
SOGrounder: Modelling and Solving Second-Order Logic

Matthias van der Hallen and Gerda Janssens
KU Leuven: Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee (Leuven)

Belgium
firstname.lastname@kuleuven.be

Abstract

KR languages based on logic have repeatedly proven their
usefulness, e.g. Horn clauses, ASP, or FO logic. As the de-
mand for more powerful and rich KR languages grows, we
propose a KR language based on Second-Order (SO) Logic.
As SO Logic is more expressive than SAT or ground (disjunc-
tive) ASP, we propose Quantified Boolean Formulas (QBF)
as a target language for our specifications. In this paper, we
describe SOGrounder, a system that can ground SO Logic
specifications to QBF. We start with a basic approach and
suggest further techniques for reducing grounding, for exam-
ple by introducing Binary Quantification as a language con-
struct that takes two formules: One formula generating vari-
able instantiations and one formula that must be instantiated.
Finally, we show how to model a real world problem that is
not reducible to first-order, and evaluate the performance of
SOGrounder w.r.t. grounding time, grounding size and solv-
ing time as compared to existing encodings.

Introduction
In the spirit of Kowalski’s seminal paper Predicate Logic
as a Programming Language (Kowalski 1974), many KR
Languages are based on logic: some are propositional, some
First-Order. In recent years, ASP has clearly shown the ap-
plicability of modelling problems in logic and handing them
to a solver on real-world business use cases: e.g. planning
robot tasks in warehouses (Gebser et al. 2018).

Yet, there is a demand for more powerful and richer KR
Languages. To this end, we propose Second-Order (SO)
Logic as a modelling language. SO Logic allows many
more problems to be expressed than ASP, FO or propo-
sitional logic; it has a descriptive complexity of PH (Im-
merman 1999). SAT and ground (disjunctive) ASP however
have a descriptive complexity of NP and Σp

2 respectively.
As such, it is infeasible to ground SO to SAT or ground
(disjunctive) ASP. Instead, we propose to ground to Quan-
tified Boolean Formulas (QBF), which have a descriptive
complexity of PSPACE. To our knowledge, the only other
ground-and-solve tool with SO as a modelling language is
SAT-TO-SAT (Bogaerts, Janhunen, and Tasharrofi 2016) and
its grounder SO2GROUNDER. Our system improves on SAT-
TO-SAT by:

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Lifting a syntactical restriction: After the first FO quan-
tificationQx, SO2GROUNDER no longer allows SO quan-
tifications of a different quantifier Q.

• Interfacing with arbitrary QBF solvers using the widely
accepted QDimacs format.

Second-Order Logic
In this section we will introduce SO logic, and show how we
intend to use it as a modelling language.

Variables are symbols representing either an element of the
domain D, a predicate p/n over n domain elements, or a
function f/n mapping n domain elements to a domain
element. We call n the arity of the predicate or function.
When a variable represents a domain element, we call it
a first-order (FO) variable. Variables representing either
a predicate or function are called second-order (SO) vari-
ables.

Terms are either first-order variables, or the application of
an n-ary function symbol f or a variable representing
such a function to n terms.

Atoms are the application of an n-ary predicate symbol p
or a variable representing such a predicate to n terms.

Formulas are defined inductively using the following rules:
• All atoms are formulas
• The negation (¬) of a formula is a formula.
• If φ and ψ are formulas, the conjunction (∧), disjunc-

tion (∨), implication (⇒) and equivalence (⇔) of φ and
ψ are formulas, with φ ⇒ ψ and φ ⇔ ψ shorthand for
¬φ ∨ ψ and (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ) respectively.

• If x is a variable, and φ is a formula, then ∃x : φ and
∀x : φ are formulas. Note that no restrictions are im-
posed w.r.t. whether x is a first-order or second-order
variable.

An example of a second order formula is ∃f : ∀x : ∀y :
x 6= y ⇒ f(x) 6= f(y), where 6= (and =) is a preinterpreted
predicate. For modelling convenience however, we can in-
troduce types to second-order logic. Types are introduced
by associating with each domain element a certain base
type Ti. Predicates and functions are associated with types
(T0, . . . , Tn) and (T0, . . . , Tn) 7→ T respectively. Variables
are typed corresponding to the symbol they represent, and
we write x :: T to mean x is typed as T .

We say a formula is properly typed if all of its subformu-
las are properly typed. An application of a predicate (func-
tion) p (f) is properly typed if the predicate (function) has
type (T0, . . . , Tn) ((T0, . . . , Tn) 7→ T) and its arguments x1
to xn have types T1 to Tn. With typing, we could introduce
the types Color and Country , and the above example for-
mula could become: ∃f :: ((Country) 7→ Color) : ∀x ::
Country : ∀y :: Country : x 6= y ⇒ f(x) 6= f(y).

SO Logic as a Modelling Language
Every Second-Order Logic modelling consists of three main
parts: The vocabulary, the structure and the theory.
Vocabulary The vocabulary defines the types used in the

remainder of the modelling. It also allows the declaration
of predicates and functions. If these predicates or func-
tions are not subsequently defined in the structure, they
are understood to be implicitly quantified existentially on
the outermost level, being in scope for the entire theory.

Structure The structure can define certain predicates and
functions that were declared in the vocabulary. As such,
it is the perfect place to put instance-specific information.
Currently, only two-valued structures are allowed, i.e., a
structure must always fully specify which tuples are true/-
false for the predicates and functions it defines.

Theory The theory consists of a set of properly typed SO
formulas with no free (unquantified) variables . We call
these formulas sentences. For a theory to be satisfied, ev-
ery sentence in the theory must be satisfied.

Strategic Companies We now define the Strategic
Companies problem, a well known example of a Σp

2-
hard (Cadoli, Eiter, and Gottlob 1997) problem. It models
the conundrum of a large holding owning multiple compa-
nies, forced to downsize by selling off a company. Of course,
the company wants to minimize the impact of selling this
company. Specifically, two conditions have to be met:
1. The sale should not impact the holdings portfolio, i.e. it

should produce the same set of goods.
2. Some sets of companies within the holding together own

another company, this is called a controlling set. As such,
it is possible to sell of a company while retaining control
of it through a controlling set. In this case, the holding is
not allowed to ‘downsize’ by selling this company.
The Strategic Companies problem was featured in the

ASP Competition 20131, where it was presented in the fol-
lowing way: We call a set of companies C controlled by
the holding a strategic set if it is a subset-minimal set that
(1) produces all goods and (2) is closed under ownership
through controlling sets. Given two distinct companies c, c′,
determine whether they form a strategic pair, i.e., whether
a strategic set containing both c and c′ exists. One addi-
tional restriction imposes that every controlling set contains
at most 4 companies.

Listing 1 shows our modelling of the Strategic Companies
problem. In lines 1-6 we specify the vocabulary, containing

1https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite

the Company and Good types, together with predicates to rep-
resent the controlling sets (cont), who produces what (prod
), the strategic set (ss) and the strategic pair (sp). Lines 8-
10 continue by specifying the structure, which contains in-
stance specific data. We conclude with lines 12-15, speci-
fying the theory: The strategic set must contain the strate-
gic pair (line 12), it must produce all goods (line 13), be
closed under ownership through controlling sets (line 14)
and it must be subset-minimal (line 15): no strict subset of
ss must exist for which conditions (1) and (2) hold. Note
that this model contains two second order quantifications:
∃ss (implicitly) in the vocabulary and ¬∃ss' on Line 15.

QBF
A quantified boolean formula (QBF) is a formula in propo-
sitional logic where variables can be quantified either exis-
tentially or universally. Quantifiers can alternate indefinitely
and it is this property that makes deciding satisfiability for
QBF PSPACE-complete, whereas deciding satisfiability for
(unquantified) SAT formulas is NP-complete.

When each variable is quantified at the beginning of the
formula, we say that it is in prenex form. Such formulas can
be written asQ1x1 . . .Qnxn.φ withQ1,Qn quantifiers. We
generally callQ1x1 . . .Qnxn the quantifier prefix, also writ-
ten Q̂ . We group subsequent quantifications of the same
quantifier into quantifier blocks and define level(Qi) to be
the number of quantifier blocks preceding it. As such, the
highest level or innermost quantification block is the one
most to the right in the formula.

When the formula φ in Q̂.φ is in Conjunctive Normal
Form (CNF) we say the QBF formula is in Prenex Conjunc-
tive Normal Form (PCNF). QDimacs, the input encoding
which most QBF solvers accept, is in fact a textual repre-
sentation of a QBF formula in PCNF.

Implementation
We now discuss the implementation of a grounder from SO
to QBF. Our initial approach proceeds, in order, as follows:
Push Negations Using the rules ¬∃x.φ ∀x.¬φ, ¬(φ ∧
ψ) ¬φ∨¬ψ, etc. we ensure that negations only appear
in front of atoms.

Unnesting Using the rule f(g(x)) = z ∃y.f(y) =
z ∧ g(x) = y, we remove function applications from po-
sitions where terms are expected.

Graphing Using the rules f(x) = y f ′(x, y) and
∃(∀)f : φ ∃(∀)f ′ : F (f ′) ∧ (⇒)φ with F (f ′) ≡ ∀x :
∃y : f ′(x, y) ∧ ∀y′ : (f ′(x, y′) ⇒ y = y′) we transform
functions f/n into predicates f ′/n+1 with existence and
uniqueness constraints.

Normalization Using the rules φ ⇒ ψ ¬φ ∨ ψ,
φ ⇔ ψ (¬ψ ∨ φ) ∧ (¬ψ ∨ φ) and φ ⇔ ψ
(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ), we eliminate ⇒,⇔. We choose
between the two rules for equivalences based on the type
of the enclosing connective.

FO Grounding Using the rule ∃(∀)x : φ
∨

t∈Dx

(
∧

t∈Dx
) : φ[x/t] with x an FO variable with domain Dx,

we instantiate all first order quantifications.

Listing 1: SO model for Strategic Companies
1 type Company = {Barilla;Dececco;Callippo;Star} # All companies
2 type Good = {Pasta;Tonno} # All products
3 cont :: (Company, Company, Company, Company, Company) # Controls: last is controlled
4 prod :: (Company, Good) # Produces
5 ss :: (Company) # Strategic Set
6 sp :: (Company, Company) # Strategic pairs

8 prod = {Barilla,Pasta; Dececco,Pasta; Callippo,Tonno; Star,Tonno}
9 cont = {Star,Star,Star,Star,Barilla; Barilla,Barilla,Barilla,Barilla,Dececco}

10 sp = {Barilla,Callippo}

12 ∀c :: Company : ∀c1 :: Company : sp(c,c1) ⇒ (ss(c) ∧ ss(c1)).
13 ∀g :: Good : ∃p :: Company : ss(p) & prod(p, g).
14 ∀c :: Company : (∃o1 :: Company : ∃o2 :: Company : ∃o3 :: Company : ∃o4 :: Company : ss(o1) ∧ ss(o2)

∧ ss(o3) ∧ ss(o4) ∧ cont(o1,o2,o3,o4,c)) ⇒ ss(c).
15 ¬(∃ss' :: (Company) : (ss' 6= ss) ∧ (∀c :: Company : ss'(c) ⇒ ss(c)) ∧ (∀g :: Good : ∃p :: Company

: ss'(p) & prod(p, g)) ∧ (∀c :: Company : (∃o1 :: Company : ∃o2 :: Company : ∃o3 :: Company : ∃
o4 :: Company : ss'(o1) ∧ ss'(o2) ∧ ss'(o3) ∧ ss'(o4) ∧ cont(o1,o2,o3,o4,c)) ⇒ ss'(c))).

Unique Names We introduce unique names for every re-
maining (SO) quantification, e.g.: ∀f : φ ∧ ∃f : ∀g :
f(x) ∨ ψ ∀f : φ ∧ ∃f ′ : ∀g : f ′(x) ∨ ψ[f/f ′].

Prenex Form We pull all SO quantifiers to the front by ap-
plying the following two rules. Note that these rules only
hold when variable α does not appear in ψ, a condition
we have preemptively satisfied due to the Unique Names
transformation and the restriction of sentences to properly
typed SO formulas with no free variables.

(∃α : φ) ∧ (∨)ψ ∃α : φ ∧ (∨)ψ (1∃)
(∀α : φ) ∧ (∨)ψ ∀α : φ ∧ (∨)ψ (2∀)

To minimise the number of quantifier alternations, we
switch between applying rule (1∃) and rule (2∀) only
when we cannot further apply the active rule. As visu-
alised below, ∀a : (∃b : ∃c : (φ ∨ ∀d : ψ)) ∧ (∀e :
φ′ ∨ ∀f : ∃g : ψ′) becomes ∀a, e, f : ∃b, c, g : ∀d :
(φ ∨ ψ) ∧ (φ′ ∨ ψ′).
Note how ∀e and ∀f are pulled to the level of ∀a by
rule (2∀), whereas ∀d is blocked from being pulled to
that level by the quantifications ∃b and ∃c, as no rule
allows switching the order of ∀ and ∃ quantifications.

∀a
∃b∃c

∀d : ψ

∀e
∀f
∃g : ψ′

∧
∨ ∨φ φ′

Tseitinize The resulting prenex formula must be flattened
to Prenex Conjunctive Normal Form (PCNF). We can do
this by introducing a so called Tseitin variable for every
nested subformula, e.g.:Q1x : Q2y : φ∧(ψ∨(χ∧ρ))
Q1x : Q2y : φ ∧ ∃Ti : (ψ ∨ Ti) ∧ (Ti ⇔ (χ ∧ ρ)).
After pulling the existential quantification of the Tseitin
variables to the front and rewriting the equivalences using
the Normalization rule, we obtain PCNF.

Grounding SO We replace every predicate atom p(x) with

a proposition px and quantifications ∀(∃)p with quantifi-
cations ∀(∃)px0 , . . . ,∀(∃)pxn with xi in the domain Dp

of p, e.g. ∀p : φ∧ p(1) with the domain Dp={1, 2} would
become ∀p1 : ∀p2 : φ[p(1)/p1, p(2)/p2] ∧ p1.

Advanced grounding techniques
In this section we will detail some improvements on the
grounding process sketched above.

In the grounding process above, our FO Grounding
transformation grounds every formula. However, when we
know the truth value of certain (sub)formulas such as pred-
icate atoms p(x), we can replace the (sub)formula by the
truth value and propagate this, instead of grounding the
(known) formula. This improvement is known as Reduced
Grounding or RED (de Cat et al. 2013). Although this is a
simple technique based on substitution and simplification, it
can be powerful. This technique is implemented on top of
the grounding process above by SOGrounder.

Grounding With Bounds (Wittocx, Mariën, and Denecker
2010), or GWB, further improves upon RED by maintaining
a symbolic representation for every formula in the theory,
e.g. using Binary Decision Diagrams or BDDs. These sym-
bolic representations allow for querying the instances which
are known to be true (false), known as the CT (CF) bound
of the formula. With this knowledge, when grounding for
example a universal quantifier, we only need to introduce
ground formulas for instances which are not known to be
true, i.e. instances not in CT. Although SOGrounder does
not support this improvement, it allows users to specify a
generating formula for (a set of) quantifications by hand.
We call this language construct the binary quantification, as
it introduces a quantification taking two formulas; one for-
mula generating variable instantiations and one being instan-
tiated. E.g., ∀(x,y)::[graph(x,y)]:φ instantiates φ only
for those x,y for which graph holds. Note that the types of
x,y can be derived from the type of graph. For strategic com-
panies, this can simplify the nested quantification of o1, o2,
o3, and o4 to a single binary quantification.

One last improvement implemented by SOGrounder is
the way Tseitin variables are introduced. The Tseitinize
transformation described above will introduce every Tseitin
literal at the innermost quantification level (Giunchiglia,
Marin, and Narizzano 2009). However, it is possible to quan-
tify the Tseitin variable T at a lower quantification level, as
long as every variable vi within the Tseitinized formula of
T is quantified in the same quantifier block or earlier as T .
Recent QBF research suggests that this has a large impact
on search efficiency (Beyersdorff, Chew, and Janota 2016).
We also use polarity optimization (Plaisted and Greenbaum
1986) which takes the polarity of the Tseitinized formula
into account to reduce the number of clauses introduced.

Experiments
To evaluate SOGrounder’s performance, we use the model
of the Strategic Companies problem (Listing 1)2, modified
to benefit from binary quantification as discussed above.

To generate problem instances parametrized by the num-
ber of companies, we have used the method described in
Maratea et al. (2008). The resulting instances are compa-
rable in size and difficulty to the benchmark set present in
previous QBF solver competitions.3 Using our model and
SOGrounder, we have generated QBF encodings, for which
the grounding times and sizes are reported in Table 1. We
have also used the instantiation scheme (IS) from Maratea
et al. to generate QBF encodings. We compare the result-
ing grounding size with that from SOGrounder by reporting
the number of literals and clauses. Regarding solving, we
compare both resulting QBF encodings, solved using De-
pQBF (Lonsing and Biere 2010) in Table 2. Note that as our
tool generates a qDimacs file, we can use many other solvers
instead of DepQBF. As a verification, and motivated to also
compare with state-of-the-art solvers in other paradigms, we
also report grounding and solving times for the ASP solver
Clingo in the respective tables. For Clingo, we use an exist-
ing ASP encoding that employs saturation (Eiter and Got-
tlob 1995) to encode the Σp

2-hard parts of the problem in
ASP.

#Companies Grounding time (ms) Lits Clauses

SOGrounder Clingo SOGrounder IS SOGrounder IS

14 220 8 282 436 1,054 1,319
29 266 16 582 901 2,179 2,729
38 322 22 762 1,180 2,854 3,575
54 409 38 1,082 1,676 4,054 5,079
77 626 65 1,542 2,389 5,779 7,241
82 684 67 1,642 2,544 6,154 7,711
94 952 83 1,882 2,916 7,054 8,839
100 867 92 2,002 3,102 7,504 9,403

Table 1: Overview of grounding times and sizes for strategic
companies of size n.

It is clear from the results in Table 1 that SOGrounder
produces smaller groundings than those produced by IS.
One contributing factor is the advanced Tseitinization pro-
cess described above. Another contributing factor are the

2Binaries and experiments available at https://bit.ly/2rRckXi
3http://qbflib.org/suite_detail.php?suiteId=19 on 17/5/2018.

Solver Solving time (ms)

14 29 38 54 77 82 94 100

DepQBF (QDimacs) 19 38 55 160 4,980 6,725 14,546 16,533
IS 24 80 161 1,291 20,078 15,388 31,714 42,311

Clingo 11 41 85 340 2,522 3,202 7,354 9,351

GhostQ (QCIR) 120 177 205 252 565 863 2,110 2,355

Table 2: Overview of solving times for SOGrounder and IS
(QDimacs), Clingo (ASP), and GhostQ (QCIR).

tools used by IS, and their choice to model the dual prob-
lem s.t. only two quantifier blocks are introduced. It is this
smaller grounding that we identify as the main contributor
for SOGrounder’s better solving times w.r.t. IS. For Clingo,
we expect its optimized bottom-up grounding and powerful
lookback heuristics to account for its better ground and solv-
ing time.

To illustrate the effects of employing binary quan-
tification, Table 3 reports grounding times (in ms) for
SOGrounder with and without using binary quantifications
(5 min. limit). Clearly, without such constructs, or tech-
niques to derive them, grounding can scale very bad. Note
that binary quantification does not affect the grounding size
in this case.

Binary quantification Grounding time (ms)

5 8 14 17 29 30 33

no 244 385 3329 8608 – – –
yes 204 228 220 230 266 270 285

Table 3: Overview of SOGrounder’s grounding times (ms)
with and without binary quantification, 5 min time limit.

The possible impact of Tseitinization is well-known
within QBF research. In fact, it is suggested that its impact is
much higher for QBF than for SAT, and recently alternative
transformations (Klieber et al. 2013) and encodings such as
QCIR (Jordan, Klieber, and Seidl 2016) that do not require
PCNF (and thus, Tseitinization) have been developed. As it
is very much possible to add QCIR output to SOGrounder,
we modified SOGrounder to output QCIR encodings for this
exact SO model specifically, and used the QCIR compatible
GhostQ solver to judge the impact of translating to a more
high-level QBF representation (Table 2).

It is clear from these that the impact of using a more
high-level QBF representation is non-negligible in this case.
However, further experiments will show whether this holds
in general.

Conclusion and Future Work
SOGrounder is a tool which accepts SO Logic modellings
and grounds them to QBF. It is clear from experiments that
this yields a viable option for specifying and solving prob-
lems of a higher computational complexity than FO or even
ASP. Its performance can match or even beat existing hand-
written QBF and state-of-the-art ASP encodings.

Nevertheless, to ensure performance on the large range
of possible problems, of varying complexity, we must ex-

pand our benchmark set and investigate how advanced tech-
niques such as GWB and Lazy Grounding interact with Sec-
ond Order and the underlying QBF solvers. We also want to
further investigate the effects of Tseitinization in QBF, and
build support for QBF encodings which do not require CNF,
such as QCIR. Lastly, we want to compare with other, non
ground-and-solve modelling languages supporting SO, such
as ProB (Leuschel and Butler 2003).

Acknowledgements
Matthias van der Hallen is supported by a Ph.D. fellowship
from the Research Foundation - Flanders (FWO - Vlaan-
deren).

References
Beyersdorff, O.; Chew, L.; and Janota, M. 2016. Extension
variables in QBF resolution. In AAAI Workshop: Beyond
NP, volume WS-16-05 of AAAI Workshops. AAAI Press.
Bogaerts, B.; Janhunen, T.; and Tasharrofi, S. 2016. Solving
QBF instances with nested SAT solvers. In AAAI Workshop:
Beyond NP, volume WS-16-05. AAAI Press.
Cadoli, M.; Eiter, T.; and Gottlob, G. 1997. Default logic as
a query language. IEEE Trans. Knowl. Data Eng. 9(3):448–
463.
de Cat, B.; Bogaerts, B.; Devriendt, J.; and Denecker, M.
2013. Model expansion in the presence of function symbols
using constraint programming. In ICTAI, 1068–1075. IEEE
Computer Society.
Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case. Ann.
Math. Artif. Intell. 15(3-4):289–323.
Gebser, M.; Obermeier, P.; Otto, T.; Schaub, T.; Sabuncu,
O.; Nguyen, V.; and Son, T. C. 2018. Experimenting with
robotic intra-logistics domains. CoRR abs/1804.10247.
Giunchiglia, E.; Marin, P.; and Narizzano, M. 2009. Rea-
soning with quantified boolean formulas. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press. 761–780.
Immerman, N. 1999. Descriptive complexity. Graduate texts
in computer science. Springer.
Jordan, C.; Klieber, W.; and Seidl, M. 2016. Non-cnf QBF
solving with QCIR. In AAAI Workshop: Beyond NP, volume
WS-16-05 of AAAI Workshops. AAAI Press.
Klieber, W.; Janota, M.; Marques-Silva, J.; and Clarke, E. M.
2013. Solving QBF with free variables. In CP, volume 8124
of Lecture Notes in Computer Science, 415–431. Springer.
Kowalski, R. A. 1974. Predicate logic as programming lan-
guage. In IFIP Congress, 569–574.
Leuschel, M., and Butler, M. J. 2003. Prob: A model checker
for B. In FME, volume 2805 of Lecture Notes in Computer
Science, 855–874. Springer.
Lonsing, F., and Biere, A. 2010. Depqbf: A dependency-
aware QBF solver. JSAT 7(2-3):71–76.
Maratea, M.; Ricca, F.; Faber, W.; and Leone, N. 2008.
Look-back techniques and heuristics in DLV: implementa-
tion, evaluation, and comparison to QBF solvers. J. Algo-
rithms 63(1-3):70–89.
Plaisted, D. A., and Greenbaum, S. 1986. A structure-
preserving clause form translation. J. Symb. Comput.
2(3):293–304.
Wittocx, J.; Mariën, M.; and Denecker, M. 2010. Grounding
FO and FO(ID) with bounds. J. Artif. Intell. Res. 38:223–
269.

