4.4 Summary

Figure 1 shows pseudocode for the algebraic-lattice hybrid attack algorithm.
Line 1 attempts to launch a UOV reconciliation attack, but the algorithm
fails when this attack is unsuccessful. In fact, the criterion for success is precisely
whether the map P is o-reconcilable. Generically, this criterion is only satisfied
for m(o + 1)/2 < n, as per Theorem 3, although it is certainly possible to
construct maps that are o-reconcilable for m(o +1)/2 > n — indeed, standard
UOV public keys match this ungeneric description. A prudent strategy for maps
whose structure is unknown is to try step 1 for several values of o and to pick
the decomposition of P where o is largest. However, in this case the length of
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algorithm ALHA
input: P : Fy — F" — a quadratic map
: 0 € Z — number of oil variables
output: s € Fy such that P(s) =0
and such that ||s||2 € O(g°/™ + g(m—etm)/(n+1))
> find decomposition P = F o S where F is quadratic but linear in
Tn—oy-.-,Tn—1, and where S € GL,(Fy)
1: try: F,S + UOV Reconciliation Attack(P, o)

> get vinegar variables xo, ..., Tn—0—1
$ n—o
2: X[0:n—0—1] < [_qu/zJ : qu/zJ]
> get oil variables Zp—o,...,Tn—1
3: Find A € F"*° and b € Fy* such that AX((n—o):(n—1)) = b < F(x) =0
4: Find particular solution x® to AX[(n—0):(n—1)] = b
5: Find kernel vectors xék), ce xf)’i)m,1 of A
. () -1 (p)
6: 2" « (S )[:,(n—o):(n—l)]x g
7: for i €[0: (0 —m —1)] do:
(k) -1 (k)
8 z; « (S )[:,(n—o):(n—l)] Xi
9: end

10: Compile matrix C' from z® and z§k> > according to Eqn. 14
11: U, B « LLL(C)
12: Find s such that By, ends in ¢
) o—m— k
13: X[(n—o0):(n—1)] — x(p) + Zi:() ! U[s,l+i]xrg )

> join vinegar and oil variables, and find inverse under S
14: s + S !x
15: return s

Fig. 1. Algebraic-lattice hybrid attack.

the returned solution is not fixed beforehand but depends on the largest o for
which step 1 succeeds.

With this algebraic-lattice hybrid attack in mind, we formulate the last design
principle for SSNE instances. The rationale is that the targeted solution should
be significantly smaller (i.e.,  bits, spread over n variables) than what the
algebraic-lattice hybrid attack can produce.

Design Principle 6: Let o be the largest integer such that the system is
o-reconcilable. If o > m then guarantee that

—o+m

K n
— +1 < | . 19
" +logy8 < 1 0829 (19)
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4.5 Discussion

Equation 15 is an upper bound whereas we actually need a lower bound in order
to delineate a portion of the parameter space where the attack does not apply.
In practice, the short solutions found by the algebraic lattice hybrid attack are
indeed shorter than the heuristic upper bound of Eqn. 17. Nevertheless, the
solutions found by the attack have length very close to this bound, to the point
where it is a suitable estimate. Fig. 2 plots in full blue the minimum length
of solutions found by the algebraic lattice hybrid attack across one hundred
trials for various modulus sizes. This graph follows the dashed green line, which
represents the estimate or heuristic upper bound of Eqn. 17, quite closely. Both
are far apart from the recommendation of design principle 6, which is drawn
in full red. This graph represents many random SSNE instances with m = 2
and n = 9. The same behavior was observed across a wide range of parameter
choices.
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Fig. 2. Comparison of prediced length against experimental length of solutions ob-
tained by the algebraic-lattice hybrid attack.

It is worth stressing that the algebraic-lattice hybrid attack applies only
when o > m. When o = m it does not produce solutions that are shorter than
random vectors in Fy, and when o < m there is no guarantee it will find even
one solution. Obviously, instead of requiring 8 to be significantly smaller than
the expected length of this attack’s solutions, the designer might also choose n

and m so as to render the algebraic-lattice hybrid attack inapplicable.
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5 Hash Function

At this time we do not know how to use SSNE to generate short-message public
key functionalities. The next best option is to generate a hash function, which
is what this section is about.

The resulting design does not merely exemplify using the SSNE problem
constructively; it has concrete advantages over other hash functions as well.
For instance, not only is the SSNE hash function provable secure (in contrast
to all widely deployed hash functions), but it also relies on a different hard
problem, which is likely to be unaffected by potential future breakthroughs in
cryptanalysis of other hard problems. Also, our hash function has essentially
optimal output length in terms of security: for x bits of security against collision
finders the output is 2« bits long. This stands in contrast to many other provably
secure hash functions which either have larger outputs or else require purpose-
defeating post-processing functions to shrink them.

Additionally, because the hash function is built on top of SSNE instances, it
requires comparably few finite field multiplications to compute. This property
of having low multiplication complexity is interesting from the point of view of
multiparty computation, zero-knowledge proofs, and fully homomorphic encryp-
tion, where multiplication operations are typically so expensive as to compel
minimization at all costs. However, this argument ignores the cost of the bit
shuffling, which are nonlinear operations over the finite field.

We note that it is possible to generate digital signature schemes from just
hash functions [17,5], although the size and generation time of the signatures
scales poorly. Nevertheless, anyone wanting to implement this signature scheme’s
key generation or signature generation procedures in a distributed manner —
for instance, in order to require majority participation — must develop applied
multiparty computation protocols and must consequently look to minimize mul-
tiplication complexity. Therefore, the SSNE hash function might be a good can-
didate for instantiating hash-based digital signature schemes with if they must
enable distributed key and signature generation.

5.1 Description

We use the Merkle-Damgard construction, which requires dividing the data
stream into a sequence of size b blocks. At every iteration, one data block is
consumed and it is compressed with the state in order to produce a new state.
The hash value is the output of the compression function after the last block has
been consumed. The concept is described visually in Fig. 3.

Before applying the sequence of compression functions, the data stream z €
{0, 1}* must first be expanded into a multiple of b bits. Let £ = |z| be the number
of bits before padding, and let (£ be its expansion and |¢| the number of bits
in this expansion. The expansion function is given by

expand : {0,1}¢ — {0, 1}TEFIED/TE — gy g0 med ) o= Ifimod) | p,  (20)
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block 7 — 1 block block 7 + 1

L L L

f f f

Fig. 3. Merkle-Damgard construction for hash functions.

Let g be the largest prime smaller than 22, where & is the targeted security
level. For the purpose of defining this hash function, the elements of F, are
{0,...,q — 1}. The compression function itself decomposes into f = P or. The
purpose of r : {0,1}* x F, — IFg is to permute the bits and output two integers
inside [0 : [¢%/4] — 1], which are then interpreted as small elements of F,. In
particular, on input (s,e) € {0,1}® x F,, this reshuffling function takes the most
significant i[log2 q] bits of e, appends them to s, and reinterprets this bitstring
as an integer. Formally, » maps

[log, g]—1 b—1 . flogyq]—1 [$logyq]—1
vl spmtll o llso, Y. 2% | = (Z 2’si> + > e | 2 2
i=0 i=0 i=b i=0

(21)
In particular, this implies that b = 1 [log, q].
The map P : ]Fg — F, is a single homogeneous cubic polynomial in two vari-

ables. There are (g) = 10 coefficients which are assigned indices lexicographically
from 0 to 9. Then the ith coefficient has a bit expansion equal to the first 2x
bits in the expansion of 7*+!, without the leading 1.

The description of the hash function is complete except for one remaining
item. The initial state element, i.e., the field element that is fed into the very
first compression function must still be specified. For this value we choose the
first 2k bits of 1, again without the leading 1. The formal description of the

algorithm is given in Fig. 4.

5.2 Security

The key property a hash function should possess is collision-resistance, which in-
formally states that it should be difficult to find two different inputs x,y € {0,1}
such that Hash(z) = Hash(y). Collision-resistance implies weaker properties
such as second preimage resistance and first preimage resistance (also known
as one-wayness). Therefore, it suffices to show that collisions are hard to find.
We demonstrate this fact by showing that any pair of colliding values implies
a collision for P, which should be difficult to find because that task requires
solving a hard SSNE instance.

First, consider that expand is injective. To see this, assume there are two
different strings x and y that have the same output under expand. Then |z| # |y|
because otherwise the appended tail is the same and then the difference must
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algorithm Hash
input: € {0,1}* — bitstring of any length
output: h € {0,1}** — hash value

L b+ [(rt = 122 t2)

2: z' < expand(z)

3: for i € [0: |2|/b] do:

4 en,e2 e r(@gipan1y) h)
5 h + P(e1,e2)

6: end

7: return Lhy

Fig. 4. Hash function relying on SSNE.

be present in their images under expand as well. However, the last b bits of the
images under expand uniquely determine the length of the original strings and
this quantity must be the same, which contradicts |z| # |y|. This argument
assumes the length of the inputs is less than 2° = 2%, which is reasonable from
a practical point of view. Since expand is injective, it cannot be the source of a
collision.

Next, the permutation of bits r is a bijection. It cannot be the source of a
collision either.

Therefore, the only source of collisions contained in the description of the
hash function is P. Finding a collision means finding a pair of vectors a,b € ]Fg
whose elements have at most Sx bits, such that P(a) = P(b). One can re-write
this equation in terms of the difference d from the mean ¢ = (a + b)/2. The
equation then becomes

Ple+d)—Plc—d)=0 . (22)

This expression is useful because its degree in c is one less, i.e., 2 instead of 3.
Therefore, by choosing a random value for d the attacker finds ¢ by solving a
quadratic, instead of cubic, SSNE instance. (In fact, this argument was precisely
the motivation for a degree-3 polynomial map P to begin with; to kill an attack
strategy that involves only finding short solutions to linear equations.) The
parameters of the hash function were chosen to ensure that the SSNE instance
of Eqn. 22 (with randomly chosen d) satisfies all design principles.

6 Conclusion

This paper presents a new hard problem called SSNE, which is the logical merger
of the SIS and MQ problems. However, in contrast to both the SIS and MQ
problems, the hardness of an SSNE instance grows linearly with the size of the
modulus ¢. This linear scaling stands in stark contrast to the quadratic and cubic
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scaling of the SIS and MQ problems; and therefore, if it is possible to generate
post-quantum public key cryptosystems from SSNE as it is from SIS and MQ),
then these cryptosystems are very likely to require dramatically less bandwidth
for having smaller public keys, ciphertexts, or signatures.

Indeed, the goal of the research that lead to the writing of this paper was to
generate public key cryptosystems with exactly those properties. Needless to say,
we have failed in that endeavor. Some of the design principles came about as a
result of a process of design and attack. At least from a superficial point of view,
this failure suggests that the design principles are incompatible with strategies
for generating public key cryptosystems. Nevertheless, we remain hopeful about
the possibility of finding strategies that are compatible with the design principles
and leave their discovery as an open problem.
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Chapter 7

Unpublished Manuscripts

7.1 A Digital Signature Scheme from Short Solu-
tions to Nonlinear Equations

Publication data

Alan Szepieniec and Aysajan Abidin and Bart Preneel, “A Digital Signature
Scheme from Short Solutions to Nonlinear Equations” This article had been
submitted to CT-RSA 2019. Unfortunately, it was rejected due to an attack
found by one of the reviewers.

Contributions

Principal author

Notes (September 2018)

While the SSNE problem had already been introduced as a good candidate
hard problem, this paper is the first to construct a public key cryptosystem on
top of it. The main contribution of this paper is therefore the possibility result.
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Nevertheless, compared to other post-quantum signature schemes it is rather
slow. Furthermore, the security argument is rather weak for two reasons. First,
it relies on several independent assumptions. Second, even if the assumptions
and the heuristic are sound, the concrete bound obtained has a massive security
degradation.

Notes (December 2018)

Unfortunately, the paper was rejected from CT-RSA. One of the reviewers
found an attack which enables an attacker to forge a signature efficiently after
observing only four authentic signatures. The attacker proceeds as follows.

The attacker obtains a signature (Y,U,r) and computes the n x m matrix
V= ((Pi + PiT)r) :i;l mod q. Then x"V = 2aX + U mod ¢, thus providing the
attacker with m = 6 linear equations in the n = 19 variables of the secret key
x. By collecting the equations from four different signatures, the attacker has a
linear system of 24 equations in 19 variables. Solving this equation produces
the secret key.

How was this cryptanalysis possible despite security proof? The answer has
to do with how a valid proof is only as good as the assumptions that go into
it. One of these premises was the SSNE heuristic: “upon encountering an
SSNE system, and upon failing to identify any particular structure that would
make its solution efficient, the system of equations may be assumed to be
indistinguishable from a random one.” The security proof invokes this heuristic
to argue about the indistinguishability of two SSNE systems. However, the
cryptanalysis shows that these systems do have a particular structure that can
help to find solutions.

In particular, the SSNE system in question is given by Eqn. 14 of the paper:

a-X+y=r

(x"Pix)" ! = X mod g

(Y Piy),t =Y modg
x"(P;+ PNy) ;' =Umodgq .

The first line can be taken modulo ¢ as no overflow is guaranteed to occur.
For authentic transcripts, there is a short solution (x,y), where “short” means
VXTx +yTy < v/2n-2% with u = 9.60\ and log, ¢ =~ 17\. For forged transcripts
no such short solution is guaranteed to exist. Under the SSNE heuristic,
determining whether the system of equations has a short solution is hard,
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which is exactly the same as authentic transcripts being indistinguishable from
counterfeit ones.

However, in order to apply the SSNE heuristic, the SSNE system cannot contain
any particular structure. The cryptanalysis shows that it does. Indeed, if a
short solution exists, the lattice (up to translation) of solutions to the pair of
equations x"Vr = 2aX 4+ U mod ¢ and y"Vr = 2Y + U mod ¢ must have lattice
vectors of length less than or equal to V/2n 29602 Whereas a random system of
2m = 12 linear equations in n = 19 variables is only expected to have solutions
of length about ¢2™/™ a2 217A12/19 x5 910.74% 5, 99.60A " Therefore, the question
whether the given SSNE system has a short solution can be solved by running a
lattice reduction algorithm and testing the length of the shortest vector against
210.74X Tn other words, this SSNE system exhibits exactly the kind of structure
that it is not allowed to have in order for the SSNE heuristic to apply.

This flaw makes the paper effectively unpublishable in its present form.
Nevertheless, I am happy to include it as it is in this dissertation based on the
merit of the following points.

o This result provides further evidence that generating an efficient signature
scheme from SSNE is a challenging problem. The next would-be designer
of cryptosystems based on SSNE therefore has one more reference with
which to bolster that claim.

e The paper constitutes an instructive and comprehensive example of the
full design path from hard problem to zero-knowledge proof to signature
scheme.

e A negative result is still a result. It is conceivable that someone else,
challenged to generate an efficient signature scheme from SSNE, opts for
roughly the same strategy. In this case, they need not repeat the part
that fails and they may even recycle the parts that succeed.

e This failure prompts the drawing of valuable lessons regarding provable
security in cryptography:

— Provable security is not a panacea: proofs can fail.

— Nevertheless, even security proofs with shaky assumptions are useful,
because they help to focus the attention of cryptanalysts. It is worth
noting that the scheme was broken exactly in one of the links we
identified as weak: the SSNE heuristic.

— However, security proofs also distract from cryptanalysis: looking
for a leaked linear relation of the secret key is far a more tangible



184

UNPUBLISHED MANUSCRIPTS

and understandable task than looking for non-random structure in a
given object.

— Hard problems may be defined in the abstract and may even be hard
in general. However, for cryptographic security we do not care about
worst-case hardness or even average-case hardness per se — we care
about the hardness of concrete problem instances arising from their
application as a component in a larger cryptosystem.



A Digital Signature Scheme from Short
Solutions to Nonlinear Equations

Alan Szepieniec and Aysajan Abidin and Bart Preneel

Dept. Electrical Engineering,
imec-COSIC, KU Leuven, Belgium
{first-name}.{last-name}@esat.kuleuven.be

Abstract. Short Solutions to Nonlinear Equations (SSNE) is a post-
quantum hard problem introduced recently in the context of cryptosys-
tem design [30]. By logically merging the SIS and MQ problems, the
SSNE problem renders standard solving strategies either obsolete or
wildly inefficient, and thus promises a better scaling of hardness to repre-
sentation size. As a consequence of this conciser encoding, cryptosystems
relying on SSNE may induce far smaller bandwidth requirements than
their SIS and MQ counterparts. However, until now, no public key con-
structions based on SSNE have been proposed.

This paper introduces a zero-knowledge proof system for proofs of knowl-
edge of a short solution to a quadratic system of equations. The Fiat-
Shamir transform turns the zero-knowledge proof into a signature scheme
with a public key and signature of little over 12 kB for the highest secu-
rity level. A proof of concept implementation in Sage validates the design
and indicates that all operations execute in time on the order of seconds.

Keywords: post-quantum cryptography, provable security, random oracle model,
zero-knowledge proof, digital signature scheme, SSNE

1 Introduction

Post-Quantum Cryptography. A large number of widely deployed cryptosystems
such as RSA [27] and ECC [21,23] rely on the assumed intractability of number
theoretic and elliptic curve problems. However, this assumption is known to be
false in the context of quantum computation [29]. In response to the threat posed
by future quantum computers, much research is devoted to post-quantum cryp-
tography [5], the effort to design, develop and deploy cryptographic algorithms
capable of resisting attacks on quantum computers despite running on today’s
classical hardware.

For instance, the US National Institute of Standards and Technology (NIST)
has started a post-quantum standardization project with the purpose to issue a
standard for three of the most basic public key functionalities: digital signature
schemes, key encapsulation mechanisms, and public key encryption schemes [24].
Their call for proposals has garnered 69 submissions, relying on a variety of
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mathematical problems and associated computational hardness assumptions for
which no efficient quantum algorithm is known.

Unfortunately, any migration towards post-quantum cryptographic standards
incurs a bandwidth penalty. No post-quantum cryptosystem is capable of making
both the public key and the ciphertext or signature as small as those produced
by elliptic curve cryptosystems (ECC). Instead, the more balanced cryptosys-
tems boast public keys and ciphertexts or signatures measurable in kilobytes, as
opposed to tens of bytes for ECC. One of the biggest challenges in post-quantum
cryptography is to push this number down further, not only to streamline the
anticipated migration but also to make the cryptography accessible to resource-
constrained devices.

Short Solutions to Nonlinear Equations Problem. One of the cryptographically
useful hard problems that is not represented by any of the 69 NIST submissions is
the Short Solutions to Nonlinear Equations (SSNE) Problem [30]. The problem
had been studied under various guises in the context of cryptanalysis [9-13,
18,19, 26]. It was presented only recently as a good candidate for generating
small-bandwidth post-quantum cryptosystems, but ultimately this generation
was merely conjectured to be possible as the authors could not find a way to do
it [30].

Informally, the SSNE Problem asks to find a short solution to a nonlinear
system of multivariate polynomial equations. It generalizes both the Short Inte-
gers Solution (SIS) Problem [1], where the system of equations is linear; as well
as the Multivariate Quadratic (MQ) [14] Problem, where the solution need not
be short. The double requirement renders standard attack strategies applying to
SIS or MQ obsolete or wildly infeasible, and thus enables a conciser representa-
tion of an equally hard problem. In particular, the size of an SSNE instance in
a straightforward representation scales linearly with the logarithm of the best
attack complexity; in contrast to the higher degree (but still polynomial) scaling
associated with equally straightforward representation of SIS and MQ instances.

Signatures from Zero-Knowledge Proofs. One common strategy for generating
signature schemes is to start with a zero-knowledge proof and apply the Fiat-
Shamir transform [16]. This transformation replaces interactive challenges with
hash function evaluations to make protocol non-interactive but still secure in the
random oracle model (ROM). By also including the document to be signed in the
input to the hash function, the non-interactive proof testifies to the involvement
of the secret key in its generation while linking it to the document in question.
The resulting transcript therefore provides non-repudiation of origin, which is
the defining property of signatures.

The key property in this context is witness-extractability, which formalizes
the notion that a successful prover could have outputted the witness just as eas-
ily. It requires the existence of an extactor machine that is capable of outputting
this witness whenever it has black box access to a successful prover. This ex-
tractor is traditionally constructed, both in the interactive and non-interactive
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case, with the Forking Lemma [25]: the extractor records the prover’s state just
after it made a commitment but before it receives a challenge from the verifier.
Then the extractor tricks the prover into generating responses to two different
challenges, but both valid with respect to the same commitment. The protocol
should guarantee that the witness is efficiently computable from a small number
of transcripts with the same beginning but different endings, which the extractor
can obtain in this way.

In the context of provable security against quantum adversaries, the preferred
notion of knowledge is quantum-witness-extractability [31], which allows the ex-
tractor to be a quantum computer if the successful prover is. In this setting, the
Forking Lemma is invalid because it relies on copying information, which is im-
possible for generic quantum states. Nevertheless, cryptosystems following this
design pattern can be classified as “post-quantum” because no quantum attack
exploiting this invalidity is known. The classical security proof, though invalid
quantumly, is to be interpreted as another argument for the cryptosystem’s se-
curity.

Contributions. In this paper, we take another look at the SSNE problem for
generating post-quantum public key cryptosystems. We answer the challenge
posed in the SSNE paper [30] positively, and validate the intuition stated therein
about its potential for low bandwidth schemes. In particular:

— We revisit and revise the SSNE problem. Particularly, we briefly sketch an
attack that mandates an update to the design principles for guaranteeing a
targeted level of security. Moreover, we cast the search and decision prob-
lems and their induced hardness assumptions into an exact formal language,
thus enabling their usage in security proofs. Our analysis requires the for-
malization of an additional assumption, which states that finding triples of
colliding inputs is hard as well.

— We propose a zero-knowledge proof system for proofs of knowledge based
on the SSNE problem, which can double as an identification scheme. Our
proof system resembles that of Schnorr for finite field and elliptic curve
groups [28], but in contrast to Schnorr proofs, no quantum attack is known
to defeat SSNE.

— A straightforward application of the Fiat-Shamir transform generates a post-
quantum signature scheme from this protocol. Assuming the average case
hardness of the SSNE problem, and heuristically assuming that generic SSNE
systems behave as random ones do, the scheme is provably secure in the
(classical) random oracle model.

— We present a proof of concept implementation in Sage to validate the design.
The scheme produces relatively short public keys and signatures (3.22 kB and
12.09 kB respectively at the highest level of security), and the operational
speed of this high-level implementation is on the order of seconds.

We stress that SSNE is a relatively new problem in the context of cryptosys-
tem design, albeit much older in the context of cryptanalysis. It does not and
should not at this time inspire the same confidence that other post-quantum
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problems do, particularly the ones that have received and withstood decades of
scrutiny. Nevertheless, the shortest path towards justified confidence is to incen-
tivize cryptanalytic attention. By presenting a signature scheme as we do with
performance matching or in excess of its competition, we hope to invite this
much-needed examination.

While we are unable to provide a proof of security that is valid in the quantum
random oracle model (QROM) as well as in the classical random oracle model,
we note that no quantum attack is known to break the security of the Fiat-
Shamir transform.! Therefore, our signature scheme is justifiably classified as
post-quantum precisely because no quantum attack is known. The unavailability
of a security proof for Fiat-Shamir in the QROM might be merely an artifact of
the stronger computational model and of the mortality of the humans writing
the proofs, rather than an indication of some inherent weakness. Nevertheless, it
remains an interesting open question to find a non-interactivity transform with
provable security in the quantum computing model that does not incur a large
speed and bandwidth overhead. Indeed, such a solution would be applicable to
many other zero-knowledge based signatures schemes beyond our own.

2 Preliminaries

Negligible. A function € : N — Ry is negligible if for all polynomials p(z) € R[z]
there is an N € N such that for all x > N, ¢(z) drops faster than the reciprocal
of |p(x)|. Conversely, a function v : N — Ry is noticeable if there exists a
polynomial p(z) whose reciprocal drops faster. Formally, we need only consider
the dominant monomial of p(x):

1
Ye>1.9N € N.VA > N .¢(N) SF ;
1
Je>1.INeN.VA>N.v(\) > —
¢
A probability is overwhelming if its distance from 1 is negligible. From here on,
any reference to negligible or noticeable functions drops the quantifiers from the
notation. They are still implicitly present whenever asymptotic security notions,
the functions € and v, or the security parameter A appear.

Pseudorandom Generator. A pseudorandom generator is a deterministic algo-
rithm that expands a short input seed into a long bitstring that is indistinguish-
able from uniform. Formally, a function G : {0,1}* — {0,1} with a < b is a
peudorandom generator if for all quantum polynomial time distinguishers D the

distinguishing advantage AvaGRG(D) is negligible:

AdVPRS(D) 2 [P

[D(G(s)) = 1] — Pr [D(g) = 1]| < e(a) . (1)

r g $
s¢{0,1}e g<{0,1}°

! Ambainis, Rosmanis, and Unruh do have a result showing that the Fiat-Shamir
construction is classically-secure but quantumly-insecure relative to an oracle, which
may or may not be realizable [2].
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Among other things, pseudorandom generators are useful for derandomization,
which is the process by which a probabilistic algorithm is made deterministic by
exchanging its random coins for pseudorandom ones, and fixing or transmitting
the seed somehow. We drop the argument to denote the maximum distinguishing
advantage over all polynomial-time quantum adversaries:

AdvER© 2 maxp AdvERE(D) . (2)

Random Oracle Model. A random oracle is an idealization of a hash function
H : {0,1}* — {0,1}* that captures the complete ignorance of an adversary
about images of inputs in which the function was not evaluated [4,16]. Formally,
a random oracle is a function RO : {0,1}* — {0,1}* from arbitrary length
bitstrings to fixed length bitstrings drawn uniformly at random from the space

of all functions of that type signature: RO & {fIf:{0,1}* — {0,1}*}. A
proof that holds when all hash functions are replaced by (possibly different)
random oracles are said to hold in the random oracle model. In the context
of post-quantum cryptography, the quantum random oracle model (QROM) is
preferred [6], because this stronger model captures the realistic capability of the
attacker to evaluate the hash function on a quantum superposition of values.
Not all proofs that are valid in the classical random oracle model are also valid
in the quantum random oracle model.

2.1 Fiat-Shamir Transform

We assume the reader is familiar with the syntax and security notions of sig-
nature schemes and zero-knowledge identification schemes. Otherwise, they are
referred to Appendix A for a quick recap.

Informally, the Fiat-Shamir transform replaces the public coin challenges
from the verifier with the hash of all protocol messages up until that point [16].
The result is a non-interactive zero-knowledge proof. In order to turn the pro-
tocol into a signature scheme, the message to be signed must be hashed as well.
In some cases, the transcript leaks information about the witness and in this
case the transformation should abort and try again with new randomness. This
is the strategy of Fiat-Shamir with Aborts [22]. The parameter x determines the
number of tries before signature generation fails.

Formally, let A = (A.KeyGen, A.P, A.V) be an identification scheme with
leaks(com, ch, rsp), a Boolean function that determines whether the given tran-
script leaks information about the witness. Furthermore, let H be a hash func-
tion and G a pseudorandom generator. Then the deterministic Fiat-Shamir
transform with aborts and derandomization generates a signature scheme X =
DFSADIA, leaks, , H, G] = (X.KeyGen, X.Sign, X Verify) with X'.KeyGen, X.Sign,
X Verify defined as follows: X.KeyGen = A.KeyGen and
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1. define X.Sign(pk, sk,d) as: 1. define X Verify(pk,d, s) as:

2. | {coinsi, coinsa; }iy) + G(sk||d) 2. (com,rsp) + s

3.] forie{0,...,x—1} do: 3. ] ch < H(pk||com||d)

4.1 | com,st + A.P(sk;coinsi,;) 4. | return ANV(pk,com,ch,rsp) .
5.1 | c¢h <+ H(pk|com|d)

6.| | rsp < A.P(st,ch;coinsa;)

7.1 | if not leaks(com, ch, rsp) then:

8. | | returns= (com,rsp)

9. return L ,

The scheme X is provably secure in the classical random oracle model [25].
The same is not known to hold in the quantum random oracle model. Unruh
shows that the Fiat-Shamir transform retains soundness against quantum ad-
versaries [33], but in order for the resulting signature scheme to be secure it must
retain witness-extractability as well.

3 Zero-Knowledge Proof System based on SSNE

3.1 SSNE

The Short Solutions to Nonlinear Equations (SSNE) problem was introduced in
the context of design of cryptographic primitives by Szepieniec and Preneel [30],
although essentially the same problem has been known for much longer in the
context of cryptanalysis [9-13,18,19,26]. The problem can be seen as the logical
merger of the SIS problem, i.e., finding short solutions to linear systems of equa-
tions, with the MQ problem, i.e., finding any solution to a system of quadratic
equations. A formal definition is as follows.

Definition 1 (SSNE Problem). Given P € (F,[x])™, a list of m multivariate
polynomials in n variables x = (x1,...,2,)" over a finite field with prime order
q, find a vector of n integers x € 7" such that

P(x)=0modg and |x|| <8,
for some parameter 3 € Rsg and where || - || denotes the £2 norm.

Szepieniec and Preneel identify six design principles for choosing parameters
such that the problem is hard. In particular, when all design principles are
satisfied, no known algorithm, classical or quantum, is capable of producing
solutions to SSNE faster than brute force. The principles for targeting A bits of
security are:

- logy 8> A

. n(logy g —logy B) > A

. logy ||x||? > log, ¢ , for all solutions x

. mlogyg > A

. rank(W + WT) > dimV(P) , for a generalized length criterion x' Wx < 32
o> m —= %Iong > A/n + logy 8 , where 0 = max,0  subject to
m(o+1)/2 <nand o < n.

o UL W N
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There is an attack mandating a revision of design principle 2. It is possible
to fix the first n —m variables to random but small enough values and then solve
the polynomial system for the remaining variables. The solution will be short
enough with probability 279, where § = log, ¢ —log, 3. Making this probability
negligible requires setting md > A. We revise the design principle to do just that,
and note that this change makes principle 4 superfluous because méd > k would
imply mlog, q¢ > k.

Design Principle 2”:
m(logyq — logy 5) > A .

In order to make a meaningful assumption about the average-case hardness of
SSNE, one must define a probability distribution of problem instances. However,
some systems of polynomial equations may be designed to contain a trapdoor
allowing the secret key holder to efficiently solve the associated SSNE prob-
lem. We solve this problem by requiring that every coefficient of the system of
polynomials be chosen at random.

Search and Decisional SSNE Assumptions. Let P : Fj — F;* be a list of
m random polynomials of degree at most deg > 2 in n variables over a prime
field Fq; and let 8 € Rs( be a target length, and A the security parameter. If
design principles 1—6 are satisfied for security level A, then for all polynomial-
time quantum algorithms D and S, the success probability in the search SSNE
game (Game 1) and the advantage in the decisional SSNE game (Game 2) is
negligible:

Succ™SNE(S) £ PrGamelgone (., n, deg, §) = 1] < 27> (3)
AdvPSSNE(D) £ Pr[GameBegne (m, n, deg, B) = 1] < 27> . (4)
Game 1: Search SSNE (SSSNE) Game 2: Decisional SSNE (DSSNE)

. define GameBssye (M, n, deg, B) as:
P & FyxS0]

1. define GameZgsne(m, n, deg, §) as: 1
2.1 PEF, xS 2. |
3.1 x<& {xezl x"x < %) 3. x&E{ZeFr x'x < B2}
4.| z+ P(x) b evaluate P in x 4.1 29+ 0
5| %+ S(P,z) 5. z1 < P(x) > evaluate P in x
6. | return [P(x) = z] 6.1 b & {0,1}
7.| b« D(P—m)
8.| return [b=1b]

We write Succ>>SNE (S) and AdvE®SNE (D) to capture the success probability

m,n,q,B m,n,q,B
and distinguishing advantage of adversaries against generic SSNE instances with

the given parameters. We drop the argument to refer to the maximum success
probability and advantage across all polynomial-time quantum algorithms:
N
Succ>SNE = maxs Succ

m,n,q,f —

SSSNE (S), AdvDPSSNE émaxD AdvPSSNE (D) . (5)

m,n,q, m,n,q,8 m,n,q,
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Note that a solver can always be used as a sub-procedure in a distinguisher,

so for every solver S there is a distinguisher DS such that SuccSSSNEg(S) <

m,n,q,
Advglsji',\'q'?ﬂ(DS). Also, a solution computed by a solver is also a solution for the

same system but a with larger length constraint. So for every p > 0 and every

solver S, the success probabilities satisfy Succfnsﬁl't';ﬁ(S) < Succ§s7§1'\7';5+p(5).

SSNE Heuristic. In addition to making both assumptions, we employ the
following heuristic argument: upon encountering an SSNE system, and upon
failing to identify any particular structure that would make its solution efficient,
the system of equations may assumed to be indistinguishable from a random
one. While technically speaking invalid, this heuristic argument is still useful
inside an otherwise valid proof because the conclusion is true with overwhelming
probability if the premises are true; moreover, this heuristic argument pinpoints
the locations where the proof may break. We refer to this heuristic as the SSNE
heuristic.

It is certainly possible to avoid employing the SSNE heuristic altogether
and make the proof in which it is used perfectly valid. For instance, one can
identify the processes that produce the generic systems, and assume explicitly (or
prove, if possible) that this process produces systems that are computationally
or perfectly indistinguishable from random. However, we feel that this strategy
to eliminate heuristics distracts from the intuition behind the security argument
and results in a convoluted proof. We choose to err on the side of simplicity and
intuition.

Triple-Collision-Resistance. We require a third hardness property of SSNE
systems, specifically for the case where deg = 2, namely that it be hard to find
X1,X2,X3 € Zy such that for all i € {1,2,3}, |lx;|| < 3, and P(x1) = P(x2) =
P(x3). If this is the case, we call (x1,X2,X3) a triple-collision.

To see why we consider tuples of at least three items, consider the following
procedure for finding colliding pairs. First, choose a small difference § & Zy. at
random. Require that x; 2 x—dand X2 2x+o collide, i.e., P(x—9) = P(x+9).
m

—1 .
0 + Lx-+c for some matrices

Since P(x) is quadratic, it can be written (x' Pix)

Py, ..., P,_1,L and vector c. Then move all the terms of the collision equation

to the right hand side and observe that the quadratic terms cancel:
(x—&)TP(x— &))" +Lx—8) +c— ((x+8)TP(x+8)" ) —Lx+8) —c (6)

=-20"(P,+PN)x—-2L6=0 . (7)

This is a linear system of m equations in n variables. Lattice reduction can
reduce the length of the solution to approximately ¢™/". If 8 is much smaller
than this number, one can rely on regular collision-resistance after all. However,
if 8 is larger, collisions are easy to find.

A similar argument can be used to find triple-collisions. In this case, choose
small §,v,n & Z%, and require that P(x + ) = P(x +~v) = P(x + n). How-
m— m—1
1=

ever, in the resulting system of equations the terms (ETPi(S) , ('yTPi'y)Z._O ,
0 -
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and (n'Pn) 7:01 do not cancel. Consequently, the system of equations does not
necessarily have a solution. Moreover, there are twice as many equations as vari-
ables and in the case we are interested in, 8 < ¢*™/™. As far as we can tell,
the most straightforward strategy for finding triple-collisions involves solving
an SSNE instance with at least m equations and n variables, but we cannot
prove it. We therefore assume it explicitly. Together with SSNE heuristic, this
bounds the success probability of triple-collision finders. Formally, define the
triple-collision-resistance game as follows.

Game 3: Triple-Collision-Resistance (3CR)

1. define Gamelcg(m, n, B) as:
2. P & (Fg[x=?])™ > m-tuple of random polynomials of degree at most 2
5. ‘ X1,X2,X3 < A(P)
6.| return [P(x1) = P(x2) = P(x3)
Alxall < B Azl < BIFA lixall < 51

The triple-collision-resistance assumption states that for all polynomial-time
. e . . A
quantum adversaries A, the success probability is negligible, i.e., Succiﬁ'fh 05(A) =
Plr[Game3ACR(m,n7 B) = 1] < 27>, For the purpose of estimating security levels
we employ the SSNE heuristic and assume that Succoh  5(A) < SUCCSSSNEB.

m,n,q,p m,n,q,

3.2 Zero-Knowledge Proof System

The following presents I, a sigma-protocol for proving knowledge of a short
solution x to a nonlinear system of equations P(x) = X mod ¢, where P(x) is
a list of quadratic forms, i.e., P(x) = (x' P;x)"," for some list of matrices
P; € F7*". In CS notation [7]: ZKPoK{(x) : (x"Px)" ;' = Xmodq A x"x <
V- 25}. Let A be a root parameter that determines the prime modulus ¢, an
upper bound u < log, g, a lower bound ¢ < wu, and the verifier entropy level
e < u — {. The first message of the prover consists of two distinct mathematical
objects: Y < (y"Py)"", U « (x" (P + PT)y)"," for some randomly chosen
y <i Zou. The challenge is a random e-bit number « i Zse. The response r <
a-x+y allows the prover to verify a relation involving all variables at his disposal:

Vi.r'Pr Z a2 X +Y +aU mod q. Moreover, if all goes well r is sufficiently short:
?
lr]l < 24/n-2" = . The protocol is presented diagrammatically in Figure 4.

3.3 Security

Lemma 1. Protocol II is a complete proof system for the relation {(x) : X =
(xTPz-x)ffol mod q} with completeness error € = 0.
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P \%

secret knowledge: public knowledge:
X € Zy, such that P e Fy*", X e Fy?
(xTPix);';Bl = X modgq

y ﬁ Zgu
Y +— (yTPiy);lgl mod q
U + (XT(Pi + P;r)y);lgl mod q

Y, U

$
a < Zioe

r<—a-x+y

a’X +Y 4 alU =
(r"Pir)7 5 mod ¢

vl < 2/m - 2

m—1

Fig. 4: Protocol II: a zero-knowledge proof of knowledge of x in (x" P;x)" "

Proof. By construction:

m—1 m—1
(rTPir)iZO =((a-x+y) " Pila-x+ ¥)),_, modg (8)
— (> x"Px+a-x"(Pi+ Py +y"Py)" . modq (9)
=a> X +Y +a-Umodg (10)
and
el = fla-x+y[ < allx] + [yl (11)
<2¢.yn-28 424 <2.n- 2% O (12)

Zero-knowledge is a more complicated matter because it is possible for r
to leak some information on the secret x. For example, if one component of x
happens to be very close to 2¢, then with high probability the matching compo-
nent of r will be larger than 2%“. To get around this problem, we only consider
executions of the protocol where all components of r are smaller than 2%, and
employing the Fiat-Shamir with aborts strategy later on. Restricting attention
to the least significant u bits, it is easy to see that y is a one-time pad on a - x.
Since w is slightly bigger than e + ¢, the probability of having to abort is small.

Lemma 2. With the SSNFE heuristic, and conditioned on every component r; of
r being less than 2%, Protocol I1 is a computational honest verifier zero-knowledge
proof system with mazimum distinguisher advantage

ZK DSSNE
Ade (D) < Adv3m+n,2n,q,m-2“ : (13)
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Proof. The simulator generates the transcript as in the following algorithm.

1. define S(X) as:

2. a<Zy

3. y<&zh

4] r& oz

51 Y« (y"Piy)™  modg

6. U=« ((rTP,-r):’LBI —a* X - Y)a ' modq
7.| return (Y,U,a,r)

The task of the distinguisher is to distinguish the output of S(X) from the
transcript of (P(x, X) < V(X)), subject to every component r; of r being less
than 2%. Since a can be computed from the remaining values, distinguishing
authentic from simulated transcripts based on (Y, U,r) is enough. Individually,
each element of the tuple (Y, U, r) is distributed identically across both distribu-
tions. This is clear in the case of Y and r; the identical distribution of U follows
from the equation U = ((r"Pir)/";" —a®- X —Y) a~! modg. Moreover, drop
any one element and the remainder of the tuple is identically distributed across
both distributions, because each of the tuples (Y,U), (U,r) and (Y,r) can be
completed with the missing element in a way that could have been the authen-
tic output of the prover. The distinction therefore lies in the joint probability
distribution of all tuple elements. To capture this distinction we must cast them
into the language of SSNE.

A tuple (Y, U, a,r) is identifiable with a system of equations

a-X+ty=r

(x"Px)" " = X modg
(y"Piy)' =Y modq

(x"(P; + P)y)y' = Umodq .

(14)

Crucially, this system has a short solution (x,y) if the transcript was generated
authentically. Since there is no overflow, the first equation can be taken modulo
g, in which case we have an SSNE system with m’ = 3m + n, n’ = 2n, and
length bound 8 = v/2n - 2%. Using the SSNE heuristic, we conclude that any
distinguisher D between S and (P(x, X) <> V(X)) has an advantage bounded by
ZK dist DSSNE
Adviz (D) < Advs(x) (px.x)ov(x) (D) < Advy 2 vamae - O (15)
The next property is soundness, i.e., the inability of a computationally bounded

adversary to authenticate with respect to a public key that is invalid. By design
this property is guaranteed if SSNE is hard.

Lemma 3. In the SSNE heuristic, protocol II is sound against quantum poly-

L . ) SSSNE
nomial time adversaries, with soundness error o < Succm_’n,qﬂ/ﬁ,z,,,.

Proof. Since #x € Z7'. (x"Px)" ot = X A x| < v/n - 2%, the task of finding
an r € Zg such that (x"Pr)™t =a®> X +Y +a-Umodg for a random a
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and ||r|| < 24/n2°, implies a solution to search SSNE if it has a solution, and is
impossible if it does not. The SSNE problem is defined with respect to m’ = m
equations, n’ = n variables, and length bound 8 = 2,/n - 2%. So the soundness
error is bounded by the optimal success probability of search SSNE, namely
o< Succf:i'\"(izﬁ_w. O
Witness-extractability is less straightforwardly proven than soundness. Given
two honestly generated transcripts Ty = (Y, U, ay,r1) and To = (Y, U, az,1r2),
with the same first message but different challenges, the witness x can be
found as x + (ro — r1)/(as — ay). However, this extractability holds only for
provers that follow the protocol. The verifier should not have to assume that the
prover is behaving honestly; rather, he should be convinced of that fact precisely
by participating in the protocol. The following lemma shows classical witness-
extractability. Quantum witness-extractability remains an open question.

Lemma 4. In the SSNE heuristic, protocol I is a classical proof of knowledge:
for all polynomial-time adversaries B, the success probability is bounded by

Prlouty((B+ V)) =1] < \5/Succ75715;'\7'5\/ﬁ.25 + 3Succi15§1'\7'qE’\/ﬁ_24 . (16)

Proof. The extractor E proceeds as follows. He simulates the forger B until B
outputs the first protocol message (Y,U). At this point, X and Y are fixed.
Moreover, the forger knows at most two preimages each to X and Y. Formally,
knowledge in this context means that all polynomial-time extractors FB that
output preimages to X or Y, jointly output a set of at most two preimages for
X and at most two for Y. If some extractor FB did output a third preimage
for X or for Y, then it can be used to win the triple-collision-resistance game.
The winning probability for this task is Succfﬁivq’ W,QZ(FB) < Succf,isn'\"(i Jr2t
Conditioned on this event not occurring, we can speak of the two preimages
x1,%x2 of X and yj,y2 of Y. The following argument holds even if there is only
one preimage for X or Y or both.
The response r must be of the form

r=a-x;+y; with 4,j€{1,2}. (17)

If it is not, then it is either an invalid response or the forger has managed
to find a short solution to an SSNE system that is randomized by a. Since the
forger is polynomial-time, its success probability in the latter task is bounded by
Succilsﬁsn'\"; 2 /me2u- Therefore, conditioned on this event not occurring, the proof-
forger B must respond with an r of the form of Eqn. 17.

The extractor forks into five branches and feeds a different random challenge
ar to the proof-forger B in each branch. Each proof-forger B outputs a valid
response ry of the form of Eqn. 17. At least one pair (x;,y;) must be reused.

For each pair (rp,ry) of responses, the extractor E computes x + (rp —
r;)/(ar — a;). At least one such pair uses the same x; and y; for both rj and
ry, which guarantees that x; = (ry — ry)/(cx — ¢¢) without modular reduction.
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By computing this value for all pairs (rg,rs), the extractor E finds at least one
x such that P(x) = X.

The success of the extractor E depends on the non-occurrence of the events
“B finds a triple-collision for X”, “B finds a triple-collision for Y, and “B finds
a wholly new solution r to the SSNE problem”. Let £ denote the occurrence

of any of these events. The probability of £ is bounded by QSUCCiEF:Lyqy st T

SSSNE
Succm,n,q,\/ﬁQ" < 3succm7n7q7\/ﬁ~2f'
The event “E outputs the witness x” is equivalent with “B wins rounds 1-5

and not £”. This gives the following.

Pr[B wins rounds1-5 A =&] = Pr[B wins roundl A --- A B wins round5 A —€]
(18)

= Pr[(Bwins round1l A =E) A --- A (B wins round5 A =E)] (19)

For a given random tape, the events (B wins round i A =€) are independent
because they are a deterministic function of an independently drawn variable, a;.
We assume without loss of generality that the random coins for B are subsumed
into its state and hence replicated each round.

5
.= Z Pr[coins] - H Pr[B wins roundi A =& | coins] (20)
coins i=1
= Z Pr[coins] - (Pr[B wins A =& | coms])5 (21)
5
> <Z Pr[coins| - Pr[B wins A =& | coins]) (22)
= Pr[B wins A —E]° (23)

The inequality holds due to Jensen’s inequality, which states that for any con-
vex function f, coefficients A, ..., A\, € [0,1] with >0, A =1, fF(O-F Nit) <
SN f ().

Since a successful extractor is finding a preimage under P(x) of X, the ex-
tractor’s success probability is bounded by Succfrisn'\"(i 9 /m-2¢, Meaning that

Pr[B wins] < Pr[B wins A =€] + Pr[€] (24)

< +/Pr[E success| + 35ucc2isn'\f§_’2\/ﬁ,2e (25)

5 SSSNE SSSNE
< \/Succm_’nﬂq’\/ﬁ,ﬂ +35uccm’n’q72\/ﬁ_24 . (26)

O

The security bound involves a fifth-root security degradation, in contrast to
the square-root degradation in the analysis of Bellare and Neven [3, §3]. This ex-
acerbated degradation is due to the need to fork into five branches, whereas two
branches are enough in the standard case. Nevertheless, the bound is asymptot-
ically sound, meaning that if no polynomial-time algorithm solves search-SSNE
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with more than a negligible success probability, then no polynomial-time adver-
sary fools the verifier with more than a negligible probability.

3.4 Quantum Soundness

The previous discussion covers classical security only, even though the protocol
is presented as a system for post-quantum security. Correctness and honest-
verifier zero-knowledgeness are straightforwardly lifted to the quantum adver-
sarial model, as is soundness. However, knowledge-soundness, or witness-extract-
ability, is much trickier. We survey here two strategies for generating a provably
secure (in the QROM) signature scheme from a zero-knowledge proof, and ar-
gue in each case that its application to our protocol is inadvisable. We are not
unique in such an argument in favor of the Fiat-Shamir transform at the cost of
a QROM proof. The same motivation appears explicitly in Dilithium [15] and
MQDSS [8], and implicitly in many other proposals.

Unruh Transform. The Unruh transform [32] turns a X-protocol into a non-
interactive zero-knowledge quantum proof of knowledge in the quantum ran-
dom oracle model. It achieves this by relying on length-preserving commitments
which, when instantiated by the extractor, can be efficiently inverted with the
forger being none the wiser.

The prover commits to many complete branches of protocol executions, where
the path is determined by the verifier’s challenge. The hash of this commitment
then determines which branch will be opened, thus revealing only one randomly
chosen transcript. However, the extractor who provides the forger with a back-
doored view of the random oracle, can obtain all transcripts in the entire tree.
If the original protocol has computational special soundness, then the extractor
can compute the witness from these transcripts.

However, the Unruh transform comes at a significant cost. The motivating
promise of using the SSNE problem in the first place is the small size of the
transcript and the high speed of operations. The speed objective is undermined
by the need of the Unruh transform to run enough protocol executions to reduce
the soundness error to a cryptographically insignificant quantity; and the size
objective is undermined when all transcripts are committed to with a length-
preserving hash function.

UKLS Deterministic Fiat-Shamir. Unruh shows that the Fiat-Shamir trans-
form preserves soundness in the quantum random oracle model and proposes to
generate post-quantum signature schemes based on plain soundness instead of
knowledge-soundness [33]. In particular, the security proof can bypass the need
to show witness-extractability when no forger can feasibly generate a proof for
a fake public key. In addition to that, fake public keys must exist and they must
be computationally infeasible to distinguish from authentic ones. The strategy
received a concrete treatment by Kiltz, Lyubashevsky and Schaffner (KLS) in
the context of lossy identification schemes [20].
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In the case of our protocol, we find that it is unclear whether fake pub-
lic keys can exist. A public key is a tuple of finite field elements X € F"
and it might have been produced authentically by a key generation algorithm
when 3x € Z7, . (x"Pix)™ ' = X. Taking the length constraint into account,
there are ¢n indeterminate bits in x, and mlogy, ¢ < 2m/f constraining bitwise
equations, and so there are roughly 2¢7~™!€29 different values for x such that
X = (XTPL'X) ?:01 mod ¢. Changing the parameters so that {n < mlog, ¢ (which
implies n < 2m) is not compatible with the requirement for zero-knowledge,
namely n’ = 2n > m’ = 3m + n (which implies n > 3m). So the UKLS tech-
nique cannot be made to work because it would eventually generate a signature
scheme whose signatures betray knowledge of the secret key.

4 Signature Scheme

4.1 Description

We instantiate the protocol with parameters m = 6 and n = 19. Moreover, we
set q,f,u,e as a function of the security parameter via log, ¢ =~ 17\, £ = 8.55),
u = 9.60\, e = \. For these parameters the soundness and zero-knowledge
properties achieve a security level of A bits against classical attacks. To see
this, consider each of the terms in the security statements. With respect to
the knowledge-soundness property, we are content with the asymptotic security,
implicitly assuming that an attack on knowledge-soundness requires solving the
SSSNE instance associated with breaking soundness.

- Succgslsg'\'qE2 /920" This term captures the soundness. All design principles are

satisfied. With respect to design principle number 6, we find that o = 5 and
hence 224 log, ¢ ~ ZITA=17TA > 2 +log, B = (A/19+ur+1)A ~ 9.65).
So design principle 6 is satisfied.

The margin is smallest with respect to design principle number 3. In this case
we have the squared length of the secret key x is [|x[|? ~ /n - 22% ~ 219237
which is only a little bit larger than g == 217*. The first approximation comes
from the fact that the components of x are sampled from Zsu, and so design
principle 3 is satisfied with overwhelming probability.

— Advgigg% /320" This term captures the security of the zero-knowledge prop-
erty. Design principle 6 does not apply and we find that the smallest margin
is in fact for design principle 3. However, since both ||x|| > /g and ||y || > ||x]|
with overwhelming probability, the length of the solution (x,y) is larger than
\/q with overwhelming probability as well.

— The challenge coming from the verifier consists of e bits of entropy. This

term is hidden by Succzjslsg'\"qE’ J/I9.2u but it should be large enough to make

the case for the SSNE heuristic in the knowledge-soundness proof compelling.

Moreover, the term 27¢ appears explicitly in the Bellare-Neven formula for

the security degradation as a consequence of applying the Forking lemma.

The signature scheme X' follows directly from applying the deterministic
Fiat-Shamir transform with aborts and derandomization to the identification
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scheme IT, along with a hash function H and a pseudorandom generator G.
Additionally, we assume access to a function sample(-,-) that deterministically
samples from the space given as first argument using the coins given as the
second. Symbolically we have X' = DFSADI/I, leaks, k, H, G] and functions defined
as follows. In this pseudocode, G is a PRG; H : {0,1}* — {0,1}* is a hash

1. define X.Sign(sk,m) as: 1. define X.KeyGen(1*) as:
2. | coinsy, coinsa <+ G(sk) 2. | seed K3 {0, 11>
. k—1 . ’

3. | {6027}5}{}]‘20 A G(Skugg m 3. | coinsi, coinsa < G(seed)
4| AP} < sample((Fg™")™, 4.1 P}t « sample((F27™)™, coins:)

| L coins1) 5.| x <« sample(Z3,, coinsz)
5 x <+ san}ple( 2@,100m52) 6.] X+ (x"Px)"5 modg
6. X <_.(X Pix)Zy" modg 7. pk <+ (coinsi, X)
7 forje{O,...,fifl}do: 8. | sk« seed
8. | | y ¢« sample(Z3u, coinss,j) 9.| return sk, pk
9.1 | Y (y Py)ily modg

T T
10.] | Usx'(Pi+ P)ymodgq 1. define X .Verify(pk,m, s) as:
L[| a < HX[Y[|U]jm) 2. | coinsi, X + pk
12.] | rea-x+y 3.1 AP}t < sample((F2*™)™, coins)
1B | s« (V,Ur) 4| (V,Ur)«s
14.| | if not leaks(Y,U, a,r) then: 5.0 a+« HX|[YU|m)
15.] | | returns 6 " <9 qu
. . . N

16. | return L I return [rf <2-vn_ 2]

[a*X +Y +aU = (" Pir)7;' mod ¢]

function; and leaks is defined as

1 ifforallie{0,...,n}r <2v
0 otherwise.

leaks(Y, U, a,r) = { (27)
The parameter x is set so as to make the probability of signature generation
failure cryptographically negligible, i.e., less than 2~*. This probability is de-
termined as follows. Since ax; is at most £ + e bits and y; consists of u bits, a
failure for this component occurs when the top u — ¢ — e ~ 0.05\ bits of y; are
set and a carry chain flips the next one. The probability of this event is 2¢6T¢—%,
A single test of line 14 in X .Sign fails if any one of the n = 19 components
triggers failure. Conservatively modeling them as independent events, we find
that the probability of a single successful leaks test is at least (1 —2¢t¢~%)" and
the probability of a single failing leaks test is at most one minus this quantity.
Signature generation failure entails x individual leaks test failures, so we find

Pr[X.Sign(sk,m) = 1] < (1 — (1 —2°T7w)m)s | (28)

Rather than finding an exact formula for the appropriate value of x such that
Pr[X.Sign(sk,m) = L] is smaller than 2~*, we chose to write a script to compute
it numerically in terms of the concrete parameter values. The resulting plot is
shown in Fig. 5. In this figure, x drops to 60 at around A ~ 125, after which
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Fig. 5: Value of k for cryptographically negligible failure rate.

point it continues to drop but very slowly. Therefore, setting x = 60 regardless of
A guarantees that for all targeted security levels the signature generation failure
probability is small enough.

4.2 Security

Theorem 1. In the SSNE heuristic, the signature scheme X = DFSADIII, leaks,
k,H, G] with the parameters set as [log, q|] = 17\, m = 6, n = 19, u = 9.60],
£ =855\, e = A, is secure in the SUF-CMA and random oracle models. In par-
ticular, for any polynomial time adversary A making Qu queries to the hashing
oracle in the SUF-CMA game, the insecurity is bounded by

SUF-CMA SSSNE PRG DSSNE —e -
lnseCE (A) S Succm,n,q,Q\/ﬁQ“ + AdVG + Adv3m+n,2n,q,\/2n<2“ +2 +2

ey (,s/succm; e+ BSuccSNE mz) . (20)

A security proof can be found in Appendix B. The obtained bound is rather
loose due to the Forking Lemma and the resulting fifth-root degradation. Nev-
ertheless, we know of no better attack on knowledge-soundness than solving
one of the search-SSNE problems. It seems reasonable, therefore, to assert that
the fifth-root degradation is an artifact of the proof technique rather than an
indication of inherent insecurity. We note that this bound, like the bound on
knowledge-soundness, remains asymptotically sound.

4.3 Performance

The parameters have been chosen to guarantee A bits of security against attacks
that involve search-SSNE or decision-SSNE. Therefore, setting A = 128,192, 256
instantly gives us concrete parameter sets targeting exactly those security levels
against classical attacks. Assuming a quadratic speedup on quantum computers
due to Grover, we obtain half this security level in a post-quantum setting.
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Table 1 compares the public key and signature size of our signature scheme with
those of several representative submission to the NIST competition [24]. On the
first three lines, the omitted parameters are as defined at the start of Sect. 4.1.

Table 1: Comparison of our signature scheme to several NIST proposals.

scheme ‘PQ security level‘ parameters ‘public key size‘signature size
ours 64 q=2"12% _ 1833 1.61 kB 6.04 kB
ours 96 qg=2""192_1703 2.41 kB 9.07 kB
ours 128 q = 27256 _ 9663 3.22 kB 12.09 kB
Dilithium 125 recommended 1.44 kB 2.64 kB
SPHINCS+ 128 sphincs-sha256-256s| 64 bytes 29.09 kB
LUOV 128 LUOV-8-117-404 98.6 kB 521 bytes
LUOV 128 LUOV-80-86-399 39.3 kB 4.7 kB

As a proof of concept we implemented the signature scheme in SageMath.
We omit a comparison to the C implementations of the NIST candidates as such
a comparison would fail to match apples to apples. While much slower, a Sage
implementation is capable of validating the design in terms of functionality and
its rudimentary timing results can provide some indication as to whether the
scheme can be made practicable. These timing results are shown in Table 2.
Additionally, we observe a constant abortion rate of zero across all parameter
ranges, indicating that perhaps setting x = 60 is overkill.

Table 2: Timing results from a Sage implementation of the signature scheme.
PQ security level ‘ KeyGen ‘ Sign ‘ Verify

64 2.59 s [3.89 5/2.62 s
96 3.92s |5.83/4.02s
128 5.22 s |7.78 s/6.30 s

5 Conclusion

This paper presents a zero-knowledge proof system and signature scheme whose
security relies on the short solutions to nonlinear equations (SSNE) problem. The
zero-knowledge proof resembles the protocol of Schnorr [28], but in contrast to
Schnorr’s protocol, no quantum attack is known against it. While the signature
scheme’s security proof is valid only in the classical random oracle model, no
quantum attack is known to defeat the construction. From this point of view,
our signature scheme ought to be classified as post-quantum.

The most important difference from other post-quantum signature schemes
is the reliance on different hard problems. It is therefore unlikely that generic
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attacks on other post-quantum cryptosystems and hard problems will affect the
security of our scheme. The construction of a signature scheme relying on SSNE
answers a question posed by Szepieniec and Preneel in their discussion about
the SSNE problem [30], which merely conjectured that possibility.

The main motivation for the construction of cryptosystems from SSNE was to
improve on their bandwidth requirements. Since generic attacks on MQ and SIS
fail against SSNE, no attack is known to outperform brute force for appropriately
chosen parameters. It is therefore possible to obtain a security level that scales
linearly with the size of the problem’s representation. In particular, this means
that for our signature scheme, both public key and signature size scale linearly
with the security parameter. We are unaware of other post-quantum signature
schemes that attain this optimal asymptotic behavior. Nevertheless, for Earthly
security levels, our scheme’s bandwidth requirements are at best comparable to
those of other post-quantum signature schemes.

The chief reason for this large hidden constant factor is the protocol’s reliance
on SSNE for both zero-knowledge and soundness properties. This simultaneous
requirement forces us to choose large values for both m and n. Moreover, after
fixing m and n, the ALHA attack [30] forces the solutions’ size differential ©—¢ to
remain within relatively slim margins. Fitting e = A bits of entropy between these
extremes in turn mandates a large g. While an SSNE problem with parameters
as small as n = 2,m = 1,q = 22°6 can be enough to target a sizeable security
level, it does not seem possible to generate a secure zero-knowledge proof system
with parameters this small. A interesting question for future research is therefore
whether the SSNE problem can be exchanged for another hard problem for the
security of either the zero-knowledge property or soundness.
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A Zero-Knowledge and Digital Signature Schemes

A.1 Zero-Knowledge Proofs

An interactive proof system II = (P,V) for a language £ € NP is a protocol
between a pair of interactive polynomial-time Turing machines (called the prover
P and verifier V, respectively) whose common input is a string ¢ € {0,1}*. The
secret information for the prover is a witness v € {0,1}* that certifies that
te L, e, Re(l,v) = 1. After running the protocol (we denote this event by
V(¢) + P(v,£)), the verifier outputs a single bit b + outy(V(£) < P(¢,v)),
which is 1 if he accepts and 0 if he rejects. The transcript T < (P(v,£),V(¢))
consists of all messages sent between the two parties and we denote whether
it is an accepting transcript for ¢ by the predicate V(¢,T) and by definition
V(¢,T) = b« outy(V(£) +» P(¢,v)). For the purpose of this paper, we aim to
satisfy the following three properties:

1. Completeness. For every ¢ € £ and matching witness v, an honest prover
will likely convince an honest verifier:

Ve e {0,1}*,v € {0,1}*.
Re(l,v) =1 = Pr[b=1]b<+ outy(V({) < PL,v))] >1—¢ .

In this expression ¢ represents the completeness error and should be a neg-
ligible function of |¢|, i.e., € < €(|¢]).
2. Soundness. For every ¢ ¢ L no prover B is likely to convince the verifier:

VO & L.VB . Pr[b=1]b+« outy(V() < B())] <o .

The quantity o represents the soundness error and should be small but not
necessarily negligible.

2% Witness-extractability or knowledge-soundness. There is a polynomial-time
extractor machine E who, given black-box access to any successful prover B,
can compute the witness v with noticeable probability.

JE.VB. Prlouty(V({) + B(£)) = 1] > ¢ = Pr[Rc(¢,v) = 1| v« EB()] > v()) .

Phrased differently, if the extractor fails to produce the witness, then the
prover’s success probability is upper-bounded by the knowledge error g,
which should also be small but not necessarily negligible.

3. Honest-verifier zero-knowledge (HVZK). There exists a polynomial-time sim-
ulator S capable of producing a transcript T’ < S(¢) of the protocol without
knowledge of the witness v such that T is indistinguishable from authentic
transcripts. Indistinguishability is defined with respect to all polynomial-
time dlstmgumherb D having at most a negligible distinguishing advantage,
i.e., AdvE(D) < €(\), where

AdvE (D) = yP =1|T + (P(¢,v),V(¢))] — Pr[D(T) = 1| T « S(0)]| .
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An identification scheme is a zero-knowledge proof system that satisfies the
above properties and is furthermore adjoined with a public key generator algo-
rithm KeyGen for £ that outputs a pair of keys (sk, pk) such that sk is a witness
for pk € L, i.e., Re(pk,sk) = 1. In this context, an attack on knowledge-
soundness is known as an impersonation attack.

A.2 Signature Schemes

A digital signature scheme X is a triple of polynomial-time algorithms Y =
(KeyGen, Sign, Verify) with the following properties.

— KeyGen(1*) outputs a secret and public key pair (sk, pk).

— Sign(sk, d) takes a secret key sk and a message (or document) d € {0,1}*
and outputs a signature s on that message.

— Verify(pk, d, s) takes a public key pk, message d, and signature s; and outputs
True or False depending on whether the signature is valid or not.

— For all messages d € {0,1}* and when (pk, sk) + KeyGen(1*), a signature on
d generated with sk will be valid under pk with overwhelming probability:

Pr[Verify(pk, d, s) = True|s < Sign(sk,d)] >1—¢ .

In this expression we call € the correctness error and we require this quantity
to be negligible ¢ < e(\).

Security of a signature scheme Y = (KeyGen, Sign, Verify) is defined with
respect to the existential unforgeability under chosen message attack (EUF-
CMA) [17] game, or even with respect to the strictly stronger strong unforgeabil-
ity under chosen message attack (SUF-CMA) game. Informally, the adversary
A in the EUF-CMA game, who is allowed to query a signature oracle, wins if he
can produce a valid message-signature pair where the message was not queried.
The SUF-CMA game relaxes the winning condition by considering the adver-
sary to win when the message-signature pair output is valid and not identical to
any query-response pair. The games are formally defined by the pseudocode of
Games 6 and 7.

Game 6: EUF-CMA Game 7: SUF-CMA

(d, ) = A°(pk)
return [Verify(pk,d,s) A d € 8]

(d, ) = A°(pk)
return [Verify(pk,d,s) A (d,s) € S]

1. define Gamepyr.cua(1?) as: 1. define Gamefr cya (1) as:
2. (sk, pk) < KeyGen(1*) 2. (sk, pk) < KeyGen(1*)
3. S+o 3| S+o

4.| define S(d) as: 4. | define S(d) as:

6.| | s« Sign(sk,d) 6.| | s« Sign(sk,d)

5.1 | S« Su{d} 5.1 | S+ SuU{(d,s9)}

6.| | returns 6.| | returns

7. 7.

8. | 8. |
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A signature scheme X is secure in the EUF-CMA model if for all polynomial-
time quantum adversaries A, their winning probability in the EUF-CMA game
is negligible. The definition is analogous with respect to the SUF-CMA model.

InSecEUF-CMA(A) 2 Pr[Gamelyr.cua (1) = 1] < e(A)
InSecSUF-MA(A) 2 Pr{Gamelyr.cua (1) = 1] < (V)

A winning adversary for EUF-CMA is also a winning adversary for SUF-CMA,
but not necessarily the other way around, so SUF-CMA is the stronger notion.
However, it is not clear whether this distinction can lead to a meaningful attack,
and for many purposes EUF-CMA is sufficient.

B Proof of Theorem 1

Proof. The inequality follows from a sequence of games. Each term in the in-
equality arises from one game hop.

— Game0 is the SUF-CMA game. By definition we have

InSecSUF~CMA(A) £ PrGame0® (1) = 1] . (30)

— Gamel is a hybrid between the SUF-CMA and EUF-CMA games where the
list S drops r and in particular consists of pairs (d, (Y, U)), where (Y,U) was
drawn from the signature s = (Y, U, r). An adversary wins Game0 but not
Gamel if he can find a second signature sy = (Y, U, ry) for a message d that
has already been signed with s; = (Y,U,r1), both of which are valid and
such that r; # ry. Finding such an r amounts to an SSSNE instance with
m’ =m, n’ = n, and length bound 8 = 2,/n - 2%. So

|Pr[Game0®(1*) = 1] — Pr[Gamel*(1*) = 1]| < Succiisn'\f(i%/ﬁ.zu . (31

— Game2 is the EUF-CMA game for Y. The adversary wins Gamel but not
Game2 when he produces two signatures s; = (Y1,Uy,r1), s2 = (Y2,Us,12)
for the same message d. Given such an adversary A, it is possible to build
another adversary BA that wins the EUF-CMA game for X with the same
probability. The simulator BA maintains a dictionary? Q of random oracle
query-response pairs and presents A with the following view of the random
oracle, in terms of his own random oracle H'.

1. define H(q) as:

2.| ifq¢ Qkeys

3.| | try parseqasq=X|Y|U|d
4.| | if parse success then:

5.0 1 | Qla « HXIYUIY|U|d)
6.] | else:

T Qld <« H(g)

8. | return Q(q)

2 We conceive of dictionaries in the sense of the python programming language as
mapping keys to values. For a dictionary D, we write D.keys to refer to the list of
keys, and DIk] to refer to the value indicated by the key k.
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Additionally, B modifies A’s view of the signature oracle accordingly. Specif-
ically, A’s view S is given in terms of B’s signature oracle S’ as follows.

1. define S(d) as:
2. i+0

| repeat:

|| (Y Ur) < S'(d]li)

| | d+«i+1

| until X||Y[|U|ld & Q.keys

| QXY U] H(XIY U d]li)
| return (Y,U,r)

0 O Uk W

When A queries the signature oracle he will obtain a signature that is valid
with respect to H(X||Y||U||d||?) = H(X||Y||U||d), for some i. However, if he
produces a signature without querying the signature oracle, it must be valid
with respect to H(X||Y||U||d) = H(X||Y||U|Y||U||d). In the latter case B
has obtained a valid signature on a different message, namely Y ||U||d. So
whenever A wins Gamel, then B” wins Game2, and

Pr[Gamel?(1*) = 1] = Pr[Game2®” (1) = 1] . (32)

The simulator B does incur a time penalty compared to the simulated ad-
versary A, owing to the loop of lines 3-5 in S(d). The number of iterations
of this loop is bounded by #Q.keys, which in turn is bounded by Q. So if
A runs in polynomial time, then so does B.

Game3 is the same EUF-CMA game but with respect to X’, a modification
of the scheme that drops derandomization. In particular, X’ is identical to
X7 except for line 3 of X.Sign, which is:

3. {coinss jm:—01 & {0,1}*

where x is a stand-in for a large enough integer. We build a simulator B” that
wins Game3 with probability related to A’s winning probabilty in Game2. The
level of indirection is necessary because B must maintain a list of signatures
S, which is initialized to @ and is updated with every signature query. In
particular, B presents the following view of the signature oracle S to the
adversary A, in terms of his own view S'.

1. define S(d) as:

2. | if d € S.keys then:

3. | Sld+S'(d)

4.| return S[d]

If there is an adversary A such that Pr[Game2*(1*) = 1] # Pr[Game3BA(1>‘) =
1], then it is possible to use A in the construction of a distinguisher D for
the PRG, so

|Pr[Game2*(1}) = 1] — Pr[Game3® (1}) = 1]| < AdvPRE(DA) (33)
< AdvERE (34)
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— Game4 is a Key-Only Attack (KOA) with respect to X’. In particular, this
game is identical to Game3 except that the adversary has no access to the
signing oracle. Given an adversary A that wins Game3, it is possible to build
an adversary B that wins Game4 with almost as good probability.

In particular, B simulates A and whenever A queries the signature oracle for
a signature on a message d, B responds by running the HVZK simulator of
IT to produce a transcript (Y, U, a,r), and he repeats the simulation at most
k times until leaks(Y,U, a,r) = 0. He then reprograms the random oracle
to respond with a when queried on X||Y||U||d. Moreover, the simulator B
maintains a list of queries made to the random oracle and samples a new
transcript whenever X ||Y||U||d was already queried.

The event where the simulator fails to answer a signature query occurs ex-
actly when all  tests leaks(Y, U, a, r) fail. For A > 125, k was chosen to make
this probability at most 27*. The view of A is identical across both worlds
except for the simulated or authentic transcripts. So any A that gives rise to
a distinguisher between games 3 and 4, conditioned on all signature queries
being successful, can be turned into a distinguisher D between authentic
and simulated transcripts:

|Pr[Game3*(1}) = 1] — Pr[Gamed®" (11) = 1]| < AdVZK(DA) + 27 (35)

DSSNE A -2

S Adv3m+n,2n,q,\/ﬂ-2“(D ) +2 . (36)

— Gameb is the impersonation game for the identification scheme composed

of the proof system IT adjoined with key generation algorithm X.KeyGen.

The adversary wins if he can convince the verifier I1.V in the interactive
zero-knowledge proof 1. Specifically, the game is defined as follows.

sk, pk + X.KeyGen(1*)

1. define Game5”*(1*) as:
2.
3. | return outrv(A(pk) <> II.V(pk))

Given an adversary A for Game4, build an adversary B for Game5 as follows.

Choose a random query index 14 & {1,...,Qu} and present A with the
following view of the random oracle, which uses a state variable j initialized
at 7 =0.

. define H(q) as:

j—i+1

if j = ¢ then:

| try parse g as ¢ = X||Y||U||d
|  if parse success then:
| | send (U,V) to IIV
| | receive a from II.V
| | Q«a

if ¢ & O.keys

| Qlg] & 2o

return Q|q]

O LN oUW

—_ =
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Abstract. A multitude of post-quantum key encapsulation mechanisms
(KEMs) and public key encryption (PKE) schemes implicitly rely on a
protocol by which Alice and Bob exchange public messages and converge
on secret values that are identical up to some small noise. By our count,
24 out of 49 KEM or PKE submissions to the NIST Post-Quantum Cryp-
tography Standardization project follow this strategy. Yet the notion of
a noisy key agreement (NKA) protocol lacks a formal definition as a
primitive in its own right. We provide such a formalization by defining
the syntax and security for an NKA protocol. This formalization brings
out four generic problems, called A and B State Recovery, Noisy Key
Search, and Noisy Key Distinguishing (NKD), whose solutions must be
hard in the quantum computing model. Informally speaking, these can
be viewed as noisy, quantum-resistant counterparts of the problems aris-
ing from the classical Diffie-Hellman type protocols. We show that many
existing proposals contain an NKA component that fits our formalization
and we reveal the induced concrete hardness assumptions. The question
arises whether considering NKA as an independent primitive can help
provide modular designs with improved efficiency and/or proofs. As the
second contribution of this paper, we answer this question positively by
presenting a generic transform from a secure NKA protocol to an IND-
CCA secure KEM in the quantum random oracle model, with a security
bound related to the insecurity of the NKD problem. This transforma-
tion is essentially the same as that of the NIST candidate Ramstake.
While establishing the security of Ramstake was our initial objective,
the collection of tools that came about as a result of this journey is of
independent interest.

Keywords: Post-quantum, key encapsulation, public key encryption, quantum
random oracle model, noisy key agreement.

1 Introduction

PosT-QUANTUM CRYPTOGRAPHY. Most of the standard public key cryptosys-
tems in use, including Diffie-Hellman and derivatives thereof, RSA, DSA, ECDSA,
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and ElGamal cryptosystems, rely on the computational hardness of number the-
oretic problems. For these problems, in particular factoring and discrete log
(DLOG) problems, quantum computers offer exponential speedups compared
to classical computers. Shor’s factoring and discrete logarithm algorithms [57]
render these cryptosystems insecure in the quantum computing era.

The anticipation of this threat is what drives the development and deploy-
ment of post-quantum cryptography—cryptographic algorithms that despite run-
ning on classical computers promise to resist quantum attacks—well before large-
scale quantum computers arrive.

In contrast to the aforementioned public key schemes, symmetric key algo-
rithms such as AES and its various modes of operations, as well as hash functions
such as SHA2 and SHA3 remain relatively unaffected by quantum computers.
The best known quantum attack on these primitives is Grover’s generic search
algorithm [33] and it offers only a square root speed-up, meaning that the same
security level is attained against quantum computers by merely doubling the key
or output length. In this line, NIST has initiated a competition for post-quantum
cryptography standardization [49]. Out of 69 complete and proper submissions,
22 proposals achieve signature scheme functionality and 49 achieve key encapsu-
lation mechanisms (KEMSs) or public key encryption (PKE) or both (with some
overlap) [50].

KEY ExCcHANGE (KE). KE protocols enable two parties who communicate over
an adversarially-controlled channel to obtain a secret session key. Starting with
the seminal work of Diffie and Hellman [28], there is now a rich body of work
on this topic in the literature containing several security models and design
paradigms [12,20,41,42,24]. By convention, we consider Key Agreement (KA)
protocols as a subset of KE protocols in which both parties influence the genera-
tion of the resulting session key; for instance, Diffie-Hellman (DH) type protocols
are classic examples of KA.

KEY ENCAPSULATION MECHANISM. Cramer and Shoup [22,23] provided, among
other contributions, a formal treatment of hybrid Public Key Encryption (PKE)
secure against adaptive chosen ciphertext attacks (CCA) [56]. The approach,
known as the KEM/DEM (Key Encapsulation Mechanism/Data Encapsulation
Mechanism) framework, rigorously captures the folklore method for building a
hybrid encryption scheme, namely by using public key cryptography to encap-
sulate a symmetric session key, followed by symmetric-key encryption.

While the original and main application of KEM has been in hybrid PKE,
it has turned out that pure KEM can be a useful cryptographic tool in its own
right in other applications; for example, to build schemes for identification [9]
and authenticated key exchange [19,31,66].

DESIGN STRATEGIES. We identify three binary design choices that partition the
design space of KEMs and PKEs. They are noisy versus noise-free, convergence
versus inversion, and reconciliation versus transmission. The last choice only
makes sense in the case of noisy convergence.
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Noisy versus noise-free considers the nature of the underlying mathematical
hard problems. Multivariate quadratic (MQ) equations and supersingular isoge-
nies (SI) achieve computational hardness without adding random noise, whereas
lattice- and code-based problems are computationally difficult precisely because
they rely on the addition of noise. The newest member of the latter class is the
family of problems based on sparse integers and arithmetic modulo (pseudo-)
Mersenne primes [1,50].

Convergence versus inversion looks at the strategy to achieve the targeted
KEM or PKE functionality. The earlier MQ, code- and lattice-based cryptosys-
tems relied on trapdoor inversion [45,46,51,34], in which the public operation
amounts to evaluating a trapdoor function and the secret operation amounts to
inverting it. In contrast, newer proposals implicitly rely on a noisy key agree-
ment protocol in which two parties obtain roughly the same key which is hard for
the passive eavesdropper to approximate [29,7,16,26]. The exception to this rule
is the supersingular isogeny Diffie-Hellman (SIDH) cryptosystem [38], and its
brother CSIDH [21], both of which converge on identical keys and hence might
be termed an ezact key agreement (EKA) protocol but nevertheless amounts to
a special case of NKA. To date, SIDH and CSIDH are the only post-quantum
cryptosystem capable of achieving static key agreement (SKA) functionality,
whereby any pair of participants who know each other’s public key can derive
the same shared symmetric key without interaction, opening up the possibility
for bypassing the exchange of public key messages and instead communicating
over the symmetric channel immediately.

Reconciliation versus transmission deals with the details of obtaining identi-
cal keys after similar keys were obtained through a noisy convergence strategy.
Reconciliation entails sending helper data to enable the receiver to correct the
errors or otherwise extract an identical template from the noisy views of the
shared key. There are many subtle variants, all of which rely on the specific me-
chanics of the underlying mathematics [29,54,16,62]. In contrast, transmission?
uses the shared noisy key to mask a new message entirely; this new message must
then contain enough redundancy to be decodable after being masked and un-
masked with two approximately equal one-time pads. Transmission is arguably
less prone to error, but does come with a bandwidth penalty [6,40].

Our Contribution. This paper presents two main contributions. The first is
a formal syntax and security definition to capture the notion of a noisy key
agreement (NKA) protocol as a new useful primitive. The second is a generic
transformation to turn an NKA protocol into an IND-CCA secure KEM in the
quantum random oracle model. Based on the previous categorization of design
strategies, our transformation applies to noisy convergence based protocols, and
uses the transmission strategy.

The syntax of NKA protocols captures the intuition where, after an initial-
ization phase that generates public parameters, Alice and Bob generate a state

3 Also called the encryption-based approach in NewHopeSimple [6], and an asymmetric
key consensus in the context of OKCN/AKCN [40].
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Fig. 1: Map of post-quantum KEM and PKE. The bold objects indicate the contribu-
tions of this paper. Italics denotes noisy mathematics; blue arrows denote convergence,
red ones denote inversion, and black ones represent generic transforms.

and contribution pair. They then exchange their protocol contributions and use
their own state and the other party’s contribution to converge on approximately
the same value. An explicit treatment of protocol failure events resulting from
excessive noise, which may cause decryption or decapsulation errors, is built in
to our formalism.

This syntax naturally lends to four attack vectors, which we formulate as
generic problems called A State Recovery (ASR), B State Recovery (BSR), Noisy
Key Search (NKS), and Noisy Key Distinguishing (NKD), mirroring the DLOG,
computational Diffie-Hellman (CDH) and decisional Diffie-Hellman (DDH) Prob-
lems in Diffie-Hellman protocols. While the classical DLOG, CDH and DDH
problems are efficiently solvable by quantum algorithms, these new generic prob-
lems arising from formalization of noisy key agreement must remain hard in the
quantum computing model. Hence, instantiations of NKA must rely on concrete
hardness assumptions that guarantee infeasibility of these generic problems even
in the face of quantum solvers. Many existing proposals contain an NKA com-
ponent that fits our formalization; we identify the induced concrete hardness
assumptions.

Security of an NKA protocol is defined with respect to the NKD problem.
Specifically, an NKA protocol is secure if and only if its NKD problem is hard
on average. We justify this definition in several ways.

— The hardness of NKD implies the hardness of NKS, ASR and BSR; therefore
the NKD Assumption is the strongest assumption.
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— It is analogous to regular Diffie-Hellman, where the protocol is secure if and
only if the DDH problem is hard (assuming authenticated links).

— We consider an example from the NIST PQC project that fits the NKA
framework and where ASR and BSR are hard, but where NKD is easy,
which led to the submission’s prompt cryptanalysis.

— We consider in the appendix an alternate definition of security based on a
suitable adaptation of the well-known Canetti-Krawczyk session-key security
(SK-security) notion [20]. We find that this security notion is equivalent to
the average-case hardness of the NKD problem.

These results indicate that the average-case hardness of the NKD problem is
essential in the context of secure NKA-based KEMs and PKEs.

As our second and main contribution, we provide a generic NKA-to-KEM
transformation for noisy, convergence-based protocols, applying the transmis-
sion strategy, and featuring an IND-CCA security proof in the quantum ran-
dom oracle model. The main feature in this context is its genericity: it applies
regardless of the mathematics of the underlying NKA protocol and as such en-
ables a modular design workflow. We note that the Ramstake submission [50]
uses essentially the same transformation but was presented without proof; this
paper therefore proves the security of Ramstake, assuming the appropriate NKD
problem is hard on average.

In comparison to other IND-CCA transforms in the literature, the most ob-
vious difference is that the starting point of our transform is an NKA protocol,
whereas other IND-CCA transforms start from an IND-CPA secure PKE or
KEM. We include the key-confirmation hash of Targhi-Unruh in the cipher-
text [61] and follow the derandomization and re-encryption approach so named
by Hofheinz et al. [35]. We note that a recent result by Jiang et al. [39] suggests
that this additional hash might not be necessary, but we leave open for the time
being the question whether dropping it affects the security of our particular
construction. In contrast to these related results [61,35,39], our session key is
computed from bipartite contribution, i.e., as a function of both the public key
and the encapsulator’s randomness; this property prevents Bob from establish-
ing the same symmetric key for separate channels, one with Alice and one with
Charlie.

An outstanding feature of our proof is the tighter security bound: the insecu-
rity of the underlying primitive (NKD of the NKA protocol in our case; IND-CPA
security of the PKE or KEM elsewhere) undergoes a square-root degradation,
similar to the result by Jiang et al. and in stark contrast to the quartic root
degradation of Targhi-Unruh and Hofheinz et al.. This improved bound is the
result of treating the extendable output function that is used for derandomiza-
tion as a random oracle; this enables an argument about the queries that are
made to it. While our bound does feature fourth-roots, they apply only to the
hash function insecurity.

Central to our security proof is a new technique for lifting classically-valid
random oracle model security proofs to the quantum random oracle model. We
introduce, define, and use, the aggregate quantum query amplitude, which be-
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haves similar to the expected number of times a particular query was made
by an adversary throughout the entire computation. We use this notion as a
starting point to derive lemmata that enable refined argumentation about ad-
versarial query behavior, as well as to derive a multi-target generalization of
Unruh’s One-Way to Hiding Lemma [64]. These lemmata are used in the secu-
rity proof to capture the intuition that a quantum adversary does not know the
random oracle’s output on inputs that were not queried. We believe this notion
and our proof technique to be of independent interest as a useful tool in security
analysis of other PQC schemes.

RAMSTAKE AND THE NIST PQC PROJECT. While our starting point was the
establishment of a security proof for Ramstake, this journey has led to many
independently useful tools for the analysis and provable security of post-quantum
cryptosystems. Nevertheless, we stress that despite the detour we were successful
in this endeavor. The main contribution of this paper remains the establishment
of a security proof reducing the IND-CCA security of Ramstake to solving the
appropriate version of the NKD problem — called the Low Hamming Diffie-
Hellman Decision (LHDHD) Problem in the context of Ramstake [50].

The ongoing NIST PQC project, as a design-focused project with a some-
what fixed timeframe, has boosted research on PQC and has attracted 69 pro-
posals, which are the subject of intense scrutiny. Nevertheless —or perhaps
accordingly— it is compelling and timely to revisit the foundations of secu-
rity notions and of design paradigms for next-generation PQC schemes in order
to stay ahead of emerging threats and to prevent past failures from being trans-
muted in future. This paper aims to be a step forward in this direction.

ORGANIZATION OF THE PAPER. Section 2 provides notations, conventions and
definitions used throughout the paper. In Sect. 3 we present our noisy key agree-
ment formalism, including syntax, abstract hard problems, and security defini-
tion. Section 4 presents our NKA-to-KEM transformation, and we follow up in
Sect. 5 with a discussion on proof techniques (including the aggregate quantum
query amplitude) before presenting the security proof. Section 6 concludes the

paper.

2 Preliminaries

NOTATION AND CONVENTIONS. We use a < b to denote the assignment of the

value b to the variable a, and a & A to denote the assignment of a uniformly
random element from the set A. Algorithms are denoted in sans-serif font and
the event that an algorithm A, on input z, outputs y is written as A(z) = y and
A(z) # y when it does not output y. A long double right arrow (=) denotes
logical implication, and £ denotes equality by definition. Superscript, e.g., A
denotes an algorithm A having oracle access to O, meaning that A can query O
and receive responses in a black box manner but he cannot study the oracle’s
code or composition.
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A function negl : N — Ry is negligible if for all polynomials p(z) € R[z] there
is an N € N such that for all x > N, negl(z) drops faster than the reciprocal of
|p(z)|. Formally, we need only consider the dominant monomial of p(z):

Ve>1.3N € N.VA > N .negl(\) < % .

QUANTUM COMPUTATION. The state of a quantum system of k qubits is given
by a unit-length vector in ket notation, e.g. |¥) € H, where H C (Czk; where
(¥] is its complex conjugate transpose, and (¥|P) is the standard inner product.
The composition of two quantum systems is described by the tensor product
|¥) @ |®) € H1 ® Ha, which is the vector of all multilinear products. However,
sometimes quantum systems of more than one qubit cannot be factored into the
tensor product of independent systems; in this case the two systems are entan-
gled. Except for measurements, all quantum computations are unitary transforms
on the state space. Measurement of a system |¥7) is defined with respect to a
set of orthonormal basis vectors |bg), |b1), ..., |bsx_1) and affects the system by
collapsing it to |b;) with probability (b;|¥)(¥|b;). Any bitstring s € {0,1}* has
an associated basis vector |s) = |b;) for some i. Whenever a state is a non-trivial
sum of basis vectors, i.e., with weights different from 0, —1 and 1, it represents
a superposition of values. Except for measurement, all quantum operations are
reversible. Moreover, it is possible to transform any quantum circuit into an
equivalent circuit where all the measurement operators are located at the end.

An equivalent characterization of quantum computation is in terms of a sys-
tem’s density operator or density matrix p € (CQkXQk, as opposed to its state
vector |W) € H C C2". The density operator associated with a pure state |¥)
is p = |¥)(¥|. When the density operator has a higher rank it represents a
probability ensemble: the density matrix p = > p;|v;)(w;| represents a sys-
tem that has a probability p; of having state |¢;). The density operator is
especially useful for its characterization of parts of a complex quantum sys-
tem because this operator, together with the partial trace operator, leads to
the correct determination of observable statistics. The reduced density opera-
tor pa of a subsystem A of a composite system A + B with density matrix
pa,B is obtained by “tracing out” the Hilbert space Hp associated with B,
i.e., by applying the partial trace operator pa = Trppa, g which is defined by
Via) € Ha,|b) € Hp.Trp(|la) @ [b){a] ® (b]) = |a){(a|(b|b). For more details on
quantum computation and quantum information we refer the reader to a com-
prehensive treatment of the subject by Nielsen and Chuang [52].

We use capital letters without ket notation to denote quantum registers, i.e.,
the sets of qubits assigned to a variable. We use lowercase letters in ket notation
to denote computational basis vectors with unspecified index, and Greek letters
in ket notation to denote non-trivial superpositions of computational basis states.

QUANTUM RANDOM ORACLE MODEL. Our security proof relies on the mod-
eling of hash functions as random oracles [30,13], which are uniformly random
functions H : {0,1}* — {0,1}* with a fixed output length, typically equal to the
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security parameter. If necessary, the random oracle’s output space can be lifted
to any finite set X. We use subscripts to differentiate the random oracles associ-
ated with different output spaces. The adversary has no access to the function’s
full description or source code. Security proofs of this type are said to hold in
the random oracle model (ROM).

Boneh et al. show that the random oracle model is not a suitable model when
attacks on quantum computers are to be considered [15]. Instead, adversaries
have access to a black box that operates on a query-response register pair (@, R)
by sending |g, ) — |g,7 ®H(q)). In this model, quantum adversaries are capable
of querying the random oracle on superpositions of bit strings and should receive
a superposition answer back. Many classically-valid random-oracle constructions
fail to account for this capability and rely in their security proofs on notions or
behaviors which become ill-defined when quantum access is considered, such
as the list of queries or lazy sampling. As a result, the security proof is valid
in the classical random oracle model but invalid in the quantum random oracle
model (QROM). Many subsequent works elaborate on the notion either by lifting
constructions or proofs to the QROM [58,63,65,61], or by showing that such a
lift is impossible [25,8].

DERANDOMIZATION. Our construction relies on derandomization. While pseudo-
random generators are usually sufficient for this task, in our case the adversary
has quantum oracle access to the function. We thus opt for an extendable-output
function (XOF) [48], which we model as a random oracle in the security proof.

In derandomization, probabilistic polynomial-time algorithms are made de-
terministic. In particular, let A be a probabilistic polynomial-time algorithm and
5 € {0,1}* a seed. We write A(x) to denote that A is run on input = € {0,1}*,
and A(z;7) to make the contents of its random tape r € {0, 1} explicit. Then A
is derandomized by invoking A(z;Hs(s, R)) for some s. In fact, in our construc-
tion we make abstraction of the output length R and instead use denote by Hg
the function that takes a short input and outputs “enough” random bits.

KEY ENCAPSULATION MECHANISM. A Key Encapsulation Mechanism (KEM)
& = (KeyGen, Encaps, Decaps) is a triple of probabilistic polynomial-time algo-
rithms, where

— KeyGen takes a security parameter A (in unary representation) and outputs
two objects: a secret key sk and a public key pk;

— Encaps takes a public key pk and outputs two objects: a symmetric key k
from a symmetric key space SKSpace and a ciphertext c;

— Decaps takes a secret key sk and a ciphertext ¢ and outputs a session key k
from the symmetric key space SKSpace, or returns L if a failure has occurred.

A KEM’s failure probability € is defined as

sk, pk + KeyGen(1*)
e="Pr |ke # kq| ke, c < Enc(pk) , (1)
kq < Dec(sk, c)
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and should be small or else the scheme is not usable.

Security of KEMs is defined using the following IND-CCA* game, defined
with respect to an adversary AP() who who has black box access to a decapsula-
tion oracle. The IND-CPA game relaxes this notion by disallowing decapsulation
queries, but is otherwise identical.

Game 2: IND-CCA Game 3: IND-CPA

1. sk, pk <+ KeyGen(1%) 1. sk, pk <+ KeyGen(1%)
2.b <& {0,1} 2.b <& {0,1}

3. ko <> SKSpace 3. ko ¢ SKSpace

4. ¢, ki < Encaps(pk) 4. ¢, ki < Encaps(pk)
5.8+ @ 5.0 < A(pk, ky,c)

6. define D(q) as: 6. return [b =b']

7. S+ Su{q}

8. return Decaps(sk, q)

9.0 + APO) (pk, ky, )
10. return [b =V Ac & S]

The Iverson brackets [] evaluate to 1 if the logical expression is true and to
0 otherwise. A KEM is secure if for all polynomial-time quantum adversaries
APC) with classical black box query access to a decapsulation oracle D, their
advantage AdviNP-C“A(APO)) is negligible:

AdVIgND-CCA(AD(-)) =

: 1
Pr [Gameﬁ\?,()_)CCA(l)‘) = 1} - 5’ < negl(A) . (2)

Most proposals for post-quantum KEMs claim only to satisfy the strictly
weaker indistinguishability under chosen plaintext attack (IND-CPA) security
notion and emphasize targeting the exchange of ephemeral keys only, being a
scenario in which chosen ciphertext attacks are unrealistic. Nevertheless, there
are several notable exceptions that do meet the stronger IND-CCA require-
ment [10,18,4]. Moreover, there are generic conversions from IND-CPA secure
KEMs and PKEs to IND-CCA secure ones in the classical and quantum random
oracle models [32,27,61,36,35].

ERROR-CORRECTING CODES. A linear [n, k, d]-code C is a subspace Fy of dimen-
sion k. We consider here only bitstrings in which case the symbol field F, = Fa
and codewords are elements of F5 2 {0, 1}" but encode elements of F5 = {0, 1}*
with k < n. The minimum distance d of a code is the Hamming weight of its
smallest nonzero codeword: d = minceey\ 101 HW(c). The code is capable of finding
the nearest codeword ¢ € C to a noisy word ¢’ as long as the Hamming weight
of the distance is at most d: Hw(c¢’ — ¢) < d/2. This process is called error
correction. This paper abstractly assumes the availability of two functionalities:

4 The pseudocode of Game 2 follows the IND-CCA-OP notion of Bellare, Hofheinz
and Kiltz [11], who prove equivalence between this and five other common IND-CCA
notions for KEMs.
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— C.encode : F5 — T3, which generates codewords from messages;
— C.decode : F} — F. which corrects the errors and returns the associated
message, or returns L if there are more than some threshold ¢ of errors.

3 Noisy Key Agreement

The common theme in all constructions relying on what we call noisy key agree-
ment is the distinction between “small” and “large” elements in compatible
spaces. Before the protocol starts, Alice and Bob agree publicly on a random
large element G. When the protocol starts, both generate small secrets a,b and
¢, d respectively. They then exchange messages aG + b and ¢G + d, and obtain
views acG + ad and acG + cb of a noisy shared secret which differ only by a
still-small term ad — cb.

To the best of our knowledge, the first use of the term “Noisy Diffie-Hellman”
traces back to a pair of presentations given by Gaborit in 2010 [2,3], although
the underlying strategy was already folklore knowledge by that point®. We prefer
to reserve the term Diffie-Hellman for noise-free key agreement protocols involv-
ing square-and-multiply or double-and-add procedures to compute commutative
actions on group elements.

The purpose of this section is to abstract out the mathematics and find a
syntax that contains all instances of this principle. We call the resulting formal-
ism noisy key agreement (NKA). Its desirable properties are: (i) NKA should
contain standard Diffie-Hellman-based key agreement protocols for noise level
zero. (ii) NKA should come with a usable security definition. (iii) NKA should
be identifiable inside the constructions that are supposedly based on it.

3.1 Syntax

We formalize the above intuition as follows. Before the protocol starts, Alice and
Bob must agree on a set of instance parameters iparams, which is the output of
the initialization function Init when run on the security parameter A (provided
in unary notation). Alice’s and Bob’s tasks during the protocol are divided into
two algorithms each. In the contribute algorithms AContr and BContr, they each
generate a state, A_state and B _state, in addition to contributions A_contr and
B_contr. The contributions are sent to the other party, whereas the states are
kept secret. In the converge algorithms AConv and BConv, Alice and Bob use their
own proper state and the other party’s contribution to obtain a view of the shared
noisy key: S4 <+ AConv(A_state, B_contr) and Sg < BConv(B_state, A_contr).
Without loss of generality, we assume that S4 and Sp are bit strings of length £.
If all goes well, the two views of the session key are close, or specifically, different
in at most ¢ bits: HW(S4 @ Sp) < t.

% Consider for instance Peikert’s invited talk at TCC 2009 [53] or Alekhnovich’s FOCS
2003 paper [5].
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Definition 1 (noisy key agreement protocol). A noisy key agreement pro-
tocol between two parties A and B is a tuple IT = (Init, AContr, BContr, AConv,
BConv) of five polynomial-time algorithms where the first three are probabilistic
and the last two are deterministic. The algorithms are associated with spaces
ParSp, ContrSp, StateSp, {0,1}¢ and have type signatures as follows (omitting
the random coins and where X is the security parameter).

— Init: {1*} — ParSp
— AContr, BContr : ParSp — StateSp x ContrSp
— AConv, BConv : StateSp x ContrSp — {0,1}*

The algorithms are such that, with respect to a noise level ¢ < /2 and correctness
erTor €,

iparams + Init(1*)
A_state, A_contr < AContr(iparams)
Pr |aw(Sa ® Sp) < t| B_state, B_contr + BContr(iparams) | >1—¢€ , (3)
Sa < AConv(A_state, B_contr)
Sp + BConv(B_state, A_contr)

where uw: {0,1}* — N is the Hamming weight function.

3.2 Generic Problems

The NKA syntax defines three attackable secrets whose recovery is sufficient to
undermine the security of the protocol. Also, since the shared secret is what is
used in a subsequent module, we note that distinguishing it from random may be
a fourth viable attack in many circumstances. We capture these attack strategies
in the language of generic problems whose average-case hardness is a necessary
condition for security. Any instantiation of NKA therefore defines concrete in-
stantiations of of these hard problems, which then induce concrete average-case
hardness assumptions which are necessary for that protocol’s security.

The first pair of problems is to recover Alice’s secret state from their protocol
contribution. If AContr and BContr are identical, then so are these two problems.
In the standard Diffie-Hellman key agreement protocol, these problems boil down
to the discrete logarithm problem: to obtain a from p, g, and g® mod p.

A State Recovery (ASR). B State Recovery (BSR).
Input: iparams, A_contr Input: iparams, B_contr
Task: find A_state. Task: find B_state.

The next problem captures the task of finding the agreed-upon session key,
or a similar enough bit string, from all public information. In the standard Diffie-
Hellman key agreement protocol, this problem is essentially the computational
Diffie-Hellman problem, i.e., asking to obtain g2 from g, g% and g¢° (all mod p).

Noisy Key Search (NKS).
Input: iparams, A_contr, B_contr
Task: find S € {0,1}¢ such that #w(S @ S4) <t and uaw(S @ Sp) < t.
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Like the state recovery problems, the noisy key problem comes with a deci-
sional variant. This problem captures the task of determining whether a candi-
date session key is close enough to Alice’s and Bob’s views.

Noisy Key Distinguishing (NKD).

Input: iparams, A_contr, B_contr, S; where if b =0, S & {S|aw(S®S,4) <
t A EW(S®Sp) <t}, and if b=1, S < {0,1}¢

Task: output 1 if HW(S @ S4) < ¢ and HW(S @ Sg) < t; and 0 otherwise.
Clearly, a solver for ASR or for BSR can be used to solve NKS; and a solver for

NKS can be used to solve NKD. Therefore, the strongest assumption associated
to these problems is assuming that NKD is hard.

Assumption 1 (NKD assumption). The given NKA protocol II = (Init,
AContr, BContr, AConv, BConv) with noise level t and correctness error € is
such that for all polynomial time adversaries A in the NKD game (Game 4),

their advantage AdV P (A) is negligible:

1+e

AdVNEP(A) 2 |Pr[Gamelup(12) % 0] — < negl()) . (4)

When the argument is omitted, the expression denotes the maximum of this quan-

. o ) A
tity across all quantum polynomial-time adversaries: Adv%KD = maxp AdvINYKD(A).

Game 4: NKD*(1*)
. iparams < Init(1*)
. A_state, A_contr < AContr(iparams)
. B_state, B_contr + BContr(iparams)
. Sa < AConv(A_state, B_contr)
. Sp <+ BConv(B_state, A_conitr)
. if AW (S4 @ Sp) > ¢ then:
L return |
b 0,1}
.if b =1 then:
‘ Sﬁ{xe{o,l}“Hw(x@SA)St/\HW(m@SB)St}
. else:
1 s& oy
b+ A(iparams, A_contr, B_contr, S)
.return [b = b]

[P I NESIRINJUI O

NeJ

—_ =
_ O

[
[\V]

— =
= W

An interesting problem arises in the formalization of this assumption when
the two parties’ views of the session key is too different. In other words, whenever
HW(S4 @ Sp) > t. Assumption 1 deals with this issue by aborting and ignoring
the adversary in this case, but conservatively counting these events as wins for
the adversary.
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Whether or not to count these aborts as wins for the adversary is a matter
of context. In one extreme, when a failure event occurs all bets are off in terms
of security. In the other extreme, security is only compromised when the adver-
sary successfully attacks a successful session. We choose the first option as it
is more conservative and as the alternative implies complex design constraints.
Note that an adversary whose strategy is random guess has success probability

Pr[Gamepyp(1*) % 0] = e+ (1 —¢) - 3 = 1< and hence advantage 0.

3.3 Security

We define the security of an NKA protocol in terms of the NKD game. This
follows the regular Diffie-Hellman case in the authenticated links model, where
security is based on the DDH assumption.

Definition 2 (security of NKA protocols). An NKA protocol II is secure
if and only if the NKD Assumption holds for II.

So far, the identification of security with the NKD game has been justified by
two arguments. First, the hardness of NKD implies the hardness of NKS, ASR,
and BSR. Second, this identification mirrors the case of regular Diffie-Hellman.
We supplement this justification with two more arguments. The next section
studies a cryptosystem where ASR/BSR are hard, but which failed because NKD
is not. Appendix B considers an alternate definition of security called noisy key
security (NK-security), along the lines of the session-key security (SK-security)
notion in the authenticated links model of Canetti and Krawcyzk [20]. The con-
clusion there is that NK-security and the NKD Assumption are equivalent, up
to a polynomial factor related to the number of sessions started and corrupted in
the NK-security game. These indications strongly suggest that the NKD game
is not merely a useful formalism, but an essential point of consideration in the
context of noisy key agreement protocols.

3.4 Case Study: CFPKM

CFPKM [50] was a KEM proposal based on polynomial system solving with
noise (PoSSoWN) submitted to the NIST project. Despite featuring a proof of
security, the cryptosystem was broken within days. Since it implicitly relies on a
noisy key agreement protocol, it is worthwhile to study what went wrong through
the lens of the generic problems described above. The following description is
simplified for clarity.

A CFPKM public key consists of a seed seed and a vector by € Zg", where
seed is expanded into a list of m quadratic polynomials F(x) = (f1(X), ..., fm(X))
with small coefficients in n variables x = (z1,...,2,) over Z, with ¢ a power
of 2. The secret key is a short vector sa € Zy and the vector by is found as
by = F(sa) + ey with e; € Zy* a vector of small random errors. To encapsu-
late, the user chooses a random short vector sb € Zg. The ciphertext is then
F(sb)+ ez, where e is also a vector of small random errors, in addition to some
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reconciliation information. The key is obtained as the most significant bits of
b1 ® F(sb), where ® is the component-wise product. The decapsulator obtains
the same key by computing F(sa) ® (F(sb) + e2) and taking the most signifi-
cant bits of this vector’s components, and by correcting occasional errors when
necessary. We identify the underlying noisy key agreement protocol with func-
tionalities and noisy key views as follows. We use msb(-) to denote the function
that takes the most significant bits from each component of its vector argument.

Init: generate F from seed

AContr: sample sa, e; and transmit by = F(sa) + e
BContr: sample sb, es and transmit bg = F(sb) 4 eq
AConv: compute v; = msb(ba ® F(sa))

BConv: compute v = msb(by ® F(sb))

SAZ V1

SBI (%)

This description gives rise to the following instantiations of the abstract hard
problems. The state recovery problems are instances of PoSSoWN.

A State Recovery (ASR). B State Recovery (BSR).
Input: F,by s.t. by = F(sa)+eq for Input: F,bg s.t. by = F(sb) + es for
some small eq,sa some small ez, sb

Task: find sa, e s.t. by = F(sa)+e; Tuask: find sb, es s.t. by = F(sb) + e

Noisy Key Search (NKS).

Input: F,by,ba such that by = F(sa) + e; and be = F(sb) + ex for
some short sa, sb, ey, ex

Task: find S € {0,1} such that Hw(S @ v;) < t and BHW(S @ vo) < ¢,
where v1 = msb(F(sa) ® e1) and vy = msb(F(sb) © ez).

Noisy Key Distinguishing (NKD).

Input: F,bq,ba, S such that by = F(sa) + e1 and ba = F(sb) + e for
some short sa, sb, e, ex

Task: decide whether HW(S @ v1) < t and HW(S @ v9) < t, where v; =
msb(F(sa) © e1) and ve = msb(F(sb) © e2).

The parameters of CFPKM are chosen to guarantee that the solution of the
ASR/BSR problems have an infeasible target complexity. However, our analysis
suggests that the hardness of ASR and BSR is not enough. Instead, one must
look at NKD and tragically, it turns out that in this case NKD is not hard at
all. In fact, the attack actually solves the NKS problem for a large proportion
of instances by computing v = msb(b; ® bs).

Appendix A presents a similar analysis of several KEMs chosen as suitable
representatives for their proper branches of mathematics, and identifies the in-
duced hard problems and associated hardness assumptions. This demonstrates
that our syntax and hard problems are generic and indeed capable of capturing
a multitude of noisy key agreement based schemes. The examples treated there
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are not known to be insecure. That is to say: there are no known attacks on the
induced NKD problems.

4 NKA to KEM: Generic Construction

This section presents a transformation to obtain a KEM from an NKA protocol.
In a nutshell, the public key is one contribution to the protocol. The random coins
of the encapsulation algorithm are deterministically derived from its seed s €
{0,1}* via a XOF. This algorithm generates the other protocol contribution and
uses his view Sp of the shared noisy key as a one-time pad to mask an encoding
(using some error-correcting code) of the seed s € {0,1}*. The decapsulation
algorithm derives its own view S of the shared noisy session key to undo the
one time pad up to some errors, after which it can decode the noisy codeword
and obtain the seed s. At this point, the decapsulation algorithm simulates
the encapsulation algorithm with the exact same deterministic parameters and
verifies that the produced ciphertext is identical to the received one.

The resulting KEM is shown in Algorithms 5, 7, and 8. (For a syntactically
correct presentation we split the probabilistic portion of the encapsulation from
the deterministic portion.) The transformation’s parameters are

— 11, the noisy key agreement protocol with session key length ¢, noise level ¢,
and correctness error €;

— C, the error-correcting coder and decoder for a [n < ¢,k = A, d > t]-code;

— Hy,Hg : {0,1}* — {0,1}*, hash functions;

— Hsz : {0,1}* — {0,1}*, a cryptographically secure variable output length
function whose output is long enough to derandomize any polynomial-time
probabilistic algorithm; this may be instantiated by a XOF but we make
abstraction of the output length.

We denote the resulting tuple of algorithms as X = SNOTP(I1,C,Hy, Ha, H3).

algorithm KeyGen
input: 1 — security parameter
output: sk — secret key

pk — public key

: iparams < ILInit(1*)

. A_state, A_contr < II.AContr(iparams)
pk < (iparams, A_contr)

sk < (A_state, pk)

: return sk, pk

Algorithm 5: Key Generation of the KEM.
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algorithm DetEncaps
input: pk = (iparams, A_contr) — public key
s €{0,1}* — random seed
output: k — symmetric key
¢ — ciphertext

B_state, B_contr < II.BContr(iparams; Hs(s))
Sp « I1.BConv(B_state, A_contr)

e < C.encode(s)

¢ (B_contr,e ® Sp,Ha(s))

k < Hi(pklls)

return k,c

Algorithm 6: Deterministic encapsulation algorithm of the KEM.

algorithm Encaps
input: pk = (iparams, A_contr) — public key
output: k — symmetric key

¢ — ciphertext

1 s <& {0, 11
2: return DetEncaps(pk, s)

Algorithm 7: Encapsulation algorithm of the KEM.

algorithm Decaps

input: sk = (A_state, pk) — secret key

input: ¢ = (B_conir, E, h) — ciphertext

output: £k — symmetric key if successful, or L indicating failure

: Sa < II.AConv(A_state, B_contr)

s < C.decode(E & Sa)

if s =1 or Ha(s) # h then:
return |

end

k,c’ < DetEncaps(pk, s)

if ¢’ # c then:
return |

end

: return k

—_

Algorithm 8: Decapsulation of the KEM.

Ramstake uses a slight variant of this transformation [50]. The change there is
in line 5 of DetEncaps where k is computed as k < Hy(pk| coins) instead, where

226



coins = Hs(s), i.e., the same coins with which DetEncaps was derandomized.
It is clear that this change does not degrade security, for example by setting

Hi(pklls) = Hi(pk[Hs(s)).

4.1 Decapsulation Injectivity

Our construction actually achieves something in addition to IND-CCA security:
decapsulation injectivity. In other words, for any given secret key sk, and for every
key k there is (with overwhelming probability) at most one ciphertext ¢ such that
Decaps(sk, ¢) = k. This might sound alarming at first, for instance because it is
well known that a public key encryption scheme where every message maps onto
one ciphertext cannot be IND-CPA secure, let alone IND-CCA secure.

However, the crucial distinction is that the ciphertexts of KEMs represent
encapsulations of uniformly random keys. In contrast, PKEs must encrypt arbi-
trary messages, thus enabling the attacker to engineer repeat queries or another
attack scenario that requires choosing precisely which messages to encrypt.

Decapsulation injectivity addresses benign malleability, which is the ability
of an attacker to modify ciphertexts only if the encapsulated key remains intact.
Schemes based on noisy key agreement are inherently resilient to noise and as
a result, a ciphertext with added noise may still decapsulate correctly. Also, in
some cases the mathematical objects on which the protocol relies, do not have a
unique bit-level representation; in this case an adversary can switch representa-
tions to obtain a ciphertext that decapsulates to the same key. IND-CCA alone
is not sufficient to preclude benign malleability or attacks exploiting it.

Theorem 1 (correctness). Let IT be an NKA protocol with failure probability
€. The failure probability of the KEM K = SNOTP(II,C,Hy,Hs, H3) is

sk, pk + KeyGen(1*)
Pr | ke # kq | ke, c < Encaps(pk) =€ . (5)
k4 < Decaps(sk, c)

Proof. By construction, we have pk = (iparams, A_contr), sk = (A_state, pk)
and ¢ = (B_contr, Sg @ C.encode(s), Ha(s)), where ¢ is deterministically gener-
ated from s and pk. Moreover, the encapsulator finds k£ = H; (pk||s). The decap-
sulator then computes S4 = II.AConv(A_state, B_contr) and with probability e,
the strings S4 and Sp will lie too far apart for correct decoding. However, if
HW(S4 @ Sp) < t, then the decapsulator obtains the correct s from which he can
produce the exact same ciphertext as well as k = Hy (pk||s). In other words, there
is a KEM decapsulation failure only when there is an NKA protocol failure. O

5 NKA to KEM: Security Analysis

5.1 Techniques

We first explain some tools used in the proof before presenting the proof itself.
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Inversion. The task of the simulator is to find a preimage x for an output image
y = H(z) that was also output by the simulated algorithm H. In the classical
random oracle model, the simulator B can peruse the list of queries made by A

to H and test each such query x; for H(x;) < y.

In the quantum random oracle model, this list of queries is ill-defined because
the queries themselves may be represented by quantum superposition states.
Instead, it is possible to accomplish the same thing by replacing the random
function with a random polynomial H € Fye[z] of degree 20 — 1, where Q is the
number of queries made by A to H. Given the output image y, the simulator can
factor H(z)—y in polynomial time to obtain the a list of at most 2Q—1 candidates
{xi}?:QO_Q. By selecting one at random, the simulator obtains the correct preimage
2@1—1 :
as this polynomial) are perfectly indistinguishable from a random function [67].
To the best of our knowledge, this technique for inversion in the quantum random
oracle model was first used by Unruh for his non-interactivity transform [63].

with probability Zhandry shows that QQ—wise independent functions (such

Insecurity of One-Wayness. Recall that in the One-Wayness game, the chal-
lenger samples a random preimage x and runs the adversary on input H(x). The
adversary wins if he outputs a y such that H(z) = y. To capture the hardness
of this task, we use a result by Unruh [63]. Here the adversary is given access
to a random Bernoulli-distributed function F : {0,1}* — {0,1} and each F(z)
is independently Bernoulli-distributed with Pr[F(z) = 1] = v. For any quantum
adversary A making at most Q queries, Pr[F(AF()) = 1] < 2(Q+ 1),/7. An adver-
sary finding a preimage x of y in the One-Wayness game is simultaneously finding
a preimage x of 1 for the Bernoulli-distributed function F(z) = [H(z) = y], and
so Pr{H(AH(H(z))) = H(z)] < 2(Q +1)v2", where n is the output length of H.

Insecurity of Collision Resistance. In the collision resistance game, the
adversary oracle access to a function H and is tasked with finding a pair of
colliding preimages x1 and xs, i.e., such that H(z1) = H(z2). The success prob-
ability of any adversary making at most Q queries is bounded by Pr[H(z1) =
H(zo) |21, 20 < AH()] < C(Q+1)327™, for some universal constant C' and where
n is the output length of H [68].

Aggregate quantum query amplitude. Our proof relies in part on the indis-
tinguishability of two worlds predicated on a certain value s not being queried to
the random oracle. Classically, we can define by s € {0,1} as the Boolean value
that takes the value 1 in the worlds where the value of query k is s, and 0 in
the worlds where it is not, and then proceed to make a distinction depending on
whether the aggregation a; = \/,, by,s equals 1. In the quantum case, however,
these variables are ill-defined because each query does not have an associated
value but an associated quantum state, which might be a superposition of many
values with possibly non-uniform amplitudes. Nevertheless, we show that the ar-
gument can be made to work (even in the quantum random oracle model) when
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we look instead at these variables’ expectation value E[by ;] € R>g. To this end,
we define the quantum query amplitude I;k,s € C at the kth query associated
with a set S of potential values, and its aggregate across all queries ag, in a way
that mirrors (but does not capture) the classical notion.

Definition 3 (aggregate quantum query amplitude). Let AH be a quantum
algorithm with oracle access to H making Q queries. In particular, A consists of
Q + 1 unitary transforms Uy, . . ., UQ operating on a triple of quantum registers
S,Q, R, and interleaved with unitaries H operating only on Q, R and sending
lg, ) — |gq, 7 ® H(q)). Let ka represent the reduced density matriz with respect
to Q immediately after query k, with query indexation starting at zero. Then
the aggregate quantum query amplitude as associated with a set S of potential
queries is

Q-1
as=_ 3 (slpfls) - (6)
k=0 seS

The aggregate quantum query amplitude is useful as a standalone concept be-
cause it enables arguments that consider the degree to which an adversary is
querying some member of a set S and how this quantity changes as this set is
modified. The following two lemmas illustrate this fact.

Lemma 1. For any two sets S1,S2 C {0,1}*, as, < as,us,-

Proof. Since (s|pf|s | ) is a positive quantity for any s, increasing the range of the
sum from &7 to §; U Sy can only make the sum larger. a

Lemma 2. For any two sets 81,82 C {0,1}*, if as, < 1 and as, < 1 then
as,us, < as, + as,-

Proof. Overload “\” such that S2\S1 = S\ (S2 N'S1). Then we have

Q 1
is 08, = > (slofls ST Glogls) + > (slegls) (1)
SES1US: k=0 sESl S€S\S1
Q-1
k=0 5651 k=0 | s€85\S1
< fL -|- a32 . (9)

The first inequality holds because the terms in the square root are smaller than
1 because ds, <1 and as,\s, < as, < 1. The second holds due to lemma 1. O

We now upper-bound the trace distance of any pair of quantum distinguishers
D" with oracle access to Hy for some b € {0,1}, where Ho(x) # H;(z) =
x € S, in terms of as. This trace distance in turn upper bounds the maximum
distinguishing advantage across all adversaries. The following proof draws in
large part on [8, Lemma 37].
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Lemma 3. Let D be a quantum distinguisher making at most Q queries to one
of two oracles Ho, Hy, whose outputs differ only on a set S of inputs. Then the
trace distance of the distinguishers’ final states is bounded by

TD(D™M (), DM2()) < 2ds . (10)

Proof. Without loss of generality, D uses three registers S, @, R for its state, and

consists of unitary transformations {Uk},?zo operating on all three registers inter-
leaved with oracle queries, which are also unitary transformations Hp but which
operate only on @, R and map |q,7) — |q,r® Hb( )). So if |¥) is the adversary’s

initial state, then its final state is given by |LZ/Q) (HQ ! Us Hb) [Wo).
Let |%)) = (Hk:() U,-_kHb) |¥o) be the state before query number i (with

indexation of queries starting at 0), and let |!PbQ ) denote the final state. Define
the trace distance at stage ¢ as

D; = TD(|%), 1)) - (11)
And then
Di = TD(|%), |#1)) (12)
= TD(U; Ho| ¥, "), U Hy ¥ 1)) (13)
= TD(Ho| %™ "), Hil¥{ ™)) (14)
< TD(Ho[¥y~ "), Hi|¥~ ")) + TD(Hy| %), Hil¥{ ™)) (15)
= TD(Ho|¥; '), Hi|%~ ") + TD(1%5 ), [#171)) (16)
= TD(Ho|¥; ™), Hy[%5 ™) + Di—y (17)
where the triangle inequality is used (15). Moreover, since Dy = 0, we have
Q-1
D(D™(),D™()) = Dy < ) TD(Ho|¥), H1|¥)) - (18)
i=0

Now consider the projection operator Ps which operates on () and projects
onto the span of all [s) where s € S. Formally, Ps = ) s I(5)®|s)(s|®@I(r). Let
Ps be its complement, i.e., Ps =37 o5 1(5) ® |s)(s| ® I(r). We use the symbol
z to represent values contained in register S; r for values in R; and both ¢ and
s for values in Q.

D(Ho|%), H1|%)) = TD((Ps + Ps)Ho|¥), (Ps + Ps)H1|7())
= TD(PsHo|¥$) + PsHo|¥)), Ps H1 W) + PsHy|¥;)

(19)
)
(20)
= TD(PsHo|W.) + PsHo W), Ps H, |W%) + PsHy|¥())
(21)
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< 2||PsHo| %) || (22)

= 2\/<wg|HgP§PSHO\wg> (23)

=2 [ (W H{(I(5) ® |s)(s| ® I(m)) Hol¥5) (24)
seS

=2 D" (= (r|) Hol TG (G| H{ (12) @ |s) ® |r)) (25)
sES z,r

=2 3 (slolls) - (26)
seES

Equation 21 holds because Hy and H; are only different when g € S, so their effect
is the same when projecting onto span({|s)}s¢s). The inequality (22) holds due
to [8, lemma 35] (with |®) = PgHy|¥¢)). Equation 26 holds because the reduced
density operator of Hy|¥¢) = > zqr Ozl 2, @, ®Ho(q)) with respect to register
@ is given by

= Trs.n (Hol4) (26| H] ) (27)

=3 X Y @gmal, g (71]22) (1 @ Holg)re @ Ho(g2))a) (2] (28)

21,22 41,92 71,72

= Z Z Z Czgr i O gy 0 (212) (11 @ Ho(q1)|r2 @ Ho(g2))|a1) (a2 (29)

Z 41,92 71,72

= Z Z Z gy O gy | l01) (2] (30)

Z q1,92 \71,72 | T1@Ho(q1)=r2®Ho(g2)

=N et @] gy b (g |01 (02 - (31)

Z 41,92 T

In particular, this means that

Z< |pz Z (Z Z Zo‘z qw‘@Ho(tn)a 2.2, T@HO(qQ)q1><q2|) ls) (32)

seS seS Z q1,92 7

= Z <Z Z Z az,ql,T@Ho(qﬂai,qz,r@Hn((h)<8|Q1><q2|8>> (33)

seS zZ q1,92 T

= Z Z Zaz 5,r®Ho (s) X 2,5,r®Ho(s) (34)

sES =z
= 2 S X a0 e (218 (61 (@ Ho(a)) (12) ©19) @ Ir @ Ho(s))
(35)
= %‘S;;(M@<8|®(7"69Ho(S)DHo\Wé)(WélHJ(lZ)@\8>®\T’®Ho(8)>) - (36)
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Consequently,

D(DM(), D" () = i > (slpls) = 2as O (37)

k=0 seS

This theorem shows that if an algorithm A is capable of making a distinction
between Hg and Hi, where Hy and H; differ only on a set S, then das must be
large. The next lemma completes the reasoning by lower-bounding the success
probability of an extractor machine who, given black-box access to A, Hg, and
H;, attempts to output some s € S.

Lemma 4 (Multi-target one-way to hiding). Let Hy and Hy be oracle func-
tions that differ only on input set S, and let A be a quantum adversary that
makes at most Qu queries to either Hy or Hy. Let E be the following algorithm:
select b <& {0,1} and k & {0,.. L OQn — 1} at random, simulate A™e until the

kth query, measure the query register in the computational basis, and output the
result. Then

2
Pr[EA,Ho,Hl() =sc S] > <a$> > < -
Qn 2Qn

Proof. The probability that E outputs a member of S is given by

<A“°<>7A“1o>) e

Qu—1
Pr[EAHOH () = 5 € §] = Z ZPr EAHOM () = 5 A E chooses k] (39)

k=0 s€S

Qu-1

Z Z |Pk

k=0 seS

(40)

Compare with as, which is bounded by via Jensen’s inequality by

Qu—1 Qn—1
Z > (slofls) = Qn Z ~ [ (elezl) (41)
= seS sES
. Qu—1
< Qn Z Z slpgls (42)
H ses
Plugging in Eqn. 40 and Lemma 3 yields the theorem statement. ad

We draw attention to some differences with respect to Unruh’s one-way to
hiding lemma [64]. First, our lemma works with an arbitrary potential query set
S, whereas Unruh’s lemma works only for a single query. Second, our lemma
does not assume Hy and H; are random functions per se, but only that they
are black boxes accessed as oracles. Third, in Unruh’s lemma the adversary A
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has access to only one random oracle H and his input is the query-response pair
(z, z), where either z = H(z) or z = y # H(x), and his task is to decide which is
the case. In our lemma the distinguisher D is tasked with distinguishing which
of two different oracles he has access to. This difference is immaterial, however,
since one can used to derive the other. In fact, Unruh’s original proof starts by
translating the problem into distinguishing two oracles that differ only on z.

5.2 Security Reduction

The security bound involves two parameters determined by the NKA protocol: €
and ¢. The first is the failure probability. The second warrants some explanation.
In the NKD game when b = 0, S is sampled uniformly at random. However, there
is a small probability that this uniform S happens to lie in the radius-t sphere
centered at S4, and in this case the adversary might decide that the ciphertext
is correctly formed or decapsulate it outright and indicate incorrectly that b = 1.

We therefore capture this probability explicitly: ¢ = (ZZ:O (i)) /2¢.
The construction involves two hash functions, H; and Hs, and one variable

output function, Hz. In the security argument these are modeled as random
oracles.

Theorem 2 (IND-CCA security if NKD Assumption holds). Let A be a
quantum adversary in the IND-CCA game against K = SNOTP(II,C,Hy, Ha, Hs).
Let Qd,CA2|.|1,QA|.|2,Q|.|3 be its number of queries to the decapsulation oracle, Hq,
Hy and Hs, respectively. Let £, t and € be the session key length, noise threshold,
and failure probability of the NKA protocol II. Then the advantage Adv%‘D'CCA(A)
is upper bounded by

IND-CCA 2e+ ¢ —€p 3 —2¢—2¢+ 2
AT A S S - T A—90-9)

+2Qn, \/ 2(Qn, + D)V22 + 200, \/2(Qn, + 1)V2=2 +4Qn, \/AdVIFP  (43)

AdVi® + C(Qn, +1)%27

in the quantum random oracle model, where C is the constant of collision resis-
tance insecurity.

Proof. The proof follows from a sequence of games arguments. At each iteration,
a simulator is simulating the previous game and the previous game’s adversary
in order to win the next game.

— Game 1 is identical to the IND-CCA for KEMs game against . So by defi-
nition,

Pr[Game 1™ (1%) = 1] = AdvINP-CA(A) . (44)

— Game 2 is the IND-CPA game against a variant of the KEM that drops de-

randomization. In particular, there are three modifications: a) the modified

algorithm DetEncaps’ is identical to DetEncaps except for line 1, which be-
comes
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1: B_state, B_contr + II.BContr(iparams) ;

b) Decaps’ is identical to Decaps except with lines 6-9 replaced by
6: k < Hi(pklls) ;

¢) the hash value h is dropped from the ciphertext and line 3 of Decaps
becomes

3: if s =1 then:

The adversary B of Game 2 simulates A and is therefore responsible for mak-
ing A’s view of events as close to an authentic run of Game 1 as possible. In
particular, B forwards all queries to the oracles to its oracles Hy, Hz and for-
wards all responses back. However, B presents A with a backdoored random
oracle Hy which is really a random polynomial of degree at most 2@H2 -1
The purpose of this switch is to be able to answer decapsulation queries as
follows.

1. define D(q) as:

2 B_contr,E,h < q

3. factors < factorize(Ha(z) — h)
4. for x € factors do:
5

6

7

k', < DetEncaps(pk, x)
if ¢ = ¢ then return £’

return |

Since Hs is a 2@H2—wise independent function, it is perfectly indistinguish-
able from a true random oracle as long as at most QH2 queries are made
to it. Consequently, this simulated random oracle does not affect security or
winning probability. The simulator’s running time does increase as a result
of this inversion strategy. For every query, he has to factorize a degree at
most QQHz — 1 polynomial and then for each of the at most 2@H2 — 1 fac-
tors run the deterministic encapsulation procedure followed by some testing.
Nevertheless, this operational cost is still linear in @4 and polynomial in
QHs-

At some point, the simulator B receives the challenge ciphertext-key pair
(¢, k), where c is lacking a hash-of-seed h. The simulator appends a random

value h* & {0,1}* to the ciphertext before forwarding it, along with the
challenge key, to the adversary A. The simulator B outputs whatever the
adversary A outputs.

The difference in input distribution of A when it is playing Game 1 versus
when it is being simulated by B is characterized by the fact that no s’ €
{0,1}* satisfies DetEncaps’(pk, Hs(s')) = (c, -) in the latter case. Therefore,
provided that A fails to query Hs on likely candidates for s, the difference
in winning probability of A and B in their proper games is negligible. To
formalize this argument, consider the adversary’s aggregate quantum query
amplitude as on Hz for the set S whose members s’ satisfy:
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Hi(pk|s’) = k, or
Ha(s") = h*, or
I1.BContr(iparams; Hs(s")) = (B_contr,-), or
I1.BContr(iparams; Hs(s")) = (-, B_state) and C.decode(II.BConv(A_conir,
B _state) @ E) = §', or

o s =s.
This list is exhaustive because any s’ that does not satisfy any of these
conditions is independent of the provided ciphertext and key. The first bullet
point represents Hy(pk,-)~!, the set of preimages of k under H(pk,-). The
second bullet point represents Hy l(k), the set of preimages of h* under Hs.
The next two bullet points represent the set Sp,, the set of preimages under
H3 to bitstrings that, when fed as random tape to II.BContr, generate a state
B_state or contribution B_contr with which the NKD game is won. The last
bullet point indicates that the adversary is querying the payload s, which
he obtained from solving the NKS problem to find S and then decoding
S @ Sp @ C.encode(s).
By separating the aggregate amplitude along these lines we obtain using
lemma 2

(s < ry (ph,) =2 (k) + Opg ey + Sy, s (45)

The first two terms in this expression can be bounded by the an extrac-
tor’s success probability at winning a One-Wayness game using lemma 4.
Specifically,

<€W)1<’O> < Pr[EA() = s € Hy(pk,-) "L (k)] (46)
QHB
< 2(Qu, + V2 | (47)

and similarly, &a‘l(h*) < 2@%3(QH2 + 1)v2=*. With respect to the third
2
term, observe that this gives rise to an extractor machine that solves NKD,

SO &5H3 < QH“/AdvIN]KD. The same is true for the fourth term but in a
roundabout manner. Define this fourth extractor machine as follows: E4
takes an NKD instance (iparams, A_contr, B_contr,S) and embeds this in-
stance into a public key and ciphertext in order to simulate the adversary.
In particular, the public key is (iparams, A_contr) and the ciphertext is
(B_contr,C.encode(s) @ S, h) for randomly chosen s, h. Next, E4 measures
a random query to Hg in the computational basis and outputs 1 if this mea-
surement yields s and 0 otherwise. If the adversary solves NKS and queries
s, then E4 has a I/QH3 chance of winning the NKD game. So

is < Qn,/Pr[Es wins NKD] < Qu,\/AdV<P . (48)

Putting these terms together we obtain

is < On, <\/2(QH1 VI 4 4/2(Qn, + V2 + 2\/Adv1N7KD) . (49)
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Without loss of generality, the behavior of Hy, Hy and H3 with respect to in-
puts s’ € S is identical across games 1 and 2; in other words, these functions
are only different on members of S. However, the adversary has access to
another oracle whose responses can potentially help it distinguish. In partic-
ular, if the adversary manages to find one element of a pair (s, $2) such that
(B_contr’, E' | h') = DetEncaps(pk, s;) = DetEncaps(pk, s2), then the decap-
sulation oracle might produce different outputs. In Game 1 the oracle will
decapsulate using C.decode(IT.AConv(A_state, B_contr’) @ E') and obtain s;
or so via C.decode(S4 @ E’), but the decapsulation oracle from the simulation
of B will decapsulate using whichever factor of the polynomial Hy(z) — A’/
happens to be the first member of this list to pass the re-encapsulation test.
When there is a colliding pair (si,s3) for the query ciphertext, this first
factor might be the wrong one.

Nevertheless, it is possible to bound the probability of such a collision. The
third component is h’ = Ha(s1) = Ha(sz2). So it is possible to turn B into
a collision-finder for Hy by modifying its decapsulation oracle D(g). Instead
of returning the first ciphertext that passes the re-encapsulation test of line
6, it runs through all iterations of the loop first. If there are two (or more)
factors that pass this test, all are outputted. If there is only one, then &’ is
outputted, and otherwise 1.

Consequently, an adversary A that distinguishes Game 1 from the simulation
of B leads to either a collision for Hg, or to an extractor producing a member
of §. This means that the distinguishing advantage of any adversary A across
game 1 and game 2 (where it is being simulated by B) can be bounded using
lemma 3 and the collision resistance insecurity:

IPr[Game14(1*) = 1] — Pr[Game2®" (1*) = 1]| < 2as + C(Qn, + 1)*2~

(50)
< 20u, (M@Hl T OVE 4 \[2(Qn, + VR + 2\/Adv?'7KD) Oy 1)
(51)

Game 3 is the NKD game. The adversary C in this game simulates B and is
thus responsible for making B’s view of events as close as possible to an au-
thentic execution of Game 2. In particular, C uses its input as well as the chal-
lenge session key to generate the public key and a challenge ciphertext that

transmits a random seed s < {0,1}*. He presents the simulated algorithm
B with a random oracle H; that is programmed to output & = Hy(pk||s) for

some randomly chosen k & {0,1}*. At some point the simulated adversary
B outputs a bit b and the simulator C outputs this same bit.

If an NKA failure event F' occurs, then the simulator C “wins” regardless of
the behavior of the adversary B — because its output L contributes to the
adversary’s advantage just as much as the output 1.

If the adversary B wins with output b= 0, then the ciphertext ¢ = (B_contr,
S@C.encode(s)) is not an encapsulation of k and consequently C.decode(S4®
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S@C.encode(s)) # s. This implies that S4 and S are more than ¢ bits apart,
implying that S was chosen randomly because b = 0. So the simulator C
wins by outputting b. .

If the adversary B wins with output b = 1, then the ciphertext ¢ = (B_conir,
S@C.encode(s)) is an encapsulation of k = Hy(pk||s), meaning that C.decode(
Sa®S@®C.encode(s)) = s. This implies that S4 is ¢ or fewer bits apart from
S. This in turn implies one of two things; either that S was chosen from
the intersection of spheres centered at S4 or Sp because b = 1; or else that
S was drawn uniformly at random and happens to lie close to S4. In the
former case, the simulator who outputs b =1 wins as well. If b = 0, the latter

case occurs with a probability ¢ = (ZZ:O (ﬁ)) /2¢, i.c. the probability of a

uniformly random string S & {0,1}¢ having Hamming distance at most ¢
from a given S4 € {0,1}%.

Pr[GameSip (1) % 0] = Pr[Game3S (1) % 0]
=Pr[F vV (-F A CB(1*) = b)] = Pr[F] + Pr[-F A CB(1*) = 0]  (52)

> Pr[-F|Pr[CB(1*) = b| - F] (53)
=(1—¢) (Pr[C®(1") = b= 0| ~F] +Pr[C®(1") = b =1|~F)) (54)
1—¢

= (Pr[C®(1") = 0]b=0A~F]+Pr[CP(1%) = 1|b=1A~F]) (55)

=15 (PrB(1") = 0 A aW(S® Sa) > t[b=0 A =F] +Pr[B(1*) = 1|b=1 A =F])
> 1€ (Pr[B(1Y) = 0[b=0 A =F]- (1 —¢) + Pr[B(1*) = 1[b=1 A ﬁl(w??
L (Pr[B(1*) = 0|b=0 A =F]+Pr[B1") = 1[b=1 A —F]) - (1 (QZ):
= (1—¢)-Pr[-F] - Pr[B(1") = 8] = (1 — ¢ — ¢+ e¢) - Pr[Game 2°(1*) % glj]

Y

Now describe AdvP(C) = Pr[NKD%B(l/\) # 0] — 1£<| in terms of Advi D C“A(A).

Then we get:

AV (C) = Pr[Game 3°(1%) % 0] — te (60)
>(1—c— ¢+ eg) - Pr[Game 25(1%) = 1] — 1€ 61)
>(1—e—¢+ep)- (Pr[Game "M =1 - QQHB( 2(Qn, +1)V2

£y/2(Qn, + DVE 4 2y/AdVIC) — (G, + 1)32A> SN
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Isolate the term Pr[Game1*(1*) = 1] = Advi'>““A(A) and use Adv})P(C) <
AdviP. This yields the theorem statement:

IND-CCA Adviy®® + 1= 1 ~ ~ Y
Advic (A) < m ~3 + 2QH3< 2(Qu, + 1)v2—> (63)

£1/2(Qu, + 1)V + 2\/Adv1N7KD) +COQu, + 127 . O

6 Conclusion

This paper introduces the noisy key agreement (NKA) protocol as a standalone
concept, and an appropriate security definition in the form of the NKD game.
Furthermore, it presents a transformation turning an NKA protocol into a key
encapsulation mechanism (KEM) secure in the quantum random oracle model.
The security proof relies on modeling the derandomization function Hz as a
variable output length random oracle, along with new techniques for refined
reasoning about the queries made by a quantum adversary and uses the NKA
protocol as a starting point.

The bound’s reliance on the error probabiliy € is to be expected because
the occurrence of a protocol failure is equated to a complete loss of security.
However, there is also a term involving ¢, the probability of a uniformly random
bitstring being less than ¢ bits apart from a given one. The presence of this
parameter is an artifact of the NKD formalism as (1 —¢€)(1 — ¢)/2 upper bounds
any adversary’s advantage in that game. In practice, both € and ¢ should be
made negligible in the security parameter.

Provided that this constraint is satisfied, our bound is much tighter than
the those of Targhi-Unruh and Hofheinz et al. [61,35]. In particular, the term
AdvI'\IIKD7 which captures the insecurity of the underlying primitive, is degraded
only by a square root, similar to the bound of Jiang et al. [39]. In contrast, the
insecurity of the underlying primitive degrades with a quartic root in Targhi-
Unruh and Hofheinz et al. All roots are the result either of the One-Way to
Hiding Lemma or else of the One-Wayness game.

With respect to the concrete security of the Ramstake proposal, a couple
of remarks are in order. First, the security bound explicitly features the error
probability € which in the case of Ramstake is rather high — roughly 2764 for a
security level of 128 bits against quantum computers. The bound therefore estab-
lishes less security than the claimed 128 bits. Nevertheless, when conditioning for
the absence of decapsulation failures, the bottleneck becomes preimage search
in a random function, and after that the NKD advantage. Moreover, it is by no
means clear how much and even whether security is lost in the event of a de-
capsulation failure, although answering this question is a task for cryptanalysis
rather than provable security.

Second, length of the hashes and seed is twice the claimed security level,
in accordance with a speedup due to Grover’s algorithm. However, the security
degradation in the present bound resulting from these hash functions is a fourth
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root, much better than Grover’s algorithm from the attacker’s point of view. It
remains an open question to determine whether this fourth root degradation is
tight, i.e., whether it can be matched by an attack. We note that Hiilsing et
al. [37] have a root-free insecurity function for preimage search applying specif-
ically in the context of compressing hash functions. While their result does not
apply in the present context, it is an uplifting indication that maybe the fourth
root degradation is not a necessary quality of a security bound.
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A Concrete Instantiations of NKA Protocols

We now consider several concrete instantiations of noisy key agreement that
are used in the literature to generate key encapsulation mechanisms or public
key encryption schemes. In all cases, the participants of the protocol converge to
mathematical objects whose distance is small in some sense. We make abstraction
of this notion of smallness and represent the mathematical objects as bitstrings
(denoted by -1) at which point the Hamming weight metric can be used.

It is worth emphasizing that the concrete problems we identify must be as-
sumed to be hard, even in the context of quantum computers, in order for the
protocol and KEM or PKE to be secure. Nevertheless, the NKD Assumption
is the only requirement; the other problems are hard on average if the NKD
Assumption is true.

NewHope [7]. NewHope defines a ring R, = Z[X]/(g, X™ + 1) and a centered
binomial distrubution ¥y over R,. Elements that are sampled according to ¥y
are considered small. The protocol functionalities and noisy key views are as
follows.

Init: generate a € Ry from seed

AContr: sample s, e ~ ¥ and transmit b = as + e
BContr: sample s’, e’ ~ ¥{s and transmit u = as’ + €’
AConv: compute v = us

BConv: compute v/ = bs’

SA: LV

Sg: v’

This description gives rise to the following hard problems. The state recovery
problems are instances of Ring-LWE.

A State Recovery (ASR). B State Recovery (BSR).
Input: a,b € Ry st. b=as+efor Inpul:a,ue Rys.t. u=as'+¢€ for
some e,s ~ Uik some €', s ~ ¥

Task: find s,e ~ ¥l s.t. b=as+e Task: find s,e ~ ¥y s.t. u=as’+¢€’

Noisy Key Search (NKS).

Input: a,b,u € R, such that b = as + e and u = as’ + €’ for some
s,s’,e e ~ UL

Task: find S € {0,1}¢ such that nrw(S @ Lv1) < t and Hw(S O Lv'1) < ¢,
where v = us and v/ = bs'.

Noisy Key Distinguishing (NKD).

Input: a,b,u € R, and S € {0, 1}* such that b = as+e and u = as’ +e’
for some s,s',e,e ~ ¥

Task: output 1 if HW(S @ Lv) <t and Hw(S @ Lv'1) < ¢, where v = us
and v/ = bs’; and 0 otherwise.
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Ramstake [50]. Ramstake operates on integers modulo a large Mersenne prime
p, the set of which we denote by Z,. Smallness is associated with having a bit
expansion of low Hamming weight. We denote this set of sparse integers by S.
The functionalities and noisy key views are as follows.

Init: sample A € Z,

AContr: sample b, ¢ & S and transmit D = Ab + c¢modp

BContr: sample ¥/, ¢/ & S and transmit D' = AW + ¢ mod p

AConv: compute F = D'amodp

BConv: compute E' = Da’ modp

Sa: LE

SBI LE/J

The problems of recovering either participant’s state is in fact an affine

variant of the low-Hamming weight ratio problem introduced by Aggarwal et
al. [1]. Paraphrased but without loss of generality, this problem asks to find

low-Hamming-weight integers f and g such that the given integer H satisfies
fx(—H) 4+ g=0modp.

A State Recovery (ASR). B State Recovery (BSR).
Input: A,D € Zp s.t. D = Ab+cfor Input: A, D' € Z, s.t. D' = Ab' + ¢
some b,c € S for some b',c’ € S

Task: find b,c € S s.t. D = Ab+ ¢ Task: find V', ¢’ € Ss.t. D' = AV +¢

Noisy Key Search (NKS).

Input: A, D, D’ € Z,, such that D = Ab+ c and D’ = Ab + ¢’ for some
b,c,b',c eS8

Task: find S € {0,1}¢ such that hw(S@LEL) <t and Hw(SSLE 1) < t,
where E = D’a and E' = Dad/.

Noisy Key Distinguishing (NKD).

Input: A,D,D' € Z,,S € {0,1}* such that D = Ab+cand D' = Ab +¢
for some b,c,b’',c’ € S

Task: output 1 if =W (S@LEL) < t and Hw(S®LE’ 1) < t, where E = D’a
and £’ = Da’; and 0 otherwise.

Ouroboros [26]. Ouroboros uses the ring R = Fo[X]/(X™ — 1), in which
elements are considered small if their Hamming weight is less than a given bound.
Let S, C R denote the subset of ring elements whose Hamming weight is w.
The functionalities and noisy key views are as follows.

Init: generate h € R from seed
AContr: sample x,y & S); and transmit s = xh +y

BContr: sample ry,ro ﬁ S,y and transmit s, =r; + hry
AConv: compute S4 = ys,

BConv: compute S = sra

Sa: LS A

SBI LSBJ
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While the values S4 and Sp are computed, both are instantly added to
other values. Bob obtains s, = Sg + e, + € for specific values of e, and €, and
transmits this value alongside s,.. Alice obtains e. = s, — S4, which is a noisy
codeword from which the specialized decoder can recover €. Ouroboros thus uses
the transmission-based approach, and makes clever use of the decoder provided
by the algebraic structure on which the noisy key agreement protocol is based.

A State Recovery (ASR). B State Recovery (BSR).
Input: h;s € R s.t. s = xh +y for Input: h,s, € R s.t. s, =rah + ry for
some X,y € S} some ry,ro € S

Task: find x,y € S s.t. s=hx+y Task:findry,ro € §F s.t. so = hrao+r;y

Noisy Key Search (NKS).

Input: h,s;s, € R such that s = xh +y and s, = hrs + r; for some
X,y,r1,rs € Syt

Task: find S € {0, 1}* such that Bw(S@®LSa1) < t and BW(S®LSp ) < ¢,
where S4 = s, x and Sg = sry.

Noisy Key Distinguishing (NKD).

Input: h,s,s, € R,S € {0,1}¢ such that s = xh +y and s, = hry +r;
for some x,y,ry,r0 € S}

Task: output 1 if aw(S & LSa1) < t and BW(S @ LSp1) < t, where
Sa =s,x and S = sry; and 0 otherwise.

SIDH [38]. The supersingular isogeny Diffie-Hellman (SIDH) is the only noise-
free key agreement protocol on this list, and as such achieves identical views
on the session key for both parties. The protocol relies on the commutativity
of random walks in an isogeny graph of supersingular elliptic curves. We use
the following standard notation, denoting elliptic curves by FE; k-order torsion
subgroups by Flk]; isogenies by v, ¢; base points by P,Q; j-invariant by j(-).
Generally speaking, /4 = 2 and 5 = 3 and the exponents e4 and ep are large,
say on the order of several hundreds. Py, Qa € E[¢5'] are elements of the £5*-
order torsion subgroup of E, and vice versa for B. The protocol’s functionalities
and session key can be summarized as follows.
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Init:  select Eo < E(F,): Pa,Qa <& Eo[t%]; Pp,Qp <& Eolt5?]
AContr: sample m 4, n4 & Z]EA°AZ; compute Ra = maPa+naQa;
find ¢ : E(F,) — E(F,) such that ker¢ = (Ra4);
transmit Ea = ¢(Eo), ¢(Pp), (QB)
BContr: sample mg,ng & 7/t Z; compute Rp = mpPp+npQp;
find ¢ : E(F,) — E(F,) such that keri¢) = (Rp);
transmit Ep = ¢¥(Fy), ¥ (Pa), v(Qa4)
AConv: compute Ry = nat)(Pa)+ map(Qa) € Ep;
find ¢’ : E(F,) — E(F,) such that ker ¢/ = (R/});
compute Epy = ¢'(Ep)
BConv: compute Ry = npp(Pg) + mpp(Qp) € Ea;
find ¢’ : E(F,) — E(FF,) such that ker ¢’ = (R3);
compute Fap =v¢'(Ea)
Sar Lj(Epa)s
Sp: Lj(EaB)

The original SIDH paper already explicitly considers the hard problems
associated with the protocol. They are called the Computational Supersingu-
lar Isogeny (CSSI) problem for ASR or BSR; Supersingular Computational
Diffie-Hellman (SSCDH) problem for NKS; and Supersingular Decisional Diffie-
Hellman (SSDDH) problem for NKD. We adopt this nomenclature.

Computational Supersingular Isogeny Problem (CSSI).

Input: Ey,Eq = ¢(Eo); Pp,Qp,Pa,Qa € Eo;¢(Pp),¢(Qp) € E4 for
some isogeny ¢ : Eg — E4 with ker¢ = (naPa +maQa)

Task: find a generator for (R) = (naPa +maPa) = ker ¢

Supersingular Isogeny Computational Diffie-Hellman (SS-
CDH) Problem.

Input: Eo,Ea = ¢(Eo),Ep = (Eo); Pa,QaPp,Qp € Ey;
?(Pp), ¢(Qp) € Ea;¥(Pa), ¥(Qa) € Ep for isogenies ¢, ¢ : Eg = Ex
with ker ¢ = (naPa +maQa) and keryp = (npPp + mpQ@Qp)

Task: find j(Eap) where Eap = Ey/(naPa+maQa+npPs+mpQp).

Supersingular Isogeny Decisional Diffie-Hellman (SSDDH)
Problem.

Input: Fo,Ea = ¢(Eo),Eg = (Eo); Pa,QaPp,Qp € Ey;
6(P5).#(Qp) € East(Pa),t:(Qa) € Epij € Fy for isogenies 6,0 :
Ey — E4 with ker¢p = (naPa +maQa) and kery = (ngPg + mpQ@p)
Task: output 1 if j = j(Eo/(naPa +maQa +npPp+mpQ@p)); and 0
otherwise.
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B Noisy Key Security

In the previous we have defined, with some justification, the security of NKA
protocols in terms of the NKD game. Here we extend this justification by con-
sidering the most general possible security definition, i.e., an adaptation of the
Canetti-Krawczyk session key security (SK-security) notion in the authenticated
links model [20], which we call noisy key security (NK-security). It turns out that
NK-security is equivalent to the hardness of NKD, up to a polynomial factor.

B.1 NK-Security

Adapting SK-security to the noisy case presents two difficulties.

First, Alice and Bob do not agree on the same key but on two different
views S4 and Sp which are close under the Hamming metric. The adversary is
deemed successful if he can distinguish between a uniformly random key and one
drawn at random from the intersection of radius-t spheres centered at S and
Sp. This extension captures the special case of noise-free key agreement of the
Canetti-Krawczyk model, in which this intersection collapses to a single point
Sa=Sp.

Second, there is a small but nonzero probability of failure even when the
adversary does not interfere and it is conceivable that approximating either
Alice’s view or Bob’s view of the session key is easier in this case. To deal with
this issue, the security game aborts when the adversary picks a failing game.
This choice is the same for the NKD game.

Like Canetti-Krawczyk’s definition, ours considers an adversary A and any
number of parties P; each pair of which can run any number of sessions. The
adversary can

— see, block, resend all messages passed between parties (but not modify them);
— schedule events, i.e., instruct parties to start sessions or proceed with the
next step;
— expire sessions, i.e., instruct parties to forget the agreed-upon session key or
associated state;
— expose sessions, either though
e session-state reveal, which reveals a party’s session state; or
e session-key query, which reveals one party’s view of the session key; or
e corruption, in which case the adversary learns the entire working memory
of a targeted party whose subsequent actions are all directed by the
adversary.

The adversary chooses among all the unexposed sessions one test session, and
if this test session is unsuccessful (Hw(S4 @ Sp) > t) the game aborts. Otherwise

the adversary receives a string S which is, depending on a coin flip b & {0,1},
either either drawn from the intersection of radius-t spheres centered at S4 and
Sp, or uniformly at random from the set of all bit strings of the same length.
The adversary outputs a bit b guessing at the distribution from which S was
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drawn; he wins if he guesses correctly. The protocol is noisy key secure in the
authenticated links model if no polynomial-time quantum adversary has more
than a negligible distinguishing advantage. This notion is captured in words by
Definition 4. Pseudocode for the oracles’ behavior and the game mechanics is
given in Appendix B.2.

Definition 4 (noisy key security). Let IT = (Init, AContr, BContr, AConv,
BConv) be a noisy key agreement protocol between parties P4 and Pg, with cor-
rectness error €. The game NK defines an adversary A" = (A}, As") with oracle
access to the following functions:

— start(Pa, Pg) instructs parties P4 and Pg to start a new session with a fresh
session id;

— deliver(receiver, sender, session_id, contribution) delivers the unaltered con-
tribution message from receiver to sender if both are involved in session id
session_id;

— contribute(party, session_id) instructs participant party to generate a contri-
bution message for session session_id;

— converge(party, session_id, contribution) instructs participant party to con-
verge, and thus obtain their view of the shared noisy session key;

— expire(party, session_id) instructs participant party to consider session ses-
sion_id expired, that is to say inactive for all intents and purposes;

— reveal_state(party, session) reveals the secret state of participant party for
sesston session_id, but as a result the session becomes exposed;

— query_key(party, session_id) reveals party’s view of the shared noisy session
key from session session_id, but as a result the session becomes exposed;

— corrupt(party, code) instructs participant party to execute code with access to
party’s state and with capability to send authentic-looking messages on behalf
of party, but as a result all of party’s sessions become exposed.

The NK game proceeds in two phases: in phase 1, the adversary Ay" runs with
access to all the above oracles for a polynomially bounded number of time steps
and as a result outputs a secret state and a test session test_session_id. If session
test_session_id fails (HW(Sa ® Sp) > t) or if it has been exposed (through an
invocation of reveal_state, query_key, or corrupt) then the game aborts and outputs
L. Phase 2 starts when the challenger flips a coin b and if b = 0 he sets S &
0,1} but if b=1 then S & {x € {0,1}¢ | uw(z & Sa) < t A nw(z @ Sp) < t}
where S4 and Sp are the views of the shared noisy session key of parties Pa
and Pp associated with session test_session_id. Then A" is run with access to
all oracles on input (state, S) for another polynomially bounded number of steps,
after which he outputs a guess b. The game outputs 1 if b= b and 0 otherwise.

Then the noisy key agreement protocol is noisy key secure (NK-secure) in
the authenticated links model if for all polynomial time quantum adversaries
A~ who starts k sessions and corrupts v of them, their advantage AdV (A ™) is
negligible:

1+6k;r+

AV (A) 2 [Pr[Gamely (1Y) # 0] — E| < negl()) . (64)
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This expression for the adversary’s advantage is rather complex but certainly
valid. The adversary who corrupts every session he starts in order to engineer
game abortions, has advantage zero. The same is true for the adversary who does
not corrupt any session but flips a coin and guesses accordingly. The adversary’s
advantage remains zero for any combination of these two extremes. Therefore,
the expression captures the adversary’s advantage over a naive strategy.

We stress that a NKA protocol must consist of two independent messages,
one in each direction, as formalized in the syntax. While the Canetti-Krawczyk
security model does not impose any bounds on the number of messages ex-
changed or their scheduling, in the case of NKA this restriction on the number
of passes is critical; if the parties involved are allowed more then they can agree
on an exact key simply by transmitting auxiliary information to correct errors.

Game 9: NKA™ (1%)
. party_states < [@ for all parties]
. authentic_messages, global_sessions < empty_lists
. session_counter < 0
. test_session_id, state < A7 (1%)
. if global_sessions[test_session_id|.exposed = True then:
L return L
. P4y < global_sessions|test_session_id]. A
. P < global_sessions|test_session_id].B
. 84 « party_states[Pa].sessions|test_session_id].S
. SB < party_states|Pg|.sessions[test_session_id].S
.if BW(S4 @ SB) >t then:
. L return L
bE{0,1}
.if b =1 then:
| SE e (0,1} |uW(z @ Sa) A HW(z ® Sp)}
. else:
1 séqoy
b+ A5 (state, S)
. return [b = b]

0N O UL W

e e e el el
© 00 N Ut bW N~ OO
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B.2 Pseudocode for Oracle Behavior

Oracle 10: deliver(-)
1. define deliver(receiver, sender, session_id, contribution) as:
2. if (receiver, sender, session_id, contribution) ¢ authentic_messages then:
3. L return L
4. if session_id & party_states|receiver].sessions.keys() then:
5. L return L
6. if session_id ¢ party_states[sender].sessions.keys() then:
7. return |
8. party_states|receiver].sessions|session_id).contribution = contribution

Oracle 11: start(+)

1. define start(Pa, Pp) as:
2 global _sessions.append(global_session(
3 A = Py,
4. B = Pz,
5. exposed = False))
6 iparams < II.Init(17)
7 party_states|Pa].sessions.append (session(
8. key = session_counter,
9. A = Pa,
10. B = Pg,
11. params = iparams,
12. state = O,
13. contribution = &,
14. S =0%)
15. party_states[Pg|.sessions.append(session(
16. key = session_counter,
17. A= Pa,
18. B = Pp,
19. params = iparams,
20. state = &,
21. contribution = &,
22. S =09)
23. sesston_counter <— session_counter + 1
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Oracle 12: contribute(+)

. define contribute(party, session_id) as:

if session_id ¢ party_states[party|.sessions.keys() then:
L return L

session < party_states[party|.sessions|session_id|

if party = session.A then:

‘ session.state, session.contribution < II.AContr(session.params)
else:

L session.state, session.contribution < II.BContr(session.params)

party_states[party|.sessions[session_id] < session
msg < message(
sender = party,
recetver = {session.A, session.B}\party,
session_id = session_id,
contribution = session.contribution)
authentic_messages.append(msg)
return msg > allow adversary to block

Oracle 13: converge(+)

. define converge(party, session_id, contribution) as:

if session_id & party_states[party|.sessions.keys() then:
L return 1

session <— party_states[party].sessions|session_id|

other « {session.A, session.B}\party

if (other, party, session_id, contribution) & authentic_messages then:
L return L

if party = session.A then:

‘ session.S < I1.AConv(session.state, contribution)
else:

L session.S <« II.BConv(session.state, contribution)
session.state = &
party_states[party].sessions[session_id] < session

Oracle 14: expire(+)
define expire(party, session_id) as:
. { if session_id & party_states[party|.sessions.keys then:

1

2

3. L return |

4 party_states[party).sessions|session_id).S = &
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Oracle 15: reveal_state(-)
1. define reveal_state(party, session_id) as:
2. if session_id ¢ party_states[party|.sessions.keys then:
3. L return L
4. global_sessions|session_id].exposed < True
5. return party_states[party|.sessions[session_id].state

Oracle 16: query_key(-)
. define query_key(party, session_id) as:
if session_id ¢ party_states[party|.sessions.keys then:
return |
global_sessions|session_id).exposed < True
return party_states[party].sessions|session_id).S

gL W

Oracle 17: corrupt(-)

1. define corrupt(party, code) as:

2. for all session € party_states[party|.sessions do:

3. if session.state # @ or session.S # & then:

4. L L global_sessions[session.session_id].ezposed < True
5. execute(code) with access to:

6.

7.

e authentic_messages.append(sender = party, -, -, ")
e party_states[party)

Some explanation about the variables’ purpose and usage is in order. In the
following enumeration we mix descriptions of variables and their types.

— session_id, party_id : integer. These identifiers are just integers.

— party_state : list of dict mapping session_id to session. This variable is a list
containing for each party i a dict called sessions, which is a dictionary map-
ping session_ids to session objects.

— session. This type is a tuple containing the following objects:

e key : session_id. Integer uniquely identifying the session and counterpart-
session pair. (In other words, the other party involved in this session has
a matching session and it has the same key.)

e A : party_id. This party id indicates the party who is taking on the role
of A in the NKA session.

e B : party_id. This party id indicates the party who is taking on the role
of B in the NKA session.

e params : ParSp. This object takes on the value iparams as generated by
the Init function of the NKA protocol.

e state : StateSp. This variable takes on the value of A_state or B_state in
the NKA protocol.

e contribution : ContrSp. This variable takes on the value of this party’s
contribution in the NKA protocol.

253



e S :{0,1}%. This is the view of the shared noisy key as held by the party
in question.

— global_sessions : list of global_session. This list of global_session objects con-
tains big picture information on superficial session attributes like the parties
involved and whether or not the session has been exposed.

— global_session. This object consists of the following variables:

e A : party_id. This variable is the party id of the party who assumes the
role of A in the NKA session pair.

e B : party_id. This variable is the party id of the party who assumes the
role of B in the NKA session pair.

e cxposed : {True, False}. Boolean variable indicating whether the session
has been exposed or not.

— authentic_messages : list of message objects, representing all information
transmitted between parties.

— message. This object consists of the following variables:

e sender : party_id. This variable identifies the originator of the message.

e receiver : party_id. This variable identifies the intended receiver of the
message.

e session_id : session_id. This variable identifies the session pair to which
this protocol contribution pertains.

o contribution : ContrSp. The actual content of the message: an NKA pro-
tocol contribution.

— test_session_id : session_id. The identifier of the test session as output by the
adversary at the end of the first phase.

— state : {0,1}*. The adversary’s state at the end of the first phase; recording
this state allows the adversary to pick up where it left off.

— Py, Pg : party_id. These identifiers determine the parties involved in the
session pair that was chosen as test session by the adversary.

— 84,85 :{0,1}. These are the views of the noisy session key associated with
the two parties in the session pair that was chosen as test session by the
adversary.

— 8 : {0,1}*. Challenge key, to be fed to the adversary in the second phase.
The adversary wins if he can tell whether S was drawn from a uniform
distribution or from the intersection of two radius-t spheres centered at Sa
and Sp.

— b,l; : {0,1}. Bits, one determining whether to sample S at random or from
the intersection of spheres; the other being the adversary’s guess.

B.3 NK-security and NKD Assumption
Theorem 3. The NKD Assumption is necessary and sufficient for NK-security.

This theorem is an immediate corollary of the following two lemmas, both of
which have straightforward proofs.
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Lemma 5 (NKD — NK). Let A be a polynomial time quantum adversary
in the NK game with respect to an NKA protocol I with failure probability €,

and let k and r be the number of sessions started and corrupted, respectively,
k—r T

by A, and lﬂ%ﬁ + ( its winning probability. Then there is a polynomial

time quantum algorithm B that wins the NKD game in polynomial time with

probability 1< + kET.

Proof. The arguments of B are (iparams, A_contr, B_contr,S). B chooses a ran-

dom session identifier id <- {0,...,k — 1} and simulates the NK game. The
oracles are defined in accordance with Definition 4 except where the session
with session_id = id is concerned. For this session, the instance parameters and
both parties’ contributions are set to iparams, A_contr, and B_contr. The views
of the session keys are set to the same random bitstring of length .

The adversary Ay (1) is run and if its output test_session_id # k then B

flips a coin b & {0,1} and returns that. Otherwise A5 (state,S) is run, where
S is B’s fourth argument. If session id is exposed, B returns a random coin flip
b {0, 1} and otherwise B returns the output of b A5 The exact behavior of
B and the modified oracle interface it provides the simulated adversary A with,
are presented in Algorithm 18 and oracle contribute’, with the other oracles being
identically defined to those in Definition 4.

The tuple (iparams, A_contr, B_contr) associated with each session is iden-
tically distributed, including session id. Therefore the probability that Aj’s
output test_session_id = id is exactly 1/k. Let z be shorthand for the output of

the NKD game, i.e., z ¢ NKDBAM(lk).
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Algorithm 18: BA" (iparams, A_contr, B_contr, S)

. party_states < [@ for all parties]
. authentic_messages, global_sessions < empty_lists
. session_counter < 0

id < {0,... k- 1}

. test_session_id, state < A7 (17)
. if test_session_id # id then:

return |

. b+ A (state, S)
. if global_sessions|id].ezposed = True then:

1 &g
. return b

Oracle 19: contribute’
. define contribute(party, session_id) as:

1
2 if session_id & party_states[party|.sessions.keys() then:
3 L return L
4. session < party_states[party|.sessions]session_id)|
5. if party = session.A then:
6 session.state, session.contribution < II.AContr(session.params)
7 if session_id = id then:
8 L session.contribution <— A_contr
9. else:
10. session.state, session.contribution < I1.BContr(session.params)
11. it session_id = id then:
12. L session.contribution <— B_contr
13. party_states[party].sessions[session_id] < session
14. msg < (
15. sender = party,
16. recetver = {session.A, session.B}\party,
17. session_id = session_id,
18. contribution = session.contribution)
19. authentic_messages.append(msg)
20. return msg > allow adversary to block
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Then we have:

PrINKD®" (1%) % 0] 2 Pr[z # 0] (65)

=Prlz#0|z#L1] - Pr[z #1] +Pr[z # 0|z =L1] - Pr[z =1] (66)

=€+ Pr[z # 0] z #L Atest_session_id = id] - Prtest_session_id = id] - (1 — €)
+ Pr[z # 0] z #L Atest_session_id # id] - Pr[test_session_id # id] - (1 —€)

(67)
:Pr[NKA”'(l*)#O\x]-%-(l—e)+e+%-%-(1—e) (68)
= (PrINK* (1) 0] 2]+ Prl /]
+ Pr[NKA (1) %4 0| 1] - Pr[1]
—Pr[NKY (1Y) % 0] 1] - Pr[L]) (Pr]) 7t % (I—e)
1 k-1
+€+§-T-(176) (69)
= PrINKA (1) % 0] (Prlf)) (1)
(F i) e a9
+e+%‘%-(1—e) (70)
= PN (1) 20 ()00
r k—r k 1
7<E+ k €>'<k—r—ek+er>‘g'(1ie)
vers A laog (71)
= kirPr[NKAm(lA)#O]—%— k(kr_r) tet 1; : k; (72)
1 1+4+E5reqr € r 1—¢ k-1
:k—r( 5 k+<>kk(k—r)+6+ 2k (73)
C % € % € T 1—€¢ k-1
Il e T F (P e M (S B R (74)
1+e ¢
T2 +k:—r (75)
O

Lemma 6 (NK = NKD). Let A be a polynomial time quantum adversary
in the NKD game with respect to an NKA protocol II with failure probability e,
whose winning probability is % + (. Then there is a polynomial time quantum
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algorithm B that wins the NK game with respect to Il in polynomial time with
probability 1€ + (.

Proof. The adversary B™ = (Bj ', B;") behaves as follows. In phase 1, B]" starts
a session between two random parties and instructs both of them to contribute
and converge; he thus obtains session_id, iparams, A_contr, B_contr. His output
is then (test_session_id = session_id, state = (iparams, A_contr, B_contr)).

In phase 2, B;" runs on input (state = (iparams, A_contr, B_contr),S). He
invokes A as an NKD-oracle, namely by passing it the arguments (iparams,
A_contr, B_contr, S) and obtaining A’s guess 13, which is also B;’s output.
Whenever A wins, so does B, so the theorem follows. a

The reduction NKD = NXK loses a security factor 1/(k —r), where k is the
number of sessions started by the NK adversary and r is the number of sessions
corrupted. However, this security loss is a necessary consequence of restricting
the number of available sessions to one, as in the NKD game. NK-security and
the NKD Assumption remain asymptotically equivalent.
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Chapter 8

Standardization Proposals

8.1 Ramstake

Publication data

Alan Szepieniec, “Ramstake” Submitted to NIST PQC project [75].

Contributions

Principal submitter.

Notes

This cryptosystem was inspired by the NTRU-like cryptosystem by Aggarwal et
al. [4]. The replacement of the NTRU-like construction with a noisy Diffie-
Hellman protocol makes for a simpler cryptosystem. It turns out that they
independently came up with essentially the same construction in their own
NIST submission “Mersenne-756839” and subsequent ePrint paper [5]. For
reference, the original paper was uploaded on the 30th of May 2017, the NIST
deadline was 30 November 2017, and the updated paper was 6th of December.
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Ramstake
KEM Proposal for NIST PQC Project

September 7, 2018

cryptosystem name
principal submitter

auxiliary submitters
inventors / developers

owner
backup contact info
signature

Ramstake

Alan Szepieniec

imec-COSIC KU Leuven
alan.szepieniec@esat.kuleuven.be
tel. 43216321953

Kasteelpark Arenberg 10 bus 2452
3001 Heverlee

Belgium

same as principal submitter; relevant
prior work is credited as appropriate
same as principal submitter
alan.szepieniec@gmail.com
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1 Introduction

The long-term security of confidential communication channels relies on their ca-
pacity to resist attacks by quantum computers. To this end, NIST envisions a tran-
sition away from public key cryptosystems that are known to fail in this scenario,
and towards the so-called post-quantum cryptosystems. One of the functionalities
in need of a post-quantum solution that is essential for securing online communi-
cation is ephemeral key exchange. This protocol enables two parties to agree on a
shared secret key at a cost so insignificant as to allow immediate erasure of all secret
key material after execution, as an additional security measure. In the case where
the order of the messages need not be interchangeable, this functionality is beau-
tifully captured by the key encapsulation mechanism (KEM) formalism of Cramer
261



and Shoup [6]. The same formalism has the added benefit of capturing the syntax
and security of the first part of IND-CCA-secure arbitrary-length hybrid encryption
schemes, enabling a separation of the public key layer from the symmetric key layer.

The desirable properties of a post-quantum KEM are obvious upon consideration.
It should be fast and it should generate short messages, not require too much memory
and be implementable on a small area or in a few lines of code. It should inspire
confidence by relying on long-standing hard problems or possibly even advertising
a proof of security. However, this design document is predicated on the greater
importance of a property not included in the previous enumeration: simplicity. The
requirement for advanced degrees in mathematics on the part of the implementers
presents a giant obstacle to mass adoption, whereas no such obstacle exists for
mathematically straightforward schemes. More importantly, complexity has the
potential to hide flaws and insecurities as they can only be exposed by experts in
the field. In contrast, a public key scheme that is accessible to a larger audience is
open to scrutiny from that same larger audience, and should therefore engender a
greater confidence than a scheme that only a few experts were not able to break.

This document presents Ramstake, a post-quantum key encapsulation mecha-
nism that excels in this category of simplicity. Aside from the well-established tools
of hash functions, pseudorandom number generators, and error-correcting codes,
Ramstake requires only high school mathematics. Though not optimized for mes-
sage size and speed, Ramstake is still competitive in these categories with messages
of less than one hundred kilobytes generated in a handful of milliseconds on a reg-
ular desktop computer at the highest security level. For security, Ramstake relies
on a relatively new and under-studied hard problem, which requires several years
of attention attention from the larger cryptographic community before it inspires
confidence. The flipside of this drawback is the advantage associated with problem
diversity: Ramstake is likely to remain immune to attacks that affect other branches
of post-quantum cryptography.

Innovation. In a nutshell, this hard problem requires finding sparse solutions to
linear equations modulo a large Mersenne prime, i.e. a prime of the form p =
2™ — 1. The binary expansions of the solution (z1,z2) consist overwhelmingly of
zeros. Specifically, these integers can be described as

w

Jj=1

We refer to the integer’s Hamming weight w as the number of ones; their positions e;
are generally chosen uniformly at random from {0, ... 7 — 1}. Ramstake’s analogue
of the discrete logarithm problem requires finding x; and x5 of this form from G and
H = 21G + z9modp. This is an affine variant of the Low Hamming Weight Ratio
problem of the Aggarwal et al. Mersenne prime cryptosystem [1], whose task is to
obtain f and g of this form (1) from H = fg~'modp.

Where the Aggarwal et al cryptosystem builds on the indistinguishability of low
Hamming weight ratios, Ramstake builds on a noisy Diffie-Hellman protocol [2, 3]
instead. Alice and Bob agree on a random integer G between 0 and p. Alice
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chooses sparse integers x; and zs and sends H = x;G + o modp to Bob. Bob
chooses sparse integers y; and y, and sends F = y;G + ya modp to Alice. Alice
computes S, = x1F modp and Bob computes S, = 3G modp and both integers
approximate S = z1y;G mod p in the following sense: since p is a Mersenne prime,
reduction modulo p does not increase the integer’s Hamming weight and as a result
the differences S, — S = z1yos modp and S, — S = y;29 mod p have a sparse binary
expansion. Therefore, if 1,22, y1,y2 have a sufficiently low Hamming weight, the
binary expansions of S, and S, agree in most places. Alice and Bob have thus
established a shared noisy secret stream of data, or since it will be used as a one-
time pad, a shared noisy one-time pad (SNOTP, “snow-tipi”).

From SNOTP to KEM. There are various constructions in the literature for ob-
taining KEMs from SNOTPs, each different in its own subtle way. The next couple of
paragraphs give a high-level description of a generic transformation targeting IND-
CCA security, which is inspired by the “encryption-based approach” of NewHope-
Simple [4]. This construction makes abstraction of the underlying sparse integer
mathematics.

The encapsulation algorithm is a deterministic algorithm taking a fixed-length
random seed s as an explicit argument. If more randomness is needed than is con-
tained in this seed, it is generated from a cryptographically secure pseudorandom
number generator (CSPRNG). The algorithm outputs a ciphertext ¢ and a symmet-
ric key k.

The encapsulation algorithm uses an error-correcting code such as Reed-Solomon
or BCH to encode the seed s into a larger bitstring. Then the ciphertext ¢ consists of
three parts: 1) a contribution to the noisy Diffie-Hellman protocol; 2) the encoding
of the seed but one-time-padded with the encapsulator’s view of the SNOTP; and
3) the hash of the seed. The decapsulation algorithm computes its own view of
the SNOTP using the Diffie-Hellman contribution and undoes the one-time pad
to obtain the encoding up to some errors. Under certain conditions, the error-
correcting code is capable of retrieving the original seed s from this noisy codeword.
At this point, the decapsulation algorithm runs the encapsulation algorithm with
the exact same arguments, thus guaranteeing that the produced symmetric key k is
the same for both parties. Robust IND-CCA security comes from the fact that the
decapsulator can compare bit by bit the received ciphertext against the one that
was recreated from the transmitted seed, in addition to verifying the seed’s hash
against the one that was part of the ciphertext.

2 Specification

2.1 Parameters

The generic description of the scheme refers the following parameters without ref-
erence to their value. Concrete values are given in Section 2.4.
e p — the Mersenne prime modulus, satisfies p = 2™ — 1;

e 1m — the number of bits in the binary expansion of p;
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e w — the Hamming weight, which determine the number of ones in the binary
expansion of secret sparse integers;

e v — the number of codewords to encode the transmitted seed into;
e n — the length of a single codeword (in number of bytes);
e r — the targeted security level (in log, of classical operations);

e A\ — the length of seed values (in number of bits);

X — the length of the symmetric key (in number of bits).

2.2 Tools
2.2.1 Error-Correcting Codes

Ramstake relies on Reed-Solomon codes over GF(2%) with designed distance § = 224
and dimension k = 32. Codewords are n = 255 field elements long and if there are
111 or fewer errors they can be corrected. With this choice of finite field, one field
element coincides with one byte. The following subroutines are used abstractly:

e encode takes a string of 8k = 256 bits and outputs a sequence of 8n bits that
represents the Reed-Solomon encoding of the input.

e decode takes a string of 8n bits representing a noisy codeword and tries to
decode it. If the codeword is decodable, this routine returns the error symbol
1.

This abstract interface suffices for the description of the KEM. Moreover, any con-
crete instantiation can be exchanged for any other instantiation that adheres to the
same interface, or that modifies the interface slightly to retain compatibility.

2.2.2 CSPRNG

Both key generation and encapsulation require a seed expander. All randomness
can be generated up front; there is no need to record state and update it as pseudo-
randomness is generated. We use xof(s, £) to denote the invocation of the CSPRNG
to generate a string of ¢ pseudorandom bytes from the seed s.

This abstract interface suffices for the description of the KEM. In the implemen-
tations, xof is instantiated with SHAKE256. Like in the case of the Reed-Solomon
codec, any concrete instantiation can be exchanged for any other instantiation that
adheres to the same interface.

2.3 Description
2.3.1 Serialization of Integers

All big integers represent elements in {0,...,p — 1} and are therefore fully defined

by 7 bits. Denote by serialize(a) the array of [£] bytes satisfying
rz1-1

a= serialize(a)[i] x 256° . (2)

—
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This serialization puts the least significant byte first and pads the array with zeros to
meet the given length if the integer is not large enough. It is essentially Little-Endian
padded to length (g-\, and corresponds with the GMP function mpz_export(-, NULL,
-1, 1, 1, 0, a) regardless of whether the integer a is large enough.

2.3.2 Data Structures

Ramstake uses five data structures: a random seed, a secret key, a public key, a
ciphertext, and a symmetric key. Random seeds are bitstrings of length A\, whereas
symmetric keys are bitstrings of length y. The other three data structures are more
involved.

Secret key. A secret key consists of the following items:

e seed — a random seed which fully determines the rest of the secret key in
addition to the public key;

e a, b — sparse integers, represented by 7 bits each.

Public key. A public key consists of the following items:

e g seed — a random seed which is used to generate the random integer G;

e (C — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution. This value satisfies C = aG + b mod p.

Ciphertext. A ciphertext consists of the following items:

e D — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution; this value satisfies D = o’G + & mod p where a/,b" are secret sparse
integers sampled by the encapsulator;

e seedenc — string of 8nv bits; this value is the bitwise xor of the binary
expansion of the first nv bytes of serialize(S) and the sequence of v times
encode(s), where s is the random seed that is the argument to the encap-
sulation algorithm, and where S is the encapsulator’s view of the SNOTP:
S =d'(aG + b) mod p.

e h — hash of the seed s; the purpose of this value is twofold: 1) to speed up
decapsulation by enabling the decoder to recognize correct decodings, and 2)
to anticipate a proof technique in which the simulator answers decapsulation
queries by finding this value’s inverse.

These objects are serialized by appending the serializations of their member items
in the order presented above. No length information is necessary as the size of
each object is a function of the parameters. We overload serialize to denote that
operation.

In this notation, the symmetric key k € {0, 1} satisfies k = H(serialize(pk)|| coins),
where pk is the public key and where coins is the byte string of random coins used by
the encapsulator. Ramstake instantiates H with SHA3-256 with output truncated
to x bits, but any other secure hash function suffices.
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2.3.3 Algorithms

A KEM consists of three algorithms, KeyGen, Encaps, and Decaps. Pseudocode
for Ramstake’s three algorithms is presented in Algorithms 3, 4, and 5. All three
functionalities obtain a pseudorandom integer G from a short seed; this subprocedure
is called generate_g and is shown in Algorithm 1. Algorithms KeyGen and Encaps
rely on a common subroutine called sample_sparse_integer which deterministically
samples a sparse integer given enough random bytes and a target Hamming weight,
and which is described in Algorithm 2.

algorithm generate g
input: seed € {0,1}* — random seed
output: g € {0,...,p — 1} — pseudorandom integer

1: T < xof(seed, [ ] +2)

2: g0

3: for i from 0 to |%] + 1} do:
4 g« 256 X g+ rff]

5: end
6: return g modp

Algorithm 1: Procedure to sample a random integer from {0,...,p — 1}.

algorithm sample_sparse_integer

input: r € {0,...,255}4<veih® _ onough random bytes
weight € {0,...,7} — number of one bits

output: a € {0,...,p — 1} — a sparse integer

1:a<+0

2: for i from 0 to weight — 1 do:

3: w < (r[4d] x 2563 + r[4i + 3] x 256% + r[4i + 2] x 256 + r[4i + 1]) mod 7
4: a<+ a+ 2

5: end

6: return a

Algorithm 2: Procedure to sample a sparse integer from a CSPRNG.
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algorithm KeyGen
input: seed € {0,1}* — random seed
output: sk — secret key

pk — public key

> expand randomness
1 r + xof(seed, 4 x w+4 x w+ \/8)

> grab seed for G’ and generate G
2: seed g < r[0: (\/8)]
3: G + generate_g(seed_g)

> get sparse integers a and b

4: a + sample_sparse_integer(r[(A/8) : (\/8 + 4 X w)], w)

5: b < sample_sparse_integer(r[(A/8 +4 x w) : (\/8+4 X w+4 x w)],w)
> compute Diffie-Hellman contribution

6: C' < aG +bmodp

7: return sk = (s,a,b), pk = (g_seed, C)

Algorithm 3: Generate a secret and public key pair.
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algorithm Encaps
input: seed € {0,1}* — random seed

pk — public key

output: ctzt — ciphertext

k € {0,1}* — symmetric key

> extract randomness and generate G from seed
r + xof(seed, 4 x w+ 4 X w)
G < generate_g(pk.seed_g)

> sample sparse integers
a' < sample_sparse_integer(r[0 : (4 x w)], w)
b' « sample_sparse_integer(r[(4 x w) : (4 X w + 4 x w)], w)

> compute Diffie-Hellman contribution and SNOTP
D+ d'G+ b modp

6: S+ a' pk.Cmodp

10:

11:

12:
13:

> encode random seed and apply SNOTP
seedenc < serialize(S)[0 : (nv)]

: for i from 0 to v — 1 do:

dseedenc[(in) : ((i + 1)n)] + seedenc|(in) : ((i + 1)n)] 4 encode(seed)

> compute symmetric key
k < H(serialize(pk)||r)

> complete ciphertext; and return ciphertext and symmetric key
h < H(seed)
return ctzt = (D, seedenc, h), k

Algorithm 4: Encapsulate: generate a ciphertext and a symmetric key.
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algorithm Decaps
input: ctzt = (D, seedenc, h) — ciphertext
sk = (seed, a,b) — secret key
output: k£ — symmetric key on success; otherwise |

> recreate public key from secret key seed
1: seed_g < xof(sk.seed, \/8)
2: G + generate g(seed g)

3: C + sk.aG + sk.bmodp

> obtain SNOTP and decode seedenc

4: 8" + sk.actxt.Dmodp

5: str < serialize(S)[0 : (nv)] ® clzt.seedenc
6: for i from 0 to v — 1 do:

7: s ¢ decode(str[(in) : ((i + 1)n)])
8 if s #1 and H(s) = ctzt.h then:
9 break
10: end
11: end

12: if s =1 then:
13: return L
14: end

> recreate and test ciphertext
ctet’, k < Enc(s, pk = (g_seed, C))
15: if ctzt # ctxt’ do:
16: return L
17: end

18: return k

Algorithm 5: Decapsulate: generate symmetric key and test validity of the given
ciphertext.
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2.4 Parameter Sets

This document proposes two sets of parameters, called “Ramstake RS 216091”,
“Ramstake RS 756839”. These parameter sets target security levels 128 and 256 in
terms of log, of required number of operations to mount a successful attack on a
classical computer. Both attacks considered in Section 4.3 are fully Groverizable,
thus enabling the quantum adversary to divide these target security levels by two.
All parameter sets use SHA3-256, SHAKE256, and Reed-Solomon error correction
over Fos with code length n = 255 and design distance § = 224.

Table 1: Ramstake parameter sets, resulting public key and ciphertext size in kilo-
bytes, and targeted security notion and NIST security level.

™ | 216091 | 756839
w 64 128
v 4 6
A 256 256
X 256 256
|pk]| 26.41 kB | 92.42 kB
|ctat| 2741 kB | 93.91 kB
security IND-CCA | IND-CCA
NIST level 1 5

3 Performance

3.1 Failure Probability

There is a nonzero probability of decapsulation failure even without malicious activ-
ity. This event occurs when the two views of the SNOTP are too different, requiring
the correction of too many errors. It is possible to find an exact expression for this
probability. However, the following argument opts for a more pragmatic approach.

The Reed-Solomon code used has design distance § = 224, meaning that it can
correct up to t = L%lj = 111 byte errors. Decapsulation fails when all v codewords
contain more than 111 errors. By treating the number of errors e in each codeword
as independent normally distributed variables, one can obtain a reasonable estimate
of the failure probability.

The Sage script Scripts/parameters.sage, which is included in the submis-
sion package, computes the mean (u) and standard deviation (o) of these dis-
tributions empirically. For many different random G and appropriately sparse
a,b,a’, V', the number of different bytes between serialize(aa’G + ba’ mod p)[0 : 255]
and serialize(aa’G + 'a mod p)[0 : 255] is computed. From many such trials it com-
putes i and o and a recommended number of codewords v such that the failure
probability drops below 27%. (Indeed, this script is where the values for v in the
parameter sets of Table 2.4 come from.) The statistics are shown in Table 2.

It is possible to push the failure probability even lower by increasing v. However,
this increase results in a larger ciphertext.
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Table 2: Mean p and standard deviation o of number of errors in a codeword, along
with recommended number of codewords v for a failure probability less

than 2764,
216091 | 756839
1 72.56 81.38
o 7.89 7.93
v 4 6

(1 _ @(g))" < 9761 | < 964

3.2 Complexity
3.2.1 Asymptotic

The loops in the pseudocode of Algorithms 1-—5 run through a number of iterations
determined by the parameters v, w, w. Of these parameters, v is independent of the
security parameter k. The relations between w, 7 and the security parameter x are
more complex. First 7 must be large enough to spread out roughly 2w? burst-errors
so as to guarantee a low enough byte-error-rate and hence non-failure. Second,
the slice-and-dice attack of Section 4.3 must be taken into account as well. These
parameters are constrained for non-failure by
2uw?

T§C7 (3)

for some constant ¢ roughly around 0.04. For security, the constraint is

2w>k . (4)

These equations thus require 7 ~ &2

grows linearly with this number.

While KeyGen, Encaps and Decaps contain only a small fixed number of big field
operations, the modulus of this field is p and the field elements involved therefore
have an expansion of up to 7 bits. Nevertheless, there are two available optimizations
to ameliorate this cost. (However, none of the provided implementations employ
them.)

. The size of the public key and ciphertext

e Mersenne form. Reduction modulo p does not require costly division as it
does for generic moduli. Instead, shifting and adding does the trick. Let
a = a, X p+ a, with a, < p. Then a, + a, = amod p.

e Sparsity. In every big field operation, at least one term or factor is sparse. As
a result, the sums can be computed through w localized bitflips with carry.
The products can be computed through w shifts and as many full additions.

Consequently, the cost of integer arithmetic is linear 7 and in w. Therefore, the
complexity of all three algorithms is O(k3).
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3.2.2 Pratice

The file perform.c, which is included in the submission package, runs a number
of trials and collects timing and cycle count information. Table 3 presents the
information collected from the optimized implementations during 10000 trials on a
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz machine with 6144 kB of cache on each
of its four cores, with 7741 MB of RAM, and running CentOS linux.

Table 3: Implementation statistics — time and cycle count.

‘ time (ms) cycles

Ramstake RS 216091
KeyGen 2.8 9445009
Encaps 5.4 17700978
Decaps 11.1 36706919
Total 19.3 63852906

Ramstake RS 756839
KeyGen 13.0 43148424
Encaps 24.1 79342014
Decaps 46.9 154721609
Total 84.1 277212047

It is not surprising that Decaps takes the longest, because it runs Encaps as a
subprocedure. The striking difference between Encaps and KeyGen is due to the
encoding procedure of the error correcting code. Dealing with this error-correcting
code is even more costly in Decaps where the errors are corrected.

3.2.3 Memory and Pseudorandomness

It is difficult to estimate the memory requirements of the error-correcting code alge-
bra as well of the big integer arithmetic for two reasons. 1) The current implemen-
tation outsources this operation to another library. 2) because this content is highly
dynamic: how much memory is needed depends on the value of the mathematical
object being represented. By contrast, the memory requirements of the three main
functionalities’ outputs is easily determined.

The secret key consists of one A/8 byte seed and two integers of (after serialization)
[7/8] bytes each, although the integers can be generated anew from the seed. The
public key contains one seed of A\/8 bytes and one integer of [7/8] bytes. The
ciphertext consists of one integer of [7/8] bytes, a stream of nv bytes representing
the one-time-padded repetition code, and a hash of x/8 bytes. Table 4 summarizes
these sizes and presents concrete values for the given parameter sets.

All pseudorandomness is generated (i.e. extracted from a short seed) in the first
line of those functions that need it. So this is 8w + A/8 for KeyGen, and 8w for
Encaps. The Decaps function does not require pseudorandomness but it must get
the \/8-byte seed for G from the secret key seed via the same CSPRNG. Since Decaps
invokes Encaps as a subprocedure, it inherits those requirements for extracting and
storing pseudorandomness also.
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Table 4: Size (in bytes) of output objects.

H secret key ‘ public key ‘ ciphertext
formula A/8+2[n/8] | A\/8+ [n/8] | [7/8] + nv+ x/8
Ramstake 216019 54056 27044 28064
Ramstake 756839 189242 94637 96111

4 Security
4.1 Hard Problems

Ramstake relies on the hardness of at least two problems related to finding sparse so-
lutions to affine equations modulo a pseudo-Mersenne prime p. The formal problem
statement of the first is as follows.

Low Hamming Combination (LHC) Problem.
Given: Two coefficients A, B € F, in a large Mersenne prime field F,,.
Task: Find two elements x1, 2o € I, with binary expansions of Hamming weight at
most w; and wy respectively, such that B = Az + x5 mod p.

The problem was implicitly introduced by Aggarwal et al. [1] in the form of an
assumption, which states that the distribution (A, Az + x») is indistinguishable
from (A, C) when C' is drawn uniformly at random and 1, 2> uniformly at random
subject to having the required Hamming weight. The same paper also introduces
the Low Hamming Ratio Search (LHRS) Problem, which asks to find a pair of
low Hamming weight integers xi, zy satisfying xs/21 = H. The LHRS Problem
is equivalent to the subset of the LHC Problem where B = 0. (To see this, set
H=-A4A 0O

The LHC problem is only the analogue of the discrete logarithm problem in
Diffie-Hellman key agreement. The adversary does not need to compute discrete
logarithms; he merely needs to break the Diffie-Hellman problem, which comes in
search and decisional variants. The analogues of these problems for sparse integers
is formally stated below.

Low Hamming Diffie-Hellman Search (LHDHS) Problem.
Given: Three integers (G, H, F') where H = 1G4+ xomodp and F = y;G +ys mod p
for some integers x1,y; of Hamming weight w; and x5, ys of Hamming weight ws.
Task: Find an integer S whose Hamming distance with x; ' mod p is at most ¢, and
whose Hamming distance with y; H modp is also at most ¢.

Low Hamming Diffie-Hellman Decision (LHDHD) Problem.
Given: Four integers (G, H, F', S) where H = x1G+xomod p and F = y;G+ys mod p
for some integers x1,y; of Hamming weight w; and x5, ys of Hamming weight ws.
Task: Decide whether or not the Hamming distances between S and x; F' mod p, and
between S and y; H mod p, are at most ¢.

Security requires these problems to be hard, meaning that all polynomial-time
quantum adversaries decide the LHDHD Problem with a success probability negli-
gibly far from that of a random guess. The assumed hardness of LHDHD implies
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that LHDHS is hard as well, which in turn implies that LHC is hard also. It is
unclear how to solve LHDHD in a way that avoids implicitly solving LHC.

It is clear that breaking LHDHS is enough to break the scheme, as that allows the
attacker to unpad the seed encoding and recover the seed from there. It is not clear
whether security also relies on the LHDHD problem but we include that problem
for the sake of completeness, because many Diffie-Hellman type cryptosystems rely
on the proper analogue of the Decisional Diffie-Hellman problem.

4.2 SNOTP-to-KEM Construction

There is a gap between the Low Hamming Diffie-Hellman Decision Problem and the
IND-CCA (or even IND-CPA) security of Ramstake, originating from the SNOTP-
to-KEM construction. I am working on a proof of security but it is unavailable at
this point. The following obstacles make such a proof highly non-trivial.

e Failure events in the noisy Diffie-Hellman protocol affect security, especially
in the chosen ciphertext model.

e The search problems may be solved in more than one way.

e Circular encryption: the one-time pad is not independent of the message it
hides.

e The hash functions should be modeled as quantum-accessible random oracles.
However, many classical proof techniques fail in the quantum random oracle
model.

It is conceivable that a security proof can only be made to work conditioned on
some changes being made to the construction, for instance by changing the inputs
to the hash functions. Nevertheless, I do not expect the proof to recommend big
changes, thus leaving the construction’s big picture intact:

e generate noisy Diffie-Hellman protocol contributions from a short random seed;

e use the noisy Diffie-Hellman key to one-time-pad the error-correcting encoding
of the seed;

e undo the noisy one-time pad and decode the codeword;

e invoke the encapsulation algorithm with identical arguments and test if the
generated ciphertext matches the received one exactly.

4.3 Attacks
4.3.1 Slice and Dice

Beunardeau et al. present an attack exploiting the sparsity of the solutions to the
LHRS Problem [5], but it applies equally to the LHC Problem. The attack proceeds
as follows.

For each trial, partition the range R = {0, ..., 7 — 1} into a number of subranges.
This number should not be too large, at most a couple hundred. Do this once for

1 and once for z,. This yields
ROU. - uRFY=ROL...uR V=R . (5)
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Set each such subrange to active or inactive at random. Ensure that the total
cardinality of all inactive subranges is at least .

Each subrange corresponds to a variable rij ) whose binary expansion matches that
of x; but restricted to that subrange. Formulaically, this means

k—1 ‘
= S i 00 < ©
j=0

At this point, trim the sums in the left side of Eqn. 6 by dropping the terms
that correspond to inactive subranges and replace x; and x5 by their corresponding
trimmed sums in the equation B = Ax; + x5 mod p. Use LLL to find a short solution
vector.

A single trial is successful if LLL succeeds in finding the solution that corresponds
to the sparse solution. This happens if the guess at inactive subranges is correct,
namely if their respective variables are indeed zero (because then their omission does
not change the value of the sum).

For the sake of generality, assume z; has Hamming weight w; and x5 has Hamming
weight we. The optimal attacker activates a proportion wfﬁrlwg of the range associated
to x1, and a proportion wllfm of the range associated to xs. Then the probability
of all 1-bits being located inside the active subranges is given by

P () () o
wy + wo wy + we

The formula is a lot simpler when w; = wy = w, and in this case security mandates
that

20> K . (8)

This algorithm is fully Groverizable. Therefore, the security level halves when con-
sidering quantum adversaries with unlimited circuit depth.

4.3.2 Spray and Pray

Spray and pray is essentially a smart brute force search. Choose a random assign-
ment for z; with Hamming weight w;, compute z5 from the given information and
test if its Hamming weight is at most wy. Assuming the solution is unique, the
success probability of a single trial is one over the size of the search space, or 1/(;7))
So k bits of security requires

08, (g) >k ()

For the parameter sets 216091 and 756839, the left-hand-side of Eqn. 9 is over
838 and 1783, respectively. While the algorithm is fully Groverizable, dividing these
numbers by two in order to account for quantum adversaries still results in wildly
infeasible complexity.
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4.3.3 Stupid Brute Force

Instead of guessing one variable and computing the other from that guess, stupid
brute force guesses both at once. A single such guess succeeds with probability
1/(:;)2, i.e., much less likely than the intelligent brute force of the spray-and-pray
strategy described above.

Another stupid brute force attack attempts to guess the input of the CSPRNG.
By design, these seeds are all 256 bits in length, making for a classical complexity
of 2256 and 2! quantumly (again assuming unlimited depth).

4.3.4 Lattice Reduction

Aggarwal et al. already consider lattice attacks on their cryptosystem and in par-
ticular on the LHRS Problem. They observe that it is possible to generate basis
vectors for a lattice in which the sought after solution is a short vector. However,
that same lattice will contain even shorter vectors that do not correspond to a sparse
solution to the original problem. It might be possible to eliminate these parasitical
solutions by running lattice reduction with respect to the infinity norm instead of
the Euclidean norm, but it is not clear how to do this.

4.3.5 Algebraic System Solving

It is possible in theory to formulate the sparsity constraint algebraically, by con-
structing polynomials over F, that evaluate to zero in all points that satisfy the
constraint. At this point a Grobner basis algorithm can be used to compute a solu-
tion. However, the degree of this constraint polynomial is infeasibly large, roughly
(:) Constructing it requires more work than exhaustively enumerating all potential
solutions and testing to see if the linear equations are satisfied.

Another option is to treat the coefficients of the binary expansion of the solutions,
as variables in and of themselves. This strategy requires adding polynomials to
require that each coefficient lie in {0, 1}, and that at most w of them are different
from zero. The result is a nonlinear system of roughly 47 + 2(w’fH) equations in 27
variables with some polynomials having degree (wil) For any practical parameter
set, it is infeasible to fully represent this system of equations, let alone to solve it.

4.3.6 Error Triggering

An attacker who can query the decapsulation oracle can obtain feedback on whether
the decapsulator was able to decode the transmitted codeword. With enough fail-
ures, the attacker can infer the decapsulator’s view of the SNOTP. Once the attacker
is in possession of this value, he can proceed to decapsulate any ciphertext.
However, in order to exploit this channel of information, the attacker must gen-
erate ciphertexts that fail during decapsulation. If his query ciphertext is not the
exact output of the encapsulation algorithm upon invocation with the transmitted
seed, then the manipulation will trigger a decapsulation failure regardless of whether
decoding was successful. In other words, in order to obtain meaningful information
about failure events, the attacker must restrict himself to querying only legitimate
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outputs of Encaps. Worse still, he has no way of knowing beforehand whether or not
a ciphertext is more or less likely to cause failure before the first failure response.
Since the failure probability is less than 27%*, the attacker has to make on the order
264 honest queries to get this first failure response.

5 Advantages and Limitations

Advantage: Simplicity. Simplicity is the key selling point of Ramstake. Simple
schemes are easier to implement, easier to debug, and easier to analyze. While
simpler schemes are sometimes also easier to break, a scheme’s resilience to attacks
should not rely on its complexity.

Advantage: Problem Diversity. Ramstake relies on different hard problems com-
pared other branches of post-quantum cryptography. Consequently, breakthroughs
in cryptanalysis or hard problem solving that break or severely harm other schemes
may leave Ramstake intact.

Limitation: New Hard Problem. The hard problem on which Ramstake relies
is new and understudied. As a result, it does not offer much assurance of security
compared to schemes that have existed (and remained unbroken) for much longer.

Limitation: No Proof. Ramstake claims to offer IND-CCA security even though
there is no security reduction to the underlying hard problem. It is therefore conceiv-
able that an attack might break the scheme even without solving the hard problem.
Nevertheless, simply because something has not been proven secure yet does not
mean it is insecure.

Limitation: Bandwidth and Speed. Lattice-based KEMs are likely to be faster
and to require less bandwidth. Nevertheless, Ramstake is competitive in comparison
to the very first lattice-based and code-based cryptosystems, and it is conceivable
that sparse integer cryptosystems will undergo a similar evolution. However, po-
tential future improvements should not be considered for standardization at this
point.
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