
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Representation Learning for
Weakly-Supervised Natural
Language Processing Tasks

Geert Heyman

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

December 2018

Supervisors:
Prof. dr. Marie-Francine Moens
Dr. Ivan Vulić
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Abstract

In recent years, representation learning has obtained impressive results across a wide
range of machine learning tasks in domains such as natural language processing,
computer vision and speech recognition. Rather than relying on hand-crafted data
representations, representation learning aims to acquire representations automatically
from data. Its successes have been achieved on problems with a large amount of
annotated data – datasets that comprise millions of training examples are no exception.
For many important problems, there is no abundance of labeled data, however. This is
particularly the case within the domain of natural language processing where, especially
for languages other than English, such large-scale datasets are often lacking.

In this thesis, we investigate and propose representation learning models in settings
where the amount of annotated training data is limited. This thesis has four main
contributions which each shed a different light on how representation learning can be
used in weakly-supervised settings.

First, we design a new cross-lingual probabilistic topic model that can infer cross-
lingual representations for words and documents after being trained on a collection
of document pairs that are similar, but not necessarily identical in content. With this,
we provide a means to obtain cross-lingual representations for words and documents
that are interpretable and valuable features for tasks such as cross-lingual document
classification, and this without the need for parallel data.

Second, we design methods to construct multilingual embedding spaces without
using bilingual dictionaries, parallel corpora or any other type of multilingual
supervision and study the effectiveness of these spaces on down-stream natural language
processing tasks (i.e., bilingual lexicon induction, multilingual document classification,
and multilingual dependency parsing). In contrast to previous research, our most
effective method combines the following desirable properties: the method incorporates
dependencies between all targeted languages; the method still works when targeting
languages with very different characteristics (e.g., projecting English in the same vector
space as Finnish and/or Hungarian); and empirical evidence indicates that the method
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iv ABSTRACT

is stable as it never produced degenerate solutions in our experiments.

Third, we propose a deep learning model to tackle the correction of context-dependent
dt-errors, one of the most prominent spelling errors in Dutch, without using labeled
examples of dt-mistakes. The model is designed to predict the correct suffixes of verbs
given their stem and the context in which they occur. Hence the data requirements are
limited to high-quality Dutch text, which is available in abundance. In comparative
tests with other systems including the spell checker that comes with Microsoft Word,
the proposed model obtains the best results by a large margin.

Fourth, we present a new approach for obtaining bilingual dictionaries that combines
character-level and word-level information to extract translations from non-parallel
texts. Different from the majority of prior work, we frame this task as a classification
problem rather than as a retrieval problem. This enables combining unsupervised and
weakly-supervised representation learning techniques to seamlessly integrate word-
level and character-level information. In particular, from a set of seed translations, the
model learns character-level representations rather than relying on hand-crafted feature
extraction techniques and learns how to fuse it with word-level representations that
encode corpus statistics. The major findings are a) that the incorporation of character-
level information is particularly useful in the biomedical domain, where many terms
have their origin in Greek and Latin or are acronyms or abbreviations, and b) that
learning character-level representations is superior to the hand-crafted representations
which were used in prior work. Although we evaluate primarily on biomedical terms,
the method is domain-agnostic and holds promise to support translation mining in other
domains.

The main conclusion of this dissertation is that representation learning is very much
applicable to weakly-supervised natural language processing problems both as a means
to inject data-driven prior knowledge into tasks by inducing textual input representations
from unlabeled texts and as a paradigm for obtaining abstractions from labeled text
data that are not uncovered with classical feature engineering.



Beknopte samenvatting

In de afgelopen jaren heeft het leren van representaties tot indrukwekkende resultaten
geleid voor een breed gamma van taken in de domeinen van natuurlijke taalverwerking,
computervisie en spraakherkenning. In plaats van te steunen op manueel gebouwde
representaties, stelt het leren van representaties als doel om automatisch representaties
te extraheren uit data. De successen van het leren van representaties zijn behaald
op problemen waarvoor een grote hoeveelheid geannoteerde data beschikbaar is -
datasets die bestaan uit miljoenen voorbeelden zijn geen uitzondering. Voor veel
belangrijke problemen is er echter geen overvloed aan gelabelde data. Voor natuurlijke
taalverwerking in het bijzonder zijn zulke datasets vaak niet beschikbaar, vooral
wanneer het andere talen dan Engels betreft.

In deze thesis onderzoeken en bouwen we modellen die representaties leren in
omgevingen waar de hoeveelheid geannoteerde training data beperkt is. Deze thesis
heeft vier belangrijke contributies die elk een nieuw licht werpen op hoe het leren van
representaties gebruikt kan worden in zwak gesuperviseerde omgevingen.

Ten eerste ontwikkelen we een nieuw cross-linguaal probabilistisch topic model dat
cross-linguale representaties voor woorden en documenten kan infereren na getraind te
zijn op een collectie van documentparen waarvan de onderwerpen gelijkaardig, maar
niet noodzakelijk identiek zijn. Hiermee bieden we een middel aan om cross-linguale
representaties voor woorden en documenten te verkrijgen die interpreteerbaar zijn en
waardevolle invoervoorstellingen bieden voor taken zoals cross-linguale document
classificatie, en dit alles zonder parallelle training data nodig te hebben.

Ten tweede ontwerpen we methodes om multilinguale vector ruimtes te constru-
eren zonder bilinguale woordenboeken, parallelle corpora of andere vormen van
multilinguale supervisie te gebruiken en bestuderen we de effectiviteit van deze
ruimtes op relevante natuurlijke taalverwerking taken (i.e., bilinguale lexicon inductie,
multilinguale document classificatie en het multilinguaal detecteren van syntactische
afhankelijkheden). In tegenstelling tot eerder onderzoek, combineert onze meest
effectieve methode de volgende voordelen: de methode incorporeert afhankelijkheden
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tussen alle gemodelleerde talen; de methode werkt nog altijd wanneer we talen
beschouwen met karakteristieken die onderling zeer verschillen (bijv. Engels
projecteren in dezelfde ruimte als Fins en/of Hongaars); en empirische resultaten tonen
aan dat de methode stabiel is omdat er nooit gedegenereerde oplossingen geproduceerd
werden.

Ten derde stellen we een model voor dat diepe representaties leert om dt-fouten,
een belangrijk spellingsprobleem in de Nederlandse taal, automatisch te detecteren
en te corrigeren zonder gebruik te maken van gelabelde voorbeelden. Het model is
ontworpen om de correcte uitgangen van werkwoorden te voorspellen gegeven hun stam
en de context waarin ze voorkomen. Bijgevolg worden de datavereisten gereduceerd
tot goedgeschreven Nederlandse teksten, dewelke in grote hoeveelheden beschikbaar
zijn. In een vergelijkende studie met andere systemen inclusief de spell-checker van
Microsoft Word behaalt ons model met voorsprong de beste resultaten.

Ten vierde stellen we een nieuwe aanpak voor om bilinguale woordenboeken te
induceren die informatie op karakter- en woordniveau combineert om vertalingen
te extraheren uit teksten die niet parallel zijn. In tegenstelling tot de meeste
voorgaande onderzoeken kaderen we deze taak als een classificatieprobleem i.p.v.
een ophaalprobleem. Dit maakt het mogelijk om het leren van ongesuperviseerde
en zwak gesuperviseerde voorstellingen met elkaar te combineren om woord- en
karakterniveau representaties naadloos met elkaar te integreren. Meer specifiek leert
het model uit een verzameling van initieel gekende vertalingen hoe woordparen
op karakterniveau kunnen worden voorgesteld i.p.v. zulke voorstelling manueel te
bepalen en leert het hoe deze karaktervoorstelling gecombineerd kan worden met
woordniveau representaties die de corpusstatistieken van een woord samenvatten. De
hoofdbevindingen zijn dat a) het incorporeren van karakterniveau representaties zeer
bruikbaar is in het biomedische domein, waar vele termen hun oorsprong vinden in
het Grieks of Latijn ofwel acroniemen of afkortingen zijn, en b) dat het leren van
karakterniveau representaties superieur is aan de manueel gedefinieerde voorstellingen
die gebruikt werden in eerder onderzoek.

De algemene conclusie van deze dissertatie is dat het leren van representaties ook een
geschikte techniek is voor zwak gesuperviseerde natuurlijke taalverwerkingsproblemen,
enerzijds als een manier om voorkennis uit tekstuele data te halen en anderzijds als
paradigma om abstracties te ontdekken uit gelabelde data die niet uitgedrukt kunnen
worden met klassieke, manueel gedefinieerde representaties.
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Chapter 1

Introduction

Natural language processing (NLP) is a subdomain of artificial intelligence that
researches how computers can automatically process and analyze natural language.
NLP is engaged in building models that automatically classify texts (e.g., sentences
or documents), analyze the syntactic structure of texts (e.g., part-of-speech tagging,
constituency parsing, or dependency parsing), translate lexicons or documents (e.g.,
bilingual lexicon induction, machine translation), detect and correct spelling mistakes,
etc. In the early days, the majority of NLP systems were rule-based, meaning that
language experts were hand-coding rules to analyze text. The past few decades,
however, NLP models have become predominantly statistical. The research focus
shifted from finding appropriate rules or grammars to proposing algorithms that
can learn how to process text from experience. The field that studies such learning
algorithms is known as machine learning. Experience often comes in the form of
examples of the desired output of the system (e.g., a category label) that corresponds to
a given input (e.g., a sentence).

In settings with an abundance of such training examples, natural language processing,
and related fields such as speech recognition and computer vision, have obtained
impressive results with machine learning models. Unfortunately, training examples
are not readily available for many important problems and creating them is typically a
labor-intensive process where human annotators manually label example inputs with
the desired system output. Especially for non-English languages annotated training
data is hard to find. Therefore, there is a pressing need to find NLP models/algorithms
that operate well in weakly-supervised settings, i.e., with a small number of training
examples.

Any model aimed at computing a set of outputs from a set of input variables requires
some mathematical representation of the inputs, typically using one or more vectors

1
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that represent the most important properties of the input. The performance of machine
learning models very much depends on the quality of the input representation. In
classical machine learning such feature vectors are hand-crafted. That is, a human
expert defines which properties are most relevant for computing/predicting the outputs
and writes a deterministic program from extracting these features from the raw data.
For many important problems proposing features that lead to optimal classification
performance is a non-trivial task.

Representation learning (RL) is a branch of machine learning aimed at learning
representations from data. Its key idea is to find a function that maps the raw inputs to
a meaningful representation. This function is automatically selected from a predefined
function family (e.g., a neural network) based on a criterion in terms of the training
data (e.g., the function should map inputs to representations that maximally explain the
variability in the training data). The training criteria is hence a formal specification of
what representations are considered meaningful.

The representations, or equivalently the function that computes them, can either be
learned directly on the training examples for the task at hand, which is known as
supervised representation learning; or they can be learned from unlabeled data, known
as unsupervised representation learning. In the former case, the representations are
optimized jointly with the rest of the machine learning model. In the latter case, the
representations are optimized to explain some unlabeled dataset, and in a second step
used as input to the machine learning model that is trained on the task at hand. Whereas
in feature engineering prior knowledge is mostly injected by hand-crafting an input
representation, RL uses structural priors. That is, prior knowledge is brought into
a model by specifying the family of functions that map raw inputs to meaningful
representations and by expressing preferences to certain functions in the family (e.g.,
by putting prior distributions on function parameters). One such prior that has proven
to be extremely useful for many practical problems is that functions for learning
representations can be decomposed in many simple functions that are subsequently
applied (e.g., f (x) = f1( f2( f3(x))) ). The number of subsequential functions in a model
referred to as the depth of the RL model, and the set of techniques that uses this prior
is known as deep learning.

When fuelled by large amounts of annotated training data, supervised representation
learning and deep learning in particular have advanced the state of the art in various
natural language processing problems. However, the success of RL in weakly-
supervised settings has been limited. In this thesis, we aim to bridge this gap by
exploring the use of representation learning techniques for natural language processing
problems in four distinct scenarios with a limited amount of supervision.

In the remainder of this introductory chapter, we describe the context in which the
research of this thesis was performed, we state the main goals of the thesis, and we lay
out the structure of this text.
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1.1 Research Context

The majority of this work has been executed in the context of research projects with
a strong focus on multilingual techniques: the Smart Computer-Aided Translation
Environment (SCATE) project (IWT-SBO 130047), which investigated translation
technology and how it could improve the translator’s workflow; and the Profiling and
Analysis Platform Using Deep Learning (PAPUD) project (EU ITEA3 16037 and
VLAIO HBC.2017.0498), which aims to develop a data analytics platform that can
process text in multiple languages. Consequently, three of the four main contributions
of this dissertation are situated in a multilingual setting.

Additional financial support from the ACCUMULATE (ACquiring CrUcial Medical
information Using LAnguage TEchnology; IWT-SBO 150056) and MARS ( MAchine
Reading of patient recordS; C22/15/16) projects co-motivated the decision to evaluate
the work on bilingual lexicon induction in the biomedical domain.

An inquiry from the Instituut voor Levende Talen (ILT), KU Leuven about the potential
progress of NLP techniques in correcting dt-mistakes, a common spelling mistake in
Dutch, was the catalyst for the fourth contribution.

1.2 Problem Statement

The primary goal of this dissertation is to study and propose representation learning
techniques for natural language processing problems with a limited amount of
supervision. To this end, and considering the afore-mentioned research context, we
define four main research topics.

I) Learning bilingual representations for documents and words from
comparable corpora The available amount of training data for a given NLP task is
typically language-dependent. As data annotation is expensive, large-scale datasets are
nearly exclusively found for common languages such as English. When designing a
system aimed at processing text in a resource-poor language,1 it would be desirable to be
able to transfer knowledge from training data in resource-rich languages to the system
in the resource-poor language. A promising strategy to that end is to learn bilingual text
representations. These are representations that map texts (e.g., words or documents)
to a bilingual space such that semantically related texts have similar representations,
regardless of their language. For instance, in a bilingual space of English and Dutch
documents, an English document about tennis should be more similar to a Dutch

1With the term resource-poor languages we refer to languages for which the amount of annotated training
data is very limited.
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document about cycling compared to an English document about politics. High-quality
bilingual representations hence allow processing text in a resource-poor target language
after training a classifier on annotated examples in a resource-rich source language.

To make bilingual representation learning practical, it is important that the bilingual
representations can be easily obtained. Whereas most prior works focused on RL
models that learn bilingual representations from parallel data (i.e., parallel corpora,
which are a collection of translated sentence pairs; or bilingual dictionaries), we aim
to learn representations from non-parallel corpora. In particular, the main research
question for this topic is the following.

RQ 1 Can a probabilistic topic model learn high-quality, interpretable bilingual
representations from a collection of bilingual, subject-aligned document pairs
without using any additional bilingual supervision?

II) Multilingual word representations from monolingual corpora In the
second main research topic, we again investigate transfer learning potential of cross-
lingual text representations, but we move to a problem setting that is more general than
the one in topic I) in two respects. First, the goal is to research word representations
from truly monolingual corpora. Removing the requirement for bilingual documents
enables training representations on massive web crawl corpora. This implies that we
have to design RL models that are very efficient to train. Second, instead of learning
bilingual spaces that align two languages, we aim to learn multilingual spaces that
align a variable number of languages, which enables the simultaneous knowledge
transfer from multiple source languages. For this topic, we address two main research
questions.

RQ 2 Can we learn multilingual spaces without supervision of which the
representations are valuable for cross-lingual transfer learning? Can we do this
for sets of languages that have widely different characteristics?

RQ 3 When constructing the multilingual representations, is it beneficial to
incorporate dependencies between all languages by incrementally growing a
multilingual space?

III) Dt-correction using representation learning For our third topic, we explore
weakly-supervised RL for a verb spelling correction problem in Dutch that has no
annotated training examples. We illustrate how the lack of annotated training examples
can be bypassed by recasting the problem to verb suffix prediction, which only assumes
correctly-written text for supervised training.

From an application point of view, the aim is to design a system that can accurately
detect and correct context-dependent dt-errors, which are one of the most frequent
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spelling errors in Dutch. Unfortunately, current systems such as Microsoft Word’s
spelling checker have a hard time detecting such verb errors because, by definition,
inferring the correct spelling of such verbs requires an understanding of the sentence in
which they occur. We pose the three research questions.

RQ 4 Can we design an accurate RL system that tackles verb spelling correction
without annotated training examples?

RQ 5 What structural priors are important for predicting verb suffixes, a
classification task that requires a syntactic understanding of sentences?

RQ 6 Is there a way to provide insight into the model predictions of the proposed
RL model? In particular, is it possible to give feedback to the user when the
system proposes spelling corrections?

IV) A representation learning framework for bilingual lexicon induction In
the fourth research topic, we look at combining supervised and unsupervised RL in
a single framework to tackle bilingual lexicon induction. Bilingual lexicon induction
(BLI) is the task of inducing bilingual dictionaries from monolingual corpora. An
interesting BLI use-case is the cross-lingual alignment of terminology as a crucial step
in the automatic acquisition of bilingual terminology dictionaries (i.e., dictionaries
which translators can rely on to correctly and consistently translate specialized texts).
We therefore study BLI from domain-specific corpora in the (terminology-heavy)
medical domain.

Two important characteristics of this setting are that 1) we are not only interested in
translating the most frequent words, a setup that is typically maintained in BLI research,
but want to induce translations across the entire frequency spectrum, and 2) many
of the terms exhibit patterns on the morphology level that may facilitate identifying
translations. We therefore aim to study how to integrate character-level representations
into BLI models and investigate whether it is beneficial to take a full RL approach by
learning the character-level representations, rather than using hand-crafted features
used in prior work. More specifically, we pose the following research questions.

RQ 7 Can we use RL to integrate cross-lingual word-level and character-level
representations?

RQ 8 Is it beneficial to learn cross-lingual character-level representations for
weakly-supervised tasks instead of manually extracting these representations?

These four topics and their corresponding research questions all seek to investigate if
and how representation learning can advance natural language processing in settings
where the amount of annotated training data is limited. In sum, we study how to
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automatically acquire text representations with weak supervision and/or without any
supervision, and verify the quality of the representations on important NLP problems.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides an overview
of the theoretical foundations on which the research in this thesis rests. It covers
all concepts in linear algebra, probability theory, and representation learning that
are required for a profound understanding of this thesis. Chapters 3-6 present the
main contributions. Chapters 3 and 4 both study unsupervised representation learning
techniques, whereas Chapter 5 applies representation learning in a supervised setting,
and Chapter 6 presents a system that combines unsupervised and supervised RL
techniques. More specifically, the outline of the thesis is as follows.

Chapter 3 introduces a new probabilistic topic model for learning cross-lingual
representations for words and documents from a collection of bilingual, subject-
aligned document pairs. The model relaxes the assumption made in prior research
on bilingual topic models that there should be an exact match between the themes in
paired documents. The effectiveness of the model and the representations it produces
are tested by training on a collection of topic-aligned Wikipedia documents and two
cross-lingual document classification datasets.

Chapter 4 presents two methods for mapping word representations trained on
monolingual data for an arbitrary number of languages to one coherent multilingual
vector space where representations of similar words and translations are represented
by similar vectors. The effectiveness of the approaches is evaluated on different
benchmarks and different tasks.

Chapter 5 tackles an important Dutch spelling problem with an advanced RL model.
Although there exists little data with annotated spelling errors, we are able to train
the model on large amounts of unannotated data by casting the problem to verb suffix
prediction. We evaluate the model on multiple datasets and against different systems
including the commercial spell-checker that comes with Microsoft Word.

Chapter 6 proposes a representation learning paradigm to bilingual lexicon induction
that combines word-level representations for words or phrases that are learned without
supervision with character-level representations that are trained from a seed lexicon. To
evaluate our approach, we constructed a challenging but realistic BLI dataset consisting
of a fairly limited number of documents in a specialized domain and a bilingual
dictionary containing the translations of words and phrases in these documents. With
this setup, we mimic a scenario were translations are sought for domain-specific terms.
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The content of each contribution chapter is based on one or more scientific articles that
either have been published (Chapters 3 and 6), or have been accepted for publication
(Chapter 5), or will be submitted (Chapter 4) in/to well-known peer-reviewed journals
or international conferences. The references to the publications can be found at the end
of each chapter. In the final chapter, Chapter 7, we summarize the contributions and
conclusions of the thesis and discuss interesting directions for future research.





Chapter 2

Fundamentals

In this chapter, we give an overview of fundamental concepts that are important for a
complete and in-depth understanding of the contributions of this thesis.

2.1 Linear Algebra

We assume the reader is familiar with basic linear algebra concepts such as scalars,
vectors and matrices, and the basic operations between them. In this section, we first
enumerate the notation conventions, definitions, and properties of vectors and matrices
that are used in this dissertation. Next, we give a brief summary of the singular value
decomposition theorem and of two of its relevant applications.

2.1.1 Conventions and Definitions

Variables that represent a scalar will be written in non-bold, italic characters, e.g.,
x = 1.

Vector variables will be written in bold italic, e.g., x= (x1,x2, ...,xn).

Intuitively, a vector norm measures the size of a vector. The Euclidean norm || · ||2 is
used most frequently, it measures the Euclidean distance of a vector w.r.t. the origin
and is calculated as follows.

||x||2 =
√

x2
1 + x2

2 + ...+ x2
n

9
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The similarity between two vectors x and y is often measured with cosine similarity:

cos(x,y) =
xTy

||x||2||y||2

Matrix variables will be written in bold italic upper case.

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn


The above matrix is m× n-dimensional, where m is the number of rows and n the
number of columns.

To denote a submatrix ofX , we use slicing notation:

Xi: j,k:l =

xik . . . xil
...

. . .
...

x jk . . . x jl


The n-dimensional identity matrix is denoted with In. When the dimension is clear
from the context, we drop the subscript.

I3 =

1 0 0
0 1 0
0 0 1


The trace of a matrixX is the product of the elements on its main diagonal. We denote
it by tr:

tr(X) = x11x22 . . .xnn , where n is the smallest of the two dimensions ofX

An orthogonal matrix is any matrixO for which holds thatOOᵀ = I . The definition
implies thatOᵀO = I andOᵀ =O−1 also hold. An important property of orthogonal
matrices is that they do not change the Euclidean norm of the vectors they transform:
(||x||2 = ||Ox||2). They can be described as a combination of a rotation and reflection.

2.1.2 Singular Value Decomposition

The singular value decomposition theorem states that a real-valued m×n-matrixM
can be decomposed into a multiplication of three matrices M = UΣV ᵀ s.t. U
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is an m×m orthogonal matrix, Σ is an m× n diagonal matrix with non-negative
real numbers on the diagonal, and V in an n× n orthogonal matrix. The diagonal
entries σ1,σ2, ...,σmin(m,n) of Σ are known as the singular values ofM . In fact, there
are multiple such decompositions, by convention the singular values are sorted in
descending order σ1 ≥ σ2 ≥ ... ≥ σmin(m,n). It is possible that one or more of the
singular values will be zero.

One way to interpret this theorem is that any transformationMx of a vector x with
a real-valued matrixM , can be decomposed in three steps: 1) first, x is rotated with
the orthogonal matrix V ᵀ; 2) then, the dimensions of the rotated vector V ᵀx are
scaled with the corresponding singular values σ1,σ2, ...,σmin(m,n); 3) after scaling there
follows another rotation, this time with the orthogonal matrix U .

SVD has two applications that are relevant in the context of this thesis: dimensionality
reduction and the orthogonal Procrustes problem. SVD-based dimensionality reduction
can be interpreted as a basic form of representation learning. The idea is that by
representing the raw input data in a lower dimensional space with features that still
explain most of the variance in the original data, it should be easier to make the correct
generalizations over a (limited) set of annotated training examples. Let X be a data
matrix, where the rows represent data points and the columns the raw features with
which a data point is represented. Then SVD provides a means to compress X to a
new matrixR= Σ1:m,1:rV

ᵀ
1:r,1:n which preserves as much of the information ofX as

possible, meaning that we can approximately reconstruct the original matrixX from
R as X̃ =U1:m,1:rR.

The orthogonal Procrustes problem is an important component in Chapter 4. It is an
optimization problem with the goal to find the orthogonal transformation W (∗) that
maps a matrixX as close as possible to a matrix Z, where the distance between the
matrices is measured with the Frobenius norm:

W (∗) = argmin
W
||XW −Z||F , withWW ᵀ = I

The orthogonal Procrustes problem can be solved based on the SVD decomposition of
XZᵀ (Schönemann, 1966):

W (∗) =UV ᵀ , with UΣV ᵀ = SV D(XZᵀ)

2.2 Probability Theory

Probability theory is a framework for dealing with uncertainty in systems. Goodfellow
et al. (2016) define three sources of uncertainty: 1) inherent stochasticity in the system
that is being modeled; 2) incomplete observability, even for deterministic processes
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it can be useful to model them in a probabilistic framework when not all variables
are directly observed; 3) incomplete modeling, sometimes we do not have a complete
understanding of a process. To deal with a lack of knowledge a probabilistic framework
can be used. Incomplete modeling could also be caused by practical considerations, e.g.,
continuous location measurements of an object can be discretized to make computations
tractable, which results in uncertainty about the exact location of the object.

In this section, we revise fundamental concepts in probability theory that have
immediate relevance in the context of this dissertation.

2.2.1 Basic Concepts

The sample space or universe is the set of all possible worlds in the system that is being
modeled. For instance, to model two successive coin flips the sample space consists of
four possible worlds: {(Heads,Heads),(Heads,Tails),(Tails,Heads),(Tails,Tails)}.

A probability model associates a probability (a numerical value between zero and
one) to each possible world, such that the sum of the probabilities of the possible
worlds equals one.

Probabilities can also be assigned to unions of multiple possible worlds, called events.
Formally, an event is a subset of the sample space to which a probability is assigned.
For our coin example we could consider the event that the two successive coin flips
have the same face: {(Heads,Heads),(Tails,Tails)}.

To describe a possible world one typically uses one or more random variables. A
random variable is a variable whose domain describes possible outcomes of a random
phenomenon. For the coin example we could define two random variables X1, X2 both
with domain {Heads,Tails} to describe the outcome of the first and second coin flip
respectively.

The interpretation of probabilities has been a source of debate (Russell and Norvig,
2010): from the frequentist’s point of view probabilities can only come from
experiments, they view the probability of an event as the fraction of experiments
that it would be observed in after performing an infinite number of experiments. From
the Bayesian viewpoint, probabilities describe the belief in the occurrence of an event.
In this view, a model can have some prior assumption about the probability of an event,
which can be updated as evidence in the form of experiments is acquired.
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2.2.2 Probability Distributions

A probability distribution describes the likelihood of each possible value in the
domain of a random variable. For discrete random variables such as the ones in our
coin example, the (discrete) probability distribution P(X) is described by enumerating
all values and their corresponding probability (e.g., P(X1) = <P(X1 = Heads) =
0.5,P(X1 = Tails) = 0.5>). For continuous random variables there are infinitely many
values all of which have zero probability. For such variables the probability distribution
is described with a probability density function p(X) 1, which defines the probability
that the outcome of the random variable falls within a given range X ∈ (x1...x2) as
follows:

P(x1 ≤ X ≤ x2) =
∫ x2

x1

p(X)dX

The concept of a distribution can also be extended to multiple variables: the distribution
that describes the joint occurrence of N random variables X1, ..., XN is called the joint
probability distribution P(X1, ...,XN) of X1, ..., XN . P(X) is also called the marginal
distribution of X . In the remainder of this subsection, we enlist commonly-used
probability distributions that are important for this dissertation, particularly for Chapter
3.

The Bernoulli distribution is a two-dimensional distribution which defines the
probability of success in a single trial (e.g., the chance to get heads in a single coin
toss) and has a single parameter δ ∈ (0...1). We denote a Bernoulli distributed random
variable with X ∼ Bernoulli(δ ). The distribution is calculated as follows:

P(X ; p) =

{
p , if X = success
1− p , if X = f ailure

The Binomial distribution generalizes the Bernoulli distribution to multiple independent
trials (e.g., n consecutive coin flips). We denote a Binomial distributed random variable
with X ∼ Binomial(n, p). Given the probability of success p and the number of trials
n, the probability distribution is computed as follows:

P(X = x;n, p) =
(

n
x

)
px(1− p)(n−x)

where x is the number of trials that succeeded and
(

n
x

)
=

n!
x!(n− x)!

1Lowercase p is typically used to describe continuous distributions, whereas upper case P is used for
discrete distributions. For notational convenience we will sometimes use P for properties/definitions that
hold for both discrete and continuous distributions.
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The Multinomial distribution generalizes the Binomial distribution to experiments
with more than two outcome values (e.g., rolling a die n consecutive times). It is
parametrized by an N-dimensional vector φ= (φ1,φ2, ...,φN) for which each element
φi lies between zero and one and for which the sum equals one;2 and the number of
trials n. We denote a set of multinomial variables as X1,X2, ...,Xn ∼Multinomial(n, p).
It is computed as follows:

P(X =< x1,x2, ...,xN >;n,φ) =
n!

∏
N
i=1 xi!

n

∏
i=1

φ
xi
i

where each xi denotes the number of times that ith outcome

value/category has been selected.

The special case of the Multinomial distribution where n = 1 is sometimes referred to
as a Multinoulli or categorical distribution (Goodfellow et al., 2016; Murphy, 2012).

The Beta distribution is a one-dimensional, continuous distribution with two parameters
χS, χT 3 with a domain (0...1). The distribution is typically used to express prior
knowledge about the success probability parameter p of the Bernoulli or Binomial
distributions, in which case it can be interpreted a distribution over distributions. The
distribution is defined as:

p(X = p; χ
S,χT ) =

1
B( (χS,χT ))

p(χ
S−1)(1− p)(χ

T−1)

with B the Beta function and Γ the Gamma function:

B( (x1,x2, ...,xN) ) =
∏

N
i=1 Γ(xi)

Γ(∑N
i=1 xi)

Γ(z) =
∫

∞

0
xz−1e−xdx

The distribution parameters χS, χT are called concentration parameters because
their ratio determines the mode of the distribution4 and their size determines how
concentrated/peaked the distribution is at the mode. When used as a prior on the
success probability parameter p, these parameters can be interpreted as pseudo-counts

2Note that due to this summation constraint there are only N-1 degrees of freedom when choosing these
parameters.

3These parameters are usually referred to as α and β , but we use χS, χT to avoid confusion with the
parameters of the Dirichlet distribution.

4The mode of a distribution of a random variable X is the value for X at which the distribution function
takes it maximum value.
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for the number of failures and successes respectively: the higher their values the
stronger the prior and the more experiments are needed to significantly change the
prior.

The Dirichlet distribution is the generalization of the Beta distribution to N dimensions
and hence can be used to represent prior knowledge on the φ parameters of
a Multinomial distribution. It is parametrized by an N-dimensional vector of
concentration parameters α= (α1,α2, ...,αN). The distribution is defined as:

p(X = φ ;α) =
1

B(φ)

N

∏
i=1

φ
αi−1
i

For all the distribution functions we introduced so far the parameters have an intuitive
interpretation, e.g., the parameter of a Bernoulli distribution is the probability of success.
It is also possible to define black-box distribution functions, where the parameters do
not have a clear interpretation. Distributions parametrized by neural networks, which
are introduced in Section 2.3.1, are good examples.

2.2.3 Calculating with Joint Distributions

The full joint distribution of a probability model is the joint distribution of all random
variables that are modeled. Given the full joint distribution it is possible to assign
a probability to any assertion about the possible worlds. For instance for the coin
example, given the distribution P(X1,X2) we can calculate the probability of flipping
Heads the first time P(X1 = Heads), or flipping Tails the second time given the first
outcome was Heads P(X2 = Tails|X1 = Heads), etc. The following equations allow
to compute these probabilities:

P(X1) = ∑
x2∈X2

P(X1,X2)

P(X2|X1) =
P(X1,X2)

P(X1)

where ∑x2∈X2
means summing over all values in the domain of X2. From the latter

equation we can derive Bayes’ rule which is the theoretical justification of many
machine learning methods:

P(X1|X2)P(X2) = P(X1,X2) = P(X2|X1)P(X1)

P(X2|X1) =
P(X1|X2)P(X2)

P(X1)
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These equations hold in general for a model with N random variables:

P(X1,X2,X3, ...,XN−1) = ∑
xN∈XN

P(X1,X2, ...,XN)

P(X1|X2,X3, ...,XN) =
P(X1,X2, ...,XN)

P(X2,X3, ...,XN)

These equations also hold for continuous random variables where the summations are
replaced by integrals over the domain of the continuous random variables.

The most general way to specify the joint distribution is by enumerating all possible
worlds (i.e., all the value combinations of all the random variables) and their
corresponding probabilities. For large models, with a large number of variables,
this becomes intractable as this requires storing as many entries as the product of the
domain sizes of the random variables. For example, if we want to model two successive
coin tosses we need 2 ·2 = 4 entries, whereas for ten successive coin tosses we already
need 210 = 1024 entries. A way to deal with this problem is to make independence
assumptions. If two or more random variables are mutually independent their joint
distribution factors into their marginals:

P(X1,X2, ...,XN) = P(X1)P(X2)...P(XN)

Under this assumption, the full joint distribution of ten successive coin tosses can be
specified in terms of the distributions of the marginals so only 2 ·10 = 20 entries are
required. A weaker type of independence assumption is conditional independence,
where a set of random variables X is independent of a set of random variables Y
under the observation of a third set of random variables Z :

P(X ,Y |Z ) = P(X |Z )P(Y |Z )

2.2.4 Estimating Distributions

Once the probability model and its independence assumptions have been specified, the
goal is to obtain meaningful probabilities based on the prior knowledge (if applicable)
and the data/evidence we possess. The evidence or data comes in the form of
observations of the random variables in previous experiments. The term experiments
is used in a broad sense here. For successive coin tosses, experiments are previous
successive coin tosses; for language modeling, where the goal is to estimate the
probability of a sentence, experiments are sentences that are observed in a collection
of texts. In the context of machine learning, the data is split into multiple portions: a
training dataset, which is used to estimate the parameters, a validation dataset to
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tune hyper-parameters5, and a test dataset to evaluate how good the final model (i.e.,
with set values for the hyper-parameters and model parameters) performs. It is possible
that some random variables are not observed in the data but are nevertheless important
to describe the process that is being modeled. These are called latent variables.

Estimating a distribution P(X ;θ) comes down to estimating the parameters θ of the
distribution. Two important estimation criteria are maximum likelihood (ML) and
maximum a posteriori (MAP).

Maximum likelihood estimation aims at finding the vector of model parameters θ
that best explains the data. This criterion is linked to the frequentist interpretation of
probabilities and assumes that there is one correct value for each parameter and the
goal is to estimate this value from experiments:

θML = argmax
θ

∑
z∈Z

P(X = x,Z = z;θ)

WhereX are the observed variables and Z are the latent variables which have to be
summed/integrated out. Maximum a posteriori estimation takes a different viewpoint
and considers the parameters Θ itself random variables6 which follow a certain prior
distribution P(θ). This is in line with the Bayesian interpretation of probabilities. The
optimal parameter value is obtained as follows:

ΘMAP = argmax
Θ

∑
z∈Z

P(X = x,Z = z |Θ)P(Θ)

It is not always necessary to obtain values for the parameters θ, namely when the goal is
to make predictions/probabilistic assertions about the random variables. In this case, we
can keep using the distribution of θ to do inference: P(X=x) =

∫
θ P(X=x|θ)P(θ).

Now that we have specified the criteria for obtaining the distribution parameters, the
question remains how to compute the optimum for the chosen criteria. When the joint
probability distribution is simple enough, it could be possible to obtain the optimal
value for θ analytically by setting the gradient of the objective (ML or MAP) w.r.t. θ
equal to zero and solving for θ. However, it may happen that there is no closed-form
solution for θ or that calculating the solution would be intractable because there are too
many latent variables.7 In this case, one needs to resort to approximate optimization
techniques. There are many such techniques but we will limit our explanation to two
techniques that are used in this dissertation: Gibbs sampling and stochastic gradient
descent.

Gibbs sampling is a Monte Carlo Markov chain (MCMC) estimation technique used
to obtain a sequence of observations that approximately come from a given distribution

5Hyper-parameters are parameters that are fixed before estimating the model parameters.
6To stress that the parameters are now random variables we denote them with capital Θ instead of θ.
7Recall that every latent variable has to be summed or integrated out.
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for which direct sampling is difficult. With this sequence of observations the full joint
distribution, distributions on a subset of the variables, and the values of latent variables
can then be approximated. Let X1, X2, ... , XN be the random variables that need to be
sampled8 then we obtain a sequence of samples as follows:

• Start with an initial sample x(0)0 ,x(0)1 , ...,x(0)N .

• Then iteratively obtain new samples for each random variable Xi by sampling
from the conditional distribution below until some convergence criterium is
met (e.g., after a fixed number of steps is reached or based on the ML/MAP
objective):

X (t+1)
i ∼ P(X (t+1)

i |X (t+1)
0 ,X (t+1)

1 , ...,X (t+1)
i−1 ,X (t)

i+1, ...,X
(t)
N )

where the superscripts denote the time step/iteration

It is not always necessary to sample all random variables of the probability model. It
may be possible to sum/integrate variables out and calculate them after convergence
based on other random variables. This computationally more efficient variant is called
collapsed Gibbs sampling.

Another common optimization technique is stochastic gradient descent (SGD). SGD
assumes the training objective is written as a loss function (i.e., as a quantity we want
to minimize) that can be derived w.r.t. every parameter that is being estimated. The
idea of SGD is to iteratively select samples from the training dataset and make slight
local changes to each of the parameters such that the loss function becomes smaller
when evaluated on the example. Specifically, the new value of the parameter vector θ
is calculated by subtracting a fraction λ of the gradient of the loss function L w.r.t. θ
from its old value:

θnew← θold−λ∇θ L(Xi,θ)

λ is the learning rate, a parameter that controls the degree to which the parameters
are updated. In the most basic version of SGD, the learning rate is a hyper-parameter
that is fixed at the beginning of training. For most systems, the gradients are often
calculated on a batch of examples rather than on a single example. This concept is
known as mini-batching and both leads to a more stable estimate of the gradient as
well as a higher degree of parallelism in the computations, which can be exploited by
specialized hardware such as Graphics Processing Units (GPUs).

There exist several other modifications to SGD that result in better convergence
properties such as using an adaptive learning rate and taking into account the gradients

8Note that when taking a Bayesian perspective this set may include the distribution parameters.
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of previous batches to help gradients accelerate in the right direction. These result in a
plethora of SGD-based optimization algorithms such as Adaptive Gradient Algorithm
(AdaGrad, Duchi et al., 2011), Root Mean Square Propagation (RMSProp, Hinton et al.,
2012), and Adaptive Moment Estimation (Adam, Kingma and Ba, 2015). Throughout
this dissertation, we utilize Adam, which adapts the learning rates for each parameter
separately, because its recommended hyper-parameters (e.g., the initial learning rate)
are robust across different problems and hence require little to no tuning.

2.3 Representation Learning

Representation learning is a branch of machine learning concerned with the study of
techniques that automatically learn good feature representations for the raw input data.
First, we introduce neural networks, a set of representation learning techniques that
play a prominent role throughout this thesis. Following that, we discuss two important
representation learning techniques for text: latent Dirichlet allocation, a well-known
representation learning model for documents and words that will be the foundation of
the work in Chapter 3; and word embeddings, a paradigm to represent words that is
used in Chapters 4-6.

2.3.1 Artificial Neural Networks

Artificial neural networks (further simply neural networks) are a prominent class of
models within representation learning. They can be seen as a heavily simplified version
of biological neural networks in human/animal brains. Neural networks constitute of
a collection of interconnected neurons. Each neuron computes its output value y j by
calculating a weighted sum of values of its input neurons x1, ..., xN , optionally adding
a bias term b j to the sum, followed by applying an activation function g to the result:

y j = g(
N

∑
i=1

w jixi +b j) , where each w ji is a weight

Neurons can be grouped in layers: neurons in the same layer receive inputs from the
same set of neurons, use the same activation function, and send their outputs to the
same set of neurons. When every neuron in a layer is connected to all its input neurons,
the layer is said to be fully connected. Figure 2.1 shows an example of a simple neural
network consisting of three layers. The first and last layers are called the input and
output layers respectively, and the layers in between are called hidden layers.

It is possible to write the output computation of an M-dimensional layer with N input
neurons succinctly with matrix-vector operations. Let W be an N×M-dimensional
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Figure 2.1: Illustration of a simple feed forward neural network with a 5-dimensional
input layer, a 3-dimensional hidden layer, and a 4-dimensional output layer.

weight matrix, b an M-dimensional bias vector, and x the N-dimensional vector with
the outputs of the input neurons, then we calculate the M-dimensional output of the
layer y as:

y = g(Wx+b)

There are several commonly-used activation functions:

The sigmoid function (see Figure 2.2a) takes a scalar as input and squashes it to a range
of (0,1). This makes it suitable to predict the probability of success for a Bernoulli
experiment and makes it a common choice at the output layer of a binary classification
problem.

sigmoid(x) =
1

1+ e−x

The hyperbolic tangent or tanh function (see Figure 2.2b) is similar to the sigmoid
function but squashes its input to a range of (−1,1):

tanh(x) =
ex− e−x

ex + e−x

The ReLU function (see Figure 2.2c) converts a scalar to a range between zero and
infinity (0,∞) and results in more sparse feature activations. It was proposed as an
activation function for neural networks fairly recently by Jarrett et al. (2009); Nair and
Hinton (2010).

ReLU(x) =

{
0 , if x < 0
x , if x≥ 0
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(a) sigmoid(x)

(b) tanh(x)

(c) ReLU(x)

Figure 2.2: Visualization of commonly-used non-linear activation functions (notice the
different axis scales).
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Although, the above activations functions operate on scalars they can be generalized to
vector inputs by applying the function to each element of the vector. This is typically
denoted with the same symbol, e.g., tanh(x) = (tanh(x1) , tanh(x2), ... , tanh(xN))

The softmax function converts a vector to a probability distribution. This makes it a
common choice at the output layer of a multilabel classification problem.9

so f tmax(x) =
ex

∑xi∈x exi

Two interesting properties of these functions are that 1) their derivatives are defined for
their entire domain, making them suitable for gradient-based parameter training; and 2)
that they are non-linear. While it is possible to use linear layers, i.e., use the identity
function as the activation function, it should be noted that the computation of multiple
subsequent linear layers can always be expressed with a single linear layer. Therefore
in practice, linear layers are only seen at the input and/or output layers.

Networks with two or more hidden layers are called deep neural networks. Although
it has been shown that even with a single layer neural networks are universal function
approximators (Cybenko, 1989), the assumption that functions which describe real-
life phenomena are decomposable in many simple functions appears to work well in
practice. Put differently, adding more layers to a neural network is not merely aimed at
increasing the model capacity - this can be easily achieved by adding more neurons to
a single hidden layer - but is a structural prior that often yields a better approximation
of the target function.

Typically, the output neurons of a neural network can be interpreted as the parameters
of a conditional probability distribution P(Y |X). This implies that ML/MAP can be
used as the criteria to estimate network parameters (i.e., the weight matrices and
bias vectors). For the neural network models in this dissertation (see Chapters 5 and
6) we have used the ML objective. For most neural networks it is not possible to
obtain a closed-form solution for the training objective. Instead, the optimization of
neural networks is typically done with (some variation of) stochastic gradient descent.
Because of the compositional nature of neural network functions, and using the chain
rule, the gradients of the loss function w.r.t. the parameters and outputs of layer i can
be calculated efficiently using the gradients of layer i+1. The algorithm that efficiently
computes gradients for neural networks in a top-down fashion (i.e., from the output
layer to the input layer) is known as backpropagation.

9When x is a vector, ex denotes the element-wise exponential function ex = (ex1 ,ex2 , ...,exN )



REPRESENTATION LEARNING 23

2.3.2 Neural Network Building Blocks

In this section, we introduce important building blocks for designing neural networks
that are relevant in the context of this thesis.

First, we need a way to represent the input and output variables. In the context of
NLP, we typically work with categorical variables which can be represented using
one-hot vectors. One-hot vectors are vectors for which all dimensions but one are
zero. A categorical variable that can take N possible values can be encoded with
an N-dimensional one-hot vector, where the non-zero entry signals which of the N
categories the vector represents.

Next, we introduce building blocks for computing the outputs from the inputs. The most
basic computation is a fully connected or dense layer, which was already introduced
in Section 2.3.1. Figure 2.1 displays two fully connected layers: 1) the hidden layer
is fully connected to the input layer, and 2) the output layer is fully connected to
the hidden layer. A neural network like the one in Figure 2.1 for which the neuron
connections do not form any cycles is known as a feed forward neural network. When
a fully connected layer projects/embeds high-dimensional one-hot inputs into a low-
dimensional space using the identity function as the activation function it is called
an embedding layer. Conceptually an embedding layer comes down to associating a
vector to every dimension of the one-hot vector.

Another important architecture is the recurrent neural network (RNN). RNNs are a
means to map a variable length vector sequence x1, ... , xt to a single vector ht . The
core assumption is that a good representation ht for the sequence x1, ... , xt can be
computed based on xt and the representation ht−1 of x1, ... , xt−1. ht is called the
state of time step n. To calculate the first hidden state an initial hidden state vector h0
has to be defined. This is either a vector with all entries set to zero or a vector that is
trained jointly with the rest of the network parameters. From the state, the output yt for
time step t is calculated.10 Figure 2.3 is a high-level illustration of the computations of
an RNN unrolled across four time steps.

A simple/vanilla RNN or Elman network (Elman, 1990) is specified by the following
recursive equations, where gh and gy are non-linear activation functions:

hn = gh(Wxx+Whhn−1 +bh)

yn = gy(Wyhn +by)

While Elman networks could theoretically learn to incorporate dependencies of arbitrary
length, finding the parameter values forWx,Wh, bh that do so is infeasible due to the
vanishing gradient problem. The vanishing gradient problem refers to the phenomenon

10It is also possible to use the state directly as the output yt = ht .
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Figure 2.3: Illustration of the computations of an RNN unrolled across four time steps.
h0 is the initial state of the RNN. Each other state ht is computed based on the previous
state ht−1 and the current input xt .

where the gradients can become so small that they have no significant effect on the
parameter update. It manifests itself in vanilla RNNs and deep neural networks
when training with gradient-based optimization techniques such as SGD. This is a
consequence of the fact that computing the gradients of parameters/activations in
bottom layers/early time steps requires repeatedly applying the chain rule. As a result,
these gradients are computed as a product of a large number of factors. If many of
these factors are small the gradient vanishes. Similarly, the gradient may explode when
many of these factors are > 1.

A way to counteract the vanishing gradient problem is to introduce short-cuts in the
network that copy the values of neurons in the previous layer or state to the next layer.
Specifically, to add a short-cut to a layer y = g(Wx+b), the neurons of a subsequent
layer y could be calculated as a weighted sum of 1) the neurons of the previous layer
x; and 2) the standard transformation on the previous layer:

y = f �x+ i�g(Wx+b)

where the i and f are weight vectors also called gates in this context

and � denotes elementwise multiplication.

Long short-term memory (LSTM) is a type of RNN that applies this principle. It uses a
gate ft to control what information is propagated from the previous to the next state, a
gate it to control what information is extracted from the new input xt ; and a gate ot
to control what information of the state is exposed to the output neurons. An LSTM
network is defined with the following recursive equations:

ft = sigmoid(W f ,xxt +W f ,hht−1 +b f )

it = sigmoid(Wi,xxt +Wi,hht−1 +bi)

ot = sigmoid(Wo,xxt +Wo,hht−1 +bo)
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ct = ft �ct−1 + it � tanh(Wc,xxt +Wc,hht−1 +bc)

ht = ot � tanh(ct)

Note that the gate variables are calculated from the current input xt and previous
hidden state ht−1, allowing the network to learn when to forgot and when to remember
information from previous time steps. Different variations on the LSTM gating are
possible, e.g., the Gated Recurrent Unit (GRU) (Cho et al., 2014) is another commonly-
used alternative. LSTMs and GRUs are widely used to model language as it requires
representing variable length sequences with long-range dependencies (e.g., sentences,
documents).

It is a common misconception that LSTMs also solve the exploding gradient problem.
Introducing short-cuts does not inhibit the gradients from becoming large. Fortunately,
exploding gradients turn out to be less of a problem in practice. It can be prevented by
clipping gradient norms to a given threshold.

Attention mechanisms are another important building block. Their intent is to filter
out relevant information from a set of input vectors x1, x2, ... , xn (also called the
values) based on a query vector q that encodes what type of information should be
retrieved from the inputs. Formally, an attention mechanism calculates an attention
vector as a weighted average of the input vectors, where the weights are computed
based on a comparison of the inputs with the query such that input vectors that are
more similar to the query vector get higher attention weights. The similarity function
between the query vector and one of the inputs is called the attention function. As
RNNs and attention mechanisms both compute a single vector from multiple input
vectors they may look similar at first glance but they are fundamentally different in
the fact that an attention mechanism does not take into account the sequence order of
its inputs and aggregates its inputs as a simple linear combination. In this respect, the
intent of the attention mechanism is to focus on a limited number of elements from a
set of inputs, whereas an RNN creates a summary of a sequence that is biased towards
the last elements. Attention is often used to further enhance the memory of RNNs.
Although RNNs such as the LSTM can model long-range dependencies their memory
is limited because their state is a fixed-length vector. By allowing RNNs to query
previous states with attention their memory capacity is extended.

An important application of this concept is found in neural machine translation: when
generating the next target word yt in a translation of a source sentence x1, x2, ... , xn,
attention filters the source sentence by attending to the word representations that are
most relevant for generating yt (typically the representation(s) of the word(s) which
has/have to be translated next). Attention is explained in more detail in Chapter 5.

A final aspect of neural network architectures we need to discuss is regularization.
Neural networks are powerful function approximators, so it is important to not let
them overfit on random artifacts of the training data that do not generalize over the
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true distribution. To this end, there exist several regularization techniques which limit
the capacity of the model during training. Classical techniques such as L1 and L2
regularization have been used, but in recent year dropout regularization (Srivastava
et al., 2014) has become more popular.11 Dropout is a technique that randomly
(i.e., according to a Bernoulli distribution with probability p) drops neurons and their
connections during training. This forces each neuron to represent a feature that is
meaningful independent of the other neurons. In this thesis, we consistently use
dropout for regularizing neural networks.

Figure 2.4: Graphical representation of the latent Dirichlet allocation model. Blue
circles denote parameters of prior values, which are set in advance; gray circles denote
observed random variables; and the white circles denote latent random variables.

Algorithm 1: LDA: GENERATIVE STORY

initialize: (1) the total number of topics: K;
(2) the values for Dirichlet priors parameters α and β;

sample K times Φk ∼ Dirichlet(β);
for j← 1 to D do

sample Θ j ∼ Dirichlet(α)
for i← 1 to M j do

sample Z ji ∼Multinomial(1,Θ j)
sample W ji ∼Multinomial(1,Φk), with Z ji = zk

2.3.3 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a generative graphical model for documents.
Algorithm 1 shows LDA’s generative story and Figure 2.4 shows its equivalent

11Note that is also feasible to combine multiple regularization methods, but it comes at the cost of more
hyper-parameters that need tuning.
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graphical representation using plate notation. The model assumes that a document D j
is constructed by sampling M j random variables Z j1, ...,Z jM j from a K-dimensional
multinomial distribution Multinomial(1,Θj). Each Z ji is a latent random variable
with domain {z1,z2, ...,zK} for which every element zk is associated with a multinomial
distribution Multinomial(1,Φk) over words. After sampling the value zk for Z ji, a
word Wi j is sampled from the word distribution Multinomial(1,Φk) that is associated
with zk. M j hence corresponds to the number of words in document D j. Both the
parameters of the word distributions Φk and the parameters of the topic distributions
Θj are considered random variables and are drawn from Dirichlet prior distributions,
Dirichlet(α) and Dirichlet(β) respectively.

The key strength of LDA is not its ability to assign probabilities to documents, but
rather the fact that the parameters can be used to infer valuable and interpretable
representations for documents and words, i.e., documents can be represented by their
topic distribution Θ j and word representations can be derived from the per-topic word
distributions Φ1, ...,ΦK (Vulić et al., 2015).

LDA is an example of a probability model for which it is impossible to express a
solution to the ML/MAP objective in closed form. To estimate the parameter values
Θ j and Φk collapsed Gibbs sampling is a common choice.

2.3.4 Word embeddings

In Section 2.3.2, we introduced the concept of an embedding layer: a linear, fully
connected layer that projects one-hot input vectors to a low-dimensional space. The
majority of neural network-based NLP systems uses an embedding layer to project
words, represented as one-hot vectors, to a low-dimensional space. Hence, every word
will be represented by a unique low-dimensional vector12 known as a word embedding.
Word embeddings can be trained with supervision (i.e., on annotated training examples
of the task at hand) or without supervision (i.e., on unannotated text corpora). An
example of the latter which is repeatedly used in this dissertation is the continuous
Skip-gram model (also commonly referred to as word2vec, which is one of the software
packages that implements this model).

The continuous Skip-gram (Mikolov et al., 2013b) is a log-linear two-layer neural
network, in its most basic variant (Mikolov et al., 2013b) it predicts the probability that
a word xi occurs in the local context of word x. The network consists of an embedding
layer that projects the one-hot representation x of word x to its word embedding h,
followed by a fully connected layer with the softmax activation function.

h=Wxone-hot

12Word embedding dimensions typically range between 25 and 1000, which is small compared to typical
vocabulary sizes.
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o= so f tmax(V h)

P(xi|x) = oi

Formally, the local context of a word occurrence in a text corpus is comprised of the first
n words to its left and right respectively, where n is known as the window size. Suppose,
for example, that the cat sat on the mat is a sentence that is part of the preprocessed
text corpus, then the model will update the network weights such that the likelihood
of predicting the local context from the increases: P(cat|the), P(sat|the), P(on|the),
P(the|the), P(mat|the). Analogously, the likelihoods of the local contexts of the other
words in the sentence are optimized. Each neuron in the output layer corresponds to
the probability of a word in the vocabulary. The weights of the input connections of
these neurons are collectively called the context embeddings, whereas the weights
of the input layer are called the input word embeddings. Similar to LDA, the intent
of the continuous Skip-gram model is to extract good word representations from its
parameters (the word embedding weights in particular), the probability estimates it
learns will not be used after training.

It is important that word embedding models are computationally efficient such that
they can be trained on large amounts of text data. When the vocabulary (i.e., the
number of unique words in the corpus) is large, the computations in the last layer of
continuous Skip-gram become very expensive. Therefore, in practice, the objective is
approximated with negative sampling (Mikolov et al., 2013a). For continuous Skip-
gram with negative sampling (SGNS) the softmax activation function is replaced by
the element-wise sigmoid and the training objective is to increase the value of the
output neuron that corresponds to the context word while decreasing the values of
Ns other randomly sampled neurons. Instead of needing to calculate a large matrix-
vector multiplication and softmax activation o= so f tmax(V h), the negative sampling
objective can be implemented very efficiently with a few vector dot products.

There are many other word embedding models (Mikolov et al., 2013a; Pennington
et al., 2014; Bojanowski et al., 2016, inter alia), for instance, continuous bag-of-words
uses the inverse architecture of continuous Skip-gram (i.e., predicting words given
their local context). Bilingual word embedding Skip-gram (BWESG; Vulić and Moens
(2016a)) is another variant that extends SGNS to learn bilingual word embeddings
from subject-aligned document pairs. It uses a shuffling scheme to convert aligned
document pairs to single multilingual documents and then trains the SGNS model with
a larger window size on these pseudo-multilingual documents.
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2.4 Conclusion

In this chapter, we provided a dense overview of the mathematical foundations and
key concepts on which the research presented in this thesis is built. Chapter 3 rests on
probability theory and the latent Dirichlet allocation model; Chapter 4 uses the linear
algebra fundamentals, including the solution of the Procrustes problem, to project word
embeddings of different languages to the same vector space; Chapters 5 and 6 build on
probability theory and the neural network fundamentals; and word embeddings are an
important component throughout Chapters 4-6.





Chapter 3

C-BiLDA: Extracting
Cross-lingual Topics from
Non-Parallel Texts by
Distinguishing Shared from
Unshared Content

In this chapter, we introduce a new RL model for learning bilingual text representations
without supervision on non-parallel training corpora. Specifically, we propose C-
BiLDA, a bilingual extension to the latent Dirichlet allocation model (see Section 2.3.3
of the fundamentals chapter). Because the word and document representations induced
by LDA are easily interpretable yet still result in good classification performance when
used as input features for NLP tasks, LDA is one of the most widely used models for
learning text representations without supervision.

The bilingual extension we propose learns representations of words/documents such
that words/documents with similar meaning get similar representations regardless of
their language. Such representations are very useful in weakly-supervised settings as
they allow knowledge transfer from resource-rich languages to languages with a limited
amount of annotated training data. For example, a classifier that uses multilingual
input representations can be trained on annotated data in English and later applied to
any of the other languages for which multilingual representations had been induced.
Unlike related research efforts, we extend LDA to two languages without assuming the
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availability of a parallel corpus to train the representations. It requires a collection of
bilingual document pairs which are linked by their main subject only (e.g., a collection
of document pairs where each pair consists of an English and Dutch news article on
the same event).

We empirically validate our new RL model by training the model on a multilingual
collection of Wikipedia articles and evaluating the representations on two cross-lingual
document classification datasets.

3.1 Introduction

Cross-lingual text mining aims to induce and transfer knowledge across different
languages to help applications such as cross-lingual information retrieval (Levow et al.,
2005; Ganguly et al., 2012; Vulić et al., 2013), document classification (Prettenhofer
and Stein, 2010; Ni et al., 2011; Guo and Xiao, 2012a), or cross-lingual annotation
projection (Zhao et al., 2009; Das and Petrov, 2011; van der Plas et al., 2011;
Kim et al., 2012; Täckström et al., 2013; Ganchev and Das, 2013) in cases where
translation and class-labeled resources are scarce or missing. In this chapter, we utilize
probabilistic topic models to perform cross-lingual text mining. Probabilistic topic
models (PTMs) are unsupervised generative models for representing document content
in large document collections. Probabilistic topic models assume that every document
is associated with a set of hidden variables, called topics, which determine how the
words of the document were generated. Formally, a topic is a probability distribution
over terms in a vocabulary. Informally, a topic represents an underlying semantic
theme (Blei and McAuliffe, 2007). A representation of a document by such semantic
themes has the advantage of being independent of both word-choice and language.
Fitting a probabilistic topic model on a text collection is done by assigning the values
to the hidden variables that best explain the data (see Section 2.2.4).

In monolingual settings the majority of text mining research using topic models is based
on the probabilistic latent semantic analysis (pLSA) (Hofmann, 1999) or latent Dirichlet
allocation (LDA) (Blei et al., 2003) models and its variants. Both are probabilistic
models that take into account that word occurrences in the same document often
belong to the same topic. This is done by associating a topic distribution to every
document, rather than having a single topic distribution for the whole corpus. The
models thus consist of two types of probability distributions: (1) distributions of topics
over documents (further per-document topic distributions) and (2) distributions of
words over topics (further per-topic word distributions). After learning the topic model
on a training corpus, the obtained per-topic word distributions can be used to infer
per-document topic distributions on unseen documents. The important difference
between pLSA and LDA is that the latter takes the Bayesian approach for modeling
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the per-document topic distributions, i.e., the per-document topic distributions come
from a Dirichlet-shaped prior distribution. pLSA in contrast uses point-estimates for
the topic probabilities of documents, which makes it more vulnerable to overfitting.
pLSA and LDA have found applications in document clustering, text categorization
and ad-hoc information retrieval, but are not suited for cross-lingual text-mining since
they were designed to work with monolingual data.

In multilingual settings, knowledge is mined from text by relying on machine-readable
multilingual dictionaries or by using multilingual data. Since machine-readable
dictionaries are not available for all languages pairs, the latter approach is more flexible.
Multilingual data either refers to parallel corpora or comparable corpora. A parallel
corpus is a collection of documents in different languages, where each document has
a direct translation in the other languages. Hence, a parallel corpus is data-aligned at
the sentence level. Parallel corpora are high-quality multilingual data resources, but
they are not widely available for all language pairs and they are limited to a few narrow
domains (e.g., the parliamentary proceedings of the Europarl corpus (Koehn, 2005)).
Therefore, text mining from comparable corpora has gained interest over the last few
years. A comparable corpus is a collection of documents with similar content which
discusses similar themes in different languages, where documents in general are not
exact translations of each other and are not strictly aligned at the sentence level. Unlike
parallel corpora, comparable corpora by default comprise both shared and non-shared
content.

A corpus built from Wikipedia using inter-wiki links to align content at the document
level is a straightforward example of a comparable corpus, since the aligned article pairs
may range from being almost completely parallel to containing non-parallel sentences.
There are several other ways to acquire comparable corpora however. In the past years
researchers have shown that comparable corpora can be automatically compiled from
the Web. Utsuro et al. (2002) construct comparable corpora with document alignments
from English and Japanese news websites. To obtain a collection of similar documents
they look at the dates of the articles and they rely on a machine translation tool to
find document alignments. Talvensaari et al. (2008) leverage the process of focussed
crawling to obtain domain-specific comparable corpora with paragraph alignments.
The method was applied to gather comparable corpora in the genomics domain, and
it was shown to be superior to a (general) parallel corpus in finding genomics-related
term translations. Apart from the resources we can find on the Web, organizations
often possess domain-specific corpora which allow to construct comparable corpora.
In recent work for example, English and Chinese discharge summaries were used
to create a comparable corpus in the healthcare sector (Xu et al., 2015). For even
more approaches towards constructing document-aligned comparable data, we refer
the interested reader to the relevant literature (Utiyama and Isahara, 2003; Tao and
Zhai, 2005; Vu et al., 2009). While comparable corpora are typically cheaper, more
abundant, more easily obtainable and more versatile than parallel corpora, they also
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constitute noisier and more challenging cross-lingual text mining environments.

Multilingual topic models such as bilingual LDA (BiLDA) (De Smet and Moens,
2009; Mimno et al., 2009) or Collaborative PLSA (C-PLSA) (Jiang et al., 2012)
exploit the fact that the linked documents in multilingual corpora share content. These
models assume that while the shared content is expressed with words from different
vocabularies, the content can be represented in the same space of latent cross-lingual
topics. Put differently, multilingual topic models learn cross-lingual topics which serve
as a bridge between the different languages. The per-document word distributions
constitute a language-independent document representation, while the language-specific
information is modeled in per-topic word distributions. Topic models in this framework
do not rely on sentence alignments, which makes them more robust to noisy data.
However, the models assume that the topic distributions of linked documents are
identical, which is not the case for comparable corpora.1

Contributions. The main contribution of this chapter is a novel multilingual topic
model specifically tailored to deal with non-parallel data. This model called comparable
bilingual LDA (C-BiLDA) may be observed as an extension of the BiLDA model.
However, unlike BiLDA, which assumes that two documents in an aligned document
pair (e.g., a pair of aligned Wikipedia articles) share their topics completely (i.e.,
by modeling only one shared topic distribution), our new C-BiLDA model allows a
document to elaborate more on certain topics than the document in the other language
to which it is linked.

As another contribution, we show how to utilize our C-BiLDA model in the task
of cross-lingual knowledge transfer for multi-class document classification for three
language pairs. We show results on two datasets for a C-BiLDA-based transfer model
which outscores LDA- and BiLDA-based transfer models previously reported in the
literature (De Smet et al., 2011; Ni et al., 2011).

3.2 Related Work

One line of work in multilingual topic modeling explores multilingual topic models
that are based on the premise of using readily available machine-readable multilingual
dictionaries to establish links between content given in different languages which are in
turn necessary to extract these latent cross-lingual topics (Boyd-Graber and Blei, 2009;
Jagarlamudi and Daumé III, 2010; Zhang et al., 2010; Boyd-Graber and Resnik, 2010;
Hu et al., 2014). However, bilingual dictionaries are typically incomplete - if these are

1For instance, Wikipedia articles about Madrid in English and Spanish address many common topics
such as “demographics”, “geography and location” or “climate”, while at the same time, only the Spanish
article contains text (i.e., a non-shared topic) about “the emblems of the city”, and only the English article
elaborates on “business schools” or “Bohemian culture” in Madrid.
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available at all - as they often lack translations for domain-specific words. In contrast,
a more flexible multilingual topic modeling framework attempts to extract these latent
topics solely on the basis of given multilingual data without any external resources at
all. Because of its higher flexibility and scalability, our model is situated within this
modeling framework. The standard multilingual model within this framework is called
bilingual LDA (BiLDA) (De Smet and Moens, 2009; Ni et al., 2009; Platt et al., 2010;
Zhang et al., 2013) or, by its extension to more than two languages, polylingual LDA
(Mimno et al., 2009; Krstovski and Smith, 2013).

All these models neglect one quite obvious fact - although dealing with comparable
datasets which are inherently non-parallel and typically exhibit a degree of variance
in their thematic/topical focuses, these models presuppose a perfect (or parallel)
correspondence on extracted cross-lingual topics. More concretely, the models assume
that the topic distributions of aligned documents are identical.

Aside from multilingual topic models, there are other approaches to mine cross-
lingual word representations from multilingual corpora. Low-rank methods and
neural net models are two other commonly used approaches. Low-rank methods
use decompositions of co-occurrence matrices to find cross-lingual representations of
words and/or documents. In multilingual text mining, cross-lingual latent semantic
indexing (CL-LSI) and cross-lingual kernel canonical correlation analysis (CL-KCCA)
are two established low-rank methods. Given a parallel corpus, CL-LSI (Littman
et al., 1998) concatenates the aligned document pairs and then applies LSI to find
cross-lingual representations. CL-KCCA was proposed as an alternative to CL-LSI
by Vinokourov et al. (2002). After applying KCCA between the documents of source
and target language respectively, semantic vectors for source and target language
are constructed by projecting the respective document sets onto the k first correlation
vectors. Each semantic vector corresponds to a cross-lingual topic. Documents can then
be mapped to a cross-lingual representation by projecting their vector representation
on the semantic vectors. Depending on its language, a document is projected on the
semantic vectors of the source or target language. In the experiments of Vinokourov
et al. (2002), CL-KCCA with a linear kernel outperformed CL-LSI in both cross-lingual
information retrieval and document classification.

The main focus of the neural net models lies on learning distributed word
representations (dense real-valued vectors), which are shared across languages, by
optimizing some criteria as a function of the data and the output of a neural network
for which the words serve as input. Klementiev et al. (2012) jointly train neural
language models for two languages to induce shared cross-lingual distributed word
representations. The neural language model learns distributed representations of words
so that they can be used to predict the representation of the next word given the n−1
previous words. To jointly learn the language models the multi-task learning setup
of Cavallanti et al. (2010) is used. Learning each vocabulary word in each language
is considered a different task. To determine the degree of relatedness between two
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corresponding tasks, the approach requires the availability of hard word alignments,
that is, links between words in parallel documents, where linked words are (part of)
each others translations. Kočiský et al. (2014) take a different approach and learn
word representations that predict the representation of a word in the target language
given n− 1 words in a parallel sentence in the source language. Both approaches
build document representations simply as (weighted) averages of word representations.
Instead of predicting a single word, Chandar et al. (2014) learn to predict the bag-of-
words representation of a target language sentence given the source language sentence.

Gouws et al. (2015) have proposed a multilingual extension of the well-known
word2vec models (Mikolov et al., 2013a). Hermann and Blunsom (2014b,a) use
a compositional vector model (CVM) to derive distributed representations for
sentences and documents from distributed representations of words. The distributed
representations are learned by minimizing the energy between the distributed
representation of parallel sentences.2 Soyer et al. (2015) also use a composition
function to compose words to phrases and sentences. They optimize both a bilingual
objective and a monolingual objective. The bilingual objective is to minimize the
energy between aligned sentence pairs. The monolingual objective aims to enforce
that the energy between a sentence and a sub-phrase of the sentence is smaller than the
energy between a sentence and a randomly sampled sub-phrase.

All these neural network based approaches actually need a strong bilingual signal
given by (at least) a parallel corpus of a significant size (typically Europarl) in order to
mine the knowledge from comparable datasets. In this work, we significantly alleviate
the requirements, as we explicitly model both the shared and non-shared content in a
document pair without the need for parallel data. In other words, unlike all previous
work, our new model aims to extract cross-lingual topics directly from non-parallel
data by distinguishing between shared and unshared content, without any additional
resources such as readily available bilingual lexicons or parallel data.

3.3 Comparable Bilingual LDA

This section provides a full description of the newly designed C-BiLDA model. First,
we define the standard BiLDA model, detect its limitations, and then introduce our
new model which is able to handle comparable data. We present its core modeling
premises, its relation to BiLDA, its generative story, and its training procedure by Gibbs
sampling. For a brief introduction to the monolingual LDA model, we refer the reader
to Section 2.3.3 of the fundamentals chapter. In Table 3.1 we summarize the notation
used throughout this chapter.

2The energy between two vectors X and Y is defined as ||X−Y ||2.
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Documents, words and topics
D number of aligned document pairs
d j = (dS

j ,d
T
j ) j-th pair of aligned documents

M j and MS
j number of words in document pair d j and source language document dS

j
respectively.

VS vocabulary of the source language
|V |S size of the vocabulary of the source language
wS

l l-th word of the source language vocabulary
W S

ji i-th word token of dS
j

w vector with all word tokens in the corpus
L ji language of the i-th word token of document pair d j
l vector for which the i-th element is the language (LS or LT ) of the i-th

element in w
Z set of latent cross-lingual latent topics
K number of topics
zk k-th latent cross-lingual topic in Z
Z ji topic assigned to the i-th word token of d j
ZS

ji topic assigned to the i-th word token of dS
j

z vector with all topic assignments in the corpus
Distribution parameters

Θ j topic distribution of the document pair d j
ΘS

j topic distribution of the source document dS
j

∆ jk probability that an occurrence of topic zk in document pair d j is
assigned to a word in the source document

Θ jk and ΘS
jk probability that a word token in document pair d j and document dS

j
respectively is assigned to topic zk

ΦS
k distribution of the words in the source language for topic zk

Hyper-parameters
α parameter value of the symmetric Dirichlet prior on all θ j
β parameter value of the symmetric Dirichlet prior on all φk
χS

jk, χT
jk parameter values for the Beta prior on all ∆ jk

χ jk 2-dimensional vector (χS
jk,χT

jk)

Ω set of all hyper-parameters
Gibbs counters

n j,k number of word tokens assigned to topic zk in document pair d j

nS
j,k number of word tokens assigned to topic zk in document dS

j
n j,k,¬i or nS

j,k,¬i number of word tokens assigned to topic zk in document pair d j or
document dS

j , excluding the word token at position i
vS

k,l number of times that word wS
l is assigned to topic zk.

vS
k,·,¬ ji number of times that word wS

l is assigned to topic zk, not counting the
word token at position i in document dS

j .
nS

j,· or vS
·,l replacing a subscript variable with a dot means summing over all

possible values of that variable, e.g. nS
j,· = ∑

K
k=1 nS

j,k

Table 3.1: A summary of the notation used throughout this chapter. For the language-
specific notation we only show the notation for the source language (with the S
superscript), while their counterpart in the target language is always obtained by
replacing the S superscript with the T superscript.
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(a) BiLDA

(b) C-BiLDA

Figure 3.1: Graphical representations of (a) BiLDA vs. (b) C-BiLDA in plate notation.
BiLDA assumes that documents in an aligned document pair share all of their topics.
Because of this assumption there is no need to represent the language l ji of a topic
occurrence. C-BiLDA on the other hand, allows the topic distributions of aligned
documents to be different by assigning a language l ji to every topic occurrence z ji = zk
depending on zk: the source language is assigned to z ji with probability ∆ jk and the
target language with probability 1−∆ jk. MS

j and MT
j are the respective lengths of

the source language document and the target language document in the j-th aligned
document pair. M j is the length of the document pair as a whole.
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3.3.1 Bilingual Topic Modeling

Assume that we possess an aligned bilingual document corpus, which is defined as
C = {d1,d2, . . . ,dD}= {(dS

1 ,d
T
1 ),(d

S
2 ,d

T
2 ), . . . ,(d

S
D,d

T
D)}, where d j = (dS

j ,d
T
j ) denotes

a pair of aligned documents in the source language LS and the target language LT ,
respectively. D is the number of aligned document pairs in the bilingual corpus. The
goal of bilingual probabilistic topic modeling is to learn for the bilingual corpus a set
of K latent cross-lingual topics Z = {z1, . . . ,zK}, each of which defines an associated
set of words in both LS and LT (further denoted with superscripts S and T ). A bilingual
probabilistic topic model of a bilingual corpus C is a set of multinomial distributions
of words with values P(wS

i |zk) and P(wT
i |zk), wS

i ∈ VS, wT
i ∈ VT , where VS and VT

are vocabularies associated with languages LS and LT . The aligned documents in a
document pair need not be the exact translation of each other, that is, the corpus may
be comparable and consist of documents which are only loosely equivalent to each
other (e.g., Wikipedia articles in two different languages, news stories discussing the
same event).

Each document, regardless of its language, may be uniformly represented as a mixture
over induced latent cross-lingual topics using the probability scores P(zk|d j) from
per-document topic-distributions. This topic model-based representation allows for
representing documents written in different languages in the same shared “topical”
cross-lingual space. Topic modeling also enables learning the same cross-lingual
representation for unseen data by utilizing the per-topic word distributions from the
trained model to infer per-document topic distributions on the new data.

The per-topic word and per-document topic distributions are learned in such a way so
that they optimally explain the observed data. The exact calculation for this maximum
likelihood criterion is intractable. Therefore, several approximate techniques have been
proposed: Expectation-Maximization, variational Bayes, Gibbs sampling, etc. In this
chapter we opt for the Gibbs sampling training technique, because of its popularity in
literature and its ease of implementation. In its most general form, Gibbs sampling
is a method to generate approximate samples from a joint distribution when directly
sampling from the distribution is difficult or impossible (see also Section 2.2.4). Starting
from a random initial state, the Gibbs sampling algorithm generates a sample from the
distribution of each variable in turn, conditioned on the values of all other variables
in the current state (Bishop, 2006). Because the initialization of the sampling chain
is done randomly, the samples in the beginning of the process are not representative.
Therefore we start collecting samples when the chain reaches a stationary state (after
the so-called burn-in period). Since successive samples are highly dependent, we only
collect a sample for the variables every I-th value (e.g., every 20-th value).
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3.3.2 Bilingual LDA

Bilingual LDA (Ni et al., 2009; De Smet and Moens, 2009; Mimno et al., 2009; Platt
et al., 2010; Zhang et al., 2013) assumes that aligned documents have exactly the
same per-document topic distributions. The graphical representation of BiLDA is
given in Figure 3.1a. The model uses the same Θ j to model per-document topic
distributions of documents in a pair. For each document pair d j, a shared per-document
topic distribution Θ j is sampled from a (symmetric) conjugate Dirichlet prior with K
parameters α1, . . . ,αK . Then, for each word position i in the source document of the
current document pair d j a cross-lingual topic zk is sampled from Θ j (we denote this
assignment by zS

ji = zk). Following that, a word is generated for every position i in
document dS

j by sampling from the multinomial distribution ΦS
k that corresponds to the

topic zk assigned to this position. Each word token W T
ji from the target language side

is also sampled following the same procedure, the only difference being that words
are now sampled from the ΦT

k distributions. Note that words at the same positions in
source and target documents in a document pair not need be sampled from the same
latent cross-lingual topic. The only constraint imposed by the model is that the overall
distributions of topics over documents in a document pair modeled by Θ j have to
be the same. The validity of this assumption/constraint is dependent on the actual
degree of thematic alignment between two coupled documents, and it perfectly fits
only parallel documents which share all their topics. β is the parameter value of the
symmetric Dirichlet prior on language-specific per-topic word distributions.

3.3.3 C-BiLDA: Extracting Shared and Non-Shared Topics

Modeling Assumptions. When one has to deal with a true comparable corpus, the
assumption of “parallelism” exploited by BiLDA in its modeling premises is no longer
valid, and it introduces several points of noise in the final output. As the same topics
with the same proportions are used in both documents of a pair, there exists a clear
discrepancy between learned topics and the actual content. In order to deal with the
added difficulties caused by the “comparability” of the corpus and given document
pairs, we extend the basic bilingual LDA model from sect. 3.3.2.

C-BiLDA allows a document to focus more on some topics than its counterpart in the
other language by modeling the probability that a topic occurrence in a document pair
belongs to the source document. To this end we explicitly model the language L ji for
every word occurrence Wji as an observed random variable and for each document
introduce K parameters ∆ jk describing the probability that a topic occurrence z ji = zk
in document pair d j generates a word in the source language.
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Algorithm 2: C-BILDA: GENERATIVE STORY

initialize: (1) the total number of topics: K;
(2) the values for Dirichlet priors parameters α and β ;
(3) the values of all χS

jk and χT
jk (in Figure 3.1b we use χ jk as an abbreviation for

< χS
jk, χT

jk >)
sample K times ΦS

k ∼ Dirichlet(β );
sample K times ΦT

k ∼ Dirichlet(β );
for j← 1 to D do

sample Θ j ∼ Dirichlet(α)
sample K times ∆ jk ∼ Beta(χS

jk,χ
T
jk)

for i← 1 to M j do
sample Z ji ∼Multinomial(1,Θ j)
sample L ji ∼ Bernoulli(∆ jk), with Z ji = zk
if L ji = 1 then

sample W ji ∼Multinomial(1,ΦS
k), with Z ji = zk

else
sample W ji ∼Multinomial(1,ΦT

k ), with Z ji = zk

Generating the Data. Figure 3.1b shows the plate representation of C-BiLDA. As
in the BiLDA generative process, all topics of a document pair are drawn from the
same distribution Θ j , but source and target documents can have a preference to certain
topics. After generating a topic Z ji = zk from Θ j, we sample the language l ji associated
with this topic occurrence from a Bernoulli distribution Bernoulli(∆ jk), where ∆ jk is
the probability that topic zk will generate a word in the source language for document
pair j. We place a Beta prior with parameter values χS

jk and χT
jk on all ∆ jk. These

values can be interpreted as pseudo-counts for observing topic zk in the source/target
document of document pair d j respectively. After sampling a topic-language pair, a
word is generated in the same way as in the BiLDA model, that is, by sampling from
the word distribution of the sampled topic in the sampled language. The distributions
Θ j, ΦS

k , ΦT
k and corresponding hyper-parameters α and β are the same as in BiLDA

(see sect. 3.3.2). Alg. 2 summarizes the generative story of C-BiLDA.

Relation with BiLDA. In its original formulation BiLDA looks quite different from
C-BiLDA. This is because with the BiLDA assumptions, it is not necessary to model
the language of a word as a random variable. However, we can represent BiLDA exactly
like C-BiLDA with the exception of using a single ∆ j (representing the probability
that any topic will generate a word in the source document) per document, instead of
using K ∆ jk variables per document (one for each topic)3. Therefore, C-BiLDA allows

3By writing out the joint probability conditioned on all language assignments L ji, one can check that
these formulations are indeed equivalent.
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a document to focus more on a particular topic than its counterpart or, in the extreme
case, to contain topics that do not occur in its counterpart. The added flexibility also has
a downside since it increases the risk of overfitting the data. By setting an appropriate
prior on all ∆ jk variables, we can avoid that C-BiLDA learns models that are too
complex. By setting the prior values of χS

j1, ...,χ
S
jK to the same value and similarly for

the values of χT
j1, ...,χ

T
jK , we make the a priori assumption that the topic distributions

for source and target document are identical (like in BiLDA). In our experiments we
set χS

jk =
1
2 χmMS

j and χT
jk =

1
2 χmMT

j . The document sizes MS
j and MT

j are observed, so
only the value of χm must be set manually. The higher the value of χm, the more weight
we give to the prior assumption that the source and target document topic distributions
are the same, and the closer the C-BiLDA relates to BiLDA.

Training. To infer the values of the unobserved variables, we utilize Gibbs sampling
(Geman and Geman, 1984; Bishop, 2006). Note that from the vector of all topic
assignments: z together with the observed word and language variables, all other latent
variables can be derived. The values of all Θ j, ∆ jk, ΦS

k and ΦT
k can be integrated

out of the formulas and calculated afterwards. All other variables are observed (the
word tokens in the bilingual corpus and their corresponding languages) or are hyper-
parameters that have to be set in advance (α , all χ jk and β ). We can therefore use a
collapsed Gibbs sampler that in each iteration samples the topic assignments for each
word in turn from their probability distribution conditioned on all other variables. The
high-level Gibbs sampling procedure for C-BiLDA is shown in alg. 3, below we derive
the necessary update formulas for Z ji.

P(Z ji = zk|W ji = wl , l ji,z¬ ji,w¬ ji, l¬ ji,Ω)

=
P(Z ji = zk,W ji = wl , l ji,z¬ ji,w¬ ji, l¬ ji,Ω)

P(W ji = wl , l ji,z¬ ji,w¬ ji, l¬ ji,Ω)

=
P(W ji = wl ,w¬ ji|Z ji = zk, l ji,z¬ ji, l¬ ji,Ω) ·P(Z ji = zk, l ji,z¬ ji, l¬ ji|Ω)

P(w¬ ji|l ji,z¬ ji, l¬ ji,Ω) ·P(w ji|l ji,Ω) ·P(l ji,z¬ ji, l¬ ji|Ω)

∝ P(W ji = wl |Z ji = zk, l ji,z¬ ji,w¬ ji, l¬ ji,Ω) ·P(Z ji = zk|l ji,z¬ ji, l¬ ji,Ω)

∝ P(W ji = wl |Z ji = zk, l ji,z¬ ji,w¬ ji, l¬ ji,Ω) ·
P(Z ji = zk, l ji,z¬ ji, l¬ ji|Ω)

P(l ji,z¬ ji, l¬ ji,Ω)

∝ P(W ji = wl |Z ji = zk, l ji,z¬ ji,w¬ ji, l¬ ji,Ω) ·
P(l ji, l¬ ji|Z ji = zk,z¬ ji,Ω) ·P(Z ji = zk,z¬ ji|Ω)

P(l¬ ji|z¬ ji,Ω) ·P(z¬ ji|Ω)

∝ P(W ji = wl |Z ji = zk, l ji,z¬ ji,w¬ ji, l¬ ji,Ω) ·P(l ji|z ji = zk,z¬ ji, l¬ ji,Ω) ·P(z ji = zk|z¬ ji,Ω)
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Algorithm 3: GIBBS SAMPLING FOR C-BILDA: AN OVERVIEW

Algorithm gibbsSampler()
repeat

sampleTopics();
until burn-in criterion satisfied
repeat

for i← 1 to I do
sampleTopics();

end
collect a sample: estimate Θ jk, ∆ jk, ΦS

kl , ΦT
kl from the current topic assigments

using Equation (3.6)-(3.9);
until enough samples collected
estimate the posteriors of Θ jk, ∆ jk, ΦS

kl , ΦT
kl by averaging over the collected samples;

Procedure sampleTopics()
foreach word token in the corpus do

update/estimate the probability to assign the word token to one of the cross-lingual
topics conditioned on all other variables (for C-BiLDA apply Equation (3.1));

sample a new topic assignment for the word token;
end

∝


E[Θ jk|z¬ ji,α] ·E[∆ jk|z¬ ji, l¬ ji,χ

S
jk,χ

T
jk] ·E[Φ

S
kl |z¬ ji, l¬ ji,w¬ ji,β ] if l ji = S

E[Θ jk|z¬ ji,α] · (1−E[∆ jk|z¬ ji, l¬ ji,χ
S
jk,χ

T
jk]) ·E[Φ

T
kl |z¬ ji, l¬ ji,w¬ ji,β ] if l ji = T

(3.1)

with E[Θ jk|z¬ ji,α] =
n j,k,¬i +α

n j,·,¬i +Kα
(3.2)

and E[∆ jk|z¬ ji, l¬ ji,χ
S
jk,χ

T
jk] =

nS
j,k,¬i +χS

jk

n j,k,¬i +χS
jk +χT

jk
(3.3)

and E[ΦS
kl |z¬ ji, l¬ ji,w¬ ji,β ] =

vS
k,·,¬ ji +β

vS
k,·,¬ ji + |V |S ·β

(3.4)

and E[ΦT
kl |z¬ ji, l¬ ji,w¬ ji,β ] =

vT
k,·,¬ ji +β

vT
k,·,¬ ji + |V |T ·β

(3.5)

The final estimates of the posteriors of Θ jk, ∆ jk, ΦS
kl and ΦT

kl are calculated by
estimating their posteriors for every sample that is taken using equations (3.6)-(3.9)
and then taking the average of these estimates over all samples.
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E[Θ jk|z,α] =
n j,k +α

n j,·+Kα
(3.6)

E[∆ jk|z, l,χS
jk,χ

T
jk] =

nS
j,k +χS

jk

n j,k +χS
jk +χT

jk
(3.7)

E[ΦS
kl |z, l,w,β ] =

vS
k,l +β

vS
k,·+ |V |S ·β

(3.8)

E[ΦT
kl |z, l,w,β ] =

vT
k,l +β

vT
k,·+ |V |T ·β

(3.9)

Inferring topic distributions. For certain tasks (e.g., information retrieval) it is
necessary to infer a topic model on unseen data. Inferring the model actually denotes
calculating per-document topic distributions on unseen documents based on the output
of the trained model. Again, we use Gibbs sampling to approximate the distribution,
but now we use the per-topic word distributions that were learned from the training
dataset. Therefore, we only update the n counters. Furthermore, the inference is done
monolingually, that is one language at a time. The updating formula for the source
language LS is:

P(zS
ji = k|wS

ji = wl ,zS
¬ ji,w

S
¬ ji,α,β ) ∝ E[Θ jk|zS

¬ ji] ·E[ΦS
kl |training data]

with E[Θ jk|zS
¬ ji] =

nS
j,k,¬i +α

nS
j,·,¬i +Kα

(3.10)

Where the n counters count topic assignments for unseen documents and E[ΦS
kl |training data]

is the estimate of ΦS
kl on the training data.

3.4 Knowledge Transfer via Cross-Lingual Topics
for Document Classification

The per-topic word distributions of multilingual topic models can be used for a variety
of tasks. One application is to map the distributions to per-word distributions, e.g.,
P(zk|wi) or P(wi,w j). This results in a type of distributed word representation for
wi, which in turn can be used to find word associations and/or extract translation
pairs, etc. (Vulić et al., 2011). In this work, we demonstrate the utility of our new
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S T

Figure 3.2: An intuition behind cross-lingual knowledge transfer for document
classification. Green and red circles denote labeled examples, while black circles
denote unlabeled examples.

C-BiLDA model on yet another task: cross-lingual document classification, as it is
a well-established cross-lingual task that gives insight into cross-lingual text mining
models and their ability to learn semantically-aware document representations.

Problem Definition. Cross-lingual document classification (CLDC) is the task of
assigning class labels to documents written in the target language given the knowledge
of the labels in the source language (Bel et al., 2003; Gliozzo and Strapparava, 2006).
It starts from a set of labeled documents in the (resource-rich) source language, and
unlabeled documents in the target language. The objective is to learn a classification
model from the labeled documents of the source language and then transfer this
knowledge to the target language and apply it in the classification model for the target
language documents (see Figure 3.2 for a more intuitive presentation).

Previous Work. Early approaches to the problem of CLDC tried to utilize automatic
machine translation tools to translate all the data from S to T , which effectively reduced
the problem to monolingual classification (Bel et al., 2003; Fortuna and Shawe-Taylor,
2005; Olsson et al., 2005; Rigutini et al., 2005; Ling et al., 2008; Wei and Pal, 2010;
Duh et al., 2011; Wan et al., 2011). Other approaches rely on machine translation
tools along with multi-view learning (Amini et al., 2009; Guo and Xiao, 2012a) or
co-training techniques (Wan, 2009; Amini and Goutte, 2010; Lu et al., 2011). However,
machine translation tools may not be freely available for many language pairs, which
limits the portability of these models. In addition, translating all the text data is often
time-consuming and expensive.

Another line of prior work aims to induce cross-lingual representations for documents
given in different languages, which enables the knowledge transfer for CLDC using
the shared language-independent feature spaces. A plethora of CLDC models have
been proposed (Gliozzo and Strapparava, 2006; Prettenhofer and Stein, 2010; Pan et al.,
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Table 3.2: Statistics of the Wikipedia and Europarl training sets.

Wikipedia-dataset Europarl-dataset
EN-ES EN-FR EN-IT EN-ES EN-FR EN-IT

|V S| 29,201 27,033 23.346 33,444 33,574 33,552
|V T | 27,745 20,860 31.388 36,839 34,538 36,092
#Doc-
pairs

18.672 18.911 18.898 9,415 9,428 9,461

2011; Wang et al., 2011; Klementiev et al., 2012; Guo and Xiao, 2012b; Xiao and Guo,
2013a,b; Hermann and Blunsom, 2014a; Chandar et al., 2014), but all these models
again assume that parallel corpora or external translation resources are readily available
to induce these cross-lingual shared representations.

Finally, in order to overcome these issues, another line of recent work (De Smet et al.,
2011; Ni et al., 2011) operates in a minimalist setting; it aims to learn these shared
cross-lingual representations directly from non-parallel data without any other external
resources such as high-quality parallel data or machine-readable bilingual lexicons.
These approaches train a multilingual topic model (e.g., BiLDA) on comparable data to
induce topical representations of documents, and use per-document topic distributions
as classification features. In this thesis, we show that for this setup the application of
C-BiLDA instead of BiLDA leads to a better performance.

Knowledge Transfer via Latent Topics. The idea is to take advantage of the cross-
lingual representations by means of latent cross-lingual topics. First, a topic model
(e.g., BiLDA or C-BiLDA) is trained on a bilingual training corpus (e.g., Wikipedia).
Following that, given a CLDC task, with a labeled set of documents in the source
language and an unlabeled document collection in the target language, one uses the
trained topic model to infer the cross-lingual representations by means of per-document
topic distributions for each (previously unseen) document. Each document is then
taken as a data instance in the classification model and the features are defined as
probabilities coming from per-document topic distributions. The value of each feature
of an instance (e.g., a document dS

j ) is the probability of the corresponding topic zk

in the document: P(zk|dS
j ) (see Section 3.3.1). The assumption of the cross-lingual

knowledge transfer is that when we express the documents in the cross-lingual space,
the training examples in the source language are representative for the test data in the
target language. Finally, one is free to choose any classifier (e.g., Maximum Entropy,
Naive Bayes, Support Vector Machine) to perform classification.
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3.5 Experimental Setup

Training Datasets. To train the topic models on a comparable corpus, we use the
training dataset of De Smet et al. (2011) for the same CLDC task (while the dataset
from (Ni et al., 2011) is not publicly available). It consists of three bilingual corpora
with aligned Wikipedia articles in three language pairs: English-Spanish (EN-ES),
English-French (EN-FR), and English-Italian (EN-IT). The datasets were collected
from Wikipedia dumps, and the alignment between articles in a pair was obtained
by following the inter-lingual Wikipedia links. Stop words were removed using the
stopword lists of the Snowball project,4 and only words that occur at least 5 times
were retained. To show the influence of the degree of parallelism in the training data,
we also train C-BiLDA and BiLDA on a parallel corpus extracted from Europarl.5

The resulting dataset uses the same language pairs as the Wikipedia dataset and the
processing was done in the same way. Table 3.2 lists statistics of the training datasets.

CLDC Datasets. We test our models by performing CLDC on two different datasets.
We run the trained topic models on these test datasets, that is, we infer the per-document
topic distributions, which are then used for training and testing a classifier. In all
experiments, we regard English as the resource-rich language and learn class labels for
test documents in the other 3 target languages (ES/FR/IT) with labels removed from
their documents.

The first dataset again comes from De Smet et al. (2011). It was constructed using
Wikipedia. The dataset for each language pair contains up to 1, 000 Wikipedia articles
(which are not present in the training sets) annotated with 5 high-level labels/classes:
book (books), film (films), prog (computer programming), sport (sports) and video
(video games). Since not every Wikipedia in every language contains the same
number of articles, sometimes less than 1, 000 articles for each class was crawled
from Wikipedia dumps. For more details about the dataset construction, we refer the
interested reader to (De Smet et al., 2011).

To compare the BiLDA and C-BiLDA models on a larger corpus we constructed a
second dataset from the Reuters corpora RCV1/RCV2 (Lewis et al., 2004). The dataset
contains up to 30,000 documents per language. Since our training dataset does not
include the English-German language pair that was used by Klementiev et al. (2012),
we could not reuse their dataset. We constructed the dataset with the procedure from
Klementiev et al. for the three language pairs in our training dataset: we use the top-
level category labels that are assigned to the documents: CCAT (Corporate/Industrial),
ECAT (Economics), GCAT (Government/Social), MCAT (Markets); and only consider

4http://snowball.tartarus.org/
5For each language pair (EN-ES, EN-FR, EN-IT) we used all parallel document pairs present in the

Europarl v7 source release. The .txt files can be aligned across languages based on their filename.

http://snowball.tartarus.org/
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Table 3.3: Number of documents in the CLDC datasets.
Wikipedia-dataset RCV1/RCV2-dataset

book film prog sport video MCAT CCAT GCAT ECAT
EN 1,000 1,000 1,000 1,000 1,000 7,441 12,934 7,216 2,409
ES 1,000 1,000 263 1,000 1,000 9,694 30 1,997 1279
FR 1,000 1,000 592 1,000 1,000 5,878 65 20,987 3,070
IT 1,000 1,000 290 1,000 764 7,553 263 1,520 3,664

documents with a single top-level topic. Similar to Klementiev et al. (2012), we sample
randomly from the original RCV1/RCV2 corpora, but for the language pairs in our
training dataset. The documents from both datasets were preprocessed in the same
manner as in the training datasets. Table 3.3 displays the size of the CLDC datasets.

Models in Comparison. We test the ability of our new C-BiLDA model to transfer the
knowledge needed for cross-lingual document classification, and compare it to other
topic modeling approaches for knowledge transfer previously reported in the literature.
The models in comparison are:

1. CL-LSI-TR. A CLDC model based on CL-LSI (Littman et al., 1998). In order to
come up with uniform cross-lingual representations, it combines each aligned
pair of documents into an artificial “merged document”, keeping no language-
specific information. On the merged documents (monolingual) LSI is applied.
The rank reduced term-document matrix (where the new rank is equal to the
number of topics) is then used to project the documents in the cross-lingual space
in which we train the classifier.

2. CL-KCCA-TR. This model is based on the CL-KCCA model of Vinokourov et al.
(2002). The semantic vectors of the source/target language are used to project
documents of the source/target respectively in the cross-lingual space in which
we train the classifier. Like Vinokourov et al. (2002) we use a linear kernel.

3. LDA-TR. This was the baseline model in (De Smet et al., 2011). Similar to
CLLSI-TR it combines each aligned pair of documents into an artificial “merged
document”. The merged documents are then used to train a monolingual LDA
(Blei et al., 2003) model, which is then inferred on the test documents. Per-
document topic distributions are then used as features for classification.

4. BiLDA-TR. This is the best scoring model in De Smet et al. (2011) and Ni et al.
(2011). It also significantly outperformed models relying on machine translation
tools and bilingual lexicons (Ni et al., 2011). BiLDA is trained on aligned
documents and then inferred on test data. Per-document topic distributions are
again used as features for classification (see Section 3.4).

5. C-BiLDA-TR-χm, with χm ∈ {0.125,0.25,0.5,1,2}. As for BiLDA, we train
C-BiLDA on aligned document pairs to obtain per-document topic distributions.
We use different values of χm (recall from sect. 3.3.3 that χm determines the
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values of the prior parameters χS
jk and χT

jk).

Parameters. Following prior work, we use a Support Vector Machine (SVM) for
classification with all transfer models. For SVM, we employ the SVM-Light package6

(Joachims, 1999) with default parameter settings. Investigating other choices for
classifiers, as well as different classifier settings is beyond the scope of this chapter.
All models are trained for different number of topics K, ranging from 20 to 300 in
steps of 20. CL-LSI was implemented using the truncated SVD module of scikit-learn7

(Pedregosa et al., 2011). For CL-KCCA we used KCCA package by Hardoon et al.
(2004). The regularization parameter κ was set using the method proposed in Hardoon
et al. (2004).

Hyper-parameters α and β in LDA and BiLDA are set to the standard values according
to (Steyvers and Griffiths, 2007): α = 50/K and β = 0.01. In the case of C-BiLDA,
we show the results for different values of χm: {0.125,0.25,0.50,1,2}. The higher the
χm value, the higher the influence of the priors on δ jk. The topic models have been
trained by Gibbs sampling. As the burn-in criterion, we check if the relative difference
of the perplexity between two iterations is smaller than a predefined small threshold
value (we use 0.0001 in all training procedures). After the burn-in period, we gather
samples every I = 20 iterations. The total number of iterations (including the burn-in
period) is set to 1000. Perplexity is a measure for the likelihood of the data for a given
statistical model. The perplexity on a corpus C for a statistical model M which like
our topic models assumes documents can be represented as a bag of words is defined
as:

perplexity(C |M ) = exp
(
−

∑
D
j=1 ∑

M j
i=1 log

(
p(w ji|M )

)
∑

D
j=1 M j

)

Evaluation Metrics. For each category, precision is calculated as the number of
correctly labeled documents divided by the total number of documents that have been
labeled this way. Recall is defined as the number of correctly labeled documents divided
by the actual number of documents with that label given by the ground truth. Precision
and recall are then combined into balanced F-1 scores. We calculate macro F-1 scores
by taking the average of the F-1 scores over all categories and all Ks. For BiLDA and
C-BiLDA, we also report the perplexities on the training datasets. Perplexity measures
how well a statistical model fits the data.

6http://svmlight.joachims.org/
7http://scikit-learn.org/
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Table 3.4: Perplexity scores of the BiLDA and C-BiLDA models and their difference
(the perplexity score of BiLDA minus the perplexity score of C-BiLDA) on the
Wikipedia training datasets averaged across the number of topics and χm values. From
the perplexity scores and the difference in perplexity scores of C-BiLDA and BiLDA
we can rank the training datasets according to their level of parallelism.

Wikipedia Europarl

EN-ES EN-FR EN-IT EN-ES EN-FR EN-IT
perpl. BiLDA 2827 2544 3042 1564 1391 1600
perpl. C-BiLDA 2787 2504 2839 1581 1402 1615
perpl. BiLDA - perpl. C-BiLDA 40 40 203 -17 -11 -15

3.6 Results and Discussion

Perplexity and Comparability. In this paragraph we analyze the perplexity of C-
BiLDA and BiLDA on the different training datasets. Table 3.4 shows average
perplexity scores of C-BiLDA and BiLDA models trained on the parallel Europarl
corpora and the comparable Wikipedia corpora. The perplexity scores confirm our
hypothesis that BiLDA is more suited for modeling parallel data, while C-BiLDA is
tailored for more divergent, comparable data.

In Table 3.4 we also show the difference in perplexity between the two models:
perplexity BiLDA−perplexity C-BiLDA. We expect this difference to be an indicator
of the degree of comparability of a multilingual corpus. The larger the difference
between the perplexity of BiLDA and the perplexity of C-BiLDA models, the less
parallelism we expect to find in the data because we expect C-BiLDA to model non-
parallelism in a better way. The results in Table 3.4 confirm this hypothesis since on the
comparable Wikipedia dataset the difference in perplexity values is higher than for the
parallel Europarl datasets. The results also indicate that the EN-IT Wikipedia dataset
is less parallel than the EN-FR and EN-ES Wikipedia datasets since the difference
in perplexity is larger. For the Wikipedia datasets the overall perplexity is higher for
EN-ES than for EN-FR. This is an indication that the latter is the Wikipedia dataset
with the most parallelism.

CLDC Task. Table 3.5 summarizes the performance in the CLDC task of the transfer
models (TRs) with representations trained on Wikipedia. F-1 scores are macro-averaged
over different category labels and averaged over different Ks. Table 3.5 also ranks the
training datasets in their degree of comparability, based on the perplexity analysis in
the previous paragraph. Figure 3.3 shows how F-1 scores fluctuate on the Reuters test
dataset across different K values for BiLDA and C-BiLDA with χm = 2. From these
results we may observe several interesting phenomena:
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(i) The difference between LDA on one side and BiLDA and C-BiLDA is very
profound. While all these transfer models are based on the same principle and
use per-document topic distributions to provide language-independent document
representations, separating the vocabularies and training a true bilingual topic model on
individual documents from aligned pairs (instead of removing all language information
from the corpus) is clearly more beneficial for the CLDC task. Similar findings have
been reported for cross-lingual information retrieval (Jagarlamudi and Daumé III, 2010;
Vulić et al., 2013) and word translation identification (Vulić et al., 2011, 2015).

(ii) Also the difference between the low-rank approximation methods (CL-LSI, CL-
KCCA) on one side and C-BiLDA and BiLDA is profound. An explanation for this
may be that the use of priors in the probabilistic framework is a robust way to deal with
the non-parallelism in comparable corpora.

(iii) When comparing BiLDA with the C-BiLDA transfer models we see that the C-
BiLDA models generally perform better. For the CLDC task on the Wikipedia test
set, both the C-BiLDA transfer models and the BiLDA transfer model have good F-1
scores, indicating that the models learn representations that are well suited for the
Wikipedia test set. The differences between the C-BiLDA and BiLDA models are not
so profound as for the Reuters test set. After performing a qualitative inspection of the
topic distributions, we conclude there is a clean mapping between the topics we learned
from our training data and the categories of the Wikipedia dataset. The representations
of the categories of the Reuters dataset, on the other hand, are more spread out across
topics. In the latter case, it is more important to have more clean/coherent topics
overall. Therefore, we conclude that C-BiLDA is able to learn “cleaner” per-topic word
distributions.

(iv) We observe that for the language pair with the least comparable training data, the
C-BiLDA transfer models perform better than the BiLDA model and that the C-BiLDA
models with lower χm values perform best (recall that a lower χm value in fact implies
assigning less weight to the a priori parallel document pair assumption, see Section
3.3.3). On the other hand, for the EN-FR language pair we observe that the difference
between C-BiLDA and BiLDA is less profound and that the higher values for the χm
parameter perform best. This intuition underpinned by the reported results reveals a
link between the comparability of the training data and the performance of the BiLDA
model and the C-BiLDA models with different χm.

(v) From Figure 3.3 we conclude that the difference between the C-BiLDA transfer
model with χm = 2 and the BiLDA transfer model are consistent for the lower topic
values. For the higher topic values performance begins to drop. This illustrates
previously mentioned overfitting problems. More topics lead to more model parameters,
for C-BiLDA even more so than BiLDA.
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Table 3.5: CLDC with representations trained on Wikipedia. Average F-1 scores on
the Wikipedia and Reuters test sets with 8 different transfer models for each language
pair. Average F-1 is calculated by macro-averaging the F-1 scores over all category
labels and all Ks. The classifier is SVM. A + sign indicates a better F-1 score of a
C-BiLDA-TR when compared to the baseline models. The best F-1 scores per language
pair are shown in bold.

EN-ES EN-FR (most parallel) EN-IT (least parallel)

TR-Model Wiki Reuters Wiki Reuters Wiki Reuters
CL-LSI 31.17 27.59 28.44 35.35 26.79 21.06
CL-KCCA 14.03 14.12 24.03 24.28 10.21 8.91
LDA 32.84 7.55 34.65 10.08 30.99 26.86
BiLDA 81.46 39.74 76.88 45.30 78.36 45.22
C-BiLDA2 81.51+ 40.77+ 76.61 45.63+ 78.83+ 46.21+
C-BiLDA1 80.64 40.27+ 74.47 44.92 79.27+ 45.66+
C-BiLDA0.5 80.83 39.70 76.19 45.30 79.09+ 46.76+
C-BiLDA0.25 79.71 40.41+ 75.03 44.48 79.06+ 46.08+
C-BiLDA0.125 79.91 40.41+ 75.37 44.02 78.85+ 45.60+

Further Discussion. One may argue that capturing additional phenomena in the data
(e.g., document pairs with non-parallel document distributions) leads to an added
complexity in the model design. However, the increased design complexity is justified
by the need to capture the properties of non-parallel data. Consequently, the final scores
in the CLDC task further justify the requirement for a more complex topic model which
is better aligned with the given data.

We have reported that the priors placed on the ∆ jk variables have a significant influence
on the quality of the learned topics. Their values should be high enough to avoid
overfitting, though low enough to take into account non-parallelism (i.e., non-shared
content) in document pairs. It may be too time/resource consuming to explore what
values for the χ priors are appropriate by trying different values and finding out
which work best. One approach we intend to investigate in future work is to treat the
hyper-parameters as random variables that are learned from the data just like the other
parameters. Wallach et al. (2009) have successfully applied this approach to the α

hyper-parameters for monolingual LDA.

So far we have not talked about the minimum degree of comparability between the
corpora in order to learn any useful bilingual knowledge. This is a difficult question in
general. For C-BiLDA in particular, the document pairs may exhibit low comparability
in case the following conditions hold for the document collection as a whole: (1) the
document collection should contain enough cross-lingual information, this means that
as the comparability between document pairs goes down, the size of the document
collection should go up accordingly; (2) if a theme often reoccurs in the documents
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Figure 3.3: The average F-1-scores for a varying amount of topics for the BiLDA
transfer model and the C-BiLDA transfer model with χm = 2 on the CLDC task with
the Reuters dataset: EN-ES (a), EN-FR (b) and EN-IT (c).
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of the source language, it should often occur in the documents of the target language.
This requirement can be fulfilled by ensuring that the document collection is restricted
to a limited domain.

Besides the CLDC task, we believe that the proposed C-BiLDA model and the idea
of distinguishing between shared and unique content in related documents may find
further application in other tasks. One interesting application is tackled in (Paul and
Girju, 2009), where they analyze cultural differences between speakers of the same
language across different countries and cultures. A similar idea applied to the analysis
of ideological differences is discussed in (Ahmed and Xing, 2010). Another interesting
future application is the analysis of differences between Twitter and traditional media
(Zhao et al., 2011). The C-BiLDA model and its extensions in future research may
be utilized to induce different views on the same subjects/concepts/topics given in
different languages and/or in different media, as well as to extract language-specific
concepts from blogs, forums, tweets, and online discussions.

3.7 Conclusions

We have studied the problem of extracting cross-lingual topics from non-parallel data.
In this chapter, we have presented a new bilingual probabilistic topic model called
comparable bilingual LDA (C-BiLDA) which is able to distinguish between shared and
unshared content in aligned document pairs to learn more coherent cross-lingual topics.
We have demonstrated the utility of C-BiLDA in performing the knowledge transfer
for cross-lingual document classification for three language pairs, where our model
has outperformed the standard bilingual LDA model (BiLDA) on two benchmarking
datasets, indicating that distinguishing between shared and unique content in document
pairs leads to better per-topic word distributions when training on non-parallel data.
Like other topic models, C-BiLDA can be used in a variety of other natural language
processing and information retrieval tasks.

C-BiLDA is completely data-driven and does not require a machine-readable bilingual
dictionary or high-quality parallel data. Furthermore, it does not make any language
specific assumptions. C-BiLDA’s wide applicability in terms of input data makes
it an excellent model for learning representations in under-resourced languages and
language pairs, as well as in domains with specific terminology for which high-quality
(multilingual) data is often not available.
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Chapter 4

Unsupervised Multilingual
Embeddings for Multilingual
Downstream Tasks

This chapter further investigates unsupervised representation learning for text by
studying how to learn multilingual word representations from monolingual corpora
without additional resources. Compared to Chapter 3, we hence move to a more general
setting: 1) We learn multilingual representations, that is, representations for more than
two languages; 2) We no longer require subject-aligned document pairs, but instead rely
on very large monolingual corpora that are in the same domain (e.g., entire Wikipedia
corpora). Consequently, we switch from the representations induced by probabilistic
topic models to word embeddings trained with neural networks. The motivation for
this is two-fold. Firstly, word embeddings can be trained very efficiently, making it
feasible to train on very large corpora. Secondly, although being less interpretable, word
embeddings have been shown to lead to better classification performance compared to
PTM-based representations.

In this chapter, we propose two methods for mapping monolingual word embeddings to
a multilingual space and evaluate the representations that are induced by the methods
on three different tasks (i.e., bilingual lexicon induction, multilingual document
classification, and multilingual dependency parsing) using four different benchmark
datasets. We show that on these datasets our best method is either competitive (bilingual
lexicon induction) or better (document classification and dependency parsing) than the
state of the art for multilingual word embedding induction.

57
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4.1 Introduction

Low-dimensional, distributed word representations or word embeddings have become
the de-facto standard for representing words in NLP. Their success in monolingual
tasks quickly led to research on cross-lingual extensions that induce embeddings for
two or more languages in the same vector space. Embeddings of translations and
words of similar meaning will be geometrically close in this vector space and as such
they are effective features for cross-lingual NLP tasks, e.g., cross-lingual document
classification (Klementiev et al., 2012), cross-lingual information retrieval (Vulić and
Moens, 2015), bilingual lexicon induction (Mikolov et al., 2013c; Gouws et al., 2015;
Vulić and Moens, 2016a; Heyman et al., 2017, inter alia), or (unsupervised) machine
translation (Artetxe et al., 2017b; Lample et al., 2018; Artetxe et al., 2018c).

Most prior work has focused on methods for constructing bilingual word embeddings
(BWEs), yielding word representations for exactly two languages. For problems such
as multilingual document classification, however, it is highly-desirable to represent
words in a multilingual space. A favourable property is that it enables fitting a single
classifier on the union of training datasets in many languages, which results in 1)
knowledge transfer across languages that may lead to better classification performance,
and 2) a setup that is easier to maintain as it is no longer required to train many different
monolingual or bilingual classifiers.

Methods that learn word representations in a multilingual space typically generalize
existing BWEs methods by mapping multiple source language spaces to the space of
one target language (Ammar et al., 2016), which is used as a pivot language. This
approach may lead to a suboptimal solution as it does not account for dependencies
between the source languages. Most BWE and multilingual word embedding (MWE)
methods rely on some sort of supervision, however: Bilingual lexicons (Mikolov et al.,
2013a), parallel corpora (Gouws et al., 2015), or subject-aligned document pairs (Vulić
and Moens, 2016a).1 In such paradigms, modeling dependencies between all languages
would be impractical as it would require supervision for all language pair combinations.

Recent research has shown that BWEs can also be learned without cross-lingual
supervision and can even outperform their supervised counterparts on bilingual lexicon
induction benchmarks (Lample et al., 2018; Artetxe et al., 2018a). Extending the work
of Lample et al. (2018), Chen and Cardie (2018) took a first step towards learning
multilingual spaces without supervision and incorporating dependencies among all
languages, but their approach inherits the limitations of Lample et al. (2018), for which
the training objective is not very stable (i.e., it sometimes leads to degenerate solutions)
and which does not work for distant language pairs such as English-Finnish (Søgaard
et al., 2018).

1See Ruder et al. (2018) for a complete overview of BWE model typology.
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In this work, we investigate robust methods to induce multilingual word embeddings
without any supervision. The robustness of our approach is illustrated in good
performance for distant languages such as Finnish and Bulgarian. Specifically, this
chapter makes the following contributions:

• Based on a reformulation of the BWE method of Artetxe et al. (2018a), we
propose two novel methods for inducing MWEs: the single hub space model
(SHS) uses the classical idea of mapping source languages to a single hub
language, and the incremental hub space model (IHS) which incorporates
dependencies between all languages by incrementally growing the multilingual
space. This new strategy results in mappings that are more robust and coherent
across languages. Both SHS and IHS only require monolingual word embeddings
as an input.

• We evaluate our method on benchmarks for bilingual lexicon induction,
multilingual document classification, and multilingual dependency parsing and
find that the IHS method is competitive with the state of the art on the bilingual
lexicon induction benchmarks and obtains the best results on the multilingual
document classification and dependency parsing benchmarks.

• Unlike the majority of prior work (Lample et al., 2018; Artetxe et al., 2018a;
Chen and Cardie, 2018, inter alia), we do not limit our evaluation to intrinsic
tasks such as bilingual lexicon induction. Consequently, we can investigate if
embedding reweighting, a recently proposed best practice for BWEs, is useful
for extrinsic tasks such as document classification and dependency parsing in
multilingual settings.

4.2 Related Work

Cross-lingual word embeddings models have received a lot of attention in recent years.
Most methods construct a space shared between two languages using a bilingual signal
in the form of bilingual lexicons (Mikolov et al., 2013a; Artetxe et al., 2016; Smith
et al., 2017), parallel corpora (Klementiev et al., 2012; Faruqui and Dyer, 2014; Gouws
et al., 2015; Luong et al., 2015) or topic-aligned document pairs (Vulić and Moens,
2015, 2016a). See Ruder et al. (2018) for a comprehensive overview.

To enable knowledge transfer across an arbitrary number of languages, research
has expanded to methods that map more than two languages. Huang et al. (2015),
propose decomposing a matrix with multilingual co-occurrence counts weighted by
probabilistic dictionaries and illustrate that this method scales linearly in the number of
languages. Ammar et al. (2016) compare this method to three other MWEs models:
MultiCluster, MultiCCA, and MultiSkip. MultiCluster uses bilingual dictionaries to
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cluster translations and then they train the monolingual Skip-gram model Mikolov et al.
(2013a) on a union of monolingual corpora where they replace words with their cluster
id such that words in the same cluster get the same representation. MultiCCA is the
multilingual extension of the method of Faruqui and Dyer (2014). Using canonical
correlation analysis (CCA) and bilingual dictionaries with English as the target
language, monolingually trained embeddings are projected to the English embedding
space. MultiSkip is a straightforward extension of the BiSkip method (Luong et al.,
2015) which generalizes the monolingual skip-gram objective to account for word
alignments in parallel corpora. Similarly, Duong et al. (2017), extend their bilingual
extension of CBOW to multiple languages. Common to all these methods is that
they align spaces using bilingual dictionaries of parallel corpora, which limits their
applicability for many languages.

More recently, it was discovered that BWE spaces can also be trained without
supervision (Lample et al., 2018; Artetxe et al., 2018a), based on the assumption
that the monolingual embedding spaces are approximately isomorphic.2 Improving on
earlier attempts (Cao et al., 2016; Zhang et al., 2017), Lample et al. (2018) propose a
two-step framework to map two monolingual word embeddings matrices to the same
space. In the first step, they use an adversarial objective to get an initial bilingual space
in which the discriminator can no longer distinguish to which language a given word
embedding belongs. In the second step, they fine-tune the initial solution. An important
limitation is that the adversarial objective is not easy to optimize and sometimes yields
degenerate solutions. Furthermore, Søgaard et al. (2018) found that the method does
not work for distant language pairs such as English-Finnish.

In parallel to the work of Lample et al. (2018), Artetxe et al. (2018a) proposed another
framework with the same intent. Expanding on their earlier work (Artetxe et al.,
2017a, 2018b), they use an unsupervised heuristic to obtain an initial seed lexicon
which is used to obtain an initial bilingual space. This solution is iteratively improved
similar to Artetxe et al. (2017a) and Lample et al. (2018) while using value dropping
regularization to escape early local minima. As their method is the starting point for
this work it will be explained in detail in Section 4.3.

The approaches of both Lample et al. (2018) and Artetxe et al. (2018a) are limited
to finding mappings between a pair of languages. To the best of our knowledge,
Chen and Cardie (2018) is the only method that constructs a multilingual embedding
space without supervision and incorporates all dependencies between the languages
that are being mapped. Their method extends the adversarial pre-training and
iterative refinement steps of Lample et al. (2018) to a multilingual setting. As a
consequence, the method inherits the aforementioned deficits of Lample et al. (2018):
less stable optimization and not applicable to distant language pairs. Furthermore,

2One of the necessary conditions for this assumption to hold is that the monolingual corpora on which
the embeddings are trained are comparable (Søgaard et al., 2018).
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their generalization of the iterative refinement turns it into a non-convex optimization
problem.

In contrast, the two multilingual extensions of Artetxe et al. (2018a) that we propose in
this work are applicable to distant language pairs and decompose every iteration in the
refinement step in multiple convex optimization problems, making them very robust
and widely applicable.

4.3 Bilingual Word Embedding Spaces

Before introducing our own multilingual models, we summarize the state of the art on
mapping monolingual embeddings to BWEs. Methods that construct a cross-lingual
space from two monolingual embedding spaces require a mapping procedure, a way to
transform the monolingual spaces such that translations become geometrically close.
Supervised approaches take translations from a fixed training dictionary of known
translations, whereas unsupervised approaches have a heuristic to construct a seed
lexicon (or equivalently a bilingual space from which a seed lexicon can be extracted)
from scratch and an iterative procedure to refine the seed lexicon and bilingual space.

4.3.1 Mapping Procedure

There have been various mapping procedures (Mikolov et al., 2013c; Dinu et al., 2015;
Lazaridou et al., 2015; Vulić and Korhonen, 2016) proposed in the literature, however
they can all be explained within a single framework (Artetxe et al., 2018b) which we
summarize here.

At its core, each mapping procedure learns the orthogonal transformationsWx andWz
for the monolingual embedding spacesX and Z that minimize the distance between
embeddings of translations in the mapped spacesXWx and ZWz. The orthogonality
constraint ensures that the transformations preserve the constellation of embeddings in
the respective monolingual spaces. Formally, letD be a matrix representing a bilingual
dictionary s.t. Di j = 1 if the ith source word is translated by the jth target word and
Di j = 0 otherwise, thenWx andWz are found by solving the following optimization
problem:

argmax
Wx,Wz

∑
i

∑
j
Di j
(
(X(i)Wx) · (Z( j)Wz)

)
= argmax
Wx,Wz

tr(XWx(DZWz)
ᵀ) (4.1)

subject toWxW
ᵀ
x = I,WzW

ᵀ
z = I
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whereM(i) denotes the ith row of a matrixM and tr(M) the trace of a matrixM

Equation 4.1 has a closed-form solution based on the singular vectors ofXᵀDZ:

Wx =U,Wz = V (4.2)

with USV ᵀ = SV D(XᵀDZ)

In addition to the orthogonal transformation, there are several optional pre-processing
(1-2) and post-processing (3-5) steps:

1) Normalization, apply length normalization (normalizing X and Z such that all
embeddings have a unit Euclidean norm), or mean centering (ensuring each dimension
has zero mean), or a combination of both;
2) Whitening, apply ZCA whitening (Bell and Sejnowski, 1997) onX and Z which
transforms the monolingual embedding matrices such that each dimension/component
has unit variance and such that the dimensions are uncorrelated (for the formula see
Equation 4.6 of the next section). The intuition behind this operation is that it could
make it easier to align the vector spaces along directions of high variance (Artetxe
et al., 2018c);
3) Re-weighting, the components according to the singular value matrix S ofXᵀDZ.
This is an attempt to further align the embeddings in the multilingual space as each
singular value measures how well a dimension in the multilingual space correlates
across languages for the given dictionary;
4) De-whitening, the inverse transformation of 2). Once the embeddings have been
rotated, it has been shown to be important to restore the variance information in case
whitening was applied (Artetxe et al., 2018c);
5) Dimensionality reduction, which truncates the embedding vectors such that only
components with the highest singular values are kept.

4.3.2 Refinement Procedure

The refinement procedure aims at iteratively improving the seed dictionary and the
bilingual space with an Expectation Maximization (EM) procedure (Dempster et al.,
1977). In every iteration, the mapping procedure is executed using the dictionary
from the previous iteration to obtain a new bilingual space, after which a new
bilingual dictionary is induced using nearest neighbor retrieval in the cross-lingual
similarity matrixM . The process is repeated until the (unsupervised) training objective
∑i ∑ jDi j

(
(Xi,:Wx) · (Z j,:Wz)

)
stops increasing.
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The cross-lingual similarity matrixM is calculated using cosine similarity with cross-
domain similarity local scaling (CSLS; Conneau et al. (2018)), a variant to cosine
similarity to avoid the hubness problem (Radovanović et al., 2010; Dinu et al., 2015)
(i.e., the phenomenon in a high-dimensional vector spaces where there are vectors,
known as hubs, that are the nearest neighbors to many vectors in the space). Specifically,
the element mi j at row i and column j of M corresponds to the CSLS value between
the cross-lingual vectors xCL

i and zCL
j of the ith source word and the jth target word

respectively:

mi j =CSLS(xCL
i ,z

CL
j ) (4.3)

CSLS(x,z) = 2 cos(x,z)− rZ(x;k)− rX (z;k) (4.4)

Where rX (x;k) and rZ(z;k) calculate the average cosine similarity of a vector with
its k nearest neighbors (measured by cosine similarity) in the mapped spaces of X , Z
respectively. In practice, k is set to 10 (Lample et al., 2018).

It has been shown to be beneficial to jointly infer dictionaries from source to target
and from target to source language (Artetxe et al., 2018a).3 The bilingual mapping
is then learned from the concatenation of these two dictionaries. The search space
for the bilingual dictionary is then two times the product of the source and target
vocabularies. In practice, limiting the search space by truncating both vocabularies and
their corresponding embedding matrices to the Cre f inement most frequent words, results
in better solutions and limits the amount of computational effort.

As a measure against getting stuck in early, suboptimal local minima, Artetxe et al.
(2018a) propose to randomly drop values from the cross-lingual similarity matrixM
with probability 1− p (further called value dropping). The value of p is exponentially
increased as training progresses. At the start of training p is initialized with a small
value (e.g., 0.1). Whenever the objective stops improving for Npatience refinement steps
p is multiplied with a given factor (e.g., 2) until p ≥ 1 after which all values in M
are kept. Value dropping was shown to be crucial when constructing bilingual spaces
between distant language pairs.

4.3.3 Inducing a Seed Lexicon

Artetxe et al. (2018a) obtain a seed lexicon based on the assumption that for a translation
pair wX

i ,w
Z
j , the monolingual similarity vectors,

√
XiXᵀ and

√
ZjZᵀ of translations

i, j are (approximately) equal up to a permutation. Therefore, seed translations for a
source word i are generated by finding the nearest neighbor of sorted(

√
Xi,:Xᵀ)

in sorted(
√
ZZᵀ).4 Although this heuristic yields a very noisy seed lexicon, it

3Note that zCL
j being the nearest neighbor of xCL

i does not imply that the inverse is also true.
4The inclusion of the square root in the formulas is empirically motivated.
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has been proven to contain a sufficiently strong bilingual signal to bootstrap the
refinement procedure. Similar to the refinement procedure, the seed lexicon is inferred
symmetrically (i.e., by concatenating respective seed lexicons from source to target
and target to source) and the vocabularies and corresponding embedding matrices are
first truncated to the Cseed most frequent words.

4.4 Method

In this section, we present two models for learning multilingual embedding spaces
without supervision (i.e., without any parallel data or bilingual dictionaries): the single
hub space model (SHS) and the incremental hub space model (IHS). The methods
generalize the unsupervised bilingual mapping framework of Artetxe (introduced in the
previous section) such that we construct a multilingual space without relying on a (less
stable) adversarial objective and can leverage the different pre- and post-processing
steps in a multilingual setting. Moreover, the IHS model simultaneously incorporates
dependencies between multiple languages when mapping monolingual embeddings to
the multilingual space. This could not only make the multilingual space more coherent,
but could also be a potent regularization mechanism when mapping distant languages.

4.4.1 Multilinguality through a Hub Language

In this section, we present the single hub space model (SHS). This model defines
one language as the hub language L0 and projects the embedding spaces Z1, ...,ZN
of all other languages L1, ...,LN (further secondary languages) to the hub language
spaceX . Hence, we reduce the construction of a multilingual space of N languages
to the alignment of N−1 vector spaces. Learning these projections is similar to the
bilingual case, we use the unsupervised iterative refinement procedure and seed lexicon
heuristic explained in Sections 4.3.2 and 4.3.3. However, we require the mapping to be
asymmetric (in contrast to Equation 4.3 where both the source and target spaces are
rotated) as the space of the hub language should either remain unchanged or it should
be transformed with the same operation for each of the N−1 embeddings pairs. We
therefore derive an asymmetric version of the mapping framework of Section 4.3.1
which in the bilingual case leads to an equivalent cross-lingual space.

LetX be the embedding matrix of the hub language;Z1,..,ZN the embedding matrices
of the other languages; andDk,l the dictionary between languages Lk and Ll , then we
obtain a multilingual embedding spaceXmulti, Zmulti

1 , ... , Zmulti
N in three main steps.

First, the embeddings of each language are preprocessed by normalizing and whitening
the embeddings (see Equations 4.5-4.10). Normalization consists of subsequently
performing length normalization, mean centering, and then again length normalization.
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normalize(W ) = length_norm(mean_center(length_norm(W ))) (4.5)

ZCAwhiten(W ) =W (W ᵀW )−0.5 (4.6)

X
′
= normalize(X) (4.7)

X
′′
= ZCAwhiten(X

′
) (4.8)

Z
′
l = normalize(Zl) (4.9)

Z
′′
l = ZCAwhiten(Z

′
l ) (4.10)

After preprocessing, we rotate each secondary language Ll to a bilingual space between
the hub language space and its own embedding space (Equations 4.12-4.14). The
calculations are analogous to the bilingual mapping procedure introduced above: the
left and right singular vectors Ul and Vl ofX

′′
Dk,lZ

′′ᵀ
l are the rotation matrices that

project the preprocessed matricesX
′′

and Z
′′
l to their bilingual space (Equations 4.11-

4.12).5 The bilingual projection of Z
′′
l can be reweighted by multiplying it with a given

power q of the singular values matrix Sl ofX
′′
D0,lZ

′′ᵀ
l (Equation 4.13). Intuitively

this reweighting operation makes the dimensions that correlate better across languages
more important. Next, we restore the variance information of Z

′
l by performing a

dewhitening operation: we project back to the monolingual space, multiply with the
inverse of the whitening matrix, and then project back to the bilingual space (Equation
4.14).6

UlSlV
ᵀ

l = SV D(X
′′ᵀD0,lZ

′′
l ) (4.11)

Zl,bi(l) =Z
′′
l Vl (4.12)

Z
′
l,bi(l) =Zl,bi(l)S

q
l (4.13)

Z
′′
l,bi(l) =Z

′
l,bi(l)V

ᵀ
l (Z

′ᵀ
l Z

′
l )0.5Vl (4.14)

5In Equation 4.11 SV D refers to the singular value decomposition.
6Note that the projection matrices that map from the bilingual to the monolingual spaces are given by the

inverses of Ul and Vl . Because the matrices are orthogonal their inverses are equal to their transposes.
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As a final step, we project Z
′′
l,bi(l) to the space of the hub language (Equation 4.15).

The multilingual space for the hub language is simply the monolingual embedding
space after preprocessing (Equation 4.16).

Zmulti
l =Z

′′
l,bi(l)U

ᵀ
l (4.15)

Xmulti =X
′

(4.16)

One can easily verify that for the bilingual case this formulation is equivalent to the
symmetric mapping introduced in Section 4.3.1 by showing that the dot products
between the mapped spaces simplify to the same formula.

4.4.2 Incrementally Constructing the Multilingual Space

In the hub space model most language pairs are aligned indirectly through the hub
language. Ideally, we want a mapping algorithm that incorporates the interdependencies
between all language pairs. We hypothesize that, especially when mapping a language
distant to the hub language, it is beneficial to incorporate the structural similarities with
other languages as a kind of regularization mechanism to find a more robust mapping.

We therefore propose the incremental hub space (IHS) model, which incrementally
grows the cross-lingual spaceXmulti and takes into account all languages in the cross-
lingual space when adding a new language. First, we define an order on the languages
and initialize the multilingual space to the preprocessed embedding space of language
L0. Next, we iteratively add new languages to the space by at any given iteration
l rotating the preprocessed embedding space Z

′′
l of language l to the multilingual

space by minimizing the dot product between embeddings of the translations between
language l and the languages in the multilingual space. The recipe to calculate the cross-
lingual embedding Zmulti

l is similar to the hub language model: the preprocessing and
postprocessing steps are the same, but the rotation matrices are calculated with Equation
4.18 instead of 4.11, conform with the new objective (Equation 4.17). After the self-
learning is converged, Zmulti

l is added to the cross-lingual space Xmulti: Xmulti
l =

Zmulti
l .

argmax
Wxl ,Wzl

l−1

∑
k=0

tr(Xmulti
k Wxl(Dk,lZ

′′
l Wzl)ᵀ) (4.17)

subject toWxlW
ᵀ
xl = I,WzlW

ᵀ
zl = I
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UlSlV
ᵀ

l = SV D((Xmulti
0 )ᵀD0,lZ

′′
l || ... ||(Xmulti

l−1 )ᵀDl−1,lZ
′′
l ) (4.18)

where || denotes concatenation along the row axis

In a supervised setting this approach would be impractical as it would require bilingual
dictionariesDk,l for all language pairs k, l, not only with the hub language. However,
within a self-learning, unsupervised framework there is no such constraint.

4.5 Experimental Setup

4.5.1 Tasks and Datasets

The embeddings are evaluated in three tasks: bilingual lexicon induction (BLI),
multilingual dependency parsing, and multilingual document classification. Bilingual
lexicon induction is the most widely used method to evaluate bilingual embedding
spaces. Although BLI performance is not the primary goal of the multilingual
embedding spaces, it provides a fast means to address the following research questions:
1) Is the incremental construction of multilingual embedding spaces indeed an effective
regularization method? Is it still necessary to perform value dropping in this case?
Value dropping significantly slows down training time and leads to non-deterministic
outcomes, though it has shown to be crucial in the bilingual setting to obtain good results
when mapping distant language pairs (Artetxe et al., 2018a); 2) Is the reweighting
of embedding spaces also beneficial for BLI in a multilingual setting?; 3) Does
multilingual training improve bilingual lexicon induction performance? How do the
multilingual models compare to each other and the state of the art in unsupervised BLI?

We evaluate BLI performance with accuracy and use two BLI datasets:

• DINUARTETXE, the extended version of the dataset of Dinu et al. (2015) used in
Artetxe et al. (2018a).7 It consists of bilingual dictionaries for English-German,
English-Italian, English-Spanish and English-Finnish; and of monolingual
embeddings trained with the CBOW model on the WaCKy corpora for English,
Italian and German, the monolingual WMT Common Crawl corpus for Finnish,
and the WMT News Crawl for Spanish. The sizes of the test dictionaries are
between 1.869 and 1,993 translations for each language. As our methods are
unsupervised, we do not use the training dictionaries. The embeddings are
300-dimensional 8 and were truncated to the 200k most frequent words.

7Easy to download with https://github.com/artetxem/vecmap/blob/master/get_
data.sh.

8Using 300-dimensional word embeddings is standard practice in the word embedding literature.

https://github.com/artetxem/vecmap/blob/master/get_data.sh
https://github.com/artetxem/vecmap/blob/master/get_data.sh
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• EURMUSEWIKI, this dataset is compiled from dictionaries for all combinations
of the following European languages: English, German, Spanish, French, Italian,
and Portuguese. The sizes of the test dictionaries range between 1,513 and 3,660
translations. We use publicly available9 monolingual embeddings trained with
fastText (Bojanowski et al., 2016) on recent Wikipedia dumps. The embeddings
are 300-dimensional and we truncated them to the 200k most frequent words as
done in related work (Dinu et al., 2015; Lample et al., 2018, inter alia).

With the multilingual dependency parsing and multilingual document classification
tasks, we can assess the embeddings w.r.t. their actual goal: enabling transfer learning
across multiple languages. The word embeddings are used as the feature vector for
classifiers of the respective tasks. We will address the following research questions:
4) Is reweighting of embedding spaces also beneficial in down-stream tasks?; 5) How
do our methods perform w.r.t. methods that learn multilingual embedding spaces with
supervision?

The tasks are evaluated with the convenient online evaluation platform of Ammar et al.
(2016)10 where users can submit their multilingual embeddings and evaluate them on
cross-lingual tasks. This ensures that the classifiers we use are identical to the ones
used in related work Ammar et al. (2016) and Duong et al. (2017). Specifically, we
evaluate the embeddings with the following datasets and corresponding classifiers:

• REUTERSMLDC, the multilingual document classification dataset consists
of seven languages: English, German, French, Italian, Spanish, Danish, and
Swedish. The classification performance is evaluated using the average accuracy
across all languages. The training and test set consist of 7,000 and 13,058
documents respectively. The dataset is well balanced in the number of documents
per language.11 The architecture of the document classifier is the average
perceptron used in Klementiev et al. (2012).

• MULTIPARSING, the multilingual dependency parsing dataset is a subset of the
Universal Dependencies 1.1 corpus (Agić et al., 2015)12 containing 12 languages:
English, German, French, Spanish, Italian, Bulgarian, Czech, Danish, Swedish,
Greek, Finnish, and Hungarian. The training and test set consist of 16,748
and 1,200 sentences respectively. The test set contains 100 sentences for each
language, while for the training set the number of sentences for a language ranges
between 98 and 6,694. The architecture of the classifier is the LSTM parser from

9https://github.com/facebookresearch/fastText/blob/master/pretrained-
vectors.md

10http://128.2.220.95/multilingual/
11As the dataset is not publicly available this information was provided by the first author of Ammar et al.

(2016).
12http://hdl.handle.net/11234/LRT-1478

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
http://128.2.220.95/multilingual/
http://hdl.handle.net/11234/LRT-1478
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Dyer et al. (2015) without the use of part-of-speech and morphology features and
keeping the word embeddings fixed (i.e., word embeddings are not optimized on
the parsing task). The classification performance is evaluated with the average
unlabeled attachment score across languages, which is the percentage of words
that have the correct head (not evaluating the correctness of the dependency
labels).

For a fair comparison with related work, we train 512-dimensional monolingual
embeddings by training on the text collections used in Ammar et al. (2016) and
Duong et al. (2017).13 The embeddings were again trained using fastText.

4.5.2 Implementation & Default Hyper-parameters

We implemented the SHS and IHS models in Python 3 using the numpy and cupy
libraries, starting from the code of the bilingual unsupervised mapping framework of
Artetxe et al. (2018a).14 In all the experiments, we set the following hyper-parameters
to values that were used in prior research (Lample et al., 2018; Artetxe et al., 2018a):

When constructing the seed lexicon the 4,000 most frequent words of each language
are considered (Cseed = 4000), and during the refinement step only the 20,000 most
frequent words of each language are considered (Cre f inement = 20000). When using
value dropping, the keep probability p is initialized with 0.1, the number of refinement
steps Npatience without improvements in the objective before increasing p is set to 50,
and the stochastic multiplier is set to 2. Dictionaries are constructed symmetrically:
from hub language(s) to the secondary language and from the secondary language
to the hub language(s). Implying that during refinement each dictionary consists
of 2× 20000 translations. We use the CSLS similarity metric with k = 10 nearest
neighbors, following the setup of Lample et al. (2018).

4.6 Experiments

Experiment 1: Value dropping

This experiment is designed to verify if value dropping is a necessary condition for
mapping between distant language pairs to be successful in a multilingual setting. In

13The web service is available at http://128.2.220.95/multilingual/data/. The
source code for the framework is available at https://github.com/wammar/multilingual-
embeddings-eval-portal.

14https://github.com/artetxem/vecmap

http://128.2.220.95/multilingual/data/
https://github.com/wammar/multilingual-embeddings-eval-portal
https://github.com/wammar/multilingual-embeddings-eval-portal
https://github.com/artetxem/vecmap
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EN-DE EN-IT EN-ES EN-FI All
Model value dropping av. max. av. max. av. max. av. max. total av.

SHS no 48.00 48.00 45.93 45.93 36.53 36.53 0.14 0.14 32.65
SHS yes 47.51 47.73 45.60 46.20 36.33 36.87 31.92 32.79 40.34

IHS no 47.93 47.93 45.93 45.93 36.07 36.07 31.04 31.04 40.24
IHS yes 47.45 47.80 45.48 45.67 36.43 36.87 30.97 31.32 40.08

Table 4.1: Comparison of the accuracy scores the SHS and IHS models with and
without value dropping on the DINUARTETXE BLI dataset.

Table 4.1 we show the results for SHS and IHS models with and without value dropping,
using no reweighting (i.e., q = 0), and evaluated on the DINUARTETXE dataset. For
the SHS model English is taken as the hub language, and for the IHS model we process
the languages in the following order: English, German, Italian, Spanish, Finnish. When
using value dropping we report the average and best results across five runs.

For the SHS model, we find that value dropping is paramount for mapping distant
language pairs, but for the IHS model this is not the case. This supports our
hypothesis/interpretation that mapping a language to a space that contains more
languages is a type of regularization and hence can replace value dropping. Note
that it is important that we do not start with mapping the distant languages. For
instance, when using IHS with a language order that starts with English and Finnish,
value dropping would still be required to prevent bad performance for Finnish. As we
know in advance which languages are more distant this is not a problem in practice.

Experiment 2: Reweighting and Comparison with State of the
Art for BLI

In this experiment, we verify if reweighting embedding spaces is still beneficial for BLI
in a multilingual setup, and compare our methods w.r.t. state of the art BLI methods. In
Table 4.2 we show the results for SHS and IHS with reweighting coefficients q of 0, 0.5
and 1 on the DINUARTETXE dataset and include the state-of-the-art results (Artetxe
et al., 2018a) as a reference. Similarly, Table 4.3 reports the results for SHS and IHS
with reweighting coefficients q of 0, 0.5 and 1 and the state of the art results of (Chen
and Cardie, 2018) on the EURMUSEWIKI dataset. The EURMUSEWIKI benchmark
evaluates BLI performance on all language pair combinations of its six languages and
this in both directions (EN-DE, DE-EN, EN-ES, ... IT-PT, PT-IT) yielding 28 accuracy
scores per model. For clarity, we report the average accuracy scores per language as
well as the global accuracy average. Based on the conclusion of Experiment 1, all
results for SHS are obtained using value dropping (again averaged across 5 different
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EN-DE EN-IT EN-ES EN-FI All
Model q av. max. av. max. av. max. av. max. total av.

Artetxe 2×0.5 48.13 48.53 48.19 48.47 37.33 37.60 32.63 33.50 41.57

SHS 0 47.51 47.73 45.60 46.20 36.33 36.87 31.92 32.79 40.34
IHS 0 47.93 47.93 45.93 45.93 36.07 36.07 31.04 31.04 40.24
SHS 0.5 48.69 48.80 47.67 48.00 37.51 37.80 32.40 33.08 41.57
IHS 0.5 48.60 48.60 47.73 47.73 37.53 37.53 31.74 31.74 41.40
SHS 1 47.77 47.87 47.91 48.13 37.00 37.40 31.82 32.51 41.13
IHS 1 48.00 48.00 48.00 48.00 37.93 37.93 31.46 31.46 41.35

Table 4.2: Accuracy scores on the DINUARTETXE BLI dataset: SHS and IHS are
evaluated for different values of the reweighting parameter q and the state-of-the-art
results of Artetxe et al. (2018a) are added as a reference.

runs), while for IHS we do not use value dropping. The hub language for SHS is
English, and the language orders for IHS are EN, DE, IT ES, FI for the DINUARTETXE
dataset and EN, DE, ES, FR, IT, PT for the EURMUSEWIKI dataset.

Tables 4.2 and 4.3 reveal that reweighting the target embedding spaces is indeed
still beneficial for BLI when mapping to a multilingual space. Both SHS and IHS
obtain best results with reweighting coefficient q = 0.5. When comparing SHS and
IHS, we see that for language pairs involving English (the SHS hub language) SHS
obtains slightly better results, but for the other language pairs IHS outperforms SHS
slightly. This is no surprise as IHS by design incorporates dependencies between all
languages when learning the rotation matrices, though it is striking that mapping to a
single hub language is still a strong BLI baseline. For both datasets IHS obtains BLI
performance competitive with the state of the art. On the DINUARTETXE dataset, SHS
and IHS with q = 0.5 obtain (near) identical scores to Artetxe et al. (2018a), on the
EURMUSEWIKI dataset IHS q = 0.5 slightly outperforms Chen and Cardie (2018) for
all languages except Spanish. Although BLI is not the main purpose of multilingual
word embeddings, these results illustrate the soundness of our methods. On a final note,
we point out that the results on the EURMUSEWIKI dataset are significantly higher
than those on the DINUARTETXE. This can be attributed to a combination of factors:
the Wikipedia corpora tend to be more comparable across languages than the web
crawl data used for DINUARTETXE, the monolingual EURMUSEWIKI embeddings
are trained with fastText which tends to provide more fine-grained embeddings than
CBOW, and the test dictionaries were constructed with different methods.
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Model q av. EN av. DE av. ES av. FR av. IT av. PT av. All

Chen and Cardie (2018) 79.57 70.46 82.88 82.01 80.69 80.13 79.29

SHS 0 80.04 68.24 80.95 80.10 78.71 77.96 77.67
IHS 0 79.61 69.52 82.35 81.26 80.00 79.02 78.63
SHS 0.5 80.34 70.16 82.15 81.65 80.31 79.78 79.07
IHS 0.5 79.91 70.77 82.68 82.08 81.08 80.47 79.50
SHS 1 79.61 69.59 81.53 81.10 79.74 79.47 78.51
IHS 1 79.05 69.99 81.63 81.23 80.13 79.68 78.62

Table 4.3: Accuracy scores on the EURMUSEWIKI BLI dataset averaged per language:
SHS and IHS are tested for different values of the reweighting parameter q and the
state-of-the-art results of Chen and Cardie (2018) are added as a reference.

Experiment 3: Downstream Tasks

In this experiment, we investigate the effect of reweighting embeddings on performance
on downstream tasks that use the multilingual embeddings as input features, and we
compare SHS and IHS to several supervised methods that use cross-lingual supervision
for learning multilingual embeddings. Table 4.4 reports the results for SHS and
IHS with reweighting coefficients q set to 0 and 0.5 on the REUTERSMLDC and
MLPARSING benchmarks, along with the results from related work. For SHS the
hub language is English and for IHS the language order is English, German, Spanish,
Italian, French, Bulgarian, Czech, Danish, Finnish, Greek, Hungarian, and Swedish.
Because the languages covered in the MLPARSING is a superset of the languages
in REUTERSMLDC, we use the same multilingual embedding space for both tasks.
Motivated by Experiment 1, we again use SHS with value dropping and IHS without
value dropping. The results in Table 4.4 are comparable as all methods were trained
on the same text corpora (i.e., the collections of Ammar et al. (2016)), albeit that our
methods do not use the parallel corpora or bilingual dictionaries.

A first interesting result is that, contrary to the BLI task, reweighting the embeddings
is not beneficial for multilingual dependency parsing and document classification.
This can be explained by the fact that the reweighted embedding space is no longer
isomorphic to the original monolingual embedding space, hence important patterns in
the embedding space could be distorted. Another important observation is that both
the SHS and IHS improve over the best reported results on the REUTERSMLDC and
MLPARSING benchmarks. This result is surprising given that the reported baselines all
use supervision to train the multilingual embedding spaces. Further, we again find that
the best results are obtained with IHS, most notably for dependency parsing for which
the difference in unlabeled attachment scores between the best IHS and SHS models is
2.29%.
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Model q MLPARSING REUTERSMLDC

Invariance (Huang et al., 2015) 59.80 91.10
MultiSkip (Luong et al., 2015) 57.70 90.40
MultiCluster (Ammar et al., 2016) 61.00 92.10
MultiCCA (Ammar et al., 2016) 58.70 92.10
Duong et al. (2017) 61.20 90.80

SHS 0 63.48 92.59
IHS 0 65.77 92.72
SHS 0.5 62.23 92.63
IHS 0.5 63.42 92.56

Table 4.4: Results on the MLPARSING (multilingual dependency parsing) and
REUTERSMLDC (multilingual document classification) benchmarks: SHS and IHS
are compared with and without reweighting and we show the state-of-the-art results
of supervised embedding mapping methods as a reference. The results for Invariance,
MultiSkip, Multicluster, MultiCCA all come from Ammar et al. (2016).

4.7 Conclusions

Building on recent developments in the induction of bilingual embedding spaces,
we proposed two new methods for learning multilingual embedding spaces without
using supervision (e.g., in the form of bilingual dictionaries or parallel corpora). By
evaluating on different benchmark datasets, we have shown that our Incremental
Hub Space (IHS) method infers multilingual embeddings that are competitive with
the state of the art when used for bilingual lexicon induction and improve over the
state of the art when used for multilingual dependency parsing and multilingual
document classification. In contrast to prior research, IHS combines three desirable
properties: it incorporates dependencies between all targeted languages, it works for
distant languages such as Finnish and Bulgarian, and the method is both deterministic
and robust in the sense that it does not produce degenerate solutions. Furthermore,
we looked at the influence of reweighting the dimensions of the embedding spaces
according to their cross-correlations with the hub language space(s) and found that
while it improves performance for the BLI task, it is harmful to downstream tasks such
as multilingual dependency parsing and multilingual document classification. This
stresses the often overlooked requirement to include comprehensive and heterogeneous
evaluation protocols for cross-lingual word embedding models in any future research
in the field.
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Chapter 5

Automatic Detection and
Correction of
Context-Dependent
Dt-mistakes using Neural
Networks

In this chapter, we study representation learning architectures for building an automatic
spelling corrector for dt-mistakes, one of the most important Dutch spelling mistakes.
Due to a lack of annotated training data (i.e., real-life spelling errors annotated with
their corrections), directly estimating the distribution P(s|s̃) of the correct sentence s
conditioned on the possibly erroneously-written input sentence s̃ is unfeasible. Because
the mistakes we are addressing only concern incorrect usage of verb suffixes (e.g.,
gebeurt vs gebeurd), we instead estimate the probability of verb suffixes (e.g., d or
t) given their stem (e.g., gebeur). Although this reformulation is more challenging
because the system can no longer exploit the fact that the input spelling is usually
correct, this circumvents the lack of annotated data: all that is required to train such
system is a fair amount of high-quality text. We evaluate our model against four spell
checkers, including the spell checker that comes with Microsoft Word, and find our
model outperforms all other systems with a large margin.

Whereas Chapters 3 and 4 studied unsupervised RL methods, we now illustrate how
representation learning can be used in a weakly-supervised framework by training the
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model parameters on a proxy task that circumvents the absence of annotated training
examples.

5.1 Introduction

Verbs in the Dutch language get assigned different inflections depending on their
grammatical role and position in a sentence. For some verbs different inflections lead
to the same pronunciation, making it impossible to hear which grammar rule applies.
This phenomenon gives rise to one of the most common spelling mistakes in Dutch,
commonly referred to as dt-mistakes, which even native speakers and/or language
professionals are prone to make (Het Nieuwsblad, 2013, 2017). According to a study
of spelling errors on the Internet, dt-errors were the most frequent classical spelling
mistake in Dutch (Gheuens, 2012).1

An automatic solution for the dt-problem would be very desirable, however, previous
investigations found that current grammar and spelling checkers demonstrate low recall
when it comes to context-dependent dt-mistakes (Laevaert, 2017). In this chapter, we
introduce a new approach that tackles this problem. More specifically, our work has
three main contributions:

• We show how we can successfully train a neural network to correct context-
dependent dt-mistakes, without annotated training examples, on millions of
sentences. We report large improvements over state-of-the-art grammar and
spelling checkers on three different benchmarking test sets.

• We propose a generative process for creating dt-mistakes, motivated by cognitive
insights (Verhaert and Sandra, 2016). This enables the creation of two large-scale
evaluation sets, which we use in addition to the three aforementioned test sets.

• We introduce a method for determining which words in a sentence lead the
system to make its prediction. This is a valuable means for providing feedback
to the users, especially if they are still not very familiar with the conjugation
rules (e.g., for misspelled past participles it identifies the corresponding auxiliary
verb, hereby indicating the rule that applies).

The remainder of this chapter is structured as follows. Section 5.2 provides a brief
introduction to the dt grammar rules and defines the context-dependent dt-error
correction task. Section 5.3 presents an overview of related work. Section 5.4 describes
the proposed approach and different model architectures that we investigate. Section

1The term “classical mistake” refers to the fact that the mistake was not intentional, unlike mistakes
related to cyber-slang or dialect usage.
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5.5 explains how we construct the training and evaluation datasets. Sections 5.6 and 5.7
report on the setup for our experiments, and the corresponding results and observations.
The conclusions and implications of this work are discussed in Section 5.8.

5.2 Dt-rules

In this section, we introduce the Dutch verb conjugation rules (further also referred to
as dt-rules) and the context-dependent dt-error correction task. Table 5.1 illustrates the
most important dt-rules. It is not our intention to provide an in-depth explanation of
all the rules, though it is important to observe that verb inflections depend on multiple
factors: the verb tense, the number of the subject, the position of the subject w.r.t. the
verb, the raw stem of the verb (i.e., the infinitive minus the -en suffix), etc. Native
speakers typically do not have problems applying these rules when they can hear the
inflection. Verbs that have a homophone form (e.g., beantwoord and beantwoordt) give
rise to many spelling errors, however. Such spelling errors are typically referred to
as dt-mistakes.2 In this work, we focus on correcting context-dependent dt-mistakes.
The sentence "*Ik beantwoordt de vraag." contains an example of a context-dependent
dt-mistake: beantwoordt is a correct Dutch verb form, hence an interpretation of the
rest of the sentence is required to determine which grammar rule applies and detect the
mistake. If instead the misspelled verb was beantwoort, then it would not have been a
context-dependent mistake as beantwoort is not part of the Dutch vocabulary and can
therefore be identified using dictionary lookups.

We formally define context-dependent dt-correction as the correction of a sentence
s̃, consisting of N words x1..N to a sentence s such that incorrectly spelled, context-
dependent dt-errors are corrected.

5.3 Related Work

Classical works in context-dependent spelling correction were based on n-gram
language models (Atwell and Elliott, 1987; Gale and Church, 1990; Church and
Gale, 1991; Mays et al., 1991). An important drawback of these approaches is that
the n-gram assumption inhibits learning long-range dependencies. The use of higher
order n-gram models to mitigate this issue generalizes badly due to the sparsity of
language. Another line of research views context-dependent spelling correction as a
disambiguation problem, where different classifiers are trained for each word pair that
can be confused (Yarowsky, 1994; Gale et al., 1995; Golding, 1996; Golding et al.,
1999; Mangu and Brill, 1997). This approach is ill-suited for dt-correction as it does

2Some sources use a more narrow definition of dt-mistakes and only consider rules 1-6 in Table 5.1.
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not account for the fact that the correct spelling of any given verb depends on the
same set of rules. Learning different classifiers for each confusion set (e.g., {antwoord,
antwoordt}, or {vind, vindt}) therefore limits the generalizations that can be made
from a training set.

# tense usage subj. position rule example + translation

1 present 1st person anywhere stem
Ik beantwoord je vraag.
I answer your question.

2 present 2nd person
after
the verb

stem
Beantwoord je de vraag?
Do you answer the question?

3
past
participle

as verb anywhere
(ge) + stem
+ (d/t)†

Hij heeft de vraag beantwoord.
He has answered the question.

4 imperative / no subject stem
Beantwoord de vraag!
Answer the question!

5 present 2nd person
not after
the verb

stem + t
Jij beantwoordt de vraag.
You answer the question.

6 present 3rd person anywhere stem + t
Hij beantwoordt je vraag.
He answers your question.

7
past
participle

adjective anywhere
(ge) + stem
+ (d/t)†+ (e)

De beantwoorde vraag ...
The answered question ...

8 past singular anywhere stem + te/de
Hij beantwoordde de vraag.
He answered the question.

9 past plural anywhere stem + ten/den
Zij beantwoordden de vraag.
They answered the question.

10 present plural anywhere stem + en
Zij beantwoorden de vraag.
They answer the question.

11 infinitive / anywhere stem + en
Ik zal de vraag beantwoorden.
I will answer the question.

Table 5.1: Illustration of the main Dutch verb conjugation rules. Although the
rules apply to most Dutch verbs, spelling problems only occur for verbs which have
homophone verb forms, for which it is impossible to hear which rule applies (e.g.,
beantwoord vs beantwoordt). Note that this table is by no means a comprehensive
overview of all Dutch verb conjugation rules. † (d/t): depending on the last character
of the raw stem (infinitive - en) -d, -t or nothing should be added.

Prior work in context-dependent dt-error correction typically relies on handcrafted rules
(e.g., Vosse (1992) defines an augmented context-free grammar and uses a shift-reduce
parser to detect grammatical errors due to morphosyntactic inconsistencies) or uses a
shallow statistical model from a limited context window. While rules can be precise,
they are too restrictive and fail to detect errors when verb and subject/auxiliary verb are
further apart. The work of Stehouwer and Van den Bosch (2009) can be seen as a first
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attempt to learn a dt-correction system in a data-driven fashion. They use IGTree, a fast
approximation of k-nearest neighbor classification (Daelemans et al., 1997), to identify
the correct dt-verb forms based on fixed-length feature vectors constructed from context
windows of four words. However, the use of small, fixed-length context windows is an
oversimplification that will again run into problems when verb and subject/auxiliary are
further apart. The architectures we propose address this issue by using a deep classifier
which uses the full sentence rather than a limited window of context words, and learns
to represent the context with distributed representations instead of predefined sparse
feature vectors, enabling better generalization over contexts.

5.4 Approach

We use a neural network to estimate the conditional probability distribution of the suffix
of the verb xi at position i given the stem of the verb, the other words in the sentence,
and the position of the verb in the sentence (see Equation 5.1). During prediction, we
use this distribution to select the most likely homophone verb form.

P(suffix(xi) | x1..i−1,stem(xi),xi+1..N) (5.1)

Figure 5.1 presents an architectural overview of the system. We train a neural network
that estimates the conditional distribution over verb suffixes (no suffix, -t, -d, -e, -de,
-te, -en, -den, -ten) given the stem of the verb, the other words in the sentence, and the
position of the verb in the sentence. The network can be conceptually divided into
three components: a verb encoder, which builds a representation for the stem of the
input verb; a context encoder, which builds a representation for the sentence using the
position i of the verb within this sentence; and a feed-forward neural network that fuses
the verb and sentence representations and transforms them to a probability distribution
over suffixes using a softmax layer.

Instead of predicting the suffixes, one could also imagine a model that estimates the
probability of the entire verb given the rest of the sentence. There two important
drawbacks to this approach: Firstly, such a model is much more computationally
expensive as it predicts a distribution over all unique verbs. Secondly, it will be more
challenging to spell check infrequent verbs because there is much less data to estimate
their probability.

We also investigated an alternative framework where instead of predicting the suffix
from the stem, we predict the edit rules that correct a potentially wrongly-spelled verb
given its context. This approach has the drawback that it assumes a large annotated
set of dt-mistakes. In a preliminary investigation (Laevaert, 2017), we created such a
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Figure 5.1: Architectural overview of the dt-corrector. The input to the system is the
position of the verb i and the sentence where the input verb is replaced by its stem.
Two neural networks are responsible for encoding the representations of the context
and the verb respectively. The resulting representations are concatenated and fused
by a feed-forward neural network and transformed to a probability distribution over
suffixes using a softmax layer.

dataset by automatically introducing mistakes according to a handpicked distribution
of dt-errors. However, we found that the performance drops significantly when the
dt-error distributions of the training and test sets do not match, making it infeasible to
build a practical system with this approach.

In this work we show it is possible to obtain a highly accurate dt-correction system
without making assumptions about the distribution of dt-mistakes. In the remainder of
this section, we describe our architecture in further detail.

5.4.1 Verb Stem Representation

We hypothesize that a good verb stem representation is useful for a) determining the
suffix of past participles, this is either -d, -t, or no suffix depending on the last letter of
the raw verb stem; and b) learning a bias towards the most used suffix for a given stem.
In the Europarl dataset for instance, wordt is much more frequent than word. A bias
towards the more frequent verb forms could benefit the precision of a system in cases
where it is uncertain about how to interpret the input sentence. Based on this intuition
we will experiment with three different verb stem representations:
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Figure 5.2: Illustration of the context encoders: A) BILSTM, B) BILSTM +
ATTENTION.

– CHARS obtains a verb stem representation ri,stem from the last state of an
LSTM (Hochreiter and Schmidhuber, 1997) to which the verb stem is fed as a
sequence of characters. Characters are represented as one-hot vectors;

– CHARS+WORD obtains a verb representation ri,stem by concatenating the CHARS
representation with a word embedding of the stem;

– LAST_CHAR+WORD obtains a verb representation ri,stem by concatenating the
last character of the stem embedded into a three-dimensional vector with a word
embedding of the stem. The three-dimensional character embedding is motivated by
the fact that characters can be grouped into three categories based on the suffix that
should be added as a past participle.

5.4.2 Context Representation

From the context it should be clear which dt-rule applies (see Table 5.1). It should
therefore encode information about the subject, the tense in which the verb is used, and
the position of the verb w.r.t. the subject. We experiment with two different context
representations (see Figure 5.2):
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– BiLSTM (Figure 5.2A) obtains a context representation ri,ctxt by concatenating
the states,

−→
h i−1 and

←−
h i+1 of a bidirectional LSTMs (Schuster and Paliwal,

1997; Graves and Schmidhuber, 2005). A bidirectional LSTM consists of two
LSTMs: LSTM f orward computes its states

−→
h 1..
−→
h N by processing the words in order,

LSTMbackward computes
←−
h N ..
←−
h 1 by processing the words in reverse order.3 Each

word x j is represented by its word embedding e j before feeding it to the LSTMs.

ri,ctxt =
−→
h i−1 ‖

←−
h i+1 (5.2)

−→
h j = LSTM f orward(

−→
h j−1,e j) (5.3)

←−
h j = LSTMbackward(

←−
h j+1,e j) (5.4)

Here ‖ denotes concatenation.

– BiLSTM + Attention (Figure 5.2B) obtains a context representation ri,ctxt by first
encoding the sentence, for which the relevant verb is replaced by its stem, with a
bidirectional LSTM, and then using an attention mechanism to extract the relevant
information from its states h1..N . A word x j is fed to the LSTM as the concatenation
of its corresponding word embedding e j and a binary indicator I j=i to identify the
position of the verb.

An attention mechanism summarizes a sequence of vectors to a single vector as a
linear combination of these vectors. The motivation for an attention mechanism is
twofold. Firstly, attention models are typically beneficial when dealing with long
sequences. They could therefore perform better than BiLSTM in cases where the
subject and the direct verb are far apart. BiLSTM always uses the states next to
the verb stem, even if the subject is not located nearby. The attention mechanism,
on the other hand, calculates a weighted combination of all the states. Second, an
attention mechanism could help with gaining insights in what the model has learned.
By visualizing the attention weights we might uncover what words/patterns were
most relevant for building the context representation.

There have been different attention mechanisms proposed in the literature. In this
chapter, we use single-head attention with an additive attention scoring function
(Bahdanau et al., 2015), the best performing attention mechanism for neural machine
translation in the comparison of Britz et al. (2017).4 The attention weights α are
calculated by normalizing the scores score1, ..., scoreN calculated by the additive
scoring function fadd , which compares a hidden state h j with a query vector q,

3Note that because the model only requires
−→
h i−1 and

←−
h i+1 we do not need to actually process the

forward and backward sequences all the way to the end, see Figure 5.2.
4We also performed preliminary experiments with multi-head attention, but this yielded no improvements.
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computes the dot product between the result (after passing it to a tanh activation
function) and a vector v. The vectors q and v are learned jointly with the rest of the
network parameters.

ri,ctxt = attention(h1..N) (5.5)

h j =
−→
h j ‖

←−
h j (5.6)

−→
h j = LSTMle f t(

−→
h j−1,e j) (5.7)

←−
h j = LSTMright(

←−
h j+1,e j) (5.8)

attention(h1..N) =
N

∑
j=1

α j h j (5.9)

α j =
exp(score j)

∑
N
k=1 exp(scorek)

(5.10)

score j = fadd(q,h j) (5.11)

fadd(q,h j) = v · tanh(Wadd,q q+Wadd,hh j) (5.12)

5.4.3 Transforming Representations to a Suffix Distribution

The verb and context representations are concatenated and projected to a C-dimensional
vector by a feed-forward neural network, where C is equal to the number of suffixes.
The softmax function normalizes the resulting vector to a probability distribution over
suffixes. For our experiments the feed-forward neural network consists of a single,
fully connected hidden layer with 128 dimensions and uses a ReLU activation function,
which is defined as max(0,x) and is the default recommendation in modern neural
networks (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011; Goodfellow
et al., 2016).

P(y|x1..i−1,stem(xi),xi+1..N , i) = so f tmax(li) (5.13)

li =Wl ri +bl (5.14)

ri = f eedForward(ri,stem ‖ ri,ctxt) (5.15)
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5.4.4 Training and Prediction

We use the cross-entropy with the empirical distribution of the training data D as the
training objective:

L (D) =− 1
|D | ∑

x,i∈D
logP(suffix(xi)|x1..i−1,stem(xi),xi+1..N , i) (5.16)

where |D | denotes the number of training examples

There are nine suffix classes in total, but during prediction we reduce this to only two
relevant classes for each instance based on the observation that there can be at most
one (real-word) homophone verb form for any given verb. For example beantwoord
can only be confused with beantwoordt, not with for instance beantwoorde as their
pronunciations differ; similarly, beantwoorde can only be confused with beantwoordde.
Hence, during prediction we identify which two suffixes are relevant based on the input
word5 and force the system to predict the most likely of the two.

5.5 Dataset & Preprocessing

Training neural networks requires a significant amount of data. To our knowledge, no
annotated corpus of dt-mistakes is available. By reducing the dt-correction task to a
verb suffix prediction problem as described in the previous section, it suffices to have a
large dataset of correctly written Dutch text. To this end, we used the Dutch portion of
the Europarl corpus (Koehn, 2005), which is written by language professionals.

To have a reliable evaluation of dt-correction systems, we require a significant number
of sentences with annotated dt-mistakes. We have therefore decided to automatically
introduce mistakes in 20,000 Europarl sentences to create a validation and test set of
10,000 sentences each. To verify how well a system generalizes on out-of-domain
test data and to enable a fair comparison with existing systems, we construct three
additional out-of-domain test sets from online verb spelling tests. The remainder
of this section discusses the different preprocessing steps and our methodology for
creating validation and test sets. The datasets and preprocessing scripts are available at
http://liir.cs.kuleuven.be/software.php.

5The last letter of the stem and the suffix of the input word uniquely determine the verb forms that can be
confused.

http://liir.cs.kuleuven.be/software.php
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5.5.1 Identifying and Stemming Verbs

We automatically identify verbs in a sentence based on their part-of-speech (PoS) tags
using TreeTagger (Schmid, 1994).6 For some verbs we can easily derive their stem
based on their last character(s), e.g., if a verb ends with −dt we can obtain the stem by
removing the t at the end. Other word endings are ambiguous, however (e.g., a d-suffix
could be the result of rule 3 of Table 5.1, in which case we can not be certain if d is
part of the stem). From the infinitive of the verb, in contrast, we can determine the
stem unambiguously. We therefore automatically obtain the lemmas using TreeTagger.
For verbs for which the lemma is unknown to the tagger, we derive the stem from the
dt-rules if possible (e.g., when a verb ends with −dt).

5.5.2 Identifying Relevant Verbs

Not all verbs are relevant for training and evaluating a dt-correction system. For
evaluation purposes, we are only interested in dt-homophones as these are the verbs for
which spelling errors occur. We thus automatically construct a list of dt-homophones,
which is used to filter verbs during evaluation and testing. For the training data, there
is no need to be so restrictive: as the dt-rules apply for the majority of Dutch verbs, we
can significantly increase the amount of training data if we also incorporate regular,
non-dt verbs. To this end, in addition to dt-homophones, we use all regular verbs for
which TreeTagger can obtain the lemma so that the stem can be determined reliably.
We verify if a verb is regular, by constructing a set of irregular verb forms from online
grammar sources 7,8, and by checking verbs against this list.

5.5.3 A Generative Process for Dt-Mistakes

To create the validation and test datasets, we need a scheme to introduce dt-mistakes
in text. Cognitive research on dt-mistakes has found that people tend to use the more
frequent spelling of a homophone verb form when they are distracted or put under time
pressure (Verhaert and Sandra, 2016). Based on this insight, we propose a generative
process for dt-mistakes, summarized in Algorithm 4.

From every sentence s in the text corpus C, the verbs are identified using TreeTagger.
For every verb that has a homophone spelling, we sample a binary variable i f ocused
from a Bernoulli distribution that indicates whether a person is focused when writing
the verb. In the scenario where the person is distracted (i.e., i f ocused = 0), we sample the

6Frog (Van den Bosch et al., 2007) could have been a good alternative to TreeTagger.
7https://educatie-en-school.infonu.nl/taal/28516-regelmatige-en-

onregelmatige-werkwoorden-in-de-ott.html
8http://users.telenet.be/orandago/nederlands/ww.doc

https://educatie-en-school.infonu.nl/taal/28516-regelmatige-en-onregelmatige-werkwoorden-in-de-ott.html
https://educatie-en-school.infonu.nl/taal/28516-regelmatige-en-onregelmatige-werkwoorden-in-de-ott.html
http://users.telenet.be/orandago/nederlands/ww.doc
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Algorithm 4: GENERATIVE PROCESS FOR INTRODUCING DT-MISTAKES
MOTIVATED BY COGNITIVE INSIGHTS.
initialize: the focus parameter p f ;
for s in C do

V = identify_verbs(s)
for v in V do

sample i f ocused ∼ Bernoulli(p f )
if not has_homophone_spelling(v) or i f ocused = 1 then

continue
valt = homophone_spelling(v)
sample perror ∼ Beta( f req(valt), f req(v)))
sample ierror ∼ Bernoulli(perror)
if ierror = 1 then

replace(s,v,valt)

probability perror that the person will use the wrong spelling from a Beta distribution
where the frequencies of the two spellings are used as the concentration parameters.9

perror is used as the parameter of a Bernoulli distribution to sample another binary
indicator ierror. When ierror = 1, we replace v by its homophone counterpart valt , hereby
introducing a dt-error. This process ensures that we will never introduce mistakes that
lead to words that do not exist in Dutch and that mistakes where the used verb form is
dominant to the correct verb form are more likely, hence incorporating the insights of
Verhaert and Sandra (2016).

We note that the generative process could potentially be made more cognitively
plausible by incorporating contextual information as it has been shown that
the immediate context in which homophones occur also plays a role in their
selection (Daelemans and van den Bosch, 2007). As the main goal of this work is to
build a successful dt-correction system, a rigorous comparison of different generative
processes falls out of our scope. We leave this for further research.

5.5.4 Out-of-domain Test Sets

To allow an unbiased comparison with existing spell checkers, we construct three
out-of-domain (i.e., not related to the domain of the Europarl dataset) test sets from
online spelling tests containing 20 verb conjugation exercises each: 1) Nooit meer
dt-fouten from de Standaard (a Flemish news paper)10; 2) the HBO taaltoets, spelling

9Note that when someone is distracted he/she can still use the correct spelling.
10https://www.standaard.be/cnt/dmf20141103_01356248

https://www.standaard.be/cnt/dmf20141103_01356248
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werkwoordsvormen from Uitgeverij Pak (a Dutch publishing house)11; and 3) a test
from Nederlandse taaltest also from Uitgeverij Pak12. The exercises use fill-in-the-
blanks type of questions, where a person has to add the right suffix to a given verb
stem within a given sentence. To be able to compare with other spelling checkers, we
manually fill-in the blanks such that we get the wrongly-spelled homophones. For seven
of the sixty verbs no real-word homophone existed (e.g., for stond: stondt and stont are
not correct Dutch words). These are retained from the test sets because replacing them
would result in context-independent errors.

5.5.5 Statistics

Statistics about the distribution of suffixes in the resulting train, development and test
sets are shown in Table 5.2.

dataset -'' -t -d -e -de -te -en -den -ten verbs errors

train 0.31m 0.76m 0.46m 27k 0.10m 24k 1.1m 22k 2.4k 2.8m n/a

dev 0.93k 6.7k 3.8k 65 0 3 0.31k 0 0 12k 1.7k

test 0.89k 6.8k 3.9k 69 1 6 0.28k 3 0 12k 1.7k
dS 1 10 9 0 0 0 0 0 0 20 20
HBO 2 5 2 2 0 1 1 1 2 16 16
NLTT 2 8 1 2 0 1 1 1 1 17 17

Table 5.2: Label distribution of the train, development, and test sets. -'' denotes that the
verb only consists of the stem. The train, dev, and test refer to the train, development
and test splits of the Europarl corpus.

5.6 Experimental Setup

We used 100-dimensional word embeddings, pre-trained with continuous Skip-gram
using the word2vec toolkit with default hyper-parameters. The LSTMs consist of two
layers and 128 memory cells for each layer. We use dropout regularization (Srivastava
et al., 2014) with dropout probability 0.1. For the LSTMs we use variational recurrent
dropout (Gal and Ghahramani, 2016).

We use the Adam optimizer with the recommended hyper-parameters (Kingma and Ba,
2015) and train for a maximum of 500,000 iterations with a mini-batch size of 100,

11http://www.hbotaaltoets.nl/spelling-werkwoordsvormen
12http://www.nederlandsetaaltest.nl/spellingtest-werkwoorden

http://www.hbotaaltoets.nl/spelling-werkwoordsvormen
http://www.nederlandsetaaltest.nl/spellingtest-werkwoorden
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saving checkpoints every 1,000 iterations and selecting the checkpoint with the best
F1-score on the development set for evaluation on the test sets.

In preliminary experiments, we found that training on plural verb forms (ending with
-en, -den, -ten) significantly elongates the training time without having a beneficial
impact on dt-correction performance due to the large imbalance between the label
frequencies of -en, -den and -ten in the training set (see Table 5.2). We therefore did
not train on the plural forms in the experiments reported below. During prediction, the
system will not check the spelling of plural forms.

We use the following evaluation metrics (Reynaert, 2008): accuracy (acc), precision
(prec), recall (rec), and F1 (F1). In this context we define true positives (t p) as the
instances where the system correctly changes the input spelling; false positives ( f p)
are the cases where the system introduces an error; false negatives ( f n) are wrongly
spelled verbs which the system did not correct; true negatives (tn) are correctly spelled
which the system left untouched.

acc =
t p+ tn

t p+ tn+ f p+ f n
(5.17)

prec =
t p

t p+ f p
(5.18)

rec =
t p

t p+ f n
(5.19)

F1 =
2 prec · rec
prec+ rec

(5.20)

5.7 Experiments

5.7.1 Influence of Spelling Errors on the PoS-tagger

In this experiment, we verify the robustness of the PoS-tagger w.r.t. dt-spelling errors.
Using the development set with annotated dt-mistakes, we verified if TreeTagger could
still assign the same PoS tag when a dt-verb was replaced by its homophone. We found
that 98.5 % of the wrongly-spelled verbs are still identified as verbs. However, for only
19.5 % of the wrongly-spelled verbs, the correct tense was preserved. In the majority
of the cases the tagger will assign the tense that is compatible with the wrongly-spelled
verb. This is unsurprising as PoS-taggers are typically trained on high-quality corpora,
with a low amount of spelling errors. Hence, taggers trained on such corpora will have
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learned that the verb form is a strong predictor for its tense. From this result it is clear
that the accuracy of the tenses for wrongly-spelled verbs as recognized by TreeTagger
is far too low to be useful in a dt-correction system.

5.7.2 Context-Agnostic Baselines

In this experiment, we investigate the performance of models that do not use context.
We compare four models: majority class uses the input verb to decide which
homophone suffixes it should consider (see Subsection 5.4.4) and then picks the
suffix that is most frequent in the training data; the other three models use the different
verb representations introduced in Subsection 5.4.1: chars, last_char+word, and
chars+word. The results are reported in Table 5.3. We see that the best context-
agnostic models (chars and last_char+word) obtain an F1-score 55.59 on the test
set. There is not a lot of difference between verb representations. When comparing
majority class with the other models, we find support for the hypothesis that using verb
representations can help to improve the precision of the system (see Subsection 5.4.1).

F1 acc prec rec
model/dataset dev test dev test dev test dev test

majority class 26.98 25.81 60.06 60.05 18.38 17.42 50.72 49.79
chars 56.13 55.59 88.78 88.95 65.11 63.32 49.33 49.55
last_char+word 56.02 55.59 88.81 89.04 65.4 64.01 48.99 49.13
chars+word 55.84 55.5 88.77 89.02 65.22 63.88 48.81 49.07

Table 5.3: Results of baseline models that do not use context, evaluated on the Europarl
development (dev) and test (test) sets.

5.7.3 Context and Stem Encodings

In this experiment, we explore the different combinations of verb and context
representations introduced in Subsections 5.4.1 and 5.4.2. The results are displayed
in Table 5.4. We find that models that use attention to encode the context outperform
the other models for all verb representations. The verb representation does not seem
to have a large impact on the results. With attention, chars+word obtains the best
results on the development set, but on the test set there are no significant differences
between the three encodings. All six architectures’ results exhibit large performance
gains over the baselines that do not use context (Table 5.3). This shows that models are
successfully leveraging the context information.
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The fact that these neural networks only use the stem of the verb that is being checked
makes these results particularly impressive. It means that the system output is largely
independent of the number of mistakes in the input spelling.13 We can hence expect
nearly identical accuracy scores in test sets with a higher or lower ratio of mistakes.

F1 acc prec rec
model/dataset dev test dev test dev test dev test

BiLSTM+chars 97.98 97.44 99.42 99.29 98.88 97.88 97.1 97
BiLSTM+last_char+word 97.77 97.43 99.36 99.29 98.99 98.17 96.58 96.7
BiLSTM+chars+word 97.75 97.61 99.35 99.34 98.64 98.35 96.87 96.88

BiLSTM+Attn+chars 98.07 97.85 99.44 99.4 98.77 98.6 97.39 97.12
BiLSTM+Attn+last_char+word 98.19 97.82 99.48 99.4 99.11 98.48 97.28 97.18
BiLSTM+Attn+chars+word 98.33 97.85 99.52 99.4 99.29 98.48 97.39 97.24

Table 5.4: Comparison of combinations of verb and context encodings on Europarl-dev
(dev) and Europarl-test (test).

5.7.4 Extending the Training Data

In this experiment, we analyzed the effect of omitting non-dt verbs from the training
data (all other experiments include regular, non-dt verbs in the training set, see
Subsection 5.5.2). We find F1-scores of 97.75 and 97.52 on the Europarl development
and test sets respectively. This is a decrease compared to when the model is also trained
on non-dt verbs, which obtained F1-scores of 98.33 and 97.85 (see Table 5.4). This
confirms the hypothesis that a model that is also trained on non-dt verbs generalizes
better.

5.7.5 Comparison with Existing Systems

In this experiment, we compare our system with existing grammar and spell checking
systems on the out-of-domain test sets: de Standaard (dS), HBO taaltoets (HBO) , and
Nederlandse taaltest (NLTT). We compare with the following systems:

– Microsoft Office Word, we experimented with three versions: Office Professional
Plus 2013; Office 365, desktop version; and Office 365, Word online14. We report
the results for Office 365, Word online which demonstrated the best performance.

13With exception of the plural forms (-en, -ten, -den) for which we always leave the input spelling
unchanged.

14Office 365 was tested in April 2018.
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– Schrijfassistent (D’Hertefelt et al., 2014; Houthuys, 2016; 201, 2016)15, a tool for
checking grammar, writing style, and spelling in Dutch developed by a collaboration
of het Instituut Levende Talen, KU Leuven; de Standaard (a Flemish newspaper);
and VRT (the Flemish public broadcasting organization).

– languatool.org 16, an open-source grammar, writing style, and spelling checker for
several languages including Dutch. For dt-correction it relies on a rule-based system
that looks for patterns in the PoS-tags of sentences (OpenTaal, 2014).

– valkuil.net, an online spell checker for Dutch which relies on a data-driven approach
for dt-rules. This system uses a statistical, context-based system which uses a fixed
context window of four words to identify the correct verb form (Stehouwer and Van
den Bosch, 2009).

Table 5.5 reports the results. We find that BiLSTM+Attn+chars+word outperforms
all the other grammar and spelling checkers by a significant margin on all test sets. It
is particularly effective on the de Standaard test set, where it obtains a perfect score.
For the other two test sets the system has perfect precision17, though the recall is
significantly lower than for de Standaard. This is due to the fact that these test sets
query all verb forms (i.e., verbs ending with -en, -e, -d, or -t), whereas the de Standaard
test set focuses on verbs that end with -d or -t. Homophones that end with -ten, -den,
-te, -de, -e occur much less frequently and thus are more difficult for our system to
predict correctly.18 Furthermore, some of the input verb forms did not occur at all in
the Europarl corpus, and will therefore not be recognized as a dt-verb.

The performance improvement with respect to the existing spell checkers comes from
a higher recall. We found that the spell checkers were unable to find any of the errors
where the misspelled verb and the relevant context words (e.g., auxiliary verb or subject)
were not adjacent to each other. It is striking that valkuil.net did not detect any of the
mistakes in the test sets. This is probably related to the fact that the system was tuned to
have high precision.19 The higher recall scores obtained by BiLSTM+Attn+chars+word
support the intuition that learning distributed representations of the whole context yields
better generalization than sparse one-hot representations of fixed context windows. A
straightforward way to further improve the recall of our system is to extend our training
corpus with other high-quality Dutch texts such as news articles. Furthermore, it could
be beneficial to consider a strategy to subsample the frequent suffix classes to boost the
recall for the infrequent suffixes.

15http://schrijfassistent.standaard.be/index.php
16https://languagetool.org/nl
17It should be noted that due to the large number of errors in the test sets, high precision scores are not

surprising as there is little opportunity to introduce errors in correctly written words.
18Recall from the experimental setup that the system was in fact not trained on plural forms because verbs

that end with -ten and -den are too infrequent.
19http://valkuil.net/info

http://schrijfassistent.standaard.be/index.php 
https://languagetool.org/nl
http://valkuil.net/info
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Table 5.5: Comparison with other grammar and spelling checkers.
F1 prec rec

model/dataset dS HBO NLTT dS HBO NLTT dS HBO NLTT

language tool 0.00 0.00 11.11 0.00 0.00 100.00 0.00 0.00 5.88
Schrijfassistent 33.33 30.00 38.10 100.00 75.00 100.00 20.00 18.75 23.53
valkuil.net 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MS Word 26.09 11.76 21.05 100.00 100.00 100.00 15.00 6.25 11.76

BiLSTM+Attn
+chars+word 100.00 57.14 66.67 100.00 100.00 100.00 100.00 40.00 50.00

5.7.6 Acquiring Insight in the Model Predictions

From previous experiments it is clear that the models have learned to successfully
leverage context for making accurate dt-corrections. The aim of this experiment is
to uncover how the models are using the context. In particular, we are interested in
measuring the impact of each word in the sentence on the prediction. We experimented
with two alternative word saliency metrics:

– The weight α j that the attention mechanism assigns to the state corresponding to the
word x j.

– The difference in the probability of the predicted class when we dropout the word
embedding e j of x j (i.e., replacing e j with a vector with all zeros) compared to
normal prediction, where we use all words.

We validated the effectiveness of these word saliency metrics by visualizing their
output and manually inspecting if it provides a plausible explanation for the model’s
prediction. We found that the dropout-based probability model yields intuitive results.
Figure 5.3 shows heatmaps for the dropout-based word saliency metric for sentences
of the de Standaard test dataset. For finite verbs in present tense the word with the
largest impact is the subject, for past participles this is the auxiliary verb. For the
attention-based metric the results were not intuitive. The fact that attention weights
have so little explanatory value is surprising, it indicates that the states to which the
neural network attends still encode much relevant information from previous and/or
subsequent states.

5.8 Conclusion

In this work, we introduced a new approach to automatic correction of context-
dependent dt-mistakes, one of the most frequent spelling errors in the Dutch language.
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Figure 5.3: Heatmaps of the impact of each word on the prediction of the neural
network for wrongly spelled dt-verbs from the De Standaard test set. Impact of a word
is measured by the decrease in probability mass of the predicted class when we mask
the word in the context encoding (i.e., replace its word embedding by a vector of zeros).

By learning a neural network to estimate the probability distribution of a verb’s suffix
conditioned on its stem and the context in which it occurs, we were able to build
a spelling correction system that achieves state-of-the-art performance and perfect
precision on three different benchmarking datasets. The method does not require
annotated training examples and only relies on basic preprocessing tools to tokenize the
text and identify verbs, which allows for training on millions of examples. Furthermore,
we proposed a method to determine which words in a sentence cause the system to
make corrections, which can be a valuable way of providing feedback to the user. We
still see room for further improvement for verb suffixes that occur less frequently (-den,
-ten, -de, -te, -e). A strategy where the more frequent suffix classes are subsampled
may help dealing with these cases.

This chapter is accepted for publication:
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detection and correction of context-dependent dt-mistakes using neural networks.
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Chapter 6

A Deep Learning Approach to
Bilingual Lexicon Induction

In this chapter, we take a representation learning approach to tackle bilingual lexicon
induction in domain-specific corpora. BLI was already addressed as a part of Chapter 4,
though in this chapter we study BLI with the use-case of domain-specific terminology
extraction in mind. As a result, there are several important differences w.r.t. Chapter 4.
In this chapter:

• We build a system for extracting words and phrases from up to five words,
whereas previously we translated individual words;

• We focus on BLI from domain-specific corpora, which are small in comparison
to the large-scale corpora used in Chapter 4;

• The words and phrases are also more morphology-rich because we work with
Wikipedia articles in the medical domain, a dynamic area with an abundance of
terminology;

• The BLI evaluation sets are a random sample of the words/phrases in the
vocabulary, whereas in the BLI evaluation sets in Chapter 4 are biased towards
the most frequent words;

For these reasons, we propose a new RL-based BLI. Casting BLI to a classification
problem, we combine supervised and unsupervised representation learning techniques:
word-level representations are trained on monolingual text corpora without supervision,
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character-level representations and their combination with the word-level representa-
tions are learned from a bilingual seed lexicon. We find that the inclusion of character-
level information results in a significant performance increase and that the RL-based
character-level representations are superior to hand-crafted representations that were
previously used.

6.1 Introduction

As a result of the steadily growing process of globalization, there is a pressing need
to keep pace with the challenges of multilingual international communication. New
technical specialized terms such as biomedical terms are generated on almost a daily
basis, and they in turn require adequate translations across a plethora of different
languages. Even in local medical practices we witness a rising demand for translation
of clinical reports or medical histories (Randhawa et al., 2013). Unfortunately, the
most comprehensive specialized biomedical lexicons in the English language such
as the Unified Medical Language System (UMLS) thesaurus lack translations into
other languages for many of the terms.1 Building bilingual lexicons that contain such
terminology by hand is time-consuming and requires trained experts.

As a consequence, we observe interest in automatically learning the translation of
terminology from a corpus of domain-specific bilingual texts (Bollegala et al., 2015).
What is more in specialized domains such as biomedicine, parallel corpora are often
not readily available: therefore, translations are mined from non-parallel, comparable
bilingual corpora (Kontonatsios et al., 2014a; Xu et al., 2015). In a comparable
corpus, the texts in source and target language contain similar content, but are not
exact translations of each other: as an illustration, Figure 6.1 shows a fragment of the
biomedical comparable corpus we used in our experiments. In this chapter, we propose
a deep learning approach to bilingual lexicon induction (BLI) from a comparable
biomedical corpus.

Neural network based deep learning models (LeCun et al., 2015) have become popular
in natural language processing tasks. One motivation is to ease feature engineering by
making it more automatic or by learning end-to-end. In natural language processing
it is difficult to hand-craft good lexical and morpho-syntactic features, which often
results in complex feature extraction pipelines. Deep learning models have also made
their breakthrough in machine translation (Sutskever et al., 2014; Bahdanau et al.,
2015), hence our interest in using deep learning models for the BLI task. Neural
networks are typically trained using a large collection of texts to learn distributed
representations that capture the contexts of a word. In these models, a word can be

1For instance, UMLS currently spans only 21 languages, and only 1.82% of all terms are provided in
French.
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Figure 6.1: Excerpts of the English-Dutch comparable corpus in the biomedical domain
that we used in the experiments with a few domain-specific translations indicated in
red.
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represented as a low-dimensional vector (often referred to as a word embedding) which
embeds the contextual knowledge and encodes semantic and syntactic properties of
words stemming from the contextual distributional knowledge (Mikolov et al., 2013b).

Lately, we also witness an increased interest in learning character representations,
which better capture morpho-syntactic properties and complexities of a language. What
is more, the character-level information seems to be especially important for translation
mining in specialized domains such as biomedicine as such terms often share common
roots from Greek and Latin (see Figure 6.1), or relate to similar abbreviations and
acronyms.

Following these assumptions, in this article we propose a novel method for mining
translations of biomedical terminology: the method integrates character-level and
word-level representations to induce an improved bilingual biomedical lexicon.

6.2 Background and Contributions

BLI in the Biomedical Domain Bilingual lexicon induction (BLI) is the task of
inducing word translations from raw textual corpora across different languages. Many
information retrieval and natural language processing tasks benefit from automatically
induced bilingual lexicons, including multilingual terminology extraction (Bollegala
et al., 2015), cross-lingual information retrieval (Lavrenko et al., 2002; Levow et al.,
2005; Vulić and Moens, 2015; Mitra et al., 2016), statistical machine translation (Och
and Ney, 2003; Zou et al., 2013), or cross-lingual entity linking (Tsai and Roth, 2016).
Most existing works in the biomedical domain have focused on terminology extraction
from biomedical documents but not on terminology translation. For instance, Hellrich
and Hahn (2014) use a combination of off-the-shelf components for multilingual
terminology extraction but do not focus on learning terminology translations. The
OntoLearn system extracts terminology from a corpus of domain texts and then filters
the terminology using natural language processing and statistical techniques, including
the use of lexical resources such as WordNet to segregate domain-general and domain-
specific terminology (Navigli et al., 2003). The use of word embeddings for the
extraction of domain-specific synonyms was probed by Wang et al. (2015).

Other works have focused on machine translation of biomedical documents. For
instance, Wołk and Marasek (2015) compared the performance of neural-based machine
translation with classical statistical machine translation when trained on European
Medicines Agency leaflet texts, but did not focus on learning translations of medical
terminology. Recently, Afzal et al. (2015) explored the use of existing word-based
automated translators, such as Google Translate and Microsoft Translator, to translate
English UMLS terms into French and to expand the French terminology, but do not
construct a novel methodology based on character-level representations as we propose
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in this thesis. Most closely related to our work is perhaps Xu et al. (2015), where a label
propagation algorithm was used to find terminology translations in an English-Chinese
comparable corpus of electronic medical records. Different from the work presented in
this paper, they relied on traditional co-occurrence counts to induce translations and
did not incorporate information on the character level.

BLI and Word-Level Information Traditional bilingual lexicon induction ap-
proaches aim to derive cross-lingual word similarity from either context vectors, or
bilingual word embeddings. The context vector of a word can be constructed from
(1) weighted co-occurrence counts (Rapp, 1995; Fung and Yee, 1998; Gaussier et al.,
2004; Laroche and Langlais, 2010; Vulić and Moens, 2013a; Kontonatsios et al., 2014b;
Bollegala et al., 2015, inter alia), or (2) monolingual similarities (Koehn and Knight,
2002; Vulić and Moens, 2013b; Vulić et al., 2011; Liu et al., 2013) with other words.

The most recent BLI models significantly outperform traditional context vector-based
baselines (Gaussier et al., 2004; Tamura et al., 2012) using bilingual word embeddings
(BWE) (Baroni et al., 2014). All BWE models learn a distributed representation
for each word in the source- and target-language vocabularies as a low-dimensional,
dense, real-valued vector. These properties stand in contrast to traditional count-
based representations, which are high-dimensional and sparse. The words from both
languages are represented in the same vector space by using some form of bilingual
supervision (e.g., word-, sentence- or document-level alignments) (Zou et al., 2013;
Mikolov et al., 2013c; Hermann, 2014; Chandar et al., 2014; Søgaard et al., 2015;
Gouws et al., 2015; Coulmance et al., 2015; Vulić and Moens, 2016b; Duong et al.,
2016, inter alia).2 In this cross-lingual space, similar words, regardless of the actual
language, obtain similar representations.

To compute the semantic similarity between any two words, a similarity function, for
instance cosine, is applied on their bilingual representations. The target language word
with the highest similarity score to a given source language word is considered the
correct translation for that source language word. For the experiments in this paper, we
use two BWE models that have obtained strong BLI performance using a small set of
translation pairs (Mikolov et al., 2013c), or document alignments (Vulić and Moens,
2016b) as their bilingual signals.

The literature has investigated other types of word-level translation features such as raw
word frequencies, word burstiness, and temporal word variations (Irvine and Callison-
Burch, 2016). The architecture we propose enables incorporating these additional
word-level signals. However, as this is not the main focus of our research, it is left for
future work.

2Note that since this research was completed the field has further advanced. We refer to recent comparative
studies (Upadhyay et al., 2016; Vulić and Korhonen, 2016; Ruder et al., 2018) for a thorough explanation
and analysis of the differences between recent BWE models.
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BLI and Character-Level Information Etymologically similar languages with
shared roots such as English-French or English-German often contain word translation
pairs with shared character-level features and regularities (e.g., accomplir:accomplish,
inverse:inverse, Fisch:fish). This orthographic evidence comes to the fore especially in
domains such as legal domain or biomedicine. In such expert domains, words sharing
their roots, typically from Greek and Latin, as well as acronyms and abbreviations
are abundant. For instance, the following pairs are English-Dutch translation pairs
in the biomedical domain: angiography:angiografie, intracranial:intracranieel, cell
membrane:celmembraan, or epithelium:epitheel. As already suggested in prior work,
such character-level evidence often serves as a strong translation signal (Haghighi
et al., 2008; Claveau, 2008). BLI typically exploits this through string distance metrics:
for instance, Longest Common Subsequence Ratio (LCSR) has been used (Melamed,
1995; Koehn and Knight, 2002), as well as edit distance (Mann and Yarowsky, 2001;
Haghighi et al., 2008). What is more, these metrics are not limited to languages with
the same script: their generalization to languages with different writing systems has
been introduced by Irvine and Callison-Burch (2016). Their key idea is to calculate
normalized edit distance only after transliterating words to the Latin script.

As mentioned, previous work on character-level information for BLI has already
indicated that character-level features often signal strong translation links between
similarly spelled words. However, to the best of our knowledge, our work is the first
which learns bilingual character-level representations from the data in an automatic
fashion. These representations are then used as one important source of translation
knowledge in our novel BLI framework. We believe that character-level bilingual
representations are well suited to model biomedical terminology in bilingual settings,
where words with common Latin or Greek roots are typically encountered (Montalt
Resurrecció and González-Davies, 2014). In contrast to prior work, which typically
resorts to simple string similarity metrics (e.g., edit distance (Navarro, 2001)), we
demonstrate that one can induce bilingual character-level representations from the data
using state-of-the-art neural networks.

Framing BLI as a Classification Task Bilingual lexicon induction may be framed
as a discriminative classification problem, as recently proposed by Irvine and Callison-
Burch (2016). In their work, a linear classifier is trained which blends translation
signals as similarity scores from heterogeneous sources. For instance, they combine
translation indicators such as normalized edit distance, word burstiness, geospatial
information, and temporal word variation. The classifier is trained using a set of known
translation pairs (i.e., training pairs). This combination of translation signals in the
supervised setting achieves better BLI results than a model which combines signals by
aggregating mean reciprocal ranks for each translation signal in an unsupervised setting.
Their model also outperforms a well-known BLI model based on matching canonical
correlation analysis from Haghighi et al. (2008). One important drawback of Irvine
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and Callison-Burch (2016) concerns the actual fusion of heterogeneous translation
signals: they are transformed to a similarity score and weighted independently. Our
classification approach, on the other hand, detects word translation pairs by learning to
combine word-level and character-level signals in the joint training phase.

Contributions The main contribution of this work is a novel bilingual lexicon
induction framework. It combines character-level and word-level representations, where
both are automatically extracted from the data, within a discriminative classification
framework. Similarly to a variety of bilingual embedding models (Ruder et al., 2018),
our model requires translation pairs as a bilingual signal for training. However,
we show that word-level and character-level translation evidence can be effectively
combined within a classification framework based on deep neural nets. Our state-of-
the-art methodology yields strong BLI results in the biomedical domain. We show
that incomplete translation lists (e.g., from general translation resources) may be
used to mine additional domain-specific translation pairs in specialized areas such as
biomedicine, where seed general translation resources are unable to cover all expert
terminology. In sum, the list of contributions is as follows.

First, we show that bilingual character-level representations may be induced using
an RNN model. These representations serve as better character-level translation
signals than previously used string distance metrics. Second, we demonstrate the
usefulness of framing term translation mining and bilingual lexicon induction as a
discriminative classification task. Using word embeddings as classification features
leads to improved BLI performance when compared to standard BLI approaches based
on word embeddings, which depend on direct similarity scores in a cross-lingual
embedding space. Third, we blend character-level and word-level translation signals
within our novel deep neural network architecture. The combination of translation clues
improves translation mining of biomedical terms and yields better performance than
“single-component” BLI classification models based on only one set of features (i.e.,
character-level or word-level). Finally, we show that the proposed framework is well
suited for finding multi-word translations pairs which are also frequently encountered
in biomedical texts across different languages.

6.3 Methods

As mentioned, we frame BLI as a classification problem as it supports an elegant
combination of word-level and character-level representations.

Let V S and V T denote the source and target vocabularies respectively, and CS and CT

denote the sets of all unique source and target characters. The vocabularies contain
all unique words in the corpus as well as phrases (e.g., autoimmune disease) that are



102 A DEEP LEARNING APPROACH TO BILINGUAL LEXICON INDUCTION

automatically extracted from the corpus. We use p to denote a word or a phrase. The
goal is to learn a function g : X → Y , where the input space X consists of all candidate
translation pairs V S×V T and the output space Y is {−1,+1}. We define g as:

g(pS, pT ) =

{
+1 , if f (pS, pT )> t
−1 , otherwise

Here, f is a function realized by a neural network that produces a classification score
between 0 and 1; t is a threshold tuned on a validation set. When the neural network is
confident that pS and pT are translations, f (pS, pT ) will be close to 1. The motivation
for placing a threshold t on the output of f is twofold. First, it allows balancing between
recall and precision. Second, the threshold naturally accounts for the fact that words
might have multiple translations: if two target language words/phrases pT

1 and pT
2 both

have high scores when paired with pS, both may be considered translations of pS.

Note that the classification approach is methodologically different from the classical
similarity-driven approach to BLI based on a similarity score in the shared bilingual
vector space. The cross-lingual similarity between words pS and pT is computed
as SF(rS

p,r
T
p ), where rS

p and rT
p are word/phrase representations in the shared

space, and SF denotes a similarity function operating in the space (cosine similarity
is typically used3). A target language term pT with the highest similarity score
argmaxpT SF(rS

p,r
T
p ) is then taken as the correct translation of a source language

word pS.

Since neural network parameters are trained using a set of translation pairs Dlex, f in
our classification approach can be interpreted as an automatically trained similarity
function. For each positive training translation pair < pS, pT >, we create 2Ns noise or
negative training pairs. These negative samples are generated by randomly sampling Ns
target language words/phrases pT

neg,S,i, i = 1, . . . ,Ns from V T and pairing them with the
source language word/phrase pS from the true translation pair < pS, pT >.4 Similarly,
we randomly sample Ns source language words/phrases pS

neg,T,i and pair them with pT

to serve as negative samples. We then train the network by minimizing the cross-entropy
loss, a commonly used loss function for classification that optimizes the likelihood of
the training data. The loss function is expressed by Equation (6.1), where Dneg denotes
the set of negative examples used during training, and where y denotes the binary label
for < pS, pT > (1 for valid translation pairs, 0 otherwise).

Lce = ∑
<pS,pT>∈Dlex∪Dneg

−y log( f (pS, pT ))− (1− y) log(1− f (pS, pT )) (6.1)

3CSLS, the cosine-based similarity metric that was introduced in Chapter 4 can be an alternative. Note
that this work was carried out before the discovery of CSLS.

4If we accidentally construct a pair which occurs in the set of positive pairs Dlex, we re-sample until we
obtain exactly Ns negative samples.
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We further explain the architecture of the neural network, the approach to construct
vocabularies of words and phrases and the strategy to identify candidate translations
during prediction. Four key components may be distinguished: (1) the input layer;
(2) the character-level encoder; (3) the word-level encoder; and (4) a feed-forward
network that combines the output representations from the two encoders into the final
classification score.

6.3.1 Input Layer

The goal is to exploit the knowledge encoded in both the word and character levels.
Therefore, the raw input representation of a word/phrase p ∈V S of character length M
consists of (1) its one-hot encoding on the word level, labeled xS

p; and (2) a sequence of
M one-hot encoded vectors xS

c0, ..,x
S
ci, ..x

S
cM on the character level, representing the

character sequence of the word. xS
p is thus a |V S|-dimensional word vector with all zero

entries except for the dimension that corresponds to the position of the word/phrase in
the vocabulary. xS

ci is a |CS|-dimensional character vector with all zero entries except
for the dimension that corresponds to the position of the character in the character
vocabulary CS.

6.3.2 Character-Level Encoder

To encode a pair of character sequences xS
c0, ..,x

S
ci, ..x

S
cn, xT

c0, ..,x
T
ci, ..x

T
cm we use a two-

layer long short-term memory (LSTM) recurrent neural network (RNN) (Hochreiter
and Schmidhuber, 1997) as illustrated in Figure 6.2. At position i in the sequence, we
feed the concatenation of the ith character of the source language and target language
word/phrase from a training pair to the LSTM network. The space character in phrases
is threated like any other character. The characters are represented by their one-hot
encoding. To deal with the possible difference in word/phrase length, we append
special padding characters at the end of the shorter word/phrase (see Figure 6.2). s1i,
and s2i denote the states of the first and second layer of the LSTM. We found that
a two-layer LSTM performed better than a shallow LSTM. The output at the final
state s2N is the character-level representation rST

c . We apply dropout regularization
(Srivastava et al., 2014) with a keep probability of 0.5 on the output connections of the
LSTM (see the dotted lines in Figure 6.2). We will further refer to this architecture as
CHARPAIRS .5

5A possible modification to the architecture would be to swap the (unidirectional) LSTM for a
bidirectional LSTM (Schuster and Paliwal, 1997). In preliminary experiments on the development set
this did not yield improvements over the proposed architecture, we thus do not discuss it further.
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Figure 6.2: An illustration of the character-level LSTM encoder architecture using the
example EN-NL translation pair <blood cell, bloedcel>.

6.3.3 Word-Level Encoder

We define the word-level representation of a pair < pS, pT > simply as the
concatenation of the embeddings for pS and pT :

rST
p =W S ·xS

p ‖ W T ·xT
p (6.2)

Here, rST
p is the representation of the word/phrase pair, and W S, W T are word

embedding matrices looked up using one-hot vectors xS
p and xT

p . In our experiments,
W S and W T are obtained in advance using any state-of-the-art word embedding
model, e.g., Mikolov et al. (2013c); Vulić and Moens (2016b) and are then kept fixed
when minimizing the loss from Equation (6.1).

To test the generality of our approach, we experiment with two well-known embedding
models: (1) the model from Mikolov et al. (Mikolov et al., 2013c), which trains
monolingual embeddings using skip-gram with negative sampling (SGNS) (Mikolov
et al., 2013b); and (2) the model of Vulić and Moens (2016b) which learns word-level
bilingual embeddings from document-aligned comparable data (BWESG). For both
models, the top layers of our proposed classification network should learn to relate the
word-level features stemming from these word embeddings using a set of annotated
translation pairs.
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6.3.4 Combination: Feed-Forward Network

To combine these word-level and character-level representations we use a fully
connected feed-forward neural network rh on top of the concatenation of rST

p and
rST

c which is fed as input to the network:

rh0 = r
ST
p ‖ rST

c (6.3)

rhi = sigmoid(Whi ·rhi−1 +bhi) (6.4)

score = sigmoid(Wo ·rhH +bo) (6.5)

H denotes the number of layers between the representation layer and the output layer.
In the simplest architecture, H is set to 0 and the word-pair representation rh0 is directly
connected to the output layer (see Figure 6.3A). In this setting each dimension from
the concatenated representation is weighted independently. This is undesirable as it
prohibits learning relationship between the different representations. On the word
level, for instance, it is obvious that the classifier needs to combine the embeddings
of the source and target word to make an informed decision and not merely calculate
a weighted sum of them. Therefore, we opt for an architecture with hidden layers
instead (see Figure 6.3B). Unless stated otherwise, we use two hidden layers, while in
Experiment V of the Results and Discussion section we further analyze the influence
of parameter H.

6.3.5 Constructing the Vocabularies

The vocabularies are the union of all words that occur at least five times in the corpus
and phrases that are automatically extracted from it. We opt for the phrase extraction
method proposed in Mikolov et al. (2013b).6 The method iteratively extracts phrases
for bigrams, trigrams, etc. First, every bigram is assigned a score using Equation (6.6).
Bigrams with a score greater than a given threshold are added to the vocabulary as
phrases. In subsequent iterations, extracted phrases are treated as if they were a single
token and the same process is repeated. The threshold and the value for δ are set so that
we maximize the recall of the phrases in our training set. We performed 4 iterations in
total, resulting in N-grams up to a length of 5.

When learning the word-level representations phrases are treated as a single token
(following Mikolov et al. (2013b)). Therefore, we do not add words that only occur as
part of a phrase separately to the vocabulary, because no word representation is learned

6We used the implementation of the gensim toolkit https://github.com/RaRe-
Technologies/gensim (Řehůřek and Sojka, 2010).

https://github.com/RaRe-Technologies/gensim
https://github.com/RaRe-Technologies/gensim
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Figure 6.3: Illustrations of the classification component with feed-forward networks of
different depths. A: H = 0. B: H = 2 (our model). All layers are fully connected.

for these words. E.g., for our dataset “York” is not included in the vocabulary as it
always occurs as part of the phrase “New York”.

score(wi,w j) =
Count(wi,w j)−δ

Count(wi) ·Count(w j)
· |V | (6.6)

Where Count(wi,w j) is the frequency of the bigram wi w j, Count(w) is the frequency
of w, |V | is the size of the vocabulary, and δ is a discounting coefficient that prevents
that too many phrases consist of very infrequent words.

6.3.6 Candidate Generation

To identify which word pairs are translations, one could enumerate all translation pairs
and feed them to the classifier g. The time complexity of this brute-force approach
is O(|V S| × |V T |) times the complexity of g. For large vocabularies this can be a
prohibitively expensive procedure. Therefore, we have resorted to a heuristic which
uses a noisy classifier: it generates 2Nc << |V T | translation candidates for each source
language word/phrase pS as follows. It generates (1) the Nc target words/phrases closest
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to pS measured by the edit distance, and (2) Nc target words/phrases measured closest
to pS based on the cosine distance between their word-level embeddings in a bilingual
space induced by the embedding model of Vulić and Moens (2016b). As we will see in
the experiments, besides straightforward gains in computational efficiency, limiting the
number of candidates is even beneficial for the overall classification performance.

6.3.7 Experimental Setup

Data One of the main advantages of automatic BLI systems is their portability to
different languages and domains. However, current standard BLI evaluation protocols
still rely on general-domain data and test sets (Mikolov et al., 2013b; Gouws et al.,
2015; Lazaridou et al., 2015; Vulić and Moens, 2016b, inter alia). To tackle the lack
of quality domain-specific data for training and evaluation of BLI models, we have
constructed a new English-Dutch (EN-NL) text corpus in the medical domain. The
corpus contains topic-aligned documents (i.e., for a given document in the source
language, we provide a link to a document in the target language that has comparable
content). The domain-specific document collection was constructed from the English-
Dutch aligned Wikipedia corpus available online7, where we retain only document
pairs with at least 40% of their Wikipedia categories classified as medical.8 This simple
selection heuristic ensures that the main topic of the corpus lies in the medical domain,
yielding a final collection of 1198 training document pairs. Following standard practice
(Koehn and Knight, 2002; Haghighi et al., 2008; Prochasson and Fung, 2011), the
corpus was then tokenized and lowercased, and words occurring less than five times
were filtered out.

Translation Pairs: Training, Development, Test We constructed a set of EN-
NL translation pairs using a semi-automatic process. We started by translating all the
words in our preprocessed corpus. These words were translated by Google Translate
and then post-edited by fluent EN and NL speakers.9 This yields a lexicon with mostly
single word translations. In this work we are also interested in finding translations for
phrases: therefore, we used IATE (Inter-Active Terminology for Europe), the EU’s
inter-institutional terminology database, to create a gold standard of domain-specific
terminology phrases in our corpus. More specifically, we matched all the IATE phrase
terms that are annotated with the Health category label to the N-grams in our corpus.
This gives a list of phrases in English and Dutch. For some terms a translation was
already present in the IATE termbase: these translations were added to the lexicon. The
remaining terms are again translated by resorting to Google Translate and post-editing.

7 http://linguatools.org/tools/corpora/
8 https://www.dropbox.com/s/hlewabraplb9p5n/medicine_en.txt?dl=0
9In case the post-editor was unsure about the automatically acquired translation, he researched the source

term on the web and corrected the translation if necessary.
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We end up with 20,660 translation pairs. For 8,412 of these translation pairs (40.72%)
both source and target words occur in our corpus.10 We perform a 80/20 random split
of the obtained subset of 8,412 translation pairs to construct a training and test set
respectively. We make another 80/20 random split of the training set into training and
validation data. 7.70% of the translation pairs have a phrase on both source and target
side, 2.31% of the pairs consists of a single word and a phrase, 90.00% of the pairs
consist of single words only. We note that 21.78% of the source words have more
than one translation. In our corpus, the English phrases in the lexicon have an average
frequency of 20. For Dutch phrases this is 17. English words in the lexicon have an
average frequency of 59, for Dutch this number is 47.

Word-Level Embeddings Skip-gram word embeddings with negative sampling
(SGNS) (Mikolov et al., 2013c) are induced using the word2vec toolkit with the
subsampling threshold set to 10e-4 and window size set to 5. BWESG embeddings
(Vulić and Moens, 2016b) are learned by merging topic-aligned documents with length-
ratio shuffling and then training the SGNS model over the merged documents with the
subsampling threshold set to 10e-4 and the window size set to 100. The dimensionality
of all word-level embeddings in all experiments is d = 50, and similar trends in results
were observed with d = 100.

Classifier The model is implemented in Python using Tensorflow (Abadi et al., 2015).
For training we use the Adam optimizer with default values (Kingma and Welling,
2014) and mini-batches of 10 examples. The number of negative samples 2Ns and
candidate translation pairs during prediction 2Nc are tuned on the development set for
all models except CHARPAIRS and CHARPAIRS -SGNS (see Experiments II, IV, and
V) for which we opted for default non-tuned values of 2Nc = 10 and 2Ns = 10.11 The
classification threshold t is tuned measuring F1 scores on the validation set using a grid
search in the interval [0.1,1] in steps of 0.1.12

Evaluation Metric The metric we use is F1, the harmonic mean between recall and
precision. While prior work typically proposes only one translation per source word
and reports accuracy scores accordingly, here we also account for the fact that words
can have multiple translations. We evaluate all models using two different modes: (1)
top mode, as in prior work, identifies only one translation per source word (i.e., it is the

10Since we work with a comparable corpus in our experiments, not all translations of the English
vocabulary words occur in the Dutch part of the corpus and vice versa.

11It takes more time to train and hence tune the models with the character-LSTM.
12The code and dataset used in this work can be downloaded from http://liir.cs.kuleuven.

be/software.php.

http://liir.cs.kuleuven.be/software.php
http://liir.cs.kuleuven.be/software.php
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target word with the highest classification score), (2) the all mode identifies as valid
translation pairs all pairs for which the classification score exceeds the threshold t.

6.4 Results and Discussion

A Roadmap to Experiments We start by evaluating the phrase extraction
(Experiment I) as it places an upper bound on the performance of the proposed
system. Next, we report on the influence of the hyper-parameters 2Nc and 2Ns on the
performance of the classifiers (Experiment II). We then study automatically extracted
word-level and character-level representations for BLI separately (Experiment III and
IV). For these single-component models Equation 6.3 simplifies to rho = r

ST
w (word-

level) and rho = r
ST
c (character-level). Following that, we investigate the synergistic

model presented in the Methods section which combines word-level and character-level
representations (Experiment V). We then analyze the influence on performance of: the
number of hidden layers of the classifier, the training data size, and word frequency. We
conclude this section with an experiment that verifies the usefulness of our approach
for inducing translations with Greek/Latin roots.

6.4.1 Experiment I: Phrase Extraction

The phrase extraction module puts an upper bound on the system’s performance as it
determines which words and phrases are added to the vocabulary - translation pairs with
a word or phrase that do not occur in the vocabulary can of course never be induced.
To maximize the recall of words and phrases in the ground truth lexicon w.r.t. the
vocabularies, we tune the threshold of the phrase extraction on our training set. The
thresholds were set to 6 and 8 for English and Dutch respectively, and the value for δ

was set to 5 for both English and Dutch. The resulting English vocabulary contains
13,264 words and 9,081 phrases, the Dutch vocabulary contains 6,417 words and 1,773
phrases.

Table 6.1 shows the recall of the words and phrases in the training and test lexicons
w.r.t. the extracted vocabularies. We see that the phrase extraction method obtains a
good recall for translation pairs with phrases (around 80%) without hurting the recall of
single word translation pairs.13 The recall difference between English and Dutch phrase
extraction can be explained by the difference in size of their respective corpora.14

13Note that when a word is always extracted as part of a phrase then it would not occur separately in the
vocabulary.

14The English corpus consists of≈1246k word occurrences, the Dutch corpus of≈ 413k word occurrences.
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EN NL EN-NL

Phrases Words+Phrases Phrases Words+Phrases Phrases Words+Phrases

Train 86.26 97.03 72.06 95.31 80.96 99.51
Test 88.60 97.12 67.44 95.62 79.69 99.11

Table 6.1: Recall of the words and phrases in the training and test lexicons w.r.t. the
extracted vocabularies. In the EN-NL column, we show the percentage of translation
pairs for which both source and target words/phrases are present in the vocabulary. In
the EN/NL columns we show the percentage of English/Dutch words/phrases that are
present in the vocabulary.

6.4.2 Experiment II: Hyper-parameters 2Nc and 2Ns

Figure 6.4 shows the relation between the number of candidates 2Nc and precision,
recall and F1 of the candidate generation (without using a classifier). We see that the
candidate generation works reasonably well with a small number of candidates and
that the biggest gains in recall are seen when 2Nc is small (notice the log scale).

From the tuning experiments for Experiment III and IV we observed that using large
values for 2Nc gives a higher recall, but that the best F1 scores are obtained using small
values for 2Nc; The best performance on the development set for the word-level models
was obtained with 2Nc = 2 (Experiment III), for the character-level models this was
with 2Nc = 4 (Experiment IV). The low optimal values for 2Nc can be explained by the
strong similarity between the features that the candidate generation and the classifiers
use respectively. Because of this close relationship, translations pairs that are lowly
ranked in the list of candidates should also be difficult instances for the classifiers.
Increasing the number of candidates will result in a higher number of false positives,
which is not compensated by a sufficient increase of the recall.

We found that the value of 2Ns is less critical for performance. The optimal value
depends on the representations used in the classifier and on the value used for 2Nc.

6.4.3 Experiment III: Word Level

In this experiment, we verify if word embeddings can be used for BLI in a classification
framework. We compare the results with the standard approach that computes cosine
similarities between embeddings in a cross-lingual space. For SGNS-based embeddings,
this cross-lingual space is constructed following Mikolov et al. (2013c): a linear
transformation between the two monolingual spaces is learned using the same set of
training translation pairs that are used by our classification framework. For the BWESG-
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Figure 6.4: Precision, recall and F1 for candidate generation with 2Nc candidates.

based embeddings, no additional transformation is required, as they are inherently
cross-lingual. The neural network classifiers are trained for 150 epochs.

The results are reported in Table 6.2. The SIM header denotes the baselines models that
score translation pairs based on cosine similarity in the cross-lingual embedding space;
The CLASS header denotes the models that use the proposed classification framework.

The results show that exploiting word embeddings in a classification framework has
strong potential as the classification models significantly outperform the similarity-
based approaches. The classification models yield best results in all-mode, this means
they are good at translating words with multiple translations. For BWESG in the
similarity-based approach, the inverse is true, it works better when only it proposes a
single translation per source word.

We also find that when using the standard similarity method on SGNS embeddings
that are mapped with a linear transformation (Mikolov et al., 2013c) yield extremely
low results.15 In this setup, where the embedding spaces are induced from small
monolingual corpora and where the mapping is learned using infrequent translation
pairs, the model seems unable to learn a decent linear mapping between the monolingual
spaces. This is in line with the findings of Vulić and Korhonen (2016).

We observe that in the classification framework SGNS embeddings outperform BWESG
embeddings. This could be because SGNS embeddings can better represent features
related to the local context of words such as syntax properties, as SGNS is typically

15The NaN values in Table 6.2 are caused by an absence of true positives.
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Development

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

S
IM

BWESG 13.48 9.15 21.95 15.84 14.24 9.73
SGNS 0.55 0.88 NaN NaN 0.51 0.80

C
L

A
S

S BWESG 17.08 21.19 24.04 26.47 17.59 21.56
SGNS 23.83 25.05 25.77 27.27 23.99 25.22

Test

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

S
IM

BWESG 12.78 10.03 21.43 12.52 13.52 10.31
SGNS 0.22 0.69 NaN 0.93 0.20 0.71

C
L

A
S

S BWESG 16.47 21.50 23.48 23.75 17.01 21.68
SGNS 22.80 24.41 26.74 27.14 23.10 24.62

Table 6.2: Comparison of word-level BLI systems.

trained with much smaller context windows compared to BWESG.16 Another general
trend we see is that word-level models are better in finding translations of phrases. This
is explained by the observation that the meaning of phrases tends to be less ambiguous,
which makes word-level representations a reliable source of evidence for identifying
translations.

6.4.4 Experiment IV: Character Level

This experiment investigates the potential of learning character-level representations
from the translation pairs in the training set. We compare this approach to commonly-
used, hand-crafted features. The following methods are evaluated:

• CHARPAIRS , uses the representation rST
c of the character-level encoder as

described in the Methods section and illustrated in Figure 6.2.

16Note that BWESG uses large window sizes by design.
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• EDnorm, uses the edit distance between the word/phrase pair divided by the
average character length of ps and pt , following prior work (Irvine and Callison-
Burch, 2013, 2016).

• log(EDrank), uses the logarithm of the rank of pt in a list sorted by the edit
distance w.r.t. ps. For example, a pair for which pt is the closest word/phrase in
edit distance w.r.t. ps, will have a feature value of log(1) = 0.

• EDnorm + log(EDrank), concatenates the EDnorm and log(EDrank) features.

The ED-based models comprise a neural network classifier similar to CHARPAIRS,
though for EDnorm and log(EDrank) no hidden layers are used because the features are
one-dimensional. For the ED-based models, the optimal values for the number of
negative samples 2Ns and the number of generated translation candidates 2Nc were
determined by performing a grid search, using the development set for evaluation. For
the CHARPAIRS representation, the parameters 2Ns and 2Nc were set to the default
values (10) without any additional fine-tuning, and the number of LSTM cells per layer
was set to 512. We train the ED-based models for 25 epochs, the CHARPAIRS model
takes more time to converge and is trained for 250 epochs.

The results are shown in Table 6.3. We observe that the performance of the character-
level models is quite high w.r.t. the results of the word-level models in Experiment
III. This supports our claim that character-level information is of crucial importance
in this dataset and is explained by the high presence of medical terminology and
expert abbreviations (e.g., amynoglicosides, aphasics, nystagmus, EPO, EMDR in the
data; see also Figure 6.1), which because of its etymological processes, often contain
morphological regularities across languages. This further illustrates the need for fusion
models that exploit both word-level and character-level features. Another important
finding is that the CHARPAIRS model systematically outperforms the baselines, which
use hand-crafted features, indicating that learning representations on the character
level is advantageous. Unlike the word-level models, translation pairs with phrases
have lower performance than translations with single words. This is to be expected as
phrases usually consist of a longer character sequence and hence are more difficult to
represent.

6.4.5 Experiment V: Combined Model

On their own, the single-component word-level and character-level BLI models already
perform very well in the task of biomedical BLI. In this experiment, we report the
results of the combined model. In this setup, the LSTM network has 256 memory cells
in each layer17, and SGNS embeddings were selected as word-level representations.

17We found that in the combined setting of using both word-level and character-level representations, it is
beneficial to use an LSTM of smaller size than in the character-level only setting.
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Development

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

EDnorm 24.49 19.53 15.62 19.87 23.83 19.55
log(EDrank ) 28.57 28.17 18.05 17.27 27.86 27.46
EDnorm+ log(EDrank ) 25.99 11.20 18.40 14.35 25.49 11.31

CHARPAIRS 31.95 32.32 23.70 25.97 31.39 31.92

Test

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

EDnorm 28.10 28.29 8.70 8.63 26.97 27.24
log(EDrank ) 29.30 28.95 19.48 19.35 28.70 28.39
EDnorm+ log(EDrank ) 29.76 29.65 17.57 17.45 29.05 29.00

CHARPAIRS 30.70 32.19 31.82 30.61 30.81 32.15

Table 6.3: Comparison of character-level BLI methods from prior work (Irvine and
Callison-Burch, 2016; Haghighi et al., 2008) with automatically learned character-level
representations.

Figure 6.5: The influence of the number of layers H between the representations and
the output layer on the BLI performance.
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Figure 6.6: The influence of the training set size (the number of training pairs).

The embeddings are trained a priori, whereas the character-level representations are
trained jointly with the rest of the network. This configuration will encourage the
network to learn new character-level information which is distinctive from the word-
level representations.

Table 6.4 shows the results of the combined model together with the best single
component models. As hypothesized, we obtain the best results with the combined
model. For phrases however, CHARPAIRS -SGNS ’s performance is lower than the single
component models. Our hypothesis for this behavior is that the LSTM in the combined
model has fewer memory cells in the LSTM layers. We found that having 256 memory
cells, rather than 512 cells as in the CHARPAIRS model, gives best results overall.
However, for a combined model with 512 cells, we get an improved performance
for the phrases. Table 6.5 shows translations induced by the different models that
illustrate the advantage of a hybrid model. We observe that the CHARPAIRS model
has learned that the first characters of words/phrases are very informative, though this
sometimes results in false positives. The SGNS model sometimes confuses words that
are semantically related, e.g., zwangerschap (pregnancy) and miskraam (miscarriage).
The CHARPAIRS -SGNS model is able to filter out false positives by exploiting both
representations simultaneously. Even in cases where both single component models
predict the wrong translations, it is possible that the combined model induces the
correct translation(s) (e.g., injected-ingespoten).

Influence of the Number of Hidden Layers H The number of hidden layers H
is a pertinent hyper-parameter. Figure 6.5 shows the influence of H on the performance
measured by F1 in top mode. We see a large improvement when H ranges from 0
to 1. When there are no hidden layers (H = 0), the network is unable to incorporate



116 A DEEP LEARNING APPROACH TO BILINGUAL LEXICON INDUCTION

Development

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

CHARPAIRS 31.95 32.32 23.70 25.97 31.39 31.92
SGNS 23.83 26.36 17.37 17.08 25.77 25.81

CHARPAIRS -SGNS 34.57 33.61 18.18 23.29 33.47 32.99

Test

Words Phrases Words + Phrases

representation F1
(top)

F1
(all)

F1
(top)

F1
(all)

F1
(top)

F1
(all)

CHARPAIRS 30.70 32.19 31.82 30.61 30.81 32.15
SGNS 22.80 24.41 26.74 27.14 23.10 24.62

CHARPAIRS -SGNS 34.34 34.60 23.17 26.59 33.60 34.15

Table 6.4: Results of the model that combines word-level and character-level
representations (CHARPAIRS -SGNS ) and the best performing single component models
(CHARPAIRS and SGNS).

source word predictions
CHARPAIRS

predictions SGNS predictions
CHARPAIRS -SGNS

miscarriage / zwangerschap,
miskraam , cardiale

miskraam

contractions contraststof samentrekkingen samentrekkingen
injected injecties, injectie naald ingespoten
desensitization desensitisatie injecties,

desensibilisatie,
ventilation

desensibilisatie,
desensitisatie

hart attack hartinfarct,
hartaanval,
hartmassage

hartaanval,
atherosclerose,
tia

hartinfarct,
hartaanval

multifocal multiple, multifocale dominante multifocale

Table 6.5: Predicted translations of single component models and the combined model,
illustrating the advantage of the combined model. Correct translations are underlined.
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dependencies between features. In case the number of hidden layers is larger than one,
we notice no large effect of the number of hidden layers on performance.

Influence of Training Set Size In many realistic settings, especially when dealing
with languages and domains that have limited translation resources, we lack large
numbers of readily available translation pairs. Figure 6.6 illustrates the influence
of training set size on the performance of CHARPAIRS -SGNS . We also plot the
performance of two of our baseline models that only use training data to tune the
threshold t: BWESG embeddings combined with cosine similarity (see Table 6.2)
and normalized edit distance (EDnorm, see Table 6.3). We plot the performance of
the baselines on the complete training set and assume it constant over the training
examples. Unsurprisingly, the CHARPAIRS -SGNS performance increases with more
training examples. Already from a seed lexicon size of 2000 translations it starts
outperforming the baseline models.

Influence of Frequency In Figure 6.7 we see the effect of word/phrase frequency
on performance. We plot F1 scores after filtering the predicted translations and test set
with a minimum word frequency cut-off. For example, for a cut-off frequency of 10,
we only evaluate the translation pairs for which source and target words/phrases occur
at least 10 times. Until a cut-off value of 125 performance for the three representations
fluctuates but remains roughly level. When we only evaluate on high-frequency words
(> 125) we see a performance drop for all models, especially for the character-level
only model. From a manual inspection of these words we find that they typically
have a broader meaning and are not particularly related to the medical domain (e.g.,
consists-bestaat, according-volgens, etc.). For these words, character-level information
turns out to be less important.

Translation pairs derived from Latin or Greek We conclude the evaluation by
verifying the hypothesis that our approach is particularly effective for translation pairs
derived from Latin or Greek. Table 6.6 presents the F1 scores on a subset of the test
data in which only translation pairs for which the English word or phrase has clear
Greek or Latin roots are retained. The results reveal that character-level modeling is
indeed successful for these type of translation pairs. All models scored significantly
higher on this subset, surprisingly also the SGNS model. The higher scores of the
SGNS model, which operates on the word-level, could be attributed to an increased
performance of the candidate generation, as it uses both word- and character-level
information. Regarding the differences between models, the same trends as in previous
model comparisons are apparent: the CHARPAIRS model improves nearly 5% over the
edit distance baseline and the CHARPAIRS -SGNS model achieves the best results.
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Figure 6.7: This plot shows how performance varies when we filter out translation pairs
with a frequency below the specified cut-off point (on x axis).

EDnorm CHARPAIRS SGNS CHARPAIRS -SGNS

F1 (top) 50.25 54.46 42.92 57.20
F1 (all) 50.23 55.04 48.14 56.41

Table 6.6: Results on a subset of the test data consisting of translation pairs with Greek
or Latin origin.

6.5 Conclusions

We have proposed a neural network based classification architecture for automated
bilingual lexicon induction (BLI) from biomedical texts. Our model comprises both a
word-level and character-level component. The character-level encoder has the form of
a two-layer long short-term memory network. On the word level, we have experimented
with different types of representations. The resulting representations were used in a
deep feed-forward neural network. The framework that we have proposed can induce
bilingual lexicons which contain both single words and multi-word expressions. Our
main findings are that (1) taking a deep learning approach to BLI where we learn
representations on word-level and character-level is superior to relying on handcrafted
representations like edit distance (ED) and (2) the combination of word- and character-
level representations proved to be very successful for BLI in the biomedical domain
because of a large number of orthographically similar words (e.g., words stemming
from the same Greek or Latin roots).

The proposed classification model for BLI leaves room for integrating additional
translation signals that might improve biomedical BLI such as representations learned
from available biomedical data or knowledge bases.
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Chapter 7

Conclusion

In this final chapter, we summarize the work of this thesis, restate the main contributions,
and discuss perspectives for further research.

7.1 Summary

In recent years, supervised representation learning has revolutionized several artificial
intelligence subdomains including natural language processing. However, its success
has been tightly correlated with the amount of annotated training data. As for many
NLP problems such data is scarce and expensive to obtain, the main goal of this thesis
was to further develop representation learning for weakly-supervised NLP problems.

After introducing the main thesis subjects and context (Chapter 1) and summarizing the
fundamentals on which the contributions of this thesis are based (Chapter 2), we first
studied two different paradigms for learning cross-lingual text representations without
supervision (Chapters 3 and 4 respectively). Both these chapters learn representations
that are valuable for transferring knowledge across languages. That is, a lack of
annotated training data in a language can be compensated with training examples in
one or more resource-rich languages by employing cross-lingual input representations.

In Chapter 3 we investigated probabilistic topic modeling as a means to obtain bilingual
representations for documents and words. We argued that the probabilistic topic
modeling framework has the advantage of being very transparent because the model
parameters and consequently also the induced representations are easily interpretable
by humans. We proposed C-BiLDA, a new probabilistic topic model that generalizes
LDA so that it can induce bilingual representations from a collection of non-parallel

121
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document pairs. In particular, we designed the model to distinguish between shared and
unique content in an aligned document pair and put a prior distribution on the random
variables that determine the ratio of shared and unique content. C-BiLDA is completely
data-driven and does not require a machine-readable bilingual dictionary or high-quality
parallel data. We showed that the representations are a valuable vehicle for knowledge
transfer by evaluating them on two cross-lingual document classification datasets
comprised of three language-pairs each (i.e., English-Spanish, English-French, and
English-Italian), where we trained a shallow classifier on annotated English documents
and evaluate performance on the documents in the respective target languages. C-
BiLDA outperforms four well-known bilingual topic models, most notably on training
corpora with a lower degree of parallelism. Its wide applicability in terms of input
data makes C-BiLDA a useful model for learning representations in under-resourced
languages and language pairs, as well as in domains with specific terminology for
which parallel data is often not available.

In Chapter 4 we turned our attention to unsupervised multilingual text representations
based on word embeddings. Word embeddings are not as interpretable as the PTM-
based representations, but they can be trained very efficiently and have been proven
superior to PTM representations in bilingual lexicon induction and information retrieval.
With the switch to word embeddings, we also moved to a setting that is more general
than the one in Chapter 3 in two respects: 1) We designed methods that learn
representations for a variable number of languages; 2) We further relaxed the data
requirements by only relying upon monolingual corpora in the same domain.

More specifically, Chapter 4 introduces two self-learning methods that map mono-
lingually trained word embeddings in the same vector space such that related words
and translations are represented by vectors that are positioned close to each other.
We validate the models by using their induced representations in bilingual lexicon
induction, multilingual document classification, and multilingual dependency parsing,
using four datasets. The results show that our best method is competitive with (bilingual
lexicon induction) or better than (document classification and dependency parsing) the
state of the art on these datasets. In contrast to related work, this method combines the
following key properties: it incorporates the dependencies between the vector spaces
of all the involved languages, it is robust w.r.t. exotic languages such as Finnish and
Bulgarian, and it has no risk of producing degenerate solutions.

Chapter 5 proposed an RL-based solution to an important Dutch verb spelling problem.
We tackled the lack of annotated spelling mistakes by designing a system that is largely
independent of the input spelling of the verb that is being spell-checked. This bypasses
the need for annotated data and enabled training an advanced neural network on a
large collection of (high-quality) Dutch texts. We evaluated our system on 1) a big
synthetic test set, which was created by automatically introducing mistakes in correctly-
written text according to a cognitively-inspired generative process, and 2) three online
verb spelling tests. The results indicate that our system is highly accurate except for
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infrequent mistakes (i.e., confusion between verb forms that end with -en). Moreover,
the proposed model achieved significant performance gains compared to four existing
spell checkers. Despite neural network parameters being hard to interpret, we also
provided a method to gain insight into the model’s predictions. The method assigns
a score to each word in the sentence that indicates its importance on the predicted
spelling.

Whereas the previous chapters focussed either on unsupervised RL (Chapters 3-4)
or supervised RL (Chapter 5), Chapter 6 is positioned at the intersection of both. In
this chapter, we tackled bilingual lexicon induction from domain-specific corpora by
integrating character-level representations that are learned from a seed lexicon with
word/phrase-level representations that are learned from monolingual corpora without
additional supervision. The goal of this work was to study BLI in a setting that closely
resembles industrial needs, i.e., find translations in domain-specific, terminology-rich
texts. To this end, we constructed a new benchmark dataset from Dutch and English
Wikipedia articles in the medical domain and bilingual dictionaries containing words
and phrases that occur in these articles.

The key findings of this work were 1) that word-/phrase- and character-level
representations for BLI can be elegantly combined by framing BLI as a classification
problem and that integration of character-level representations significantly lifts
performance for medical terms, and 2) that it is beneficial to learn character-level
representations from a seed lexicon rather than to use hand-crafted features (e.g., edit
distance) as standard practice dictated.

In sum, with the work presented in this thesis we made the following key contributions:

• We proposed a model that induces easy-to-interpret representations for
words and documents from a collection of subject-aligned bilingual doc-
ument pairs: C-BiLDA is a bilingual probabilistic topic model that induces
soft word clusters, called topics, from subject-aligned bilingual document pairs.
The topics learned by C-BiLDA can be used to obtain interpretable bilingual
representations for words or documents. We hence positively answered the first
research question (RQ 1) that was posed in the introduction.

• We investigated new methods for learning multilingual word representa-
tions from monolingual corpora only: We found that we can construct
multilingual representations without cross-lingual supervision that may serve as
useful cross-lingual transfer learning features, even for languages with unique
characteristics such as Finnish (answering RQ 2). Furthermore, the state of the
art results of IHS confirm the hypothesis of RQ 3 as they illustrate the benefits
of incrementally growing the multilingual space.

• We designed a very accurate RL model to tackle one of the most prominent
Dutch spelling mistakes: We showed that by making a model largely
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independent from the input spelling of the spell-checked words, we can fruitfully
train an advanced neural network model on large amounts of high-quality
text (answering RQs 4-5). The resulting model significantly outperforms
existing spell-checkers, including the commercial spell-checker that comes with
Microsoft Word, and obtains a perfect score on a spelling test published by de
Standaard, a Flemish newspaper. In addition, to address RQ 6, we proposed a
technique that provides useful feedback to the user by indicating which parts of
the input sequence were most influential on the model predictions.

• We proposed an RL approach to bilingual lexicon induction: By formulating
BLI as a classification problem, we found that we can naturally combine
word/phrase-level representations and character-level representations (answering
RQ 7). Furthermore, we showed that instead of using hand-crafted features such
as edit distance it is better to learn character-level features (answering RQ 8).

• We constructed new benchmark datasets for bilingual lexicon induction
and dt-correction: With our English-Dutch bilingual lexicon induction dataset
constructed from Wikipedia articles in the medical domain, BLI methods can
be evaluated in a setting that is more closely aligned with industrial needs;
Furthermore, we created the first large-scale evaluation dataset for dt-mistakes
by introducing errors into the proceedings of the European Parliament with
a generative process motivated by cognitive science insights. The latter is
supplemented with three online verb spelling tests.

7.2 Perspectives for Future Research

The work of this thesis has opened several promising avenues for further research on
representation learning in weakly-supervised NLP settings.

Concerning the unsupervised training of cross-lingual text representations, we spoke
about the differences between PTM-based representations and word embeddings: The
former are more interpretable because their dimensions correspond to topics that can
be represented by a set of keywords, while the latter are more expressive and are
efficiently trained. Interpretability, computational efficiency, and expressiveness are all
relevant characteristics when training representations for weakly-supervised settings.
Towards the goal of inducing representations that combine transparency, computational
efficiency and expressiveness, we naturally identify two strategies: improving PTM’s
training time and expressiveness, or adapting word embedding models such that it is
easier to associate meaning to individual feature dimensions.

From the PTM perspective, the slower training times are due to the use of optimization
algorithms (e.g., Gibbs sampling, mean-field variational inference (Hoffman et al.,
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2013)) that are less efficient compared to optimization in word embedding models.
Recent works (Miao et al., 2016; Srivastava and Sutton, 2017; Miao et al., 2017)
that propose variational auto-encoders (Kingma and Welling, 2014) as an alternative
inference method seem very promising, however. They estimate the posterior
distribution over the latent variables by a neural network which results in fast training
times (e.g., Srivastava and Sutton (2017) report a training time of 80 minutes for fitting
a topic model on 1 million documents on a modern GPU) and have the additional
advantage that the optimization method makes little model-specific assumptions.
The latter enabled Srivastava and Sutton (2017) to propose a variation of LDA that
obtains better topic coherence scores, without any major changes to the optimization
algorithm.1

Hence, if we could exchange Gibbs sampling for an approach based on variational
auto-encoders, the C-BiLDA model would become scalable to entire Wikipediae and
it could be trivially extended to more than two language pairs and trained on many
more document pairs. Moreover, it may facilitate relaxing some of the assumptions that
PTM’s make. For instance, incorporating document structure in the generative process
instead of viewing documents as a bag-of-words or imposing some sort of hierarchical
structure on the topics, which in turn could improve the quality of the representations.

From the perspective of word embeddings models, the word representations are hard
to interpret because they are dense, real-valued vectors of which the dimensions have
no obvious meaning. One strategy to attack this problem is forcing representations
to be sparser, for instance by using a regularization term in the training objective that
stimulates sparsity. Despite yielding encouraging results in initial studies (Faruqui
et al., 2015; Sun et al., 2016), such approaches have yet to become common practice.

Another interesting research angle for learning unsupervised multilingual text
representations is studying the effect of using multilingual word representations for
problems sensitive to word order and studying algorithms that learn multilingual
representations beyond the word-level (i.e., representations for phrases, sentences or
documents) that do not use the bag-of-words assumption. It is clear that this is a
very challenging problem, for instance for semantic role labeling, the task that aims
to extract "who does what to whom" in a given sentence, empirical results indicate
that the most appropriate model architecture is language-dependent (Do et al., 2018).
However, the payoff would also be substantial, consider for example how it could
facilitate porting virtual assistants such as Alexa, Siri, or Google Assistant to different
languages.

Furthermore, with regard to the proposed dt-correction model, we see two interesting
follow-up studies. First, because the method effectively learns representations for
a syntactically-oriented task without annotated examples, it would be interesting to

1Note that the same does not hold for Gibbs sampling because it requires deriving new inference formulas
(see the Gibbs sampling derivations for C-BiLDA in Chapter 3 for instance).
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investigate if its induced representations can be useful for related tasks such as part-
of-speech tagging, constituency parsing, or dependency parsing. Note that if this
hypothesis were to hold, it could benefit more languages than Dutch alone: Any
language for which there is a non-trivial relationship between word inflections and
syntactical relations in sentences could potentially benefit from representations that are
induced by predicting word inflections. Second, though the model was very accurate on
the most common mistakes, it was not able to predict the spelling of plural verb forms
(e.g., beantwoorden vs beantwoordden), this is due to the large imbalance between the
frequencies of the "stem + en" and "stem + den/ten" forms. We hypothesize this can
be addressed by subsampling the more frequent "stem + en", but further investigation
is required.

The representation learning framework for bilingual lexicon induction has already
inspired further research. Starting from the code and using the dataset we had released,
Hangya et al. (2018) proposed a simple but effective approach to leverage large general-
purpose corpora in addition to the domain-specific medical texts. Training on this
additional data leads to improved representations of the general-purpose words that
occur in the medical texts, which in turn leads to higher quality representations for the
domain-specific words.

Another extension to the BLI framework that comes to mind is the incorporation of
additional translation signals because one of its key advantages is that it facilitates
fusing heterogeneous features. For instance, considering its application in the medical
domain, it could be interesting to incorporate structured data from biomedical databases
or knowledge bases. Furthermore, it would be interesting to investigate temporal
representations, which encode word usage over time (Irvine and Callison-Burch, 2013).
This could be particularly beneficial for translating terminology as their usage is
very dynamic (e.g., new terms are coined as a consequence of new technologies or
discoveries, and terms can become trending because of certain news events).

7.3 Epilogue

The main conclusion of this dissertation is that representation learning is a potent
paradigm for addressing the scarcity of annotated training data in natural language
processing. With the models proposed in this thesis, we demonstrated the value of
RL for weakly-supervised NLP problems as a means to a) inject prior knowledge into
models by representing the model inputs with textual representations that are extracted
from large corpora, and b) extract abstractions for weakly-annotated text data that are
not expressed by classical, manually-extracted NLP features.

To further increase the synergy between natural language processing and representation
learning, we think it is key to research new representation learning models that combine
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the interpretability of classical probabilistic models with the expressiveness of neural
networks. Another fundamental challenge concerns the induction of sentence/document
representations that are sensitive to word order which can be utilized for cross-lingual
transfer learning - this to address a lack of annotated training data in tasks such as
semantic role labeling.
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Geert Heyman, Ivan Vulić, Marie-Francine Moens. Bilingual Lexicon Induction by
Learning to Combine Word-Level and Character-Level Representations. In Proceedings

149



150 LIST OF PUBLICATIONS

of the 15th International Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 1085–1095, 2017

Meeting abstracts, presented at internationcal conferences and
symposia

Quynh Ngoc Thi Do, Artuur Leeuwenberg, Geert Heyman and Marie-Francine Moens.
How to use DameSRL: A framework for deep multilingual semantic role labeling.
CLARIN2018 Book of Abstracts, 2018

Yannick Laevaert, Geert Heyman, Marie-Francine Moens. Automatic detection and
correction of real-word dt-mistakes in Dutch using recurrent neural networks. Book of
Abstracts Computational Linguistics in the Netherlands (CLIN 28), 2018

Vincent Vandeghinste, Tom Vanallemeersch, Bram Bulté, Liesbeth Augustinus, Frank
Van Eynde, Joris Pelemans, Lyan Verwimp, Patrick Wambacq, Geert Heyman, Marie-
Francine Moens, Iulianna van der Lek-Ciudin, Frieda Steurs, Ayla Rigouts Terryn,
Els Lefever, Arda Tezcan, Lieve Macken, Sven Coppers, Jens Brulmans, Jan Van
den Bergh, Kris Luyten, Karin Coninx. The SCATE project: Highlights. 21st annual
conference of the European Association for Machine Translation (EAMT), 2018
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