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SUMMARY

In this paper we consider regression models with centered errors, independent from the covari-
ates. Given independent and identically distributed data and given an estimator of the regression
function (which can be parametric or nonparametric of nature), we estimate the distribution of the
error term by the empirical distribution of estimated residuals. To approximate the distribution
of this estimator, Koul and Lahiri (1994) and Neumeyer (2009) proposed bootstrap procedures
based on smoothing the residuals before drawing bootstrap samples. So far it has been an open
question whether a classical non-smooth residual bootstrap is asymptotically valid in this con-
text. In this paper we solve this open problem, and show that the non-smooth residual bootstrap
is consistent. We illustrate this theoretical result by means of simulations, that show the accuracy
of this bootstrap procedure for various models, testing procedures and sample sizes.

Some key words: Bootstrap; Empirical distribution function; Kernel smoothing; Linear regression; Location model;
Nonparametric regression.

1. INTRODUCTION

Consider the model
Y =m(X) +e, (1)

where the response Y is univariate, the covariate X is of dimension p > 1, and the error term
¢ is independent of X . The regression function m(-) can be parametric (for instance linear) or
nonparametric of nature, and the distribution F of € is completely unknown, except that E(¢) =
0. The estimation of the distribution F' has been the object of many papers in the literature,
starting with the seminal papers of Durbin (1973), Loynes (1980) and Koul (1987) in the case
where m(-) is parametric, whereas the nonparametric case has been studied by Van Keilegom
and Akritas (1999), Akritas and Van Keilegom (2001) and Miiller et al. (2004), among others.
The estimator of the error distribution has been shown to be very useful for testing hypotheses
regarding several features of model (1), like for instance testing for the form of the regression
function m(-) (Van Keilegom et al., 2008), comparing regression curves (Pardo-Fernandez et al.,
2007), testing independence between ¢ and X (Einmahl and Van Keilegom, 2008, and Racine
and Van Keilegom, 2017), testing for a symmetric error distribution (Koul, 2002, Neumeyer and

© 2017 Biometrika Trust

20

25

30

35



40

45

50

55

60

65

70

75

80

2 N. NEUMEYER AND I. VAN KEILEGOM

Dette, 2007), among others. The idea in each of these papers is to compare an estimator of the
error distribution obtained under the null hypothesis with an estimator that is not based on the
null. Since the asymptotic distribution of the estimator of F' has a complicated covariance struc-
ture, bootstrap procedures have been proposed to approximate the distribution of the estimator
and the critical values of the tests.

Koul and Lahiri (1994) proposed a residual bootstrap for linear regression models, where the
bootstrap residuals are drawn from a smoothed empirical distribution of the residuals. Neumeyer
(2009) proposed a similar bootstrap procedure for nonparametric regression models. The rea-
son why a smooth bootstrap was proposed is that the methods of proof in both papers require
a smooth distribution of the bootstrap error. Smooth residual bootstrap procedures have been
applied by De Angelis et al. (1993), Mora (2005), Pardo-Fernindez et al. (2007), and Huskova
and Meintanis (2009), among many others. An alternative bootstrap procedure for nonparametric
regression was considered by Neumeyer (2008), where bootstrap residuals were drawn from the
non-smoothed empirical distribution of the residuals, after which smoothing is applied on the
empirical distribution of the bootstrap residuals. Further it has been shown that wild bootstrap
in the context of residual-based procedures can only be applied for specific testing problems as
testing for a symmetric error distribution (Neumeyer et al., 2005, Neumeyer and Dette, 2007),
whereas it is not valid in general (as shown in the 2006 Ruhr-Universitidt Bochum habilitation
thesis by N. Neumeyer). It has been an open question so far whether a classical non-smooth resid-
ual bootstrap is asymptotically valid in this context. In this paper we solve this open problem, and
show that the non-smooth residual bootstrap is consistent when applied to residual processes. We
will do this for the case of univariate nonparametric regression with random design and for mul-
tivariate linear regression with fixed design. Other models (nonparametric regression with fixed
design, nonlinear or semiparametric regression,..) can be treated similarly. The question whether
smooth bootstrap procedures should be preferred over non-smooth bootstrap procedures has been
discussed in different contexts, see Silverman and Young (1987) and Hall et al. (1989).

The finite sample performance of the smooth and non-smooth residual bootstrap for residual
processes has been studied by Neumeyer (2009). The paper shows that for small sample sizes
using the classical residual bootstrap version of the residual empirical process in the nonpara-
metric regression context yields too small quantiles. However, as we will show in this paper, this
problem is diminished for larger sample sizes and it is not very relevant when applied to testing
problems.

In this paper we consider bootstrap procedures that can be applied to obtain confidence bands
for the error distribution or bootstrap versions of hypotheses tests based on residual empirical
processes. Those have to be distinguished from bootstrap procedures in regression models for
other purposes. First, bootstrap procedures for linear models have been considered by Efron
(1979), Freedman (1981), and Wu (1986), among others, and can be applied for hypotheses test-
ing or derivation of confidence sets for the regression parameter; see also Davison and Hinkley
(1997) and the references given there. Second, there is a vast literature on bootstrap confidence
sets for the regression function in nonparametric models. See Héardle and Bowman (1988), Hardle
and Marron (1991), Neumann and Polzehl (1998) and Claeskens and Van Keilegom (2003).
Third, several authors considered bootstrap procedures applied to hypotheses testing with test
statistics that directly depend on the regression estimator. Among others, Hirdle and Mammen
(1993), Stute et al. (1998) and Delgado and Gonzélez Manteiga (2001) proved validity of boot-
strap procedures in the context of specific test statistics for nonparametric regression models (not
depending on residual empirical processes).
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2. NONPARAMETRIC REGRESSION

We start with the case of nonparametric regression with random design. The covariate is sup-
posed to be one-dimensional. To estimate the regression function we use a kernel estimator based
on Nadaraya-Watson weights :

. - kn(x — X;)
m(r) =) = Y;
where k is a kernel density function, kj,(-) = k(-/h)/h and h = h,, is a positive bandwidth se-

quence converging to zero when n tends to infinity. Our main result is valid under the following
regularity assumptions.

(A1) The univariate covariates Xy, ..., X, are independent and identically distributed on a
compact support, say [0, 1]. They have a twice continuously differentiable density fx that
is bounded away from zero. The regression function m is twice continuously differentiable
in (0,1).

(A2) The errors 1, ..., &, are independent and identically distributed with distribution func-
tion F'. They are centered and are independent of the covariates. F' is twice contin-
uously differentiable with strictly positive density f such that sup,cp f (y) < oo and
supyer | f'(y)| < oo. Further, E(|e1|") < oo for some v > 7.

(A3) k is a twice continuously differentiable symmetric density with compact support [—1, 1],
say, such that [uk(u)du=0 and k(—1) = k(1) = 0. The first derivative of k is of
bounded variation.

(A4) h,, is a sequence of positive bandwidths such that h, ~ ¢,n~ Y37 with 4/(3 +9v) <
n < 1/12, ¢, is only of logarithmic rate, and v is defined in (A2).

Under those assumptions one in particular has that nh2 = o(1) and it is possible to find some
d € (0,1/2) with

nh3+26
log(hn')

Let residuals be defined as é; = Y; — m(X;), i = 1,...,n. In Theorem 1 in Akritas and Van
Keilegom (2001) it is shown that the residual process n~1/2 37" | {I(¢;<y)—Fy)}.yeR,
converges weakly to a zero-mean Gaussian process W (y) with covariance function given by

cor{W (), W)} = E[{I(e <o)+ fy)e} {TE <) + fw)e}], @)

where ¢ has distribution function F' and density f.

Neumeyer (2009) studied a smooth bootstrap procedure to approximate the distribution of
this residual process, and she showed that the smooth bootstrap ‘works’ in the sense that the
limiting distribution of the bootstrapped residual process, conditional on the data, equals the
process W (y) defined above, in probability. We will study an alternative bootstrap procedure
that has the advantage of not requiring smoothing of the residual distribution. For s = 1,... n,
let & = & —n~' ) 7, &, and let

— 0. ()

Fonly) =n"'> I(& <y)
=1

be the (non-smoothed) empirical distribution of the centered residuals. Then, we randomly
draw bootstrap errors £ q,...,€g, With replacement from Fp,. Let Y;* = m(X;) +&p
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4 N. NEUMEYER AND I. VAN KEILEGOM

i=1,...,n, and let j(-) be the same as 7(-), except that we use the bootstrap data
(X1,Y7),...,(Xp,Y,). Define now
€0, = Yy —mhg(Xi) = g + M(Xq) — 1 (Xi). )

We are interested in the asymptotic behavior of the process nt/ 2(}3’6*,” — FO,n) with

i oly) = 121501<y (5)

and we will show below that it converges to the same limiting Gaussian process as the original
residual process n~1/2 37" {I(¢; <y)— F(y)}. y € R, which means that smoothing of the
residuals is not necessary to obtain a consistent bootstrap procedure.

In order to prove this result, we will use the results proved in Neumeyer (2009) to show that
the difference between the smooth and the non-smooth bootstrap residual process is asymptoti-
cally negligible. To this end, we can write £ ; = F0 n(U) t=1,...,n, where Uy, ..., U, are
independent random variables from a U|0, 1] distribution. Strictly speaklng the U;’s form a trian-
gular array Uy , . .., Uy, of U0, 1] variables, but since we are only interested in convergence in
distribution of the bootstrap residual process (as opposed to convergence in probability or almost
surely), we can work with Uy, ..., U, without loss of generahty

We introduce the following notatlons o let €F F (U ;), where FS n( f FO n(y —

v$y) dL(v) is the convolution of the distribution Fg n(y — -sp) and the mtegrated kernel L(-) =
A _ oo U(u) du, where £ is a kernel density function and s,, is a sequence of positive bandwidths

controlling the smoothness of FS,n such that s,, — 0 for n — oo. Then, similarly to the definition
of 58,2' in (4), we define

€504 = €5, T M(X;) — 1 (X;). (6)

We then decompose the bootstrap residual process as follows :

nHEE () — Eoaly —n-1/22{1 1&g <y)}

+n 1/22{1 st— Fs,n(y)}

+n1/2{Fs,n y - FO,n(y)}
= T1(y) + Tn2(y) + Tns(y). (7)

In Lemmas S1.1 and S1.3 in the supplement we show that under assumptions (A1)—(A4) above
and conditions (C1), (C2) (given in the supplement) concerning the choice of ¢ and s, in the
proof, the terms 7,,; and 7,3 are asymptotically negligible. For the proof of negligibility of
Th1 two features of our construction are of utmost importance. On the one hand, in (6) the
same function 7i§ needs to be used as in (4) (in contrast to (9) below). On the other hand,
the same uniform random variables U; need to be used to generate the bootstrap errors &5 ;
and es ;» ©=1,...,n. In this way the difference between the empirical distribution functions
of €51,---,€p, and of €5 4,...,€5, can be bounded by the difference E,(f1) — En(f2),
where E, is an asymptotically equicontinuous empirical process indexed in a function class.
Negligibility of 7},; then follows because the distance between the indices f1 and f2 can be
bounded by the difference between F s,n and FO n, Which is shown to be opr( -1/ 2) From the
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latter fact also negligibility of T},3 follows. Further in Lemma S1.2 we show that the process 75,2
is asymptotically equivalent (in terms of weak convergence) to the smooth bootstrap residual
process n'/2 (Fyy — Fspn) with

n

Er () =n""> I(, <y), ®)
i=1
where, in contrast to (6),
€0 = €sq T M(Xi) — Mg (Xy) 9
with 1 defined as 1, but based on smoothed bootstrap data (X;, m(X;) +¢€5,), i =1,...,n.

Neumeyer (2009) showed weak convergence of the residual process based on the smooth resid-
ual bootstrap, nt/ Q(Fs*n — Fs,n), to the Gaussian process defined in (3). Thus the main idea to
prove Lemma S1.2 is to show that the estimator 72y has similar asymptotic properties as 1y,
such that the use of the different estimator does not make a difference in the proofs of fidi-
convergence, tightness and the calculation of the asymptotic covariance. The three lemmas lead
to the following main result regarding the validity of the non-smooth bootstrap residual process.

THEOREM 1. Assume (A1)—(A4). Then, conditionally on the data (X1,Y1), ..., (Xn, Ys), the
process nl/Q{F(in(y) — Fon(y) }, y € R, converges weakly to the zero-mean Gaussian process
W(y), y € R, defined in (3), in probability.

The proof is given in section S1 of the supplement.

The result of Theorem 1 can be applied to obtain confidence bands for the error distribution. It
can further be used to approximate critical values for hypotheses tests in nonparametric regres-
sion models which are based on residual empirical processes such as tests for properties of the
error distribution (see for instance Neumeyer and Dette, 2007, or Einmahl and Van Keilegom,
2008), or tests concerning the regression function (see for instance Pardo-Ferndndez et al., 2007,
or Van Keilegom et al., 2008). The application of the bootstrap procedure needs to be modified
in order to obtain data that fulfil the null hypothesis; see section 4 for examples and also section
5 in Neumeyer (2009).

Remark 1. If one aims at confidence sets for the regression function, one needs different
kinds of bootstrap results. To demonstrate that both the non-smooth and the smooth residual
bootstrap can be applied in this context as well note that under assumptions (A1)-(A4) (for
fixed 0 < z < 1), (nhyp)/?{m(z) — m(x)} converges in distribution to a centered normally
distributed random variable Z with variance F(e?) [ k*(u) du /fx(x). No bias term appears
because under our assumptions nh? — 0. Under the same assumptions one obtains, condition-
ally on the data (X1,Y7),...,(X,,Y,), weak convergence of the non-smooth residual boot-
strap version (nhy,)Y/2{mg(x) — m*(x)} to Z, in probability, if the centering term is chosen as
m*(x) = 331 kn(Xi — 2)m(X;)/ >0 kn(X; — x). We provide a sketch of proof in the sup-
plement (see subsection S1.1) to obtain the result under exactly our model and our assumptions,
though similar results are well known in the literature. Choosing this centering is analogous to the
approach of Hirdle and Bowman (1988) who obtain confidence bands for the regression function
with a residual bootstrap approach in the case of fixed design points and for the Priestley-Chao
regression estimator. If one wants to replace the centering m*(x) by m(z), one should use a
larger pilot bandwidth for 72 when constructing the bootstrap observations. This was demon-
strated by Hirdle and Marron (1991) for a wild bootstrap (for the Nadaraya-Watson estimator
and random covariates) and the same reasoning applies for residual bootstrap. Cao-Abad and
Gonzalez-Manteiga (1993) obtain similar results for a bootstrap procedure with smoothing in
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6 N. NEUMEYER AND I. VAN KEILEGOM

the explanatory variable. More recently, McMurry and Politis (2008) considered an alternative

190 way of bias-correction using infinite order kernels for the Gasser-Miiller estimator in the case
of fixed design points. Concerning the smooth residual bootstrap, one obtains conditional weak
convergence of (nhy)Y/2{m*(x) — m*(x)} to Z, in probability, if s, — 0 and £ is a symmet-
ric density with second moments. See the supplement (subsection S1.1) for a derivation of this
result.

185 3. LINEAR MODEL

Consider independent observations from the linear model
Yni:$£i/8+€ni7 izl)"‘7n7 (10)

where 8 € R? denotes the unknown parameter and the errors £,; are assumed to be inde-
pendent and identically distributed with E(e,;) = 0 and distribution function F'. Throughout
this section let X,, € R™*P denote the design matrix in the linear model, where the vector
wo Tro= (T, ... ,:):m-p) corresponds to the ith row of the matrix X,, and is not random. The

design matrix is assumed to be of rank p < n. We use the following regularity assumptions.

(AL1) The fixed design fulfils
a. max;—1, 2o (XFX,) o = O0(n1),
b. limy, 0o n 1 XX, = ¥ € RP*P with invertible %,
195 c. lim, oo n-! Z?:l Tni = m € RP,
(AL2) The errors €4, ¢t = 1,...,n, n € N, are independent and identically distributed with dis-
tribution function F' and density f that is strictly positive, bounded, and continuously
differentiable with bounded derivative on R. Assume E(|e11|Y) < oo for some v > 3.

We consider the least squares estimator

B = (XnXn) ' X7Y, = B+ (X;Xn) ' Xen (1)
20 with the notations Y, = (Yn1,...,Y)' 60 = (€n1y .-+, 6nn) 7, and define residuals &,; =
Yni —a):bn, i =1,...,n. Residual processes in linear models have been extensively stud-

ied by Koul (2002). It is shown there that, under assumptions (AL1) and (AL2), the process
n~1/2 Yoy {I(ém- <vy)— F(y)}, y € R, converges weakly to a zero-mean Gaussian process
W (y) with covariance function

cov{W (y2), W(y2)} = F(y1 Aya) = F(y)Fy2) +m"S™"m| (1) f (g2)var(e)

+ Fly) B{I(e < ya)e} + f(2) E{I(e < y)e}], (12)
205 where ¢ has distribution function F' and density f, and m and ¥ are defined in (AL1).
For the bootstrap procedure we generate € ;, 2 = 1, ..., n, from the distribution function
n
Fon(y) =0 'Y I(Eni <) (13)
i=1
with &,; = é,; —n ! 2?21 €nj»t = 1,...,n. The centering of residuals is not necessary when

the covariate includes an intercept. Note also that in the bootstrap residuals we suppress the index
n to match the notation in the nonparametric case. We now define bootstrap observations by

Y;z:'x;rmﬁn_*—gz;’z ('L.:].,...,n),
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and calculate estimated residuals from the bootstrap sample
€6 = Yoi = TniBlon = €63+ wni(Bo — Bl ), (14)
where 36*” is the least squares estimator
Bow = (X3 Xn) ' XYy = B+ (Xp X0) ' Xoep (15)

(with the notations Y, = (Y.*

nls: .-

Yo €0m = (€015 - -+ »€0.n) ). We will show that the boot-
strap residual process nl/Q{FOJL(y) — Fon(y)}, with

Fya(y) = 1leoz<y (16)

converges to the same limiting process W(y), y € R, as the original residual process
n~Y23 {I(é <y) — F(y)}, y € R. Using the representations €04 = Fofé(Ui), €30 =
FS}}(Ui), i=1,...,n, where Uj,...,U, are independent and UJ0, 1]-distributed and
Fsn(y) = [ Fon(y — vsn) dL(v) is the smoothed empirical distribution function of the residu-
als, we have the same decomposition (7) as in the nonparametric case. In Lemmas S2.1 and S2.3
in the Appendix we show that under assumptions (AL1), (AL2) and conditions (CL1), (CL2)
on the choice of s,, and L (given in the supplement) the terms 7},; and 7;,3 are asymptotically
negligible. The idea of the proof is the same as in the nonparametric case. In particular one needs
to use the same estimator BO n in (14) and in the definition of £5  ; = €5 ; + xm(ﬁn Bﬂ,n) with
smooth bootstrap errors £ ;, and one needs to use the same uniform random variables U to de-
fine 5 ; and €5 ;, i = 1,..., n. Further we show in Lemma S2.2 that the limiting distribution

of

S’L’

Toa(y) =n 2> {I(€ho; <y) = Fan(y)} (17)

is the same as the limiting distribution of n1/2{f7;n (y) — Fsn(y)}, with

n

Fnly)=n') 1 <) (18)

i=1
and ézz = eyt (B = B, where i = By (XpXn)"'Xel, and e, =
(€515 ++€5n)" . To show this we apply results from Koul and Lahiri (1994) and demon-

strate that the use of the estimator 50 ,, in the definition of € 0 (instead of 5 in the definition
of %) does not change the asymptotic distribution. In thls way we obtain the validity of the
classwal residual bootstrap.

THEOREM 2. Assume (AL1), (AL2). Then, conditionally on the data Y1y, . . ., Ynn, the process
n1/2{F6"7n(y) — Fon(y)}, y € R, converges weakly to the zero-mean Gaussian process W (y),
y € R, defined in (12), in probability.

The proof is given in section S2 of the supplement.

The result can be applied to obtain confidence bands for the error distribution or for hypotheses
testing with procedures based on the residual empirical process, see for instance Koul (2002) or
Neumeyer et al. (2007).
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8 N. NEUMEYER AND I. VAN KEILEGOM

Remark 2. The same bootstrap procedures can be applied to mimic the distribution of
nt/ 2(ﬁn — [3), which converges to a p-dimensional centered normal random variable Z with
covariance matrix E(g3;)%7!. Freedman (1981) showed that, along almost all sequences
Yin, . Yon, nt/ Z(B(’;m — f3,) converges in distribution to Z. His result holds under our

(stronger) assumptions (AL1), (AL2). Thus the asymptotic distribution of nl/2 ( Bn — [3) is mim-
icked by the non-smooth residual bootstrap. Freedman (1981) further demonstrated that the resid-
ual bootstrap may fail if the residuals are not centered (see (13)). Concerning the smooth residual
bootstrap, one obtains conditional weak convergence of n'/ 2( A;kyn — Bn) to Z, in probability, if
sp — 0 and ¢ is a symmetric density with second moments. We will demonstrate this in the
supplement (see subsection S2.1).

4. SIMULATIONS

In this section we will study the behavior of the smooth and the non-smooth residual bootstrap
for a range of models, sample sizes and contexts. We start with an empirical study to assess the
quality of bootstrap confidence bands for the error distribution. Next, we will consider the use
of the residual bootstrap for approximating the critical values in two representative examples of
hypothesis testing procedures based on residual processes: the case of testing for a symmetric
error distribution, and the case of goodness-of-fit tests for the regression function.

4-1. Confidence bands

Consider model (1) in the nonparametric case and generate data with m(z) = 2x, where X
follows a uniform distribution on [0, 1], and & ~ N (0,0-252). In order to assess the quality of
the smooth and the non-smooth bootstrap approximation, we calculate confidence bands for the
error distribution F'(-) by means of the two bootstraps. The bands are defined as FO,n(') + dan0
for the non-smooth bootstrap, and FO,n(') + dqon,s for the smooth bootstrap, where d, , 0 and
da,n,s are respectively the quantiles of level 1 — « of the distribution of maxi<;<y, ]Fé‘n(ééz) —
Fon(€5,:)| and maxi<i<n [Fy (€5 ) — Fon(E5,)]-

In order to verify whether the bootstrap approximation works well, we calculate the coverage
and the average width of the confidence bands for several values of the sample size n and the
confidence level 1 — a. The results are in Table 1 and are based on 1000 simulation runs, and
for each simulation 1000 bootstrap samples are generated. The bandwidth h,, is taken equal to
h,, = 6xn~93 with 5x the empirical standard deviation of X1, ..., X, and the kernel £ is the
Gaussian kernel. For the smooth bootstrap, bootstrap errors € ; are generated from F ,(y) =

i Fon(y — vsy) dL(v), where L is the distribution of a standard normal and s,, is chosen by
means of the cross-validation procedure proposed by Li et al. (2017). The latter paper studies the
estimation of distribution functions by applying kernel smoothing on the empirical distribution,
exactly in the same way as we do for obtaining our estimator stn(). The bandwidth selector is
included in the package ‘np’ in R, and is obtained from the function ‘npudistbw’. This bandwidth
satisfies regularity condition (CL2) in the supplement imposed on s,,, thanks to Theorem 3.2 in
the latter paper.

The table shows that the smooth bootstrap leads to too small coverages, and the coverage does
not improve when n increases. On the other hand, the non-smooth bootstrap leads to too large
coverage probabilities for small values of n, but the coverage is close to the nominal level 1 — «
when n equals 1000. So, the smooth bootstrap is anti-conservative and the non-smooth bootstrap
tends to be conservative in this situation. A natural consequence of this tendency to under- and
overestimate the coverage probability, is that the average width of the confidence bands obtained
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with the smooth bootstrap is smaller than of those obtained with the non-smooth bootstrap, and
the difference in width is of the order of 10 — 20%.

n Bootstrap Coverage Average width
90 95 99 90 95 99

50 Smooth 86:3 927 99-0 236 258 302
Non-smooth 97-6 994 100 281 303 354
100 Smooth 86:6 927 989 17-0 185 216
Non-smooth 96-4 98-8 998- 19-8 21.5 249
200 Smooth 869 93-1 982 122 133 154
Non-smooth 95-8 97.8 99-8 139 151 174
500 Smooth 86:3 926 982 78 85 98
Non-smooth 934 98.0 997 87 94 108
1000 Smooth 851 911 969 55 60 70
Non-smooth 922 953 988 6:1 66 76
Table 1. Coverage (in %) and average width of confidence bands for F(-) for the smooth and
non-smooth bootstrap in the nonparametric model and for 1 — o = 0-90, 0-95 and 0-99.

4.2, Testing for a symmetric error distribution
As already mentioned before, the residual bootstrap is very much used in hypothesis testing
regarding various aspects of model (1). As a first illustration we consider a test for the symmetry
of the error density in a linear regression model with fixed design. More precisely, consider
the model Y,,; = 2.3 + €,i, where E(ey;) = 0, and suppose we are interested in testing the
following hypothesis regarding the distribution F' of €,; :

Hy:F(t)=1— F(—t)forallt € R.

When the design is fixed and the regression function is linear, Koul (2002) considered a test for
Hj based on the residual process

FO,n(') - F—O,n(') =n"" Z {I(ém‘ < ) - I(_éni < )},
=1

where F—O,n is the empirical distribution of —£€,1,..., —épn, and &€,; = Yy, — xfwﬁn Natural
test statistics are the Kolmogorov-Smirnov and the Cramer-von Mises statistics :

A~ ~ A~ ~ 2 ~
Tics = sup | Eon(y) — Foon(y)l, Toar = / [Fon(y) — Foon(y) ) dFon(y).
Yy

It is clear from the covariance function given in (12) that their asymptotic distribution is not
easy to approximate, and that the residual bootstrap offers a valid alternative. We will compare
the level and power of the two tests, using the smooth and the non-smooth bootstrap. The boot-
strapped versions of T (and similarly for T g) are given by

* ik ik 2 1 * 5k sk 2 5
Tirio =1 / (g0 () — Fo () VAL W), Tonrs=n / (B2 () — B () VdES L (y),

where for the non-smooth bootstrap, bootstrap errors & ¢, . . . , £ ,, are drawn from {Fon(-) +

F_0.n(-)}/2, which is by construction a symmetric distribution, and for the smooth bootstrap we
smooth this distribution using a Gaussian kernel and by choosing s,, by means of cross-validation
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as in the previous simulation study. The estimators Fo*n() and an() are defined as in (16) and

(18), and Ffo,n(') and Fis,n(-) are defined accordingly. Finally, we reject Hy if the observed
value of Tos exceeds the quantile of level 1 — « of the distribution of 7¢, 20 O Ty s

n Test d=0 d=2 d=4
2.5 50 100 25 50 100 25 50 100

50 T1*<s,s 25 53 98 6-1 9.5 181 165 223 367
T;}S,0 20 42 83 6-4 9.5 181 169 236 368
TgM“S 23 46 94 69 11-8 200 19-8 293 41-5
Tévo 22 39 85 6-8 122 200 199 296 413

100 T;}s,s 1-8 47 94 112 168 27-0 363 461 61-1
Tf(s,o -5 39 81 116 182 273 380 480 613
Téys 19 41 87 133 217 312 433 565 673
TEM’O 1-8 39 81 13-:0 206 303 422 555 665

200 T;‘(S’s 24 51 103 215 293 434 646 74-0 850
Tigo 18 43 88 223 300 431 654 749 851
Téﬁ,s 2.1 46 94 277 365 481 77-1 852 914
Tiaro 17 44 90 271 364 486 771 854 916

500 T;(&S 3.0 58 109 505 619 738 977 989 99.8
Tegy 27 50 99 512 618 737 9777 989 998
T(’§M7S 2.8 50 107 605 722 807 997 100 100
TEM’O 27 50 103 600 713 80-8 996 100 100

1000 Trg, 28 47 104 81-1 89-8 94.5 100 100 100
T;}S’0 25 44 92 816 901 945 100 100 100
T5M7S 24 47 94 898 949 97.6 100 100 100
T5M70 23 45 92 905 949 976 100 100 100

Table 2. Rejection probabilities (in %) of the test for symmetry in the linear model for several
sample sizes n and for o = 0-025,0-05 and 0-1. Under the null we have a normal distribution
(d = 0), whereas under the alternative we have a skew normal distribution (d = 2 and d = 4).
The power is obtained after calibrating the test in such a way that the size equals o, in order to
ease comparison between the two bootstrap methods.

Consider the model Y,,; = 2x,; + £y, Where x,,; = i/n. We consider two error distributions
under Hy. The first one is a normal distribution with mean zero and variance 0-252. Under the
alternative we consider the skew normal distribution of Azzalini (1985), whose density is given
by 2¢(y)®(dy), where ¢ and ® are the density and distribution of the standard normal. More pre-
cisely, we let d = 2 and d = 4 and standardize these skew normal distributions so that they have
mean zero and variance 0-252. When d = 0 we find back the normal distribution. The second
error distribution under Hy is a Student-t distribution with 3 degrees of freedom, standardized in
such a way that the variance equals 0-252. The asymptotic theory does not cover this case, but we
like to know how sensitive the bootstrap methods are to the existence of moments of higher order.
Under the alternative we consider a mixture of this Student-t distribution and a standard Gumbel
distribution, again standardized to have mean zero and variance 0-252. The mixture proportions
p are 1 (corresponding to Hy), 0-75 and 0-50.



Bootstrap of residual processes in regression: to smooth or not to smooth ? 11

The results, shown in Tables 2 and 3, are based on 2000 simulation runs, and for each simulated
sample a total of 2000 bootstrap samples are generated. The power is obtained after calibrating
the test in such a way that the size equals exactly 1 — «, in order to ease comparison between
the two bootstrap methods. The tables show that the Cramer-von Mises test outperforms the
Kolmogorov-Smirnov test, and hence we focus on the former test. Table 2 shows that for the
normal error distribution, the size is about right for the smooth bootstrap and a little bit too
low for the non-smooth bootstrap. After correcting the critical value of the tests such that the
rejection probabilities under Hy equal «, we see that the smooth and the non-smooth bootstrap
have almost identical power. The tabulated powers have a standard deviation of {power(1 —
power)/2000}'/2, which is bounded above by 1-1%. Taking this standard deviation into account,
we can conclude that there is no significant difference between the powers of the two tests.

Table 3 shows that when the distribution under Hj is a Student-t distribution with 3 degrees
of freedom, the size is in general too large for the smooth bootstrap, especially for small n,
and about right for the non-smooth bootstrap. The level-adjusted power is again very similar for
both types of bootstrap. However, the non-smooth bootstrap has the advantage that it does not
depend on the selection of a bandwidth parameter and that it tends to be conservative in certain
situations, whereas the smooth bootstrap has a tendency to be anti-conservative.

4.3.  Goodness-of-fit tests
We end this section with a second application of the residual bootstrap, which concerns the
use of residual processes and the residual bootstrap for testing the fit of a parametric model for
the regression function m :

HO:mEM:{mg:QGG)},

where M is a class of parametric regression functions depending on a k-dimensional parameter
space ©. Van Keilegom et al. (2008) showed that testing Hy is equivalent to testing whether
the error distribution satisfies F' = Fp, where Fj is the distribution of Y — mg, (X) and 6y is the
value of 6 that minimizes E[{m(X) — mg(X)}?]. Consider the following Kolmogorov-Smirnov
and Cramer-von Mises type test statistics :

Tks =n'/? Sup |Fon(y) — Fy(y)l, Tem = n/ {Fonly) — EF5(y) Yo dEy(y)

where Fp,, is as defined in Section 2 and Fp(y) = n~' 327, I{Y; — 1g(X;) < y} with

X;) A
ZZ] 1k’h r—X )me(XZ)

for any 6, and 6 is the least squares estimator of . The critical values of these test statistics are
approximated using our smooth and non-smooth residual bootstrap. More precisely, the boot-
strapped versions of T (and similarly for Tk g) are given by

and

Té’M,s = TL/ {F;,n(y) } 39*
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n Test p=1 p =075 p = 0-50
25 50 100 25 50 100 25 50 100

50 Thrg, 37 79 138 34 58 105 49 86 149
Tigy 26 56 112 35 65 107 54 95 160
Tey, 31 68 133 41 76 121 76 117 177
Tiyo 20 48 111 48 77 120 84 126 188

100 Trg, 37 72 129 39 69 130 84 135 237
Tjso 27 55 100 36 70 133 82 136 239
Teys 39 65 130 41 76 134 99 170 270
Tiyo 28 53 107 42 75 136 100 172 276

200 Trg, 25 55 115 67 105 173 170 256 358
Tjso 18 43 92 66 108 170 170 262 359
Thye 27 56 110 75 119 191 220 306 430
Tiyvo 21 43 95 77 124 190 223 313 431

500 Thg, 25 48 107 107 179 253 422 546 641
Tig, 22 42 97 105 174 255 421 543 643
Thye 24 49 107 142 204 295 522 624 711
Tiyo 21 43 99 139 205 300 522 626 719

1000 Tfg, 26 56 105 189 273 400 757 839 906
Trgy 20 48 95 192 27.1 402 761 830 90-6
Teys 25 50 109 237 340 442 837 894 938
Tiyo 23 48 99 240 338 449 843 894 939

Table 3. Rejection probabilities (in %) of the test for symmetry in the linear model for several
sample sizes n and for o = 0-025,0-05 and 0-1. Under the null we have a Student-t distribution
with 3 degrees of freedom (p = 1), whereas under the alternative we have a mixture of a Student-t
(3) and a Gumbel distribution (p = 0-75 and p = 0-50). The power is obtained after calibrating
the test in such a way that the size equals «, in order to ease comparison between the two
bootstrap methods.

where 67 is the least squares estimator based on the bootstrap data (X, Yo = mp(Xi) +€5,),
i=1,...,n, ﬁg‘ﬂ(y) =n 130 I{Yy; — me(X;) <y} for any ¢, and similarly for 6% and
Fs* o(y). We reject Hy if the observed value of Ty exceeds the quantile of level 1 — o of the
distribution of T, o or T¢y .-

We consider the model m(z) = 2z and let M = {x — Oz : 6 € O}, i.e. the null model is a
linear model without intercept. The error term € follows either a normal distribution or a Student-t
distribution with 3 degrees of freedom, in both cases standardized in such a way that the variance
equals 0-252. The covariate X has a uniform distribution on [0, 1]. The bandwidth h,, is taken
equal to h, =& vn 93, and the kernel k is the Gaussian kernel. For the smooth bootstrap, we
use a standard normal distribution and we select s,, via cross-validation as in the previous sim-
ulations. Under the alternative we consider the model m(z) = 2z + az? for a = 0-25 and 0-5.
The rejection probabilities, given in Tables 4 and 5, are based on 2000 simulation runs, and for
each simulation 2000 bootstrap samples are generated.

The tables show that the Cramer-von Mises test outperforms the Kolmogorov-Smirnov test,
independently of the sample size, the type of bootstrap and the value of a (corresponding to the
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n Test a=20 a=0-25 a=05
2.5 50 100 25 50 100 2.5 50 10-0

50 Thrg, 39 63 133 33 64 116 93 152 241
Tigy 23 48 107 32 69 125 101 163 258
Tép, 24 49 97 56 101 179 168 248 366
Tépo 15 38 80 58 110 181 175 257 367

100 Tpg, 21 40 92 81 126 195 254 338 455
Tigo 13 27 71 81 126 192 263 340 464
Teys 20 45 90 103 161 257 342 438 583
Tiyo 15 35 79 104 161 262 347 439 592

200 Tig, 21 45 93 125 209 321 489 609 737
Tigo 15 33 76 141 209 323 522 615 742
Teys 22 42 85 192 298 425 636 749 843
Tiyo 17 36 73 198 293 430 649 748 848

500 Tjg, 20 45 94 352 448 586 920 952 978
Tigo 15 34 77 366 450 584 926 956 978
Ty 19 41 82 454 568 682 963 980 989
Tiyo 18 38 74 450 570 680 962 980 989

1000 Tig, 22 42 96 654 769 849 100 100 100
Tig, 18 36 84 652 770 849 100 100 100
Ty, 20 46 93 729 816 886 100 100 100
Tiyo 19 42 89 729 816 886 100 100 100

Table 4. Rejection probabilities (in %) of the goodness-of-fit test for several sample sizes and for
a = 0-025,0:-05 and 0-1, when the error term has a normal distribution. The regression function
is m(x) = 2z + ax? and the null hypothesis corresponds to a = 0. The power is obtained after
calibrating the test in such a way that the size equals «, in order to ease comparison between
the two bootstrap methods.

null or the alternative). Hence, we focus on the Cramer-von Mises test. Table 4 shows that when
the error term has a normal distribution, both the smooth and the non-smooth bootstrap lead to
conservative tests, although rejection probabilities are closer to the nominal level for the smooth
bootstrap. After adjusting the critical value in such a way that the size equals «, we see that the
size-adjusted powers under the two types of bootstrap are almost identical. A simple test of the
equality of two proportions shows that there is no significant difference. When the error has a
Student-t distribution (Table 5) the size is too large for the smooth bootstrap, and more or less
equal to the nominal level for the non-smooth bootstrap. The size-adjusted powers are again very
close.

Overall, when comparing the smooth bootstrap with the non-smooth bootstrap in the five con-
texts we have explored and for the different sample sizes and values of o we have considered,
we can conclude that the smooth bootstrap has a tendency to be anti-conservative whereas the
non-smooth bootstrap has a tendency to be conservative. As conservative tests are in general
preferred over non-conservative tests (if we follow the general idea that we prefer to control the
probability of committing a type I error), we conclude that the non-smooth bootstrap is prefer-
able over the smooth bootstrap (for the testing problems under consideration and for confidence
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n Test a=20 a=025 a =05
25 50 100 25 50 100 25 50 10-0

50 Thg, 43 73 157 53 94 163 155 235 349
Tigy 30 56 119 48 100 167 149 246 36:6
Tey, 32 59 122 88 148 220 245 352 459
Tiyo 24 47 100 87 144 227 244 356 470

100 Thg, 42 77 132 101 157 242 313 417 549
Tigo 29 58 108 105 158 245 323 424 555
Ty, 34 64 129 142 214 299 425 530 642
Tiyo 25 52 108 147 215 300 431 531 644

200 Tjg, 34 61 122 180 258 389 57.8 691 794
Tigo 25 47 94 187 265 389 596 700 795
Ty, 33 54 108 231 342 452 685 790 863
Tiao 26 47 95 226 338 456 686 787 864

500 Tjg, 36 68 126 346 486 618 922 957 977
Tigo 31 55 109 338 482 624 917 956 978
Tiy . 34 62 119 440 549 674 953 971 984
Tipo 31 58 107 438 550 676 952 971 985

1000 Tjg, 30 64 120 672 785 860 994 997 99-8
Tig, 24 56 110 692 785 859 995 99.7 998
Teys 32 62 115 738 826 898 996 998 99.9
Tiyo 30 55 106 739 826 897 996 998 99:9

Table 5. Rejection probabilities (in %) of the goodness-of-fit test for several sample sizes and
for oo = 0-025,0-05 and 0-1, when the error term has a Student-t distribution with 3 degrees of
freedom. The regression function is m(x) = 2z + ax? and the null hypothesis corresponds to
a = 0. The power is obtained after calibrating the test in such a way that the size equals o, in
order to ease comparison between the two bootstrap methods.

bands for the error distribution). In addition, the smooth bootstrap depends on how we choose
the smoothing parameter s,, (and the corresponding kernel), which is not the case with the non-
smooth bootstrap.

5. DISCUSSION

In this paper we considered a regression model with parametric or fully nonparametric re-
gression function, and with independence between the error term and the vector of covariates.
We proposed a novel bootstrap procedure that can be used to approximate the distribution of
an estimator of the error distribution under this model. The proposed bootstrap does not involve
any smoothing, and hence it avoids the delicate choice of a bandwidth parameter, which existing
bootstrap procedures suffer from. We showed the consistency of this bootstrap procedure, and
applied it in three situations.

This paper is the first paper that studies the non-smoothed bootstrap of the error distribution.
We restricted attention to the case of homoscedastic regression models, but in a second step it
would be interesting to prove the consistency of the bootstrap when the error variance depends
on one or several covariates. Other possible extensions of the model considered in this paper
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include the extension to semiparametric regression, nonparametric regression with more than
one covariate, dependent data, missing or censored data, etc.
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