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Abstract

We revisit the general problem of minimizing a separable convex function with both
a budget constraint and a set of box constraints. This optimization problem arises
naturally in many resource allocation problems in engineering, economics, finance and
insurance. Existing literature tackles this problem by using the traditional Kuhn-Tucker
theory, which leads to either iterative schemes or yields explicit solutions only under
some special classes of convex functions owe to the presence of box constraints. This
paper presents a novel approach of solving this constrained minimization problem by
using the theory of comonotonicity. The key step is to apply an integral representa-
tion result to express each convex function as the stop-loss transform of some suitable
random variable. By using this approach, we can derive and characterize not only
the explicit solution, but also obtain its geometric meaning and some other qualitative
properties.
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1 Introduction and problem formulation

Let (X1, . . . , Xn) be the portfolio of risks (i.e., random variables representing losses) we are
facing. A provision of d dollars is available to be allocated among these n risks. We use the
function fi(di) to model the level of riskiness of the risk Xi if di dollars is allocated to Xi.
When more capital is allocated to risk i, the position is considered to be safer, and hence
the corresponding risk level is less. This means that fi should be a decreasing function. It is
also natural to assume that the decrement is diminishing per unit of growth. Accordingly, fi
is both decreasing and convex. As a typical example, we may take fi(di) := ρ ((Xi − di)+),
where ρ is some convex and increasing functional. The amount ρ ((Xi − di)+) could be
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interpreted for example as the provision required by the residual risk (Xi − di)+ after di
dollars has been allocated to the potential loss Xi.

Alternatively, instead of treating fi as a measurement of risk, we can think of it as a penalty
function in the sense that allocated capital is expected to be as close as possible to the loss
being allocated to, and that fi penalizes the deviation. This point of view was adopted by
Zaks et al. (2006) and Frostig et al. (2007) in determining the fair price of a heterogeneous
portfolio. Common examples of penalty functions include quadratic deviations and absolute
deviations. With this interpretation, it is natural to assume that fi is convex, but not
necessarily decreasing.

The considerations above lead us to study the minimization of the total required provision
or total penalty by determining the optimal amount d∗i needed for each risk:

min
d1+···+dn=d

n∑
i=1

fi(di).

In the case of provision allocations and many other, it is common to require, apart from
d1 + · · · + dn = d, that each allocation di is positive. This consideration leads to formulate
the following general problem:

min
(d1,...,dn)∈A(d)

n∑
i=1

fi(di), (1)

where the set of admissible allocations equals

A(d) = {(d1, . . . , dn) ∈ Rn | d1 + · · ·+ dn = d, di ∈ [li, ui], i = 1, . . . , n},

in where li, ui are given fixed constants with li < ui. In other words, A(d) is the intersection of
the hyperplane {(x1, . . . , xn) ∈ Rn | x1 + · · ·+xn = d} and the n-dimensional box

∏n
i=1[li, ui].

The constraints li ≤ di ≤ ui are commonly referred to as box constraints. To ensure that
A(d) is non-empty and is not a singleton, we assume that

l1 + · · ·+ ln < d < u1 + · · ·+ un.

Throughout this paper, we assume that each fi is convex and continuous on [li, ui], but is
not necessarily decreasing. For simplicity, we also assume that (fi)

′
+(li) and (fi)

′
−(ui) are

finite for all i, where f ′+ and f ′− denote the right-hand and left-hand derivative of any convex
function f . Since A(d) is non-empty and compact and the objective function is continuous,
a solution always exists.

The linear constraint d1 + · · · + dn = d can easily be extended to a more general linear
constraint of the form

c1d1 + · · ·+ cndn = d (2)

where c1, . . . , cn are some fixed constants. We may assume that all of them are non-zero: if
ci = 0 for some i, we can minimize fi(di) over di ∈ [li, ui] separately as a one-dimensional
problem. With this new constraint, we have the following more general minimization problem:

min
c1d1+···+cndn=d,li≤di≤ui

n∑
i=1

fi(di). (3)
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Assume that the admissible set is non-empty. Let d̃i := cidi and f̃i(x) := fi(x/ci) for all i,
then Problem (3) becomes

min
d̃1+···+d̃n=d,d̃i∈[l̃i,ũi]

n∑
i=1

f̃i(d̃i),

where [l̃i, ũi] = [cli, cui] if ci > 0, and [l̃i, ũi] = [cui, cli] if ci < 0. With this transformation,
Problem (3) can be treated as a special case of Problem (1).

Capital allocation rules in the form of (1) or (3) are fairly general. It covers the various
optimization-based models proposed and studied in Dhaene et al. (2012) and Zaks (2013),
and also the insurance pricing models studied in Zaks et al. (2006) and Frostig et al. (2007).
These problems also arise naturally in many optimization models in economics, operation
management, finance, marketing, etc. We refer to Bitran and Hax (1981), Luss and Gupta
(1975), Stefanov (2005) and the references therein, for various applications and discussions.
Existing solution methods include standard convex programming (Kuhn-Tucker theory), dy-
namic programming (for instance, Wilkinson and Gupta (1969)) and the iterative method
(e.g. Luss and Gupta (1975), Stefanov (2005)). The classical Kuhn-Tucker theory lies at
the heart of all these different approaches. Similar allocation problems for future not-yet-
realized risk or payoff, rather than for the current deterministic capital in the current context,
has also gained considerable attention in recent years, we refer to Rüschendorf (2013) for a
comprehensive discussion.

If the box constraints di ∈ [li, ui] are removed, and each fi is defined on the whole real line,
Problem (1) is just the classical “infimum-convolution” of the convex functions f1, . . . , fn in
convex analysis, which is well-studied in the literature (see, for instance, Rockafellar (1970)).
The introduction of the box constraints di ∈ [li, ui], which consist of a total of 2n one-
sided inequality constraints, makes the problem more difficult and possibly non-tractable
analytically.

This paper presents an alternative method to solve Problem (1). Instead of using the tradi-
tional Lagrangian technique, we first express each convex function fi as the stop-loss trans-
form of some random variable, so that the objective function becomes a sum of stop-loss
transform. The box constraints can be effectively captured and removed by carefully choos-
ing the random variables. Problem (1) then becomes the minimization of a sum of stop-loss
transform subject to a homogeneous linear constraint. We demonstrate how the theory of
comonotonicity can be used to solve such minimization problem effectively, with the solution
set being completely characterized and explicitly expressed in an intuitive geometric way.
While the transformation of convex functions into stop-loss transforms is not new and has
been applied in different areas, its application in optimization has not been explored in the
literature except in the recent paper Cheung et al. (2014). Further advantages of this ap-
proach are that we can easily obtain various qualitative properties of solutions of Problem
(1), such as their uniqueness and conditions where the box constraints are binding; further-
more, some well-known results in convex analysis associated with infimum-convolution can
be derived easily.

This paper is organized as follows. Section 2 reviews basic properties of the notion of comono-
tonicity. Special focus is put on the geometry of the support of a comonotonic random vector;
in particular, we study how the support of a comonotonic random vector intersects with a
given hyperplane. Section 3 studies a special case of Problem (1), in which each fi is a stop-
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loss transform. We indicate how Problem (1) can be solved using simple geometric arguments
and the results in Section 2. In Section 4, we explain how one can express a given convex
function as the stop-loss transform of some random variable. Section 5 combines the ideas in
Sections 3 and 4 together to present a novel way to solve Problem (1). We not only provide a
complete and explicit characterization of the solutions to Problem (1), but also derive some
qualitative properties of the solutions. In Section 6, we give examples to demonstrate how
the theory can be applied. Section 7 indicates several variants of Problem (1) to illustrate
the flexibility of our model. Finally, Section 8 discusses how the techniques can be used
when the box constraints are removed, in which case Problem (1) is related to the notion of
infimum-convolution in convex analysis.

2 Supports of comonotonic random vectors

This section reviews some properties of comonotonicity that are pertinent to our later anal-
ysis. The focus here is on the behavior of the support of a comonotonic random vector, and
how it intersects with a hyperplane with normal 1. In fact, it will be shown in Section 5 that
the solution of Problem (1) can always be expressed as an intersection of such kind.

Following Kaas et al. (2000), a set A ⊂ Rn is said to be comonotonic if any two points in A
can be ordered componentwise, that is, for any (x1, . . . , xn) and (y1, . . . , yn) in A, (xi−yi)(xj−
yj) ≥ 0 for any i, j ∈ {1, . . . , n}. A random vector (X1, . . . , Xn) is said to be comonotonic
if there is some comonotonic set A ⊂ Rn so that P((X1, . . . , Xn) ∈ A) = 1. Comonotonicity

of (X1, . . . , Xn) is equivalent to (X1, . . . , Xn)
d
= (F−1

X1
(U), . . . , F−1

Xn
(U)) for any uniform(0, 1)

random variable U . In this paper, for any given random vector X = (X1, . . . , Xn), we define
its comonotonic modification Xc = (Xc

1, . . . , X
c
n) as Xc := (F−1

X1
(U), . . . , F−1

Xn
(U)), where U is

an arbitrary uniform(0, 1) random variable. By construction, a comonotonic modification is
always comonotonic and has the same marginal distributions as the original random vector.
For a comprehensive overview of the theory on comonotonicity, we refer to Dhaene et al.
(2002).

Throughout this paper, F−1
X denotes the left-continuous inverse of the distribution function

FX of any random variable X:

F−1
X (p) := inf{x ∈ R | FX(x) ≥ p}, 0 ≤ p ≤ 1.

Similarly, the right-continuous inverse distribution function is defined as

F−1+
X (p) := sup{x ∈ R | FX(x) ≤ p}, 0 ≤ p ≤ 1.

With the convention that inf ∅ = +∞ and sup ∅ = −∞, F−1+
X (0) and F−1

X (1) are the essen-
tial infimum and essential supremum of X respectively. By definition, F−1

X (0) = −∞ and
F−1+
X (1) =∞ regardless of the actual distribution of X. For our later purpose, we also need

the notion of α-mixed inverse distribution function. Following Kaas et al. (2000), it is defined
as

F
−1(α)
X (p) := αF−1

X (p) + (1− α)F−1+
X (p), 0 ≤ p ≤ 1, 0 ≤ α ≤ 1.

For consistency, we also adopt the convention 0 · ±∞ = 0 so that F
−1(0)
X (p) = F−1+

X (p) and

F
−1(1)
X (p) = F−1

X (p) for any 0 ≤ p ≤ 1.
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In the remainder of this section, Xc = (Xc
1, . . . , X

c
n) denotes a fixed comonotonic random

vector with marginal distribution functions F1, . . . , Fn, and Sc is the comonotonic sum Xc
1 +

· · · + Xc
n. A fundamental property of comonotonicity (see for instance Denneberg (1994)

or Dhaene et al. (2002)) is that the inverse distribution function of Sc can be computed
explicitly as follows:

F
−1(α)
Sc (p) = F

−1(α)
1 (p) + · · ·+ F−1(α)

n (p), 0 ≤ p ≤ 1, 0 ≤ α ≤ 1. (4)

By definition, it is clear that

msupp(Xc) :=
{

(F−1
1 (u), . . . , F−1

n (u)) | 0 < u < 1
}

is a comonotonic set in Rn and is a support1 of Xc. We say that s ∈ Rn is a comonotonic
support point of Xc, if {s} ∪ msupp(Xc) is again comonotonic. In other words, adding a
comonotonic support point to msupp(Xc) will not destroy its comonotonicity. The collection
of all comonotonic support points of Xc will be denoted as csupp(Xc):

csupp(Xc) :=
{
s ∈ Rn | {s} ∪msupp(Xc) is comonotonic

}
.

Obviously, msupp(Xc) ⊂ csupp(Xc), and msupp(Xc) ∪ {s} is also a comonotonic support of
Xc for every s ∈ csupp(Xc). However, csupp(Xc) is not necessarily comonotonic.

For any d ∈ R, we denote by `(d) the hyperplane

{d = (d1, . . . , dn) ∈ Rn | d1 + · · ·+ dn = d}.

As indicated earlier, we are interested in finding the intersection `(d)∩ csupp(Xc), which will
be denoted as i(d,Xc):

i(d,Xc) :=
{
s ∈ Rn | {s} ∪msupp(Xc) is comonotonic and s1 + · · ·+ sn = d

}
.

Figure 1: The set i(d,Xc) is the portion of the line d1 + d2 = d that lies inside csupp(Xc).

1By a support of a random variable or a random vector Y , we mean any Borel measurable set A such that
P(Y ∈ A) = 1.
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First, we observe that if d < F−1+
Sc (0) or d > F−1

Sc (1), the cardinality of i(d,Xc) is infinity.
For if d < F−1+

Sc (0) = F−1+
1 (0) + · · · + F−1+

n (0), there are infinitely many possible ways to
decompose d into a sum d1 + · · ·+dn such that di ≤ F−1+

i (0) for each i. Such a decomposition
belongs to i(d,Xc) by definition. The case for d > F−1

Sc (1) is similar.

The following result characterizes the set i(d,Xc) for the more interesting and relevant case
where F−1+

Sc (0) ≤ d ≤ F−1
Sc (1). Its geometric meaning is clear and is described in Figure 1:

i(d,Xc) is simply the portion of the hyperplane `(d) that lies inside the box of comonotonic
support points.

Proposition 2.1. Suppose that d is a real number such that F−1+
Sc (0) ≤ d ≤ F−1

Sc (1). Then

i(d,Xc) =
{

(d1, . . . , dn) ∈ `(d) | F−1
i (FSc(d)) ≤ di ≤ F−1+

i (FSc(d)) for all i
}
. (5)

Proof: We first assume that
∑n

i=1 F
−1+
i (0) < d <

∑n
i=1 F

−1
i (1). In this case, 0 < FSc(d) < 1.

Suppose d = (d1, . . . , dn) belongs to the set on the right hand side of (5). Then for any
i = 1, . . . , n, we have di ≥ F−1

i (p) when p ∈ (0, FS(d)] and di ≤ F−1
i (p) when p ∈ (FSc(d), 1),

so d ∪ msupp(Xc) is comonotonic. Therefore, d is a comonotonic support point of Xc and
hence it lies in i(d,Xc).

Now we suppose that d = (d1, . . . , dn) ∈ i(d,Xc). Notice that

n∑
i=1

F−1
i (FSc(d)) = F−1

Sc (FSc(d)) ≤ d ≤ F−1+
Sc (FSc(d)) =

n∑
i=1

F−1+
i (FSc(d)). (6)

Since d ∈ csupp(Xc), either F−1
i (FSc(d)) ≤ di for all i or F−1

i (FSc(d)) > di for all i. The
second possibility is ruled out by the second inequality in (6) and the condition that d ∈ `(d),
unless di = F−1

i (FSc(d)) for all i. Therefore, F−1
i (FSc(d)) ≤ di for all i. By the same

argument, di ≤ F−1+
i (FSc(d)) for all i. This proves the reverse inclusion.

If d = F−1+
Sc (0) =

∑n
i=1 F

−1+
i (0) ∈ R, the only way to decompose d into a sum d = d1+· · ·+dn

in such a way that d ∪ msupp(Xc) is comonotonic is given by d =
∑n

i=1 F
−1+
i (0). In this

case, i(d,Xc) = {(F−1+
1 (0), . . . , F−1+

n (0))}. If FSc(d) = 0, the right hand side of (5) becomes{
(d1, . . . , dn) ∈ Rn | d1 + · · ·+ dn = d,−∞ < di ≤ F−1+

i (0) for all i
}
,

which contains (F−1+
1 (0), . . . , F−1+

n (0)) only; if FSc(d) > 0, the right hand side of (5) becomes{
(d1, . . . , dn) ∈ Rn | d1 + · · ·+ dn = d, F−1+

i (0) ≤ di ≤ F−1+
i (FSc(d)) for all i

}
,

again, this set contains (F−1+
1 (0), . . . , F−1+

n (0)) only.

The proof for the case where d = F−1
Sc (1) =

∑n
i=1 F

−1
i (1) ∈ R is similar and so it is omitted.

�

To study the cardinality i(d,Xc), we introduce the following subset of R:

s(Xc) :=

{
d ∈ R

∣∣∣∣∣d =
n∑
i=1

F−1
i (p), p ∈ (0, 1], or d =

n∑
i=1

F−1+
i (p), p ∈ [0, 1)

}
.

Corollary 2.2. Suppose that d is a real number such that F−1+
Sc (0) ≤ d ≤ F−1

Sc (1). If
d ∈ s(Xc), then card(i(d,Xc)) = 1; otherwise, if d 6∈ s(Xc),
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(a) card(i(d,Xc)) =∞ if there are more than one of F−1
i , i = 1, . . . , n, jump at FSc(d);

(b) card(i(d,Xc)) = 1 if exactly one of F−1
i , i = 1, . . . , n, jumps at FSc(d).

Proof: For the first assertion, consider d ∈ s(Xc), and suppose that d =
∑n

i=1 F
−1
i (p) for

some p ∈ (0, 1] (the argument for the case where d =
∑n

i=1 F
−1+
i (p) for some p ∈ [0, 1) is

similar). Obviously, (F−1
1 (p), . . . , F−1

n (p)) ∈ i(d,Xc). If s = (s1, . . . , sn) is a different point in
i(d,Xc), then by the definition of comonotonicity, either F−1

i (p) ≤ si for all i, or F−1
i (p) ≥ si

for all i, with the inequality being strict for at least one i in both possibilities. At the same
time, it is required that

∑n
i=1 F

−1
i (p) =

∑n
i=1 si = d. Clearly, such a point s does not exist,

so i(d,Xc) is a singleton.

For the second assertion, note that d 6∈ s(Xc) implies that F−1+
Sc (0) < d < F−1

Sc (1), or
equivalently 0 < FSc(d) < 1. In this case, at least one of the F−1

i , i = 1, . . . , n, jumps at
FSc(d). If not, F−1

i (FSc(d)) = F−1+
i (FSc(d)) for all i, summing over i yields F−1

Sc (FSc(d)) =
F−1+
Sc (FSc(d)) and hence d = F−1

Sc (FSc(d)) = F−1
1 (FSc(d)) + · · ·+ F−1

n (FSc(d)), which contra-
dicts the assumption that d 6∈ s(Xc). Now the result follows from (5). �

Corollary 2.3. Suppose that F−1+
Sc (0) < d < F−1

Sc (1). If we define d∗i = F
−1(α)
i (FSc(d)) for

i = 1, . . . , n, where α ∈ [0, 1] is a solution of F
−1(α)
Sc (FSc(d)) = d, then (d∗1, . . . , d

∗
n) ∈ i(d,Xc).

Proof: This corollary follows from (5) and the fact that F−1
i (FSc(d)) ≤ d∗i ≤ F−1+

i (FSc(d))
for all i. �

3 A canonical optimal capital allocation problem

Before solving Problem (1), we first consider the well known canonical special case where
fi(di) takes the form of E[(Xi − di)+] for a given integrable random variable Xi:

min
d1+···+dn=d

n∑
i=1

E[(Xi − di)+]. (7)

Notice that d1 + · · · + dn = d is the only constraint in Problem (7). We do not impose
any box constraint to restrict the individual allocations. In the next two sections, we will
demonstrate that Problem (1) with box constraints can always be transformed into the form
of Problem (7) without box constraints. Therefore, it is instructive to review this problem
and to understand how comonotonicity comes to play.

Later in this section, we consider a much more general version of this canonical allocation
problem in which the expectation will be replaced by a general risk measure.

Using the notion of comonotonicity, Kaas et al. (2002) used a simple geometric argument to
prove that for

∑n
i=1 F

−1+
Xi

(0) < d <
∑n

i=1 F
−1
Xi

(1), a solution to Problem (7) is given by

d∗i = F
−1(α)
Xi

(FSc(d)), i = 1, . . . , n, (8)

in which α ∈ [0, 1] is a solution of the equation F
−1(α)
Sc (FSc(d)) = d, and Sc := Xc

1 + · · ·+Xc
n

where Xc = (Xc
1, . . . , X

c
n) is a comonotonic modification of (X1, . . . , Xn). It is easy to see that

7



this solution is indeed a comonotonic support point of Xc, and hence it belongs to i(d,Xc).
The following theorem gives a full characterization of the solution set of Problem (7) for any
d ∈ R in terms of i(d,Xc), which covers (8), the result from Kaas et al. (2002), as a special
case.

Theorem 3.1. For any d ∈ R, the solution set of Problem (7) is i(d,Xc).

Proof: Let U be uniform(0, 1), Xc := (F−1
X1

(U), . . . , F−1
Xn

(U)), and Sc := F−1
X1

(U) + · · · +
F−1
Xn

(U). First, we may replace each Xi in Problem (7) by F−1
Xi

(U). For any d1 + · · ·+dn = d,
we have

n∑
i=1

E[(F−1
Xi

(U)− di)+] ≥ E

[(
n∑
i=1

F−1
Xi

(U)−
n∑
i=1

di

)
+

]
= E[(Sc − d)+],

so E[(Sc − d)+] is a lower bound of the objective function in (7).

For any d = (d1, . . . , dn) ∈ i(d,Xc), {d} ∪msupp(Xc) is comonotonic by definition, so either
(F−1

Xi
(U) − di)+ = F−1

Xi
(U) − di for all i simultaneously, or (F−1

Xi
(U) − di)+ = 0 for all i

simultaneously. In either case,
∑

(F−1
Xi

(U)− di)+ = (Sc − d)+, so d is a solution of Problem
(7).

Finally, suppose d ∈ `(d) but d 6∈ csupp(Xc). Then there exist some i, j ∈ {1, . . . , n} and
u ∈ (0, 1) such that (F−1

Xi
(u)− di)(F−1

Xj
(u)− dj) < 0. By the left continuity of F−1, this strict

inequality continues to hold on [u − ε, u] for some ε > 0. Therefore,
∑

(F−1
Xi

(U) − di)+ >
(Sc − d)+ with a strictly positive probability, and so d is not optimal. �

We remark that similar results can be found in Chen et al. (2015), in which the authors
discuss the issue of (non)-uniqueness of the solution of Problem (7). Without recourse to the
geometric notion of i(d,Xc), they show directly that the solution set is given by i(d,Xc).

The following result is a direct consequence of Theorem 3.1, Corollary 2.2 and Corollary 2.3.

Corollary 3.2. If d ∈ s(Xc), then Problem (7) admits a unique solution, and if F−1+
Sc (0) <

d < F−1
Sc (1), then any solution (d∗1, . . . , d

∗
n) of Problem (7) satisfies F−1+

Xi
(0) ≤ d∗i ≤ F−1

Xi
(1).

Upon examining first part of the proof of Theorem 3.1 carefully, one can see that i(d,Xc) is
indeed not only the solution set of Problem (7), but is also contained in the solution set of
the problem

min
d1+···+dn=d

n∑
i=1

(Xc
i (ω)− di)+,

for all ω ∈ Ω, where Xc = (F−1
X1

(U), . . . , F−1
Xn

(U)) and U is a uniform(0, 1) random variable.

This observation leads to the following generalization of Problem (7) in terms of a risk
measure.

Proposition 3.3. Let ρ be a risk measure which is (i) law invariant, (ii) increasing in the
sense that Z1 ≤st Z2 (that is, P(Z1 ≤ t) ≥ P(Z2 ≤ t) for all t) implies that ρ(Z1) ≤ ρ(Z2),
and (iii) comonotonic additive. For any d ∈ R, the solution set of the problem

min
d1+···+dn=d

n∑
i=1

ρ ((Xi − di)+) (9)

contains i(d,Xc).
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Proof: By law-invariance and comonotonic additivity, the objection function in Problem (9)
equals

ρ

(
n∑
i=1

(F−1
Xi

(U)− di)+

)
,

where U is a uniform(0, 1) random variable. Since
∑n

i=1(F−1
Xi

(U(ω))−di)+ is minimized under
the constraint

∑
i di = d on the set i(d,Xc) for all ω ∈ Ω, so in view of the monotonicity of

ρ, we conclude that the solution set of Problem (9) contains i(d,Xc). �

4 Representing convex functions as stop-loss transforms

In this section, we show that Problem (1) can be transformed into Problem (7) for some
suitable random variables X1, . . . , Xn, and hence the solution set of Problem (1) equals
i(d,Xc) by Theorem 3.1.

Recall that each fi in Problem (1) is assumed to be convex and continuous on [li, ui], with
finite right-hand derivative at li and finite left-hand derivative at ui.

Proposition 4.1. Let g : [l, u]→ R be a continuous and convex function with

−1 ≤ g′+(l) ≤ g′−(u) ≤ 1. (10)

Then there exists a random variable X with P(l ≤ X ≤ u) = 1 such that

g(x) = g(l) + x+ l + 2E[(X − x)+]− 2E(X) for any x ∈ [l, u].

Moreover, the distribution function of X is given by

FX(x) =


0 if x < l,

(1 + g′+(x))/2 if l ≤ x < u,

1 if x ≥ u.

(11)

Proof: By convexity, g′+(x) is right-continuous and increasing on [l, u). Condition (10)
ensures that the expression in (11) is a genuine distribution function. We denote by X an
arbitrary random variable with such a distribution function. It is clear that P(l ≤ X ≤ u) = 1,
and there is a possible jump at l and at u. For any x ∈ [l, u], we have

x+ 2E[(X − x)+]− 2E(X)

= E |X − x| − E(X)

=

∫ x−l

0

FX−l(t) dt+

∫ u−l

x−l
(1− FX−l(t)) dt−

∫ u−l

0

(1− FX−l(t)) dt− l

= g(x)− g(l)− l.

Rearranging this equation yields the desired result. �

By the same argument, we have the following variant of Proposition 4.1, in which the upper
end point u of the domain of g is infinity:

9



Proposition 4.2. Let g : [l,∞)→ R be a decreasing convex function with

−1 ≤ g′+(l) ≤ lim
x→∞

g′+(x) = 0.

Let L := limx→∞ g(x) ∈ R. Then there exists a random variable with P(X ≥ l) = 1 such that

g(x) = L+ E[(X − x)+] for any x ≥ l.

Moreover, the distribution function of X is given by

FX(x) =

{
0 if x < l,

1 + g′+(x) if x ≥ l.

A common requirement in these two propositions is that the convex function concerned has
bounded derivative on the relevant domain. Such requirement enables us to rescale linearly
the right-hand derivative into a distribution function of a random variable. Our methodology
remains valid even if the derivative is not bounded. In that case, instead of rescaling the
right-hand derivative into a distribution function of a random variable, we can directly treat
the right-hand derivative as the distribution function of a Radon measure on R, see page
16 of Föllmer and Schied (2004) and page 545 of Revuz and Yor (1999). Comonotonicity
of real-valued measurable maps on a general measurable space can be defined in exactly the
same way as it is defined for random variables on a probability space, Property (4) on the
additivity of the inverse distribution functions of comonotonic sums is also valid. We choose
not to pursue such generality in order to put the focus on the ideas and techniques rather
than on technicalities. Interested readers can easily work out the details for the general case.

5 Solution set of minimization Problem (1)

Now we return to our optimal capital allocation Problem (1):

min
d∈A(d)

n∑
i=1

fi(di),

where the functions fi are convex and continuous on [li, ui] with−∞ < (fi)
′
+(li) ≤ (fi)

′
−(ui) <

∞, and

A(d) = {(d1, . . . , dn) ∈ Rn | d1 + · · ·+ dn = d, di ∈ [li, ui], i = 1, . . . , n}

is the set of admissible allocations with l1 + · · ·+ ln < d < u1 + · · ·+un. Since condition (10)
of Proposition 4.1 may not be satisfied by fi, a simple rescaling is needed. To this end, take
ν to be any number that is strictly larger than ν∗, which is defined by

ν∗ := max
1≤i≤n

(
|(fi)′+(li)| ∨ |(fi)′−(ui)|

)
∈ R, (12)

and define the functions

f̃i(x) := fi(x)/ν for x ∈ [li, ui] and i = 1, . . . , n. (13)

10



The functions f̃i satisfy all conditions of Proposition 4.1, and hence there exist random
variables X1, . . . , Xn such that for i = 1, . . . , n,

f̃i(x) = f̃i(li) + x+ li + 2E[(Xi − x)+]− 2E(Xi), x ∈ [li, ui],

where the distribution function of Xi is given by

FXi
(x) =


0 if x < li,

(1 + (f̃i)
′
+(x)/ν)/2 if li ≤ x < ui,

1 if x ≥ ui.

(14)

Moreover, as ν is chosen to be larger than ν∗, each Xi has a point mass at both of its essential
infimum F−1+

Xi
(0) = li and essential supremum F−1

Xi
(1) = ui. With the above transformation,

we find
n∑
i=1

fi(di) = C + 2ν
n∑
i=1

E[(Xi − di)+]

for any (d1, . . . , dn) ∈ A(d), where C is some constant which is independent of (d1, . . . , dn).
Therefore, Problem (1) is equivalent to the following problem:

min
d∈A(d)

n∑
i=1

E[(Xi − di)+], (15)

in the sense that the two problems have the same solution sets.

One immediately notices the similarity between Problem (7) and Problem (15). The only
difference between them is that Problem (15) requires that di ∈ [li, ui] for all i while Problem
(7) does not. However, from Corollary 3.2 and (14) , we know that any solution (d∗1, . . . , d

∗
n) of

Problem (7) satisfies d∗i ∈ [F−1+
Xi

(0), F−1
Xi

(1)] = [li, ui], so the box constraints on the individual
allocations is automatically fulfilled. Combining this observation with Theorem 3.1 leads to
following result:

Theorem 5.1. The solution set of Problem (1) equals i(d,Xc), where the marginal distri-
bution of Xi is given by (14). Moreover, if d ∈ s(Xc), the Problem (1) admits a unique
solution.

In the remainder of this section, Sc denotes the comonotonic sum Xc
1 + · · · + Xc

n, where
(Xc

1, . . . , X
c
n) is a comonotonic modification of (X1, . . . , Xn) with marginal distributions given

by (14).

Corollary 5.2. The solution set to Problem (1) is given by{
(d1, . . . , dn) | d1 + · · ·+ dn = d, F−1

Xi
(FSc(d)) ≤ di ≤ F−1+

Xi
(FSc(d)) for all i

}
.

Moreover, 0 < FSc(d) < 1.

Proof: Since ν is chosen to be strictly larger ν∗ defined in (13), F−1+
Xi

(0) = li and F−1
Xi

(1) =

ui for each i and so F−1+
Sc (0) =

∑
i li < d <

∑
i ui = F−1

Sc (1) = nd. This implies that
0 < FSc(d) < 1. Now the result follows from Theorem 5.1 and Proposition 2.1. �
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Corollary 5.3. Problem (1) has a unique solution given by (F−1
X1

(FSc(d)), . . . , F−1
Xn

(FSc(d)))
if each fi is strictly convex.

Although this corollary is a standard result in the theory of convex minimization, here we
will give a new and simple proof by using the theory of comonotonicity.

Proof: When each fi is strictly convex, each FXi
defined in (14) is strictly increasing on

[li, ui], and hence F−1
Xi

does not contain any discontinuity. In particular, this implies that

F−1
Xi

(FSc(d)) = F−1+
Xi

(FSc(d)) and so by Corollary 5.2, Problem (1) has a unique solution

given by (F−1
X1

(FS(d)), . . . , F−1
Xn

(FS(d))). �

The next result can be found in Bitran and Hax (1981). Instead of proving it using Kuhn-
Tucker theory, we demonstrate that it is a direct consequence of Corollary 5.2.

Corollary 5.4. Suppose that fi is strictly increasing on [li, ui] for i ∈ JI ⊂ {1, . . . , n} and is
strictly decreasing on [li, ui] for i ∈ JD ⊂ {1, . . . , n}. If (d∗1, . . . , d

∗
n) is a solution of Problem

(1), then either d∗i = li for all i ∈ JI, or d∗i = ui for all i ∈ JD, or both.

Proof: If fi is strictly increasing on [li, ui], the corresponding FXi
in (14) jumps at li from 0

to FXi
(li) > 1/2, and hence F−1

Xi
(p) = F−1+

Xi
(p) = li on an interval containing KI ⊃ (0, 1/2].

Similarly, if fi is strictly decreasing on [li, ui], the corresponding FXi
in (14) jumps at ui

from FXi
(ui−) < 1/2 to 1, and hence F−1

Xi
(p) = F−1+

Xi
(p) = ui on an interval containing

KD ⊃ [1/2, 1). From Corollary 5.2, if FSc(d) ∈ KI , then d∗i = li for all i ∈ JI; if FSc(d) ∈ KD,
then d∗i = ui for all i ∈ JD. As KI ∪KD = (0, 1), the result follows. �

6 Examples

In this section, we provide three examples to illustrate how the theory developed above can
be used to solve practically relevant problems.

Example 1 Let Xi, i = 1, . . . , n be positive and integrable risks. We consider the following
optimal capital allocation problem, which is a special case of Problem (9) studied in Section
3:

min
d1+···+dn=d,di≥0

n∑
i=1

TVaRα ((Xi − di)+) , d > 0. (16)

Here, TVaRα denotes the Tail Value-at-Risk at probability level α ∈ (0, 1) which is defined
by

TVaRα(X) :=
1

1− α

∫ 1

α

F−1
X (p) dp

for any integrable random variable X. Since Tail Value-at-Risk is law-invariant, increasing,
and comonotonic additive, it follows from Proposition 3.3 that the solution set of Problem
(16) contains i(d,Xc). Our objective here is to derive this result by using the methodology
developed in Sections 4 and 5.

To this end, we first define fi(di) := TVaRα ((Xi − di)+) for i = 1, . . . , n. Each fi : [0,∞)→
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R is a decreasing and convex function, and it is straightforward to obtain

f ′i(di) =

{
−1 if di < F−1

Xi
(α),

−1−FRi
(di)

1−α if di ≥ F−1
Xi

(α).

So it follows from Proposition 4.2 that we can express fi as

fi(di) = E[(Yi − di)+], di ≥ 0,

where the distribution function of Yi is given by

FYi(x) =

{
0 if x < F−1

Xi
(α),

FXi
(x)−α

1−α if x ≥ F−1
Xi

(α).
(17)

Using this transformation, Problem (16) becomes

min
d1+···+dn=d,di≥0

n∑
i=1

E[(Yi − di)+],

and hence Corollary 5.2 implies that the solution set of Problem (16) is given by i(d,Yc):{
(d1, . . . , dn) | d1 + · · ·+ dn = d, F−1

Yi
(FSc

Y
(d)) ≤ di ≤ F−1+

Yi
(FSc

Y
(d)) for all i

}
, (18)

in which ScY := Y c
1 + · · · + Y c

n and (Y c
1 , . . . , Y

c
n ) is a comonotonic copy of (Y1, . . . , Yn). From

relationship (17), which is piecewise linear, it is easy to express F−1
Yi

in terms of F−1
Xi

, and
FSc

Y
in terms of FSc

X
where ScX denotes the corresponding sum of a comonotonic copy of

(X1, . . . , Xn). We then can easily show that i(d,Yc) is identical to i(d,Xc).

Example 2 Consider the following optimal capital allocation problem:

min
d1+···+dn=d,di≥li

n∑
i=1

si exp(−midi), (19)

where si,mi are some strictly positive constants. Notice that di 7→ −si exp(−midi) is a
standard utility function with constant absolute risk aversion. It is assumed that

d > L := l1 + · · ·+ ln (20)

in order to avoid that the problem is trivial or ill-posed. To simplify the notation, we define

θi :=
lnmisi
mi

, Θi :=
i∑

j=1

θj, Ai := 1−misi exp(−mili), Mi :=
i∑

j=1

1

mj

, Li :=
n∑

j=i+1

lj,

for i = 1, . . . , n. Note that Ln := 0 by convention. Without loss of generality, we assume
that A1 ≤ · · · ≤ An.

Proposition 6.1. For any given d > L, define

i∗ := inf

{
i ∈ {1, . . . , n− 1} | d ≤ L+

i∑
j=1

Mj

(
ln(1− Aj)− ln(1− Aj+1)

)}
∧ n, (21)

with the convention that inf ∅ =∞. Then the solution to Problem (19) is given by

d∗i =

{
li, i = i∗ + 1, . . . , n,

θi − Θi∗+Li∗−d
miMi∗

, i = 1, . . . , i∗.
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Proof: We first notice that every fi(di) := si exp(−midi) is strictly decreasing and strictly
convex. Without loss of generality, we may assume that s1, . . . , sn have been rescaled properly
such that −1 ≤ (fi)

′
+(li) for all i. Since limx→∞ fi(x) exists in R and limx→∞(fi)

′
+(x) = 0

for all i, it follows from Proposition 4.2 and Corollary 5.3 that Problem (19) has a unique
solution (d∗1, . . . , d

∗
n) given by d∗i = F−1

Xi
(FSc(d)) where Sc := F−1

X1
(U) + · · ·+ F−1

Xn
(U) for any

uniform(0, 1) random variable U and

FXi
(x) =

{
0, x < li,

1−misi exp(−mix), li ≤ x.

It remains to compute FSc(d) and F−1
Xi

.

The inverse of this distribution function is given by

F−1
Xi

(p) =

{
li, 0 < p ≤ Ai
1
mi

ln misi
1−p , Ai ≤ p < 1,

=

(
1

mi

ln
misi
1− p

)
∨ li.

Also, for any p ∈ (0, 1), we find that

F−1
Sc (p) = F−1

X1
(p) + · · ·+ F−1

Xn
(p)

=



l1 + · · ·+ ln, 0 < p ≤ A1,
1
m1

ln m1s1
1−p + l2 + · · ·+ ln, A1 ≤ p ≤ A2,

1
m1

ln m1s1
1−p + 1

m2
ln m2s2

1−p + l3 + · · ·+ ln, A2 ≤ p ≤ A3,
...

1
m1

ln m1s1
1−p + · · ·+ 1

mn
ln mnsn

1−p , An ≤ p < An+1 := 1.

(22)

Notice that F−1
Sc is continuous and is piecewise linear on (0, A1], [A1, A2], . . . , [An, An+1). Sim-

ple algebraic manipulation shows that

F−1
Sc (Ai+1) = L+

i∑
j=1

Mj

(
ln(1− Aj)− ln(1− Aj+1)

)
, i = 1, . . . , n− 1,

which is the expression in (21). The definition of i∗ in (21) enables us to locate the exact
“layer” that FSc(d) belongs to, so that Ai∗ < FSc(d) ≤ Ai∗+1. By solving the equation
F−1
Sc (FSc(d)) = d for FSc(d) using this particular layer in (22), we obtain

FSc(d) = 1− exp

(
Θi∗ + Li∗ − d

Mi∗

)
, d > L. (23)

Therefore, the solution to Problem (19) is given by

d∗i = F−1
Xi

(FSc(d)) =

(
1

mi

ln
misi

1− FSc(d)

)
∨ li, i = 1, . . . , n.

Simplifying this expression yields the desired result. �

For instance, if

L < d ≤ 1

m1

ln
m1s1

1− A2

+ l2 + · · ·+ ln,
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then i∗ = 1 and A1 < FSc(d) ≤ A2. Therefore, the solution is given by

d∗i =

{
θ1 − Θ1+L1−d

m1M1
= d− (l2 + · · ·+ ln), i = 1,

li, i = 2, . . . , n.

As another illustration, suppose that d is sufficiently large such that

d >
1

m1

ln
m1s1

1− An
+ · · ·+ 1

mn

ln
mnsn

1− An
= L+

n−1∑
j=1

Mj

(
ln(1− Aj)− ln(1− Aj+1)

)
,

then i∗ = n and An < FSc(d) < 1. Applying Proposition 6.1 yields that

d∗i = θi −
Θn − d
miMn

> li, i = 1, . . . , n.

Example 3 In Dhaene et al. (2012), the following optimal capital allocation was considered:

min
d1+···+dn=d

n∑
i=1

E
[
ζi(Yi − di)2

νi

]
,

where ζ1, . . . , ζn are positive random variables with mean 1, ν1, . . . , νn are given strictly
positive numbers summing to 1, and Y1, . . . , Yn are some square integrable random variables.
We refer to Dhaene et al. (2012) for a detailed interpretation of this model. In that paper,
it is shown that the optimal allocations are given by

d∗i = νi

(
d−

n∑
j=1

E[ζjYj]

)
+ E[ζiYi], i = 1, . . . , n.

Here, we want to add the box constraints di ∈ [0, d] for all i to the minimization problem
above. More precisely, we would like to apply the theory developed in the previous sections
to solve the following problem:

min
d1+···+dn=d,0≤di≤d

n∑
i=1

E
[
ζi(Yi − di)2

νi

]
. (24)

To simplify our notation, we define ci := E[ζiYi] for i = 1, . . . , n and assume without loss of
generality that

c1

ν1

≥ · · · ≥ cn
νn
. (25)

Proposition 6.2. For any given d > 0, define

i∗ := inf

{
i ∈ {1, . . . , n− 1}

∣∣∣∣∣ d ≤
i∑

j=1

νj

(
cj
νj
− ci+1

νi+1

)}
∧ n, (26)

with the convention that inf ∅ =∞. Then the solution to Problem (24) is given by

d∗i =

{
νi∑i∗
i=1 νj

(
d−

∑i∗

j=1 cj

)
+ ci, i = 1, . . . , i∗,

0, i = i∗ + 1, . . . , n.
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Proof: We first let

fi(x) := E
[
ζi(Yi − x)2

νi

]
, x ∈ R, i = 1, . . . , n.

Notice that the box constraints di ∈ [0, d] for all i can be replaced by di ∈ [0, ui] for all i as
long as each ui is larger than d. In particular, we choose u1, . . . , un greater than d such that

(f1)′+(u1) = · · · = (fn)′+(un) ≥ max
1≤i≤n

(fi)
′
+(0),

which is equivalent to

2(u1 − E[ζ1Y1])

ν1

= · · · = 2(un − E[ζnYn])

νn
≥ max

1≤i≤n

∣∣∣∣−2E[ζiYi]

νi

∣∣∣∣ .
Moreover, we take ν to be the common value on the left-hand side of the inequality above.
By Proposition 4.1, Problem (24) is equivalent to

min
d1+···+dn=d,0≤di≤ui

n∑
i=1

E[(Xi − di)+],

where the distribution function of Xi is given by

FXi
(x) =


0 if x < 0,

(1 + f ′+(x)/ν)/2 if 0 ≤ x < ui,

1 if x ≥ ui.

Our choice of u1, . . . , un guarantees that none of the distribution function FXi
has a point

mass at ui. Inverting the distribution function above yields that

F−1
Xi

(p) =

{
0, 0 < p ≤ Ai

ννi(p− 1/2) + ci, Ai ≤ p < 1,
= (ννi(p− 1/2) + ci)+

where Ai := 1/2 − ci
ννi

for i = 1, . . . , n. From assumption (25), A1 ≤ · · · ≤ An. Let Sc be

the comonotonic sum F−1
X1

(U) + · · ·+F−1
Xn

(U), where U is any uniform(0, 1) random variable.
Then for p ∈ (0, 1),

F−1
Sc (p) = F−1

X1
(p) + · · ·+ F−1

Xn
(p)

=



0, 0 < p ≤ A1,

νν1(p− 1/2) + c1, A1 ≤ p ≤ A2,

νν1(p− 1/2) + c1 + νν2(p− 1/2) + c2, A2 ≤ p ≤ A3,
...

νν1(p− 1/2) + c1 + · · ·+ ννn(p− 1/2) + cn, An ≤ p < 1.

By a similar argument as in the proof of Proposition 6.1, we obtain

FSc(d) =
1

2
+
d−

∑i∗

j=1 cj

ν
∑i∗

i=1 νj
. (27)
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From Corollary 5.3, the solution to Problem (24) is given by

d∗i = F−1
Xi

(FSc(d)) = (ννi(FSc(d)− 1/2) + ci)+ , i = 1, . . . , n.

Putting the expression of FSc(d) in (27) in this formula yields the desired result. �

As an illustration, consider the case where

0 < d ≤ ν1

(
c1

ν1

− c2

ν2

)
.

Then i∗ = 1 and d∗1 = d and d∗2 = · · · = d∗n = 0. As another illustration, if

n−1∑
j=1

νj

(
cj
νj
− cn
νn

)
< d,

then i∗ = n and

d∗i = νi

(
d−

n∑
j=1

cj

)
+ ci, i = 1, . . . , n,

which is the solution obtained in Dhaene et al. (2012) without any box constraints.

7 Some variants

7.1 Minimization of a weighted sum of stop-loss premiums

Consider the following variant of minimization Problem (7):

min
d1+···+dn=d,li≤di≤ui

n∑
i=1

νiE[(Yi − di)+], (28)

where ν1, . . . , νn are some strictly positive constants that are not all equal, and Y1, . . . , Yn are
some integrable random variables with possibly unbounded support.

We first remark that the support of each Yi in Problem (28) can be assumed to be contained
in [li, ui] without loss of generality. For if di ∈ [li, ui],

E[(Yi − di)+] = E[(Yi ∨ li − di)+] = E[((Yi ∨ li) ∧ ui − di)+] + E[(Yi − ui)+],

and thus Yi can be replaced by (Yi ∨ li) ∧ ui in Problem (28) without changing the solution
set. For the remainder of this section, we assume that the support of each Yi is contained in
[li, ui].

To solve Problem (28), one may simply treat it as a special case of Problem (1) by writing

fi(di) := νiE[(Yi − di)+], di ∈ [li, ui],

and proceed as in Section 4 to express fi(di) as an affine function of E[(Xi − di)+] for some
suitable Xi so that the leading coefficients are equalized.
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In what follows, we present a simple trick to accomplish this transformation by using suitable
Bernoulli variables to “absorb” the coefficients νi. To explain this approach, we first assume,
without loss of generality, that each νi is strictly less than 1. If not, we may simply replace
νi by νi/

∑
νi. Let Z1, . . . , Zn be Bernoulli variables which are independent of Y1, . . . , Yn so

that

Zi =

{
1 with probability νi,

0 with probability 1− νi,

and Xi := Zi(Yi − li) + li. Then for any li ≤ di ≤ ui,

νiE[(Yi − di)+] = P(Zi = 1)E[((Yi − li)− (di − li))+]

= E[(Zi(Yi − li)− (di − li))+]

= E[(Xi − di)+]

by the assumed independence between Zi and Xi.

7.2 Nonlinear constraints

In Problem (1), the linear constraint d1 + · · · + dn = d can be replaced by a non-linear
constraint of the form

h1(d1) + · · ·+ hn(dn) = d,

where each hi is a 1−1 function so that the inverse h−1
i is well-defined (on a suitable domain).

Let d̃i := hi(di) and f̃i(x) = fi(h
−1
i (x)) for all i. If each h−1

i is convex and fi is increasing
and convex, or h−1

i is concave and fi is decreasing and convex, then f̃i is convex as well, and
hence the corresponding minimization problem is reduced to the form of Problem (1) again.

8 Connection with infimum-convolution

If the box constraints di ∈ [li, ui] for all i in Problem (1) are removed (but d1 + · · ·+ dn = d
is kept), and the domain of each real-valued convex function fi is R instead of [li, ui], then

(∧ni=1fi)(d) := min
d1+···+dn=d

n∑
i=1

fi(di) (29)

is called the infimum-convolution of f1, . . . , fn in convex analysis (cf. Rockafellar (1970)).
Notice that the minimization in (29) may not have a solution in general.

Proposition 8.1. Consider some (d∗1, . . . , d
∗
n) with d∗1 + · · ·+ d∗n = d. Then

(∧ni=1fi)(d) =
n∑
i=1

fi(d
∗
i )

if and only if
∂f1(d∗1) ∩ · · · ∩ ∂fn(d∗n) 6= ∅. (30)
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Here, ∂fi(di) := [(fi)
′
−(di), (fi)

′
+(di)] is the subdifferential of fi at di. The objective here is

to prove this result using the perspective of comonotonicity and the theory we developed in
previous sections.

Proof: We first prove the “if” part. Fix some (d∗1, . . . , d
∗
n) with d∗1 + · · ·+ d∗n = d and some

u∗ such that
u∗ ∈ ∂f1(d∗1) ∩ · · · ∩ ∂fn(d∗n).

Choose any u1, . . . , un, l1, . . . , ln such that li < d∗i < ui for all i, and let Xc = (Xc
1, . . . , X

c
n)

be a comonotonic random vector with marginal distributions given by (14) for some large
enough ν. By (14), (fi)

′
−(d∗i ) = ν(2FXi

(d∗i−)− 1) and (fi)
′
+(d∗i ) = ν(2FXi

(d∗i )− 1), and so

FXi
(d∗i−) ≤ u∗∗ ≤ FXi

(d∗i ) for all i,

where u∗∗ := (u∗/ν + 1)/2. This can be rewritten as

F−1
Xi

(u∗∗) ≤ di ≤ F−1+
Xi

(u∗∗) for all i.

In particular, this implies that (d∗1, . . . , d
∗
n) ∈ i(d,Xc). By Theorem 5.1, (d∗1, . . . , d

∗
n) solves

the problem

min
d1+···+dn=d,li≤di≤ui

n∑
i=1

fi(di).

However, as the li’s and the ui’s can be chosen arbitrarily small and large respectively, we
conclude that

min
d1+···+dn=d

n∑
i=1

fi(di) =
n∑
i=1

fi(d
∗
i ).

This proves the“if” part.

For the “only if” part, suppose that d∗1 + · · ·+ d∗n = d and (∧ni=1fi)(d) =
∑n

i=1 fi(d
∗
i ). Choose

any u1, . . . , un, l1, . . . , ln such that li < d∗i < ui for all i. Then (d∗1, . . . , d
∗
n) solves the problem

min
d1+···+dn=d,li≤di≤ui

n∑
i=1

fi(di).

It then follows from Theorem 5.1 and Proposition 2.1 that F−1
Xi

(FSc(d)) ≤ d∗i ≤ F−1+
Xi

(FSc(d))
for all i, where (Xc

1, . . . , X
c
n) is a comonotonic random vector with marginal distributions given

by (14) for some large enough ν, and Sc := Xc
1 + · · ·+Xc

n. From the proof of the “if” part,
we have

ν(2FSc(d)− 1) ∈ ∂f1(d∗1) ∩ · · · ∩ ∂fn(d∗n).

This shows that the right hand intersection is non-empty. �

Proposition 8.1 is well-known. It gives necessary and sufficient conditions for (d∗1, . . . , d
∗
n) to

be the solution of minimization problem (29).
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