
Bayesian Inference Based MPPT
for Dynamic Irradiance Conditions

Buvana Lefevrea,b,∗, Bert Herteleera,b, Sven De Breuckerb,c, Johan Driesena,b

aKU Leuven, ESAT; imec; B-3001 Leuven, Belgium
bEnergyville, Thor Park 8300, B-3600 Genk, Belgium

cVITO, Belguim

Abstract

We introduce a Bayesian inference based maximum power point tracker (BI-MPPT) and demon-

strate it under static and dynamic irradiance conditions. BI-MPPT is based on a probability

inference technique which uses the model of the photovoltaic (PV) module and accounts for noise

in the system. Owing to the model-based approach, the tracker converges fast to the maximum

power point of the PV module and is capable of tracking dynamically varying irradiance. We com-

pare the proposed BI-MPPT to an optimized model-based P&O tracker and show that the proposed

tracker consistently outperforms the latter. In experiments conducted with an in-house built solar

emulator, at low illumination, the BI-MPPT achieves a static efficiency of 99.9 % and a dynamic

efficiency of at the least 97.4 % and outperforms the optimized P&O tracker by about 10 percent

point. When BI-MPPT is applied to I-V curve measurements of an outdoor PV installation, at

moderate and high irradiances, the dynamic efficiency is between 98.92 and 99.61 % yielding a 3 to

4 percent point improvement over the optimized P&O.

Keywords: Maximum power point tracking, dynamic efficiency, perturb and observe, Bayesian

inference

1. Introduction

Photovoltaic (PV) modules are prone to varying operating conditions due to diurnal and seasonal

changes in the environment, changes in cloud cover and the immediate environment of the module.

With a change in the operating conditions, the maximum power producible by a PV module also
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varies. This maximum producible power is located at the maximum power point (MPP) of the

output characteristics of the PV module. MPP tracking ensures the maximum transfer of power

from the module to the load. Tracking the MPP of a PV module would be straightforward if

accurately sensing the irradiance were less cumbersome or costly [1, 2]. The MPP can also be

determined by performing regression and tracing out a part of or an entire I–V curve, yet the

noise in the system limits the speed of the successive measurements. Moreover, if the successive

measurements are not fast enough, the irradiance and temperature may vary between samples,

making this solution infeasible as well. Tracing the I–V curve is best used in combination with

other tracking techniques where it serves to reduce the error between the operating point and the

MPP [3]. An ideal solution would instead be to employ a single tracking algorithm requiring as few

measurements as possible from voltage and current sensors and accurately determining the operating

point under dynamic irradiance conditions. However, these voltage and current measurements are

often noisy and could introduce errors in determining the maximum power point [4, 5].

Of the maximum power point trackers (MPPTs) found in the literature [6–14], the most popular

are the hill climbing techniques and in particular perturb and observe (P&O) based algorithms and

incremental conductance (InC) algorithms. The P&O based techniques are, however, limited by

their inherently oscillatory character and the presence of noise in the system. InC algorithm, by

design, should overcome the oscillatory nature of P&O, which is however difficult in practice due to

noise in the system [5]. Both P&O and InC are inaccurate in tracking rapid irradiance changes [15].

To overcome these limitations and to improve the tracking accuracy, these algorithms are often

optimized for a given PV system or use hybrid techniques. InC based algorithms that are improved

in performance such as those that use power increment techniques are more complex in comparison

which also leads to slower sampling than by P&O [16, 17]. However, optimization of P&O to reduce

oscillations and improve convergence increases its performance [18–21] to match that of a similarly

optimized InC algorithm [5, 16, 22]. Since the optimization is very specific to the system, any

changes to the system will therefore require re-optimization of the relevant parameters.

Soft computing techniques are generally considered versatile in that they can work efficiently in

noisy conditions and under dynamic irradiation. For example, neural networks based trackers are

fast in converging to MPP but their accuracy relies on the extensive training that is required prior to

operation. The network is often trained for the PV model parameters of a specific PV system [23].

Thus, a change in the system would require re-training the neural network for those parameters.
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Particle swarm optimization is a method wherein the operating point is computed based on a

comparison of the present and past values of several particles, thereby requiring multiple iterations

per particle along with a database to store previous iteration values for each of them [24]. Non-linear

prediction treats the P-V curve as either a quadratic or a parabola and therefore requires multiple

iterations to compute for a good fit for the parameters [25]. Kalman filter is a tool that is good at

estimating the state of the system from noisy measurements [26]. As a MPPT, however, Kalman

filter is applied to a gradient descent process making the tracker prone to oscillations similar to that

observed with P&O [27–29]. Often computational intelligence based trackers work in coordination

with P&O. However, even with the additional complexity of the intelligent algorithms, the inherent

properties of P&O, such as oscillations, still persist in these hybrid approaches. For a detailed

summary of soft computing techniques we refer the reader to the articles [30, 31].

We propose a Bayesian inference based maximum power point tracker (BI-MPPT) to determine

the MPP of a PV module within a single iteration, using one pair of voltage and current mea-

surement values. By probabilistic representation of this pair of voltage and current measurement

values, we accommodate for noisy sensors. The single pair of voltage and current measurements

serve as input to a simple network model whose output is an estimation of the irradiance value

for the next iteration. In our experiments, we use a simple one-diode model for the PV module.

In section 2, we define the MPPT problem and describe a state-of-the-art, optimized P&O algo-

rithm in section 2.1. In section 3 we introduce the proposed BI-MPPT algorithm. In section 4

we compare the proposed BI-MPPT and the optimized P&O algorithm experimentally with an

in-house built hardware-in-loop solar emulator. Using this experimental setup, we determine the

algorithm’s convergence speed and operation at static illumination conditions and demonstrate the

tracking accuracy under dynamic conditions at low illumination. Furthermore, by subjecting the

trackers to identical operating conditions using measurement data of medium and high irradiances

in section 4.4, we validate the dynamic tracking accuracy of the proposed BI-MPPT algorithm. We

give our conclusions in section 5.

2. Maximum power point tracking

Tracing successive I-V characteristics of a PV module gives an evolution of MPP over time. We

illustrate the evolution of MPP from P-V curve measurement data in figure 1. The curves were
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Figure 1: The consecutive P-V curves ( and ) measured every 15 s and their corresponding unique MPPs

( ) illustrate the variation of the maximum power point over time.

traced out every 15 s. The illustration shows that with a change in irradiance, g, the power at the

MPP is not constant, as is the corresponding voltage.

The ideal MPPT is able to determine an operating point that corresponds to the desired MPP

and is able to follow its evolution. The closer the operating point is to the MPP, the higher is the

energy transferred from the PV module to the system. Thus, the accuracy in determining the MPP

gives a measure of the performance of a tracker and is referred to as the efficiency of the tracker.

The efficiency of a maximum power point tracker as given by the standard EN50530 : 2010 [32] is

reproduced below.

ηmpp =

∑
j imeas,jvmeas,j∆tj∑
k iMPP,kvMPP,k∆tk

(1)

where imeas,j and vmeas,j are respectively the measured current and voltage of the PV module during

the jth time interval ∆tj , while iMPP,k and vMPP,k are the current and voltage corresponding to

the MPP of the PV module during the kth time interval ∆tk.

To accurately track the MPP, a tracker should be able to (1) converge quickly to the region

around the MPP, (2) accurately position the operating point at the MPP without oscillating about

it and (3) track rapid changes in the MPP without diverging from it, despite noise in the system.

2.1. Perturb and observe algorithm

The P&O algorithm is the most commonly employed MPPT algorithm which typically uses the

knowledge of the sensed current and voltage values over a couple of samples. It calculates the

gradient of measured power pmeas with respect to the applied voltage vPV between two consecutive

iterations at time t − 1 and t. With this knowledge P&O determines the new operating point

4



vPV,t+1. The update rule for vPV,t+1 is given by

vPV,t+1 = vPV,t + ((vPV,t − vPV,t−1) sgn(pmeas,t − pmeas,t−1)) (2)

= vPV,t + ∆vstep,t sgn(pmeas,t − pmeas,t−1). (3)

Using this update rule, P&O constantly seeks to correct its operating point leading to superfluous

oscillations. When the MPP is unchanging, under static conditions, these superfluous oscillations

reduce the algorithm’s static efficiency. Under dynamic conditions, when the changes in the MPP

are too rapid for the pertubation step size ∆vstep,t applied at timestep t, the operating point of

the tracker could diverge from the MPP. At low irradiances where the I-V curves are more flat, the

narrow differences in the power levels at consecutive iterations can introduce an error in determining

the MPP. If the irradiance g increases, this error would accumulate and lead to a divergence from

the MPP.

More advanced implementations of the P&O algorithm are optimized based on the model of the

PV system to reduce superfluous oscillations at static conditions if not totally eliminate them and

to improve tracking performance under rapidly changing irradiance as well as to enable convergence

at low irradiances [33–35]. The perturbation step size ∆vstep is optimized based on the magnitude

and the change in the power of the PV module and hence the operation is based on the model of

the PV module. [15, 36]. Moreover by accounting for the noise in the system it lowers the error in

predicting the MPP, however, this further increases the complexity of P&O.

3. Bayesian inference based MPP tracker

The P&O algorithm previously described uses a measured voltage vmeas, t and current imeas, t value

to determine the MPP. In practice, these measurements are affected by noise, and do not correspond

exactly to the voltage applied across the PV module, vPV,t and the current generated by the PV

module, iPV,t, respectively. As the noise in the measurements adds uncertainty to these values,

they are more correctly represented probabilistically. Modeling this noise as having a Gaussian

distribution, the probabilities of the measured voltage and current of the PV module are represented
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as,

p(vmeas|vPV,t) =
e
− (vmeas−vPV,t)

2

2σ2v√
2πσ2

v

(4)

p(imeas|iPV,t) =
e
− (imeas−iPV,t)

2

2σ2
i√

2πσ2
i

. (5)

σ2
i and σ2

v are variance of the noise on the current and voltage measurements respectively.

The goal of this paper is to take the inherent noisy nature of the measurements into account by

applying probabilistic inference to determine the MPP. To do so, we model a PV module by the

directed acyclic graph in Fig. 2. The nodes in this graph represent the variables of the problem,

and the directed links the causal relationship between the variables. We use a one-diode model to

model the PV module and neglect any impact of varying temperature. Then, the generated current

iPV,t depends on only the applied voltage vPV,t and on the irradiance gt at the timestep t. This

implies that the conditional probability of iPV,t given vPV,t and gt can be represented by a dirac

function at the current Imodel described by the model:

p(iPV,t|vPV,t, gt) =δ(iPV,t − Imodel(vPV,t, gt)). (6)

More accurate models such as a two-diode model or a model that incorporates temperature effects

would add complexity [37, 38], while the one-diode model, that we employ, is sufficiently accurate

for our application [39, 40].

Additionally, we approximate the irradiance variation between time steps as being a first-order

Markov process, meaning that the irradiance gt+1 is assumed to depend only on the previous

irradiance gt and not on earlier irradiance values. We discuss the conditional probability p(gt+1|gt)
in detail in Section 3.1. The measured voltage vmeas,t and current imeas,t values depend only on the

respective voltage vPV,t and current iPV,t values of the PV module, as described by the conditional

probabilities of Eqs. (4), (5).

The graph in Fig. 2 represents a so-called Bayesian network [41]. Nodes that are disconnected

represent variables that are independent of each other. For instance, node vPV,t is not linked to gt

but to iPV,t and vice versa. Likewise, node gt+1 does not influence either vPV,t or iPV,t which is

made evident by the absence of a direct link between these nodes.

One way to apply probabilistic inference to this graph is by means of Bayesian inference [41].

In this technique, the degree of belief in the values of observable parameters is propagated to other
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Figure 2: The causal structure of a MPPT problem of a PV module can be captured by a Bayesian network.

relevant parameters, and the belief in the value of the unknown parameter is inferred [42]. For

example, Bayesian inference has also been used in weather forecasting based on meteorological data

such as clearness index of the sky in predicting the global irradiation. Such a simulator could be

a potential operation prediction tool for grid system managers [43]. We use Bayesian inference to

determine the irradiance at the next timestep based on the current and voltage values of the PV

module. In the graph shown in Fig. 2 we solve for the probabilities by propagating the degree

of belief in the measured values imeas,t and vmeas,t as well as the probability distribution p(gt−1)

calculated in the previous iteration, to calculate the probability distribution p(gt+1). Based on this

distribution, we can then calculate the MPP during timestep t+ 1.

From the graph, the probability of the node gt+1 can be written as,

p(gt+1) =

∫
p(gt+1|imeas, vmeas, gt−1)p(gt−1)dgt−1 (7)

=

∫∫∫∫
p(gt+1, gt, iPV,t, vPV,t|imeas,t, vmeas,t, gt−1)

p(gt−1)dgt−1dgtdiPV,tdvPV,t. (8)

Note that we use p(gt+1) as a shorthand notation for the conditional probability distribution

of gt+1, given the measured current imeas,t and voltage vmeas,t as well the probability distribu-

tion of gt−1. To apply probabilistic inference on Bayesian network in a computationally efficient

manner, probabilities are typically rewritten as products of conditional probabilities of the form
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p(Effect|Cause) [41]. The reason is that these conditional probabilities are typically well known

or easily formulated, whereas likelihoods of the form p(Cause|Effect) are not. The p(Effect|Cause)

form can always be obtained by repeatedly applying Bayes’ theorem, which relates the likelihood

p(Cause|Effect) to p(Effect|Cause) and the prior probabilities p(Cause) and p(Effect) [41] according

to:

p(Cause|Effect) =
p(Effect|Cause)p(Cause)

p(Effect)
. (9)

By taking into account the dependencies captured by the graph in Fig. 2, we can rewrite the

conditional probability in Eq. (8) as:

p(gt+1, gt,iPV,t, vPV,t|imeas,t, vmeas,t, gt−1)

=p(gt+1|gt)p(gt, iPV,t, vPV,t|imeas,t, vmeas,t, gt−1) (10)

=p(gt+1|gt)p(iPV,t|imeas,t, gt, vPV,t)p(gt|gt−1)p(vPV,t|vmeas,t). (11)

In the above equation, the conditional probabilities of iPV,t and vPV,t can be rewritten using

Bayes’ Theorem of Eq. (9) as:

p(iPV,t|imeas,t, gt, vPV,t) =
p(imeas,t|iPV,t, gt, vPV,t)p(iPV,t|gt, vPV,t)

p(imeas,t)

=
p(imeas,t|iPV,t)p(iPV,t|gt, vPV,t)

p(imeas,t)
(12)

p(vPV,t|vmeas,t) =
p(vmeas,t|vPV,t)p(vPV,t)

p(vmeas,t)
(13)

where the probabilities p(imeas,t), p(vmeas,t), and p(vPV,t) are the prior probabilities of the corre-

sponding parameters. Substituting Eq. (11) into Eq. (8), leads to:

p(gt+1) =α

∫∫∫∫
p(gt+1|gt)p(imeas,t|iPV,t)p(iPV,t|gt, vPV,t)

p(vmeas,t|vPV,t)p(gt|gt−1)p(gt−1)dgt−1dgtdiPV,tdvPV,t (14)

where we absorbed the prior probabilities in the normalization factor α. As it is common in

Bayesian inference, α is not explicitly calculated but taken into account by normalizing the result

of the inference, i.e., by normalizing the sum of the probabilities p(gt+1) to 1 at the end of the

calculation.
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By susbstituting Eqs. (4), (5) in Eq. (14) we obtain,

p(gt+1) =α

∫∫∫∫
p(gt+1|gt)e

− (iPV,t−imeas,t)
2

2σ2
i δ(iPV,t − Imodel(gt, vPV,t))

e
− (vPV,t−vmeas,t)

2

2σ2v p(gt|gt−1)p(gt−1)dgt−1dgtdiPV,tdvPV,t (15)

=α

∫
dgtp(gt+1|gt)p0(gt)∫

e
− (Imodel(gt,vPV,t)−imeas,t)

2

2σ2
i e

− (vPV,t−vmeas,t)
2

2σ2v dvPV,t (16)

Here, we introduced p0(gt) as the probability distribution of gt that was calculated during the

previous timestep. The newly calculated p(gt+1) is used as the prior probability p0(gt+1) in the

next iteration while calculating p(gt+2). With the knowledge of the irradiance for the next timestep,

the BI-MPPT computes the new operating point as

vPV,t+1 =

∫
vMPP (gt+1)p(gt+1)dgt+1 (17)

where vMPP (gt+1) is the modelled MPP for the irradiance gt+1, determined by also using the same

one-diode model of the PV module.

3.1. Conditional probability of gt+1 given gt

To find p(gt+1|gt), we gathered irradiance measurement data over several days of varying weather

conditions. In the measurement data we observed that the probability of a difference in irradiance

gt+1− gt occurring is independent of the irradiance value gt. Based on this observation, we approx-

imate the conditional probability p(gt+1|gt) as being only a function of the difference in irradiance

between two consecutive time steps:

p(gt+1|gt) = p(gt+1 − gt). (18)

Fig. 3 shows the probability distribution p(gt+1 − gt) observed in our measurement data. It also

shows a fitted curve that is a combination of piecewise linear and logarithmic fits. We used this

fitted curve to approximate p(gt+1 − gt) in our simulations.
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Based on Eq. (18), Eq. (16) can be re-written as:

p(gt+1) =α

∫
dgtp(gt+1 − gt)p0(gt)∫

v

e
− (Imodel(gt,vPV,t)−imeas,t)

2

2σ2
i e

− (vPV,t−vmeas,t)
2

2σ2v dvPV,t. (19)
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Figure 3: Linear ( ) and logarithmic ( ) fit of averaged transition probabilities of irradiance gt+1 at time t+ 1,

given irradiance gt at time t, based on measurement data (?) simplifies the conditional probability p(gt+1|gt) to

p(gt+1 − gt) for any p(gt).

Here, the voltage integral can be numerically calculated and the irradiance integral can be

evaluated as a convolution. For every iteration, given the measured current and voltage values, the

irradiance value for the next timestep is used to calculate the I-V curve of the given PV module

from which the voltage value corresponding to the MPP is determined, thus enabling tracking of

the MPP.

3.2. Implementation of BI-MPPT

In implementing the algorithm, we have used equidistant discretized array of g and vPV values. For

our implementation, g array has been discretized into Ng = 32 elements and vPV array into 128

elements. Optimization of these arrays shall be addressed in future implementation. In Fig. 4 we

provide the flowchart of our implementation of the BI-MPPT algorithm.
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Load matrix iPV,t

Load arrays vMPP,t+1 and p(gt+1 − gt)

Initialize p0(gt) =
1
Ng

Set vPV,0 = 1V

Measure imeas,t, vmeas,t

Calculate matrix f1(gt, vPV,t) = gaussian(imeas,t − iPV,t),

Calculate array f2(vPV,t) = gaussian(vmeas,t − vPV,t)

Calculate probability from measurements

p(gt|vPV,t, iPV,t) =
∑

vPV,t
f1(gt, vPV,t)f2(vPV,t)

p(gt) = p0(gt)× p(gt|vPV,t, iPV,t)

Calculate convolution p(gt+1) = p(gt) ∗ p(gt+1 − gt)

Normalize p(gt+1) =
p(gt+1)∑
p(gt+1)

Set vPV,t+1 =
∑

gt+1
vMPP (gt+1) × p(gt+1)

Update p0(gt) = p(gt+1)

Figure 4: Flowchart of a BI-MPPT implementation.

First, the matrix iPV,t = Imodel(gt, vPV,t) and the array vMPP(gt+1) are loaded based on the cell

model. The array p(gt+1− gt) is loaded based on the approximate conditional probability of Fig. 3.

The probability p0(gt) is initialized at uniform probabilities and the operating voltage for the first

iteration vPV,0 is set to a chosen value. This initial operating voltage has no impact on the results.

The tracker then operates in a loop that starts by measuring imeas,t and vmeas,t of the present

timestep. Eq. (16) is then evaluated using 5 steps:

1. the Gaussian probabilities of imeas,t−iPV,t and vmeas,t−vPV,t are evaluated which are denoted
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as the functions f1(gt, vPV,t) and f2(vPV,t) respectively,

2. the two Gaussian probabilities are multiplied and summed over vPV,t, leading to the proba-

bility p(gt|vPV,t, iPV,t) based on the present measurement,

3. the probability is combined with the probability p0(gt) from previous measurements to cal-

culate the total probability p(gt),

4. the total probability is convoluted with the transition probability to calculate the probability

p(gt+1) of the irradiance at the next timestep,

5. this probability is normalized to take the normalization factor α into account.

Using the calculated probability p(gt+1), the operating voltage vPV,t+1 is calculated for the

next timestep by averaging over vMPP (gt+1) according to Eq. (17). The probability p0(gt) is then

updated with p(gt+1), and the next measurement is made.

4. Performance analysis

The performance of the proposed BI-MPPT is assessed by operating it at static and dynamic

illumination using an indoor experimental set-up, and to outdoor measured I-V curves under rapidly

changing irradiance conditions. The algorithm is also compared to the optimized P&O algorithm

discussed in Section 2.1. As previously explained, both the BI-MPPT and the optimized P&O are

model-based trackers, with the latter being a gradient descent technique for which the step size is

optimized based on a model of the PV module [15]. Both the trackers use identical models of the

PV modules used in the indoor experiment or outdoor measurements as appropriate.

4.1. Experimental setup

The in-house solar emulator—used to demonstrate the operation of the MPPTs in the experiments—

consists of an array of forty-six halogen lamps whose illumination is controllable with a power supply

with heat sinks, an irradiance sensor, and a reconfigurable PV module built with polycrystalline

Maxis solar cells [44] which is shown in Fig. 5(a). A set of reconfigurable switches have been added

between each pair of the cells [45]. Ten series-connected cells of the PV module are connected to an

12



Reconfigurable PV module

Halogen lamp
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Figure 5: (a) Experimental setup consists of an array of 46 halogen lamps and 10 of the reconfigurable polycrystalline

Maxis solar cells connected in series. (b) The setup is operated by an electronic load whose operating voltage vMPP

is set by a MPPT algorithm.

electronic load which is in turn interfaced with Matlab [46]. This configuration forms a hardware-

in-loop setup where the tracking algorithms are developed in Matlab control the operation of the

PV module. The operating point is set by the electronic load based on the measured vmeas and
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imeas (see Fig. 5(b)). This setup is also capable of measuring the I-V characteristics of the module

and the operating current and voltage of individual cells. The settling time of this system, from

50 ms up to 1 s, is mainly due to the electronic load.

To find the tracker efficiency during the experiments, we estimate the MPP values in the de-

nominator of Eq. (1) based on the characterization of the PV module for a set of illumination

values. For each value, we measure the MPP under static illumination conditions. Based on these

measurements we compile a look-up table that specifies the MPP for each illumination value.We

estimate the MPP for a given illumination value by using a piecewise linear approximation based

on this table. The effects of temperature are neglected in composing the look-up table to avoid a

large and complex dataset. Although module temperature depends on ambient temperature, heat

transfer, illumination and operating point, the operation times in the laboratory experiments are

sufficiently short for any change in the ambient temperature and likewise the cell temperature to be

neglected [47]. In case of the convergence experiments in Section 4.2, we also use a second method

to estimate the MPP. In these experiments, we apply a step in illumination to the PV module.

For the second method, we measure the I-V curves at the beginning and end of the experiment,

and note for each the corresponding MPP. We use the MPP from the beginning (end) I-V curve

as the MPP at the time samples before (after) the step is applied. Since we are experimenting

with a step between two static irradiance values, all the I-V curves are expected to lie close to the

corresponding measured I-V curve.

4.2. Convergence and static operation

In this experiment we test for convergence by creating a step in the illumination, and thereafter, test

for operation at static MPP conditions by not changing the illumination. The MPPTs are operated

for the first 10 iterations with the halogen lamps turned off, mimicking 0 W m−2 and at the instant

of the tenth iteration the the halogen lamps are powered to provide approximately 50 W m−2. The

illumination levels are only approximately given as the light source is not a closed-loop system.

When the halogen lamps in our setup heat up, the power supply would regulate the power to the

lamps which can cause small differences in the desired illumination.

The operating points of the proposed BI-MPPT are shown in Fig. 6(a) to correspond well

with the MPP values. For the BI-MPPT, the operating point converges within one iteration after

applying the illumination step. Note that this shows that BI-MPPT can achieve tracking without
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Figure 6: Response of the trackers( ) is compared to the expected MPP values by method one using look-up

table( • ) and method two using direct MPP measurements ( • ): (a) bayesian inference based MPPT algorithm

and (b) P&O algorithm at static irradiance in the lab when illumination is stepped up to approximately 50 W m−2.

a systematic error while using a simplified model of the PV module. In contrast, optimized P&O

takes five iterations to converge in Fig. 6(b) which is inherent to its hill-climbing nature. The

decrease in the MPPT efficiency is dependent on both the convergence and the amplitude of its
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oscillation at steady-state. Decreasing the amplitude of the oscillation would slow the convergence

of the tracker [48].The overall efficiency of BI-MPPT is 99.9 % and 99.4 % when respectively using

the first and second methods of estimating the real MPP; whereas the optimized P&O tracker

realizes efficiencies of 89.5 % and 89 %. This loss in efficiency of the optimized P&O is due its

oscillating nature. It is indeed well established that the problem of P&O is its oscillation about the

MPP on converging to it at steady-state [49]. Oscillations are absent in the BI-based tracker due

to its model-based approach which helps in faster convergence. For the experiments performed,

BI-MPPT shows an improvement in the energy efficiency of 10 percentage points over that of the

optimized P&O tracker.

4.3. Dynamic performance

In the first experiment of testing the dynamic performance of the MPPT, the illumination is varied

according to a pre-defined profile consisting of a step-up and -down in illumination, followed by a

ramp-up and -down. There is a difference of 5 W m−2 between any two sample points in the ramp.

Ramp profiles often appear in outdoor conditions. In addition to this reason, MPPTs are difficult

at tracking such a constant change in a single direction [50, 51], thus incurring losses. It is therefore

important to test MPPTs on ramp profiles.

The response of BI-MPPT is shown in comparison to the estimated MPP values in Fig. 7(a).

The overall dynamic efficiency is 97.4 % and that during the ramps is 94.5 %. The response of

the optimized P&O tracker is shown in Fig. 7(b), whose overall dynamic efficiency is 87 % and

that during the ramps 84.6 %. The BI-MPPT is able to track monotonous increase or decrease in

illumination while P&O suffers from large fluctuations and is unable to track the fast changes as

it requires a larger transient tracking time [35]. The large fluctuations of P&O are mainly due to

the large errors introduced by its perturbations [22] which also causes the slower convergence of the

P&O algorithm at low irradiance conditions.

In the second experiment shown in Fig. 8(a), we consider the response of the BI-MPPT to

random variation in low illumination. The BI-MPPT in this experiment realizes a dynamic track-

ing efficiency of 97.6 % which is consistent with the dynamic efficiency computed in the previous

experiment. The BI-MPPT demonstrates a quick response to illumination changes by converging

to the MPP value during a sudden increase as well as a sudden decrease in the illumination value.

This can be seen at the first four illumination steps within 25 s in Fig. 8(a). The BI-MPPT is also
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Figure 7: (a)The response of the BI-MPPT algorithm ( ) and (b) the response of the P&O algorithm ( ) to a dynamic

illumination profile are compared with the fitted MPP values( • ).

able to track a slower rate of change in illumination with errors smaller than 13.6 %, as can be

seen between 20 s to 40 s. The overall dynamic efficiency of the BI-MPPT is shown alongside its

evolution in Fig. 8(b).

Our indoor dynamic analysis shows that at low irradiance conditions the BI-MPPT is able
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Figure 8: (a)The response of the BI-MPPT algorithm to dynamic illumination profile ( ) is compared with the fitted

MPP values( • ) and (b) shows the evolution of the MPPT efficiency over the iterations(•) as well as the overall

dynamic efficiency ( ).

to converge fast to- and track the MPP, for (1) abrupt changes in illumination in the form of

steps or, (2) monotonous changes in the form of ramps, (3) as well for slow and random changes

in illumination. The overall poorer performance of the optimized P&O is attributed to the low
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irradiance conditions [4, 5]. We have also showed that, in contrast to the optimized P&O, the

proposed tracker performs well for both increasing and decreasing illumination profiles.

4.4. Analysis of the tracker based on meteorological data
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Figure 9: BI-MPPT algorithm( ) performs better than the optimized P&O (•) when compared to the MPP

values( ), at dynamically changing medium and high irradiance levels based on measurement data.

Finally, we have also analyzed the performance of the trackers with simulations based on mea-

sured meteorological data. To do so, we have measured I-V curves about every 6 seconds from

PHX-160 polycrystalline PV modules of Phoenix solar on several days between March and April

2014. We use these curves to demonstrate the tracker under outdoor conditions and scenarios that

cannot be generated in the laboratory, which in our case would be medium and high irradiance

conditions [52]. The I-V curves are fed into the Matlab-based PV simulation tool [53] with which

the MPPTs are tested. As an example, the responses of the trackers for a part of a day are shown

in Fig. 9.

Being model based, the BI-MPPT bases its estimation of the operating point on the noisy
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BI-MPPT[%] P&O[%]

Low irradiance indoor experiment

static 99.9 89.5

dynamic: step, ramp 97.4 87

random variations 97.6

Measurement data

Day with sparse/isolated rapid changes 99.08 96.16

Day with intermittent rapid changes 99.61 95.61

Day with frequent rapid changes 98.92 94.85

Table 1: BI-MPPT tracking efficiency is consistently high for a broad range of irradiance conditions.

samples and the relationship established between two consecutive irradiances brought out by the

transition probability in Sec. 3.1. Therefore, BI-MPPT is able to track any magnitude of irradiance

changes and is unaffected by the speed of the irradiance change as shown in the inset in Fig. 9. The

optimized P&O on the other hand, is able to track large differences in the irradiance so long as the

irradiance is more or less constant following this change. Being a gradient descent algorithm, P&O

requires a few additional iterations to converge after tracking large differences in irradiance. As a

consequence, P&O is unable to track rapidly changing irradiance as good as BI-MPPT.

For an entire day, the dynamic efficiency for BI-MPPT is 99.61 % and that of optimized P&O,

which performs well at high irradiance, is 95.61 %. BI-MPPT consistently performs well as sum-

marized in Tab. 1. This indicates that the proposed BI-MPPT is able to track the MPP under a

broad range of realistic irradiance conditions.

5. Conclusion

We proposed a novel maximum power point tracker called BI-MPPT which uses Bayesian inference

to estimate the irradiance from the measured current and voltage operating values. The proposed
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BI-MPPT is a model-based tracker and inherently accounts for random noise in the system due to

its probabilistic approach. The tracker also uses the relationship between two consecutive irradiance

values as a conditional probability, which we have derived from outdoor measurement data. We

applied this conditional probability and the noisy current and voltage measurements to Bayes’ rule.

The result of this operation was an irradiance distribution which when combined with the MPPs of

the PV module, obtained from its simple model, gives the operating voltage of the next iteration.

We compared the BI-MPPT to a tracker based on the P&O algorithm with an optimized per-

turbation step size. We evaluated both the trackers on an in-house built hardware-in-loop solar

emulator. Here, we tested the proposed BI-MPPT for convergence by applying a step in the illu-

mination. The overall efficiency of the proposed BI-MPPT was shown to be greater than 99 %, and

also to perform consistently better than the optimized P&O by about 10 p.p. We showed that the

BI-MPPT was able to track step-up, step-down and ramp profiles well, with very small transient

tracking time. We also showed that BI-MPPT performed equally well on ascending and descending

ramps unlike the P&O. When slow changes were applied at low illumination, the BI-MPPT was

able to track with occasional errors that were less than 13 p.p. The overall dynamic efficiency of

the BI-MPPT calculated in both the low illumination experiments was at the least 97.4 %.

Using outdoor measurement data we subjected both the trackers to identical environmental

conditions and compared the performances at medium and high irradiances. BI-MPPT was able to

track the different magnitudes of change in irradiance which the optimized P&O, being a gradient

descent technique, sometimes failed to track. The dynamic efficiency of the BI-MPPT, based on

measurement data varied between 98.92 and 99.61 % for the three different days and were about 4

p.p more than that of P&O. Using only a simple one-diode model of the PV modules, BI-MPPT

performed better than the optimized P&O.

Our results show that the proposed BI-MPPT outperformed the conventional optimized P&O

algorithm under a wide variety of operating conditions. In our experiments, BI-MPPT used a

simple one-diode model of the PV module which is indicative of the proposed tracker not requiring

a detailed model in practice. BI-MPPT was able to track both static and dynamic irradiance

variations, and under low, as well as medium and high irradiance conditions, making it a promising

candidate for many emerging PV applications.

21



Acknowledgment

The authors acknowledge the support of the SMART PV project funded by IWT-SBO grant number

110025.

References

[1] D. L. King, J. A. Kratochvil, W. E. Boyson, Measuring solar spectral and angle-of-incidence

effects on photovoltaic modules and solar irradiance sensors, in: Conference Record of the

Twenty Sixth IEEE Photovoltaic Specialists Conference, 1997, pp. 1113–1116. doi:10.1109/

PVSC.1997.654283.

[2] J.-C. Wang, Y.-L. Su, J.-C. Shieh, J.-A. Jiang, High-accuracy maximum power point estimation

for photovoltaic arrays, Solar Energy Materials and Solar Cells 95 (3) (2011) 843–851. doi:

https://doi.org/10.1016/j.solmat.2010.10.032.
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