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Mäılis Amico and Ingrid Van Keilegom∗

Research Center for Operations Research and Business Statistics, KU Leuven, Leuven, Belgium

(mailis.amico@kuleuven.be, ingrid.vankeilegom@kuleuven.be)

July 31, 2018

Abstract
Survival analysis relies on the hypothesis that, if the follow-up will be long enough,

the event of interest will eventually be observed for all observations. This assumption,
however, is often not realistic. In fact, when interest lies in the time until a relapse
from breast cancer or the time until the occurrence of a certain disease for example, a
fraction of the patients may never experience the event of interest. The survival data
then contain a ‘cure’ fraction or long-term survivors, usually associated with infinite
survival times. A common approach to model and analyse this type of data consists in
using cure models. Two types of information can therefore be obtained from survival
data: the survival at a given time and the cure status, both possibly modelled as a
function of the covariates. The cure status is often of interest for medical practitioners,
and one is usually interested in predicting it based on markers. ROC curves are one way
to evaluate these predicting performances. However, the ‘classical’ ROC curve method
is not appropriate because the cure status is partially unobserved due to the presence of
censoring in survival data. In this research, we propose a ROC curve estimator aiming
to evaluate the cured / non-cured status classification performance from cure survival
data. This estimator, which handles the presence of censoring, decomposes sensitivity
and specificity by means of Bayes’ theorem, and estimates these two quantities by
means of weighted empirical distribution functions. The mixture cure model is used
to calculate the weights. Based on simulations, we demonstrate the good performance
of the proposed method and compare it with the ‘classical’ ROC curve nonparametric
estimator that would be obtained if the cure status was fully observed. Finally, we
illustrate the methodology on a cancer data set.

Key Words: Area under the ROC curve, cure models, survival analysis, ROC curves, sen-

sitivity, specificity.
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1 Introduction

A fundamental assumption of survival analysis is that all subjects under study will eventu-

ally experience the event of interest. In some situations, however, it is possible that some

subjects never experience this particular event. Indeed, when interest lies in the time until

a woman gets pregnant, for example, some women will never have a child. Likewise, when

one is interested in the time until a patient relapses from a cancer, some of them may never

experience a relapse, as it is the case, for example, for melanoma or breast cancer in early

stages, among others. In both of these examples, the assumption stated above does not

hold, and it seems reasonable to consider that the survival data do not only contain ‘suscep-

tible’ observations, but that they rather are a combination of two types of subjects: those

who experience the event, and those who do not, these latter subjects being considered as

long-term survivors or as ‘cured’ subjects.

A common difficulty when working with survival data is the presence of right censoring,

meaning that only a lower bound of the survival time is observed. Therefore, the exact event

time is only observed for some observations, the remaining individuals being censored. In the

presence of a cure fraction, cured subjects are always censored since they never experience

the event of interest. As a result, censored observations can be cured or uncured, and the

cure status is therefore not observed. In order to take such feature into account, classical

survival analysis has been extended to cure models. Initially introduced by the works of Boag

(1949) and Berkson and Gage (1952), the literature on cure models is mainly composed of

two classes of models, namely, the mixture cure model, introduced by Farewell (1977, 1982),

and the promotion time cure model proposed by Yakovlev et al (1996).

Two quantities can be obtained from cure survival data: the survival at a given time t

as in classical survival analysis, and the cure status. The literature on cure models mainly

focused on modelling the effect of covariates on these two quantities (see Amico & Van

Keilegom (2018) for a detailed literature review on that topic), while very little has been

done on evaluating the performance of predicting these two outcomes based on cure survival

data, even though good predictions are essential for practitioners. Indeed, when there exists a

possible cure fraction, we can think of situations where one would be interested in predicting

who is cured and who is not based on marker(s) in order to determine if a treatment is

necessary to prevent a cancer relapse. Likewise, being able to correctly predict the survival

probability of an uncured patient after a certain time by taking into account the presence of
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cured subjects in the data is also important. A first contribution to that topic is due to Yu

et al. (2008) who propose to validate individual prediction for patients with prostate cancer

performed based on a joint longitudinal survival-cure model. Recently, Mehari Beyene et

al. (2018) investigate the accuracy of time-dependent event prediction, extending to cure

survival data the results that have been previously obtained for classical survival analysis (see

for example Heagerty et al. (2000), Heagerty & Zheng (2005), Chambless & Diao (2006),

Blanche et al. (2013), Li et al. (2018) among others). Zhang & Shao (2018) propose a

concordance measure, in the spirit of the c-index proposed by Harrell et al. (1982, 1984),

to assess the prediction accuracy of the overall survival for uncured patients by taking into

account the presence of a cure fraction. They extend the work of Göner & Heller (2005)

for the Cox (1972) proportional hazards (PH) model. For the cure status, on the contrary,

nothing has been done to the best of our knowledge, while it is an important issue.

To evaluate if a classifier, corresponding to a single variable or a combination of variables

and hereafter denoted by M , classifies correctly a set of subjects into two classes, called cases

and controls, one usually considers jointly two quantities: the sensitivity which corresponds

to the proportion of subjects classified as case when they are effectively a case, and the

specificity, that is, the proportion of subjects classified as a control when they effectively

belong to the control class. When the classifier M is measured on a continuous scale, it is

necessary to dichotomise it in order to perform a binary classification. Suppose that the

classes are represented by the binary variable D, such that D = 1 for a case, and D = 0 for a

control. A common convention is to consider that a subject i is classified as a case when its

classifierMi is such thatMi > k, for k a threshold. As k can take on several values, there exist

several possible sensitivities and specificities. To summarise all the information, one usually

considers a Receiver Operating Characteristic (ROC) curve (see for example Pepe, 2003, and

Krzanowski and Hand, 2009), which represents graphically all possible combinations of the

sensitivity given by

Se(k) = P (M > k|D = 1), (1.1)

and one minus the specificity,

1− Sp(k) = P (M > k|D = 0), (1.2)

that can be obtained from all possible dichotomised versions of M , based on the value of the

threshold k. It plots the sensitivity against one minus the specificity for all possible values
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of k ∈ R and its equation is given by

ROC(u) = Se
[
(1− Sp)−1(u)

]
, 0 < u < 1, (1.3)

where u is an index. It is a monotone increasing function in the quadrant (0, 1)× (0, 1). The

position of the curve indicates the ability of the classifier M to discriminate between the two

classes. A perfect classifier is such as P (M > k|D = 1) = 1 and P (M > k|D = 0) = 0 for

some k. In that case all observations are perfectly classified. It corresponds to a point of

coordinate (0, 1). Conversely, an uninformative classifier is such that P (M > k|D = 1) =

P (M > k|D = 0), for all k. In this situation, the distribution of M is the same in the two

classes. The ROC curve is therefore equal to the bisector.

Alongside the ROC curve, one usually computes the area under the curve (AUC) given

by

AUC =

∫ 1

0

ROC(u) du, (1.4)

which summarises into one single value the performance of M . An AUC equal to 1 corre-

sponds to a perfect classifier, while an AUC equal to 0.5 is obtained for an uninformative

classifier.

In this paper, we propose to develop a ROC curve approach in order to evaluate the

accuracy of a (combination of) covariate(s) to predict the cure status based on cure survival

data. Since the cure status is missing for censored observations, ‘classical’ ROC curve ap-

proaches, which rely on the knowledge of the classes of the observations, can not be directly

implemented in this context. Therefore, an important issue to address is how to handle the

latency of the cure status. Our proposal is presented in Section 2 alongside some important

points related to the estimation of the sensitivity and the specificity. In Section 3, some

asymptotic properties are presented, followed in Section 4 by the investigation of the finite

sample performance of the proposed method through an extensive simulation study. Sec-

tion 5 illustrates the practical use of our proposal on a melanoma dataset, while Section 6

concludes with some final remarks and discussion. Finally, Appendix 1 provides additional

results on the finite sample performance of our estimators, while Appendix 2 gives the proofs

of the asymptotic properties derived in Section 3.
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2 Methodology

Let us consider a non-negative random variable, denoted by T , which represents the survival

time, with survival function S(t) = P (T > t), and let us assume that there exists a cure

fraction. To further define this situation, let us consider that a cured subject is such that

T =∞, in order to represent the fact that the event never happens.

A popular model for cure survival data is the mixture cure model (Farewell, 1982),

which assumes that the population of interest is a mixture of a cured and an uncured sub-

population, and which models the survival function for the entire population as a mixture

model:

Spop(t|x, z) = {1− p(x)}+ p(x)Su(t|z), t ≥ 0, (2.1)

where p(x) = P (T < ∞|X = x) is the probability of being uncured, referred to as the

‘incidence’, with X a vector of covariates, and Su(t|z) = P (T > t|T < ∞,Z = z) is the

conditional survival function for uncured observations, referred to as the ‘latency’, with Z

another vector of covariates that may share some or all components or be completely different

from X.

Let us further assume that T is subject to random right censoring, and that instead of

observing T , we rather observe the follow-up time Y = min(T,C) and the censoring indicator

∆ = I(T ≤ C), where C denotes the censoring time that is supposed to be independent

of T given X and Z, and where I(·) is the indicator function. Let us consider that we

have a random sample of n independently and identically distributed (i.i.d.) observations

(Yi,∆i,Xi,Zi), i = 1, . . . , n, having the same distribution as (Y,∆,X,Z).

The objective is to derive a ROC curve estimator in order to evaluate the prediction

accuracy of M for the cure status D = I(T =∞). Hereafter, we assume that M = γ0 +γtX,

where γ is a vector of parameters associated with X and γ0 is an intercept term. We further

assume that X can be unidimensional or multidimensional, and for this latter case, that the

vector of parameters (γ0,γ)t can be known, in such a case M is a known score such as a

genetic score, for example, or unknown that needs therefore to be estimated.
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2.1 Infeasible estimators

A simple and common nonparametric method to estimate a ROC curve consists in estimating

the sensitivity and the specificity by their empirical distribution functions given by

Še(k) = 1− 1

Ň1

n∑
i=1

W̌i1I(Mi ≤ k), (2.2)

Šp(k) =
1

Ň0

n∑
i=1

W̌i0I(Mi ≤ k), (2.3)

where W̌i1 = I(Di = 1), W̌i0 = I(Di = 0), Ň1 =
∑n

i=1 W̌i1 and Ň0 = n − Ň1. The ROC

curve estimator takes therefore the form of a step function with jumps at each Mi. When

working with cure survival data, however, these estimators cannot be used as the cure status

is unobserved.

When dealing with cure survival data, Taylor (1995) proposes to consider as cured an

observation with a follow-up time greater than the last uncensored follow-up time, denoted by

τ . Referred hereafter as the cure threshold, this rule makes reasonably sense when there is a

clear evidence for the presence of a cure fraction. In such a context, we consider the existence

of two sub-populations, and it is reasonable to consider that, when the follow-up period is

sufficiently long and when it goes well after the last uncensored event time τ , observations

with a censored follow-up time greater than most event times can be categorised as cured.

Based on this rule, it is therefore possible to distinguish three types of observations from cure

survival data. In fact, since an uncensored subject experiences the event, it belongs to the

non-cured population with certainty, that is, D = 0. Based on the cure threshold, censored

observations can be separated into two groups, those with a follow-up time Y > τ , for whom

D = 1, and those with a follow-up time Y ≤ τ . For this latter case, a probability, given by

P (D = 1|X,Z, Y, T > Y ), replaces the unobserved cure status. It follows that estimators for

the sensitivity and the specificity are given by the following weighted empirical distribution

functions:

S̃e(k) = 1− 1

Ñ1

n∑
i=1

W̃i1 I(Mi ≤ k), (2.4)

S̃p(k) =
1

Ñ0

n∑
i=1

W̃i0 I(Mi ≤ k), (2.5)

where W̃i1 = (1 − ∆i)P (D = 1|X = Xi,Z = Zi, Y = YI , T > Yi), W̃i0 = 1 − W̃i1, Ñ1 =∑n
i=1 W̃i1, and Ñ0 = n − Ñ1. Furthermore, when the cure threshold is assumed, W̃i1 can
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further be written as W̃i1 = I(Yi > τ) + (1−∆i) I(Yi ≤ τ) P (D = 1|X = Xi,Z = Zi, Y =

Yi, T > Yi). An infeasible estimator for the ROC curve is then given by

R̃OC(u) = S̃e{(1− S̃p)−1(u)}, 0 < u < 1. (2.6)

This estimator is a monotone increasing function of u and is invariant to strictly increasing

transformations of M , which are both required properties of ROC curves as described by

Pepe (2003). Note that these estimators consider a random design. However, they can also

be applied when the design is fixed. In such a case, notations will be different.

The development of this method relies on the following theoretical elements. By applying

Bayes’ theorem, the sensitivity (1.1) can be written as Se(k) = P (M > k, T = ∞)/P (T =

∞). Let us consider the numerator:

P (M > k, T =∞) = E [I(M > k) I(T =∞) I(∆ = 0)]

= E [I(M > k) P (T =∞|X,Z, Y, T > Y ) I(∆ = 0)] .

Hence,

Se(k) =
E [I(M > k) P (T =∞|X,Z, Y, T > Y ) I(∆ = 0)]

E [P (T =∞|X,Z, Y, T > Y ) I(∆ = 0)]
. (2.7)

By assuming the cure threshold, and by replacing the expectation by a sum, it follows that

a natural estimator for Se(k) is given by (2.4).

Based on these derivations, an estimator for the AUC can also be obtained. The AUC

defined in the introduction can be written as AUC =
∫ 1

0
Se
[
(1−Sp)−1(u)

]
du. Define f0(k) =

(d/dk) Sp(k). By proceeding to a change of variable (assuming that (1− Sp)−1(u) = k), we

have for arbitrary 1 ≤ i 6= j ≤ n that

AUC =

∫ +∞

−∞
Se(k) f0(k) dk

= E
[
Se(Mi)|Ti <∞

]
= E

[
E{I(Mj > Mi)|Tj =∞,Xi,Zi}|Ti <∞

]
= P (Mj > Mi|Tj =∞, Ti <∞).

By applying Bayes’ theorem, the AUC can be rewritten as

AUC =
P (Mj > Mi, Tj =∞, Ti <∞)

P (T =∞) P (T <∞)
.
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Let us consider the numerator:

P (Mj > Mi, Tj =∞, Ti <∞) = E
[
I(Mj > Mi) I(Tj =∞) I(Ti <∞)

]
= E

[
I(Mj > Mi) P (Tj =∞|Xj,Zj,∆j = 0, Yj)I(∆j = 0)

×
{
P (Ti <∞|Xi,Zi,∆i = 0, Yi)I(∆i = 0) + I(∆i = 1)

}]
.

By replacing the expectation by a sum and by assuming the cure threshold, it follows

that an infeasible estimator of the AUC is given by

ÃUC =
1

Ñ0Ñ1

n∑
i=1

n∑
j=1

I(Mj > Mi)W̃j1W̃i0. (2.8)

2.2 Feasible estimators

The probability P (D = 1|X,Z, Y, T > Y ) is involved in the infeasible estimators (2.4) and

(2.5) of the sensitivity and the specificity, as well as in the infeasible AUC estimator (2.8).

It is therefore necessary to estimate this quantity in order to obtain estimators that can be

used in practice. Based on Bayes’ theorem, this probability can be written as

P (D = 1|X,Z, Y, T > Y ) =
P (T =∞|X,Z, Y )

P (T > Y |X,Z, Y )
=
P (T =∞|X,Z)

P (T > Y |X,Z)

since T and C are independent given X and Z. Since we suppose that the data come from

the mixture cure model (2.1), it can be further written as

P (T =∞|X)

P (T > Y |X,Z)
=

1− p(X)

{1− p(X)}+ p(X)Su(Y |Z)
. (2.9)

The literature on cure models offers various modelling approaches for the mixture cure

model (2.1). The most common one is the logistic / Cox (LC) mixture cure model proposed

by Kuk and Chen (1992), and further studied by Sy & Taylor (2000) and Peng & Dear (2000).

This proposal assumes a logistic model for p, that is p(x) = exp(γ0+γtx)/{1+exp(γ0+γtx)}
and considers a Cox PH model for Su, where Su(t|z) = S0(t)

exp(βtz), with S0(t) = P (T >

t|T <∞,Z = 0), a baseline conditional survival function which remains totally unspecified,

and β a vector of parameters associated with Z. A drawback of this model, however, is

that the estimator for P (D = 1|X,Z, Y, T > Y ) relies on a parametric assumption for p

which may not be fulfilled by the data. An alternative model is the single-index / Cox (SIC)

8



mixture cure model proposed by Amico et al. (2018), which assumes a single-index structure

for p, that is p(x) = g(γtx), where g is a smooth unknown function, and a Cox PH model for

Su. This SIC cure model assumes a less restrictive model for p and it may therefore be more

appropriate. Both approaches are considered and their respective finite sample performances

are compared in Section 4. The estimators for W̃i0 and W̃i1 are given by

Ŵi1 = I(Yi > τ) + (1−∆i) I(Yi ≤ τ)
1− p̂(Xi)

{1− p̂(Xi)}+ p̂(Xi)Ŝu(Yi|Zi)

Ŵi0 = 1− Ŵi1,

and are obtained by either a LC cure model or a SIC cure model. The feasible estimators of

Se, Sp, ROC and AUC are now given by

Ŝe(k) = 1− 1

N̂1

n∑
i=1

Ŵi1 I(Mi ≤ k), (2.10)

Ŝp(k) =
1

N̂0

n∑
i=1

Ŵi0 I(Mi ≤ k), (2.11)

R̂OC(u) = Ŝe{(1− Ŝp)−1(u)}, 0 < u < 1, (2.12)

ÂUC =
1

N̂0N̂1

n∑
i=1

n∑
j=1

I(Mj > Mi)Ŵj1Ŵi0, (2.13)

where N̂1 =
∑n

i=1 Ŵi1 and N̂0 = n− N̂1.

Both X and Z enter in the computation of Ŵ0 and Ŵ1, while M only relies on X. For the

choice of the covariates to include in X, we consider those included in M . A more delicate

question concerns the choice of the covariates to consider for Z. When M only contains one

covariate, and when there is only one covariate available in the data, it is easy to assume

that X = Z. If there are several covariates in the data, or when M is a combination of

covariates, on the contrary, the choice of Z will depend on the knowledge of the topic of the

analysis, and on which covariates are thought to influence the survival of uncured subjects.

In such contexts, Z can be partially or fully identical to X, or completely different from

X. However, we are not free of misspecification. The influence of a misspecification of this

vector on the estimation of the ROC curve is therefore investigated through simulations in

Section 4.
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3 Asymptotic theory

In this section we will develop the limiting distribution of the proposed estimators of the

sensitivity, the specificity, the ROC curve and the AUC given in equations (2.10), (2.11),

(2.12) and (2.13). In the previous section these estimators were constructed either based on

a logistic/Cox mixture cure model or on a single-index/Cox mixture cure model. However,

asymptotic theory for the estimation of these models has only been developed so far under

the logistic/Cox model (see Lu, 2008), and so we restrict attention in this section to the

latter model.

The proofs of the results of this section can be found in Appendix 2.

Theorem 3.1. Assume that conditions 1–4 in Lu (2008) are satisfied and that the logis-

tic/Cox mixture cure model is valid. Then,

Ŝe(k)− Se(k) = n−1
n∑
i=1

ηSe(Xi,Zi, Yi,∆i, k) +Rn,Se(k)

Ŝp(k)− Sp(k) = n−1
n∑
i=1

ηSp(Xi,Zi, Yi,∆i, k) +Rn,Sp(k)

where supk |Rn,Se(k)| = oP (n−1/2), supk |Rn,Sp(k)| = oP (n−1/2), and ηSe(x, z, y, δ, k) and

ηSp(x, z, y, δ, k) are defined in (7.4) and (7.5) in Appendix 2.

Moreover, the process n1/2(Ŝe(k)−Se(k)) (k ∈ R) converges weakly to a Gaussian process

ZSe(k) with zero mean and covariance function given by

Cov(ZSe(k1), ZSe(k2)) = E
[
ηSe(X,Z, Y,∆, k1) ηSe(X,Z, Y,∆, k2)

]
,

and the process n1/2(Ŝp(k)− Sp(k)) (k ∈ R) converges weakly to a Gaussian process ZSp(k)

with zero mean and covariance function given by

Cov(ZSp(k1), ZSp(k2)) = E
[
ηSp(X,Z, Y,∆, k1) ηSp(X,Z, Y,∆, k2)

]
.

As a corollary to the above result we now state the limiting distribution of the estimator

R̂OC(u) defined in (2.12) and of the estimator ÂUCδ, given by

ÂUCδ =

∫ 1−δ

δ

R̂OC(u) du.

For technical reasons we need to restrict the integration to the internal [δ, 1 − δ] (for some

small δ > 0), which can however be made arbitrarily close to the interval [0, 1]. The corre-

sponding theoretical AUC is denoted by AUCδ =
∫ 1−δ
δ

ROC(u) du.
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Corollary 3.1. Assume that conditions 1–4 in Lu (2008) are satisfied and that the logis-

tic/Cox mixture cure model is valid. Assume in addition that infk1≤k≤k2 Sp
′(k) > 0, where

k1 = (1 − Sp)−1(δ) and k2 = (1 − Sp)−1(1 − δ) for some δ > 0, and that the functions Se

and Sp are twice continuously differentiable on [k1, k2]. Then,

R̂OC(u)−ROC(u) = n−1
n∑
i=1

ηROC(Xi,Zi, Yi,∆i, u) +Rn,ROC(u),

where supδ<u<1−δ |Rn,ROC(u)| = oP (n−1/2), and

ηROC(x, z, y, δ, u) = ηSe
(
x, z, y, δ, (1− Sp)−1(u)

)
+

Se′{(1− Sp)−1(u)}
(1− Sp)′{(1− Sp)−1(u)}

ηSp
(
x, z, y, δ, (1− Sp)−1(u)

)
.

Moreover, the process n1/2(R̂OC(u)−ROC(u)) (u ∈ [δ, 1−δ]) converges weakly to a Gaussian

process ZROC(u) with zero mean and covariance function given by

Cov(ZROC(u1), ZROC(u2)) = E
[
ηROC(X,Z, Y,∆, u1) ηROC(X,Z, Y,∆, u2)

]
,

and

n1/2(ÂUCδ − AUCδ)
d→ N(0, σ2

AUC),

where

σ2
AUC =

∫ 1−δ

δ

∫ 1−δ

δ

E(ZROC(u1)ZROC(u2)) du1 du2.

4 Finite sample performances

4.1 Some preliminaries

In this section, an extensive simulation study is performed in order to evaluate the finite

sample performances of the ROC curve estimator (2.12). Two versions of this estimator are

considered:

LC : assuming a LC cure model for W0 and W1. The LC cure model is estimated

assuming the method proposed by Sy & Taylor (2000) based on the EM algorithm,

SIC : assuming a SIC cure model for W0 and W1, where the model is estimated ac-

cording to the maximum likelihood approach described in Amico et al. (2018).
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Both the case of known and unknown M are investigated, and for both of them, the following

points are analysed. First, we are interested in the general performance of the proposed esti-

mators of the sensitivity and the specificity. Particular interest lies in the effect of censoring

and of an incorrect specification of the vector Z. Then, other points include a misspecification

of the model for Su and a non-logistic model for the cure proportion p.

To assess the performance of our proposed method, we consider two infeasible competi-

tors:

CSK (Cure Status Known): corresponding to the ROC curve estimator that would be

obtained if the cure status would be fully observed. Equations (2.2) and (2.3) give the

estimators for the sensitivity and the specificity in that case. The objective here is to

evaluate the effect of the imputation of the cure status described in Section 2.1,

TW (True Weights): corresponding to the estimator (2.6) combined with (2.9), based

on the true values of p and Su. This benchmark estimator allows to investigate the

effect of estimating p and Su by means of the LC or SIC cure model.

Two criteria are considered to compare the four estimators, namely, the L1 distance

between the true and the estimated ROC curves and the AUC. The L1 distance is given by

L1 = V −1
V∑
i=1

|R̂OC(ui)−ROC(ui)|,

where R̂OC is one of the ROC curve estimates and ROC is the true ROC curve. It is

computed over a grid of points ui = i
100

for i = 1, . . . , V = 99. For LC and SIC estimators,

the AUC is given by

ÂUC =
1

N̂0N̂1

n∑
i=1

n∑
j=1

[{
I(Mj > Mi) + 0.5× I(Mj = Mi)

}
Ŵj1Ŵi0

]
.

For CSK and TW etimators, the formula is almost the same, but with different Wi0, Wi1,

N0 and N1. For CSK, they are replaced by W̌i0, W̌i1, Ň0 and Ň1, while for TW, they are

given by W̃i0, W̃i1, Ñ0 and Ñ1. Note that these formulas take into account possible ties in

M with the added term 0.5× I(Mj = Mi).
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4.2 Data generating process

Within this section, we assume that the data are generated from the mixture cure model

(2.1). The data generating process is as follows.

1. First, the incidence is considered :

(i) The uncure probability p is generated according to the model p(x) = g(γtx),

where g(·) is a link function. Primary interest lies in the logistic link function,

that is, g(a) = exp(γ0 + a)/{1 + exp(γ0 + a)}, which gives the logistic regression

model, but other link functions can also be assumed;

(ii) The second step consists in generating, for given x, the uncure status (1 − D)

from a Bernoulli distribution with parameter equal to p(x).

2. Next, the latency is generated :

(i) We consider two models for the survival function of the uncured observations.

The first model is a Gompertz model with survival function S(t|z) = S0(t)
exp(βtz),

S0(t) = exp[−θα−1{exp(αt)− 1}], θ = 0.5 and α = 0.03. The second model is an

Accelerated Failure Time (AFT) model assuming a log-logistic distribution for T

and with survival function Su(t|z) = [1 + λ {t/ exp(βtz)}κ]−1 where λ = 0.05 and

κ = 2.5. Note that the AFT model does not respect the proportional hazards

property contrarily to the Gompertz model. Since Ŵ0 and Ŵ1 are obtained from

a mixture cure model assuming a Cox PH model for the latency, this allows us to

verify whether a model misspecification of Su affects the ROC curve estimate;

(ii) Next, we generate the censoring time from an uniform distribution on [Umin, Umax]

that is independent of T , X and Z. We further truncate the survival times of the

susceptible observations at Umax − 1 so that the support of C is larger than the

support of T ;

(iii) We finally generate the follow-up time Y = min(T,C) and the censoring indicator

∆ = I(T ≤ C).
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4.3 Known classifier

First, we consider the case where the classifier takes the form of a single variable or of a known

one-dimensional score denoted by X. Note that when dim(X) = 1, the single-index model

reduces to a non-parametric model. We assume three different scenarios for the incidence.

The first two scenarios assume a logistic regression model for p(x) corresponding to different

discriminations between the cured and the uncured sub-populations:

Scenario 1 : X ∼ N(2, 2.5), γ0 = 0, γ1 = 1, and AUC = 0.9016. This scenario

corresponds to a a good discrimination with a cure proportion equal to 25.6%.

Scenario 2: X ∼ N(1.2, 1), γ0 = 0, γ1 = 1, and AUC = 0.7374. This scenario

is associated with a moderate separation between the two sub-populations, and the

proportion of cured subjects is equal to 26.9%.

The third scenario assumes a non-logistic model for p(x) with a non-monotone shape in order

to evaluate the performance of the LC and SIC estimators in such a case. The link function

is given by g(a) = [sin{(3/2) π a}+ 1]/2. Its characteristics are as follows:

Scenario 3 : X ∼ unif(0, 1), γ1 = 1, and AUC = 0.8124, corresponding to a good

separation between cured and uncured sub-populations. The cure proportion equals

39.4%.

The graphical representation of the respective ROC curves is given in Figure 1.
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Figure 1: True ROC curves for scenarios 1, 2 and 3 when the classifier is known.
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For the survival times, the Gompertz model and the AFT model have the following

characteristics.

Gompertz model: We consider two covariates, Z1 and Z2, that are independent, fol-

lowing a Bernoulli distribution with parameter equal to 0.6 and 0.2, respectively. The

associated vector of parameters is β = (1.5,−0.5)t. For the uniform distribution con-

sidered for the censoring time C, we assume that Umin = 0 and three different values

are considered for Umax : 65, 25 and 10, corresponding to three different levels of

censoring denoted by level 1, level 2 and level 3.

AFT model: Two independent covariates, Z1 and Z2, are considered, following a

Bernoulli distribution with parameter equal to 0.6 and 0.3, respectively. The asso-

ciated vector of parameters is β = (0.7,−0.3)t. As for the Gompertz model, the

censoring time is generated from a uniform distribution with Umin = 0 and with three

different values for Umax. These values are chosen such that the proportion of censored

observations with a follow-up time lower than or equal to τ is the same as for the

Gompertz model, in order to allow comparison between the two models.

We now consider the following five settings, corresponding to the three scenarios for the

incidence and the two models for the latency considered above (note that the non-logistic

scenario for the incidence is only considered in combination with the Gompertz model, since

it serves to assess the performance of the LC estimator when the logistic model is not

satisfied). Each setting has a particular objective:

• Scenario 1 / Gompertz model – to evaluate our proposal and the effect of censoring

when the discrimination is good;

• Scenario 1 / AFT model – to verify whether a model misspecification of Su affects the

ROC curve estimate when the discrimination is good;

• Scenario 2 / Gompertz model – to evaluate our proposal and the effect of censoring

when the discrimination is moderate;

• Scenario 2 / AFT model – to verify whether a model misspecification of Su affects the

ROC curve estimate when the discrimination is moderate;
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• Scenario 3 / Gompertz model – to evaluate our proposal when the link function is not

logistic. Note that for this latter setting, a fourth censoring rate is considered in order

to further evaluate its impact in such a case.

To assess the effect of a misspecification of Z, the estimators are further estimated assuming

that Z = X, on scenario 1 / Gompertz and scenario 2 / Gompertz. Table 1 summarises

the setting characteristics, comprising parameter values for the censoring distributions, cure

rates, censoring rates, and the percentage of observations for which Y ≤ τ .

Table 1: Setting characteristics when the classifier is known: parameters of the censoring

distribution, cure rate, censoring rate and percentage of censored observations for which

Y ≤ τ .

latency type

Gompertz model AFT model

% obs. % obs.

incidence cure censoring ∆ = 0, cure censoring ∆ = 0,

type Umax rate rate Y ≤ τ Umax rate rate Y ≤ τ
Scenario 1 65 25.6% 27.0% 5.3% 345 25.6% 27.0% 5.3%

25 25.6% 29.1% 12.6% 121 25.6% 29.5% 12.6%

10 25.6% 34.0% 25.4% 44 25.6% 35.9% 25.5%

Scenario 2 65 26.9% 28.2% 5.3% 360 26.9% 28.2% 5.3%

25 26.9% 30.3% 13.0% 120 26.9% 30.8% 12.9%

10 26.9% 35.1% 25.9% 45 26.9% 37.1% 26.1%

Scenario 3 65 39.4% 40.5% 6.8%

25 39.4% 42.2% 16.2%

10 39.4% 46.3% 31.4%

5 39.4% 51.8% 43.1%

For each setting, we consider 500 datasets, and for each dataset, we assume two sample

sizes, n = 250 and n = 500.

Figure 2 shows the boxplots of the L1 distance when n = 250 for the settings with
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Figure 2: Boxplots of the L1 distances for scenarios 1 and 2 for n = 250.

scenarios 1 and 2 for the incidence. As it can be seen, when the censoring rate is close

to the cure rate, and when everything is specified correctly, our proposals perform almost

as well as the two infeasible competitors whatever the model assumed for W1. In such a

case, very few censored observations are below τ , which are those with weight equal to

P (D = 1|X,Z, Y, T > Y ). A larger censoring rate is conversely associated with higher L1

distance and larger variance, particularly for SIC under the third censoring level. When the

censoring rate gets larger, fewer censored observations are located in the plateau, meaning

that less censored observations are considered as cured, that is, with Wi1 = 1. Furthermore,

as shown by Amico et al. (2018), the SIC cure model performs worse than the LC cure

model when the true model for the incidence is a logistic model and when the censoring rate

increases as it is the case for the third censoring level. Interestingly, LC is close to CSK

even for the third censoring level. Another interesting point is that the L1 distance for TW

decreases slightly when the censoring rate increases. It seems that having more censored

observations below τ produces better results when considering the true W0 and W1. In such
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a case, the size of the jumps are smaller and it seems that the ROC curve becomes smoother

and closer to the true curve. Nevertheless, this feature is not observed for LC and SIC. By

comparing scenario 1 and scenario 2, we observe that the L1 distance is larger for scenario 2.

Indeed, it is more difficult to correctly separate cured from uncured sub-populations based

on this scenario since the discrimination is moderate. The discrimination between cured

and uncured sub-populations seems therefore to have an influence on the performance of the

ROC curve estimators. However, the general conclusions are the same for both scenarios.

For the settings where Z is misspecified, we observe that when few censored observations

are below τ , the L1 distance for our proposals is only slightly higher in comparison with the

two infeasible competitors, while when the number of censored observations below τ is larger

as for the third censoring level, both the LC and SIC estimators have higher L1 distance

than when Z is correctly specified. Interestingly, for the second censoring level, the L1

distance for LC seems to be comparable to the L1 distance of CSK for both scenarios while

SIC seems to already present some difficulties. Note that we consider the case where Z is

completely misspecified, whereas it seems more likely to have only a partial misspecification

of this vector of covariates in practical applications. We are therefore in an extreme case.

When the survival times are generated according to an AFT model, our proposals show a

higher increase in the L1 distance in comparison with when there is no misspecification, espe-

cially when the censoring rate increases. SIC is still the least favourable estimator. However,

a misspecification in Z affects the performance of our proposals more than a misspecification

in the latency.

Figure 3 provides the boxplots of the AUC for scenarios 1 and 2 when n = 250. The

same conclusions as for the L1 distances can be drawn. Note that SIC performs less good

than LC, especially for the third censoring rate. LC on the contrary is close to CSK for all

censoring rates considered, but we observe more variability. For all these settings, the true

incidence is a logistic regression model.

When the true incidence is not a logistic regression model (scenario 3), LC has always

higher L1 distances than SIC as it can be seen in Figure 4. When the censoring rate gets

larger, the difference between LC and SIC increases, and we observe that SIC outperforms

LC, especially for the third and the fourth censoring levels. It seems therefore that, when

p̂(x) is inconsistent and when the proportion of censored observations below τ is large, LC

performs badly. Based on the analysis of the AUC, the same conclusions can be drawn.
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Figure 3: Boxplots of the AUC for scenarios 1 and 2 for n = 250.

0.000

0.025

0.050

0.075

0.100

level 1 level 2 level 3 level 4

censoring levels

L
1
 d

is
ta

n
c
e

method CSK TW LC SIC

0.7

0.8

0.9

1.0

level 1 level 2 level 3 level 4

censoring levels

A
U

C

method CSK TW LC SIC

Figure 4: Boxplots of the L1 distance and the AUC for scenario 3 Gompertz for n = 250.

An interesting feature that was already observable from the previous settings and which

is confirmed with the fourth censoring level here is that the more the censoring rate increases,

the more the L1 distance of LC and SIC increases since many more observations have Ŵ0
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and Ŵ1 relying on P (D = 1|X,Z, Y, T > Y ) in that case. Therefore, the censoring level is

crucial in the performance of our proposals.

For both the L1 distance and the AUC, the same conclusions also apply when n = 500

(see Figures 10, 11 and 12 in Appendix 1). Furthermore, as expected, the L1 distances are

smaller and less variable than for n = 250. For the AUC, the variability is also lower.

4.4 Unknown classifier

We next consider the case where the classifier is an unknown combination of variables. Two

scenarios are considered for the incidence, both of them assuming a logistic regression model

and corresponding to two different levels of discrimination between the two sub-populations.

For both of them, we assume three independent variables. Each setting has the following

characteristics:

scenario 4: X1 ∼ N(0, 1), X2 ∼ Bernoulli(0.6), and X3 ∼ Bernoulli(0.3). We take

γ0 = 1 and γ = (2, 3,−2)t. The cure rate is equal to 24.5% and AUC = 0.9080,

corresponding to a good discrimination between cured ans uncured subjects.

scenario 5: X1 ∼ N(0.6, 1), X2 ∼ Bernoulli(0.5), and X3 ∼ Bernoulli(0.4). We take

γ0 = −1.7 and γ = (0.7, 1.1, 0.3)t. The cure rate is equal to 62.2% and AUC = 0.7219.

With this scenario the discrimination between the two sub-populations is moderate.

These characteristics have been chosen such that the scenario mimics the characteristics

of the melanoma data on which our methodology is illustrated (see Section 5).

The graphical representation of the true ROC curves for these two scenarios is given in

Figure 5.

For the latency, we consider the same model as when the classifier is known, that is, a

Gompertz model or an AFT model, with the same characteristics. We consider the four

following settings corresponding to all combinations of the two scenarios for the incidence

and the two models for the latency. As for the known classifier case, each setting has the

following objective:

• Scenario 4 / Gompertz model – to evaluate our proposal and the effect of censoring

when the discrimination is good;
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Figure 5: True ROC curves for scenarios 4 and 5 when the classifier is unknown.

• Scenario 4 / AFT model – to verify whether a model misspecification in Su affects the

ROC curve estimate when the discrimination is good;

• Scenario 5 / Gompertz model – to evaluate our proposal and the effect of censoring

when the discrimination is moderate;

• Scenario 5 / AFT model – to verify whether a model misspecification in Su affects the

ROC curve estimate when the discrimination is moderate;

To further evaluate the performance of our proposal, the estimators are also estimated as-

suming that Z = X in scenario 4 / Gompertz and scenario 5 / Gompertz. Note also that

a fourth censoring rate is considered when scenario 5 is assumed for the incidence in order

to evaluate the situation when many observations are censored before τ as it is the case for

the melanoma data set. Table 2 summarises the setting characteristics, comprising parame-

ter values for the censoring distributions, cure rates, censoring rates, and the percentage of

observations below τ .

Since the classifier is unknown, it first needs to be estimated before the ROC curve can

be computed. We consider a LC cure model, M being estimated by the score γ̂0 + γ̂tX from

the logistic model considered in the incidence. However, a difficulty remains. Indeed, if M

and the ROC curve are estimated on the same dataset, the ROC curve can overestimate

the classification performance of M as explained by Copas & Corbett (2002), and hence

this would lead to misleading conclusion(s). It is therefore necessary to obtain generalizable
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Table 2: Setting characteristics when the classifier is unknown: parameters of the censoring

distribution, cure rate, censoring rate and percentage of censored observations for which

Y ≤ τ .

latency type

Gompertz model AFT model

% obs. % obs.

incidence cure censoring ∆ = 0, cure censoring ∆ = 0,

type Umax rate rate Y ≤ τ Umax rate rate Y ≤ τ
Scenario 4 65 24.5% 25.9% 4.9% 370 24.5% 25.9% 4.9%

25 24.5% 28.0% 12.1% 126 24.5% 28.5% 12.1%

10 24.5% 33.2% 24.5% 47 24.5% 34.9% 24.4%

Scenario 5 65 62.2% 63.3% 8.7% 337 62.2% 63.4% 8.7%

25 62.2% 64.4% 21.3% 111 62.2% 64.8% 21.3%

10 62.2% 66.9% 40.4% 40 62.2% 68.6% 40.5%

5 62.2% 70.3% 54.4% 23 62.2% 72.6% 54.4%

conclusions about the performance of M . To do so, an ideal approach would consist in

splitting the dataset into two groups, a training set on which the model is fitted and a test

set on which predictions are made and then used to build the ROC curve. However, to split a

dataset, a large sample size is required. When this is not the case, the use of other approaches

exist as explained by Hastie et al. (2009) among others, among which cross-validation. To

mimic real data settings, the finite sample performance of our proposal is therefore evaluated

as if the sample size was not large enough to be split into two groups. We instead perform it

using cross-validation. We proceed as follows. First, the initial dataset is split into K folds.

Each fold is then considered as the test set successively, the other folds being considered

as the training set. For example, if K = 5, and denote by F1, F2, F3, F4, and F5 the

five folds, the cross-validation procedure will produce five different runs with the following

composition for the test and training sets :
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run test set training set

1 F1 F2 + F3 + F4 + F5

2 F2 F1 + F3 + F4 + F5

3 F3 F1 + F2 + F4 + F5

4 F4 F1 + F2 + F3 + F5

5 F5 F1 + F2 + F3 + F4

For each run, a LC cure model is fitted on the training set in order to estimate γ0 and γ.

Then, predictions for M are performed on the test set and the ROC curves are estimated.

Furthermore, the L1 distance and the AUC are computed for each ROC curve at each run.

At the end of the K runs, the L1 distances and AUCs are averaged over the K folds. In

what follows, we take K = 5. As for the known classifier case, 500 datasets are generated

for each setting, and two sample sizes are considered, n = 250 and n = 500.
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Figure 6: Boxplots of the L1 distances for scenarios 4 and 5 for n = 250.

The boxplots of the L1 distance for all settings and for n = 250 are given in Figure 6. As
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it can be seen, when there is no misspecification on Z or on the latency, the conclusions are

almost the same as when the classifier is known. We observe only slight differences between

the four estimators when few observations are censored before τ , while when the censoring

rate gets larger, LC and SIC present slightly larger L1 distance than TW, particularly for

the third and the fourth (only for scenario 5) censoring level. We also notice that, as for the

known classifier case, SIC presents higher L1 distance than LC in such a case. However, we

also observe that compared to CSK, our proposals have ROC curves that are closer to the

true one when the number of censored observations for which Y ≤ τ increases. Since the

ROC curves are computed based on cross-validation, only 50 observations are considered to

build the ROC curves on each run of the cross-validation. Furthermore, as already mentioned

for the known classifier case, when the censoring rate increases, more observations have a

weight equal to P (D = 1|X,Z, Y, T > Y ) and it follows that our proposed method gives a

smoother curve which is closer to the true one. Since the sample size is small the ROC curves

have fewer jumps than previously and it seems that, for the unknown classifier case, not only

TW presents better results in such a case, but also LC and SIC. As before, the L1 distances

are large for scenario 5 compared to scenario 4. This is due to the lower discrimination in

scenario 5.

When Z is misspecified, LC performs almost as well as TW and the results are comparable

to the case where there is no misspecification and so for all censoring levels. Conversely,

when the number of censored observations before τ increases, SIC presents slightly higher

L1 distance compared to the situation where there is no misspecification. When the latency

is misspecified, the same conclusions can be drawn. We only observe slight differences with

the case where there is no misspecification. When n = 500, the conclusions stay the same

as it can be seen in Figure 13 given in Appendix 1 even if we notice lower L1 distances, as

expected.

Figure 7 (and Figure 14 in Appendix 1) contains the boxplots of the AUC for n = 250

(for n = 500). The same conclusions as for the L1 distance can be drawn. As for the known

classifier, our proposals perform well in comparison with the two infeasible competitors, even

when the censoring rate increases or when the weights are not correctly specified. As for the

L1 distance, both LC and SIC present some difficulties when many censored observations

are such that Y ≤ τ . SIC is still the one performing the least good in such a case.
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Figure 7: Boxplots of the AUC for scenarios 4 and 5 for n = 250.

5 Application

In order to illustrate our methodology on real data, we use a melanoma data set coming from

the textbook by Andersen et al. (1993). This data set consists of 205 patients diagnosed

with malignant melanoma (skin cancer) during the period 1962–1977, and who experienced

a radical operation (complete removal of the tumour together with the skin within a distance

of about 2.5cm around it) performed at the Plastic Surgery department of the University

Hospital of Odense in Denmark. All patients have been followed since surgery and until the

end of the year 1977. The endpoint of interest is the death from melanoma. Among the 205

patients, 57 died from the melanoma. Figure 8 represents the Kaplan-Meier estimator of the

survival function. As it can be seen, it levels off at around 65% and there is a long plateau

of 2227 days (approximately 6 years), which contains 23% of the censored observations.

These two elements are indicative of the presence of a cure fraction alongside the contextual

evidence. Indeed, melanoma belongs to the group of cancers for which it is known that some
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Figure 8: Kaplan-Meier estimator of the survival function for the melanoma dataset.

patients get cured. It seems therefore that there exists a cure fraction for patients suffering

from melanoma and that this data set contains such subjects.

Alongside the survival time, three covariates are available, the thickness of the tumour (in

millimetres (mm), ranges from 0.10 to 17.47 mm with a median value of 1.94mm), a binary

variable indicating whether the tumour was ulcerated or not (0 = absence - 115 patients,

1 = presence - 90 patients) and the gender of the patients (0 = female - 126 patients, 1 =

male - 79 patients). Our objective is to assess if these three variables are good predictors

Table 3: Parameter estimates for the melanoma data set based on the LC cure model.

incidence latency

covariates estimate std error p-value estimate std error p-value

intercept -1.7759 0.3079 < 0.0001 - - -

ulceration[pres. vs. abs.] 1.0493 0.4261 0.0138 0.2658 0.4132 0.5201

log(tum. thick.) 0.5329 0.2341 0.0282 0.6703 0.2751 0.0148

gender[male vs. female] 0.2971 0.3845 0.4397 0.6215 0.4035 0.1235

of the cure status. Before computing the ROC curve, we first estimate a LC mixture cure

model with the three covariates included in both parts of the model. The results are given
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in Table 3. Note that we fit the model considering the logarithm of the tumour thickness.

As it can be seen, by considering a 5% level, both the ulceration and the thickness of the

tumour significantly affect the cure probability. An absence of ulceration and a thinner

tumour increase the cure probability.

We then compute the ROC curve to assess the predictive performance of a linear combi-

nation of the three covariates according to the cross-validation procedure described in Section

4. We consider a LC cure model to estimate the classifier and we compute the ROC based

on the estimator (2.12), assuming both a LC cure model and a SIC cure model for W0 and

W1. Figure 9 (a) provides the graphical representation of the two curves corresponding to
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Figure 9: (a) ROC curve estimates - solid curve: LC cure model, dashed curve: SIC cure

model - (b) Estimated link function for the SIC cure model.

the mean ROC curves over the five runs of the cross-validation. Their respective AUC are

0.7257 and 0.6753, showing that the ROC curve based on the SIC cure model is lower than

the ROC curve obtained from the LC cure model. In fact, the proportion of observations

censored before τ represents 55.6% of the total number of observations. Furthermore, as it

can be seen from Figure 9 (b), the estimated link function for the SIC cure model shows that

a logistic model for the incidence is appropriate. As it has been demonstrated in Section 4,

when there is a substantial number of observations censored before τ and when the true link
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function is a logistic one, the perfomance of the ROC curve based on a SIC cure model is

less good than that of the ROC curve based on a LC cure model. Therefore, it seems that

the former one has some more difficulties to correctly evaluate the discrimination ability of

the classifier considered here. Nevertheless, the two ROC curves are quite close and they

indicate that the tumour thickness, tumour ulceration and the gender of the patient only

moderately discriminate cured from uncured patients.

6 Concluding remarks

In this paper we proposed a method to assess cure status prediction from survival data using

ROC curves. Based on Bayes’ theorem, we derived estimators for the sensitivity and the

specificity taking the form of weighted empirical distribution functions. We proposed to

estimate the weights based on the so-called mixture cure model, assuming both a LC and a

SIC cure model. We further developed an estimator of the area under the curve, and we de-

rived the asymptotic properties of the proposed estimators. Through an extensive simulation

study we showed that our proposal performs well when the censoring rate is reasonably high

and when not too many censored observations are below τ , both when the classifier is known

and unknown. When many censored observations have a follow-up time lower than τ , how-

ever, our proposal shows some difficulties when a SIC cure model is considered to compute

the weights and when the true model for the incidence is a logistic regression model. In such

a case, assuming a LC cure model provides more accurate results compared to the infeasible

competitors. We further investigated the effect of a misspecification of the weights, both at

the covariate and at the modelling levels. We have seen that the performance of our proposal

is only slightly affected and that when the proportion of censored observations below τ is

not too large, the LC particularly still performs very well. In summary, censoring is the

element affecting the most the performance of our proposal and we therefore recommend to

be cautious when the censoring rate is high and when many observations are censored before

τ . We further recommend to check the model in the incidence since, as we have seen, when

the true link function is not logistic, the LC cure model can provide bad results when there

are many censored observations below τ .

Throughout this article, we supposed that M is a linear combination of variables. How-

ever, it is possible to extend our proposal to the case where the classifier would be obtained
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from a different model. Further investigation would be necessary to assess the impact of

such a situation on the computation of the weights, but our proposal is not restricted to the

linear case. Furthermore, we have considered mixture cure models to compute Ŵ0 and Ŵ1.

However, a promotion time cure model, such as the model proposed by Tsodikov (1998),

could also be considered to estimate a ROC curve for the cure status prediction from survival

data.
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Appendix 1

This appendix contains the boxplots of the L1 distance and the AUC for all settings when

n = 500.
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Figure 10: Boxplots of the L1 distances for scenarios 1 and 2 for n = 500.
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Figure 11: Boxplots of the AUC for scenarios 1 and 2 for n = 500.
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Figure 12: Boxplots of the L1 distance and the AUC for scenario 3 Gompertz for n = 500.
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Figure 13: Boxplots of the L1 distances for scenarios 4 and 5 for n = 500.
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Figure 14: Boxplots of the AUC for scenarios 4 and 5 for n = 500.

35



Appendix 2 : Proofs

This appendix contains the proofs of Theorem 3.1 and Corollary 3.1.

Proof of Theorem 3.1. Write

Ŝe(k)− Se(k) = [Ŝe(k)− S̃e(k)] + [S̃e(k)− Se(k)]

= S1(k) + S2(k) (say).

Note that it follows from (2.7) that under the LC mixture cure model,

Se(k) =
E[W1I(M > k)]

E(W1)
:=

N(k)

D
, with W1 =

{1− p(X)}(1−∆)

1− p(X) + p(X)Su(Y |Z)
.

Similarly, write

Ŝe(k) =
N̂(k)

D̂
=
n−1

∑n
i=1 N̂i(k)

n−1
∑n

i=1 D̂i

and S̃e(k) =
Ñ(k)

D̃
=
n−1

∑n
i=1 Ñi(k)

n−1
∑n

i=1 D̃i

.

Then,

S2(k) =
Ñ(k)−N(k)

D̃
+
( 1

D̃
− 1

D

)
N(k)

=
{Ñ(k)−N(k)

D
− N(k)

D2
(D̃ −D)

}{
1 + oP (1)

}
=

{ 1

D
n−1

n∑
i=1

(Ñi(k)− EÑ(k))− N(k)

D2
n−1

n∑
i=1

(D̃i − ED̃)
}{

1 + oP (1)
}
, (7.1)

since D = ED̃ and N(k) = EÑ(k), which is a sum of zero-mean i.i.d. terms indexed by k.

Next, consider S1(k). Using a similar derivation as for S2(k), we have :

S1(k) =
{ 1

D
n−1

n∑
i=1

(N̂i(k)− Ñi(k))− N(k)

D2
n−1

n∑
i=1

(D̂i − D̃i)
}{

1 + oP (1)
}

=
{
S11(k) + S12(k)

}{
1 + oP (1)

}
.
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Let us consider first S11(k). The term S11(k) depends on Ŵi1 − W̃i1, which equals

Ŵi1 − W̃i1

= (1−∆i)
{ 1− p̂(Xi)

1− p̂(Xi) + p̂(Xi)Ŝu(Yi|Zi)
− 1− p(Xi)

1− p(Xi) + p(Xi)Su(Yi|Zi)

}
:= (1−∆i)

{Âi
B̂i

− Ai
Bi

}
= (1−∆i)

{Âi − Ai
Bi

− B̂i −Bi

B2
i

Ai

}{
1 + oP (1)

}
=

1−∆i

B2
i

{
− (p̂(Xi)− p(Xi))(1− p(Xi) + p(Xi)Su(Yi|Zi))

+(1− Su(Yi|Zi))(p̂(Xi)− p(Xi))(1− p(Xi))

−p(Xi)(1− p(Xi))(Ŝu(Yi|Zi)− Su(Yi|Zi))
}{

1 + oP (1)
}

=
1−∆i

B2
i

{
− (p̂(Xi)− p(Xi))Su(Yi|Zi)− (Ŝu(Yi|Zi)− Su(Yi|Zi))p(Xi)(1− p(Xi))

}
×
{

1 + oP (1)
}
.

It follows from the proof of Theorem 3 in Lu (2008) that

p̂(x)− p(x) =
1

n

n∑
j=1

ξ(Xj,Zj, Yj,∆j,x) + op(n
−1/2)

uniformly in x, for a certain function ξ satisfying E(ξ(X,Z, Y,∆,x)) = 0 for all x, and

Ŝu(t|z)− Su(t|z) =
1

n

n∑
j=1

ζ(Xj,Zj, Yj,∆j, t|z) + op(n
−1/2)

uniformly in t and z, for a certain function ζ satisfying E(ζ(X,Z, Y,∆, t|z)) = 0 for all t and
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z. Hence,

S11(k) =
1

D

1

n

n∑
i=1

(Ŵi1 − W̃i1)I(Mi > k)

=
1

D

1

n

n∑
i=1

(1−∆i)I(Mi > k)

B2
i

{
− Su(Yi|Zi)(p̂(Xi)− p(Xi))

−p(Xi)(1− p(Xi))(Ŝu(Yi|Zi)− Su(Yi|Zi))
}{

1 + oP (1)
}

=
1

D

1

n2

n∑
i=1

n∑
j=1

(1−∆i)I(Mi > k)

B2
i

{
− Su(Yi|Zi)ξ(Xj,Zj, Yj,∆j,Xi)

−p(Xi)(1− p(Xi))ζ(Xj,Zj, Yj,∆j, Yi|Zi)
}

+ oP (n−1/2)

:=
1

D

2

n(n− 1)

∑
i<j

{1

2

(
h(Vi, Vj, k) + h(Vj, Vi, k)

)}
+ oP (n−1/2)

:=
1

D

2

n(n− 1)

∑
i<j

h̃(Vi, Vj, k) + oP (n−1/2).

We have a U-process of order 2 with symmetric kernel h̃, where Vi = (Xi,Zi, Yi,∆i). It

follows from Corollary 4 in Sherman (1994) that this U-process can be decomposed in its

Hajek projection and a remainder term that is uniformly of smaller order :

S11(k) =
2

D

1

n

n∑
j=1

E
[
h̃(V, Vj, k)|Vj

]
+ oP (n−1/2)

=
1

D

1

n

n∑
j=1

E
[(1−∆)I(M > k)

B2

{
− Su(Y |Z)ξ(Xj,Zj, Yj,∆j,X)

−p(X)(1− p(X))ζ(Xj,Zj, Yj,∆j, Y |Z)
}]

+ oP (n−1/2). (7.2)

In a similar way, we can show that

S12(k) = −N(k)

D2

1

n

n∑
j=1

E
[1−∆

B2

{
− Su(Y |Z)ξ(Xj,Zj, Yj,∆j,X)

−p(X)(1− p(X))ζ(Xj,Zj, Yj,∆j, Y |Z)
}]

+ oP (n−1/2). (7.3)

We can now combine the expressions for S11(k), S12(k) and S2(k), which leads to

Ŝe(k)− Se(k) = S11(k) + S12(k) + S2(k) + oP (n−1/2)

=
1

n

n∑
j=1

ηSe(Xj,Zj, Yj,∆j, k) + oP (n−1/2), (7.4)
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uniformly in k, where ηSe(Xj,Zj, Yj,∆j, k) is obtained by combining the expressions given

in (7.2), (7.3) and (7.1).

Next, it can be shown that the class

{(x, z, y, δ)→ ηSe(x, z, y, δ, k) : k ∈ R}

is Donsker, by decomposing the function ηSe in products and sums of subfunctions that

are bounded and Donsker (see Examples 2.10.7 and 2.10.8 in Van der Vaart and Wellner,

1996, VW hereafter). For this, it suffices to show that the bracketing number of the classes

corresponding to each of these subfunctions is small enough, in the sense of Theorem 2.5.6

in VW. For calculating these bracketing numbers, one can use the well known results about

the bracketing number of classes of bounded and monotone functions (see Theorem 2.7.5 in

VW), classes of sufficiently smooth functions (see Corollary 2.7.2 in VW), or related results.

Finally, in a similar way as for the specificity, it can be shown that the estimator Ŝp(k)

of the specificity can be decomposed in a sum of iid terms, plus a remainder term that is

uniformly of smaller order :

Ŝp(k)− Sp(k) =
1

n

n∑
j=1

ηSp(Xj,Zj, Yj,∆j, k) + oP (n−1/2), (7.5)

where ηSp is obtained by replacing in the expression of ηSe all indicators I(M > k) by

I(M ≤ k) and by noting that W0 = 1−W1. �

Proof of Corollary 3.1. Write

ˆROC(u)−ROC(u) =
[
Ŝe{(1− Ŝp)−1(u)} − Se{(1− Ŝp)−1(u)}

]
+
[
Se{(1− Ŝp)−1(u)} − Se{(1− Sp)−1(u)}

]
:= T1(u) + T2(u).

We start with T2(u) :

T2(u) = Se′
{

(1− Sp)−1(u)
}{

(1− Ŝp)−1(u)− (1− Sp)−1(u)
}

+ oP (n−1/2)

= Se′
{

(1− Sp)−1(u)
}[
− (1− Ŝp){(1− Sp)−1(u)} − u

(1− Sp)′{(1− Sp)−1(u)}

]
+ oP (n−1/2).

We know that

Ŝp(k)− Sp(k) = n−1
n∑
i=1

ηSp(Xi,Zi, Yi,∆i, k) + oP (n−1/2),
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uniformly in k. It follows that

T2(u) =
Se′{(1− Sp)−1(u)}

(1− Sp)′{(1− Sp)−1(u)}
n−1

n∑
i=1

ηSp(Xi,Zi, Yi,∆i, (1− Sp)−1(u)) + oP (n−1/2),

uniformly in δ ≤ u ≤ 1− δ. Next,

T1(u) = Ŝe{(1− Sp)−1(u)} − Se{(1− Sp)−1(u)}+ oP (n−1/2),

since it follows from the weak convergence of Ŝe− Se that

sup
|k2−k1|≤Kn−1/2

|Ŝe(k2)− Se(k2)− Ŝe(k1) + Se(k1)| = op(n
−1/2)

for 0 < K <∞, and

sup
δ≤u≤1−δ

|(1− Ŝp)−1(u)− (1− Sp)−1(u)| = OP

(
sup
k
|Ŝp(k)− Sp(k)|

)
= OP (n−1/2).

It follows that

T1(u) = n−1
n∑
i=1

ηSe(Xi,Zi, Yi,∆i, (1− Sp)−1(u)) + oP (n−1/2).

Hence,

ˆROC(u)−ROC(u)

= n−1
n∑
i=1

[
ηSe(Xi,Zi, Yi,∆i, (1− Sp)−1(u))

+
Se′{(1− Sp)−1(u)}

(1− Sp)′{(1− Sp)−1(u)}
ηSp(Xi,Zi, Yi,∆i, (1− Sp)−1(u))

]
+ oP (n−1/2),

uniformly in δ ≤ u ≤ 1− δ. We know that the classes{
(x, z, y, δ)→ ηSe(x, z, y, δ, k) : k ∈ R

}
and {

(x, z, y, δ)→ ηSp(x, z, y, δ, k) : k ∈ R
}

are Donsker, and that the functions u → (1 − Sp)−1(u) and k → Se′(k)/(1 − Sp)−1(k)

are continuously differentiable and bounded. Hence, the weak convergence of the process

n1/2{R̂OC(u)−ROC(u)} (δ ≤ u ≤ 1− δ) follows.
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It remains to show the limiting distribution of n1/2( ˆAUCδ − AUCδ). Note that

ÂUCδ − AUCδ =

∫ 1−δ

δ

{
R̂OC(u)−ROC(u)

}
du

= n−1
n∑
i=1

∫ 1−δ

δ

ηROC(Xi,Zi, Yi,∆i, u) du+ oP (n−1/2)

:= n−1
n∑
i=1

ηAUC(Xi,Zi, Yi,∆i) + oP (n−1/2)

and that

Var(ηAUC(X,Z, Y,∆)) =

∫ 1−δ

δ

∫ 1−δ

δ

Cov{ηROC(X,Z, Y,∆, u1), ηROC(X,Z, Y,∆, u2)
}
du1 du2.

This finishes the proof. �
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