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Abstract

In this paper, we investigate a new procedure for the estimation of a linear quantile regression
with possibly right-censored responses. Contrary to the main literature on the subject, we
propose in this context to circumvent the formulation of conditional quantiles through the so-
called “check” loss function that stems from the notorious work of Koenker and Bassett (1978).
Instead, our suggestion is here to estimate the quantile coefficients by minimizing an alternative
measure of distance. In fact, our approach could be qualified as a generalization in a parametric
regression framework of the technique consisting in inverting the conditional distribution of
the response given the covariates, motivated by the knowledge that the main literature for
censored data already relies on some nonparametric conditional distribution estimation as well.
The ideas of effective dimension reduction are then exploited in order to accommodate for
higher-dimensional settings as well in this context. Extensive numerical results then suggest
that such an approach provides a strongly competitive procedure to the classical approaches
based on the check function, in fact both for complete and censored observations. From a
theoretical prospect, both consistency and asymptotic normality of the proposed estimator for
linear regression are obtained under classical regularity conditions. As a by-product, several
asymptotic results on some ‘double-kernel’ version of the conditional Kaplan-Meier distribution
estimator based on effective dimension reduction, and its corresponding density estimator, are
also obtained and may be of interest on their own. A brief application of our procedure to
quasar data then serves to further highlight the relevance of the latter for quantile regression
estimation with censored data.
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1 Introduction
Regression analysis is arguably the most common and most powerful statistical tool when it comes
to investigating the relationship between certain covariate variables X and a response of interest T .
While conditional mean models historically dominated the regression landscape, the last decades
have witnessed the emergence of a wide variety of regression models focusing on conditional quanti-
les instead, stemming from the seminal work of Koenker and Bassett (1978) who introduced linear
quantile regression as a simple minimization problem through the so-called “check” loss function.
Conditional quantiles are particularly convenient when it is sensed that the conditional mean does
not properly reflect the impact of the covariates on the dependent variable, and allow practitioners
to perceive a more thorough picture of the conditional distribution of T given X. This statement
is nicely illustrated in many scientific fields where the study of extremes is relevant, see e.g. the
environmental studies of Elsner et al. (2008) and Hirschi et al. (2011) where the impact of changes
in the covariates on the upper conditional quantiles is observed to be noticeably stronger than for
the center of the conditional distribution. In comparison with their mean regression counterpart,
quantile regression models are also praised for their robustness to outliers in the response and their
flexibility with respect to the error distribution. A complete and comprehensive introduction to
the quantile regression methodology may be found in Koenker (2005).

By expressing quantile regression as the minimization of a conditional expected loss, Koenker
and Bassett opened the door to numerous creative parametric, semiparametric and nonparametric
modelling techniques applied to quantile regression. In this paper, we choose to restrict oursel-
ves to the estimation of the classical linear regression model. Furthermore, while the proposed
methodology could, debatably, solely be devoted to the estimation of a linear model for complete
observations, our primary motivation comes from the context of survival analysis, where possible
right-censoring of the response variable may occur. In this situation, often encountered in many
interesting applications, instead of completely observing T , one only witnesses the minimum of it
and a censoring variable C. A quantile regression model, through its interpretability, robustness
and relaxation of the proportional hazards assumption, provides in these circumstances a valua-
ble complement to the classical Cox regression and accelerated failure time model, as argued in
Koenker and Bilias (2001), Koenker and Geling (2001) and Portnoy (2003).

The first study on parametric censored quantile regression can be traced back to the econometric
work of Powell (1984; 1986), where one assumes that the censoring variable is observable for all
observations at hand. In practice however, many applications are confronted to random censoring
and to the failure of completely observing C. To account for this specificity, the current literature
can essentially be decomposed into three main modelling categories, all boiling down to the initial
formulation of Koenker and Bassett in case of no censoring.

The first category of modelling techniques, starting from the check-based formulation of quan-
tile regression, is based on the so-called inverse-censoring-probability (ICP) weighting scheme,
notoriously introduced in mean regression by Koul et al. (1981). This strategy was adapted to
the present quantile regression context through different versions and in different linear contexts
in Ying et al. (1995), Bang and Tsiatis (2002), Zhou (2006), Shows et al. (2010), Leng and Tong
(2013) and Gorfine et al. (2017), among others. These models share the common observation that
the expected loss of the unobservable response can easily be recovered from the expected loss of
the actually observed response, by only keeping uncensored observations in the procedure and
correctly adjusting through the conditional distribution of C given X. As a result, for a flexible
modelling and without additional assumptions, smoothing of the latter distribution is required
which inevitably introduces a practical limit to the dimension of the covariate one may consider.
Additionally, the basic ICP approach suffers from a more fundamental shortfall, as it fails to take
profit of the robustness of quantile regression in its handling of censored observations in opposition
to the second strategy described below.
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This second main modelling technique may roughly be rallied under the same idea of propo-
sing an appropriate weighting scheme, although the latter is here defined specifically for quantile
regression. The approach is indeed based on the idea that all censored observations are not fun-
damentally to be treated similarly in this context. For instance, data lying above the quantile
function will in fact have the same impact on the estimation of the regression model, regardless
of their censoring status. Employing the idea of redistribution-of-mass of Efron (1967), Portnoy
(2003) was the first to introduce this consideration into quantile regression through an appropriate
weighting scheme, although based on a restrictive global linearity assumption. Relaxing the latter,
Wang and Wang (2009) provided a flexible alternative based on the nonparametric estimation of
the conditional distribution of T given X in the required weights. Similarly to the ICP technique,
this suggests that a flexible modelling here also requires smoothing across the covariates, despite
the initial model being parametric. This technique nevertheless engendered a fruitful literature,
see e.g. Wang et al. (2013), Wey et al. (2014), Tang and Wang (2015) and Wu and Yin (2016) to
name a few.

The last main technique to adapt the check function approach to censored quantile regression
may be resumed into two attempts of employing all observations at hand as if they were complete,
and appropriately change the ‘target’ in the check-based formulation. The first attempt goes back
to Lindgren (1997) and suggests to use all observed responses while avoiding underestimation of
the quantile function through aiming for a higher quantile level than the actual level of interest.
While the idea is quite natural, practical implementation also requires smoothing conditional
distributions. Additionally, an iterative procedure is required to determine the appropriate quantile
level that should be targeted. As a result, the literature based on this approach is noticeably more
modest. The second attempt of changing the ‘target’ was recently proposed in De Backer et al.
(2018), where it is suggested to work on the loss function itself instead of considering weighting
schemes or alternative quantile levels. The methodology results in a simple adaptation of the
check function, has a broad application range in terms of modelling potential, and is illustrated
for the particular case of linear regression. However, similarly to the above-described literature,
for flexible modelling one is again conducted to consider smoothing a conditional distribution (of
C given X) even though the initial model is parametric.

In short, these three main approaches all share two basic common features: they are ‘check-
function-based’ and are limited to moderate covariate dimension if flexibility is required without
additional assumptions. This then raises the legitimate question of whether a check-based appro-
ach, although natural from a modeling point of view, is the most appropriate for censored quantile
regression given the natural covariate dimension constraint one faces without involving additional
assumptions. In fact, as mentioned above, this question may also be considered for complete ob-
servations as one may wonder if a check-based approach is systematically to be considered as a
gold standard for linear regression with moderate number of covariates, although the motivation
is here arguably less obvious than for censored data.

An additional argument may be considered to challenge the supremacy of check-function-based
approaches, as censored quantile regressions are, by essence, more constrained to central quantile
levels than for complete observations, at least regarding upper quantile levels. This comes from
a basic identifiability condition that requires that not all censoring occurs below the quantile
function with probability one, hereby introducing a natural upper bound to the quantile level one
may consider in practice. It then seems natural to wonder if check-function-based approaches are
best suited to make the most of this ‘centrality of the quantile level’ constraint.

With these considerations in mind, the main contribution of this paper is to propose an alterna-
tive to the above-mentioned literature on linear censored quantile regression by circumventing the
check-based modelling. In fact, our procedure can be seen as a very simple adaptation to linear
regression of the well-known inverse cumulative distribution function technique (inverse-c.d.f.),
which first estimates the conditional c.d.f. of the response variable given the covariates, and then
recovers the quantile function by inversion. This approach is well-studied in the literature on
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nonparametric quantile regression (see e.g. for complete observations Yu and Jones (1998), Li and
Racine (2008) and Li and Racine (2017)), which are, by construction, limited to small covariate
dimensions. Although this technique was, to the best of our knowledge, never studied for linear
regression for complete observations given it induces smoothing for a parametric model, we note
that flexible censored quantile regression seems an appropriate candidate to carry out the exten-
sion of an inverse-c.d.f. approach to a linear model given the inherent smoothing arguments of
the literature described above. Additionally, numerical results of the nonparametric literature for
complete observations (see e.g. Yu and Jones (1998)) suggest that inverse-c.d.f. approaches tend,
quite naturally, to outperform their check-based competitors when it comes to the estimation of
quantile functions for central quantile levels. From the argumentation described above, this again
suggests that an inverse-c.d.f. approach may be a valuable alternative to the existing literature
for censored data. Lastly, for higher dimensional covariates, similarly to the existing literature we
introduce here an additional assumption to overcome the curse of dimensionality, and suggest to
adopt a general dimension reduction approach as in Wang et al. (2013). The resulting estimator
is then observed for both small and moderate covariate dimensions to perform very competitively
with respect to its check-based competitors, hereby providing practitioners a simple and valuable
alternative for robust censored quantile regression estimation.

The rest of the paper is as follows. Section 2 is devoted to the newly proposed estimation
procedure. Consistency and asymptotic normality of the estimator are obtained in Section 3 under
classical assumptions. Additionally, some new asymptotic results on conditional distribution and
density estimators with censored responses and covariates estimated through dimension reduction
techniques are also provided as a by-product of our work, given these are required for establishing
the results of Section 3. An extensive Monte Carlo simulation study is then conducted in Section
4, where the, sometimes spectacular, differences between the main existing estimators and our
new procedure are clearly exposed to originate from the duality between check-function-based and
inverse-c.d.f. approaches. Section 5 highlights a brief application to real data. Lastly, the proofs
of Section 3 are deferred to the Supplementary Material.

2 The Proposed Methodology
We develop in this section the proposed methodology for a censored linear quantile regression
model. To that end, we start by recalling a few generalities on conditional quantile modelling for
complete observations that will help us motivate our estimation procedure in the next sections.

2.1 Background on quantile regression modelling for complete observations

Let us first denote by mτ (x), for any τ ∈ (0, 1), the τ -th conditional quantile function of a
continuous response variable T , or some monotone transformation of the latter, given X = x,
where X is a covariate vector of dimension d ≥ 1. Specifically,

mτ (x) = inf{t : FT |X(t|x) ≥ τ}, (2.1)

where FT |X denotes the conditional c.d.f. of T given X. As recalled in the introduction, Koen-
ker and Bassett proposed an equivalent formulation for conditional quantiles as resulting from a
minimization problem given by

mτ (x) = arg min
a

E
”

ρτ (T − a)|X = x
ı

, (2.2)

where ρτ (u) = u(τ − 1(u ≤ 0)) is the “check” loss function, and 1(·) is the indicator function.
The attractiveness of this check-based formulation can be seen as being, at least, twofold. First,
expressing the problem as minimizing a conditional expected loss allows one to retrieve a similar,
and hence familiar, framework as for mean regressions, and second, the computational features

4



of minimizing the check function turn out to be very tractable, even for higher dimensions of the
covariate (see e.g. Koenker (2005)).

However, in situations where these two characteristics are not fundamental, formulation (2.1)
may also emerge as a satisfying starting point to estimate conditional quantiles in practice. For
instance, a wide literature on nonparametric quantile regression for complete observations (see
e.g. Yu and Jones (1998), Li and Racine (2008) and Li et al. (2013)), where the dimension of the
covariate is restricted by construction, is based on (2.1) and hence proposes to estimate mτ (x) by
pmτ (x) = inf{t : pF (t|x) ≥ τ}, where pF is an appropriate estimator of FT |X . The latter technique
is often referred to as ‘inverse-c.d.f.’ for rather obvious reasons. Interestingly, the numerical
results in this literature globally suggest that the latter method tends to outperform its check-
based counterpart, especially for ‘central’ quantile levels where one is not required to estimate
FT |X in the tails of the response. For example, Yu and Jones explicitly advocate for the use of the
inverse-c.d.f. version of their local linear estimator rather than the check-based version. One might
then conjecture that, for problems where the dimension of the covariate is intrinsically restrained,
an inverse-c.d.f. approach may numerically perform better than check-based competitors. This
statement motivates the next section.

2.2 Censored linear regression with low-dimensional covariates

Now, recall that we intend to work in this paper on a linear regression model. That is, we assume
that

mτ (Xi) = βT
τ Xi, (2.3)

for i = 1, . . . , n, where X is now a (d + 1)-dimensional covariate vector whose first component
coinciding with the intercept is taken to be 1, and βτ is the (d+ 1)-dimensional unknown quantile
coefficient vector. Furthermore, we assume to be confronted to censored data, that is, instead of
completely observing the response T , we only observe Y = min(T,C), where C is the censoring
variable. Our objective is then to estimate the true value of βτ based on i.i.d. triplets (Yi,∆i,Xi),
i = 1, . . . , n, from (Y,∆,X), where ∆ = 1(T ≤ C) and T and C are assumed to be conditionally
independent given the covariate X.

In this context, bearing in mind that the previously-introduced check-based estimators in the
literature already involve the estimation of conditional distributions, and observing that for all
i = 1, . . . , n, FT |X(βT

τ Xi|Xi) = τ , a natural extension of the inverse-c.d.f. technique is to estimate
βτ by

pβτ = arg min
β

n∑
i=1

´

pF (βT
τ Xi|Xi)− τ

¯2
, (2.4)

where pF is an appropriate estimator of FT |X . Note that (2.4) considers a sum of distances that are,
in absolute value, necessarily smaller than one. Hence, while a L1-distance is usually employed in
the context of quantile regression to control for arbitrary large distances, we propose in this paper
to use the computationally less complicated squared distance as reported in (2.4). Additionally,
we suggest here to estimate FT |X nonparametrically using a ‘double-kernel’ approach, as first
introduced for censored data by Leconte et al. (2002). Before motivating this choice, let us first
denote the i-th order statistic of the uncensored responses by Y u

(i) , n
u =

∑n
i=1 ∆i, and let H(t) =∫ t

−∞
rK(u) du for some kernel density rK. We then propose to estimate FT |X by pF sT |X , where

pF sT |X(t|x) =
∫
R
H

ˆ

t− u
hT

˙

d pFT |X(u|x)

=
nu∑
i=1

´

pFT |X(Y u
(i)|x)− pFT |X(Y u

(i−1)|x)
¯

H

ˆ

t− Y u
(i)

hT

˙

, (2.5)
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where hT is a positive bandwidth parameter, Y u
(0) = 0 and pFT |X is Beran’s local Kaplan-Meier

estimator (Beran (1981)), defined as

pFT |X(t|x) = 1−
n∏
i=1

{
1− Bni(x)∑n

j=1 1(Yi ≤ Yj)Bnj(x)

}1(Yi≤t,∆i=1)

, (2.6)

for a sequence of weights Bnj(x) adding up to 1. Similarly to Wang and Wang (2009), Leng and
Tong (2013) and De Backer et al. (2018), we adopt here Nadaraya-Watson type of weights given
by

Bnj(x) =
Kd

´

x−Xj

hX

¯

∑n
k=1Kd

´

x−Xk
hX

¯ , j = 1, . . . , n,

where Kd is some multivariate kernel density function, Kd(u/hX) = Kd(u1/hX , . . . , ud/hX), and
hX is a positive bandwidth parameter converging to zero as n → ∞. Furthermore, as com-
monly endorsed in the literature, in the following we will adopt product kernels Kd(u1, . . . , ud) =∏d
i=1K(ui), where K is a univariate kernel function. Now, note that pF sT |X may be read in (2.5)

similarly to the kernel version of the empirical c.d.f., except the jumps n−1 are here naturally re-
placed by the jumps of Beran’s estimator. Additionally, when there is no censoring, the estimation
procedure through (2.4) and (2.5) also offers a new alternative to quantile regression estimation
for complete observations, with pFT |X boiling down to the kernel estimator of Stone (1977).

Now, while the bandwidth in the ‘X-direction’ in (2.5) plays essentially the same role as
the bandwidths in the literature on censored quantile regression, adding a second one in the
‘T -direction’ might seem unappealing at first. However, note that this approach is similar for
instance to Yu and Jones and Li and Racine, and the advantage is here twofold: first, from a pure
optimization point of view, it allows for defining a smooth function in the ‘T -direction’ as well,
the latter being simpler to optimize when inserted in (2.4) than a crude step function, and second,
this choice is motivated by the knowledge coming from a large literature on both conditional and
unconditional distribution estimation that smoothing in this direction as well can produce both
asymptotic and finite sample efficiency gains by reducing variance at the cost of an increase in
bias; see Azzalini (1981), Reiss (1981) and Hansen (2004) to cite a few. One might then conjecture
that such implications may spread to our procedure as well. Finally, our practical experience also
suggests that the overall procedure is, as one might expect, not very sensitive to the value of hT ,
as will be illustrated in Section 5. We nevertheless discuss in Section 4 a practical procedure to
select both bandwidths.

We complete this section by providing a last comment on the analysis of our estimator, as
we observe that the proposed methodology forces one to evaluate the double-kernel estimator of
FT |X in the conditional part in all Xi, i = 1, . . . , n. This implies that we have to evaluate pF sT |X
in tail regions of the covariates as well, where the latter estimator may possibly be instable due
to sparcity of the data or boundedness of the domain. While the effect of this might already be
attenuated through the summation over all observations in our estimation procedure, we note that
a possible remedy and extension could be to suitably weigh or even trim some observations in
(2.4), although the impact of this strategy is left for further investigation.

2.3 Censored linear regression for higher-dimensional covariates

When the dimension of the covariates becomes too large to reasonably estimate βτ using (2.4)
and (2.5), similarly to the existing literature on censored quantile regression, we inevitably need
to introduce an additional assumption in our model. In this paper, in the same spirit as Wang
et al., we propose to adopt a very general global dimension reduction assumption. The latter
states that all the information regarding the dependence of T on X is in fact contained in q linear
combinations of X, that is

T ⊥⊥X|(γT
0,1X, . . . , γT

0,qX), (2.7)
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where ⊥⊥ stands for independence, q < d + 1 for an effective dimension reduction (EDR), and
where the γ0’s are unknown (d+ 1)-dimensional linearly independent vectors. Such an assumption
was first introduced in the pioneering work of Li (1991) for complete observations, and is qualified
in the latter paper as the weakest form of assumption one may invoke in the hope that a low-
dimensional projection of a covariate vector may contain all the regression information of T |X,
given no assumptions are made on the actual functional form of the dependence structure. In fact,
it is easily seen that identifiability of the γ0’s is not implied by (2.7) as such; only the q-dimensional
linear subspace of Rq spanned by the γ0’s is identifiable. The latter is often referred to as EDR
space, and any direction belonging to the latter is called an EDR-direction. Estimation of the
base vector of the EDR space is a fertile domain of research on its own; see e.g. Cook (1998) or
Cook and Ni (2005) for the case of complete observations. For censored data, estimation of the
γ0’s can be carried out using for instance the methodologies described in Li et al. (1999) or Xia
et al. (2010).

Next, denoting Zi = (Zi,1, . . . , Zi,q)T with Zi,j = γT
0,jXi, i = 1 . . . , n, j = 1, . . . , q, the direct

implication of (2.7) in our context is that we may restrict ourselves in our procedure to the
estimation of FT |Z , the conditional distribution of T given the projections of X, instead of FT |X .
That is, for higher-dimensional covariates, given (pγ0,1, . . . , pγ0,q) an estimator of the basis of the
EDR space satisfying high-level conditions depicted in Section 3, we propose to estimate βτ by

pβτ = arg min
β

n∑
i=1

´

pF s
T | pZ(βTXi| pZi)− τ

¯2
, (2.8)

where pZi = ( pZi,1, . . . , pZi,q)T with pZi,j = pγT
0,jXi, j = 1, . . . , q, i = 1 . . . , n, and where pF s

T | pZ is
the double-kernel estimator of FT |Z , as described in (2.5) but replacing X with its estimated
projections. Lastly, the selection of the value of q, representing the last unknown in (2.8), has
naturally been the subject of numerous proposals in the literature on both complete and censored
observations. In practice, it is worth mentioning that the choice of q is encouraged to be done
along with visual inspection and examination of the eigenvalues involved in the methodologies for
estimating the γ0’s (see e.g. Remark 5.2 in Li (1991)). Nevertheless, for an automated choice as
will be the case in our simulation studies, we mention here as in Wang et al. the Chi-squared test
of Li, or the more computationally intensive cross validation method of Xia et al.. The numerical
performance of our resulting estimator for βτ will then be studied in Section 4.

3 Large Sample Properties
We establish in this section both the consistency and asymptotic normality of our proposed es-
timator pβτ defined in (2.8). To that end, we start by reporting the set of regularity conditions
that are assumed to hold in order to prove the desired results. As a preliminary remark and to
avoid any confusion, we emphasize here that some assumptions (in particular assumptions (C5)
and (C9) given below) are written considering explicitly the case q = 1 in (2.8). This is for reading
convenience only, as the assumptions may easily be written for a general q > 1 but the notations
are unnecessarily more involved, that is, instead of conditioning on a one-dimensional variable, one
would have to write down the same assumptions but conditionally on q variables. The remaining
assumptions where the dimension q has a more important role, such as the bandwidth assumpti-
ons, are of course written for a general value of q. Finally, some auxiliary results which may be
of interest on their own concerning the estimator pF s

T | pZ and its corresponding density estimator
are also established, but deferred to the Supplementary Material for sake of brevity. The set of
assumptions is then:

(C1) The support supp(X) of X is contained in a compact subset of Rd+1, and the variance-
covariance matrix of X is positive definite.
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(C2) There exists a neighborhood B of βτ such that for β ∈ B, infβ∈B infx∈supp(X) fT |X(βTx|x) >
0, where fT |X(·|x) denotes the conditional density function of T given X = x.

(C3) The effective dimension reduction directions γ0,j , j = 1, . . . , q belong to a compact subset Ξ
of Rd+1, and the estimators of the latter satisfy pγ0,j − γ0,j = OP(n−1/2), j = 1, . . . , q.

(C4) The univariate kernel functions K(·) and rK(·) are compactly supported. Furthermore, K(·)
is a continuously differentiable function of order ν satisfying

∫
K(u)du = 1,

∫
K2(u)du <∞

and
∫
ujK(u)du = 0 for j < ν, where ν ≥ 2 is an integer. rK(·) is a continuously differentiable

function satisfying
∫
rK(u)du = 1,

∫
u rK(u)du = 0 and

∫
rK2(u)du <∞.

(C5) Define the (possibly infinite) time τFY |X(·|x) = inf{t : FY |X(t|x) = 1}, where FY |X designates
the conditional c.d.f. of Y given X. Suppose first that there exists a real number υ <
τFY |X(·|x) for all x in supp(X). Define next Z = γT

0 X and recall that we simplify the
notations here by writing down only the case q = 1. For a finite value M , denote then by F
the class of functions F (t, z) : ]−∞, υ]× supp(Z)→ [0,M ] that have bounded second order
derivatives with respect to t (uniformly in z), have partial derivatives of order (ν − 1), for
ν in (C4), with respect to z of bounded variation in t (uniformly in z), and have bounded
(uniformly in t) ν-th order partial derivatives with respect to z which are, uniformly in t,
Lipschitz of order η for some 0 < η < 1.

(i) Define by FF the class of distributions (t,x) 7→ FT |γTX(t|γTx) for some γ ∈ Ξ, such
that (t, z) 7→ FT |γTX(t|z) belongs to F . Suppose that FT |Z ∈ FF .

(ii) Define by Ff the class of densities (t,x) 7→ fT |γTX(t|γTx) for some γ ∈ Ξ, such that
(t, z) 7→ fT |γTX(t|z) belongs to F . Suppose that fT |Z ∈ Ff where fT |Z is the conditional
density corresponding to FT |Z .

(C6) The first-order partial derivative of GC(t|z) with respect to t is uniformly bounded with
respect to both t and z. In addition, GC(t|z) has bounded (uniformly in t) partial derivatives
with respect to z up to order ν, where ν is in (C4).

(C7) For every x ∈ supp(X) and for β ∈ B defined in (C2), the point βTx ∈ R lies below υ defined
in (C5).

(C8) For some finite constant C > 0, the bandwidths hX and hT satisfy:

(i) hX ≡ Cn−u with 0 < u < 1/(q+ 2), and hT ≡ Cn−w with w < 1− qu and w ≤ u(ν+ 1)
where ν is in (C4).

(ii) hX ≡ Cn−u with 1/(2ν) < u < 1/(3q) for ν > 2q and hT ≡ Cn−w with 1/4 < w <
1/2− qu.

(C9) The following technical conditions, written for q = 1 for ease of reading, are assumed to hold:

(i) For γ ∈ Ξ, let LY |γTX(t|γTx) = FY |γTX(t|γTx)fγTX(γTx) where FY |γTX is the condi-
tional c.d.f. of Y given γTX, and fγTX denotes the density of γTX. Then, supt≤υ
supx∈supp(X) supγ∈Ξ ∇γLY |γTX(t|γTx) < ∞, where υ is defined in (C5) and where
∇γg(γ) denotes the vector of partial derivatives of a function g(γ) with respect to
all occurrences of γ.

(ii) Let fX|γT
0 X denote the conditional density of X given γT

0 X. Then, the partial derivati-
ves of fX|γT

0 X(x|z) with respect to x up to order ν are uniformly bounded with respect
to both x and z.

We briefly comment here the reported set of assumptions before stating the main theoretical
results of this section. First, note that assumptions (C1) and (C2) are typical in the literature on
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both complete and censored quantile regression, as these are namely required for the uniqueness of
βτ . Condition (C3) for its part requires the n1/2-consistency of the estimators for the basis of the
EDR space. The latter condition serves to control for the impact of handling estimated observations
when establishing the asymptotic properties of pF s

T | pZ and its corresponding density estimator, on
which our proofs will rely. Note also that this assumption is similar to assumption A4-(i) in Wang
et al. (2013) and is for instance verified for the estimation procedures of Li et al. (1999) or Xia
et al. (2010) under appropriate higher-level conditions. Next, assumption (C4) reports conventional
conditions on both kernel functions used in our framework that are needed in order to establish
appropriate asymptotic properties of pF s

T | pZ and its corresponding density estimator, with a higher-
order kernel possibly required for the ‘X-direction’, as is usual in multivariate kernel frameworks.
Assumption (C5) for its part defines of functions embedding the true FT |Z and its corresponding
density fT |Z . The definition of these classes comes as a more restricted version of a definition of
a general class reported in the work of Lopez (2011), where it is established that the latter is in
some sense well-behaved in terms of size, which is represented by the notion of bracketing numbers
(see e.g. Van der Vaart and Wellner (1996, p. 83)). Note that this condition is somewhat similar
to condition (C3) in De Backer et al. (2018), but extended here for the inclusion of the dimension
reduction framework. Conditions (C6) and (C7) are likewise classical in the literature on censored
quantile regression, and may for instance be also found in the work of De Backer et al. and Wang
and Wang (2009) to name a few. Additionally, assumption (C7) is to be brought in parallel with
previously-developed comments on constraints on the quantile level τ when confronted to censored
data, as the latter condition is observed to define a natural upper bound on the quantile level one
may consider in this context. Assumption (C8) then specifies the conditions on both bandwidths
used in our estimation procedure, where (i) is required for establishing the consistency of pβτ , and
the stronger condition (ii) is needed for asymptotic normality. Lastly, (C9) considers two purely
technical conditions that are originating, for (i), from the handling of estimated observations in
order to establish consistency, and required for the asymptotic normality for (ii).

We now state in the following theorem the consistency of our proposed estimator pβτ , for which
the proof is deferred to the Supplementary Material.

Theorem 1. Assume that the censoring time C is conditionally independent of the survival time
T given the covariates X, and that the triples (Yi,∆i,Xi), i = 1, . . . , n, form an i.i.d. multivariate
random sample. Then, under assumptions (C1)-(C8)-(i) and (C9)-(i), for a given quantile level
0 < τ < 1 and for pβτ defined in (2.8),

pβτ → βτ

in probability, as n→∞.

The proof of Theorem 1 is built on the general empirical-process-based theory of Chen et al.
(2003), for which the key requirement is a uniform consistency result for the infinite-dimensional
nuisance parameter appearing in the estimation procedure. More precisely, our proof reveals that
the latter uniform consistency result is required in our context for both pF s

T | pZ and pf s
T | pZ , where

pfs
T | pZ is the double-kernel density estimator corresponding to pF s

T | pZ . As a consequence, these results
are thus established in the Supplementary Material under the above-reported assumptions, and
may be of interest on their own as they extend previous work of Gonzalez-Manteiga and Cadarso-
Suarez (1994) and Van Keilegom and Akritas (1999) to name a few, by considering the inclusion of
two smoothing directions and multivariate estimated observations through a dimension reduction
technique.

The next theorem reports the limiting distribution of our estimator pβτ , for which the crucial
requirement is now a linear representation of the infinite-dimensional nuisance parameter on which
the estimation procedure is built. For this proof, relying again on the work of Chen et al. and
contrary to the proof of the consistency, it is observed that only the estimation of FT |Z will
influence the asymptotic covariance matrix of our estimator, and hence only a linear representation
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for pF s
T | pZ is here required. The latter is again reported in the Supplementary Material and extends

previous work of, for instance, Gonzalez-Manteiga and Cadarso-Suarez (1994), Van Keilegom and
Veraverbeke (1997) and Du and Akritas (2002).

Theorem 2. For a given 0 < τ < 1, under the assumptions of Theorem 1, (C8)-(ii) and (C9)-(ii),

n1/2(pβτ − βτ ) L−→ N (0,Γ−1
1 ΣΓ−1

1 ),

where Γ1 = E[XXTf2
T |X(βT

τ X|X)] and Σ = Cov(gi(γT
0 Xi)) with gi(·) defined in (A.5) in the

Supplementary Material.

As a preliminary remark, we point out that Theorem 2 is here written explicitly for the case
q = 1, although this is for notational convenience only, similarly to some of our assumptions
listed above. Of course, the latter theorem, and in particular the expression of the function gi(·)
may easily be considered for the general case of q > 1, but this would require the inconvenient
introduction of several notations for the functions involved in gi(·) that would be conditional on
q arguments instead of simply one as reported here. In any case, while Theorem 2 reports the
asymptotic behavior of our estimator, when inference is of interest a general consensus in the
censored quantile regression literature is to advocate for bootstrap procedures instead, given that
the asymptotic covariance matrix depends on several unknown quantities that are cumbersome
to estimate in practice. Similarly to Portnoy (2003), Wang and Wang (2009) and De Backer
et al. (2018) to name a few, we therefore consider here for inference a simple percentile bootstrap
procedure, where 95% bootstrap confidence intervals for βτ are constructed by taking the 2.5th
and 97.5th percentiles of the bootstrap coefficients, obtained by drawing a sufficient amount of
bootstrap samples through resampling (Yi,∆i,Xi), i = 1, . . . , n, with replacement. The validity
of the latter technique in our framework will be empirically investigated in Section 4.3.

4 Simulation Study
This section is devoted to the finite sample performance of our estimator through Monte Carlo
simulations for both small and larger dimensions of the covariates. To that end, focusing first on
univariate settings, we start by describing the different estimators that will enter our simulation
study along with their practical implementation for replicability of the results, and develop next the
different considered data generating processes (DGP). Multivariate settings will then be considered
in the second part of this section, while a simple illustration of the effectiveness of the bootstrap
procedure proposed in Section 3 will complete the section. All of our simulations are carried out
using the statistical computing environment R (R Core Team (2017)).

4.1 Small-dimensional covariates

As our main motivation comes from the world of censored data, we first outline the main competing
procedures we consider for the estimation of a censored linear quantile regression with a covariate
of dimension d = 1. The choice of these particular estimators is inspired by the introduction of
this paper, resulting in the following:

ICP: Check-based estimator of Bang and Tsiatis (2002) embodying the ICP-technique described
earlier. In opposition to the other procedures, this estimator further assumes that the censo-
ring variable is independent of the covariate. As a result, implementation is carried out using
the rq function in the R library quantreg with incorporation of the weights ∆i/(1− pGC(Yi)),
i = 1, . . . , n, where GC is the c.d.f. of C and pGC is the Kaplan-Meier estimator of GC . The
latter is simply recovered from (2.6) by replacing the weights Bni(x) with n−1, and ∆i with
1−∆i for all i = 1, . . . , n.
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RM: Check-based estimator of Wang and Wang representing the redistribution-of-mass technique.
The estimator is implemented using Wang and Wang’s code, available on their websites, with
use of the recommended biquadratic kernel K(x) = (15/16)(1 − x2)21(|x|≤ 1) for the esti-
mation of the required local weights. Furthermore, the bandwidth selection is implemented
using the 5-fold cross validation (see e.g. section 7.10 of Hastie et al. (2001)) as suggested in
Wang and Wang, with candidate bandwidth ranging from 0.05 to 0.5 by 0.05 increments.

AC: ‘Adapted-check’ estimator of De Backer et al. (2018) for which we apply their proposed MM
algorithm along with Beran’s estimator for GC(·|X) with a biquadratic kernel as well. The
bandwidth selection is, here again, implemented using a 5-fold cross validation procedure on
candidates ranging from 0.05 to 0.5 by 0.05 increments.

NEW: Newly proposed estimator (NEW) in (2.4)-(2.5), where both implied kernel density functions
are chosen to be biquadratic as well. A practical procedure for the choice of both bandwidths
involved in the estimator is described below.

For the required bandwidths in NEW, although Leconte et al. (2002) suggest a rule-of-thumb
when considering only the estimation of FT |X , we advocate here for a simple extension of the usual
cross validation procedures used in the literature on censored quantile regression, by considering
a matrix of candidate bandwidths instead of simply a vector of candidates when facing only one
smoothing direction. More precisely, for each candidate pair of bandwidths (hT , hX), we start
by randomly breaking the observations into 5 non-overlapping and roughly equal-sized parts. For
each part j = 1, . . . , 5, we then estimate βτ using (2.4)-(2.5) using the observations in all the parts
but the j-th, and determine the quality of fit of the model by computing the following prediction
error on the complete observations in part j:

PEj(hT , hX) =
∑
i∈J

∆i=1

ρτ (Yi − pβT
τ (−j)Xi),

where J is the set of all observations in part j and the notation (−j) explicitly indicates that
the estimation is carried out using all observations except the ones in part j. The procedure is
repeated and averaged over j = 1, . . . , 5, and the pair of bandwidths yielding the smallest average
prediction error is then selected among all candidates.

This more computationally intensive choice in comparison with the rule-of-thumb of Leconte
et al. is motivated by the observation that our bandwidths should primarily serve to the best
possible estimation of βτ in our model, which need not coincide with the bandwidths leading
to best possible estimation of FT |X taken on its own. Finally, for the candidate bandwidths in
practice, as already commented, our experience first suggests that the performance of NEW is not
very sensitive to the choice of hT . Hence, we consider for this direction in our DGPs always a set
of candidates ranging from 0.25 to 1.5 by 0.25 increments. As for the candidates for hX , these
will vary from one simulation setting to another, given the computational cost of adding an extra
bandwidth, and based on a few extra iterations in order to evaluate the order of magnitude in
which one is more likely to observe the smallest cross validated prediction error. Hence, the exact
range of bandwidth candidates for hX will be given below, depending on the simulated scenario.

Now, as previously-mentioned, one of our main goals is to highlight that the numerical diffe-
rences that will be observed between the above-described estimators emanates from the distinction
between check-based and inverse-c.d.f. approaches. Consequently, and in order to analyze the im-
pact of censored data as well, we will also include two omniscient estimators assuming knowledge
of all the Ti, i = 1, . . . , n. Our results will therefore incorporate the following procedures as well:

Oρτ : Omniscient and check-based estimator of Koenker and Bassett, for which practical imple-
mentation is carried out using the function rq in the R library quantreg.
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ONEW : Omniscient newly proposed estimator described in (2.4)-(2.5) where pFT |X is the well-known
estimator of Stone and Yi = Ti, i = 1, . . . , n. The practical implementation is analogous to
that of NEW.

These various estimation procedures are then compared in this section in two different DGPs,
where the underlying model is either linear in all quantile levels or only at the τ -th quantile level
of interest. As a preliminary remark, we mention here that all simulation settings are constructed
with censoring in accordance with assumption (C7) for the true values of βτ . Specifically, the
following DGPs are considered:

DGP 1

The simulated model, repeatedly illustrated in the literature in Wang and Wang, Leng and Tong
and De Backer et al., assumes

Ti = β0 + β1Xi + pηi − Φ−1(τ)q,

where β0 = 3, β1 = 5, X1, . . . , Xn are i.i.d. U [0, 1] variables, Φ−1 is the quantile function of
the standard normal distribution and η1, . . . , ηn are i.i.d. N (0, 1) variables with ηi ⊥⊥ Xi, i =
1, . . . , n. The censoring variables C1, . . . , Cn are independent of the covariate and are simulated
from U [0,M ], with M calibrated to attain the desired censoring proportion at each quantile level
of interest.

DGP 2

The model is again taken from the papers of Wang and Wang, and Leng and Tong, assuming now

Ti = β0 + β1Xi + p0.2 + 2(Xi − 0.5)2qpηi − Φ−1(τ)q,

where β0 = 2, β1 = 1, X1, . . . , Xn are i.i.d. N (0, 1) variables and η1, . . . , ηn are i.i.d. N (0, 1)
variables with ηi ⊥⊥ Xi, i = 1, . . . , n. The censoring variables C1, . . . , Cn are again independent
of the covariate and simulated from U [0,M ], with M calibrated to attain the desired censoring
proportion at the quantile levels of interest.

For these simulation settings, we examine two average censoring proportions pc ∈ {15%, 40%},
two quantile levels of interest τ ∈ {0.3, 0.5}, and sample sizes n ∈ {100, 200}. Based on B = 500
repetitions of each DGP, the different estimators are then compared in terms of root mean squared
errors (RMSE) and median absolute error (MAE). For robust results with regard to the optimiza-
tion routine involved in the procedures, simulations are here presented by removing a few iterations
for all estimators, based on the settings for each estimator that lead to the worst mean absolute
deviation (MAD) results, where the latter is defined for an estimator pβ by n−1 ∑n

i=1|pβTXi−βT
τ Xi|.

We start our analysis by reporting in Table 1 the simulation results relative to DGP 1 for
both censored and complete data, and where only the estimation of the median is here exposed
for sake of brevity. For this DGP, candidate bandwidths for NEW and ONEW are taken in hX ∈
{0.05, 0.1, . . . , 0.25}. As can be observed, NEW exhibits for this trivial example slightly better
results in terms of RMSE than its considered competitors, although the difference may seem
modest at first sight. It is however further noted that, for small censoring proportions, NEW is
here able to compete with Oρτ , the omniscient check-based procedure. This is due to the slight
numerical advantage of the inverse-c.d.f. approach on which NEW is constructed in opposition
to Oρτ , as can be observed from the comparison between Oρτ and ONEW . A visual inspection
of the obtained results, as depicted in Figure 1, brings further knowledge as it is observed that
NEW’s competitive RMSE results seem to hold despite slightly larger bias results for finite samples
than its competitors. This then suggests that the proposed estimation strategy coupled with a
double-kernel approach noticeably reduces the variability for the estimation of the parameters
across simulated datasets in comparison with its competitors. These observations are in line for
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n = 100 RMSE MAE
pc Method β0 β1 β0 β1

15%

ICP 0.255 0.471 0.179 0.326
RM 0.246 0.462 0.182 0.325
AC 0.246 0.460 0.173 0.323
NEW 0.239 0.443 0.158 0.292
Oρτ 0.238 0.427 0.170 0.290
ONEW 0.221 0.397 0.152 0.267

40%

ICP 0.291 0.557 0.196 0.366
RM 0.280 0.532 0.195 0.342
AC 0.285 0.538 0.195 0.350
NEW 0.269 0.517 0.179 0.344
Oρτ 0.238 0.427 0.170 0.290
ONEW 0.221 0.397 0.152 0.267

n = 200 RMSE MAE
pc Method β0 β1 β0 β1

15%

ICP 0.193 0.340 0.136 0.220
RM 0.194 0.337 0.136 0.232
AC 0.194 0.339 0.134 0.223
NEW 0.175 0.309 0.122 0.225
Oρτ 0.177 0.311 0.131 0.209
ONEW 0.165 0.287 0.120 0.202

40%

ICP 0.214 0.385 0.150 0.264
RM 0.202 0.365 0.139 0.239
AC 0.201 0.366 0.140 0.244
NEW 0.193 0.360 0.135 0.258
Oρτ 0.177 0.311 0.131 0.209
ONEW 0.165 0.287 0.120 0.202

Table 1: Simulation results for DGP 1 for both censored and complete observations, with τ = 0.5, sample
size n = {100, 200}, and average censoring proportions pc taken in {15%, 40%}.

instance with the literature on smoothed (in the ‘T -direction’) distribution function estimation, as
already mentioned in Section 2.

We now consider the slightly more elaborate DGP 2, where the true model is only linear at
the τ -th quantile level of interest. For this DGP, candidate bandwidths for NEW and ONEW
are now taken in hX ∈ {0.2, 0.25, ..., 0.7}. Table 2 reports the obtained results for n = 100
observations at each iteration. Ignoring momentarily the results for NEW, a first observation is
that RM outperforms AC and ICP when using this exact original setting from Wang and Wang.
Hence, since RM is constructed upon estimation of FT |X in opposition to AC and ICP, we may
presuppose that this DGP favors modelling strategies that require estimation of FT |X instead of
GC . In the context of this paper, our main interest then becomes comparing RM with NEW since
both procedures are based on a suitable estimation of the same conditional distribution. As can be
observed, the results for NEW provide here a spectacular improvement over RM, and by extension
AC and ICP. In fact, the improvement is such that NEW even exhibits strikingly better results
than Oρτ for all considered quantile levels and censoring proportions. This is of course again due
to the advantage of using an inverse-c.d.f. approach, as one can observe from comparing the results
of Oρτ and ONEW . Still, this suggests that a dramatic improvement in finite sample performance
can be observed in settings where RM is often considered as a primary reference in the literature.
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Figure 1: Boxplots relative to DGP 1 and Table 1 (left) for the estimation of β0 and β1, both centered
(i.e. depicting pβτ − βτ ), for the four competitors based on censored data with τ = 0.5, n = 100 and
pc ∈ {15%, 40%}.
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pc = 15% RMSE MAE
τ Method β0 β1 β0 β1

0.3

ICP 0.229 0.449 0.152 0.312
RM 0.214 0.407 0.141 0.286
AC 0.223 0.424 0.145 0.300
NEW 0.181 0.309 0.119 0.212
Oρτ 0.214 0.407 0.146 0.288
ONEW 0.169 0.309 0.112 0.209

0.5

ICP 0.213 0.439 0.146 0.295
RM 0.201 0.400 0.131 0.261
AC 0.208 0.420 0.138 0.262
NEW 0.142 0.288 0.092 0.200
Oρτ 0.204 0.402 0.134 0.274
ONEW 0.145 0.292 0.090 0.193

pc = 40% RMSE MAE
pc Method β0 β1 β0 β1

0.3

ICP 0.314 0.552 0.206 0.352
RM 0.228 0.420 0.154 0.286
AC 0.229 0.461 0.154 0.313
NEW 0.205 0.307 0.136 0.212
Oρτ 0.214 0.407 0.146 0.288
ONEW 0.169 0.309 0.112 0.209

0.5

ICP 0.282 0.500 0.193 0.350
RM 0.205 0.396 0.133 0.262
AC 0.218 0.440 0.148 0.296
NEW 0.150 0.304 0.104 0.203
Oρτ 0.204 0.402 0.134 0.274
ONEW 0.145 0.292 0.090 0.193

Table 2: Simulation results for DGP 2 for both censored and complete responses, with n = 100 observations,
τ ∈ {0.3, 0.5}, and average censoring proportions pc taken in {15%, 40%}.

Figure 2 illustrates graphically this statement by depicting the evident improvement of NEW in
terms of variance over its three considered competitors handling censored responses in this DGP.
Results for larger sample sizes exhibit the same singular patterns and are therefore omitted for
this DGP.

Recalling that both DGPs are taken from the literature and are hence not designed to particu-
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Figure 2: Boxplots relative to DGP 2 and Table 2 for the estimation of β0 and β1, both centered (i.e.
pβτ −βτ ), for the four competitors based on censored data with n = 100, τ ∈ {0.3, 0.5} and pc ∈ {15%, 40%}.
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larly favor here our procedure, we conclude this section by conjecturing from the obtained results
that for low-dimensional regression models with or without censored data, an inverse-c.d.f. appro-
ach provides very competitive finite sample results in comparison with check-based formulations,
with the possibility of a dramatic improvement in terms of variance for more elaborate DGPs. The
next section will then be devoted to the question of whether this statement still holds for higher
dimensional-covariates, in particular for possibly censored responses.

4.2 Multidimensional covariates

For multivariate problems, we consider again two different DGPs where the true model is either
linear in all quantile levels or only at the τ -th level of interest. Specifically, we consider:

DGP 3

The simulated model is inspired from the paper of Wang et al. (2013):

Ti = βT
τ Xi + pηi − Φ−1(τ)q,

where βτ = (1, 1.5, 0.7, 1,−0.5)T, Xji are i.i.d. U [−1, 1] variables for i = 1, . . . , n, and j = 1, . . . , 4,
and η1, . . . , ηn are i.i.d. N (0, 1) variables independent from the covariates. The censoring variables
C1, . . . , Cn are independent of the covariates as well and are simulated from U [−2,M ], with M
calibrated to attain the desired censoring proportion at each quantile level of interest.

DGP 4

The last simulated model assumes:

Ti = βT
τ Xi + p0.2 + (γTXi)2qpηi − Φ−1(τ)q,

where β = (0.5, 0.5, 0.5, 0.5, 0.5)T, γ = (−1, 1, 0.5, 0,−1)T, Xji are i.i.d. U [−1, 1] variables for
i = 1, . . . , n, and j = 1, . . . , 4, and η1, . . . , ηn are i.i.d. N (0, 1) variables independent from the
covariates. The censoring variables C1, . . . , Cn are again independent of the covariates and simula-
ted from U [−2,M ], with M calibrated to attain the desired censoring proportion at each quantile
level of interest.

To account for the multivariate feature of these DGPs, we first need to slightly adjust some
of the competing procedures in order to provide a fair comparison. In particular, Wang and
Wang’s estimator for RM is here suitably replaced by the estimator of Wang et al. without the
variable selection feature included in the latter. Hence, for the estimation of the involved local
weights, the estimator here includes the same dimension reduction assumption as in Section 2.3.
Estimation of γ0,j , j = 1, . . . , q, is carried out using the sliced inverse regression (SIR) approach of
Li et al. (1999), with R code for instance available on the webpage of Huixia Wang. Alternatively,
one could consider the minimum average variance estimation of Xia et al. (2010), but results are
very comparable and SIR is computationally more convenient, as observed and also commented
in Wang et al.. For an automatic choice of q across simulations, we adopt as in Wang et al. the
Chi-squared test of Li et al. with 5% significance level. The corresponding R code is again available
on the webpage of Huixia Wang, and the resulting estimator will henceforth be denoted as RMq̂ to
highlight both the dimension reduction specificity and the data-driven choice of q. Lastly, since the
maximal number of estimated indices in the simulated DGPs is 4, we consider here a fourth-order
kernel K(x) = (105/64)(1 − 5x2 + 7x4 − 3x6)1(|x|≤ 1), and the bandwidth is chosen via 5-fold
cross validation with candidates ranging from 0.1 to 2 by 0.1 increments.

The ICP and AC estimators are, for their part, the same as for the small dimension simulations
as no specific dimension reduction technique is either required or evoked in these papers. A small
adjustment is however considered for AC, as we implement here the procedure with a fourth-order
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pc n Method RMSE MAE MAD

15%

100

ICP 0.502 0.746 0.238
RMq̂ 0.487 0.712 0.232
AC 0.490 0.711 0.233
NEWq̂ 0.479 0.698 0.228
NEWq 0.478 0.698 0.228
Oρτ 0.462 0.717 0.220
ONEW 0.447 0.682 0.212

200

ICP 0.346 0.500 0.166
RMq̂ 0.342 0.499 0.165
AC 0.341 0.489 0.164
NEWq̂ 0.323 0.475 0.155
NEWq 0.323 0.475 0.155
Oρτ 0.323 0.485 0.156
ONEW 0.300 0.439 0.145

pc n Method RMSE MAE MAD

30%

100

ICP 0.565 0.850 0.266
RMq̂ 0.526 0.794 0.252
AC 0.529 0.791 0.251
NEWq̂ 0.517 0.774 0.246
NEWq 0.515 0.771 0.245
Oρτ 0.462 0.717 0.220
ONEW 0.447 0.682 0.212

200

ICP 0.391 0.589 0.188
RMq̂ 0.368 0.566 0.177
AC 0.370 0.563 0.180
NEWq̂ 0.350 0.534 0.168
NEWq 0.347 0.531 0.166
Oρτ 0.323 0.485 0.156
ONEW 0.300 0.439 0.145

Table 3: Simulation results for DGP 3 for both complete and censored data with τ = 0.5 and n ∈ {100, 200}.

kernel, similarly to RMq̂. The bandwidth is chosen equivalently to the univariate settings, with
the same candidates as for RMq̂.

Lastly, for our newly proposed procedure, we consider here two versions of the estimator descri-
bed in (2.8): NEWq̂ will denote the proposed estimator with data-driven choice of q, while NEWq

will stand for the same procedure but forcing one to use the true number of required indices in
each DGP, that is, q = 1 in DGP 3 and q = 2 in DGP 4. Implementation of the dimension
reduction related elements is carried out using the same tools as for RMq̂. Finally, a biquadratic
kernel density is chosen for the univariate T -direction, a fourth-order kernel is adopted for the
X-direction just as for RMq̂, and bandwidth selection is performed using cross validation with
hT ∈ {0.25, 0.5, . . . , 1.5} and hX ∈ {0.2, 0.4, . . . , 1}.

For all simulation settings, we consider again B = 500 repetitions of each DGP, and the
procedures are now compared in terms of aggregated results across parameters for ease of reading,
that is, RMSE will stand for the root of mean squared errors summed over all parameters, and
MAE will stand for the sum over all parameters of median absolute error. Furthermore, we consider
for these multivariate settings an additional criterion taken from a prediction point of view, as the
procedures will also be compared in terms of mean absolute deviation (MAD) defined earlier.
Similarly to the univariate settings, the reported results are here again trimmed based on the one
percent worst simulation results for each procedure in terms of MAD.

We start by depicting in Table 3 and Figure 3 the obtained results for DGP 3 with two average
censoring proportions pc ∈ {15%, 30%}, sample sizes n ∈ {100, 200}, and only for the particular
case of τ = 0.5 for sake of brevity. The following observations may then be provided: first, as
can be observed from the top row of Figure 3, the general pattern reported in the univariate
settings for an inverse-c.d.f. technique with additional smoothing in the response direction is again
observed, as NEWq̂ exhibits moderately larger bias results than its check-based competitors but
with noticeably smaller variance. As a result, both NEWq and NEWq̂ confidently outperform in
this setting the check-based procedures in terms of RMSE and MAE as reported in Table 3. The
same considerations are reflected through the reported prediction criterion, as can be observed
from both Table 3 and the bottom line of Figure 3 where the absolute deviations of all B = 500
simulations are depicted instead of only the MAD.

Regarding the considered competitors for censored data, as repeatedly reported in the literature
as well, it is further observed in Table 3 that ICP exhibits difficulties in comparison with RMq̂

and AC. The latter two perform here very similarly despite RMq̂ attempting to take profit of
a possible dimension reduction in the smoothing of the conditional distribution involved in the
procedure. Next, we note that for this DGP, there seems to be little influence in our newly
proposed procedure of choosing q with the Chi-squared test of Li et al. rather than imposing q = 1.
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Figure 3: Boxplots relative to DGP 3. The top line reports the estimation of βτ centered (i.e. pβτ − βτ ),
for the competitors based on censored data with τ = 0.5, n = 200 and pc ∈ {15%, 30%}. The bottom line
reports for all estimation procedures the absolute deviation results obtained under the same settings.

A similar observation is provided in Wang et al. from which this DGP is inspired. Lastly, although
aggregating the results makes the difference between procedures at first seem less spectacular than
for DGP 2, it is noted that both NEWq and NEWq̂ are here again in some situations able to
compete with the omniscient procedure Oρτ , particularly when the censoring proportion is low
and with higher sample sizes, as can for instance be observed from the absolute deviation results
depicted in Figure 3. Similarly to the univariate settings, these results are again to be attributed to
the advantages of an inverse-c.d.f. approach in this context, as can be deduced from the comparison
with ONEW . The latter notation stands here for the omniscient newly proposed estimator with
dimension reduction implemented similarly to RMq̂ and NEWq̂, but with all complete responses
at hand.

We now turn to the last simulated setting, for which the results are reported in Table 4 and
Figure 4. For sake of brevity, only the sample size n = 200 is exposed here. Several comments are
to be brought: first, we observe again that in terms of RMSE, MAE and MAD, the newly proposed
procedure performs very competitively with respect to its check-based estimators, the margin being
especially important for the more central quantile level τ = 0.5. For small censoring proportions,
the improvement is again such that NEWq̂ is here able to outperform Oρτ for both considered
quantile levels. Among the check-based procedures handling censored data, similarly to the other
DGPs it is further observed that ICP performs rather poorly for higher censoring proportions,
while RMq̂ seems for this DGP to take advantage over AC of its dimension reduction feature. A
visual examination of the results reported in Figure 4 also highlights that all procedures tend to
exhibit more difficulties for the estimation of β1 and β4, as these correspond to the covariates for
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pc τ Method RMSE MAE MAD

15%

0.3

ICP 0.399 0.609 0.198
RMq̂ 0.401 0.617 0.200
AC 0.395 0.613 0.197
NEWq̂ 0.381 0.565 0.192
NEWq 0.365 0.560 0.191
Oρτ 0.388 0.586 0.192
ONEW 0.359 0.534 0.183

0.5

ICP 0.410 0.601 0.200
RMq̂ 0.407 0.597 0.200
AC 0.406 0.600 0.199
NEWq̂ 0.350 0.511 0.172
NEWq 0.343 0.507 0.171
Oρτ 0.387 0.572 0.191
ONEW 0.341 0.492 0.167

pc τ Method RMSE MAE MAD

30%

0.3

ICP 0.465 0.704 0.231
RMq̂ 0.431 0.625 0.212
AC 0.440 0.654 0.218
NEWq̂ 0.429 0.621 0.212
NEWq 0.414 0.618 0.208
Oρτ 0.388 0.586 0.192
ONEW 0.359 0.534 0.183

0.5

ICP 0.506 0.741 0.247
RMq̂ 0.436 0.645 0.212
AC 0.453 0.667 0.224
NEWq̂ 0.391 0.587 0.200
NEWq 0.381 0.580 0.192
Oρτ 0.387 0.572 0.191
ONEW 0.341 0.492 0.167

Table 4: Simulation results for DGP 4 for both complete and censored data with n = 200 and τ ∈ {0.3, 0.5}.

which the associated γ’s are the largest in absolute value. Hence, for these covariates, it is quite
natural for the procedures to estimate more difficultly the true signal βτ in our model taking into
account the noise induced by γ.

Next, we note that NEWq̂ and NEWq seem to perform again relatively comparably, although
the difference is more pronounced than for DGP 3 where the true number of required projections
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Figure 4: Boxplots relative to DGP 4 and Table 4 for the estimation of βτ centered (i.e. pβτ − βτ ), for the
four competitors based on censored data with n = 200, τ ∈ {0.3, 0.5} and pc ∈ {15%, 40%}.
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RM AC NEW
DGP pc τ β0 β1 β0 β1 β0 β1

1

15%
0.3 1.112 2.018 1.102 2.010 1.120 1.968

(0.954) (0.964) (0.958) (0.962) (0.944) (0.952)

0.5 1.042 1.909 1.036 1.892 0.963 1.712
(0.960) (0.962) (0.952) (0.964) (0.950) (0.932)

40%
0.3 1.250 2.420 1.218 2.343 1.230 2.309

(0.954) (0.980) (0.950) (0.968) (0.946) (0.958)

0.5 1.153 2.277 1.146 2.242 1.078 2.030
(0.960) (0.972) (0.964) (0.974) (0.944) (0.954)

2

15%
0.3 0.883 1.696 0.887 1.718 0.641 1.101

(0.932) (0.924) (0.938) (0.918) (0.932) (0.946)

0.5 0.836 1.638 0.860 1.694 0.541 1.013
(0.936) (0.940) (0.940) (0.936) (0.948) (0.934)

40%
0.3 0.898 1.701 0.909 1.814 0.702 1.201

(0.942) (0.944) (0.936) (0.940) (0.922) (0.970)

0.5 0.819 1.639 0.883 1.838 0.597 1.126
(0.934) (0.946) (0.952) (0.948) (0.968) (0.970)

Table 5: Bootstrap results for DGP 1 and 2 expressed in terms of empirical mean length and empirical
coverage probability (in brackets), based on 500 simulations with 300 bootstrap samples. The nominal level
is 0.95, with sample size n = 100, pc ∈ {15%, 40%}, and τ ∈ {0.3, 0.5}.

was q = 1. From the MAE results and our practical experience, this is actually observed to result
from a few iterations for which the automated choice in our simulations of the value of q through the
Chi-squared test lead to q̂ = 1. In this situation, we leave the possibility of automatically choosing
only the projection γTX in our DGP for which one coefficient of γ is equal to 0, and leave out the
projection relative to βT

τ X. As a result, considering only the former projection nearly neglects the
conditional influence in our procedure of the covariate X3 for which the estimated coefficient for γ
is close to 0, which explains why these simulation iterations present erratic results with respect to
the majority of iterations, especially for the estimation of the β associated to X3. We note however
that, in practice and as already commented in Section 2, the choice of q is encouraged to be done
along with visual inspection and examination of the eigenvalues involved in the SIR method (see e.g.
Li (1991) and the different tools reported in the R package edrGraphicalTools). Nevertheless,
despite this observation, the inverse-c.d.f. strategy is again illustrated to globally outperform its
check-based counterparts, as is also sustained by the results for complete observations.

Bringing back the results of DGPs 1-4, we conclude this section by postulating that the ne-
wly proposed procedure offers a significant improvement over the current check-based literature
in terms of variance for finite sample estimation of a linear quantile regression, as repeatedly il-
lustrated through the presented tables. These encouraging results then advocate for the practical
use of an inverse-c.d.f. estimation approach for censored linear quantile regression.

4.3 Illustration of the percentile bootstrap

For inference purposes, we end this section by providing a brief illustration of the validity of the
proposed bootstrap procedure for our estimator. To that end, restricting ourselves to the two
univariate DGPs studied in this paper, we compare the performance of the bootstrap procedure
for NEW with the bootstrap procedures of RM and AC. We choose to leave out the results for
ICP for sake of brevity and given the clear dominance of all other estimators over the latter. For
all procedures, bandwidths are chosen for each of 500 iterations via the same cross validation
procedures as in our previous simulations on the original sample, and are then kept fixed for the
300 bootstrapped samples considered at each iteration. With a nominal level of 0.95 and a unique
sample size n = 100, Table 5 then reports the empirical mean length and empirical coverage
probability (in brackets) of the confidence intervals obtained from this simulation study.
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Figure 5: Boxplots of bootstrapped confidence interval length relative to DGP 1 and 2. Sample size is
n = 100, τ ∈ {0.3, 0.5} and pc ∈ {15%, 40%}.

Concentrating first on the empirical coverage probabilities, we observe that all three procedures
perform relatively similarly given the adequately close values to the chosen nominal level. This
serves as a first indication that the percentile bootstrap represents a satisfactory tool for inference
purposes when considering the estimator NEW. Secondly, we observe that similar findings as for
our previous simulation study are here confirmed in the bootstrap results, as the empirical mean
lengths of NEW are noticeably smaller than for its competitors, especially for DGP 2. This again
suggests that a reduction in variance results may be expected with an inverse-c.d.f. approach
for the present context. Graphically, Figure 5 illustrates this statement by reporting boxplots of
all 500 iterations of the length of the bootstrap confidence intervals instead of only the mean as
in Table 5. For comparison purposes, the results for Oρτ are here also reported, and highlight
again the visible improvement of NEW over its check-based competitors. Note that for the latter
estimator, further refinements of the percentile bootstrap have been considered in the literature
(see e.g. Section 3.9 in Koenker (2005)), but these do not serve the comparison we intend to
provide here. Overall, these results confirm here the validity of the simple percentile bootstrap
procedure for our newly proposed estimator.

5 Real Data Analysis
We propose in this section a brief illustrative application of our methodology to real data coming
from an astronomical study of quasars, and start here by describing the general context of the latter
data. Quasars are the brightest objects in the universe and consist of a super-massive black hole
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Figure 6: Quasar data of Vignali et al. (2003). Uncensored data points are given by ×, while censored ob-
servations are represented by 4. The dotted line represents the Buckley-James mean regression estimation,
while the plain line represents the estimated median regression using NEW.

surrounded by an orbiting accretion disk of gas. As gas falls into the black hole, it is heated up and
emits thermal radiation that spans the spectrum, making quasars bright in the visible spectrum
as well as in X-rays. In the last decades, astronomers have cataloged a large amount of quasars
based on optical considerations, many of which have also been observed with modern telescopes in
the X-rays. This then offers the possibility to study in detail the relations between UV and X-ray
properties of optically selected quasars, which are believed to be insightful for understanding the
structure and physics of quasars nuclear regions.

In this paper, we consider the data described in Table 2 of Vignali et al. (2003), reporting
information of 206 radio-quiet and optically selected quasars. In particular, we illustrate here our
methodology on the relationship between lUV = logL2500Å and lX = logL2keV, where L2500Å and
L2keV denote the rest-frame 2500 Å and 2 keV luminosity densities, respectively. Due to technical
limitations, 70 of the 206 values of lX are only observed through upper bounds (see Table 1 in
Vignali et al.), and are hence left-censored. To transform these observations back in the right-
censored context of our paper, we replace lX,i by Yi = max1≤j≤206(lX,j)− lX,i, i = 1, . . . , 206, while
the variable X will henceforth denote lUV (centered and standardized) for notational convenience.
The resulting dataset is plotted in Figure 6.

Now, we note that several authors in the literature on parametric censored regression have
already analyzed (a sub-sample of) the present dataset, although focusing solely on the conditional
mean, see e.g. Heuchenne and Van Keilegom (2007) and Pardo-Fernández et al. (2007). We propose
here to extend their analysis by considering the effect of various quantile levels on the relationship
between X and the complete and unobservable response. Additionally, we will also consider the
parallel between results for median regression with the usually employed mean regression. We
start here by first considering a sequence of quantile levels ranging from 0.20 to 0.65 by 0.05
increments, and propose to fit a linear quantile regression for each increment using our proposed
methodology. Implementation is carried out similarly to Section 4, with candidates bandwidths
hX ∈ {0.20, 0.25, . . . , 0.60} and hT ∈ {0.10, 0.15, . . . , 0.30}.

Before investigating the resulting estimations, we propose here to analyze the sensitivity of
our methodology to the matrix of considered candidate bandwidths. In order to do so, taking
the examples of τ = 0.3 and τ = 0.5, we propose to fit the linear regression using every possible
combination of (hT , hX), and plot in Figure 7 the resulting values of the estimated intercept and
slope. We focus first on the left part of Figure 7, illustrating in red the estimated values of the
intercept using our proposed methodology for τ = 0.3 (bottom) and τ = 0.5 (top). For comparison,
we also plot the estimated values using RM in blue and ICP in green, the latter procedures being
of course independent either to the second bandwidth hT (RM) or to both bandwidths (ICP).
As can be observed, both NEW and RM methodologies are quite robust to the values of their
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Figure 7: Quasar data, bandwidth sensitivity. The left plot represents estimation of the intercept for
τ = 0.3 (bottom) and τ = 0.5 (top) for NEW (red), RM (blue) and ICP (green), for every pair of (hT , hX)
considered (RM being independent to hT and ICP being independent to both hT and hX). The right plot
illustrates the estimation of the slope for τ = 0.3 for every combination of hT and hX .

bandwidth(s), with a little more fluctuations for the smallest values of hX , as one may have
expected. Both methodologies are also observed here to produce similar intercept estimates for
the different values of τ , while ICP proposes a somewhat lower estimation for the latter, especially
for the case τ = 0.5. We now turn to the right part of Figure 7, representing only for the case
τ = 0.3 the estimated values of the slope for every combination of (hT , hX). The case τ = 0.5 is
here left out for visual convenience, as the slope estimates are very close from one quantile level to
the other. For comparison purposes, we here again include the estimated slopes using RM in blue
and ICP in green. We again observe from the resulting plot that NEW and RM are both quite
regular in their slope estimation for every possible bandwidth(s). Additionally, NEW and RM
are here again relatively close in comparison with ICP. Altogether, these figures suggest that the
choice of bandwidth(s) for both NEW and RM has pleasantly very limited impact for the present
dataset.

We now turn to the estimation of the regression parameters for different incremental values
of τ , and present the obtained results in Figure 8. Bandwidths are here selected using the same
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Figure 8: Quasar data. Estimated quantiles coefficients for regressing Y on X. Shaded areas correspond
to 95% confidence intervals based on 300 bootstrap samples. Black lines correspond to the estimator NEW,
grey lines correspond to RM, and dotted lines correspond to the Buckley-James mean regression estimation.
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cross validation procedure as in Section 4, while 95% confidence intervals are constructed upon
300 bootstrap samples using the percentile bootstrap illustrated earlier where, for computational
convenience, bandwidths are kept fixed for all bootstrap samples based on the original dataset. For
comparison purposes, the coefficient estimations for RM are also depicted in Figure 8. Additionally,
the mean regression estimation for the present dataset is also depicted in the latter figure using
the procedure of Buckley and James (1979). As can be acknowledged, both quantile estimation
procedures offer relatively similar results by suggesting first that the regression coefficients are
significantly different from 0 for all considered values of τ , as one could have visually anticipated.
More interestingly, both procedures also suggest that the slope of the linear relation is close to being
constant across the point cloud, with an estimated quantile coefficient value that is very similar
to the mean regression estimation, as can be observed both from Figure 6 and Figure 8. Hence,
the quantile regressions are revealed here to be close to being perfectly parallel across values of τ ,
although formal testing of this assumption is here left out (see e.g. Section 3 in Koenker (2005)).
This represents nevertheless an information and property for the present quasar dataset that mean
regressions are, by nature, not able to expose. Finally, regarding the confidence intervals of NEW,
it is observed that the widths of the latter are quiet constant for the intercept, while somewhat
smaller for more central quantile levels for the estimation of the slope. The latter observation is
in line with one’s expectations regarding an inverse-c.d.f. approach. Altogether, in addition to
exhibiting the relative robustness of our methodology towards bandwidths selection, this brief real
data example illustrates how a simple application of our methodology may extend the analysis
of linear censored regression models while being in agreement with previous work regarding the
central tendency of the data.

6 Conclusion
In this work, we have introduced a reconsideration of the use of check-based modelling in the
context of linear quantile regression with censored data. Our underlying interest was indeed
motivated by the knowledge that existing methodologies in the literature already need to rely for
their handling of censored observations on appropriate nonparametric estimators of conditional
distributions, even though the regression model is purely parametric. Based on this consideration,
we investigated the application of an inverse-c.d.f. approach in the present context, rather than
a usual check-based formulation. Our resulting estimation procedure was then built on a double-
kernel estimator of the conditional distribution of the response variable given the covariates. In
order to appropriately accommodate for multivariate covariates, the application of a dimension
reduction technique in this framework was further considered. Overall, the resulting quantile
regression estimator was observed, in an extensive simulation study, to offer a very competitive
procedure, characterized by a notable decrease in variance results with respect to established check-
based formulations. Furthermore, the latter finding was also observed to apply to the situation
with only complete observations at hand, although the argumentation for embracing an inverse-
c.d.f. approach is here less obvious, apart from the latter numerical results. For inference, a
simple percentile bootstrap procedure was further illustrated to provide satisfactory results with
respect to the literature. From a theoretical point of view, consistency and asymptotic normality of
our proposed estimator for linear regression were obtained under classical regularity requirements.
Additionally, as a by-product, several asymptotic results such as uniform consistency and linear
representation were also developed for the double-kernel estimators of the conditional distribution
and density of the censored response given the covariates, with consideration of the dimension
reduction framework. Lastly, a brief application to astronomical data was proposed and advocates,
together with our simulation results, for the practical choice of an inverse-c.d.f. approach when
considering a robust quantile regression analysis with censored data.
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Supplementary Material
We provide in this supplementary material the proofs of Section 3, along with additional theoretical
results that are needed for the latter proofs. In particular, we start by considering the development
of two lemmas; the first one states the uniform consistency of both the double-kernel version of
Beran’s estimator with dimension reduction and its corresponding density estimator, while the
second one reports a linear representation of the smoothed version of Beran’s estimator only.

Lemma 1. Assume conditions (C1), (C3)-(C6), (C8)-(i) and (C9)-(i) hold. Then, for 1 ≤ q ≤
d+ 1:

(a) Writing z = (z1, . . . , zq)T = (γT
0,1x, . . . , γT

0,qx)T, and pz = (pγT
0,1x, . . . , pγT

0,qx)T:

sup
t≤υ

sup
x∈supp(X)

| pF s
T | pZ(t|pz)− FT |X(t|x)| = sup

t≤υ
sup

x∈supp(X)
| pF s
T | pZ(t|pz)− FT |Z(t|z)|

= OP

´

plogn/(nhqX)q
1/2 + hνX + h2

T

¯

.

(b) Writing fT |Z(t|z) = ∂
∂tFT |Z(t|z) and pfs

T | pZ(t|pz) = ∂
∂t
pF s
T | pZ(t|pz) :

sup
t≤υ

sup
x∈supp(X)

| pfs
T | pZ(t|pz)− fT |X(t|x)| = sup

t≤υ
sup

x∈supp(X)
| pf s
T | pZ(t|pz)− fT |Z(t|z)|

= OP

´

plogn/(nhqXhT )q
1/2 + hνX + h2

T

¯

.

Lemma 2. Assume the conditions of Lemma 1 and (C8)-(ii) hold. Then, for t ≤ υ, x ∈ supp(X)
and 1 ≤ q ≤ d+ 1, writing FY |Z(t|z) = P(Y ≤ t|Z = z) and FY,1|Z(t|z) = P(Y ≤ t,∆ = 1|Z = z):

pF s
T | pZ(t|pz)− FT |Z(t|z) =

n∑
i=1

Bni(z)ξ(Yi,∆i, t|z) +OP

´

plogn/(nhqX)q
3/4 + hνX + h2

T

¯

,

where

ξ(Yi,∆i, t|z) = (1− FT |Z(t|z))
„ ∫ Yi∧t

0

−dFY,1|Z(s|z)
{1− FY |Z(s|z)}2 + ∆i1(Yi ≤ t)

1− FY |Z(Yi|z)



. (A.1)

To simplify the presentation, note that the proofs are here written considering the situation
q = 1. The case q > 1 may be considered using the exact same developments, but the notations
are more involved.

Proof of Lemma 1. For part (a), we first write

pF s
T | pZ(t|pz)− FT |Z(t|z) = { pF sT |Z(t|z)− FT |Z(t|z)}+ { pF s

T | pZ(t|pz)− pF sT |Z(t|z)}

= (T1) + (T2),

and treat these terms separately. Starting with (T1), by Proposition 4.3 in Van Keilegom and
Akritas (1999), along with the same arguments as for the proof of the Lemma 2 on which we
concentrate below, we have under our kernel assumptions:

sup
t≤υ

sup
x∈supp(X)

| pF sT |Z(t|z)− FT |Z(t|z)|= OP

´

plogn/(nhX)q
1/2 + hνX + h2

T

¯

.
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We now turn to (T2), and sketch here the main parts for proving the negligibility of this term
under our assumptions. To that end, we define first

pF
Y | pZ(t|pz) =

n∑
i=1

K
´

pz− pZi
hX

¯

∑n
k=1K

´

pz− pZk
hX

¯1(Yi ≤ t),

pF
Y,1| pZ(t|pz) =

n∑
i=1

K
´

pz− pZi
hX

¯

∑n
k=1K

´

pz− pZk
hX

¯1(Yi ≤ t,∆i = 1).

Now, as pF
Y | pZ(t|pz) and pF

Y,1| pZ(t|pz) are to be seen as the building blocks for pF s
T | pZ(t|pz), showing

negligibility of supt≤υ supx∈supp(X)| pFY | pZ(t|pz) − pFY |Z(t|z)|, and similarly for pF
Y,1| pZ , implies that

the same will hold for supt≤υ supx∈supp(X)| pF sT | pZ(t|pz)− pF sT |Z(t|z)|. Hence, we focus here on showing

the result for pF
Y | pZ(t|pz). Specifically, we write

pF
Y | pZ(t|pz) =

pL
Y | pZ(t|pz)
pf
pZ
(pz)

,

where pL
Y | pZ(t|pz) is an estimator of LY |Z(t|z) = FY |Z(t|z)fZ(z), with fZ denoting the density of

Z. We then have

pL
Y | pZ(t|pz)− pLY |Z(t|z) = 1

nhX

n∑
i=1

{
K

ˆ

pγT
0 (x−Xi)

hX

˙

−K
ˆ

γT
0 (x−Xi)

hX

˙

}
1(Yi ≤ t)

= 1
nh2

X

n∑
i=1

K
′
ˆ

ξT(x−Xi)
hX

˙

(pγ0 − γ0)T(x−Xi)1(Yi ≤ t)

= (pγ0 − γ0)T∇γ pLY |γTX(t|γTx)
ˇ

ˇ

ˇ

γ=ξ
,

for some ξ between pγ0 and γ0. Now, by similar arguments as in Proposition 4.3 in Van Keilegom
and Akritas (1999) and under assumption (C8)-(i), we have that

sup
t≤υ

sup
x∈supp(X)

sup
γ∈Ξ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇γ pLY |γTX(t|γTx)−∇γ LY |γTX(t|γTx)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
= oP(1).

Along with assumption (C9)-(i), we then observe that

sup
t≤υ

sup
x∈supp(X)

|pL
Y | pZ(t|pz)− pLY |Z(t|z)|= OP(||pγ0 − γ0||) = OP(n−1/2),

by assumption (C3). This concludes the proof that (T2) is negligible under our assumptions, and
hence completes the proof of the first part of Lemma 1.

For the proof of part (b), we decompose again

pfs
T | pZ(t|pz)− fT |Z(t|z) = { pfsT |Z(t|z)− fT |Z(t|z)}+ { pfs

T | pZ(t|pz)− pfsT |Z(t|z)}

= (T3) + (T4),

and treat these terms separately. For the leading term (T3), first note that

pfsT |Z(t|z) = h−1
T

∫
rK

ˆ

t− s
hT

˙

d pFT |Z(t|z),
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from which we decompose (T3) as follows:

pf sT |Z(t|z)− fT |Z(t|z) = h−1
T

∫
rK

ˆ

t− s
hT

˙

d
´

pFT |Z(s|z)− FT |Z(s|z)
¯

+ h−1
T

∫
rK

ˆ

t− s
hT

˙

dFT |Z(s|z)− fT |Z(t|z)

= (T31) + (T32).

We start by treating the term (T31). Integrating by parts and using standard change of variables,
this term is developed as

(T31) = h−1
T

∫ {
pFT |Z(t− uhT |z)− FT |Z(t− uhT |z)

}
rK
′(u) du

= h−1
T

∫ {
pFT |Z(t− uhT |z)− E( pFT |Z(t− uhT |z))− pFT |Z(t|z) + E( pFT |Z(t|z))

}
rK
′(u) du

+ h−1
T

∫ {
E( pFT |Z(t− uhT |z))− FT |Z(t− uhT |z)− E( pFT |Z(t|z)) + FT |Z(t|z)

}
rK
′(u) du

+ h−1
T

{
pFT |Z(t|z)− FT |Z(t|z)

} ∫
rK
′(u) du

= (T311) + (T312) + (T313),

where the last term (T313) is straightforwardly equal to 0 by assumption (C4). We now treat the
remaining terms (T311) and (T312) separately. Starting with (T311), by Theorem 3(b) in Van Kei-
legom and Veraverbeke (1996), for some finite constant K1 we then have that

(T311) ≤ h−1
T K1 sup

t,s≤υ; |t−s|≤hT

ˇ

ˇ

ˇ

pFT |Z(t|z)− E( pFT |Z(t|z))− pFT |Z(s|z) + E( pFT |Z(s|z))
ˇ

ˇ

ˇ

= OP

´

plogn/(nhXhT )q
1/2

¯

.

Concerning now the term (T312), following the work of Van Keilegom and Veraverbeke (1997) with
consideration here of higher-order kernels, we have that

(T312) = h−1
T

∫ {
b(t− uhT |z)hνX +O(hν+1

X ) +O(n−1)

− b(t|z)hνX +O(hν+1
X ) +O(n−1)

}
rK
′(u) du,

where the function b is in the expression (3.3) in Van Keilegom and Veraverbeke (1997), and where
their term o(hνX) is actually observed to be equal to O(hν+1

X ). Hence, under Lipschitz continuous
requirements for the function b(t|z) with respect to t that are induced by assumptions (C4)-(C6),
we have that

(T312) = h−1
T O

`

hTh
ν
X + hν+1

X + n−1˘

= O(hνX),

where the last equality holds by our bandwidths assumptions. We thus observe that (T31) is
OP((logn/(nhXhT ))1/2 + hνX).

Now, moving on to the term (T32), we write

(T32) = h−1
T

∫
rK

ˆ

t− s
hT

˙{
fT |Z(s|z)− fT |Z(t|z)

}
ds.

Standard Taylor expansion and change of variables under assumptions (C4) and (C5) then show
that this term isO(h2

T ). Hence, bringing back (T31) and (T32), we note that supt≤υ supx∈supp(X)|(T3)|
is OP((logn/(nhXhT ))1/2 + hνX + h2

T ).
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It then remains to show the negligibility of (T4) under our assumptions. For this, using inte-
gration by parts and standard change of variables, we have

pfs
T | pZ(t|pz)− pfsT |Z(t|z) = h−1

T

∫ {
pF
T | pZ(t− uhT |pz)− pFT |Z(t− uhT |z)

}
rK
′(u) du

≤ sup
t≤υ

sup
x∈supp(X)

| pF
T | pZ(t|pz)− pFT |Z(t|z)|h−1

T

∫
rK
′(u) du.

Under assumption (C4) and using similar arguments as for part (a), the latter term is observed to
be negligible with respect to (T3) under assumption (C8)-(i), hereby concluding the proof.

Proof of Lemma 2. Similarly to the proof of Lemma 1, we consider the decomposition

pF s
T | pZ(t|pz)− FT |Z(t|z) = { pF sT |Z(t|z)− FT |Z(t|z)}+ { pF s

T | pZ(t|pz)− pF sT |Z(t|z)}

= (T5) + (T6),

and treat these terms separately. Starting with (T5), integrating by parts we first have

pF sT |Z(t|z) =
∫

pFT |Z(t− uhT |z) rK(u) du. (A.2)

Now, using the i.i.d. expansion of pFT |Z(t|z) uniformly in t and z (see e.g. Theorem 3.2 in Du
and Akritas (2002)), we have:

pFT |Z(t|z)− FT |Z(t|z) =
n∑
i=1

Bni(z)ξ(Yi,∆i, t|z) +Rn(t, z), (A.3)

where supt≤υ supx∈supp(X)|Rn(t, z)|= OP
`

(logn)3/4(nhX)−3/4 + hνX
˘

, and ξ is defined in (A.1).
Inserting (A.3) in (A.2), we then have

pF sT |Z(t|z) =
∫ {

FT |Z(t− uhT |z) +
n∑
i=1

Bni(z)ξ(Yi,∆i, t− uhT |z) +Rn(t− uhT , z)
}

rK(u)du

= FT |Z(t|z) +
n∑
i=1

Bni(z)ξ(Yi,∆i, t|z) +OP

´

plogn/(nhX)q
3/4 + hνX + h2

T

¯

,

using the smoothness of FT |Z and a modulus-of-continuity argument of the empirical distribution
function for the function ξ (see Theorem 2.14 in Stute (1982)), along with the assumptions on rK
in (C4).

Lastly, concerning part (T6), note that this term will be OP(n−1/2) by assumption (C3), and
is hence asymptotically negligible with respect to the main term in part (T5). This concludes the
proof.

We now state a third and purely technical lemma employed both for consistency and asymptotic
normality of pβτ , and start by first introducing the notations used in the latter. For ease of reading,
the lemma is here written considering the case q = 1. As already commented above, the case q > 1
may be considered using the same developments, but the notations are more involved. Now, for
notational convenience with respect to the general framework of Chen et al. (2003) on which the
proofs of our following theorems are built, we first define:

Mn(β;Fγ , fγ) = n−1
n∑
i=1

m(Xi, β;Fγ , fγ)

= n−1
n∑
i=1

2Xif(βTXi|γTXi)
´

F (βTXi|γTXi)− τ
¯

.
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Furthermore, we let

M(β;Fγ , fγ) = E rm(X, β;Fγ , fγ)s

= E
”

2Xf(βTX|γTX)
´

F (βTX|γTX)− τ
¯ı

,

and, conveniently denoting FT |γT
0 X and fT |γT

0 X by F0 and f0, respectively, we note thatM(βτ ;F0, f0) =
Mn(βτ ;F0, f0) = 0. We further denote by ||·|| the Euclidean distance and

dFF (Fγ1 , F
?
γ2) = sup

t≤υ
sup

x∈supp(X)
|F (t|γT

1 x)− F ?(t|γT
2 x)|

dFf (fγ1 , f
?
γ2) = sup

t≤υ
sup

x∈supp(X)
|f(t|γT

1 x)− f?(t|γT
2 x)|,

for any Fγ1 , F
?
γ2 ∈ FF and fγ1 , f

?
γ2 ∈ Ff , where FF and Ff are defined in our assumptions.

Lemma 3. Under assumptions (C1), (C5) and (C7), we have for all positive δn = o(1),

sup
||β−βτ ||≤δn

sup
dFF (Fγ ,F0)≤δn

sup
dFf (fγ ,f0)≤δn

||Mn(β;Fγ , fγ)−M(β;Fγ , fγ)||= oP(n−1/2).

Proof of Lemma 3. Note that this result is similar to condition (2.5’) in Chen et al. with
Mn(βτ ;F0, f0) = 0 in our context. Hence, it suffices here to verify the conditions (3.1) and (3.3)
in their Theorem 3. To that end, starting with (3.1), we note that for (β1, Fγ1 , fγ1) ∈ B×FF ×Ff
and (β2, F

?
γ2 , f

?
γ2) ∈ B × FF ×Ff , we have

||m(x, β1;Fγ1 , fγ1)−m(x, β2;F ?γ2 , f
?
γ2)||

=
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
2x

´

f(βT
1 x|γT

1 x){F (βT
1 x|γT

1 x)− τ} − f?(βT
2 x|γT

2 x){F ?(βT
2 x|γT

2 x)− τ}
¯ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

≤ K1

´

||F (βT
1 x|γT

1 x)− F ?(βT
1 x|γT

2 x)||+||F ?(βT
1 x|γT

2 x)− F ?(βT
2 x|γT

2 x)||

+ ||f(βT
1 x|γT

1 x)− f?(βT
1 x|γT

2 x)||+||f?(βT
1 x|γT

2 x)− f?(βT
2 x|γT

2 x)||
¯

≤ K2

´

dFF (Fγ1 , F
?
γ2) + dFf (fγ1 , f

?
γ2) + ||β1 − β2||

¯

,

for some finite constants K1 and K2 under assumptions (C1), (C5) and (C7), hereby verifying
condition (3.1) in Chen et al. with r = 2.

Next, for condition (3.3), for ε > 0 we denote first by N(ε,FF , ||·||F ) the covering number
(Van der Vaart and Wellner (1996, p. 83)) of the class FF under the sup-norm metric we consider
on the latter, and similarly for the class Ff . The proof is then written for the class FF , but the
same arguments hold for the class Ff and are here thus omitted.

Now, we recall that N(ε,FF , ||·||FF ) ≤ N[ ](ε,FF , ||·||FF ), where N[ ](ε,FF , ||·||FF ) denotes the
ε-bracketing number of the class FF with respect to the same sup-norm metric (Van der Vaart
and Wellner (1996, p. 83)). This suggests we may verify here condition (3.3) by concentrating on
bracketing numbers rather than covering numbers. Now, since all the functions in the class FF
have values between 0 and 1 (and between 0 and M for Ff as stated in assumption (C5)), we then
observe that only one ε-bracket suffices to cover FF if ε > 1. Using Lemma 6.1 in Lopez (2011)
for a bound on the bracketing number for the case ε ≤ 1, we then have that∫ ∞

0

b

logN(ε,FF , ||·||FF ) dε ≤
∫ 1

0

b

logN[ ](ε,FF , ||·||FF ) dε

≤ K
∫ 1

0
ε
− 1

1+η dε

<∞ ,

for some finite constant K, hereby satisfying condition (3.3) in Chen et al. for sj = 1. An
application of Theorem 3 in Chen et al. then concludes the proof.
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We may now at last turn to the proofs of the two main results reported in Section 3.

Proof of Theorem 1. To prove pβτ is a weakly consistent estimator of βτ , we choose to verify the
five high level conditions (1.1)-(1.5) stated in Theorem 1 of Chen et al.. Starting with condition
(1.1), note that the latter is readily satisfied in our framework by construction of pβτ , while condition
(1.3) holds simply under assumption (C5). Furthermore, using the definitions of FF and Ff in
(C5) as the spaces embedding the nuisance parameters FT |Z and fT |Z , and equiping the latter
with the distances dFF (Fγ1 , F

?
γ2) and dFf (fγ1 , f

?
γ2) as in Lemma 3, note that (1.4) in Chen et al.

is straightforwardly satisfied by Lemma 1 under assumption (C8)-(i). As for condition (1.5), this
is a weaker version of condition (2.5) in Chen et al. which is verified similarly as for Lemma 3.
It therefore only remains to verify here condition (1.2) required for the uniqueness of βτ in our
model.

Hence, recalling that FT |Z(t|γT
0 x) = FT |X(t|x) for any t and x, we need to verify that for any

ε > 0, inf ||β−βτ ||>ε ||M(β;F0, f0)|| > 0. To that end, note that

inf
||β−βτ ||>ε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
E
”

XfT |Z(βTX|γT
0 X)

´

FT |Z(βTX|γT
0 X)− τ

¯ ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= inf
||β−βτ ||>ε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
E
”

XfT |X(βTX|X)
´

FT |X(βTX|X)− FT |X(βT
τ X|X)

¯ ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= inf
||β−βτ ||>ε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∫
supp(X)

xfT |X(βTx|x)
∫ βTx

βT
τ x

fT |X(t|x)dtdFX(x)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

where FX(x) denotes the c.d.f. of X. Under assumptions (C1) and (C2), the latter quantity is
observed to be strictly positive, hereby ensuring condition (1.2) is satisfied. Hence the assumptions
of Theorem 1 in Chen et al. are met, from which the weak consistency of pβτ follows.

Proof of Theorem 2. The proof consists in verifying the six high-level conditions depicted
in Theorem 2 of Chen et al. (2003). To that end, similarly to the context of the latter the-
orem, we replace in this section the spaces B, FF and Ff by shrinking neighborhoods around
the true βτ , FT |Z and fT |Z . Specifically, we define the spaces Bδ = {β ∈ B : ||β − βτ ||≤ δn},
FFδ =

{
F ∈ FF : dFF (F, FT |Z) ≤ δn

}
and Ffδ =

{
f ∈ Ff : dFf (f, fT |Z) ≤ δn

}
for some δn = o(1).

Furthermore, for notational convenience with the work of Chen et al., we use the abbreviati-
ons sγ = (Fγ , fγ), s0 = (F0, f0), ps = ( pF s

T | pZ ,
pfs
T | pZ), and rewrite Mn(β; sγ) = Mn(β;Fγ , fγ) and

M(β; sγ) = M(β;Fγ , fγ). Lastly, we define the following norm on the vector of nuisance parame-
ters: dSδ(sγ1 , s

?
γ2) = max(dFFδ (Fγ1 , F

?
γ2), dFfδ (fγ1 , f

?
γ2)).

Now, starting with condition (2.1), note that the latter is readily satisfied in our framework by
construction of our estimator. Next, for condition (2.2), we first need to determine the expression
of the ordinary derivative of M(β; s0) with respect to β calculated at βτ , denoted by Γ1(β; s0):

Γ1(β; s0) := ∂M(β; s0)
∂β

= E
”

2XXT
´

f2
T |Z(βTX|γT

0 X) + f
′

T |Z(βTX|γT
0 X)

{
FT |Z(βTX|γT

0 X)− τ
}¯ı

,

where f ′T |Z(t|z) = ∂/∂t fT |Z(t|z). In particular, recalling that FT |Z(t|γT
0 x) = FT |X(t|x) for any t

and x, we have under assumption (C5)

Γ1(βτ ; s0) = 2E
”

XXTf2
T |X(βT

τ X|X)
ı

.

Under assumptions (C1), (C2), (C5) and (C7), Γ1(β; s0) is thus observed to be continuous and of
full rank at βτ , hereby verifying condition (2.2).
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Next, for condition (2.3), we first need to determine for all β ∈ Bδ, F ∈ FFδ and f ∈ Ffδ
the functional derivative of M(β; s0) at s0 in the direction [sγ − s0]. Denoting the latter by
Γ2(β; s0)[sγ − s0], we have

Γ2(β; s0)[sγ − s0] := lim
η→0

1
η

rM(β; s0 + η(sγ − s0))−M(β; s0)s

= 2E
”

X
´

fT |Z(βTX|γT
0 X)

{
F (βTX|γTX)− FT |Z(βTX|γT

0 X)
}

+
{
f(βTX|γTX)− fT |Z(βTX|γT

0 X)
} {

FT |Z(βTX|γT
0 X)− τ

}¯ı

.

In particular, for β = βτ we have

Γ2(βτ ; s0)[sγ − s0] = 2E
”

XfT |X(βT
τ X|X)

{
F (βT

τ X|γTX)− τ
}ı
.

Now, for condition (2.3)-(i), we have for all β ∈ Bδ, F ∈ FFδ and f ∈ Ffδ that

||M(β;sγ)−M(β; s0)− Γ2(β; s0)[sγ − s0]||

=
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
E
”

2X
{
f(βTX|γTX)− fT |Z(βTX|γT

0 X)
} {

F (βTX|γTX)− FT |Z(βTX|γT
0 X)

}ı ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

≤ K1 dFFδ (Fγ , F0) dFfδ (fγ , f0)

≤ K2 d
2
Sδ(sγ , s0), (A.4)

for some finite constants K1,K2, hereby veryfying (2.3)-(i). As for condition (2.3)-(ii), using a
Taylor expansion with assumptions (C1), (C5) and (C7), we have

||Γ2(β; s0)[sγ − s0]− Γ2(βτ ; s0)[sγ − s0]||≤ ||β − βτ ||o(1).

Moving now to conditions (2.4) and (2.5), note that the first part of (2.4) will follow by similar
arguments as in Lemma 6.2 in Lopez (2011). As for the second part of this condition, this follows
readily from Lemma 1 provided assumption (C8)-(ii) holds. Condition (2.5) is, for its part, verified
by Lemma 3 and Remark 2 in Chen et al..

Lastly, for condition (2.6), recalling that Mn(βτ ; s0) = 0, we only need to prove that

n1/2 rΓ2(βτ ; s0)[ps− s0]s L−→ N (0,Σ),

for some positive definite matrix Σ. To that end, using Lemma 2, we have for j = 1, . . . , d+ 1,

EX

„

XjfT |Z(βT
τ X|γT

0 X)
{
pF s
T | pZ(βT

τ X|pγT
0 X)− FT |Z(βT

τ X|γT
0 X)

} 

= (nhX)−1EγT
0 X

»

–

n∑
i=1

K
´

γT
0 (X−Xi)
hX

¯

(nhX)−1 ∑n
k=1K

´

γT
0 (X−Xk)

hX

¯gi(γT
0 X)

fi

fl + oP(n−1/2),

provided assumption (C8)-(ii) holds, where the notations EX and EγT
0 X explicitly indicate that the

expectations are taken with respect to the distributions of X and γT
0 X, respectively, and where

gi(u) =
∫

supp(X)
xjfT |Z(βT

τ x|u)ξ(Yi,∆i, β
T
τ x|u)fX|γT

0 X(x|u) dx. (A.5)

Simplifying a bit, we have

EX

„

XjfT |Z(βT
τ X|γT

0 X)
{
pF s
T | pZ(βT

τ X|pγT
0 X)− FT |Z(βT

τ X|γT
0 X)

} 

= (nhX)−1
n∑
i=1

∫ +∞

−∞
gi(γT

0 x)K
ˆ

γT
0 (x−Xi)

hX

˙

d(γT
0 x) + oP(n−1/2).
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Using standard change of variables and a Taylor expansion for g under assumption (C9)-(ii), we
then have

Γ2(βτ ; s0)[ps− s0] = 2n−1
n∑
i=1

gi(γT
0 Xi) +O(hνX) + oP(n−1/2)

= 2n−1
n∑
i=1

gi(γT
0 Xi) + oP(n−1/2),

provided assumptions (C4) and (C8)-(ii) hold. An application of the central limit theorem under
our assumptions then leads to the desired result, hereby concluding the proof.
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