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1 Introduction

In classical survival analysis it is usually assumed that all subjects under study will
eventually experience the event of interest. For instance, in an experiment that studies
the lifetime of certain electronic or mechanical devices, it is clear that all devices will
sooner or later fail. Likewise, when studying the survival time of a certain group
of patients in which all causes of death are confounded, it is clear that all patients
will eventually die. However, there are also many contexts in which subjects under
study never experience the event of interest. Their survival time is considered to be
infinite. A prominent example is the lifetime of cancer patients after treatment. Due to
medical advances part of the patient population will not die of cancer. Other relevant
examples stem from epidemiology (e.g. in case of a disease outbreak a fraction of
the population will not get infected), economy (e.g. in an employment study part of
the population may never get a job) and criminology (e.g. in a recidivism study a
portion of the released population will not recommit a crime). In order to take this
special feature into account, a stream of models and inferential procedures have been
developed in survival analysis. The models are called cure models, and we refer to
the book of Maller and Zhou (1996) for early references on this topic.

Let T be the survival time, a positive random variable with survival function
S(t) = P (T > t). If a certain proportion of infinite survival times exist, we can
write this survival function as S(t) = P (T > t|Y = 0)P (Y = 0) + P (T >
t|Y = 1)P (Y = 1), where Y is a binary variable taking the value 0 if a subject
is cured (meaning that T = ∞ in that case) and 1 if it is not. Using the notation
1− φ = P (Y = 0) = limt→∞ S(t) for the so-called cure rate, we can write

S(t) = 1− φ+ φS1(t), (1)

where S1(t) = P (T > t|Y = 1) is the (proper) survival function of the uncured
subjects. As such, we can see that our population is a mixture of two sub-populations,
namely the non-susceptible or cured ones (with mixture probability 1 − φ) and the
susceptible or uncured ones (with mixture probability φ). We will assume in this
paper that the event times are subject to random right censoring. In the presence
of right censoring, all infinite survival times will be censored, as well as some of
the finite survival times, which makes it hard to distinguish the cured subjects from
the susceptible ones. When a subject is uncensored we know for sure that it will
be a non-cured one, but a censored subject can be both cured or uncured. This is a
major challenge, not only for the estimation, but even for the identification of the
model. Conditions need to be imposed to make the model identifiable (see e.g. Taylor
(1995)).

The advantage of writing the survival function S(t) as in (1) is that it allows
to separately study the cure rate 1 − φ and the survival function of the suscepti-
bles S1(t). In this paper we focus on the latter. A parametric form for S1(t) is often
imposed in practice. An attractive feature of parametric models is that usually nice
expressions exist for relevant parameters (e.g. median time to event) and functions
(e.g. hazard) (Klein and Moeschberger 1997). However, to ensure sound inference,
one should verify whether or not the chosen parametric survival function fits the data
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well. While ample tests have been suggested in classical survival analysis, in the con-
text of survival data with cure fraction, the problem of testing the parametric form
of the survival function S1(t) has so far only been studied in an informal way, no
formal test statistics have been developed. Our paper will fill this important gap. The
existing literature is limited to Maller and Zhou (1996), who compare, in an informal
way, the parametric fit for the population survival function with the nonparametric fit
based on a Kaplan-Meier estimator (Kaplan and Meier 1958). More precisely, Maller
and Zhou (1996) use the correlation as test statistic, where a value close to 1 indi-
cates a good parametric choice. No asymptotic justification is given. In this paper, we
propose a novel and simple test to assess the aptness of the assumed parametric form.
To this end, for the survival function of the susceptible subpopulation, the parametric
fit is contrasted with the nonparametric fit in an L2 distance test statistic. Opposed to
Maller and Zhou (1996), we study the asymptotic behavior of the test under the null
hypothesis and under local alternatives.

This paper is the first paper to develop a formal test procedure for the parametric
form of the survival function S1(t). We believe that this development can in a later
stage be used for more sophisticated testing procedures. For instance, an important
extension would be the development of test procedures for the parametric form of
the function S1(t) when the survival function S(t) in (1) depends on a set of covari-
ates. In that case, there exist two main streams of models, the so-called mixture cure
models and the promotion time cure models. We refer to Peng and Taylor (2014)
and Amico and Van Keilegom (2018) for recent review papers on these two classes
of models. The mixture cure model utilizes the same structure as in (1), and there-
fore the main ideas of our approach should be extendable to mixture cure models.
A major challenge is however the way the covariates are handled in that case. In a
goodness-of-fit problem it is important to keep the parsimonious (full) model as flex-
ible as possible by imposing a minimum of constraints on the model. However, when
S1(t) depends on covariates, a completely nonparametric model for S1(t) would lead
to curse-of-dimensionality problems, and one might therefore have to use dimension
reduction techniques in the parsimonious model. As this is a challenging problem
which is moreover not related to the problem we want to address in this paper, we
prefer not to deal with the regression case in this paper, and to leave this for further
research.

The paper is organized as follows. In Section 2 we define our test statistic, to-
gether with the nonparametric estimators of φ, S(t) and S1(t). Section 3 contains the
asymptotic results, and the regularity conditions under which these results are valid.
In Section 4 we investigate the finite sample behavior of the test for diverse para-
metric survival functions. We consider various practical settings: a low versus a high
susceptibility fraction and a short versus a long follow-up period (short versus long
plateau in the population survival curve). A bootstrap algorithm that facilitates the
calculation of an approximate p-value is described. In Section 5 we select a paramet-
ric model for the bone marrow transplant data (BMT data, Klein and Moeschberger
(1997)) and for the UMARU impact study data (UIS data, Hosmer et al. (2008)),
two real-life data sets with different complementary cure features. Indeed, the BMT
data exhibit a low susceptibility rate and a long plateau, whereas the UIS data show a
high susceptibility rate and a short plateau. We compare our results to those based on
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the test by Maller and Zhou (1996). Finally, the Appendix contains the proofs of the
asymptotic results. The paper comes with extensive online Supplementary Material
on common parametric survival functions, a schematic presentation of the simulation
algorithm as well as additional simulation and real-life data results.

2 Test procedure

As mentioned in the Introduction, we suppose that the time to event is subject to
random right censoring. Let C denote the random censoring time independent of T .
The observed data are T̃ = min(T,C) and δ = I(T ≤ C). In this paper, we assume
that T and C are continuous. For a survival function with cure fraction Maller and
Zhou (1992) proposed the following nonparametric estimators for φ and S1(t):

φ̂ = 1− Ŝ(max(T̃i|δi = 1)) and Ŝ1(t) =
φ̂− 1 + Ŝ(t)

φ̂

where Ŝ(t) is the Kaplan-Meier estimator of S(t) (Kaplan and Meier 1958):

Ŝ(t) =

n∏
i=1

(
1− 1

n− i+ 1

)T̃i≤t,δi=1

,

based on an independent and identically distributed sample (T̃i, δi) (i = 1, . . . , n)
with the same distribution as (T̃ , δ). We suppose that 0 < φ < 1.

Important parametric models with τF1 = inf {t : F1(t) = 1} = ∞ include the
Weibull, Gompertz and lognormal. Parametric models with τF1 <∞ are the uniform
distribution on [0, θ] and a truncated version of the Weibull, Gompertz or lognormal
(Table 1 of the Supplementary Material). If τF1

is finite, it can be considered as known
or unknown. The latter case is the most realistic one in practice, and implies that τF1

is an additional parameter in the model.
To ensure valid inference, it is important to verify the aptness of the chosen para-

metric form for S1(t). To this end, consider the hypotheses

H0 : S1 ∈
{
S1,θ : θ ∈ Θ

}
versus H1 : S1 6∈

{
S1,θ : θ ∈ Θ

}
whereΘ is the parameter space of the (p-dimensional vector of) parameter(s) θ in the
assumed parametric form for S1(t). As test statistic we define the Cramér-von Mises
distance

Λn =

n∑
i=1

{
Ŝ1(T̃i)− S1,θ̂(T̃i)

}2
, (2)

where Ŝ1(t) is the nonparametric estimator of Maller and Zhou (1992) and θ̂ is the
maximum likelihood estimator for θ under the null hypothesis, defined as

θ̂ = argmaxθ∈Θ logL(θ, φ̂)

where the log-likelihood is

logL(θ, φ) =
∑n
i=1

[
δi log

{
φf1,θ(T̃i)

}
+ (1− δi) log

{
1− φ+ φS1,θ(T̃i)

}]
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and f1,θ(t) = (∂/∂t)F1,θ(t) and F1,θ(t) = 1 − S1,θ(t), i.e. we maximize the log-
likelihood with respect to θ for φ fixed at its nonparametrically estimated value φ̂. By
doing so, we ensure valid comparison of both estimators for the survival function of
the susceptible subpopulation, Ŝ1(t) resp. S1,θ̂(t).

3 Asymptotic theory

Let θ0 be the true value of θ under H0. It is the solution (in θ) of the p-dimensional
system of equations M(θ, φ0) = 0, where φ0 is the true value of φ, M(θ, φ) =
E[m(T̃ , δ, θ, φ)] is the expected value with respect to the true distribution φ0F1,θ0(·)
of T and G(·) of C, and

m(t, δ, θ, φ) =

{
δ
∂
∂θ f1,θ(t)

f1,θ(t)
+ (1− δ) φ ∂

∂θS1,θ(t)

1−φ+φS1,θ(t)
for t ∈ Aθ

0 for t 6∈ Aθ,

where

Aθ =
{
t ∈ R+ : ∂

∂θf1,θ(t) and ∂
∂θS1,θ(t) exist

}
,

and ∂
∂θ denotes the vector of partial derivatives with respect to the components of

θ. Note that when θ = τF1 is finite and unknown, the survival function S1,θ(t) is
possibly not differentiable in θ at t = θ (for fixed t). Fortunately, as will be described
below, the latter does not disturb the asymptotic theory for our test statistic. We as-
sume throughout the paper that at most a finite number of values of t do not belong to
Aθ. As such, if the true distribution φ0F1,θ0(·) is continuous on [0, τF1

], the function
M(θ, φ) is well-defined. See also assumption (A1) below. In addition,

θ̂ = argminθ∈Θ‖Mn(θ, φ̂)‖,

where Mn(θ, φ) = n−1
∑n
i=1m(T̃i, δi, θ, φ), and ‖ · ‖ is the Euclidean norm. Note

that sinceMn(θ, φ̂) is not necessarily smooth in θ, a solution of the equationMn(θ, φ̂)

= 0 does not necessarily exist, and so we minimize the norm ‖Mn(θ, φ̂)‖ instead. De-
fine Γ (θ, φ) = (∂/∂φ)M(θ, φ), let ∆(θ, φ) be the p× p-matrix of partial derivatives
of M(θ, φ) with respect to the components of θ, and let ∆ = ∆(θ0, φ0).

Finally, φ̂ and φ can be written as

φ̂ = 1− Ŝ(τF1−) and φ = 1− S(τF1−). (3)

Indeed, the Kaplan-Meier estimator Ŝ does not change after the last uncensored ob-
servation, thus Ŝ(max(T̃i|δi = 1)) = Ŝ(τF1

−). On the other hand, φ = P (Y =
1) = P (T <∞) = P (T < τF1

) = 1− S(τF1
−).

Denoting the distribution function of C resp. T̃ by G resp. H , we make the fol-
lowing assumption, which is essential for the identifiability of our model (see e.g.
Maller and Zhou (1992)):

τF1
≤ τG ≤ ∞.
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Since τF =∞ and τG ≤ ∞, we have that τH = τG, and hence τF1 ≤ τH ≤ ∞.
The asymptotic results given below are valid under the following regularity con-

ditions (for the definition of a Donsker class, we refer to Chapter 2.1 in Van der Vaart
and Wellner (1996)):

(A1) The cardinality of the set Acθ0 is finite.
(A2) For all δ > 0, there exists a ε > 0 such that inf‖θ−θ0‖>δ ‖M(θ, φ0)‖ > ε.
(A3) The matrix ∆(θ, φ0) exists for all θ and is continuous in θ at θ = θ0. Moreover,

∆ = ∆(θ0, φ0) is non-singular.
(A4) τF1 ≤ τG ≤ ∞.
(A5) T and C are independent and continuous.
(A6)

∫ τF1

0
dF (t)

(1−G(t))2 <∞.
(A7) The class {(t, δ)→ m(t, δ, θ, φ) : θ ∈ Θ,φ ∈ [0, 1]} is Donsker.
(A8) E

[
m2(T̃ , δ, θ0, φ0)

]
<∞.

(A9) supt∈B
∣∣ ∂
∂θS1,θ0(t)

∣∣ <∞, where B = [0, τH ] ∩ [0,∞) ∩Aθ0 .

Note that assumption (A1) is required to make sure that the discontinuity points
in the set Aθ0 do not disturb the asymptotic theory. Assumption (A2) is an identifi-
ability assumption, that is common in the context of M- and Z-estimators (see e.g.
Chen et al. (2003)). Note that a sufficient (but not necessary) condition for (A6) is
that τF1 < τG. If f1,θ and S1,θ are twice continuously differentiable with respect to
θ (which is the case for most parametric families defined on [0,∞)), then assump-
tion (A7) is easy to verify, using e.g. Corollary 2.7.2 in Van der Vaart and Wellner
(1996). On the other hand, if τF1

is finite and depends on θ, then the verification
of assumption (A7) will depend on the parametric family at hand. For instance, for
the uniform density f1,θ(t) = I(0 ≤ t ≤ θ)/θ, the monotonicity of the indicator
function together with Theorem 2.7.5 in Van der Vaart and Wellner (1996) ensure
the Donsker property. Finally, assumptions (A8) and (A9) are regularity conditions
needed for some technical developments in the proofs.

Our first result gives a uniform independent and identically distributed expansion
and the weak convergence of the process n1/2

(
Ŝ(·)−S(·)

)
in the space `∞([0, τH ]∩

[0,∞)) of bounded functions defined on [0, τH ]∩ [0,∞), endowed with the uniform
norm. Note that Ŝ(t) = Ŝ(τF1

) and S(t) = S(τF1
) for t ≥ τF1

, and so it suffices
to study the process Ŝ(·) − S(·) on the interval [0, τF1 ] ∩ [0,∞). The result is an
extension of Theorem 1 in Lo and Singh (1986), who restrict attention to independent
and identically distributed expansions that are uniform on [0, τ ] for any τ < τH .

Proposition 1 Assume (A4)-(A6). Then,

Ŝ(t)− S(t) = −n−1
n∑
i=1

ξ(T̃i, δi, t) + rn(t),

where supt∈[0,τH ]∩[0,∞) |rn(t)| = oP (n
−1/2),

ξ(y, δ, t) = (1− F (t))
{I(y ≤ t)δ
1−H(y)

−
∫ y∧t

0

dH1(z)

(1−H(z))2

}
,
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a ∧ b = min(a, b), H1(z) = P (T̃ ≤ z, δ = 1) and 0/0 is defined as 0. Moreover,
the process n1/2

(
Ŝ(·)−S(·)

)
converges weakly in the space `∞([0, τH ]∩[0,∞)) to a

zero-mean Gaussian process with covariance function (t1, t2)→ E[ξ(T̃ , δ, t1)ξ(T̃ , δ, t2)].

We continue with a result on the limiting distribution of n1/2(θ̂ − θ0).

Proposition 2 Assume (A1)-(A7). Then, θ̂ − θ0 → 0 in probability,

θ̂ − θ0 = −∆−1
{
Mn(θ0, φ0) + Γ (θ0, φ0)(φ̂− φ0)

}
+ oP (n

−1/2)

= −∆−1n−1
n∑
i=1

{
m(T̃i, δi, θ0, φ0) + Γ (θ0, φ0)ξ(T̃i, δi, τF1−)

}
+ oP (n

−1/2),

and n1/2(θ̂−θ0)→ Np(0, ∆
−1V ∆−1) in distribution, where V = Var

{
m(T̃ , δ, θ0, φ0)+

Γ (θ0, φ0)ξ(T̃ , δ, τF1−)
}

.

We are now ready to state the weak convergence of the process n1/2
(
Ŝ1(·) −

S1,θ̂(·)
)

in the space `∞(B), with B as in (A9). Note that

Ŝ1(t)− S1,θ̂(t) = Ŝ1(t)− S1(t)−
(
∂
∂θS1,θ0(t)

)t(
θ̂ − θ0

)
+ oP (‖θ̂ − θ0‖),

thanks to Young’s form of Taylor’s expansion (see e.g. Serfling (1980)). Hence, mak-
ing use of Propositions 1 and 2 above for the first and second term of this decom-
position, we will develop an independent and identically distributed expansion for
Ŝ1(·)− S1,θ̂(·) on B.

Theorem 1 Assume (A1)-(A9).

(a) UnderH0,

Ŝ1(t)− S1,θ̂(t) = n−1
n∑
i=1

η(T̃i, δi, t) +Rn(t),

where supt∈B |Rn(t)| = oP (n
−1/2), and where

η(T̃i, δi, t) = −
1

φ0
ξ(T̃i, δi, t)

+
[1− S(t)

φ20
+
( ∂
∂θ
S1,θ0(t)

)t
∆−1Γ (θ0, φ0)

]
ξ(T̃i, δi, τF1

−)

+
( ∂
∂θ
S1,θ0(t)

)t
∆−1m(T̃i, δi, θ0, φ0)

for t ∈ Aθ0 .
(b) Under H0, the process n1/2

(
Ŝ1(·) − S1,θ̂(·)

)
converges weakly in `∞(B) to a

zero-mean Gaussian process W (·) with covariance function

Cov
(
W (t1),W (t2)

)
= E

[
η(T̃ , δ, t1)η(T̃ , δ, t2)

]
.

The limiting distribution of our test statistic Λn now follows:
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Corollary 1 Assume (A1)-(A9). Then, underH0,

Λn →
∫
W 2(t) dH(t) in distribution.

Next, we consider the asymptotic distribution of the test statistic Λn under local
alternatives of the form

H1n : S1 = S1,θ0 + n−1/2c(S̃1 − S1,θ0), (4)

where S̃1 is a fixed survival function and c is a fixed constant. Note that under H1n

we can also write S1 as S1 = (1 − n−1/2c)S1,θ0 + n−1/2cS̃1, which shows that S1

is a survival function, provided that n is sufficiently large so that 0 ≤ c ≤
√
n. We

then have the following result.

Corollary 2 Assume (A1)-(A9). Then, underH1n,

Λn →
∫
[W (t) + cb(t)]2 dH(t),

in distribution, where

b(t) =

∂S1,θ0

∂θ (t)
∂M
∂θ (θ0, φ0)

ES̃ [m(T̃ , δ, θ0, φ0)] + S̃1(t)− S1,θ0(t),

where S̃(t) = S̃1(t)φ0+1−φ0 and where ES̃ [m(T̃ , δ, θ0, φ0)] denotes the expected
value assuming that the survival function of T equals S̃.

Note that the asymptotic distribution of the test statistic, both under the null hy-
pothesis and under local alternatives, depends on several unknown quantities. More-
over, convergence in distribution might be rather slow. We therefore propose a para-
metric bootstrap algorithm to obtain an approximate p-value for the test. Details are
given below.

Step 1. Obtain, under H0, the estimators θ̂ and φ̂. Furthermore, calculate the test
statistic Λn defined in (2).
Step 2. For b = 1, . . . , nb create resamples in the following way :

Step 2.1. Generate Y bi where Y bi ∼ Be(φ̂), i = 1, . . . , n.
Step 2.2. Generate T bi from S1,θ̂(·) if Y bi = 1, and set T bi =∞ if Y bi = 0.

Step 2.3. Generate Cbi from 1− Ĝ(·), the Kaplan-Meier estimator of G(·).
Step 2.4. Set T̃ bi = min(T bi , C

b
i ) and δbi = I(T bi ≤ Cbi ).

Step 2.5. Obtain the bootstrap value of the test statistic:
Λbn =

∑n
i=1

{
Ŝb1(T̃

b
i )− S1,θ̂b(T̃

b
i )
}2

where Ŝb1 is the Kaplan-Meier estimator of S1 and θ̂b is the estimator of θ,
both based on the bootstrap data.

Step 3. Calculate the approximate p-value via pboot = 1
nb

∑nb
b=1 I{Λbn ≥ Λn}.
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4 Simulation study

4.1 Non-local alternatives

Simulation setting. For the event times Ti of susceptible study items we consider
four survival functions: Weibull, Gompertz, lognormal or uniform. Details on the pa-
rameter choices are listed in Table 1. The corresponding density, survival and hazard
functions are visualized in Figure 1 of the Supplementary Material. Non-susceptible
study items have an event at Ti = ∞. The censoring times Ci (i = 1, . . . , n) are
generated from a Weibull survival function with λ = 0.05 and ρ = 3, resp. λ = 0.05
and ρ = 1.5, leading to a short, resp. a long plateau in the tail of the population sur-
vival function of the event times Ti (i = 1, . . . , n). The latter corresponds to a short,
resp. a long follow-up period. The observed data are given by T̃i = min(Ti, Ci) and
δi = I{Ti ≤ Ci} (i = 1, . . . , n). The probability of being susceptible is chosen to be
φ = 0.25 or φ = 0.75, representing a low, resp. a high susceptibility rate. The Sup-
plementary Material contains a schematic presentation of the simulation algorithm.
In each of the aforementioned scenarios, we assess the fit of a Weibull, a Gompertz,
a lognormal and a uniform survival function to the susceptible subpopulation. The
results are based on 1000 data sets with sample size n = 150 or n = 500, each
supplemented with 500 bootstrap samples.

Simulation results. Before interpreting the estimation and the testing results, we
point out that within a particular scenario the censoring rate can be linked to the
length of the plateau in the tail of the population survival function or equivalently to
the length of the follow-up period. For example, if φ = 0.25 then a censoring rate of
at least 75% is to be expected. For a long follow-up, it is more likely that the event of
a susceptible study item will be observed within the study period than e.g. for a short
follow-up, resulting in a censoring rate closer to 75% for the former. The same holds
true if φ = 0.75, where a censoring rate of at least 25% is to be expected.

The estimation accuracy is evaluated by the root squared error (RSE) over all time
points

RSE =
√∑n

i=1{S̃1(T̃i)− S1(T̃i)}2

where S̃1(t) ∈ {S1,θ̂(t), Ŝ1(t)} is the parametric or the nonparametric counterpart
of the true survival function S1(t). As such we define RSEp and RSEnp. The obtained
values are summarized in Table 2 (φ = 0.75, long plateau) and Table 3 (φ = 0.25,

Table 1 Simulation settings for the event times of susceptible subjects, see also Table 1 of the Supplemen-
tary Material.

λ ρ µ γ θ mean variance

Weibull 0.50 1.50 1.433 0.947
Gompertz 0.25 0.75 1.543 0.789
lognormal 0.50 0.25 1.868 0.991
uniform 3.25 1.625 0.880
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Table 2 Simulation results - φ = 0.75 and long plateau. Mean censoring rate; mean root squared error
for the nonparametric estimator (RSEnp) and the parametric estimator (RSEp); rejection rates at 5% and at
10%; AIC preference.

true fit n cens. RSEnp RSEp rej. rate rej. rate AIC pref.
5% 10%

Weibull

Weibull 150 0.318 0.420 0.320 0.042 0.099
500 0.319 0.415 0.317 0.051 0.092

Gompertz 150 0.318 0.419 0.451 0.433 0.561 0.872
500 0.319 0.415 0.767 0.910 0.941 0.986

lognormal 150 0.318 0.420 0.575 0.760 0.854 0.957
500 0.319 0.413 0.926 1 1 1

uniform 150 0.318 0.419 2.245 0.999 0.999 0.996
500 0.319 0.413 5.039 1 1 1

Gompertz

Weibull 150 0.324 0.416 0.455 0.497 0.618 0.933
500 0.325 0.415 0.678 0.986 0.992 0.999

Gompertz 150 0.324 0.416 0.313 0.058 0.117
500 0.325 0.414 0.314 0.055 0.100

lognormal 150 0.324 0.417 0.961 0.998 1 1
500 0.325 0.416 1.698 1 1 1

uniform 150 0.324 0.416 1.006 0.791 0.863 0.851
500 0.325 0.415 2.513 1 1 0.999

lognormal

Weibull 150 0.344 0.432 0.516 0.784 0.867 0.960
500 0.344 0.433 0.807 1 1 1

Gompertz 150 0.344 0.434 1.014 0.998 0.999 0.997
500 0.344 0.430 1.896 1 1 1

lognormal 150 0.344 0.434 0.330 0.059 0.113
500 0.344 0.432 0.330 0.054 0.097

uniform 150 0.344 0.434 2.151 1 1 1
500 0.344 0.432 5.111 1 1 1

uniform

Weibull 150 0.330 0.419 0.594 0.926 0.968 1
500 0.331 0.416 0.972 1 1 1

Gompertz 150 0.330 0.419 0.451 0.605 0.731 0.996
500 0.330 0.417 0.659 0.993 0.999 1

lognormal 150 0.330 0.418 1.069 1 1 1
500 0.331 0.413 1.902 1 1 1

uniform 150 0.330 0.419 0.074 0.055 0.099
500 0.331 0.418 0.041 0.040 0.098

short plateau), as well as Table 2 (φ = 0.75, short plateau) and Table 3 (φ = 0.25,
long plateau) of the Supplementary Material. The results on the estimated parameter
values are deferred to the Supplementary Material (Table 8 to Table 11). Note that φ
is obtained nonparametrically, even if S1(t) is estimated parametrically. As expected,
if the model is correct then RSEp is (on average) smaller that RSEnp. Further, if the
model is correct then parameters are (on average) estimated close to their true value.
Estimation is somewhat more accurate for φ = 0.75 and in the long plateau scenarios.
In all scenarios, φ is (on average) estimated on target.

We evaluate the testing strategy through the empirical type I error and the em-
pirical power attained at significance levels α = 0.05 and α = 0.10. The rejection
rates are reported in Table 2 (φ = 0.75, long plateau) and Table 3 (φ = 0.25, short
plateau), as well as in Table 2 (φ = 0.75, short plateau) and Table 3 (φ = 0.25, long
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Table 3 Simulation results - φ = 0.25 and short plateau. Mean censoring rate; mean root squared error
for the nonparametric estimator (RSEnp) and the parametric estimator (RSEp); rejection rates at 5% and at
10%; AIC preference.

true fit n cens. RSEnp RSEp rej. rate rej. rate AIC pref.
5% 10%

Weibull

Weibull 150 0.803 1.138 0.921 0.032 0.078
500 0.803 1.302 1.029 0.029 0.085

Gompertz 150 0.803 1.137 1.002 0.047 0.111 0.651
500 0.803 1.300 1.212 0.156 0.237 0.845

lognormal 150 0.803 1.137 1.176 0.264 0.411 0.739
500 0.804 1.299 1.993 0.590 0.726 0.913

uniform 150 0.803 1.138 1.029 0.049 0.101 0.265
500 0.803 1.301 2.119 0.569 0.714 0.877

Gompertz

Weibull 150 0.812 1.081 1.018 0.141 0.256 0.714
500 0.811 1.078 1.405 0.446 0.610 0.863

Gompertz 150 0.812 1.079 0.923 0.027 0.070
500 0.811 1.079 0.908 0.034 0.070

lognormal 150 0.812 1.081 1.733 0.566 0.715 0.866
500 0.811 1.079 3.345 0.945 0.974 0.993

uniform 150 0.812 1.081 0.843 0.045 0.095 0.089
500 0.811 1.078 1.138 0.044 0.119 0.438

lognormal

Weibull 150 0.826 1.329 1.204 0.112 0.190 0.715
500 0.826 1.523 1.550 0.401 0.540 0.891

Gompertz 150 0.826 1.330 1.302 0.335 0.490 0.892
500 0.826 1.514 1.682 0.905 0.954 0.996

lognormal 150 0.826 1.332 1.004 0.038 0.090
500 0.826 1.520 1.083 0.033 0.080

uniform 150 0.826 1.330 1.606 0.216 0.325 0.964
500 0.826 1.520 2.056 0.228 0.481 1

uniform

Weibull 150 0.821 1.082 1.193 0.207 0.376 0.944
500 0.820 1.042 1.833 0.773 0.897 0.983

Gompertz 150 0.821 1.084 0.987 0.053 0.140 0.932
500 0.820 1.043 1.092 0.195 0.318 0.964

lognormal 150 0.821 1.082 1.839 0.528 0.708 0.953
500 0.820 1.043 3.475 0.980 0.994 0.998

uniform 150 0.821 1.083 0.800 0.097 0.177
500 0.820 1.043 0.525 0.054 0.112

plateau) of the Supplementary Material. It follows that the empirical type I error is
usually (slightly) lower than the nominal level for the short plateau scenarios and a
small sample size, but that it is close to the latter for the long plateau scenarios and a
higher sample size. Similarly, the empirical power is higher for long plateau scenarios
as well as for a higher susceptibility rate. Also, a larger sample size leads to a substan-
tial increase in the empirical power. Overall, the difference between a Weibull and a
Gompertz survival function as well as between a uniform and a Gompertz survival
function seems harder to detect, while the distinction between other survival func-
tions appears to be easier. A comparison of the true survival function with its various
estimated parametric counterparts illustrates and supports this statement, see Figure
4 to Figure 19 in the Supplementary Material. The parameter estimates in these fitted
models are obtained by taking the average over 1000 estimated values based on sam-
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ples of size n = 500. It follows that the estimated Weibull and Gompertz survival
functions are often close to each other and to the true, Weibull or Gompertz, survival
function. The same holds true for a uniform versus a Gompertz survival function.
The tables also show the AIC preference rate, i.e. the extent to which the correct para-
metric survival function is preferred over an incorrect parametric survival function as
based on a AIC comparison. A smaller AIC value corresponds to a better parametric
model. It follows that a lower AIC preference rate goes along with a smaller empirical
power of the proposed test, reflecting/confirming the difficulty to obtain a clear detec-
tion in some scenarios. Finally, in each simulation scenario the size of the discrepancy
between RSEp and RSEnp, the rejection rate as well as the AIC preference rate point
towards a similar conclusion, i.e. a larger discrepancy in RSE goes together with a
higher rejection rate and a higher AIC preference rate, all indications of an incorrect
parametric model choice.

4.2 Local alternatives

Simulation setting. We focus on sample size n = 500. For the event times Ti of sus-
ceptible study items we consider two survival functions: a combination of Weibull
(S1,θ0 ) and Gompertz (S̃1) or a combination of Weibull (S1,θ0 ) and lognormal (S̃1).
The parameter choices are as listed in Table 1. The constant c in (4) equals 0, 5, 10, 15,
20 or

√
500, representing a transition from a Weibull survival function to a Gompertz,

resp. a lognormal survival function. The latter is illustrated in Figure 2 of the Supple-
mentary Material. Non-susceptible study items have an event at Ti = ∞. As before,
the censoring times Ci (i = 1, . . . , 500) are generated from a Weibull survival func-
tion with λ = 0.05 and ρ = 3 (short plateau), resp. λ = 0.05 and ρ = 1.5 (long
plateau). The observed data are given by T̃i = min(Ti, Ci) and δi = I{Ti ≤ Ci}
(i = 1, . . . , 500). The probability of being susceptible is set to be φ = 0.25 or
φ = 0.75. For each of the considered scenarios, we evaluate the fit of a Weibull
survival function to the susceptible subpopulation. The results are based on 1000
data sets, each supplemented with 500 bootstrap samples to obtain an approximate
p-value.

Simulation results. The estimation and testing results are listed in Table 4 to Table 7
of the Supplementary Material. Figure 1 and Figure 3 of the Supplementary Material
visualize the testing results. Clearly the 5% and 10% rejection rates go up as the
constant c increases from 0 to

√
500, i.e. as the true survival function moves from

Weibull (c = 0) to Gompertz, resp. lognormal (c =
√
500), the test gains empirical

power. As expected, the AIC preference rate also grows with increasing c.

5 Data application

We explore two real-life data sets. First, the presence of a cure fraction is established
by applying the likelihood ratio test of Maller and Zhou (1996), which compares the
fit of a model with no cure fraction to the fit of a model with cure fraction. The null
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Fig. 1 Top panel: φ = 0.75 and long plateau. Bottom panel: φ = 0.25 and short plateau. Left panel:
true survival function of susceptible subpopulation is a combination of Weibull and Gompertz with
c ∈ {0, 5, 10, 15, 20,

√
500}, fitted survival function is Weibull. Right panel: true survival function of

susceptible subpopulation is a combination of Weibull and lognormal with c ∈ {0, 5, 10, 15, 20,
√
500},

fitted survival function is Weibull. The solid line represents the 5% rejection rate, the dashed line is the
10% rejection rate and the dotted line gives the AIC preference rate.

hypothesis states that φ = 1 (no cure fraction present) and the asymptotic null dis-
tribution of the likelihood ratio test corresponds to a 50− 50 mixture of a chi-square
random variable with one degree of freedom and a point mass at 0. The test is accom-
panied by a visual inspection comparing both fits with the Kaplan-Meier estimate of
the population survival function. For the data sets at hand we consider Weibull, Gom-
pertz, lognormal and uniform as plausible parametric choices for the survival function
of the entire population (model with no cure fraction) or the survival function of the
susceptible group (model with cure fraction). Second, the aptness of each parametric
form is verified. Here, we apply the correlation test of Maller and Zhou (1996), which
involves the estimated survival function with cure fraction and the Kaplan-Meier esti-
mate for the population survival function, each evaluated at the observed event times.
The null hypothesis states that the chosen parametric form is suitable or equivalently
that the correlation is nearly 1. Unfortunately, the asymptotic null distribution of the
correlation test is unknown. Maller and Zhou (1996) therefore resorted to a simula-
tion study, with specific assumptions on e.g. the censoring scheme. For real-life data
the latter is unknown, making the approach of Maller and Zhou (1996) inadequate. To
overcome the lack of distributional knowledge, we opt to apply a bootstrap scheme
similar to the one outlined in Section 3. As such, no extra assumptions on e.g. the
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censoring scheme are required. The test comes along with a plot containing the cor-
responding pairs of estimated survival values. The closer these points are to the line
with slope 1, or equivalently, the closer the correlation is to 1, the better the paramet-
ric fit. The choice of parametric form is further assessed via the test as presented in
Section 2, supplemented with the suggested bootstrap scheme.

5.1 Dataset 1: bone marrow transplant

A transplant of bone marrow is a standard therapy for acute leukemia. Unfortu-
nately, recovery is complex and not always successful. Here, we investigate the time
to leukemia relapse (in years) based on data of 137 patients. The follow-up time is
about 7 years, in which 42 patients (30.66%) experienced a relapse. The left panel
of Figure 2 reveals a plateau in the Kaplan-Meier estimate of the population survival
function for time to leukemia relapse, hence the presence of a cure fraction (patients
who will never experience a relapse) is plausible. Furthermore, the likelihood ratio
test of Maller and Zhou (1996) indicates that, regardless of the parametric form, a
model with cure fraction is preferred (at 5%). Visual support can be found in Figure
20 of the Supplementary material. Indeed, for each parametric choice, the mixture
model is closer to the Kaplan-Meier estimate of the population survival function.
The (nonparametrically) estimated probability of being susceptible is φ̂ = 0.375.
The BMT data are thus characterized by a long plateau in the survival plot and a
rather low susceptibility rate. More details on the data can be found in Klein and
Moeschberger (1997). Next, we assess the appropriateness of each of the parametric
survival functions based on 1000 bootstrap samples. The results are summarized in
Table 4 and Table 5. It follows that, for both the correlation test of Maller and Zhou
(1996) as well as our test, the null hypothesis is only rejected for a uniform survival
function (at 5%). The left panel of Figure 22 in the Supplementary material supports
this conclusion, i.e. the dots corresponding to the uniform deviate a lot from the line
with slope 1. Also, the AIC values of all parametric models are quite alike with a
slight preference for lognormal. The right panel of Figure 2 visualizes the paramet-
ric estimates, together with the nonparametric counterpart. It seems that lognormal
is closer to the nonparametric estimator for time values below 1.75, while Weibull
and Gompertz provide a better fit for time values above 1.75. The uniform survival
function clearly insuffices. The estimated parameter values are displayed in Table 12
of the Supplementary Material. To obtain standard errors 1000 bootstrap samples are
generated.

5.2 Dataset 2: UMARU impact study

Drugs are addictive and hence many drug users experience a relapse. Here, we ana-
lyze the time to return to drug use (in years) after receiving therapy. The data contain
information on the treatment duration and the site at which treatment took place.
Patients were randomly assigned to a short or a long program, either at site 1 or 2.
Short versus long means 3 months resp. 6 months at site 1, while it corresponds to
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Table 4 Results for bone marrow transplant (BMT) and UMARU impact study (UIS), based on the corre-
lation test of Maller and Zhou (1996).

Weibull Gompertz lognormal uniform

BMT Test statistic 0.995 0.995 0.996 0.974
P-value 0.121 0.134 0.227 0.003

UIS Test statistic 0.998 0.997 0.996 0.890
P-value 0.057 0.004 0.002 0

Table 5 Results for bone marrow transplant (BMT) and UMARU impact study (UIS), based on the test in
Section 2.

Weibull Gompertz lognormal uniform

BMT
Test statistic 0.189 0.158 0.171 2.012

P-value 0.091 0.182 0.248 0.003
AIC 201.852 203.352 200.048 207.172

UIS
Test statistic 0.106 0.253 0.423 18.748

P-value 0.112 0.005 0.012 0
AIC 269.780 280.758 281.358 465.094

6 months, resp. 12 months at site 2. Comparison of Kaplan-Meier curves via a log-
rank test reveals a significant effect of treatment duration, but not of site (α = 5%).
Based on this, we consider the data of patients receiving a short treatment, at either
site 1 or 2. As such, we retain 289 patients of which 239 (82.70%) returned to drug
use. The follow-up time is about 2 years. The left panel of Figure 2 reveals a plateau
in the Kaplan-Meier estimate of the population survival function for time to reuse
of drugs and thus suggests the presence of a cure fraction (patients who will never
return to drug use). Moreover, the likelihood ratio test of Maller and Zhou (1996)
suggests that, regardless of the parametric form, a model with cure fraction is more
appropriate (at 5%). Graphical support can be found in Figure 21 of the Supplemen-
tary material. Indeed, for each parametric choice, the mixture model is closer to the
Kaplan-Meier estimate of the population survival function. The (nonparametrically)
estimated probability of being susceptible is φ̂ = 0.835. The UIS data thus show a
short plateau in the survival plot and a rather high susceptibility rate. Full details on
the data are given in Hosmer et al. (2008). Next, we assess the usefullness of each of
the parametric survival functions based on 1000 bootstrap samples. The results are
given in Table 4 and Table 5. It follows that, for both the correlation test of Maller
and Zhou (1996) as well as our test, the null hypothesis is not rejected for Weibull (at
5%). The right panel of Figure 22 in the Supplementary material supports this conclu-
sion, i.e. the dots corresponding to the Weibull seem to be close to the line with slope
1. Also, the AIC value is substantially smaller for Weibull than for Gompertz, log-
normal and uniform, confirming the better fit of Weibull. The right panel of Figure 2
visualizes the parametric estimates, together with the nonparametric counterpart. The
latter illustrates the deviating fit for lognormal and uniform. The estimated parameter
values are given in Table 12 of the Supplementary Material. To obtain standard errors
1000 bootstrap samples are used.
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Fig. 2 Top panel: bone marrow transplant. Bottom panel: UMARU impact study. Left panel: Kaplan-
Meier estimator of the population survival function. Right panel: estimators of the survival function for the
susceptible subpopulation.
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Appendix : Proofs of the asymptotic results

Proof (of Proposition 1) As noted just before the statement of this proposition, the
process n1/2(Ŝ(·)−S(·)) is constant from τF1

on. Therefore, it suffices to study this
process on [0, τF1 ] ∩ [0,∞). To this end, we will use the results in Sánchez-Sellero
et al. (2005). Although the latter paper considers the case where no cure fraction is
present, it can be easily seen that the presence of a cure fraction does not alter the
results, since inference is based on survival data available on [0, τH ] ∩ [0,∞), so
the shape of the survival function S(t) for t larger than τH has no impact on the
results. In the absence of covariates and when the data are not subject to truncation,
Theorem 1 in the latter paper provides an independent and identically distributed rep-
resentation for Kaplan-Meier integrals of the form

∫
ϕ(s) d(Ŝ(s)− S(s)) uniformly

over functions ϕ belonging to VC-subgraph classes of functions. Consider the family
{ϕt(s) = I(s ≤ t) : t ∈ [0, τF1

]∩[0,∞)}. This is a VC-subgraph class, since the col-
lection of all subgraphs of these functions is easily seen to be the set of all rectangles
of the form [0, t]×[0, 1] with 0 ≤ t ≤ τF1

, and this is a VC-class of sets, since its VC-
index equals 2, so finite. See Van der Vaart and Wellner (1996), page 141, for more
details about VC-subgraph classes. Since

∫
ϕt(s) d(Ŝ(s) − S(s)) = Ŝ(t) − S(t), it

follows from Theorem 1 in Sánchez-Sellero et al. (2005) that

Ŝ(t)− S(t) = −n−1
n∑
i=1

ξ(T̃i, δi, t) + rn(t),

where supt∈[0,τF1
]∩[0,∞) |rn(t)| = oP (n

−1/2), where the formula of ξ(T̃i, δi, t) is
obtained after some straightforward algebraic calculations. In particular, this shows
that the process n1/2(Ŝ(·)−S(·)) converges weakly in `([0, τF1 ]∩ [0,∞)), since the
class {(y, δ)→ ξ(y, δ, t) : t ∈ [0, τF1

]∩ [0,∞)} is a Donsker class thanks to Lemma
1 below.

Proof (of Proposition 2) We prove the asymptotic normality of θ̂ by checking the
conditions of Theorems 1 and 2 in Chen et al. (2003). Theorem 1 gives conditions
under which θ̂ is weakly consistent, which is required for the asymptotic normality
that is established in Theorem 2. Let us check the conditions of these two theorems,
one by one. Condition (1.1) is satisfied by definition of the estimator θ̂, whereas
condition (1.2) holds true thanks to assumption (A2). The continuity ofM(θ, φ) with
respect to φ in φ = φ0 stated in condition (1.3) is obviously satisfied. For condition
(1.4) we know that φ̂ − φ0 = OP (n

−1/2) = oP (1), because of (3) and Proposition
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1. Finally, condition (1.5) holds true thanks to (A7). This shows that θ̂ − θ0 → 0 in
probability.

Next, we verify the conditions of Theorem 2 in Chen et al. (2003). Condition (2.1)
is verified by the definition of θ̂. Condition (2.2) is satisfied thanks to assumption
(A3). Next, for condition (2.3) note that

Γ (θ, φ) = E
[
(1− δ)

∂
∂θS1,θ(T̃ )(1− φ+ φS1,θ(T̃ ))− φ ∂

∂θS1,θ(T̃ )(−1 + S1,θ(T̃ ))

(1− φ+ φS1,θ(T̃ ))2

]
= E

[
(1− δ)

∂
∂θS1,θ(T̃ )

(1− φ+ φS1,θ(T̃ ))2

]
.

Hence, it is easily seen that (2.3)(i) is satisfied, whereas for (2.3)(ii) we have that

‖Γ (θ, φ0)− Γ (θ0, φ0)‖ ‖φ− φ0‖ ≤ ‖θ − θ0‖ ‖φ− φ0‖ = o(1)δn

whenever ‖φ − φ0‖ ≤ δn and ‖θ − θ0‖ ≤ δn with δn → 0. Condition (2.4) follows
from the fact that φ̂ − φ0 = OP (n

−1/2) = oP (n
−1/4), whereas condition (2.5)

follows from (A7). Finally, for (2.6) note that

n1/2
{
Mn(θ0, φ0) + Γ (θ0, φ0)(φ̂− φ0)

}
= n−1/2

n∑
i=1

{
m(T̃i, δi, θ0, φ0) + Γ (θ0, φ0)ξ(T̃i, δi, τF1

−)
}
+ oP (n

−1/2),

by Proposition 1, since φ̂ − φ0 = −(Ŝ(τF1
−) − S(τF1

−)), and this converges to a
zero-mean normal distribution with variance-covariance matrix given by V . It now
follows from the proof of Theorem 2 in Chen et al. (2003) that

n1/2(θ̂−θ0) = −∆−1n−1/2
n∑
i=1

{
m(T̃i, δi, θ0, φ0)+Γ (θ0, φ0)ξ(T̃i, δi, τF1

−)
}
+oP (n

−1/2),

which converges in distribution to a normal random variable with mean zero and
variance-covariance matrix ∆−1V ∆−1.

Proof (of Theorem 1) (a) We decompose our process n1/2
(
Ŝ1(·)−S1,θ̂(·)

)
underH0

as follows :

Ŝ1(t)− S1,θ̂(t) = Ŝ1(t)− S1(t)−
( ∂
∂θ
S1,θ0(t)

)t(
θ̂ − θ0

)
+ oP (‖θ̂ − θ0‖). (5)

Note that

Ŝ1(t)− S1(t) =
1

φ0

(
Ŝ(t)− S(t)

)
+

1− Ŝ(t)
φ0φ̂

(φ̂− φ0)

=
1

φ0

(
Ŝ(t)− S(t)

)
+

1− S(t)
φ20

(φ̂− φ0) + oP (n
−1/2), (6)

uniformly in t ∈ B, provided φ̂ − φ0 = OP (n
−1/2) and supt∈B |Ŝ(t) − S(t)| =

OP (n
−1/2), which follows from Proposition 1 and the continuous mapping theorem.
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This combined with (5) and the linear representation of θ̂− θ0 given in Proposition 2
yields

Ŝ1(t)− S1,θ̂(t) =
1

φ0

(
Ŝ(t)− S(t)

)
(7)

+
[1− S(t)

φ20
+
( ∂
∂θ
S1,θ0(t)

)t
Λ−1(θ0, φ0)Γ (θ0, φ0)

]
(φ̂− φ0)

+
( ∂
∂θ
S1,θ0(t)

)t
Λ−1(θ0, φ0)Mn(θ0, φ0) + oP (n

−1/2).

The result of part (a) now follows by combining (7) and Propositions 1 and 2.
(b) It suffices to show that the class {(y, δ) → η(y, δ, t) : t ∈ B} is Donsker.

Since sums of Donsker class are again Donsker (see Example 2.10.7 in Van der Vaart
and Wellner (1996)), we need to show that the classes corresponding to each of the
three terms in the definition of η(y, δ, t) are Donsker. For the first term we refer to
Lemma 1 below, and the fact that the function ξ(y, δ, t) is constant for t ≥ τF1 . The
second and third term are both a product of a bounded function depending on t but
not on y and δ (thanks to assumption (A9)), and a function that is independent of
t and which has finite variance (thanks to assumptions (A6) and (A8)). Hence, it is
easy to see that these classes are also Donsker.

Lemma 1 Assume (A4)-(A6). Then, the class {(y, δ) → ξ(y, δ, t) : t ∈ [0, τF1 ] ∩
[0,∞)} is a P -Donsker class, where P is the joint probability measure of (T̃ , δ).

Proof We consider the two terms of the function ξ(y, δ, t) separately, defining two
subclasses of functions denoted by F1 and F2. For F2, note that

∫ y∧t
0

dH1(z)
(1−H(z))2 is

an increasing and bounded function of t thanks to assumption (A6), and hence by
Theorem 2.7.5 in Van der Vaart and Wellner (1996), the class {y →

∫ y∧t
0

dH1(z)
(1−H(z))2 :

t ∈ [0, τF1
] ∩ [0,∞)} is Donsker. Multiplying these functions by 1 − F (t) does not

alter the Donsker property, since 1 − F (t) is a deterministic and bounded function.
Hence, F2 is Donsker. Next, for the class F1, note that

E
[
I(T̃≤τF1

)δ

(1−H(T̃ ))2

]
<∞,

thanks to assumption (A6). Hence, for a given ε > 0, we can divide the interval
[0, τF1 ] ∩ [0,∞) into subintervals [tj , tj+1], j = 1, . . . ,Kε−2, such that

E
[
I(tj≤T̃≤tj+1)δ

(1−H(T̃ ))2

]
≤ ε2

for each j. This shows that the bracketing numberN[ ](ε,F1, P ) is bounded byKε−2.
Moreover, the envelope function I(T̃ ≤ τF1)δ(1−H(T̃ ))−1 has a weak second mo-
ment thanks to assumption (A6). Hence, the class F1 is also Donsker (see Theorem
2.5.6 in Van der Vaart and Wellner (1996)). Since sums of Donsker classes are again
Donsker (see Example 2.10.7 in Van der Vaart and Wellner (1996)), the result follows.

Proof (of Corollary 1) The proof relies on the Helly-Bray Theorem (see e.g. p. 97
in Rao (1965)). For more details we refer e.g. to the proof of Corollary 4 in Pardo-
Fernández et al. (2007), in which the convergence of a Cramér-von Mises statistic is
shown that has the same structure as our statistic.
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Proof (of Corollary 2) UnderH1n we consider the following decomposition:

Ŝ1 − Ŝ1,θ̂ = (Ŝ1 − S1) + (S1 − S1,θ̂)

= (Ŝ1 − S1) + (S1,θ0 − S1,θ̃0,n
) + (S1,θ̃0,n

− S1,θ̂) + n−1/2c(S̃1 − S1,θ0)

= T1 + T2 + T3 + T4,

where θ̃0,n maximizes EH1n(logL(θ, φ0)) with respect to θ, and where EH1n de-
notes the expected value underH1n. Hence,MH1n

(θ̃0,n, φ0) = 0, whereMH1n
(θ, φ) =

EH1n [m(T̃ , δ, θ, φ)]. We will now treat the four terms T1, . . . , T4 separately.
The term T1 can be decomposed as follows:

T1(t) =
φ̂− 1 + Ŝ(t)

φ̂
− φ0 − 1 + S(t)

φ0
=
Ŝ(t)− S(t)

φ0
+

1− S(t)
φ20

(φ̂− φ0) + oP (n
−1/2),

similarly as in the proof of Theorem 1. A linear expansion for the expression Ŝ(t)−
S(t) can be derived in a similar way as in the proof of Proposition 1, except that the
data (T̃i, δi), i = 1, . . . , n, are now a triangular array. This leads to

T1(t) = n−1
n∑
i=1

[
− 1

φ0
ξH1n(T̃i, δi, t) +

1− S(t)
φ20

ξH1n(T̃i, δi, τF1−)
]
+ oP (n

−1/2).

Next, for T2(t) note that T2(t) = −
∂S1,θ0

(t)

∂θ (θ̃0,n− θ0)+ oP (‖θ̃0,n− θ0‖). Note
that 0 =MH1n

(θ̃0,n, φ0) =MH1n
(θ0, φ0)+(θ̃0,n−θ0)

∂MH1n

∂θ (θ0, φ0)+oP (‖θ̃0,n−
θ0‖). Hence, using the notation Hj

H1n
(t) = PH1n(T̃ ≤ t, δ = j), j = 0, 1, where

PH1n denotes the probability underH1n, we have

θ̃0,n − θ0

= − 1
∂MH1n

∂θ (θ0, φ0)

[
MH1n(θ0, φ0) + oP (‖θ̃0,n − θ0‖)

]
= − 1

∂MH1n

∂θ (θ0, φ0)

{∫
m(t, 1, θ0, φ0) dH

1
H1n

(t) +

∫
m(t, 0, θ0, φ0) dH

0
H1n

(t)

+oP (‖θ̃0,n − θ0‖)
}

= − 1
∂MH1n

∂θ (θ0, φ0)

{
−
∫
m(t, 1, θ0, φ0)(1−G(t)) dS(t) +

∫
m(t, 0, θ0, φ0)S(t) dG(t)

+oP (‖θ̃0,n − θ0‖)
}

(8)

= − 1
∂MH1n

∂θ (θ0, φ0)

{
ES [m(T̃ , δ, θ0, φ0)] + oP (‖θ̃0,n − θ0‖)

}
, (9)

where ES [m(T̃ , δ, θ0, φ0)] denotes the expected value assuming that the survival
function of T equals S, and where

S(t) = S1(t)φ0 + 1− φ0
= S1,θ0(t)φ0 + n−1/2cφ0(S̃1(t)− S1,θ0(t)) + 1− φ0
= (1− n−1/2c)[S1,θ0(t)φ0 + 1− φ0] + n−1/2c[S̃1(t)φ0 + 1− φ0],
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which we abbreviate by (1−n−1/2c)Sθ0(t)+n−1/2cS̃(t). Noting thatESθ0 [m(T̃ , δ, θ0, φ0)] =
0, (9) equals

− n−1/2c
∂M
∂θ (θ0,φ0)

ES̃ [m(T̃ , δ, θ0, φ0)] + oP (n
−1/2).

Let us now consider the term T3. Following similar steps as in the proof of Propo-
sition 2, it follows that

T3(t) = −
∂S1,θ0(t)

∂θ
(θ̂ − θ̃0,n) + oP (‖θ̂ − θ̃0,n‖)

=
∂S1,θ0(t)

∂θ
∆H1nn

−1
n∑
i=1

{
m(T̃i, δi, θ̃0,n, φ0) + ΓH1n(θ̃0,n, φ0)ξ(T̃i, δi, τF1−)

}
+oP (n

−1/2),

where ∆H1n is the p × p matrix of partial derivatives of MH1n(θ, φ) evaluated at
(θ̃0,n, φ0), and ΓH1n(θ̃0,n, φ0) =

∂
∂φMH1n(θ̃0,n, φ0).

Finally, the term T4 is a bias term, which cannot be simplified further. This shows
the result.
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