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SUMMARY 10

In this paper we consider regression models with centered errors, independent from the covari-
ates. Given independent and identically distributed data and given an estimator of the regression
function (which can be parametric or nonparametric of nature), we estimate the distribution of the
error term by the empirical distribution of estimated residuals. To approximate the distribution
of this estimator, Koul and Lahiri (1994) and Neumeyer (2009) proposed bootstrap procedures 15

based on smoothing the residuals before drawing bootstrap samples. So far it has been an open
question whether a classical non-smooth residual bootstrap is asymptotically valid in this con-
text. In this paper we solve this open problem, and show that the non-smooth residual bootstrap
is consistent. We illustrate this theoretical result by means of simulations, that show the accuracy
of this bootstrap procedure for various models, testing procedures and sample sizes. 20

Some key words: Bootstrap; Empirical distribution function; Kernel smoothing; Linear regression; Location model;
Nonparametric regression.

1. INTRODUCTION

Consider the model

Y = m(X) + ε, (1)

where the response Y is univariate, the covariate X is of dimension p ≥ 1, and the error term 25

ε is independent of X . The regression function m(·) can be parametric (for instance linear) or
nonparametric of nature, and the distribution F of ε is completely unknown, except that E(ε) =
0. The estimation of the distribution F has been the object of many papers in the literature,
starting with the seminal papers of Durbin (1973), Loynes (1980) and Koul (1987) in the case
where m(·) is parametric, whereas the nonparametric case has been studied by Van Keilegom 30

and Akritas (1999), Akritas and Van Keilegom (2001) and Müller et al. (2004), among others.
The estimator of the error distribution has been shown to be very useful for testing hypotheses

regarding several features of model (1), like for instance testing for the form of the regression
function m(·) (Van Keilegom et al., 2008), comparing regression curves (Pardo-Fernández et al.,
2007), testing independence between ε and X (Einmahl and Van Keilegom, 2008, and Racine 35

and Van Keilegom, 2017), testing for a symmetric error distribution (Koul, 2002, Neumeyer and
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2 N. NEUMEYER AND I. VAN KEILEGOM

Dette, 2007), among others. The idea in each of these papers is to compare an estimator of the
error distribution obtained under the null hypothesis with an estimator that is not based on the
null. Since the asymptotic distribution of the estimator of F has a complicated covariance struc-
ture, bootstrap procedures have been proposed to approximate the distribution of the estimator40

and the critical values of the tests.
Koul and Lahiri (1994) proposed a residual bootstrap for linear regression models, where the

bootstrap residuals are drawn from a smoothed empirical distribution of the residuals. Neumeyer
(2009) proposed a similar bootstrap procedure for nonparametric regression models. The rea-
son why a smooth bootstrap was proposed is that the methods of proof in both papers require45

a smooth distribution of the bootstrap error. Smooth residual bootstrap procedures have been
applied by De Angelis et al. (1993), Mora (2005), Pardo-Fernández et al. (2007), and Huskova
and Meintanis (2009), among many others. An alternative bootstrap procedure for nonparametric
regression was considered by Neumeyer (2008), where bootstrap residuals were drawn from the
non-smoothed empirical distribution of the residuals, after which smoothing is applied on the50

empirical distribution of the bootstrap residuals. Further it has been shown that wild bootstrap
in the context of residual-based procedures can only be applied for specific testing problems as
testing for a symmetric error distribution (Neumeyer et al., 2005, Neumeyer and Dette, 2007),
whereas it is not valid in general (as shown in the 2006 Ruhr-Universität Bochum habilitation
thesis by N. Neumeyer). It has been an open question so far whether a classical non-smooth resid-55

ual bootstrap is asymptotically valid in this context. In this paper we solve this open problem, and
show that the non-smooth residual bootstrap is consistent when applied to residual processes. We
will do this for the case of univariate nonparametric regression with random design and for mul-
tivariate linear regression with fixed design. Other models (nonparametric regression with fixed
design, nonlinear or semiparametric regression,..) can be treated similarly. The question whether60

smooth bootstrap procedures should be preferred over non-smooth bootstrap procedures has been
discussed in different contexts, see Silverman and Young (1987) and Hall et al. (1989).

The finite sample performance of the smooth and non-smooth residual bootstrap for residual
processes has been studied by Neumeyer (2009). The paper shows that for small sample sizes
using the classical residual bootstrap version of the residual empirical process in the nonpara-65

metric regression context yields too small quantiles. However, as we will show in this paper, this
problem is diminished for larger sample sizes and it is not very relevant when applied to testing
problems.

In this paper we consider bootstrap procedures that can be applied to obtain confidence bands
for the error distribution or bootstrap versions of hypotheses tests based on residual empirical70

processes. Those have to be distinguished from bootstrap procedures in regression models for
other purposes. First, bootstrap procedures for linear models have been considered by Efron
(1979), Freedman (1981), and Wu (1986), among others, and can be applied for hypotheses test-
ing or derivation of confidence sets for the regression parameter; see also Davison and Hinkley
(1997) and the references given there. Second, there is a vast literature on bootstrap confidence75

sets for the regression function in nonparametric models. See Härdle and Bowman (1988), Härdle
and Marron (1991), Neumann and Polzehl (1998) and Claeskens and Van Keilegom (2003).
Third, several authors considered bootstrap procedures applied to hypotheses testing with test
statistics that directly depend on the regression estimator. Among others, Härdle and Mammen
(1993), Stute et al. (1998) and Delgado and González Manteiga (2001) proved validity of boot-80

strap procedures in the context of specific test statistics for nonparametric regression models (not
depending on residual empirical processes).



Bootstrap of residual processes in regression: to smooth or not to smooth ? 3

2. NONPARAMETRIC REGRESSION

We start with the case of nonparametric regression with random design. The covariate is sup-
posed to be one-dimensional. To estimate the regression function we use a kernel estimator based
on Nadaraya-Watson weights :

m̂(x) =

n∑
i=1

kh(x−Xi)∑n
j=1 kh(x−Xj)

Yi,

where k is a kernel density function, kh(·) = k(·/h)/h and h = hn is a positive bandwidth se-
quence converging to zero when n tends to infinity. Our main result is valid under the following 85

regularity assumptions.

(A1) The univariate covariates X1, . . . , Xn are independent and identically distributed on a
compact support, say [0, 1]. They have a twice continuously differentiable density fX that
is bounded away from zero. The regression functionm is twice continuously differentiable
in (0, 1). 90

(A2) The errors ε1, . . . , εn are independent and identically distributed with distribution func-
tion F . They are centered and are independent of the covariates. F is twice contin-
uously differentiable with strictly positive density f such that supy∈R f(y) <∞ and
supy∈R |f ′(y)| <∞. Further, E(|ε1|υ) <∞ for some υ ≥ 7.

(A3) k is a twice continuously differentiable symmetric density with compact support [−1, 1], 95

say, such that
∫
uk(u) du = 0 and k(−1) = k(1) = 0. The first derivative of k is of

bounded variation.
(A4) hn is a sequence of positive bandwidths such that hn ∼ cnn−1/3+η with 4/(3 + 9υ) <

η < 1/12, cn is only of logarithmic rate, and υ is defined in (A2).

Under those assumptions one in particular has that nh4n = o(1) and it is possible to find some 100

δ ∈ (0, 1/2) with

nh3+2δ
n

log(h−1n )
→∞. (2)

Let residuals be defined as ε̂i = Yi − m̂(Xi), i = 1, . . . , n. In Theorem 1 in Akritas and Van
Keilegom (2001) it is shown that the residual process n−1/2

∑n
i=1

{
I(ε̂i ≤ y)− F (y)

}
, y ∈ R,

converges weakly to a zero-mean Gaussian process W (y) with covariance function given by

cov
{
W (y1),W (y2)

}
= E

[{
I(ε ≤ y1) + f(y1)ε

}{
I(ε ≤ y2) + f(y2)ε

}]
, (3)

where ε has distribution function F and density f . 105

Neumeyer (2009) studied a smooth bootstrap procedure to approximate the distribution of
this residual process, and she showed that the smooth bootstrap ‘works’ in the sense that the
limiting distribution of the bootstrapped residual process, conditional on the data, equals the
process W (y) defined above, in probability. We will study an alternative bootstrap procedure
that has the advantage of not requiring smoothing of the residual distribution. For i = 1, . . . , n,
let ε̃i = ε̂i − n−1

∑n
j=1 ε̂j , and let

F̂0,n(y) = n−1
n∑
i=1

I(ε̃i ≤ y)

be the (non-smoothed) empirical distribution of the centered residuals. Then, we randomly
draw bootstrap errors ε∗0,1, . . . , ε

∗
0,n with replacement from F̂0,n. Let Y ∗i = m̂(Xi) + ε∗0,i,
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i = 1, . . . , n, and let m̂∗0(·) be the same as m̂(·), except that we use the bootstrap data
(X1, Y

∗
1 ), . . . , (Xn, Y

∗
n ). Define now

ε̂∗0,i = Y ∗i − m̂∗0(Xi) = ε∗0,i + m̂(Xi)− m̂∗0(Xi). (4)

We are interested in the asymptotic behavior of the process n1/2(F̂ ∗0,n − F̂0,n) with110

F̂ ∗0,n(y) = n−1
n∑
i=1

I(ε̂∗0,i ≤ y) (5)

and we will show below that it converges to the same limiting Gaussian process as the original
residual process n−1/2

∑n
i=1

{
I(ε̂i ≤ y)− F (y)

}
, y ∈ R, which means that smoothing of the

residuals is not necessary to obtain a consistent bootstrap procedure.
In order to prove this result, we will use the results proved in Neumeyer (2009) to show that

the difference between the smooth and the non-smooth bootstrap residual process is asymptoti-115

cally negligible. To this end, we can write ε∗0,i = F̂−10,n(Ui), i = 1, . . . , n, where U1, . . . , Un are
independent random variables from a U [0, 1] distribution. Strictly speaking the Ui’s form a trian-
gular array U1,n, . . . , Un,n of U [0, 1] variables, but since we are only interested in convergence in
distribution of the bootstrap residual process (as opposed to convergence in probability or almost
surely), we can work with U1, . . . , Un without loss of generality.120

We introduce the following notations : let ε∗s,i = F̂−1s,n (Ui), where F̂s,n(y) =
∫
F̂0,n(y −

vsn) dL(v) is the convolution of the distribution F̂0,n(y − ·sn) and the integrated kernel L(·) =∫ ·
−∞ `(u) du, where ` is a kernel density function and sn is a sequence of positive bandwidths

controlling the smoothness of F̂s,n such that sn → 0 for n→∞. Then, similarly to the definition
of ε̂∗0,i in (4), we define125

ε̂∗s,0,i = ε∗s,i + m̂(Xi)− m̂∗0(Xi). (6)

We then decompose the bootstrap residual process as follows :

n1/2
{
F̂ ∗0,n(y)− F̂0,n(y)

}
= n−1/2

n∑
i=1

{
I(ε̂∗0,i ≤ y)− I(ε̂∗s,0,i ≤ y)

}
+n−1/2

n∑
i=1

{
I(ε̂∗s,0,i ≤ y)− F̂s,n(y)

}
+n1/2

{
F̂s,n(y)− F̂0,n(y)

}
= Tn1(y) + Tn2(y) + Tn3(y). (7)

In Lemmas S1.1 and S1.3 in the supplement we show that under assumptions (A1)–(A4) above
and conditions (C1), (C2) (given in the supplement) concerning the choice of ` and sn in the
proof, the terms Tn1 and Tn3 are asymptotically negligible. For the proof of negligibility of
Tn1 two features of our construction are of utmost importance. On the one hand, in (6) the130

same function m̂∗0 needs to be used as in (4) (in contrast to (9) below). On the other hand,
the same uniform random variables Ui need to be used to generate the bootstrap errors ε∗0,i
and ε∗s,i, i = 1, . . . , n. In this way the difference between the empirical distribution functions
of ε̂∗0,1, . . . , ε̂

∗
0,n and of ε̂∗s,0,1, . . . , ε̂

∗
s,0,n can be bounded by the difference En(f1)− En(f2),

where En is an asymptotically equicontinuous empirical process indexed in a function class.135

Negligibility of Tn1 then follows because the distance between the indices f1 and f2 can be
bounded by the difference between F̂s,n and F̂0,n, which is shown to be opr(n

−1/2). From the
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latter fact also negligibility of Tn3 follows. Further in Lemma S1.2 we show that the process Tn2
is asymptotically equivalent (in terms of weak convergence) to the smooth bootstrap residual
process n1/2(F̂ ∗s,n − F̂s,n) with 140

F̂ ∗s,n(y) = n−1
n∑
i=1

I(ε̂∗s,i ≤ y), (8)

where, in contrast to (6),

ε̂∗s,i = ε∗s,i + m̂(Xi)− m̂∗s(Xi) (9)

with m̂∗s defined as m̂, but based on smoothed bootstrap data (Xi, m̂(Xi) + ε∗s,i), i = 1, . . . , n.
Neumeyer (2009) showed weak convergence of the residual process based on the smooth resid-
ual bootstrap, n1/2(F̂ ∗s,n − F̂s,n), to the Gaussian process defined in (3). Thus the main idea to
prove Lemma S1.2 is to show that the estimator m̂∗0 has similar asymptotic properties as m̂∗s, 145

such that the use of the different estimator does not make a difference in the proofs of fidi-
convergence, tightness and the calculation of the asymptotic covariance. The three lemmas lead
to the following main result regarding the validity of the non-smooth bootstrap residual process.

THEOREM 1. Assume (A1)–(A4). Then, conditionally on the data (X1, Y1), . . . , (Xn, Yn), the
process n1/2

{
F̂ ∗0,n(y)− F̂0,n(y)

}
, y ∈ R, converges weakly to the zero-mean Gaussian process 150

W (y), y ∈ R, defined in (3), in probability.

The proof is given in section S1 of the supplement.
The result of Theorem 1 can be applied to obtain confidence bands for the error distribution. It

can further be used to approximate critical values for hypotheses tests in nonparametric regres-
sion models which are based on residual empirical processes such as tests for properties of the 155

error distribution (see for instance Neumeyer and Dette, 2007, or Einmahl and Van Keilegom,
2008), or tests concerning the regression function (see for instance Pardo-Fernández et al., 2007,
or Van Keilegom et al., 2008). The application of the bootstrap procedure needs to be modified
in order to obtain data that fulfil the null hypothesis; see section 4 for examples and also section
5 in Neumeyer (2009). 160

Remark 1. If one aims at confidence sets for the regression function, one needs different
kinds of bootstrap results. To demonstrate that both the non-smooth and the smooth residual
bootstrap can be applied in this context as well note that under assumptions (A1)–(A4) (for
fixed 0 < x < 1), (nhn)1/2{m̂(x)−m(x)} converges in distribution to a centered normally
distributed random variable Z with variance E(ε21)

∫
k2(u) du /fX(x). No bias term appears 165

because under our assumptions nh5n → 0. Under the same assumptions one obtains, condition-
ally on the data (X1, Y1), . . . , (Xn, Yn), weak convergence of the non-smooth residual boot-
strap version (nhn)1/2{m̂∗0(x)−m∗(x)} to Z, in probability, if the centering term is chosen as
m∗(x) =

∑n
i=1 kh(Xi − x)m̂(Xi)/

∑n
j=1 kh(Xj − x). We provide a sketch of proof in the sup-

plement (see subsection S1.1) to obtain the result under exactly our model and our assumptions, 170

though similar results are well known in the literature. Choosing this centering is analogous to the
approach of Härdle and Bowman (1988) who obtain confidence bands for the regression function
with a residual bootstrap approach in the case of fixed design points and for the Priestley-Chao
regression estimator. If one wants to replace the centering m∗(x) by m̂(x), one should use a
larger pilot bandwidth for m̂ when constructing the bootstrap observations. This was demon- 175

strated by Härdle and Marron (1991) for a wild bootstrap (for the Nadaraya-Watson estimator
and random covariates) and the same reasoning applies for residual bootstrap. Cao-Abad and
Gonzalez-Manteiga (1993) obtain similar results for a bootstrap procedure with smoothing in
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the explanatory variable. More recently, McMurry and Politis (2008) considered an alternative
way of bias-correction using infinite order kernels for the Gasser-Müller estimator in the case180

of fixed design points. Concerning the smooth residual bootstrap, one obtains conditional weak
convergence of (nhn)1/2{m̂∗s(x)−m∗(x)} to Z, in probability, if sn → 0 and ` is a symmet-
ric density with second moments. See the supplement (subsection S1.1) for a derivation of this
result.

3. LINEAR MODEL185

Consider independent observations from the linear model

Yni = xT
niβ + εni, i = 1, . . . , n, (10)

where β ∈ Rp denotes the unknown parameter and the errors εni are assumed to be inde-
pendent and identically distributed with E(εni) = 0 and distribution function F . Throughout
this section let Xn ∈ Rn×p denote the design matrix in the linear model, where the vector
xT
ni = (xni1, . . . , xnip) corresponds to the ith row of the matrix Xn and is not random. The190

design matrix is assumed to be of rank p ≤ n. We use the following regularity assumptions.

(AL1) The fixed design fulfils
a. maxi=1,...,n x

T
ni(X

T
nXn)−1xni = O(n−1),

b. limn→∞ n
−1XT

nXn = Σ ∈ Rp×p with invertible Σ,
c. limn→∞ n

−1∑n
i=1 xni = m ∈ Rp.195

(AL2) The errors εni, i = 1, . . . , n, n ∈ N, are independent and identically distributed with dis-
tribution function F and density f that is strictly positive, bounded, and continuously
differentiable with bounded derivative on R. Assume E(|ε11|υ) <∞ for some υ > 3.

We consider the least squares estimator

β̂n = (XT
nXn)−1XT

nYn = β + (XT
nXn)−1XT

nεn (11)

with the notations Yn = (Yn1, . . . , Ynn)T , εn = (εn1, . . . , εnn)T , and define residuals ε̂ni =200

Yni − xT
niβ̂n, i = 1, . . . , n. Residual processes in linear models have been extensively stud-

ied by Koul (2002). It is shown there that, under assumptions (AL1) and (AL2), the process
n−1/2

∑n
i=1

{
I(ε̂ni ≤ y)− F (y)

}
, y ∈ R, converges weakly to a zero-mean Gaussian process

W (y) with covariance function

cov
{
W (y1),W (y2)

}
= F (y1 ∧ y2)− F (y1)F (y2) +mTΣ−1m

[
f(y1)f(y2)var(ε)

+ f(y1)E{I(ε ≤ y2)ε}+ f(y2)E{I(ε ≤ y1)ε}
]
, (12)

where ε has distribution function F and density f , and m and Σ are defined in (AL1).205

For the bootstrap procedure we generate ε∗0,i, i = 1, . . . , n, from the distribution function

F̂0,n(y) = n−1
n∑
i=1

I(ε̃ni ≤ y) (13)

with ε̃ni = ε̂ni − n−1
∑n

j=1 ε̂nj , i = 1, . . . , n. The centering of residuals is not necessary when
the covariate includes an intercept. Note also that in the bootstrap residuals we suppress the index
n to match the notation in the nonparametric case. We now define bootstrap observations by

Y ∗ni = xT
niβ̂n + ε∗0,i (i = 1, . . . , n),
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and calculate estimated residuals from the bootstrap sample 210

ε̂∗0,i = Y ∗ni − xT
niβ̂
∗
0,n = ε∗0,i + xT

ni(β̂n − β̂∗0,n), (14)

where β̂∗0,n is the least squares estimator

β̂∗0,n = (XT
nXn)−1XT

nY
∗
n = β̂n + (XT

nXn)−1XT
nε
∗
0,n (15)

(with the notations Y ∗n = (Y ∗n1, . . . , Y
∗
nn)T, ε∗0,n = (ε∗0,1, . . . , ε

∗
0,n)T). We will show that the boot-

strap residual process n1/2{F̂ ∗0,n(y)− F̂0,n(y)}, with

F̂ ∗0,n(y) = n−1
n∑
i=1

I(ε̂∗0,i ≤ y), (16)

converges to the same limiting process W (y), y ∈ R, as the original residual process
n−1/2

∑n
i=1

{
I(ε̂ni ≤ y)− F (y)

}
, y ∈ R. Using the representations ε∗0,i = F̂−10,n(Ui), ε∗s,i = 215

F̂−1s,n (Ui), i = 1, . . . , n, where U1, . . . , Un are independent and U [0, 1]-distributed and
F̂s,n(y) =

∫
F̂0,n(y − vsn) dL(v) is the smoothed empirical distribution function of the residu-

als, we have the same decomposition (7) as in the nonparametric case. In Lemmas S2.1 and S2.3
in the Appendix we show that under assumptions (AL1), (AL2) and conditions (CL1), (CL2)
on the choice of sn and L (given in the supplement) the terms Tn1 and Tn3 are asymptotically 220

negligible. The idea of the proof is the same as in the nonparametric case. In particular one needs
to use the same estimator β̂∗0,n in (14) and in the definition of ε̂∗s,0,i = ε∗s,i + xT

ni(β̂n − β̂∗0,n) with
smooth bootstrap errors ε∗s,i, and one needs to use the same uniform random variables Ui to de-
fine ε∗0,i and ε∗s,i, i = 1, . . . , n. Further we show in Lemma S2.2 that the limiting distribution
of 225

Tn2(y) = n−1/2
n∑
i=1

{
I(ε̂∗s,0,i ≤ y)− F̂s,n(y)

}
(17)

is the same as the limiting distribution of n1/2{F̂ ∗s,n(y)− F̂s,n(y)}, with

F̂ ∗s,n(y) = n−1
n∑
i=1

I(ε̂∗s,i ≤ y) (18)

and ε̂∗s,i = ε∗s,i + xT
ni(β̂n − β̂∗s,n), where β̂∗s,n = β̂n + (XT

nXn)−1XT
nε
∗
s,n and ε∗s,n =

(ε∗s,1, . . . , ε
∗
s,n)T. To show this we apply results from Koul and Lahiri (1994) and demon-

strate that the use of the estimator β̂∗0,n in the definition of ε̂∗s,0,i (instead of β̂∗s,n in the definition
of ε̂∗s,i) does not change the asymptotic distribution. In this way we obtain the validity of the 230

classical residual bootstrap.

THEOREM 2. Assume (AL1), (AL2). Then, conditionally on the data Y1n, . . . , Ynn, the process
n1/2{F̂ ∗0,n(y)− F̂0,n(y)}, y ∈ R, converges weakly to the zero-mean Gaussian process W (y),
y ∈ R, defined in (12), in probability.

The proof is given in section S2 of the supplement. 235

The result can be applied to obtain confidence bands for the error distribution or for hypotheses
testing with procedures based on the residual empirical process, see for instance Koul (2002) or
Neumeyer et al. (2007).
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Remark 2. The same bootstrap procedures can be applied to mimic the distribution of
n1/2(β̂n − β), which converges to a p-dimensional centered normal random variable Z with240

covariance matrix E(ε211)Σ
−1. Freedman (1981) showed that, along almost all sequences

Y1n, . . . , Ynn, n1/2(β̂∗0,n − β̂n) converges in distribution to Z. His result holds under our
(stronger) assumptions (AL1), (AL2). Thus the asymptotic distribution of n1/2(β̂n − β) is mim-
icked by the non-smooth residual bootstrap. Freedman (1981) further demonstrated that the resid-
ual bootstrap may fail if the residuals are not centered (see (13)). Concerning the smooth residual245

bootstrap, one obtains conditional weak convergence of n1/2(β̂∗s,n − β̂n) to Z, in probability, if
sn → 0 and ` is a symmetric density with second moments. We will demonstrate this in the
supplement (see subsection S2.1).

4. SIMULATIONS

In this section we will study the behavior of the smooth and the non-smooth residual bootstrap250

for a range of models, sample sizes and contexts. We start with an empirical study to assess the
quality of bootstrap confidence bands for the error distribution. Next, we will consider the use
of the residual bootstrap for approximating the critical values in two representative examples of
hypothesis testing procedures based on residual processes: the case of testing for a symmetric
error distribution, and the case of goodness-of-fit tests for the regression function.255

4·1. Confidence bands
Consider model (1) in the nonparametric case and generate data with m(x) = 2x, where X

follows a uniform distribution on [0, 1], and ε ∼ N(0, 0·252). In order to assess the quality of
the smooth and the non-smooth bootstrap approximation, we calculate confidence bands for the
error distribution F (·) by means of the two bootstraps. The bands are defined as F̂0,n(·)± dα,n,0260

for the non-smooth bootstrap, and F̂0,n(·)± dα,n,s for the smooth bootstrap, where dα,n,0 and
dα,n,s are respectively the quantiles of level 1− α of the distribution of max1≤i≤n |F̂ ∗0,n(ε̂∗0,i)−
F̂0,n(ε̂∗0,i)| and max1≤i≤n |F̂ ∗s,n(ε̂∗s,i)− F̂s,n(ε̂∗s,i)|.

In order to verify whether the bootstrap approximation works well, we calculate the coverage
and the average width of the confidence bands for several values of the sample size n and the265

confidence level 1− α. The results are in Table 1 and are based on 1000 simulation runs, and
for each simulation 1000 bootstrap samples are generated. The bandwidth hn is taken equal to
hn = σ̂Xn

−0·3 with σ̂X the empirical standard deviation of X1, . . . , Xn, and the kernel k is the
Gaussian kernel. For the smooth bootstrap, bootstrap errors ε∗s,i are generated from F̂s,n(y) =∫
F̂0,n(y − vsn) dL(v), where L is the distribution of a standard normal and sn is chosen by270

means of the cross-validation procedure proposed by Li et al. (2017). The latter paper studies the
estimation of distribution functions by applying kernel smoothing on the empirical distribution,
exactly in the same way as we do for obtaining our estimator F̂s,n(·). The bandwidth selector is
included in the package ‘np’ in R, and is obtained from the function ‘npudistbw’. This bandwidth
satisfies regularity condition (CL2) in the supplement imposed on sn, thanks to Theorem 3.2 in275

the latter paper.
The table shows that the smooth bootstrap leads to too small coverages, and the coverage does

not improve when n increases. On the other hand, the non-smooth bootstrap leads to too large
coverage probabilities for small values of n, but the coverage is close to the nominal level 1− α
when n equals 1000. So, the smooth bootstrap is anti-conservative and the non-smooth bootstrap280

tends to be conservative in this situation. A natural consequence of this tendency to under- and
overestimate the coverage probability, is that the average width of the confidence bands obtained
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with the smooth bootstrap is smaller than of those obtained with the non-smooth bootstrap, and
the difference in width is of the order of 10− 20%.

n Bootstrap Coverage Average width
90 95 99 90 95 99

50 Smooth 86·3 92·7 99·0 23·6 25·8 30·2
Non-smooth 97·6 99·4 100 28·1 30·3 35·4

100 Smooth 86·6 92·7 98·9 17·0 18·5 21·6
Non-smooth 96·4 98·8 998· 19·8 21·5 24·9

200 Smooth 86·9 93·1 98·2 12·2 13·3 15·4
Non-smooth 95·8 97·8 99·8 13·9 15·1 17·4

500 Smooth 86·3 92·6 98·2 7·8 8·5 9·8
Non-smooth 93·4 98·0 99·7 8·7 9·4 10·8

1000 Smooth 85·1 91·1 96·9 5·5 6·0 7·0
Non-smooth 92·2 95·3 98·8 6·1 6·6 7·6

Table 1. Coverage (in %) and average width of confidence bands for F (·) for the smooth and
non-smooth bootstrap in the nonparametric model and for 1− α = 0·90, 0·95 and 0·99.

4·2. Testing for a symmetric error distribution 285

As already mentioned before, the residual bootstrap is very much used in hypothesis testing
regarding various aspects of model (1). As a first illustration we consider a test for the symmetry
of the error density in a linear regression model with fixed design. More precisely, consider
the model Yni = xT

niβ + εni, where E(εni) = 0, and suppose we are interested in testing the
following hypothesis regarding the distribution F of εni :

H0 : F (t) = 1− F (−t) for all t ∈ R.

When the design is fixed and the regression function is linear, Koul (2002) considered a test for
H0 based on the residual process

F̂0,n(·)− F̂−0,n(·) = n−1
n∑
i=1

{
I(ε̂ni ≤ ·)− I(−ε̂ni ≤ ·)

}
,

where F̂−0,n is the empirical distribution of −ε̂n1, . . . ,−ε̂nn, and ε̂ni = Yni − xT
niβ̂n. Natural

test statistics are the Kolmogorov-Smirnov and the Crámer-von Mises statistics :

TKS = sup
y
|F̂0,n(y)− F̂−0,n(y)|, TCM =

∫ {
F̂0,n(y)− F̂−0,n(y)

}2
dF̂0,n(y).

It is clear from the covariance function given in (12) that their asymptotic distribution is not
easy to approximate, and that the residual bootstrap offers a valid alternative. We will compare
the level and power of the two tests, using the smooth and the non-smooth bootstrap. The boot-
strapped versions of TCM (and similarly for TKS) are given by

T ∗CM,0 = n

∫ {
F̂ ∗0,n(y)− F̂ ∗−0,n(y)

}2
dF̂ ∗0,n(y), T ∗CM,s = n

∫ {
F̂ ∗s,n(y)− F̂ ∗−s,n(y)

}2
dF̂ ∗s,n(y),

where for the non-smooth bootstrap, bootstrap errors ε∗0,1, . . . , ε
∗
0,n are drawn from {F̂0,n(·) +

F̂−0,n(·)}/2, which is by construction a symmetric distribution, and for the smooth bootstrap we
smooth this distribution using a Gaussian kernel and by choosing sn by means of cross-validation



10 N. NEUMEYER AND I. VAN KEILEGOM

as in the previous simulation study. The estimators F̂ ∗0,n(·) and F̂ ∗s,n(·) are defined as in (16) and
(18), and F̂ ∗−0,n(·) and F̂ ∗−s,n(·) are defined accordingly. Finally, we reject H0 if the observed290

value of TCM exceeds the quantile of level 1− α of the distribution of T ∗CM,0 or T ∗CM,s.

n Test d = 0 d = 2 d = 4
2·5 5·0 10·0 2·5 5·0 10·0 2·5 5·0 10·0

50 T ∗KS,s 2·5 5·3 9·8 6·1 9·5 18·1 16·5 22·3 36·7
T ∗KS,0 2·0 4·2 8·3 6·4 9·5 18·1 16·9 23·6 36·8
T ∗CM,s 2·3 4·6 9·4 6·9 11·8 20·0 19·8 29·3 41·5
T ∗CM,0 2·2 3·9 8·5 6·8 12·2 20·0 19·9 29·6 41·3

100 T ∗KS,s 1·8 4·7 9·4 11·2 16·8 27·0 36·3 46·1 61·1
T ∗KS,0 1·5 3·9 8·1 11·6 18·2 27·3 38·0 48·0 61·3
T ∗CM,s 1·9 4·1 8·7 13·3 21·7 31·2 43·3 56·5 67·3
T ∗CM,0 1·8 3·9 8·1 13·0 20·6 30·3 42·2 55·5 66·5

200 T ∗KS,s 2·4 5·1 10·3 21·5 29·3 43·4 64·6 74·0 85·0
T ∗KS,0 1·8 4·3 8·8 22·3 30·0 43·1 65·4 74·9 85·1
T ∗CM,s 2·1 4·6 9·4 27·7 36·5 48·1 77·1 85·2 91·4
T ∗CM,0 1·7 4·4 9·0 27·1 36·4 48·6 77·1 85·4 91·6

500 T ∗KS,s 3·0 5·8 10·9 50·5 61·9 73·8 97·7 98·9 99·8
T ∗KS,0 2·7 5·0 9·9 51·2 61·8 73·7 97·7 98·9 99·8
T ∗CM,s 2·8 5·0 10·7 60·5 72·2 80·7 99·7 100 100
T ∗CM,0 2·7 5·0 10·3 60·0 71·3 80·8 99·6 100 100

1000 T ∗KS,s 2·8 4·7 10·4 81·1 89·8 94·5 100 100 100
T ∗KS,0 2·5 4·4 9·2 81·6 90·1 94·5 100 100 100
T ∗CM,s 2·4 4·7 9·4 89·8 94·9 97·6 100 100 100
T ∗CM,0 2·3 4·5 9·2 90·5 94·9 97·6 100 100 100

Table 2. Rejection probabilities (in %) of the test for symmetry in the linear model for several
sample sizes n and for α = 0·025, 0·05 and 0·1. Under the null we have a normal distribution
(d = 0), whereas under the alternative we have a skew normal distribution (d = 2 and d = 4).
The power is obtained after calibrating the test in such a way that the size equals α, in order to
ease comparison between the two bootstrap methods.

Consider the model Yni = 2xni + εni, where xni = i/n. We consider two error distributions
under H0. The first one is a normal distribution with mean zero and variance 0·252. Under the
alternative we consider the skew normal distribution of Azzalini (1985), whose density is given
by 2φ(y)Φ(dy), where φ and Φ are the density and distribution of the standard normal. More pre-295

cisely, we let d = 2 and d = 4 and standardize these skew normal distributions so that they have
mean zero and variance 0·252. When d = 0 we find back the normal distribution. The second
error distribution under H0 is a Student-t distribution with 3 degrees of freedom, standardized in
such a way that the variance equals 0·252. The asymptotic theory does not cover this case, but we
like to know how sensitive the bootstrap methods are to the existence of moments of higher order.300

Under the alternative we consider a mixture of this Student-t distribution and a standard Gumbel
distribution, again standardized to have mean zero and variance 0·252. The mixture proportions
p are 1 (corresponding to H0), 0·75 and 0·50.
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The results, shown in Tables 2 and 3, are based on 2000 simulation runs, and for each simulated
sample a total of 2000 bootstrap samples are generated. The power is obtained after calibrating 305

the test in such a way that the size equals exactly 1− α, in order to ease comparison between
the two bootstrap methods. The tables show that the Crámer-von Mises test outperforms the
Kolmogorov-Smirnov test, and hence we focus on the former test. Table 2 shows that for the
normal error distribution, the size is about right for the smooth bootstrap and a little bit too
low for the non-smooth bootstrap. After correcting the critical value of the tests such that the 310

rejection probabilities under H0 equal α, we see that the smooth and the non-smooth bootstrap
have almost identical power. The tabulated powers have a standard deviation of {power(1−
power)/2000}1/2, which is bounded above by 1·1%. Taking this standard deviation into account,
we can conclude that there is no significant difference between the powers of the two tests.

Table 3 shows that when the distribution under H0 is a Student-t distribution with 3 degrees 315

of freedom, the size is in general too large for the smooth bootstrap, especially for small n,
and about right for the non-smooth bootstrap. The level-adjusted power is again very similar for
both types of bootstrap. However, the non-smooth bootstrap has the advantage that it does not
depend on the selection of a bandwidth parameter and that it tends to be conservative in certain
situations, whereas the smooth bootstrap has a tendency to be anti-conservative. 320

4·3. Goodness-of-fit tests
We end this section with a second application of the residual bootstrap, which concerns the

use of residual processes and the residual bootstrap for testing the fit of a parametric model for
the regression function m :

H0 : m ∈M = {mθ : θ ∈ Θ},

whereM is a class of parametric regression functions depending on a k-dimensional parameter
space Θ. Van Keilegom et al. (2008) showed that testing H0 is equivalent to testing whether
the error distribution satisfies F ≡ F0, where F0 is the distribution of Y −mθ0(X) and θ0 is the
value of θ that minimizesE[{m(X)−mθ(X)}2]. Consider the following Kolmogorov-Smirnov
and Crámer-von Mises type test statistics :

TKS = n1/2 sup
y
|F̂0,n(y)− F̂θ̂(y)|, TCM = n

∫ {
F̂0,n(y)− F̂θ̂(y)

}2
dF̂θ̂(y),

where F̂0,n is as defined in Section 2 and F̂θ(y) = n−1
∑n

i=1 I{Yi − m̂θ(Xi) ≤ y} with

m̂θ(x) =
n∑
i=1

kh(x−Xi)∑n
j=1 kh(x−Xj)

mθ(Xi)

for any θ, and θ̂ is the least squares estimator of θ. The critical values of these test statistics are
approximated using our smooth and non-smooth residual bootstrap. More precisely, the boot-
strapped versions of TCM (and similarly for TKS) are given by

T ∗CM,0 = n

∫ {
F̂ ∗0,n(y)− F̂ ∗

0,θ̂∗0
(y)
}2
dF̂ ∗

0,θ̂∗0
(y),

and

T ∗CM,s = n

∫ {
F̂ ∗s,n(y)− F̂ ∗

s,θ̂∗s
(y)
}2
dF̂ ∗

s,θ̂∗s
(y),
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n Test p = 1 p = 0·75 p = 0·50
2·5 5·0 10·0 2·5 5·0 10·0 2·5 5·0 10·0

50 T ∗KS,s 3·7 7·9 13·8 3·4 5·8 10·5 4·9 8·6 14·9
T ∗KS,0 2·6 5·6 11·2 3·5 6·5 10·7 5·4 9·5 16·0
T ∗CM,s 3·1 6·8 13·3 4·1 7·6 12·1 7·6 11·7 17·7
T ∗CM,0 2·0 4·8 11·1 4·8 7·7 12·0 8·4 12·6 18·8

100 T ∗KS,s 3·7 7·2 12·9 3·9 6·9 13·0 8·4 13·5 23·7
T ∗KS,0 2·7 5·5 10·0 3·6 7·0 13·3 8·2 13·6 23·9
T ∗CM,s 3·9 6·5 13·0 4·1 7·6 13·4 9·9 17·0 27·0
T ∗CM,0 2·8 5·3 10·7 4·2 7·5 13·6 10·0 17·2 27·6

200 T ∗KS,s 2·5 5·5 11·5 6·7 10·5 17·3 17·0 25·6 35·8
T ∗KS,0 1·8 4·3 9·2 6·6 10·8 17·0 17·0 26·2 35·9
T ∗CM,s 2·7 5·6 11·0 7·5 11·9 19·1 22·0 30·6 43·0
T ∗CM,0 2·1 4·3 9·5 7·7 12·4 19·0 22·3 31·3 43·1

500 T ∗KS,s 2·5 4·8 10·7 10·7 17·9 25·3 42·2 54·6 64·1
T ∗KS,0 2·2 4·2 9·7 10·5 17·4 25·5 42·1 54·3 64·3
T ∗CM,s 2·4 4·9 10·7 14·2 20·4 29·5 52·2 62·4 71·1
T ∗CM,0 2·1 4·3 9·9 13·9 20·5 30·0 52·2 62·6 71·9

1000 T ∗KS,s 2·6 5·6 10·5 18·9 27·3 40·0 75·7 83·9 90·6
T ∗KS,0 2·0 4·8 9·5 19·2 27·1 40·2 76·1 83·0 90·6
T ∗CM,s 2·5 5·0 10·9 23·7 34·0 44·2 83·7 89·4 93·8
T ∗CM,0 2·3 4·8 9·9 24·0 33·8 44·9 84·3 89·4 93·9

Table 3. Rejection probabilities (in %) of the test for symmetry in the linear model for several
sample sizes n and for α = 0·025, 0·05 and 0·1. Under the null we have a Student-t distribution
with 3 degrees of freedom (p = 1), whereas under the alternative we have a mixture of a Student-t
(3) and a Gumbel distribution (p = 0·75 and p = 0·50). The power is obtained after calibrating
the test in such a way that the size equals α, in order to ease comparison between the two
bootstrap methods.

where θ̂∗0 is the least squares estimator based on the bootstrap data (Xi, Y
∗
0,i = mθ̂(Xi) + ε∗0,i),

i = 1, . . . , n, F̂ ∗0,θ(y) = n−1
∑n

i=1 I{Y ∗0,i − m̂θ(Xi) ≤ y} for any θ, and similarly for θ̂∗s and
F̂ ∗s,θ(y). We reject H0 if the observed value of TCM exceeds the quantile of level 1− α of the
distribution of T ∗CM,0 or T ∗CM,s.325

We consider the model m(x) = 2x and letM = {x→ θx : θ ∈ Θ}, i.e. the null model is a
linear model without intercept. The error term ε follows either a normal distribution or a Student-t
distribution with 3 degrees of freedom, in both cases standardized in such a way that the variance
equals 0·252. The covariate X has a uniform distribution on [0, 1]. The bandwidth hn is taken
equal to hn = σ̂Xn

−0·3, and the kernel k is the Gaussian kernel. For the smooth bootstrap, we330

use a standard normal distribution and we select sn via cross-validation as in the previous sim-
ulations. Under the alternative we consider the model m(x) = 2x+ ax2 for a = 0·25 and 0·5.
The rejection probabilities, given in Tables 4 and 5, are based on 2000 simulation runs, and for
each simulation 2000 bootstrap samples are generated.

The tables show that the Crámer-von Mises test outperforms the Kolmogorov-Smirnov test,335

independently of the sample size, the type of bootstrap and the value of a (corresponding to the
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n Test a = 0 a = 0·25 a = 0·5
2·5 5·0 10·0 2·5 5·0 10·0 2·5 5·0 10·0

50 T ∗KS,s 3·9 6·3 13·3 3·3 6·4 11·6 9·3 15·2 24·1
T ∗KS,0 2·3 4·8 10·7 3·2 6·9 12·5 10·1 16·3 25·8
T ∗CM,s 2·4 4·9 9·7 5·6 10·1 17·9 16·8 24·8 36·6
T ∗CM,0 1·5 3·8 8·0 5·8 11·0 18·1 17·5 25·7 36·7

100 T ∗KS,s 2·1 4·0 9·2 8·1 12·6 19·5 25·4 33·8 45·5
T ∗KS,0 1·3 2·7 7·1 8·1 12·6 19·2 26·3 34·0 46·4
T ∗CM,s 2·0 4·5 9·0 10·3 16·1 25·7 34·2 43·8 58·3
T ∗CM,0 1·5 3·5 7·9 10·4 16·1 26·2 34·7 43·9 59·2

200 T ∗KS,s 2·1 4·5 9·3 12·5 20·9 32·1 48·9 60·9 73·7
T ∗KS,0 1·5 3·3 7·6 14·1 20·9 32·3 52·2 61·5 74·2
T ∗CM,s 2·2 4·2 8·5 19·2 29·8 42·5 63·6 74·9 84·3
T ∗CM,0 1·7 3·6 7·3 19·8 29·3 43·0 64·9 74·8 84·8

500 T ∗KS,s 2·0 4·5 9·4 35·2 44·8 58·6 92·0 95·2 97·8
T ∗KS,0 1·5 3·4 7·7 36·6 45·0 58·4 92·6 95·6 97·8
T ∗CM,s 1·9 4·1 8·2 45·4 56·8 68·2 96·3 98·0 98·9
T ∗CM,0 1·8 3·8 7·4 45·0 57·0 68·0 96·2 98·0 98·9

1000 T ∗KS,s 2·2 4·2 9·6 65·4 76·9 84·9 100 100 100
T ∗KS,0 1·8 3·6 8·4 65·2 77·0 84·9 100 100 100
T ∗CM,s 2·0 4·6 9·3 72·9 81·6 88·6 100 100 100
T ∗CM,0 1·9 4·2 8·9 72·9 81·6 88·6 100 100 100

Table 4. Rejection probabilities (in %) of the goodness-of-fit test for several sample sizes and for
α = 0·025, 0·05 and 0·1, when the error term has a normal distribution. The regression function
is m(x) = 2x+ ax2 and the null hypothesis corresponds to a = 0. The power is obtained after
calibrating the test in such a way that the size equals α, in order to ease comparison between
the two bootstrap methods.

null or the alternative). Hence, we focus on the Crámer-von Mises test. Table 4 shows that when
the error term has a normal distribution, both the smooth and the non-smooth bootstrap lead to
conservative tests, although rejection probabilities are closer to the nominal level for the smooth
bootstrap. After adjusting the critical value in such a way that the size equals α, we see that the 340

size-adjusted powers under the two types of bootstrap are almost identical. A simple test of the
equality of two proportions shows that there is no significant difference. When the error has a
Student-t distribution (Table 5) the size is too large for the smooth bootstrap, and more or less
equal to the nominal level for the non-smooth bootstrap. The size-adjusted powers are again very
close. 345

Overall, when comparing the smooth bootstrap with the non-smooth bootstrap in the five con-
texts we have explored and for the different sample sizes and values of α we have considered,
we can conclude that the smooth bootstrap has a tendency to be anti-conservative whereas the
non-smooth bootstrap has a tendency to be conservative. As conservative tests are in general
preferred over non-conservative tests (if we follow the general idea that we prefer to control the 350

probability of committing a type I error), we conclude that the non-smooth bootstrap is prefer-
able over the smooth bootstrap (for the testing problems under consideration and for confidence



14 N. NEUMEYER AND I. VAN KEILEGOM

n Test a = 0 a = 0·25 a = 0·5
2·5 5·0 10·0 2·5 5·0 10·0 2·5 5·0 10·0

50 T ∗KS,s 4·3 7·3 15·7 5·3 9·4 16·3 15·5 23·5 34·9
T ∗KS,0 3·0 5·6 11·9 4·8 10·0 16·7 14·9 24·6 36·6
T ∗CM,s 3·2 5·9 12·2 8·8 14·8 22·0 24·5 35·2 45·9
T ∗CM,0 2·4 4·7 10·0 8·7 14·4 22·7 24·4 35·6 47·0

100 T ∗KS,s 4·2 7·7 13·2 10·1 15·7 24·2 31·3 41·7 54·9
T ∗KS,0 2·9 5·8 10·8 10·5 15·8 24·5 32·3 42·4 55·5
T ∗CM,s 3·4 6·4 12·9 14·2 21·4 29·9 42·5 53·0 64·2
T ∗CM,0 2·5 5·2 10·8 14·7 21·5 30·0 43·1 53·1 64·4

200 T ∗KS,s 3·4 6·1 12·2 18·0 25·8 38·9 57·8 69·1 79·4
T ∗KS,0 2·5 4·7 9·4 18·7 26·5 38·9 59·6 70·0 79·5
T ∗CM,s 3·3 5·4 10·8 23·1 34·2 45·2 68·5 79·0 86·3
T ∗CM,0 2·6 4·7 9·5 22·6 33·8 45·6 68·6 78·7 86·4

500 T ∗KS,s 3·6 6·8 12·6 34·6 48·6 61·8 92·2 95·7 97·7
T ∗KS,0 3·1 5·5 10·9 33·8 48·2 62·4 91·7 95·6 97·8
T ∗CM,s 3·4 6·2 11·9 44·0 54·9 67·4 95·3 97·1 98·4
T ∗CM,0 3·1 5·8 10·7 43·8 55·0 67·6 95·2 97·1 98·5

1000 T ∗KS,s 3·0 6·4 12·0 67·2 78·5 86·0 99·4 99·7 99·8
T ∗KS,0 2·4 5·6 11·0 69·2 78·5 85·9 99·5 99·7 99·8
T ∗CM,s 3·2 6·2 11·5 73·8 82·6 89·8 99·6 99·8 99·9
T ∗CM,0 3·0 5·5 10·6 73·9 82·6 89·7 99·6 99·8 99·9

Table 5. Rejection probabilities (in %) of the goodness-of-fit test for several sample sizes and
for α = 0·025, 0·05 and 0·1, when the error term has a Student-t distribution with 3 degrees of
freedom. The regression function is m(x) = 2x+ ax2 and the null hypothesis corresponds to
a = 0. The power is obtained after calibrating the test in such a way that the size equals α, in
order to ease comparison between the two bootstrap methods.

bands for the error distribution). In addition, the smooth bootstrap depends on how we choose
the smoothing parameter sn (and the corresponding kernel), which is not the case with the non-
smooth bootstrap.355

5. DISCUSSION

In this paper we considered a regression model with parametric or fully nonparametric re-
gression function, and with independence between the error term and the vector of covariates.
We proposed a novel bootstrap procedure that can be used to approximate the distribution of
an estimator of the error distribution under this model. The proposed bootstrap does not involve360

any smoothing, and hence it avoids the delicate choice of a bandwidth parameter, which existing
bootstrap procedures suffer from. We showed the consistency of this bootstrap procedure, and
applied it in three situations.

This paper is the first paper that studies the non-smoothed bootstrap of the error distribution.
We restricted attention to the case of homoscedastic regression models, but in a second step it365

would be interesting to prove the consistency of the bootstrap when the error variance depends
on one or several covariates. Other possible extensions of the model considered in this paper
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include the extension to semiparametric regression, nonparametric regression with more than
one covariate, dependent data, missing or censored data, etc.
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VAN KEILEGOM, I., GONZÁLEZ-MANTEIGA, W. & SÁNCHEZ-SELLERO, C. (2008). Goodness-of-fit tests in para-
metric regression based on the estimation of the error distribution. TEST 17, 401–415.

WU, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis (with discussions).
Ann. Statist. 14, 1261–1350.

[Received 2 January 2017. Editorial decision on 1 April 2017]



 

 

 

FACULTY OF ECONOMICS AND BUSINESS 
Naamsestraat 69 bus 3500 

3000 LEUVEN, BELGIË 
tel. + 32 16 32 66 12 
fax + 32 16 32 67 91 

info@econ.kuleuven.be 
www.econ.kuleuven.be 


	voorbl-OZrapport-sjabloon
	KBI_1822
	achterbl-OZrapport-_sjabloon



