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Summary: In cancer studies there may be long term survivors, which lead to heavy censoring at the end of the

follow-up period. Since a standard survival model can not handle this data, a cure model is needed. In the literature,

covariate significance tests for cure models are limited to parametric and semiparametric methods. We fill this

important gap by proposing a nonparametric covariate significance test for the probability of cure in mixture cure

models. The procedure is based on the significance test by (Delgado and González-Manteiga, 2001), and it is extended

to non continuous covariates: binary, discrete and qualitative. Its efficiency is evaluated in a Monte Carlo simulation

study, in which the distribution of the test is approximated by bootstrap. The method is applied to a colorectal

cancer dataset.
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1. Cure models

Classical methods to analyze lifetime data assume that all subjects would experience the

failure if there is no censoring and they are followed for long enough. They do not consider

the possibility of a group of nonsusceptible individuals that will not develop such event and

can be considered as cured. However, there is a increasingly large number of situations where

there are long-term survivors who can be deemed to be immune to the event of interest. One

well-known example of long-term survivors is cancer studies.

Cure models usually require long-term follow-up and large sample sizes, together with

empirical and biological evidence of a nonsusceptible subpopulation (Farewell, 1986). In the

literature, the most popular cure model is the mixture cure model (a recent review of the

cure models can be found in (Peng and Taylor, 2014) and in (Amico and Van Keilegom,

2018), between others). Mixture cure models, proposed by (Boag, 1949), allow to estimate

the probability of cure, 1 − p(x), also known as incidence, and the survival function of the

uncured population or latency, denoted by S0(t|x). The model can be formulated as follows:

S(t|x) = 1− p(x) + p(x)S0(t|x),

where x is a set of covariates and S(t|x) is the survival function of all the (cured and uncured)

patients. The main advantage of this model is that it allows covariates to have different

influence on cured and uncured patients. (Maller and Zhou, 1996) provided a detailed review

of this model. The estimation of cure models has been extensively studied for parametric

and semiparametric models (Farewell, 1986; Peng and Dear, 2000; Peng and Dear, 2000; Sy

and Taylor, 2000; Peng et al., 2007; Zhang and Peng, 2009; Peng and Taylor, 2011; Wang

et al., 2012).

A nonparametric incidence estimator for the incidence in the mixture cure model was firstly
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introduced by (Xu and Peng, 2014). (López-Cheda et al., 2017a) proposed a completely

nonparametric mixture cure model, with nonparametric approaches for both the incidence

and the latency functions. Even though it is considered only one covariate, the method

can be directly extended to a case with multiple covariates. This enables the mixture cure

model with covariates to be addressed in a completely nonparametric way. Nonparametric

estimation of the latency has been also considered in (López-Cheda et al., 2017b).

It is interesting to test if a covariate has some influence on the cure rate or on the

survival time of the susceptible patients. (Müller and Van Keilegom, 2018) propose a test

statistic to assess whether the cure rate, 1 − p (as a function of the covariates) satisfies a

certain parametric model. However, to the best of our knowledge, no significance testing has

been proposed yet for nonparametric cure models. To fill this important gap, a covariate

significance test for the incidence is presented in this paper. The method is based on the

significance test by (Delgado and González-Manteiga, 2001). Its efficiency is evaluated in

a Monte Carlo simulation study, in which the distribution of the test is approximated by

bootstrap. Furthermore, the methodology is applied to a real dataset.

The rest of the article is organized as follows. In Section 2 we introduce the notation and we

give a detailed description of the nonparametric mixture cure model by (López-Cheda et al.,

2017a). In Section 3 we focus on the significance tests for the incidence. In Section 3.1 we

study if the cure rate, as a function of the covariate Z, can be considered as a constant value

versus if it depends on Z (Case 1). Moreover, in Section 3.2 we study if the cure probability,

as a function of (X,Z), only depends on the covariate X (Case 2). The good performance

of the test is assessed in several simulation studies in Section 4. In Section 5 we apply the
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proposed methodology to a real dataset related to colorectal cancer patients from CHUAC

(Complexo Hospitalario Universitario de A Coruña, Spain).

2. Nonparametric mixture cure models

Throughout this paper we assume that individuals are subject to random right censoring and

that the censoring time, C, is independent of the time to occurrence of the event, Y , given the

set of covariates, X. The conditional distribution function of Y is F (t|x) = P (Y 6 t|X = x),

and the corresponding survival function is S(t|x). We define T = min(Y,C) as the observed

time and δ = I(Y 6 C) the uncensoring indicator. Moreover, the distribution functions of

C and T are G and H, respectively. Let us denote by ν the cure indicator, with ν = 0 if the

individual is susceptible and ν = 1 otherwise. Therefore, the conditional probability of not

being cured is p(x) = P (ν = 0|X = x). Note that if ν = 1, it is assumed that Y =∞. Then,

the mixture cure model can be written as:

S(t|x) = 1− p(x) + p(x)S0(t|x),

where 1− p(x) is the incidence and S0(t|x) is the latency. Let X be a univariate continuous

covariate with density function f(x). The observations will be {(Xi, Ti, δi), i = 1, . . . , n},

i.i.d. copies of the random vector (X,T, δ).

(Xu and Peng, 2014) introduced the following kernel type incidence estimator:

1− p̂h(x) =
n∏
i=1

(
1−

δ[i]Bh(i)(x)∑n
r=iBh(r)(x)

)
= Ŝh(T

1
max|x), (1)

where Ŝh(t|x) is the conditional product-limit estimator by (Beran, 1981), and T 1
max =

max
i:δi=1

(Ti) is the largest uncensored failure time. Here T(1) 6 T(2) 6 . . . 6 T(n) are the ordered

Ti’s, and δ[i] and X[i] are the corresponding uncensoring indicator and covariate concomitants.

These authors also proved the consistency and asymptotic normality of the estimator in

(1). Furthermore, (López-Cheda et al., 2017a) obtained an i.i.d. representation, found an
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asymptotic expression of the mean squared error, and proposed a bootstrap bandwidth

selection method for (1).

3. Significance tests for the incidence

Significance testing is of primary importance in regression analysis, because the number of

potential covariates to be included in the model can be large. In particular, in mixture cure

models, variable selection is of outstanding interest, since the covariates having an effect

on the survival of the uncured patients are not necessarily the same as those impacting

the probability of cure. We propose a covariate significance test for the incidence based on

the method by (Delgado and González-Manteiga, 2001), who introduced a test for selecting

explanatory variables in nonparametric regression without censoring. The main advantage

over other smoothed tests is that it only requires a smooth nonparametric estimator of the

regression function depending on the explanatory variables which are significant under the

null hypothesis. This feature is computationally convenient and solves, in part, the problem

of the “curse of dimensionality” when selecting regressors in a nonparametric context.

Let us denote by W = (X,Z) = (X1, . . . , Xq, Z1, . . . , Zm) the explanatory covariates. We

would like to test if the cure probability, as a function of the covariate vector W, only

depends on X, but not on Z:

H0 : E (ν|X,Z) ≡ 1− p (X) vs. H1 : E (ν|X,Z) ≡ 1− p (X,Z) ,

where the function p(X,Z) depends not only on X but also on Z.

Note that ν is not observed due to the censoring, since it is unknown if a censored individual

will be eventually cured (ν = 1) or not (ν = 0). The idea is to express the regression function

of an unobservable (and unestimable) response, ν, as a regression function with response η,
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which is not observable but estimable. Let us define the variable η as follows:

η =
ν(1− I(δ = 0, T 6 τ(X)))

1−G (τ(X)|X)
,

where τ(X) is a time beyond which a subject is considered cured and X is the covariate

vector that influences the cure rate under H0. It is easy to check that E(η|X) = E(ν|X) if

the distribution of (C|X, ν = 0) equals that of (C|X, ν = 1).

Note that if there is no covariate X, in practice, we consider τ(xi) = T 1
max. In any other case,

without loss of generality, we estimate τ(xi) in the following way for a continuous univariate

covariate X: using a bandwidth hτ , we consider a subset of individuals j with |xj−xi| < hτ ,

and τ(xi) will be estimated as the largest Tj with δj = 1 in the subset. If there is no δj = 1 in

the subset, then τ(xi) is equal to the available τ(xl) for the nearest xl to xi. If there are several

nearest values to determine xl, then we estimate τ(xi) as the mean of those. Preliminary

studies suggested that a good bandwidth choice is hτ =
(
X(n) −X(1)

)
0.25 n−1/9. Moreover,

it is assumed that C does not depend on the covariates, X, and then G (τ(Xi)|X) is estimated

by the product limit estimator, Ĝ(τ(Xi)). This gives the following estimations for the ηi. If

δi = 1, then we know that νi = 0, so we define η̂i = 0. Furthermore, if δi = 0 and Ti 6 τ(Xi),

then η̂i = νi(1−1)
1−Ĝ(τ(Xi))

= 0; whereas if δi = 0 and Ti > τ(Xi), then we define η̂i = 1

1−Ĝ(τ(Xi))
.

For W = (X,Z) two cases are considered in this paper, depending on the dimension of the

covariates: Case 1, where W = Z is one-dimensional, and Case 2, where W = (X,Z), with

a one-dimensional covariate X and an m-dimensional covariate Z. The third general case,

with W = (X,Z) where X is Rq-valued and Z is Rm-valued, can be easily generalized from

Case 2.
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3.1 Case 1

First, we study if the cure rate, as a function of Z, is a constant value versus if it depends

on the covariate:

H0 : E (ν|Z) = 1− p constant vs H1 : E (ν|Z) = 1− p(Z), (2)

where p(Z) is not a constant function of Z. Our test will be based on the observations

{(Zi, η̂i), i = 1, . . . , n}. Following (Delgado and González-Manteiga, 2001), the statistics we

propose is based on the following process:

Tn(z) =
1

n

n∑
i=1

(
η̂i −

(
1

n

n∑
j=1

η̂j

))
I (Zi 6 z) , (3)

which is a weighted mean of the difference between the observations of η and the conditional

mean of η under the null hypothesis. Possible test statistics are the Cramér-von Mises (CvM)

test, Cn =
n∑
i=1

T 2
n(Zi), or the Kolmogorov-Smirnov (KS) test, Kn = max

i=1,...,n
|n1/2Tn(Zi)|. The

null distribution of the test statistic is approximated by bootstrap, using an independent

naive resampling. Specifically, the bootstrap procedure is the following:

1. For i = 1, 2, . . . , n, obtain Z∗i and η̂∗i from (Z1, . . . , Zn) and (η̂1, . . . , η̂n) independently, by

random resampling with replacement.

2. With the bootstrap resample, {(Z∗i , η̂∗i ), i = 1, . . . , n}, obtain the bootstrap version of Tn:

T ∗n(z) =
1

n

n∑
i=1

(
η̂∗i −

(
1

n

n∑
j=1

η̂∗j

))
I(Z∗i 6 z)

and the corresponding bootstrap version of the Cramér-von Mises and Kolmogorov-Smirnov

statistics, C∗n and K∗n.

3. Repeat B times Steps 1-2 in order to generate B values of C∗n and K∗n. Define the critical

values d∗C and d∗K as the values which are in position d(1−α)Be in the corresponding sorted

vector.

4. Compare the value of the statistic, Cn (respectively, Kn), obtained with the original sample

with d∗C (respectively, d∗K), and reject the null hypothesis if Cn > d∗C (respectively, Kn > d∗K).
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In addition, the p-value can be calculated as the proportion of resamples for which the

bootstrap statistic, C∗n (K∗n) is larger than the value of the statistic with the original sample,

Cn (Kn).

5. Repeat Steps 1-4 κ times. The power of the test is approximated as the proportion of

rejections out of κ.

Note that since Z∗i and η̂∗i are resampled independently in Step 1, the bootstrap resampling

plan mimics H0.

3.1.1 Z nominal. In the case with only one non-ordinal qualitative covariate, W = Z,

there is no natural way to order the values of Z from lowest to highest. This makes impossible

to compute the indicator function in the test statistic (3). We propose to consider all the

possible k! combinations of the values of Z and compute Tn(z) (and also Cn and Kn) for

each “ordered” combination. Finally, we compute the maximum of Cn and Kn along all these

possible permutations and compare it with the critical point obtained by bootstrap likewise.

A different approach consists of working with k−1 dummy variables. The main advantage

of this method is that we only need to compute k − 1 times the value of the statistic,

whereas with the previous method, we have to compute the statistic k! times. Therefore, this

approach is considerably less computationally expensive. On the other hand, by adressing

the covariance testing using dummy variables, every new dummy variable has to be tested

individually and it could be the case that the test leads to different conclusions for the

dummy variables.

3.2 Case 2

In this case, W = (X,Z) has m+ 1 dimension, with a one-dimensional covariate X and an

m-dimensional covariate Z. We study if the cure probability, as a function of (X,Z), only
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depends on the covariate X, that is:

H0 : E (ν|X,Z) = 1− p(X), vs H1 : E (ν|X,Z) = 1− p(X,Z), (4)

where p(X,Z) depends on Z. To do this, we use the observations {(Xi,Zi, η̂i), i = 1, . . . , n}.

Note that in Case 2, we estimate τ(Xi) as mentioned in Section 3.

The test statistic is different depending on whether X is continuous or not. For the sake of

brevity, in the simulation study of Section 4.2 we only considered X continuous or qualitative,

and a one-dimensional continuous covariate Z. The results for other types of covariate X

can be found in the Supplementary Material.

3.3 X continuous

Following (Delgado and González-Manteiga, 2001), the statistic is defined as:

Tn(w) =
1

n

n∑
i=1

f̂h(Xi) (η̂i − m̂h(Xi)) I (Wi 6 w) , (5)

where f̂h is the Parzen-Rosenblatt estimator of the density function of the covariate X,

which depends on the bandwidth h, m̂h is the nonparametric estimator of the regression

function m(x) = E (η̂|X = x), obtained by the Nadaraya-Watson kernel method with the

same bandwidth h, and 6 stands for component-wise inequality. Note that the process in (5)

is a weighted mean of the difference between the η̂i and their conditional mean under the null

hypothesis. Similarly to Case 1, we consider the Cramér-von Mises, Cn =
n∑
i=1

T 2
n(Wi) and

the Kolmogorov-Smirnov, Kn = max
i=1,...,n

|n1/2Tn(Wi)| statistics. The test distribution under

H0 is approximated by bootstrap, considering the following procedure:

1. We fix the covariate X∗i = Xi and we obtain Z∗i from (Z1, . . . ,Zn) by random resampling

with replacement, for i = 1, 2, . . . , n. Furthermore, we compute η̂∗gi = ˆ̂ηgi + viε̂i, where

ˆ̂ηgi = m̂g(Xi) is the Nadaraya-Watson kernel regression estimate computed with the original

sample and pilot bandwidth g, vi is obtained from a N(0, 1) and ε̂i = η̂i − ˆ̂ηgi is the i-th
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residual. Note that the Nadaraya-Watson estimation of m(Xi) is bounded between 0 and 1,

i.e. 0 6 ˆ̂ηgi 6 1, i = 1, 2, . . . , n.

2. With the bootstrap resample, {(Xi,Z
∗
i , η̂
∗
i ), i = 1, . . . , n}, obtain:

T ∗n(w) =
1

n

n∑
i=1

f̂h(Xi)
(
η̂∗gi − m̂h(Xi)

)
I (W∗

i 6 w) ,

and the bootstrap version of the Cramér-von Mises and Kolmogorov-Smirnov statistics, C∗n

and K∗n.

3. Repeat Steps 1-2 B times in order to generate B values of C∗n and K∗n. Define the critical

values d∗C and d∗K as the values which are in position d(1− α)Be in the sorted vectors.

4. Compare the value of the statistic, Cn (respectively, Kn) obtained with the original sample

with d∗C (respectively, d∗K), and reject the null hypothesis if Cn > d∗C (respectively, Kn > d∗K).

5. Repeat Steps 1-4 κ times. The power of the test is approximated as the percentage of

rejections out of κ.

To mimic H0 in (4), the values η̂∗gi defined in Step 1 do not depend on Z∗i (just on Xi).

Note that in this procedure we need to select a bandwidth, h, and a pilot bandwidth, g.

Although the results are quite insensitive to the value of the pilot bandwidth, preliminary

studies showed that a good choice is g = 2h. Moreover, since we do not have a bandwidth

selection method, in the simulation study in Section 4.2 we consider bandwidths of the

order suggested by (Delgado and González-Manteiga, 2001), h = Cn−1/3. In practice, we

suggest to use any of the bandwidth selection methods for nonparametric tests proposed

in the literature. There are two main approaches: (Kulasekera and Wang, 1997), among

others, focuses on power maximization under the alternative hypothesis, whereas (Mart́ınez-

Camblor, 2010; Mart́ınez-Camblor and de Uña-Álvarez, 2013) consider the idea of minimizing

p-values. The two approaches are strongly related (see (Mart́ınez-Camblor and de Uña-

Álvarez, 2013)).
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3.4 X categorical or discrete

For a categorical or discrete variable X, the estimated density, f̂h(Xi), and the estimated

regression function, m̂h(Xi), in the test statistic in (5) are replaced by

Π̂(Xi) =
1

n

n∑
j=1

I(Xj = Xi) and m̂(Xi) =
1
n

∑n
j=1 I(Xj = Xi)η̂j

Π̂(Xi)
,

respectively. Similarly as in Case 1, for a qualitative variable in W = (X,Z) with no intrinsic

order in its values, the indicator function I (Wi 6 w) in the test statistic is computed for

all the possible “ordered” permutations of the values of W.

4. Simulation studies

The purpose of the simulation studies is to assess the practical behavior of the proposed

significance tests. We work with three different sample sizes: n = 50, n = 100 and n = 200.

A total of κ = 5000 trials and B = 2000 bootstrap resamples are drawn. All the simulation

studies were coded in R language. The software is available at http://dm.udc.es/modes/

es/node/256. An R package will be developed and uploaded in CRAN.

4.1 Case 1

For the sake of brevity, only the results for Z continuous and Z nominal are given here. The

details of the behaviour of the test in Case 1 with other types of variable Z, such as discrete

and binary, are given in the Supplementary Material.

Under the null hypothesis, H0 : E(ν|Z) = 1 − p, we consider four different constant

values for the incidence: 1 − p = 0.2, 0.3, 0.5 and 0.7. Under the alternative hypothesis,

H1 : E(ν|Z) = 1−p(Z), we study the following two models if Z is continuous, only Model 1

if Z is qualitative. For both models, the censoring variable follows an exponential distribution

with mean 1/0.3.

http://dm.udc.es/modes/es/node/256
http://dm.udc.es/modes/es/node/256
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Model 1. The incidence is 1− p(z), where

p(z) =
exp(β0 + β1z)

1 + exp(β0 + β1z)
, (6)

with β0 = 0.476 and β1 = 0.358, and the latency is

S0(t|z) =
exp(−λ(z)t)− exp(−λ(z)τ0)

1− exp(−λ(z)τ0)
I(t 6 τ0)

where τ0 = 4.605 and λ (z) = exp ((z + 20)/40). The percentage of censored data is 54% and

of cured data is 47%.

Model 2. The probability of uncure is:

p(z) =
exp (β0 + β1z + β2z

2 + β3z
3)

1 + exp (β0 + β1z + β2z2 + β3z3)
, (7)

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027 and β3 = 0.0020 and the survival function of

the susceptible population is

S0(t|z) =
1

2

(
exp(−α(z)t5) + exp(−100t5)

)
, with α(z) =

1

5
exp((z + 20)/40).

The percentages of censored and cured data are 62% and 53%, respectively.

4.1.1 Z continuous. We consider a continuous covariate Z ∼ U(−20, 20). The results are

given in Table 1. It is noteworthy that, under H0, the size of the test is very similar to the

significance level, α=0.05, for the different constant values for p. Furthermore, under H1, the

power of the test is very close (or even equal) to 1.

[Table 1 about here.]

4.1.2 Z qualitative. A qualitative covariate Z with three possible values {b1, b2, b3} was

considered with p(b1) = p(b2) = p(b3) = 0.2 and 0.5 under H0, and p(b1) = 0.5, p(b2) = 0.2

and p(b3) = 0.7 under H1. Two situations, according to the probability mass function of Z

given by (1/3, 1/3, 1/3) and (3/5, 1/5, 1/5), were studied. The observations (Zi, Ti, δi), i =

1, . . . , n were simulated from Model 1, with functions p(z), S0(t|z) and G(t) defined there.
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Remark. The computation of the probability of cure with a qualitative covariate deserves

special attention, since that probability can not be obtained directly evaluating p() in (6) in the

values of Z, provided they are not numerical. Therefore, let (b′1, b
′
2, b
′
3) be the numerical values

associated to the values (b1, b2, b3) of Z, in the sense that the distribution of Y conditioned on

bj is S(t|b′j) in Model 1. Therefore, under the alternative hypothesis, the probability of cure

derives from evaluating the function p() in (6) not in bj, but in the corresponding numerical

values b′j, j = 1, 2, 3.

The results are shown in Table 2. Under the null hypothesis, the size of the test is very

similar to the significance level, α = 0.05. Regarding the alternative hypothesis, the power

of the test is higher for large sample sizes and when the probability mass function of Z is

equal in probability, as expected.

[Table 2 about here.]

4.2 Case 2

In this case, W = (X,Z) has dimension m + 1, with a one-dimensional covariate X and a

m-dimensional covariate Z. For the sake of simplicity, in this simulation study we suppose

that Z is also one-dimensional. If there are only continuous covariates involved, we consider

two different scenarios, Model 1 and Model 2. In any other case, just Model 1 is considered.

The results for Case 2 when X and Z are continuous, X is continuous and Z is qualitative,

X is qualitative and Z is continuous, and X and Z are qualitative are shown in Sections

4.2.1, 4.2.2, 4.2.3 and 4.2.4, respectively. The results for other type of covariates X and/or

Z can be found in the Supplementary Material.

Model 1. Under the null hypothesis, H0 : E(ν|X,Z) = 1 − p(X), the probability of

uncure p(x) is that in (6), corresponding to Model 1 in Section 4.1. Under the alternative,
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the incidence is

1− p(x, z) = 1− exp(β0 + β1x(1 + β2z))

1 + exp(β0 + β1x(1 + β2z))
, (8)

with β0 = 0.476, β1 = 0.358 and β2 = 0.225, and the latency is:

S0(t|x, z) =
exp(−λ(x, z)t)− exp(−λ(x, z)τ0)

1− exp(−λ(x, z)τ0)
I(t 6 τ0),

where τ0 = 4.605 and λ (x, z) = exp ((x+ z + 20)/40).

Model 2. The probability of uncure, p(x), under H0 : E(ν|X,Z) = 1 − p(X), is that in

(7), corresponding to Model 2 in Section 4.1. Under the alternative, that probability is:

p(x, z) =
exp (β0 + β1x+ β2x

2 + β3x
3(1 + β4z))

1 + exp (β0 + β1x+ β2x2 + β3x3(1 + β4z))
,

with β0 = 0.0476, β1 = −0.2558, β2 = −0.0027, β3 = 0.0020 and β4 = 0.5, and the survival

function of the susceptible population is

S0(t|x, z) =
1

2

(
exp(−α(x, z)t5) + exp(−100t5)

)
, with α(x, z) =

1

5
exp((x+ z + 20)/40).

Furthermore, under H0, if the covariates are not continuous, we define the distribution

function of the variable Y :

F (y|x = 0) = F 0
1 (y|x = a′1) and F (y|x = 1) = F 0

1 (y|x = a′2)

and the distribution function of the censoring variable,

G(y|x = 0) = G0
1(y|x = a′1) and G(y|x = 1) = G0

1(y|x = a′2),

where F 0
1 and G0

1 are the conditional distribution functions for Model 1 under H0. Analo-

gously, under the alternative hypothesis:

F (y|x = 0, z = bi) = F 1
1 (y|x = a′1, z = bi), with i = 1, 2, 3

and

G(y|x = 1, z = bi) = G1
1(y|x = a′2, z = bi), with i = 1, 2, 3,

where F 1
1 and G1

1 are the conditional distribution functions for Model 1 under H1. Note

that the distribution function of the variable Y , F (y|x), and the distribution function of the
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censoring variable,G(y|x), are the corresponding distribution functions of Model 1 considered

in the simulation studies for Case 2.

4.2.1 X continuous, Z continuous. We consider two continuous covariates X, Z with

distribution U(−20, 20). We simulated the data (Xi, Zi, Ti, δi), i = 1, ..., n from Models 1

and 2. Since we do not have a bandwidth selection method for h in (5), we follow the

approach by (Delgado and González-Manteiga, 2001). They choose a bandwidth of the form

h = Cn−1/3m, for different values of C, where m is the dimension of the covariate vector

Z that is being tested. Note that in our case, m = 1. (Delgado and González-Manteiga,

2001) explains that this bandwidth is compatible with assumptions (A4) and (A4′) in their

paper. Therefore, we decided to work with h = Cn−1/3, where n is the sample size, and

C = 10, 20, 40, 60. Our numerical experience shows that g = 2h is a good choice for the pilot

bandwidth. Under the null hypothesis, the results are very similar to the significance level,

α = 0.05, except for very large bandwidths. Furthermore, under the alternative hypothesis,

the power of the test is considerably high. See the results in Table 3.

[Table 3 about here.]

4.2.2 X continuous, Z qualitative. As in the previous cases, X is U(−20, 20), and Z is

a categorical variable with values {b1, b2, b3}, with probability mass functions (1/3, 1/3, 1/3)

and (3/5, 1/5, 1/5). The probabilities of uncure, p(x, b1) = p(x, b2) = p(x, b3), under H0,

are the function p(x) in (6). Under H1, the incidence functions, p(x, bi) with i = 1, 2, 3,

are given by the function p(x, z) in (8), evaluated at (x, b′1), (x, b′2) and (x, b′3), where

(b′1, b
′
2, b
′
3) = (−5.2019,−1.3296, 1.0371).

The results under the null and the alternative hypothesis are shown in Table 4. Under

the null hypothesis, the best choice of the bandwidth is h = 5.43 for n = 50, h = 2.15 for
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n = 100 and h = 1.71 for n = 200. Moreover, under H1 we obtain higher power when using

h = 16.28 for n = 50, h = 8.62 or 12.93 for n = 100 and h = 6.84 or 10.26 for n = 200, that

is, h = Cn−1/3 with C = 60.

[Table 4 about here.]

4.2.3 X qualitative, Z continuous. The variable X is qualitative with values {a1, a2, a3},

with probability mass functions for each scenario (1/3, 1/3, 1/3) and (3/5, 1/5, 1/5), and

Z is U(−20, 20). The observations were simulated from Model 1. Let a′i be the numerical

value x at which p(x, z) in (8) is evaluated to get p(ai, z). We considered two scenarios

depending on the values (a′1, a
′
2, a
′
3): (−3.6964,−1.3296, 1.0371) in the first scenario, and

(−7.4671,−1.3296, 4.8079) in the second one. The incidence reduces, under H0, to 1− p(a′i),

i = 1, 2, 3, with p(x) in (6).

Table 5 shows the results. Under H0, the size of the test is close to the significance level,

α = 0.05, for both scenarios. Under H1, the power is higher if we consider that the probability

mass function of X is (3/5, 1/5, 1/5).

[Table 5 about here.]

4.2.4 X qualitative, Z qualitative. Let both X and Z be qualitative variables with values

{a1, a2, a3} and {b1, b2, b3}, respectively. We work with two different situations depending

on the corresponding probability mass functions: in the first one, both for X and Z are

(1/3, 1/3, 1/3), whereas in the second one, both are (3/5, 1/5, 1/5). The cure probabilities,

1 − p(ai, bj), i, j = 1, 2, 3, are computed from the function p(x, z) in (8) evaluated at the

numerical values (a′i, b̄i), i = 1, 2, 3, given in Table 6 (top) under H0, and (a′i, b
′
j), i, j = 1, 2, 3,

given in Table 6 (bottom) (under H1).
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[Table 6 about here.]

Table 7 shows the results under the null and the alternative hypothesis. In Scenario 1, the

size of the test is close to the significance level (α = 0.05), except for the CvM test, with

n = 50, 100 and when the probability mass function of X is (1/3, 1/3, 1/3). In the other

3 scenarios, the results are very competent regardless the probability mass function of X.

Under the alternative hypothesis, in the 4 scenarios, the power is higher if the probability

mass function of X is (3/5, 1/5, 1/5).

[Table 7 about here.]

5. Application to a colorectal cancer example

We work with a dataset related to colorectal cancer patients from CHUAC, Spain. The

variable of interest, Y , is the time, in months, since the diagnostic until death. The follow-up

time is almost 19 years. An individual is considered cured if he or she will not die because

of colorectal cancer. Censoring is caused by “cure”, death due to any other cause different

to colorectal cancer, dropout, or end of the study. The dataset contains 414 observations

on 8 variables: the censoring indicator; the observed survival time; the location: colon (111

individuals) or rectum (303 individuals); the age: from 23 to 102 years; and the stage TNM ,

which is the main determinant in prognosis of these patients. The stage has 3 components:

T , which describes the size of the tumor and whether it has invaded nearby tissue; N , which

measures the lymph nodes that are involved; and M , which evaluates the presence (or not)

of metastasis. The information of these 3 aspects can be combined and it lets us classificate

each patient in a unique (and numeric) stage from 1 to 4. About 50% of the observations

are censored, with the percentage of censoring varying from 30% to almost 71%, depending

on the stage. The number of patients in Stage 1 is 62 (70.97% censored, aged 23 − 84), in

Stage 2 is 167 (55.09% censored, aged 36 − 102), in Stage 3 is 133 (39.85% censored, aged
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30− 88) and 52 in Stage 4 (30.77% censored, aged 43− 88).

Age and tumour stage at diagnosis are known to strongly influence colorectal cancer

treatment regimen and five-year survival ((Vercelli et al., 2006), (Guyot et al., 2005), among

others). However, the effect of the age and stage on the probability of cure is rarely analyzed,

since the few studies of cure for colorectal cancer patients have focused on the estimation

of cure by age and stage at diagnosis (see, for example, (Shack et al., 2012)), but not on

the statistical signficance of those covariates on the probability of cure. So the proposed

nonparametric significance tests were applied to test the effect of the age and stage on the

cure probability. We consider B = 1000 bootstrap resamples to approximate the distribution

of the test statistic and a significance level α = 0.05.

5.1 Case 1

We started studying the effect of the age on the probability of cure. The test did not find

a significant effect of the age on the cure probability (pCvM = 0.142, pKS = 0.146). Hence,

in order to avoid an interaction with the stage, the analysis was repeated for each stage

separately. In Figure 1 we can appreciate how the nonparametric estimator of the incidence

changes with the age for each stage. The semiparametric estimator of the incidence by (Peng

and Dear, 2000) is also represented for comparison purposes. The cure probabilities in Stages

1 and 2 are higher than in Stages 3 and 4. The reason is that, in initial stages, most of the

surgeries have healing purposes, whereas in advanced stages, surgeries are usually palliative

treatments, and therefore the incidence for these patients is lower. Considering only this

figure, it seems reasonable to suppose that in Stages 1 and 4 the cure rate could be a

constant value, as a function of the age, whereas in Stages 2 and 3 the age may have some

influence, since the cure probability decreases as the age increases.
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[Figure 1 about here.]

The test is only significant in Stage 3 (pCvM = 0.002, pKS = 0.000); for patients above

60, in a 10 years gap the cure probability decreases considerably from 40% to almost 0%.

In Stages 1 (pCvM = 0.396, pKS = 0.257) and 4 (pCvM = 0.587, pKS = 0.551) there is

not enough evidence of an effect of the age on the cure probability. In Stage 1, the reason

is that the estimated cure probability fluctuates around 25% for most patients regardless

the age (see Figure 1). The results in Stage 4 deserve some comments. A total of 11 in

the 12 greatest lifetimes, including the largest lifetime, are uncensored and, consequently,

uncured. This causes that the nonparametric estimation of the probability of being cured,

as a function of the age, is constant equal to 0 (see Figure 1). Although it should not

be stated that it is impossible for a patient with Stage 4 colorectal cancer to survive, this

estimation reinforces the assertion that long-term survival in patients with Stage 4 colorectal

cancer is uncommon ((Miyamoto et al., 2015)). This fact, far from being a weakness of the

nonparametric method, is an important advantage, since it allows to detect situations in

which introducing the possibility of cure does not contribute to improve the model. Finally,

in Stage 2, the probability of cure decreases with the age, as expected, from about 30% in

patients with age at diagnosis 50-60, to 7% for patients above 80 years old (see Figure 1).

This effect of the age in the cure probability is only borderline significant (pCvM = 0.082,

pKS = 0.067).

Furthermore, note that the estimated cure probability for each stage is, regardless the age,

0.28 in Stage 1, 0.13 in Stage 2, 0.13 in Stage 3, and 0 in Stage 4. As expected, the probability

of cure decreases as the stage of the cancer progresses. However, the differences of the cure

probabilities among the four stages were not that large, and the test did not find them to

be significant (pCvM = 0.581 and pKS = 0.483).
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5.2 Case 2

For illustrative purposes only, we further apply the proposed test to assess the significance

of one covariate, assuming that the other one has a clear effect on the cure probability.

Although it was not the case, let us assume that the cure probability depends significantly

on the stage. In such situation, it might be of interest to test if the cure probability is

affected also by the age of the patient. The conclusion from the nonparametric test was that

age was not significantlly associate with the cure probability (pCvM = 0.370, pKS = 0.267).

Anagolously, suppose hypothetically that the probability of cure depends on the age of a

patient. To study if it also depends on the cancer stage, the test statistic in (5) has to

be computed, which requires a value for the bandwidth, h. Without a suitable bandwidth

selector, we considered a bandwidth h = Cn−1/3, with the following wide range of values

C = 10, 20, 40, 60, 120, 240, 300 and 375. If the age is assumed to affect the cure

probability, then the effect of the stage was not statistically significant with any of the

values of h considered, from the smallest one h = 1.342 (pCvM = 0.721, pKS = 0.815) to the

largest one h = 50.315 (pCvM = 0.137, pKS = 0.153).

6. Discussion

A nonparametric covariate significance test for the incidence in mixture cure models is

introduced. The methodology can be applied to high dimensional datasets, including analysis

of images, related to cancer for medical diagnosis. Although we do not have a bandwidth

selection method for Case 2 when the covariate X is continuous, we do not have a bandwidth

selection method. However, several bandwidth selectors for smoothed tests are proposed in

the literature than can also be applied in this context. On the other hand, preliminary studies

showed that the choice of the pilot bandwidth has a small effect on the results.
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Figure 1. Semiparametric (black line) and nonparametric estimations of the incidence in
Stages 1-4 depending on the age, computed with the bootstrap bandwidth (solid blue line)
and with a smoothed bootstrap bandwidth (dashed blue line). The green line represents the
Parzen-Rosenblatt kernel density estimations of the covariate age, using Sheather and Jones’
plug-in bandwidth.
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Table 1
Size (top) and power (bottom) of the test for Case 1 with Z continuous with distribution U(−20, 20) under the null

and the alternative hypothesis, respectively.

Model 1 Model 2
n p CvM KS CvM KS

Under H0

50 0.3 0.0484 0.0600 0.0550 0.0636
0.5 0.0500 0.0564 0.0490 0.0582
0.7 0.0446 0.0472 0.0510 0.0504
0.8 0.0418 0.0360 0.0400 0.0412

100 0.3 0.0608 0.0636 0.0544 0.0584
0.5 0.0494 0.0562 0.0488 0.0586
0.7 0.0444 0.0520 0.0474 0.0468
0.8 0.0414 0.0396 0.0484 0.0470

200 0.3 0.0490 0.0530 0.0528 0.0534
0.5 0.0552 0.0616 0.0540 0.0572
0.7 0.0498 0.0508 0.0516 0.0514
0.8 0.0446 0.0432 0.0466 0.0480

Under H1

50 0.9890 0.9862 0.4200 0.4148

100 0.9994 0.9992 0.7330 0.7402

200 1 1 0.9670 0.9746
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Table 2
Size (top) and power (bottom) of the test for Case 1 with Z qualitative under the null and the alternative hypothesis,

respectively.

n (Πz(b1),Πz(b2),Πz(b3)) p CvM KS

Under H0

50 (1/3, 1/3, 1/3) 0.2 0.0512 0.0526
(1/3, 1/3, 1/3) 0.5 0.0494 0.0520

100 (1/3, 1/3, 1/3) 0.2 0.0544 0.0538
(1/3, 1/3, 1/3) 0.5 0.0488 0.0532

200 (1/3, 1/3, 1/3) 0.2 0.0486 0.0500
(1/3, 1/3, 1/3) 0.5 0.0456 0.0516

Under H1

n (Πz(b1),Πz(b2),Πz(b3)) p(b1) p(b2) p(b3) CvM KS

50 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.3402 0.3408
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.1680 0.1606

100 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.5588 0.5600
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.2748 0.2690

200 (1/3, 1/3, 1/3) 0.5 0.2 0.7 0.8028 0.7994
(3/5, 1/5, 1/5) 0.5 0.2 0.7 0.4552 0.4448
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Table 3
Size (top) and power (bottom) of the test for Case 2 with X and Z continuous with distribution U(−20, 20), under

the null and the alternative hypothesis, respectively.

Model 1 Model 2
n h CvM KS CvM KS

Under H0

50 2.71 0.0504 0.0524 0.0494 0.0500
5.43 0.0428 0.0436 0.0464 0.0444
10.86 0.0372 0.0486 0.0448 0.0438
16.28 0.0442 0.0782 0.0692 0.0734

100 2.15 0.0494 0.0514 0.0526 0.0520
4.31 0.0476 0.0556 0.0544 0.0542
8.62 0.0580 0.0708 0.0514 0.0490
12.93 0.0590 0.0988 0.0700 0.0782

200 1.71 0.0436 0.0412 0.0510 0.0496
3.42 0.0420 0.0448 0.0558 0.0542
6.84 0.0522 0.0606 0.0508 0.0494
10.26 0.0590 0.0948 0.0614 0.0708

Under H1

50 2.71 0.2016 0.2182 0.2632 0.2466
5.43 0.2596 0.2698 0.3244 0.3074
10.86 0.2610 0.2696 0.3210 0.3150
16.28 0.2278 0.2442 0.3084 0.3152

100 2.15 0.3906 0.4736 0.6228 0.5662
4.31 0.5132 0.5556 0.6918 0.6128
8.62 0.5160 0.5564 0.6864 0.6320
12.93 0.4718 0.5206 0.6746 0.6438

200 1.71 0.7428 0.8554 0.9730 0.9364
3.42 0.8492 0.9156 0.9832 0.9486
6.84 0.8582 0.9114 0.9830 0.9568
10.26 0.8358 0.8914 0.9852 0.9576
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Table 4
Size (top) and power (bottom) of the test for Case 2 with X continuous with distribution U(−20, 20), and Z

qualitative with values {b1, b2, b3}.

n h (Πz(b1),Πz(b2),Πz(b3)) CvM KS

Under H0

50 2.71 (1/3, 1/3, 1/3) 0.0520 0.0600
5.43 (1/3, 1/3, 1/3) 0.0448 0.0554
10.86 (1/3, 1/3, 1/3) 0.0450 0.0832
16.28 (1/3, 1/3, 1/3) 0.0558 0.1546

100 2.15 (1/3, 1/3, 1/3) 0.0436 0.0530
4.31 (1/3, 1/3, 1/3) 0.0414 0.0560
8.62 (1/3, 1/3, 1/3) 0.0584 0.0886
12.93 (1/3, 1/3, 1/3) 0.0656 0.1538

200 1.71 (1/3, 1/3, 1/3) 0.0406 0.0480
3.42 (1/3, 1/3, 1/3) 0.0374 0.0480
6.84 (1/3, 1/3, 1/3) 0.0584 0.0800
10.26 (1/3, 1/3, 1/3) 0.0780 0.1462

Under H1

50 2.71 (1/3, 1/3, 1/3) 0.0976 0.1270
5.43 (1/3, 1/3, 1/3) 0.1382 0.1598
10.86 (1/3, 1/3, 1/3) 0.1562 0.1990
16.28 (1/3, 1/3, 1/3) 0.1686 0.2448
2.71 (3/5, 1/5, 1/5) 0.1592 0.1536
5.43 (3/5, 1/5, 1/5) 0.2086 0.2018
10.86 (3/5, 1/5, 1/5) 0.2090 0.2176
16.28 (3/5, 1/5, 1/5) 0.1920 0.2200

100 2.15 (1/3, 1/3, 1/3) 0.1796 0.2524
4.31 (1/3, 1/3, 1/3) 0.2452 0.3160
8.62 (1/3, 1/3, 1/3) 0.2796 0.3730
12.93 (1/3, 1/3, 1/3) 0.2858 0.4276
2.15 (3/5, 1/5, 1/5) 0.3202 0.3336
4.31 (3/5, 1/5, 1/5) 0.3848 0.3876
8.62 (3/5, 1/5, 1/5) 0.3868 0.4038
12.93 (3/5, 1/5, 1/5) 0.3550 0.4060

200 1.71 (1/3, 1/3, 1/3) 0.3666 0.5278
3.42 (1/3, 1/3, 1/3) 0.4698 0.6044
6.84 (1/3, 1/3, 1/3) 0.5112 0.6566
10.26 (1/3, 1/3, 1/3) 0.5212 0.6988
1.71 (3/5, 1/5, 1/5) 0.6048 0.6342
3.42 (3/5, 1/5, 1/5) 0.6532 0.6804
6.84 (3/5, 1/5, 1/5) 0.6410 0.6850
10.26 (3/5, 1/5, 1/5) 0.6068 0.6772
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Table 5
Size (top) and power (bottom) of the test for Case 2 with X qualitative with values {a1, a2, a3}, and Z continuous

with distribution U(−20, 20).

Scenario 1 Scenario 2
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS

Under H0

50 (1/3, 1/3, 1/3) 0.0502 0.0658 0.0498 0.0624
(3/5, 1/5, 1/5) 0.0524 0.0696 0.0458 0.0616

100 (1/3, 1/3, 1/3) 0.0494 0.0632 0.0446 0.0574
(3/5, 1/5, 1/5) 0.0468 0.0558 0.0392 0.0560

200 (1/3, 1/3, 1/3) 0.0496 0.0572 0.0486 0.0614
(3/5, 1/5, 1/5) 0.0512 0.0550 0.0538 0.0612

Under H1

50 (1/3, 1/3, 1/3) 0.3888 0.4148 0.4136 0.4866
(3/5, 1/5, 1/5) 0.7196 0.7418 0.7436 0.7906

100 (1/3, 1/3, 1/3) 0.6552 0.6834 0.7058 0.7958
(3/5, 1/5, 1/5) 0.9290 0.9348 0.9380 0.9554

200 (1/3, 1/3, 1/3) 0.9126 0.9280 0.9460 0.9742
(3/5, 1/5, 1/5) 0.9938 0.9940 0.9984 0.9992
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Table 6
Uncure probabilities, p(ai, bj), considered under H1, for Case 2 when X and Z are qualitative with values

{a1, a2, a3} and {b1, b2, b3}, respectively. See Remark in Section 4.2 for details.

Under H0 Under H1

(1/3, 1/3, 1/3) (3/5, 1/5, 1/5) b′1 = 0.6157 b′2 = −3.5434 b′3 = −7.7026

Scenario 1
a′1 = −6.5585 0.5000 0.3400 0.1 0.5000 0.9000
a′2 = −1.1678 0.5943 0.5566 0.5 0.5966 0.6862
a′3 = 0.9109 0.6304 0.6581 0.7 0.6323 0.5590

Scenario 2
a′1 = −6.5585 0.5000 0.3400 0.1 0.5000 0.9000
a′2 = −4.5690 0.5261 0.3957 0.2 0.5360 0.8423
a′3 = 0.9109 0.6304 0.6583 0.7 0.6323 0.5590

Scenario 3
a′1 = −6.5585 0.5000 0.3400 0.1 0.5000 0.9000
a′2 = −4.5690 0.5261 0.3957 0.2 0.5360 0.8423
a′3 = 4.2229 0.6444 0.7466 0.9 0.6862 0.3470

Scenario 4
a′1 = −6.5585 0.5000 0.3400 0.1 0.5000 0.9000
a′2 = −4.5690 0.5261 0.3957 0.2 0.5360 0.8423
a′3 = −3.2466 0.5501 0.4501 0.3 0.5598 0.7905
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Table 7
Size (top) and power (bottom) of the test for Case 2 with X and Z qualitative with values {a1, a2, a3} and

{b1, b2, b3}, respectively. The probability mass function of Z equals that of X.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n (Πx(a1),Πx(a2),Πx(a3)) CvM KS CvM KS CvM KS CvM KS

Under H0

50 (1/3, 1/3, 1/3) 0.0392 0.0490 0.0452 0.0548 0.0480 0.0558 0.0432 0.0526
(3/5, 1/5, 1/5) 0.0496 0.0528 0.0490 0.0510 0.0524 0.0524 0.0530 0.0512

100 (1/3, 1/3, 1/3) 0.0392 0.0512 0.0500 0.0552 0.0472 0.0562 0.0452 0.0546
(3/5, 1/5, 1/5) 0.0524 0.0502 0.0454 0.0496 0.0520 0.0546 0.0514 0.0512

200 (1/3, 1/3, 1/3) 0.0478 0.0552 0.0496 0.0588 0.0470 0.0496 0.0486 0.0526
(3/5, 1/5, 1/5) 0.0496 0.0520 0.0540 0.0544 0.0532 0.0514 0.0506 0.0490

Under H1

50 (1/3, 1/3, 1/3) 0.1658 0.1802 0.2968 0.3224 0.2410 0.2780 0.4586 0.5164
(3/5, 1/5, 1/5) 0.4874 0.4818 0.5054 0.5104 0.5056 0.5126 0.5482 0.5740

100 (1/3, 1/3, 1/3) 0.2932 0.2888 0.5358 0.5478 0.4556 0.5206 0.7584 0.7896
(3/5, 1/5, 1/5) 0.7324 0.7220 0.7536 0.7612 0.7500 0.7616 0.7774 0.8060

200 (1/3, 1/3, 1/3) 0.5128 0.4854 0.8232 0.8324 0.7350 0.8266 0.9578 0.9640
(3/5, 1/5, 1/5) 0.9218 0.9142 0.9340 0.9382 0.9354 0.9408 0.9412 0.9516
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