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with no racist implications, Franca and Michele, Giulia and Massimo with
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Overlooking her embarassing sense of duty when it comes to bringing unnecessary
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problems cease to exist; but if I here thank Monica is for her sincere friendliness
and the support she has always given me.
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cia.com!), the evergreen Vincenzo Schweppes and Stefania Procops, and the
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The rest of the acknowledgement is restricted to people mentioned only because
I have to, sorted by irrelevance.

I wouldn’t be writing these lines hadn’t I met Lorenzo Puya and Pantelis:
not only am I not accustomed to acknowledge unknown names, but I can’t
imagine how I could have possibly made it till the end of the PhD without the
constant support of their strong mathematics and exceptional code skills. In
full truth, one gets also credit for the British humor and someone else only
gets the math acknowledgments; better known as Felafel (for apparent reasons)
and often accompanied by adjectives to remind people how enlighted he is,
noble-hearted Puya would always nurture the confidence in a prosperous PhD
by welcoming my Belgian mornings with a reassuring “You suck!”, let alone
his altruistic commitment to assist cycling impaired colleagues. But if my PhD
found a purpose at all I owe it to Ilkay, who would constantly remind me how
relieved he was when looking at me, for his problems seemed nothing against
how miserable my life was. And yet it is a mystery how our profound late night
talks, always starting from heated social and political debates, would inevitably
end up with praises to some M.lle Privat (whom I also acknowledge bien sûr)!
Of course all my gratitude to Eylül for her charity services.

First of a long and prestigious Kumar dynasty and by far the most natural
Italian news reader, my enthusiastic pingpong mate Ajay introduced me to the
thrills of waking up at 5am to explore new dimensions of entertainment. I will
never forget how inspirational our erudite musical taste was for the entire IMT
DYSCO group!

(Ajay Kumar Sampathirao)

Barely acquainted with the single honorific, the coming of my soon-to-be Leuven
flatmate has been one of the most shocking experiences I recall. Double Kumar
— so he demanded people to address him — in parallel to his Bachelor-honored
PhD studies would run important economical transactions in the shade of the
Gandhi Boulevard headquarters of Italian banks. Thankful to those people
around him who would compensate the limits of his non-scissorproof credit card,
he would attribute them the authorship of romantic text messages composed
in inspired Belgian nights. Domagoj would patiently tolerate and rather save
his efforts for sentimental liaisons targeting daughters of wealthy bakers or
automatic laundry owners, although sometimes bursting in rage with “Zitto
Felafel!” echoing in Leuven. And while Vihang prides himself of being the
Kumarest, no human will ever possibly outdilip Manas Mejari. After days of
intense (and tight!) Danish cohabitation with huggable Valentina (true name
omitted for decency concerns), our group introduced and tested in the field
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new efficient paradigms of IEEE-formatted postcards. Although dolphin lover
Marina Andrić would strongly disagree — for true art, she believes, is the kind of
postcards she receives instead — this is arguably the biggest joint contribution
achieved on a night train.

During these years I had the fortunate chance to get to know people from all
around the world and from very different backgrounds. I still can’t hold the
tears when I think of all those students that despite their disadvantaged SES
still manage to accomplish a successful and honored PhD. It only consoles me
that the Flemish government is generous enough to support the struggle of KW
(full name omitted to avoid retaliations from the family) against the prearranged
farmwork envisioned by the parents, and that phone companies would know how
best to reward her extensive work-related surfings with premium memberships
to leading companies of the field of interest. On the opposite extreme, never
could I imagine a wealth in the likes of Swiss-Chinese Qinghua’s even existed!
Arguably the sexiest最胖小宝贝儿 (relative to her sense of beauty and elegance),
additionally to having been once the first in China (as she would confess on first
meetings) thanks to her undeniable smartness and maturity Miss University was
unanimously elected chair shortly after joining the KU group, a position which
she comfortably held till the very last day. More in favor of a gender-quota-based
career, at the cost of betraying her solid sobriety pledge, envious colleague
Lynn (pron. /’hıothafs/) would always belittle the rich lady by
naming her after a beer from the green island of Shandong. Lynn would also
know when and to whom best to tell jokes; honoring the memory of Ricardo,
she would start with his favorite “There is a black guy. . . ”. Yet none would
deny Lynn is the bestest ever, and this opinion has clearly nothing to do with
how convenient her station wagon is when it comes to changing apartment.
And among all these immigrants it is a relief to have a Leuven compatriot in
the next office: Zahra, a typical Flemish lady, wouldn’t join lunch or coffee
break unless properly summoned by knocking on the wall. Admittedly spoilt
by the charitable neighbors who would often help her typing on the keyboard,
at last she convinced her promotor to overlook the capacity of her office and
be assigned a deskmate. And speaking of kind neighbors I can’t refrain from
praising Francis Hilda; cleverly disguised as a sheer Schuurman at first, only after
the arrival of some rich Indian did he gradually disclose his generous instinct of
offering Duvels. Being not a 3-to-26.5 year old pregnant lady, whether or not
the cunning-humored wealthy Prince of Punjabi is worth such favors is not for
me to debate. Arguably not a proper guy and definitely not lsc, we however all
agree that he cooks well. The distinct contrast with humble stableman Mathijs
hurts our sensitive eyes; tumbled between industry and academy, he is a blatant
example of the distinct separation between theory and practice, for no truly
risk averse car owner would ever lend his vehicle for Swedish housing purposes.
And then there are Yinxue (who made us totally forget about her predecessor
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King Hua, so we are told his or her name sounded like), Arun and Marcin, who
however haven’t had enough time to compromise themselves in the STADIUS
history (yet). And congratulations Michael for the arrival of Raphaël!

At the center of the universe to make it spin — thus right in the middle of the
section are They mentioned — life itself wouldn’t be if not for the allmighty
Presijdent of all that is presijdentiable Parijsi, sided by Their vice cattle obste-
trician and First Gentleman Lars the Great. By far the most generous emperor
ever existed, Daniele would leave to his Schrijnmakersstraat subject(s) the plea-
sures of impersonating buckets puring on the ground, and would make sure they
received the so longed celebrations on birthday and other scomode occasions.
Never shall They run out of Grana Padano thanks to Hello Kaity Valentijna,
and no credit shall Martijn be praised with for pronouncing Gasthuisberg so
long as she lives. Among other faithful servants, Giulia and her risotto would
make the authour gain 2.5Kg in one night under the psychological supervision
of food disease expert Giorgia, tonari no Agnese (known to some as Panny)
would know how best to entertain guests with weapons cleverly disguised as
cooking tools, Alessandra (Petty) by sitting in her ladily positions would of-
fer innovative solutions to the cold Belgian weather to those in front of her,
and at the same time from the basement to the rooftops people could track
the movements of Mario (Brambi) by following the echo of his mild tones and
imperceptible Milan accent.

The turning point of my PhD can arguably be identified with the ad-
vent of Masoud. Proud of his outstanding islamic impact factor (that I
always craved for) and after leveraging on asymmetric divergences to
establish himself in the research group, Aghaye Ghaderi with clever com-
munication skills introduced me to the world of the Rakhbari, filling me
and my academic production with spiritual meaning. But it was the ar-
rival of Khanome Ghaderi the event that brought a definite change and
was most appreciated by all STADIUS members, for at last in the Boss era
we all know exactly how long an after lunch break should last, differently from
the open-ended propositions of neutral-accented Bottegal, always starting with
a “Coffeeeee?” and followed by ritual bullism against the weakest (-minded)
of his herd. I feel much obliged to acknowledge Bottegal for acknowledging
me first, for my (modestly speaking) fluency in Veneto dialects and mastery
of sheep breeding are now worldwide established in the scientific community
of Researchgate. Known to the most as Prosciuttoressa (better not to investi-
gate on the embarassing origin of the name), true friend Federica from the false
friend Vedelago would never find the courage to press charges against the abu-
sive partner who imposes on others his arguable passion for chugging sparkling
vinegar. And for how cute her twin Cipo is, I will never hide my preference
for the cuter Ciottoli. The image of sheep herds brings my memories back to
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Bertrand and our Championnat de la Bergerie, his praises to the only person
worth being complimented not as stupid as he looks and our rescue missions in
the department ducts 5 meters from the ground.

Admittedly with a pretentious nuance, I can’t hide how honored I am to have
assisted the lectures of Prof. Borgioli, who thanks to his scientific merits climbed
through all academic degrees in few days. I can also proudly declare having
shaked hands with flagship of Julia community and worldwide streamed Ph.D.
Antonello.

A special thank to Anita and Davide, his homonyms Boschezza and D’Arenzo,
Rita, Emi, Olympia, Vasilis, Rafa and Yeshim, grandpa Carollo and the other
soft-worded leaf enumerator Valerio, Yahia, Laura Janϕy and Dem, Manuela,
Chiara and many others for the best memories in IMT.

I am also very thankful to the Lund group, including Prof. Chakraborrty
of course, and more locally Mattias, Richard, Gautham and Chris, and the
amazingly interesting seminars of Martinka on defects of semiconductors. And
how can’t I mention my beloved Ukranian wife? For instance by deliberately
choosing to acknowledge my Jordan husband Sara instead, whom I could never
thank enough for bravely shielding me from the threats of other men. And how
is it possible to summarize in few words a magnificent specimen such as Vig,
the only living being allergic to Vietnamese eggs (how lucky Van Tien was
conceived the western way!), or the adventures with Guillerme and his favorite
car rental companies?

In fact, I can’t possibly cover all the people that deserve an acknowledgment,
and each of them in full fairness should be dedicated an entire thesis. Let me
simply say that if there is any one here tonight whom I have not offended, I
apologize!
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Abstract

Due to their simplicity and versatility, splitting algorithms are often the methods
of choice for many optimization problems arising in engineering. “Splitting”
complex problems into simpler subtasks, their complexity scales well with
problem size, making them particularly suitable for large-scale applications
where other popular methods such as IP or SQP cannot be employed.

There are, however, two major downsides: 1) there is no satisfactory theory
in support of their employment for nonconvex problems, and 2) their efficacy
is severely affected by ill conditioning. Many attempts have been made to
overcome these issues, but only incomplete or case-specific theories have been
established, and some enhancements have been proposed which however either
fail to preserve the simplicity of the original algorithms, or can only offer local
convergence guarantees.

This thesis aims at overcoming these downsides. First, we provide novel tight
convergence results for the popular DRS and ADMM schemes for nonconvex
problems, through an elegant unified framework reminiscent of Lyapunov stabil-
ity theory. “Proximal envelopes”, whose analysis is here extended to nonconvex
problems, prove to be the suitable Lyapunov functions. Furthermore, based on
these results we develop enhancements of splitting algorithms, the first that 1)
preserve complexity and convergence properties, 2) are suitable for nonconvex
problems, and 3) achieve asymptotic superlinear rates.
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Chapter 1

Introduction

Operator splitting techniques (also known as proximal algorithms), introduced in
the 50’s for solving PDEs and optimal control problems, have been successfully
used to reduce complex problems into a series of simpler subproblems. The most
well-known operator splitting methods are the alternating direction method of
multipliers (ADMM), forward-backward splitting (FBS) also known as proximal
gradient method in composite convex minimization, Douglas-Rachford splitting
(DRS) and the alternating minimization method (AMM) [91]. Operator splitting
techniques offer several advantages over traditional optimization methods such
as sequential quadratic programming and interior point methods: (1) they can
easily handle nonsmooth terms and abstract linear operators, (2) each iteration
requires only simple arithmetic operations, (3) the algorithms scale gracefully as
the dimension of the problem increases, and (4) they naturally lead to parallel
and distributed implementation. Therefore, operator splitting methods cope well
with limited amount of hardware resources making them particularly attractive
for (embedded) control [111], signal processing [32], and distributed optimization
[17, 60].

The key idea behind these techniques when applied to convex optimization is to
reformulate the optimality conditions of the problem at hand into a problem of
finding a fixed point of a nonexpansive operator and then apply relaxed fixed-
point iterations. Although sometimes a fast convergence rate can be observed,
the norm of the fixed-point residual decreases, at best, with Q-linear rate, and
due to an inherent sensitivity to ill conditioning oftentimes the Q-factor is
close to one. Moreover, all operator splitting methods are basically “open loop”,
since the tuning parameters, such as stepsizes and preconditioning, must be set
before their execution. In fact, such methods are very sensitive to the choice of
parameters. All these are serious obstacles when it comes to using such types
of algorithms when speed and efficiency are imperative, as it is the case of
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2 INTRODUCTION

real-time applications on embedded hardware.

As an attempt to solve the issue, people have considered the employment of
variable metrics to reshape the geometry of the problem and enhance convergence
rates [34]. However, unless such metrics have a very specific structure, even
for simple problems the cost of operating in the new geometry outweights the
benefits. Another interesting approach that is gaining more and more popularity
tries to exploit possible sparsity patterns by means of chordal decomposition
techniques [127]. These methods can improve scalability and reduce memory
usage, but unless the problem comes with an inherent sparse structure they
yield no tangible benefit.

Alternatively, the task of searching fixed points of an operator T can be trans-
lated into that of finding zeros of the corresponding residual R = id− T . Many
methods with fast asymptotic convergence rates such as Newton-type exist that
can be employed for efficiently solving nonlinear equations, see, e.g., [44, §7]
and [61]. However, such methods converge only when close enough to the solu-
tion, and in order to globalize the convergence there comes the need of a merit
function to perform a line search along candidate directions of descent. The
typical choice of the square residual ‖Rx‖2 unfortunately is of no use, as in
meaningful applications R is nonsmooth. On top of this, even when a suitable
merit function is found one still needs to deal with the frequent pathology of
linesearch methods in nonsmooth optimization that inhibits the achievement of
fast convergence rates, well known for SQP-type algorithms and referred to as
the Maratos effect [80], see also [61, §6.2].

The already tough challenge of overcoming these issues becomes exceptionally
complicated if one further drops the assumption of convexity. Indeed, although
originally designed and analyzed for convex problems, many splitting algorithms
have been observed to perform well when applied to certain classes of structured
nonconvex optimization problems. However, yet two more major issues have to
be taken into account. First, the elegant link with monotone operator theory
onto which the convergence of many splitting algorithms is based no longer
holds. Secondly, many regularity properties are lost in the transition, to an
extent that well-behaved Lipschitz-continuous mappings give way to operators
that are defined only in a set-valued sense.

Proximal envelopes proved to be a valuable tool for addressing these issues.
First introduced in [92, 93], these functions generalize the well-known Moreau
envelope together with its connections with the proximal point algorithm to
other splitting schemes. Some splitting algorithms were shown to be equivalent to
gradient methods on the corresponding envelopes, leading to the reformulation
of nonsmooth and constrained problems as the unconstrained minimization of
smooth functions whence classical Newton-type methods can be employed. This
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promising approach finds however two main limitations. First, it can only be
applied to problems where functions are either smooth or convex. Secondly, it
does not fully respect the simplicity of the original splitting algorithms, as it
requires additional operations such as Hessian evaluations.

1.1 Contributions and structure the thesis

Inspired by such achievements, yet aware of their limitations, this thesis proposes
new envelope-based algorithms that (i) are suitable for fully nonconvex problems,
(ii) share operation and iteration complexity with plain splitting algorithms,
and (iii) achieve fast asymptotic rates of convergence (under local assumptions)
without suffering pathological behaviors such as the Maratos effect. Envelope
functions are also shown to be valuable tools for extending the convergence
analysis of classical splitting algorithms to the nonconvex setting. In fact, the
in-depth analysis of different splitting schemes in a setting as general as possible
led to the discovery of many common patterns.

♠ These are discussed in Chapter 2, where a new framework for the analysis
of nonconvex splitting algorithms is introduced. The common denominator is
identified in the presence of a “proximal” majorization-minimization component
in every step, that is to say, an operation involving the minimization of an
(at least quadratic) upper bound of the original problem. Classical proximal
algorithms, possibly up to a change of variable, are thus reinterpreted in this
context.

♠ In Chapter 3, an envelope function is defined for each algorithm in the
proposed framework, and its regularity properties and basic inequalities are
discussed in full generality. Based on these findings, a convergence theory for
proximal algorithms is developed.

♠ Building on the investigated convergence framework, Chapter 4 proposes
a new envelope-based globalization strategy that allows to customize splitting
algorithms with arbitrary update directions. Without any further assumption,
the scheme is shown to accept unit stepsize when the selected directions are
superlinear (in the sense of [44, §7.5]), proving its robustness against pathologies
such as the Maratos effect. The employment of quasi-Newton directions is also
investigated, and a Broyden scheme is shown to yield superlinear convergence
under some assumptions at the limit point.
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Although the leading ideas have been sketched in an oral exposition,1 the
material of the three chapters summarized above has been exclusively developed
in the writing of the thesis. The three chapters outlined next are instead based
on published or submitted papers, although suitably amended so as to conform
with the proposed general framework for the sake of a more uniform and compact
exposition.

♠ Chapter 5 deals with the forward-backward splitting algorithm (FBS).
Thanks to the general convergence analysis developed in the previous chapters,
once FBS is shown to fit in the investigated framework, inclusive of a possible
relaxation parameter λ its convergence is directly inferred. To the best of
our knowledge, this is the first result that extends the convergence of FBS for
nonconvex problems with λ 6= 1. Quasi-Newton enhancements are also presented,
and the efficacy of the methodology is then verified with numerical simulations.
Based on:

A. Themelis, L. Stella and P. Patrinos. Forward-backward envelope for the
sum of two nonconvex functions: further properties and nonmonotone linesearch
algorithms, SIAM Journal on Optimization 2018 28(3):2274-2303, 2018.
https://epubs.siam.org/doi/10.1137/16M1080240

L. Stella, A. Themelis, P. Sopasakis and P. Patrinos, “A simple and efficient
algorithm for nonlinear model predictive control,” 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp. 1939–
1944. http://ieeexplore.ieee.org/document/8263933/

A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers and P.
Patrinos, “Embedded nonlinear model predictive control for obstacle avoidance
using PANOC,”
2018 European Control Conference (ECC), Limassol, 2018 (to appear)

♠ Chapter 6 deals with the Douglas-Rachford splitting algorithm (DRS).
Although some convergence results could directly be derived with the same
quick arguments employed for FBS, thanks to a more sophisticated analysis we
identified the tightest possible range of parameters enabling convergence. The
optimality of the findings is assessed by means of suitable counterexamples. A
quasi-Newton DRS algorithm is then presented; this was already discussed in
the first submission of the preprint [119], but has been removed from the last
version due to space limitations.
Based on:

A. Themelis and P. Patrinos. Douglas-Rachford splitting and ADMM for non-
convex optimization: tight convergence results

1A. Themelis, Proximal envelopes. ECC 2018 Workshop on “Advances in Distributed
and Large-Scale Optimization,” Limassol (Cyprus), Jun. 12-15, 2018. http://www.ecc18.eu/
index.php/workshop-6/

https://epubs.siam.org/doi/10.1137/16M1080240
http://ieeexplore.ieee.org/document/8263933/
http://www.ecc18.eu/index.php/workshop-6/
http://www.ecc18.eu/index.php/workshop-6/
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(under 2nd review round in the SIAM Journal of Optimization since November 2018)
https://arxiv.org/abs/1709.05747

♠ Chapter 7 deals with the ADMM algorithm. Expanding on a primal equiv-
alence of the algorithms, the tight convergence results derived in the previous
chapter are translated into tight results for ADMM. Also for ADMM the em-
ployment of quasi-Newton directions is considered, and the induced speed-up
confirmed with numerical simulations.
Based on:

A. Themelis and P. Patrinos. Douglas-Rachford splitting and ADMM for non-
convex optimization: tight convergence results
(under 2nd review round in the SIAM Journal of Optimization since November 2018)
https://arxiv.org/abs/1709.05747

♠ Although not directly related to envelope functions, the framework investi-
gated in Chapter 8 reflects the pursuit of certified fast methods that preserve
operation and iteration complexity as plain splitting algorithms. This is indeed
the role of the SuperMann scheme, an algorithmic framework that applies to any
splitting algorithm, although only limited to the convex case. The name owes to
an intended pun involving the super linear rates it achieves and the fact that
it generalizes Mann-type iterations. As it was the case of the envelope-based
algorithms, a Broyden method is shown to yield the desired superlinear rates
of convergence under assumptions at the limit point; surprisingly, however, no
isolatedness of the solution is required, but merely metric subregularity.
Based on:

A. Themelis and P. Patrinos. SuperMann: a superlinearly convergent algorithm
for finding fixed points of nonexpansive operators
(under 2nd review round in the IEEE Transactions on Automatic Control journal since
March 2018)
https://arxiv.org/abs/1609.06955

P. Sopasakis, A. Themelis, J. Suykens and P. Patrinos,
“A primal-dual line search method and applications in image processing,”
2017 25th European Signal Processing Conference (EUSIPCO), Kos, 2017, pp.
1065–1069.
http://ieeexplore.ieee.org/document/8081371/

https://arxiv.org/abs/1709.05747
https://arxiv.org/abs/1709.05747
https://arxiv.org/abs/1609.06955
http://ieeexplore.ieee.org/document/8081371/


6 INTRODUCTION

1.2 Preliminary material

Our notation is standard and follows that of optimization and analysis books
[10, 20, 57, 102, 106]. For the sake of clarity we now properly specify the adopted
conventions, and briefly recap known definitions and facts. The interested reader
is referred to the above-mentioned monographs for the details.

The set of natural numbers is denoted by N, and we adopt the convention
that 0 ∈ N. The sets of integer and real numbers are denoted by Z and R,
respectively. The set of extended-real numbers is denoted by R := R ∪ {∞}.
Unless differently specified, we adopt the convention that 1/0 =∞.

Given a, b ∈ R we indicate with (a, b) := {x ∈ R | a < x < b} and [a, b] :=
{x ∈ R ∪ {−∞} | a ≤ x ≤ b}, respectively, the open and closed (possibly
extended-real) intervals having a and b as endpoints. Intervals (a, b] and [a, b)
are defined accordingly. Occasionally, (a, b) may also indicate a pair or a vector
in R2, however the context will always be explicit enough to avoid confusion.
The set of positive real numbers is indicated as R+ := [0,∞), and that of strictly
positive real numbers as R++ := (0,∞).

The positive and negative parts of r ∈ R are defined as [r]+ := max {0, r}
and [r]− := max {0,−r}, respectively. Notice that [r]+ and [r]− are positive
numbers such that r = [r]+ − [r]−.

The sum of two sets A,B ⊆ Rn is meant in the Minkowski sense, namely
A+ B = {a+ b | a ∈ A, b ∈ B}; the difference is defined accordingly. In case
A = {a} is a singleton, we will write a + B as shorthand for {a} + B, and
similarly if B is a singleton.

The closure and interior of E ⊆ Rn are denoted as clE and intE, respec-
tively. The boundary of E is bdryE := clE \ intE. With B(x; r) and B(x; r)
we indicate, respectively, the open and closed balls centered at x with radius r.

1.2.1 Matrices and vectors

The n× n identity matrix is denoted as In, and the Rn vector with all elements
equal to 1 as 1n; whenever n is clear from context we simply write I and 1,
respectively. We use the Kronecker symbol δi,j for the (i, j)-th entry of I. Given
v ∈ Rn, with diag v we indicate the n× n diagonal matrix whose i-th diagonal
entry is vi.

The range and nullspace (or kernel) of a matrix A ∈ Rm×n are denoted by
rangeA := {Ax | x ∈ Rn} and kerA := {v ∈ Rn | Av = 0}, respectively. The
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rank of A is denoted by rankA, and its transpose by A>.

With Sym(Rn), Sym+(Rn), and Sym++(Rn), we denote respectively the set
of symmetric, symmetric positive semidefinite, and symmetric positive definite
matrices in Rn×n.

The minimum and maximum eigenvalues of H ∈ Sym(Rn) are denoted as
λmin(H) and λmax(H), respectively. For Q,R ∈ Sym(Rn) we write Q � R
to indicate that Q − R ∈ Sym+(Rn), and similarly Q � R indicates that
Q − R ∈ Sym++(Rn). Any matrix Q ∈ Sym+(Rn) induces the semi-norm
‖ · ‖Q on Rn, where ‖x‖2Q := 〈x,Qx〉; in case Q = I, that is, for the Euclidean
norm, we omit the subscript and simply write ‖ · ‖. No ambiguity occurs in
adopting the same notation for the induced matrix norm, namely ‖M‖ :=
max {‖Mx‖ | x ∈ Rn, ‖x‖ = 1} for M ∈ Rn×n. For p ∈ [1,∞], the `p norm on
Rn is denoted by ‖ · ‖p, where

‖x‖∞ := max {|xi| | i = 1 . . . n}, and ‖x‖p := (
∑n
i=1 |xi|p)

1/p
,

for p ∈ [1,∞). The definition extends to p ∈ (0, 1) as well, although in this
case ‖ · ‖p is not subadditive and thus is only a quasi-norm. The `0 quasi-norm,
namely

‖x‖0 := number of nonzero entries of x,

additionally fails to be homogeneous.

1.2.2 Sequences

The notation (ak)k∈K represents a sequence indexed by elements of the set K,
and given a set E we write (ak)k∈K ⊂ E to indicate that ak ∈ E for all indices
k ∈ K. We say that (ak)k∈K ⊂ Rn is summable if

∑
k∈K ‖ak‖ is finite, and

square-summable if (‖ak‖2)k∈K is summable. As a shorthand notation we
may write (xk)k∈N ∈ `1 and (xk)k∈N ∈ `2 to indicate that (xk)k∈N is summable
and square summable, respectively.

We say that the sequence converges to a point a ∈ Rn

• Q-linearly if there exists ρ ∈ [0, 1) such that ‖ak+1 − a‖ ≤ ρ‖ak − a‖
for all k’s;

• R-linearly if there exists a sequence (εk)k∈N Q-linearly convergent to 0
such that ‖ak − a‖ ≤ εk;

• superlinearly if either ak = a for some k ∈ N, or ‖ak+1−a‖/‖ak−a‖→ 0
as k →∞.
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We will often adopt the big-O and small-o notation: given a sequence (xk)k∈N ⊂
R and (εk)k∈N ⊂ R++, we write xk ∈ O(εk) and xk ∈ o(εk) to indicate that

limsup
k→∞

|xk|
εk

<∞ and lim
k→∞

|xk|
εk

= 0,

respectively.

1.2.3 Extended-real-valued functions

Given a function h : Rn → R, its epigraph is the set

epih := {(x, α) ∈ Rn × R | h(x) ≤ α},
while its domain is

dom h := {x ∈ Rn | h(x) <∞},
and for α ∈ R its α-level set is

lev≤α h := {x ∈ Rn | h(x) ≤ α}.

Function h is said to be lower semicontinuous (lsc) if epih is a closed set
in Rn+1 (h is also said to be closed); equivalently, h is lsc iff for all x̄ ∈ Rn it
holds that

h(x̄) ≤ lim inf
x→x̄

h(x).

All level sets of an lsc function are closed. We say that h is proper if dom h 6= ∅,
and that it is level bounded if for all α ∈ R the level set lev≤α h is a bounded
subset of Rn.

The indicator function of a set S ⊆ Rn is the function δS : Rn → R defined
as

δS(x) =
{

0 if x ∈ S,
∞ otherwise.

If S is nonempty and closed, then δS is proper and lsc.

h : Rn → R is said to be strictly continuous at x̄ ∈ dom h if

limsup
x,y→x̄
x 6=y

‖h(x)− h(y)‖
‖x− y‖

<∞.

Having h strictly continuous at every point of a set D ⊆ dom h is equivalent to
h being locally Lipschitz continuous on D [106, §9].
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1.2.4 Self-mappings

In this subsection we analyze single-valued mappings from Rn to itself. Given
µ > 0, a function G : Rn → Rn is said to be µ-cocoercive if

〈G(x)−G(y), x− y〉 ≥ µ‖G(x)−G(y)‖2 ∀x, y ∈ Rn, (1.1)
and µ-strongly monotone if

〈G(x)−G(y), x− y〉 ≥ µ‖x− y‖2 ∀x, y ∈ Rn. (1.2)

We say that G is monotone if (either of) the inequalities above hold with µ = 0.
Notice that the identity mapping id : Rn → Rn is an example of cocoercive and
strongly monotone mapping, and that, more generally, µ-cocoercivity implies
µ−1-Lipschitz continuity.

Lemma 1.1. Any L-Lipschitz continuous and µ-strongly monotone mapping
G : Rn → Rn is a Lipschitz homeomorphism; that is, other than being Lipschitz
continuous, it is also invertible and its inverse is Lipschitz continuous as well
(with modulus µ−1).

Proof. By upper bounding the inner product of (1.2) with the Cauchy-Schwartz
inequality we obtain

µ‖x− y‖2 ≤ ‖x− y‖‖G(x)−G(y)‖ ∀x, y ∈ Rn.

In particular, G is injective, and if it has an inverse that must be µ−1-Lipschitz
continuous. Moreover, since ψ(x) := G(x) − µx is monotone and continuous,
[106, Ex. 12.7 and Thm. 12.12] ensures that G(x) = ψ(x) +µx is also surjective,
hence the claim.

1.2.5 Set-valued mappings

We use the notation H : Rn ⇒ Rm to indicate a point-to-set function H : Rn →
P(Rm), where P(Rm) is the power set of Rm (the set of all subsets of Rm). The
graph of H is the set

gphH := {(x, y) ∈ Rn × Rm | y ∈ H(x)},
while its domain is

dom h := {x ∈ Rn | H(x) 6= ∅}.

We say that H is outer semicontinuous (osc) at x̄ ∈ domH if for any
ε > 0 there exists δ > 0 such that H(x) ⊆ H(x̄) + B(0; ε) for all x ∈ B(0; δ).
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In particular, this implies that whenever (xk)k∈N ⊆ domH converges to x and
(yk)k∈N converges to y with yk ∈ H(xk) for all k, it holds that y ∈ H(x). We
say that H is osc (without mention of a point) if H is osc at every point of its
domain or, equivalently, if gphH is a closed subset of Rn × Rm.

For notational simplicity, in case H(x) is a singleton we may sometimes treat it
as a point rather than a set, allowing notational abuses such as H(x) = y as
opposed to H(x) = {y}.

The projection onto a nonempty and closed set S ⊆ Rn will be meant in the set-
valued sense; namely, ΠS : Rn ⇒ Rn is defined by ΠS(x) = argminz∈S ‖z−x‖.
With dist(x, S) := infz∈Rn ‖z − x‖ we indicate the distance of x from S.

Given F : Rn ⇒ Rn, we say that a point x is fixed (for F ) if x ∈ F (x), while
x is a zero (of F ) if 0 ∈ F (x). The fixed set (i.e., the set of fixed points) and
the zero set (i.e., the set of zeros) of F are respectively denoted by

fixF := {x ∈ Rn | x ∈ F (x)},
and

zerF := {x ∈ Rn | 0 ∈ F (x)}.

1.2.6 Subdifferential

Given a proper and lsc function h : Rn → R, we denote by ∂̂h : Rn ⇒ Rn the
regular subdifferential of h, where

v ∈ ∂̂h(x̄) ⇔ lim inf
x→x̄
x 6= x̄

h(x)− h(x̄)− 〈v, x− x̄〉
‖x− x̄‖

≥ 0. (1.3)

The (limiting) subdifferential of h is ∂h : Rn ⇒ Rn, where v ∈ ∂h(x̄) iff
there exists a sequence (xk, vk)k∈N ⊆ gph ∂̂h such that

lim
k→∞

(xk, h(xk), vk) = (x, h(x), v).

The set of horizon subgradients of h at x is ∂∞h, defined as ∂h(x) except
that vk → v is meant in the “cosmic” sense, namely λkvk → v for some λk ↘ 0.

Finally, the Bouligand subdifferential of h at x is ∂Bh : Rn ⇒ Rn, where
v ∈ ∂Bh(x̄) iff there exists a sequence (xk)k∈N → x such that h is differentiable
at xk for all k’s and ∇h(xk)→ v as k →∞.

Lemma 1.2 ([106, Thm. 10.1]). Let h : Rn → R be proper and lsc. If x̄ is a
local minimizer for h, then 0 ∈ ∂̂h(x̄).
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Lemma 1.3 (Basic subdifferential rules). Let g, h : Rn → R be proper and lsc
functions. For all x̄ ∈ Rn the following hold:

(i) For any t > 0 one has ∂(th)(x̄) = t∂h(x̄) and ∂̂(th)(x̄) = t∂̂h(x̄).

(ii) h is strictly continuous at x̄ iff x̄ ∈ dom h and ∂∞h(x̄) = {0}.

(iii) If h is strictly continuous at x̄, then ∂(g + h)(x̄) ⊆ ∂g(x̄) + ∂h(x̄).

(iv) If h is strictly continuous at x̄ and ∂h(x̄) has at most one element, then
h is strictly differentiable at x̄.

(v) If h is differentiable at x̄, then ∂̂h(x) = {∇h(x̄)}.

(vi) If h is continuously differentiable around x̄, then

• ∂h(x̄) = ∂̂h(x̄) = {∇h(x̄)},
• ∂(g + h)(x̄) = ∂g(x̄) +∇h(x̄), and
• ∂̂(g + h)(x̄) = ∂̂g(x̄) +∇h(x̄).

Proof.

♠ 1.3(i). See [106, Eq. (10.6)].

♠ 1.3(ii). See [106, Thm. 9.13].

♠ 1.3(iii). See [106, Ex. 10.10].

♠ 1.3(iv). See [106, Thm. 9.18].

♠ 1.3(v) & 1.3(vi). See [106, Ex. 8.8].

1.2.7 (Hypo)convexity

A convex combination of two points x, y ∈ Rn is any point (1− t)x+ ty with
t ∈ [0, 1]. A set D ⊆ Rn is convex if whenever x, y ∈ D also any of their convex
combinations belongs to D. The convex hull of a set E ⊆ Rn, denoted as
convE, is the smallest convex set that contains E (the intersection of convex
sets is still convex). Specifically,

convE :=
{∑k

i=1 αixi | k ∈ N, xi ∈ E, αi ≥ 0,
∑k
i=1 αi = 1

}
.

A function h : Rn → R is convex if epi f is a convex set; equivalently, h is convex
if for any x, y ∈ Rn and t ∈ [0, 1] it holds that h((1−t)x+ty) ≤ (1−t)h(x)+th(y).
In particular, the domain of a convex function is a convex set.
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Given σ ∈ R, we say that a function h : Rn → R is σ-hypoconvex if h− σ
2 ‖ ·‖

2

is a convex function. Thus, convexity is equivalent to 0-hypoconvexity; if σ > 0,
then not only is h convex, but it is said to be strongly convex with modulus
σ > 0 (or σ-strongly convex). Any strongly convex function is level bounded
and has a unique minimizer.

Lemma 1.4. Let a function h : Rn → R and σ ∈ R be fixed. The following are
equivalent:

(a) h is σ-hypoconvex.

(b) h(y) ≥ h(x) + 〈vx, y − x〉+ σ
2 ‖x− y‖

2 for all x, y ∈ Rn and vx ∈ ∂h(x).

(c) 〈vx−vy, x−y〉 ≥ σ‖x−y‖2 for all x, y ∈ Rn, vx ∈ ∂h(x) and vy ∈ ∂h(y).

Proof. These are well-known facts when σ = 0, that is, for convex functions,
see e.g., [10, Thm. 20.25]. The other claims readily follow by applying the
equivalence to the convex function ψ(x) = h(x) − σ

2 ‖x‖
2, in light of the fact

that ∂ψ(x) = ∂h(x)− σx, as it follows from Lem. 1.3(vi).

1.2.8 Smoothness

The class of functions h : Rn → R that are k times continuously differentiable is
denoted as Ck(Rn); the subset of those with locally Lispchitz k-th derivative is
denoted as Ck+(Rn). We write h ∈ C1,1(Rn) to indicate that h ∈ C1(Rn) and
that ∇h is (globally) Lipschitz continuous with modulus Lh. To simplify the
terminology, we will say that such an h is Lh-smooth.

Definition 1.5. We say that R : Rn → Rn is

(i) strictly differentiable at x̄ if the Jacobian matrix JR(x̄) :=(
∂Ri
∂xj

(x̄)
)
i,j

exists and

lim
y,z→x̄
y 6=z

‖Ry −Rx− JR(x̄)(y − x)‖
‖y − x‖

= 0; (1.4)

(ii) semidifferentiable at x̄ if there exists a continuous and positively
homogeneous function DR(x̄) : Rn → Rn,2 called the semiderivative of
R at x̄, such that

Rx = Rx̄+DR(x̄)[x− x̄] + o(‖x− x̄‖);
2That is, such that R(tx) = tR(x) for all x ∈ Rn and t > 0.
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(iii) calmly semidifferentiable at x̄ if there exists a neighborhood Ux̄ of
x̄ in which R is semidifferentiable and such that for all w ∈ Rn with
‖w‖ = 1 the function Ux̄ 3 x 7→ DR(x)[w] is Lipschitz continuous at x̄.

Due to an ambiguity in the literature, strict differentiability is sometimes re-
ferred to as strong differentiability [59, 90]. We choose to stick the proposed
terminology, following [106]. Semidifferentiability is clearly a milder property
than differentiability in that the mapping DR(x̄) needs not be linear. More
precisely, as long as R is strictly continuous, then semidifferentiability is equiva-
lent to directional differentiability [44, Prop. 3.1.3] and the semiderivative is
sometimes called B-derivative [59, 44]. The three concepts in Definition 1.5 are
related as (iii) ⇒ (i) ⇒ (ii) [90, Thm. 2] and neither requires the existence
of the (classical) Jacobian around x̄. Recall that a function h : Rn → R is di-
rectionally differentiable at x ∈ dom h if for every d ∈ Rn the (possibly
infinite) limit

h′(x; d) := lim
τ→0+

h(x+ τd)− h(x)
τ

exists. The quantity h′(x; d) is the directional derivative of h at x along
direction d. The following result provides characterization of smoothness under
convexity.

Theorem 1.6. Let ψ ∈ C1(Rn) be a convex function. The following are equiv-
alent:

(a) ψ is Lψ-smooth.

(b) 1
Lψ
‖∇ψ(x)−∇ψ(y)‖2 ≤ 〈∇ψ(x)−∇ψ(y), x− y〉 for all x, y ∈ Rn.

(c) 0 ≤ 〈∇ψ(x)−∇ψ(y), x− y〉 ≤ Lψ‖x− y‖2 for all x, y ∈ Rn.

(d) ψ(y) ≥ ψ(x) + 〈∇ψ(x), y− x〉+ 1
2Lψ ‖∇ψ(y)−∇ψ(x)‖2 for all x, y ∈ Rn.

Proof. See [84, Thm. 2.1.5].

Lemma 1.7. Let h ∈ C1(Rn) and σ ∈ R be fixed. The following are equivalent:

(a) h is σ-hypoconvex.

(b) h(y) ≥ h(x) + 〈∇h(x), y − x〉+ σ
2 ‖x− y‖

2 for all x, y ∈ Rn.

(c) 〈∇h(x)−∇h(y), y − x〉 ≥ σ‖x− y‖2 for all x, y ∈ Rn.

Proof. Direct consequence of Lem. 1.4, in light of the fact that ∂h = ∇h, cf.
Lem. 1.3(vi).



14 INTRODUCTION

Hypoconvexity of smooth functions

If h ∈ C1,1(Rn) is Lh-smooth, then so is −h, and from Lemma 1.7 we then infer
that h is (−Lh)-hypoconvex. In fact, while hypoconvexity of h amounts to the
existence of a quadratic lower bound for h at any point, similarly, smoothness
entails the existence of a quadratic upper bound. In general, however, a smooth
function could be σ-hypoconvex for some σ not necessarily equal to, but at least
larger or equal than −Lf . Of course, the upper bound in (1.5) forces σ ≤ Lf .
This leads to the following result.

Theorem 1.8. Any function h ∈ C1,1(Rn) is σh-hypoconvex for some σh ∈
[−Lh, Lh]. In fact, for any h ∈ C1(Rn) the following properties are equivalent:

(a) h is Lh-smooth and σh-hypoconvex.

(b) σh ≥ −Lh and for all x, y ∈ Rn

σh
2 ‖x− y‖

2 ≤ h(y)−
[
h(x) + 〈∇h(x), y − x〉

]
≤ Lh

2 ‖y − x‖
2. (1.5)

(c) σh ≥ −Lh and for all x, y ∈ Rn

(Lh + σh)〈∇h(x)−∇h(y), x− y〉 ≥ σhLh‖x− y‖2 + ‖∇h(x)−∇h(y)‖2.

(d) σh ≥ −Lh and for all x, y ∈ Rn

σh‖x− y‖2 ≤ 〈∇h(x)−∇h(y), x− y〉 ≤ Lh‖x− y‖2. (1.6)

Clearly, all the claims remain valid if σh is replaced by any σ ∈ [−Lh, σh]; in
particular, one can always consider σh = −Lh.3

Proof. That h is (−Lh)-hypoconvex has already been discussed.

♠ 1.8(a) ⇒ 1.8(b). Follows from Lem. 1.7 and [21, Prop. A.24].

♠ 1.8(b)⇒ 1.8(c). The claim is trivial if σh = Lh, for this corresponds to having
h = Lh

2 ‖ · ‖
2. Otherwise, the lower bound in (1.5) implies σh-hypoconvexity

of h, as it follows from Lem. 1.7. The upper bound, instead, ensures that the
function ψ(x) = Lh

2 ‖x‖
2 − h(x) satisfies

ψ(y) ≥ ψ(x) + 〈∇ψ(x), y − x〉 ∀x, y ∈ Rn.
3If σh ≥ −Lh and Lh ≥ 0 are not imposed, then the smoothness modulus Lh in Thm.

1.8(a) has to be replaced by max {|Lh|, |σh|}.
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Therefore, ψ is convex, as it follows from Lem. 1.7(b). We have

0 ≤ 〈∇ψ(x)−∇ψ(y), x− y〉

= Lh‖x− y‖2 − 〈∇h(x)−∇h(y), x− y〉 (1.7)

≤ (Lh − σh)‖x− y‖2,

where the first inequality follows from Thm. 1.6(c). From Thm. 1.6 we then
conclude that ψ is (convex and) Lψ-smooth, with Lψ = Lh − σh, hence that we
may replace 0 in the first term of the chain of inequalities with 1

Lψ
‖∇ψ(x)−

∇ψ(y)‖2. Inequality (1.7) then becomes

1
Lh−σh ‖∇ψ(x)−∇ψ(y)‖2 ≤ Lh‖x− y‖2 − 〈∇h(x)−∇h(y), x− y〉.

Multiplying by the strictly positive constant Lh − σh yields

Lh(Lh − σh)‖x− y‖2 − (Lh − σh)〈∇h(x)−∇h(y), x− y〉

≥ ‖∇ψ(x)−∇ψ(y)‖2

= L2
h‖x− y‖2 + ‖∇h(x)−∇h(y)‖2 − 2Lh〈∇h(x)−∇h(y), x− y〉.

By suitably rearranging, the sought inequality follows.

♠ 1.8(c) ⇒ 1.8(d). Expressing the inequality in terms of ψ := h− σ
2 ‖ · ‖

2, we
have

‖∇ψ(x)−∇ψ(y)‖2 + σ2
h‖x− y‖2 + 2σh〈∇ψ(x)−∇ψ(y), x− y〉

≤ (Lh + σh)〈∇ψ(x)−∇ψ(y), x− y〉+ (Lh + σh)σh‖x− y‖2 − σhLh‖x− y‖2

= (Lh + σh)〈∇ψ(x)−∇ψ(y), x− y〉+ σ2
h‖x− y‖2,

hence
(Lh − σh)〈∇ψ(x)−∇ψ(y), x− y〉 ≥ ‖∇ψ(x)−∇ψ(y)‖2.

This shows that ∇ψ is 1
Lh−σh -cocoercive, hence that ψ is convex and (Lh − σh)-

smooth in light of Thm. 1.6(b). We then have

σh‖x− y‖2 ≤ σh‖x− y‖2 + 〈∇ψ(x)−∇ψ(y), x− y〉 ≤ Lh‖x− y‖2,

where the inequalities is due to Thm. 1.6(c). The claim then follows from the
fact that σh‖x− y‖2 + 〈∇ψ(x)−∇ψ(y), x− y〉 = 〈∇h(x)−∇h(y), x− y〉.

♠ 1.8(d) ⇒ 1.8(a). σh-hypoconvexity follows from Lem. 1.7. The upper bound



16 INTRODUCTION

in (1.6) implies that the function ψ(x) = Lh
2 ‖x‖

2 − h(x) is convex. We may
now trace the proof of the implication ‘1.8(b) ⇒ 1.8(c)’ to infer that ψ is
(Lh − σh)-smooth, hence that h is Lh-smooth.

Lemma 1.9 (Subdifferential characterization of smoothness). Let h : Rn → R
be such that ∂h(x) 6= ∅ for all x ∈ Rn, and suppose that there exist L ≥ 0 and
σ ∈ [−L,L] such that

σ‖x1 − x2‖2 ≤ 〈v1 − v2, x1 − x2〉 ≤ L‖x1 − x2‖2 (1.8)

holds for all xi ∈ Rn, vi ∈ ∂h(xi), i = 1, 2. Then, h ∈ C1,1(Rn) is L-smooth
and σ-hypoconvex.

Proof. The claimed hypoconvexity follows from [106, Ex. 12.28]. It suffices to
show that h is continuously differentiable, so that ∂h = ∇h and the claim then
follows from Thm. 1.8(d). To this end, without loss of generality we may assume
that σ ≥ 0, since h is continuously differentiable iff so is h− σ

2 ‖ · ‖
2. Thus, for

all xi ∈ Rn, vi ∈ ∂h(xi), i = 1, 2, one has

h(x1) ≥ h(x2) + 〈v2, x1 − x2〉

= h(x2) + 〈v2 − v1, x1 − x2〉+ 〈v1, x1 − x2〉

≥ h(x2)− L‖x1 − x2‖2 + 〈v1, x1 − x2〉,

where the first inequality follows from convexity of h (it is 0-hypoconvex by
assumption). Rearranging,

h(x2) ≤ h(x1) + 〈v1, x2 − x1〉+L‖x1 − x2‖2 ∀xi ∈ Rn, v1 ∈ ∂h(x1), i = 1, 2.

Let h̃ := h − 〈v1, · 〉, so that 0 ∈ ∂h(x1). Due to convexity, x1 ∈ argmin h̃,
hence for all w ∈ Rn and v′1 ∈ ∂h(x1) one has

h̃(x1) ≤ h̃(w) ≤ h(x1) + 〈v′1, w − x1〉+ L‖w − x1‖2 − 〈v, w〉

= h̃(x1) + 〈v′1 − v1, w − x1〉+ L‖w − x1‖2.

By selecting w = x1− 1
2L (v′1−v1), one obtains ‖v1−v′1‖2 ≤ 0, hence necessarily

v1 = v′1. From the arbitrarity of x1 ∈ Rn and v1, v
′
1 ∈ ∂h(x1) it follows that

∂h is everywhere single valued, and the sought continuous differentiability of h
then follows from [106, Cor. 9.19].
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Theorem 1.10 (Lower bounds for smooth functions). Let h ∈ C1,1(Rn) be
Lh-smooth and σh-hypoconvex. Then, for all x, y ∈ Rn it holds that

h(y) ≥ h(x) + 〈∇h(x), y − x〉+ ρ(y, x),

where

(i) ρ(y, x) = σh
2 ‖y − x‖

2.

If −Lh < σh ≤ 0, then one also has

(ii) ρ(y, x) = σhLh
2(Lh+σh)‖y − x‖

2 + 1
2(Lh+σh)‖∇h(y)−∇h(x)‖2.

Clearly, all inequalities remain valid if one replaces σh and Lh with σ and L,
respectively, as long as L ≥ Lh and −L ≤ σ ≤ σh.

Proof.

♠ 1.10(i). Already shown in Thm. 1.8(b).

♠ 1.10(ii). Function ψ := h−σ2 ‖·‖
2 is Lψ-smooth and convex, with Lψ = Lh−σh.

By expressing the inequality in Thm. 1.6(d) with respect to h, one obtains

h(y) ≥ h(x) + 〈∇h(x), y − x〉+ σhLh
2(Lh−σh)‖y − x‖

2

+ 1
2(Lh−σh)‖∇h(y)−∇h(x)‖2 − σh

Lh−σh 〈∇h(y)−∇h(x), y − x〉.

Since σh ≤ 0, then the coefficient of the scalar product in the second line is
positive, and we can further lower bound it by means of the inequality in Thm.
1.8(c); the claimed inequality follows after easy algebraic manipulations.

We remark that in Theorem 1.10(ii) one could also use the same reasoning to
obtain bounds in the strongly convex case, e.g., by exploiting the inequality in
[84, Thm. 2.1.10], namely

〈∇h(y)−∇h(x), y − x〉 ≤ 1
µh
‖∇h(y)−∇h(x)‖2

and holding for any µh-strongly convex and smooth function h. However, one
can easily verify that this choice results in a bound looser than the ones already
provided in Theorems 1.10(i) and 1.6(d), which is why only the nonstrongly
convex case was investigated.
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1.2.9 Proximal map and Moreau envelope

Definition 1.11 (Proximal mapping). The proximal mapping of h : Rn → R
with parameter γ > 0 is the set-valued map proxγh : Rn ⇒ dom h defined as

proxγh(x) := argmin
w∈Rn

{
h(w) + 1

2γ ‖w − x‖
2
}
. (1.9)

We say that a function h is prox-bounded if h+ 1
2γ ‖ · ‖

2 is lower bounded for
some γ > 0. The supremum of all such γ — which is possibly infinite, as it is the
case when h is lower bounded or convex — is the threshold of prox-boundedness
of h, denoted as γh. The value function of the minimization problem defining
the proximal mapping is the Moreau envelope with parameter γ, denoted
hγ : Rn → R, namely

hγ(x) := inf
w∈Rn

{
h(w) + 1

2γ ‖w − x‖
2
}
. (1.10)

Some basic properties of proxγh and hγ are collected in the following result.

Proposition 1.12. Let h : Rn → R be proper, lsc and prox-bounded. Then, for
every γ ∈ (0, γh) the following hold:

(i) proxγh is osc, locally bounded, and nonempty- and compact-valued.

(ii) hγ : R→ R is real valued and strictly continuous.

(iii) For all x ∈ Rn, ∂̂hγ(x) = {∇hγ(x)} if hγ is differentiable at x, and is
empty otherwise.

(iv) ∂hγ(x) = ∂Bh
γ(x) ⊆ 1

γ (x− proxγh(x)) for all x ∈ Rn.

(v) hγ is differentiable at x iff proxγh(x) = {x̄} is a singleton, in which case
∇hγ(x) = 1

γ (x− x̄) and, in fact, hγ is strictly differentiable at x.

(vi) 1
γ (x− x̄) ∈ ∂̂h(x̄) for all x ∈ Rn and x̄ ∈ proxγh(x).

Proof.

♠ 1.12(i). See [106, Thm. 1.25].

♠ 1.12(ii). See [106, Thm. 10.32].

♠ 1.12(iii). Follows from [106, Cor. 9.21 and Thm. 10.32].

♠ 1.12(iv). Follows from 1.12(iii) and the definition of Bouligand subdifferential.
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♠ 1.12(v). hγ is differentiable at x iff so is −hγ , in which case

{−∇hγ(x)} = ∂(−hγ(x)) = − 1
γ

(
x− conv proxγh(x)

)
,

where the equalities follow from [106, Thm. 9.18 and Ex. 10.32]; the same
references ensure also that hγ is in fact strictly differentiable at x in this case.
The equations above holds iff proxγh is a singleton, and the claimed formula
for ∇hγ(x) then also follows.

♠ 1.12(vi). Since x̄ minimizes ψ(w) = h(w) + 1
2γ ‖w − x‖2, the necessary

optimality conditions (cf. Lem. 1.2) read 0 ∈ ∂̂ψ(x̄) = ∂̂h(x̄) + 1
γ (x̄− x), where

the equality follows from Lem. 1.3(vi).

Lemma 1.13. Let h : Rn → R be γh-prox-bounded. Then, for every σ ∈ R
the function h̃ := h + σ

2 ‖ · ‖
2 is prox-bounded with threshold γh̃ ≥

1
γ−1
h

+[σ]−
.

Moreover, for all γ ∈
(
0,min {γh̃, 1/[σ]−}

)
proxγh̃(x) = prox γ

1+γσh

( 1
1+γσx

)
and

h̃γ(x) = h
γ

1+γσ
( 1

1+γσx
)

+ σ
2(1+γσ)‖x‖

2.

Proof. For γ > 0 and x,w ∈ Rn, we have

h̃(w) + 1
2γ ‖w − x‖

2 = h(w) + σ
2 ‖w‖

2 + 1
2γ ‖w − x‖

2

= h(w) + 1
2
(
σ + 1

γ

)
‖w‖2 − 1

γ 〈w, x〉+ 1
2γ ‖x‖

2

= h(w) + 1
2 γ

1+γσ

∥∥w − 1
1+γσx

∥∥2 + σ
2(1+γσ)‖x‖

2.

If γ is in bounded as in the statement, then the coefficient of the quadratic term
in w is strictly positive and strictly larger than 1

2γh . By taking the minimizers
and minimum with respect to w we obtain the claimed expressions of proxγh̃
and h̃γ .

Regularity properties

Theorem 1.14 (Proximal properties of hypoconvex functions). Suppose that
h : Rn → R is σ-hypoconvex. Then, h is prox-bounded with γh ≥ 1/[σ]−. Moreover,
for all γ ∈ (0, 1/[σ]−) the following hold:
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(i) proxγh is single valued and satisfies proxγh = (id + γ∂h)−1; that is, for
any x ∈ Rn, proxγh(x) is the only point u ∈ Rn such that x ∈ u+γ∂h(u).

(ii) proxγh is 1
1+γσ -Lipschitz continuous and (1 + γσ)-cocoercive, and for

xi ∈ Rn with ui := proxγh(xi), i = 1, 2, one has

(1 + γσ)‖u1 − u2‖2 ≤ 〈u1 − u2, x1 − x2〉 ≤ 1
1+γσ‖x1 − x2‖2. (1.11)

(iii) The Moreau envelope hγ is differentiable with ∇hγ(x) = 1
γ (x−proxγh(x));

in fact, it is Lhγ -smooth and σhγ -hypoconvex, with Lhγ = max
{

1
γ ,

|σ|
1+γσ

}
and σhγ = σ

1+γσ .

(iv) If h is twice differentiable at u := proxγh(x), then

• proxγh is differentiable at x with J proxγh(x) =
[
I + γ∇2h(u)

]−1, and

• hγ is twice differentiable at x with ∇2hγ(x) = 1
γ

[
I− J proxγh(x)

]
.

Proof. If σ ≥ 0 then h is convex and thus prox-bounded with threshold γh =
∞ = 1/[σ]−. Otherwise, for any r > −σ = −[σ]− we have that

h(x) + r
2‖x‖

2 = h(x)− σ
2 ‖x‖

2

convex

+ r+σ
2
>0

‖x‖2

is strongly convex, hence lower bounded. By considering γ = 1/r it readily
follows that γh ≥ 1/[σ]−.

Let now γ ∈ (0, 1/[σ]−) be fixed.

♠ 1.14(i). Fix x ∈ Rn and consider the function ψ(w) = 1
2‖w − x‖

2 + γh(w).
Observe that ψ is (1 + γσ)-strongly convex (with 1 + γσ > 0); by definition of
proxγh we have

u ∈ proxγh(x) ⇔ u ∈ argminψ ⇔ 0 ∈ ∂̂ψ(u) = γ∂̂h(u) + u− x,

where the second implication follows from Lem. 1.2 and the last one from Lem.s
1.3(i) and 1.3(vi).

♠ 1.14(ii). Let x1, x2 ∈ Rn be fixed, and consider ui := proxγh(xi), i = 1, 2. If
u1 = u2 there is nothing to show, thus let us suppose that u1 6= u2. Then, due
to 1.14(i), vi := 1

γ (xi − ui) ∈ ∂̂h(ui), i = 1, 2. We have

‖u1 − u2‖‖x1 − x2‖ ≥ 〈u1 − u2, x1 − x2〉
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= ‖u1 − u2‖2 + γ〈v1 − v2, u1 − u2〉

≥ (1 + γσ)‖u1 − u2‖2,

where the last inequality follows from Lem. 1.4(c). This shows the first inequality
in (1.11), as well as the claimed Lipschitz continuity by simply dividing by
‖u1 − u2‖. In turn, the second inequality in (1.11) follows by using Lipschitz
continuity on the term ‖u1 − u2‖.

♠ 1.14(iii). From Prop. 1.12 it follows that hγ is a strictly continuous function on
Rn with ∂hγ(x) ⊆ {(x−u)/γ}, where u := proxγh(x). By invoking Lem. 1.3(iv) we
conclude that hγ is everywhere differentiable with ∇hγ(x) = 1

γ (x− proxγh(x)).
Let x1, x2 ∈ Rn be fixed, and consider ui := proxγh(xi), i = 1, 2. Then,

〈∇hγ(x1)−∇hγ(x2), x1 − x2〉 = 1
γ ‖x1 − x2‖2 − 1

γ 〈u1 − u2, x1 − x2〉

(1.11)
≥ σ

1+γσ‖x1 − x2‖2,

proving the claimed hypoconvexity, as it follows from Lem. 1.7. From (1.11) it
also follows that the scalar product in the first line of the inequality above is
positive, hence

〈∇hγ(x1)−∇hγ(x2), x1 − x2〉 ≤ 1
γ ‖x1 − x2‖2.

From Thm. 1.8 we infer that ∇hγ is Lipschitz continuous with modulus Lhγ =
max

{
1
γ ,

|σ|
1+γσ

}
as claimed.

♠ 1.14(iv). Since ∇hγ = 1
γ (id− proxγh), it suffices to prove the claim for hγ .

For convex h, the assert is shown in [67, Thm. 3.1]. If h is σ-hypoconvex with
σ < 0, then h̃ = f − σ

2 ‖ · ‖
2 is convex and satisfies

hγ(x) = h̃
γ

1+γσ
( 1

1+γσx
)

+ σ
2(1+γσ)‖x‖

2,

see Lem. 1.13. By using the chain rule of differentiation and rearranging with
simple algebra the claimed expression follows.

Theorem 1.15 (Proximal properties of smooth functions). Suppose that h ∈
C1,1(Rn) is Lh-smooth and σh-hypoconvex. Then, additionally to all the claims
of Thm. 1.14, for all γ ∈ (0, 1/[σh]−) the following also hold:

(i) The point u = proxγh(s) is the only one such that u+ γ∇h(u) = s.
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(ii) proxγh is 1
1+γLh -strongly monotone: for xi ∈ Rn with ui := proxγh(xi),

i = 1, 2, one has

1
1+γLh ‖x1 − x2‖2 ≤ 〈u1 − u2, x1 − x2〉. (1.12)

(iii) The Moreau envelope hγ is Lhγ -smooth with Lhγ = max
{

Lh
1+γLh ,

|σh|
1+γσh

}
.

Proof. 1.15(i) directly follows from Thm. 1.14(i), since ∂h = ∇h. Now, let xi, ui,
i = 1, 2, as in the statement be fixed.

♠ 1.15(ii). Define ψ(x) := γh(x) + 1
2‖x‖

2 and observe that ψ is Lψ-smooth and
σψ-strongly convex, with Lψ = 1 + γLh and σψ = 1 + γσh. It follows from Thm.
1.14(i) that xi = ∇ψ(ui), i = 1, 2. Cocoercivity of ∇ψ, see Thm. 1.6(b), then
implies

〈u1 − u2, x1 − x2〉 = 〈u1 − u2,∇ψ(u1)−∇ψ(u2)〉

≥ 1
1+γLh ‖∇ψ(u1)−∇ψ(u2)‖2,

= 1
1+γLh ‖x1 − x2‖2,

hence the claimed strong monotonicity.

♠ 1.15(iii). From Thm. 1.14(iii) we have that ∇hγ(xi) = 1
γ (xi − ui), hence

σh
1+γσh ‖x1 − x2‖2 ≤ 〈∇hγ(x1)−∇hγ(x2), x1 − x2〉

= 1
γ ‖x1 − x2‖2 − 1

γ 〈u1 − u2, x1 − x2〉

= 1
γ

(
1− 1

1+γLh

)
‖x1 − x2‖2 = Lh

1+γLh ‖x1 − x2‖2,

where the first inequality follows from hypoconvexity of hγ , see Thm. 1.14(iii),
and the second one from the proven strong monotonicity of proxγh.

1.2.10 Image function

The notion of image function, also known as infimal post-composition or epi-
composition [8, 10, 106] will play an important role in Chapter 7.
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Definition 1.16 (Image function). Given h : Rn → R and a linear operator
C ∈ Rm×n, the image function (Ch) : Rm → [−∞,+∞] is defined as

(Ch)(s) := inf
w∈Rn

{h(w) | Cw = s}.

Proposition 1.17. Let h : Rn → R be proper and lsc, and C ∈ Rp×n. Suppose
that for some β > 0 the set-valued mapping Xβ : Rp ⇒ Rn, defined by

Xβ(s) := argmin
x∈Rn

{
h(x) + β

2 ‖Cx− s‖
2
}
, (1.13)

is nonempty for all s ∈ Rp. Then,

(i) The image function (Ch) is proper.

(ii) (Ch)(Cxβ) = h(xβ) for all s ∈ Rp and xβ ∈ Xβ(s).

(iii) prox(Ch)/β ⊇ CXβ.

Proof.

♠ 1.17(i). If s̄ /∈ C dom h, then (Ch)(s̄) =∞. Otherwise, suppose s̄ = Cx̄ for
some x̄ ∈ dom h. Then,

−∞ < min
x

{
h(x) + β

2 ‖Cx− s̄‖
2
}
≤ inf
x:Cx=s̄

{
h(x) + β

2 ‖Cx− s̄‖
2
}

(def)= (Ch)(s̄),

which is upper bounded by the finite quantity h(x̄).

♠ 1.17(ii). Since C(xβ + v) = Cxβ iff v ∈ kerC, for all s ∈ Rp and xβ ∈ Xβ(s)
necessarily h(xβ) ≤ h(xβ + v). Consequently,

(Ch)(Cxβ) ≤ h(xβ) ≤ inf
v∈kerC

h(xβ + v) = inf
x:Cx=Cxβ

h(x) = (Ch)(Cxβ).

♠ 1.17(iii). Fix s̄ ∈ Rp, and let xβ ∈ Xβ(s̄). Then, from 1.17(ii) and the
optimality of xβ we have

(Ch)(Cxβ) + β
2 ‖Cxβ − s̄‖

2 = h(xβ) + β
2 ‖Cxβ − s̄‖

2 ≤ h(x) + β
2 ‖Cx− s̄‖

2

for all x ∈ Rn. In particular, this holds for all s ∈ Rp and x such that Cx = s,
hence

(Ch)(Cxβ)+ β
2 ‖Cxβ−s̄‖

2 ≤ inf
x:Cx=s

{
h(x) + β

2 ‖Cx− s̄‖
2
}

= (Ch)(s)+ β
2 ‖s−s̄‖

2

proving Cxβ ∈ prox(Ch)/β(s̄).
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Proposition 1.18. For an lsc function h : Rn → R and C ∈ Rp×n, let
X : Rp ⇒ Rn be defined as

X(s) := argmin
x∈Rn

{h(x) | Cx = s}. (1.14)

Then, for all s̄ ∈ C dom h and x̄ ∈ X(s̄) it holds that

C>∂̂(Ch)(s̄) ⊆ ∂̂h(x̄).

Proof. Let v̄ ∈ ∂̂(Ch)(Cx̄). Then,

lim inf
x→x̄
x 6= x̄

h(x)− h(x̄)− 〈C>̄v, x− x̄〉
‖x− x̄‖

= lim inf
x→x̄
x 6= x̄

h(x)− (Ch)(Cx̄)− 〈v̄, C(x− x̄)〉
‖x− x̄‖

≥ lim inf
x→x̄
x 6= x̄

(Ch)(Cx)− (Ch)(Cx̄)− 〈v̄, C(x− x̄)〉
‖x− x̄‖

= lim inf
x→x̄
x 6= x̄

(Ch)(Cx)− (Ch)(Cx̄)− 〈v̄, C(x− x̄)〉
‖C(x− x̄)‖

‖C(x− x̄)‖
‖x− x̄‖

≥ 0,

where in the last inequality we used the fact that v̄ ∈ ∂̂(Ch)(Cx̄).

Proposition 1.19 (Strong convexity of the image function). Suppose that
h : Rn → R is proper, lsc, and σh-strongly convex. Then, for every C ∈ Rp×n
the image function (Ch) is σ(Ch)-strongly convex with σ(Ch) = σh/‖C‖2.

Proof. Plain convexity of (Ch) is shown in [10, Prop. 12.36(ii)]. Since h is
strongly convex, for every s ∈ C dom h = dom(Ch) there exists a unique
xs ∈ Rn such that Cxs = s and (Ch)(s) = h(xs). Let vs ∈ ∂(Ch)(s). Then, it
follows from Prop. 1.18 that C>vs ∈ ∂h(xs), hence, for all s′ ∈ dom(Ch)

h(xs′) ≥ h(xs) + 〈C>vs, xs′ − xs〉+ σh
2 ‖xs′ − xs‖

2

≥ h(xs) + 〈vs, s′ − s〉+ σh
2‖C‖2 ‖s

′ − s‖2,
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where in the second inequality the identities Cxs′ = s′ and Cxs = s were used.
Since h(xs) = (Ch)(s) and h(xs′) = (Ch)(s′), from the arbitrarity of s, s′, and
vs, the claimed strong convexity follows.

In order to proceed to the next result, we first need to introduce the following
important notion for parametric minimization.
Definition 1.20 (Locally uniform level boundedness [106, Def. 1.16]). We say
that a function M : Rm × Rn → R with values M(w, x) is level bounded in
w locally uniformly in x if for all α ∈ R and x̄ ∈ Rn there exists ε > 0
such that the set

{(w, x) ∈ Rm × Rn |M(w, x) ≤ α, ‖x− x̄‖ ≤ ε}

is bounded.
Theorem 1.21. Let h : Rn → R be lsc and C ∈ Rp×n. Suppose that for some
β > 0 the function h+ β

2 ‖C · − s‖
2 is level bounded for all s ∈ Rp. Then, the

following hold:

(i) (Ch) is proper and lsc.

(ii) For all s ∈ C dom h the set of minimizers X(s) as in (1.14) is nonempty;
moreover, X is locally bounded, and it is osc with respect to (Ch)-attentive
convergence: for all s̄ ∈ C dom h

limsup
k→∞

X(sk) ⊆ X(s̄)

whenever
(
sk, (Ch)(sk)

)
→
(
s̄, (Ch)(s̄)

)
as k →∞.

(iii) For all s̄ ∈ C dom h and x̄ ∈ X(s̄) one has

C>∂(Ch)(s̄) ⊆
⋃

x̄∈X(s̄)

∂h(x̄).

Proof. The level boundedness condition ensures thatH(x, s) := h(x)+δ{0}(Cx−
s) is level bounded in x, locally uniformly in s, cf. Def. 1.20. The first two claims
then follow from [106, Thm. 1.32].

Let v̄ ∈ ∂(Ch)(s̄) be fixed. Then, there exits a sequence (sk, vk)k∈N ⊆ gph ∂̂h
such that

(
sk, (Ch)(sk), vk

)
→
(
s̄, (Ch)(s̄), v̄

)
as k → ∞. For each k ∈ N let

xk ∈ X(sk); then, (xk)k∈N is bounded and all its accumulation points belong
to X(s̄); thus, up to possibly extracting, xk → x̄ for some x̄ ∈ X(s̄) as k →∞.
Then,

C>̄v = lim
k→∞

C>vk
1.18
∈ limsup

k→∞
∂̂h(xk) ⊆ ∂h(x̄),
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where the last inclusion follows from the definition of ∂h and the fact that

h(xk) = (Ch)(sk)→ (Ch)(s̄) = h(x̄).

The claimed inclusion then follows from the arbitrarity of v̄ ∈ ∂(Ch)(s̄).

Lemma 1.22. Let h : Rn → R be convex and C ∈ Rp×n be surjective. Then,
(Ch) is convex, and as long as the set of minimizers X(s̄) is nonempty (see
(1.14)), it holds that

∂(Ch)(s̄) =
{
y | A>y ∈ ∂h(x̄)

}
,

where x̄ is any element of X(s̄). In particular, if h is differentiable at some
point in X(s̄), then (Ch) is differentiable at s̄.

Proof. See [57, Thm. D.4.5.1 and Cor. D.4.5.2].



Chapter 2

A general framework for the analysis of
nonconvex splitting algorithms

2.1 Analysis of fixed-point iterations
A Lyapunov stability approach

One of the most appealing properties of splitting algorithms is their twofold
simplicity. First, in most applications their main building blocks amount to
relatively cheap algebraic operations; secondly, they are inherently modular, as
the same operations are repeated in a recursive fashion through a time-invariant
black box. As a result, a splitting algorithm can be efficiently implemented with
few lines of code. There is also an important theoretical advantage enabled by
such a recursive nature, as the analysis of different algorithms, to a certain extent,
can be reduced to that of the common underlying framework of fixed-point
iterations.

As a prelude to the thesis, in this section we bring the investigated algorithms
down to the essential, in the attempt to detect the minimal requirements needed
for the development of a sensible theory. To this end, we start by considering
fixed-point iterations of the form

s0 ∈ Rn, sk+1 ∈ F(sk), k = 0, 1, . . . (FP)

where the set-valued fixed-point mapping F complies with the following require-
ment.

Assumption 2.I. F : Rn ⇒ Rn is osc and nonempty valued (i.e., with full
domain).

27
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In the next sections we will then specialize this framework to cases in which
the fixed-point mapping has a particular structure, yet is still general enough
to cover a vast range of splitting algorithms for nonconvex optimization. We
begin with an asymptotic analysis of (FP).

Proposition 2.1. Suppose that the sequence (sk)k∈N generated by (FP) satisfies
‖sk − sk+1‖ → 0 as k →∞. Then, all its accumulation points are fixed points
of F .

Proof. For an arbitrary accumulation point s̄, consider a strictly increasing
sequence (kj)j∈N ⊆ N such that skj → s̄ as j → ∞. Since ‖skj+1 − skj‖ → 0,
the shifted sequence (skj+1)j∈N also converges to s̄. Thus,

s̄ = lim
j→∞

skj+1 ∈ limsup
j→∞

F(skj ) ⊆ F(s̄),

where the last inclusion is due to outer semicontinuity of F .

Having the fixed-point residual sk − sk+1 vanishing is a necessary requirement
for ensuring that all accumulation points are fixed. To see this, consider the
mapping

F(s) =

{−1} if s > 0,
{0,±1} if s = 0,
{1} otherwise,

(2.1)

defined on R. It can be easily verified that F is osc and that 0 is the unique fixed
point. However, starting from s0 6= 0, the fixed-point iteration sequence will
be sk = sgn(s0)(−1)k, hence with ±1 as accumulation points, none of which
belongs to fixF .

Having ‖sk−sk+1‖ → 0 as k →∞ plays a fundamental role from an algorithmic
perspective; for instance, termination criteria based on (the norm of) the fixed-
point residual can be imposed, which will be satisfied in a finite number of
iterations. However, Proposition 2.1 only investigates the consequences of having
the residual vanishing, but it gives no hint as to how such condition can be
guaranteed. As the example (2.1) demonstrates, Assumption 2.I alone is not
enough for this purpose, and the challenge then turns to providing sufficient
properties broad enough to cover the widest possible range of fixed-point
iterations. As it will be better detailed in Chapter 8, one such condition involves
Lipschitzian properties of F , such as contractiveness or averagedness, which turn
out to be general enough to cover algorithms stemming from monotone operator
theory. A key property of such iterations is the so-called Fejér monotonicity,
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which entails the existence of a constant c > 0 such that

dist(F(s),fixF)2 ≤ dist(s,fixF)2 − c
2‖s−F(s)‖2.1 (2.2)

From a dynamical system perspective, the square distance (from the fixed set)
acts as a “potential function” that stabilizes the dynamical system sk+1 = F(sk).
Due to the lower boundedness of the distance function, one can telescope the
inequality above for the fixed-point iterations sk+1 = F(sk) to infer that
(‖sk − sk+1‖2)k∈N is summable, hence in particular that ‖sk − sk+1‖ → 0 as
k →∞.

Although such a requirement is still too restrictive to encompass the set-valued
operators of nonconvex splitting algorithms, the dynamical system interpretation
of (2.2) is surely inspirational. Indeed, as long as it is only the vanishing of the
fixed-point residual that is concerned, it really makes no difference whether it is
the square distance rather than an arbitrary lower bounded function to act as a
potential. This is the key point of our analysis, which indeed boils down to the
existence of a potential function that behaves the same way the square distance
does for Fejér-monotonic sequences (with the due modifications to account for
the possible set-valued nature of F). This leads to the following definition.

Definition 2.2 (Lyapunov function). We say that L : Rn → R is a Lyapunov
function for (FP) if it satisfies the following properties:

p1 Lower Boundedness: inf L > −∞.

p2 Sufficient Decrease: there exists a “sufficient decrease constant”
c > 0 such that

L(s+) ≤ L(s)− c
2‖s− s

+‖2 for all s ∈ Rn and s+ ∈ F(s).

We now proceed to formalize the intuition that any Lyapunov function as in
Definition 2.2 is a suitable replacement for the square distance in (2.2). The
following result will be useful to this end.

Lemma 2.3. Suppose that (sk)k∈N ⊆ Rn is bounded and satisfies ‖sk−sk+1‖ →
0 as k → ∞. Then, the set of accumulation points ω of (sk)k∈N is nonempty
and compact, and such that dist(sk, ω)→ 0 as k →∞.

Proof. This is shown in [25, Rem. 5] (the claim therein is slightly misstated, as
the needed boundedness requirement is not explicitly mentioned).

1Fejér monotonicity is, in fact, a stronger property which will be introduced in Definition
8.2. This inequality is more akin to the linear monotonicity described in [76], although linearity
is not required here.
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Theorem 2.4 (Subsequential convergence). Suppose that a fixed-point mapping
F as in Assumption 2.I admits a Lyapunov function L. Then, the following
hold for the fixed-point iterations (FP):

(i) The fixed-point residual (‖sk − sk+1‖)k∈N is square-summable; in particu-
lar, minj≤k ‖sj − sj+1‖ ∈ O(1/

√
k).

(ii) Every accumulation point of (sk)k∈N satisfies s̄ ∈ fixF .

(iii) If (sk)k∈N is bounded (as it is the case when L is level bounded), then the
set of accumulation points ω is nonempty, compact and connected, and
dist(sk, ω)→ 0 as k →∞.

Proof.

♠ 2.4(i). The sufficient decrease property of L ensures the existence of a constant
c > 0 such that

L(sk+1) ≤ L(sk)− c
2‖s

k − sk+1‖2 ∀k ∈ N.

Since L is real valued, for any K ≥ 1 we may telescope the inequality for
k = 1, 2, . . . ,K to arrive to

K∑
k=1
‖sk − sk+1‖2 ≤ 2

c

K∑
k=1

(
L(sk)− L(sk+1)

)
= 2
c

(
L(s1)− L(sK+1)

)
≤ 2
c

(
L(s1)− inf L

)
.

Since L is lower bounded, the partial sums
∑K
k=1 ‖sk − sk+1‖2 are upper

bounded by a same finite constant for all K ≥ 1. By letting K → ∞, square
summability follows. As to the claimed O(1/

√
k) rate, notice that, for all K ∈ N,

∞ > S :=
∞∑
k=0
‖sk − sk+1‖2 ≥

K∑
k=0
‖sk − sk+1‖2 ≥

K∑
k=0

min
j≤k
‖sj − sj+1‖2

≥ (K + 1) min
j≤K
‖sj − sj+1‖2,

where in the last inequality we used the decreasing behavior of the sequence
(minj≤k ‖sj − sj+1‖2)k∈N. Thus, minj≤K ‖sj − sj+1‖ ≤

√
S/K+1 for all K ∈ N.

♠ 2.4(ii) & 2.4(iii). Since ‖sk − sk+1‖ → 0, the first assert follows from Prop.
2.1, and the second from Lem. 2.3.
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We conclude the section with a remark on some properties relating fixed-point
mappings and their Lyapunov functions.

Lemma 2.5. Suppose that the fixed-point mapping F as in Assumption 2.I
admits a Lyapunov function L. Then,

(i) F(s) is compact for all s ∈ Rn.

(ii) L(s)− inf L ≥ c
2‖s− s̄‖

2 for all s ∈ Rn and s̄ ∈ F(s).

In particular,

(iii) F(s?) = {s?} for all s? ∈ argminL (hence argminL ⊆ fixF).

Proof. The set F(s) must be bounded for all s ∈ Rn, for otherwise either the
lower boundedness 2.2.p1 or the sufficient decrease property 2.2.p2 would be
violated. That F(s) is closed holds regardless of whether F admits a Lyapunov
function or not, owing to the fact that any sequence contained in F(s) has, by
definition of osc, all accumulation points in F(s). Moreover, for any s̄ ∈ F(s)
we have

L(s)− inf L ≥ L(s)− L(s̄) ≥ c
2‖s− s̄‖

2,

where the second inequality follows from the sufficient decrease property. The
last claim follows straightforwardly.

We terminate here the abstract fixed-point framework and begin to specialize
the study to the solution of nonconvex optimization problems. The rest of the
chapter is dedicated to establishing the class of investigated fixed-point mappings.
In Chapter 3 we will then analyze their convergence by introducing proximal
envelopes, which will prove to be particularly suitable Lyapunov functions.

2.2 Fixed-point iterations in optimization
The challenges of nonconvexity

We now begin to specialize the fixed-point framework (FP) for solving optimiza-
tion problems

minimize
x∈Rn

ϕ(x), (P)

where ϕ : Rn → R is a proper, lsc, extended-real valued function with nonempty
set of minimizers. Unless differently specified, these minimal requirements on
the cost function ϕ will be assumed in the sequel.
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There are two main issues that need be addressed. First, the mapping F must
be consistent with the investigated problem, as the limit points of its fixed-
point iterations must somehow be related to the solutions of (P). This, in turn,
raises the issue of properly defining what a “solution” is, for “solving” (P) may
acquire a meaning broader than that of finding minimizers of ϕ. This second
point arises because of the possible nonconvex nature of ϕ. Under convexity,
instead, first-order optimality is necessary and sufficient for global optimality,
and indeed splitting algorithms address the equivalent problem of finding first-
order optimal points; the sought (global) minimizers are then obtained, up to
possibly operating a change of variable (as it is the case of the Douglas-Rachford
splitting where a proximal mapping relates fixed points of the operator with
solutions to the optimization problem). Although this is not the case in the
more general framework investigated here, once again we shall gain some insight
from the convex realm.

In the previous section we characterized the limit point(s) of fixed-point itera-
tions of F as those belonging to fixF . The idea is then to seek fixed points of
F , all of which, up to possibly operating a change of variable, shall satisfy some
necessary condition for optimality for (P). This leads to the following criterion
of compatibility between the fixed-point mapping F and problem (P).

Definition 2.6 (Compatibility). We say that a fixed-point mapping F : Rn ⇒
Rn is compatible with problem (P) if the following properties are satisfied:

p1 F complies with Assumption 2.I.

p2 There exists an LG-Lipschitz continuous and µG-strongly monotone function
G : Rn → Rn such that

argminϕ ⊆ G(fixF) ⊆ zer ∂̂ϕ.

The strong monotonicity of G implies, in particular, that G is invertible with
µ−1
G -Lipschitz inverse. As expectable, the lack of convexity may result in the

need of additional assumptions on the problem, and these will happen to ensure
this apparently overly restrictive property.

The majorization-minimization (MM) principle will be the core of our approach.
As the name suggests, an MM step amounts to the minimization of a surrogate
function that is pointwise greater than the real objective ϕ. Our algorithmic
framework will consist of “generalized” MM schemes, in which “pure” MM steps
may be composed with the transformation mapping G appearing in Definition
2.6. The rest of the chapter is devoted to developing the needed theory. We
begin with the analysis of “pure” MM schemes, and later complete the picture
by including the claimed generalization.
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2.3 Proximal majorization-minimization
PMM schemes

As the name suggests, majorization-minimization algorithms address the mini-
mization of a function ϕ by iteratively minimizing a larger surrogate function,
or model. The approach is convenient whenever the minimization of the model
is easier than that of the original function ϕ. A classical definition of majorizing
model can be formulated as follows [64].

Definition 2.7 (Majorizing model). The function M : Rn × Rn → R is a
majorizing model for the proper, lsc, and lower bounded function ϕ if

p1 M(x ;x) = ϕ(x) for all x ∈ Rn, and

p2 M(w;x) ≥ ϕ(w) for all x,w ∈ Rn.

The collection of all majorizing models for ϕ is denoted by Mϕ.

Given a model M, a majorization minimization (MM) step at x consists of
selecting x+ ∈ argminwM(w;x); due to the tangency condition 2.7.p1, one
can easily infer that any such x+ satisfies ϕ(x+) ≤ ϕ(x). Let us consider two
(de)motivating examples.

Example 2.8 (Maximal model). Let

M0(w;x) :=
{
ϕ(x) if w = x,
∞ otherwise.

Then,M0 is a majorizing model for ϕ, in fact it is the pointwise largest such
function. However, this model is quite useless for the sake of minimizing ϕ, for
one MM step at any point x ∈ Rn necessarily yields x+ = x if x ∈ domϕ, and
no x+ even exists otherwise.

Example 2.9 (Minimal model). Let

M(w;x) := ϕ(w).

This time,M is the pointwise smallest majorizing model for ϕ. Once again this
model turns out to be of no help in the minimization of ϕ, being one MM step
as hard as directly minimizing ϕ. In fact, argminwM(w;x) = argminϕ for
any x ∈ Rn.

These two examples are a clear indication that for the sake of a sensible theory
some additional requirements on the employed models are in order. The survey
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[116] offers a nice overview on MM algorithms where these aspects are discussed.
A common requirement is directional differentiability of both the cost function
and the model together with a compatibility requirement on the directional
derivatives [15, 108]. Alternatively, [78] requires the model to differ from the cost
function by a smooth term. The additional assumptions are usually imposed both
to relax classical MM iterations, for instance with randomized or distributed
variants or by using approximate majorizing models, and to ensure that limit
points x? of MM iterations satisfy directional stationarity, namely the inequality
ϕ′(x?; d) ≥ 0 for all d ∈ Rn, which is implied by the stationarity condition
0 ∈ ∂̂ϕ(x?).

The MM framework proposed in this thesis is based on the notion of proximal
majorizing models, defined in the next subsection, and makes no regularity
assumptions on the problem or the model, other than mere lower semicontinuity.

2.3.1 Proximal majorizing models

In accordance with the quadratic majorization in Definition 1.11 of proximal
mapping, we will restrict the analysis to “proximal” majorizing models, defined
as follows.

Definition 2.10 (Proximal majorizing model). The functionM(w;x) : Rn ×
Rn → R is a proximal majorizing model for ϕ if

p0 M is lsc,

p1 M(x ;x) = ϕ(x) for all x ∈ Rn, and

p2 there exist m1,m2 > 0 such that

ϕ(w) + m1
2 ‖w − x‖

2 ≤M(w;x) ≤ ϕ(w) + m2
2 ‖w − x‖

2

for all x,w ∈ Rn.

The collection of all proximal majorizing models for ϕ is denoted by Mϕ.

To streamline the notation, we may omit the ‘majorizing’ part and refer to
elements of Mϕ simply as proximal models.

Definition 2.11 (Continuity of proximal models). We say that a proximal
model M is continuous if the sections x 7→ M(w;x) are continuous for all
w ∈ Rn.
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An MM step relative to a proximal majorizing modelM will be referred to as a
proximal MM (PMM) step. The set-valued mapping that associates a point
x to all its proximal MM steps throughM will be called PMM mapping, and
denoted as TM. Namely, TM : Rn ⇒ Rn is defined as

TM(x) := argmin
w∈Rn

M(w;x). (2.3)

Example 2.12 (Proximal point). For γ > 0, let

Mpp
γ (w;x) := ϕ(x) + 1

2γ ‖w − x‖
2.

Clearly,Mpp
γ is a proximal majorizing model, specifically with m1 = m2 = 1/γ

as parameters in property 2.10.p2. The associated PMM mapping is TM
pp
γ =

proxγϕ, the proximal mapping of ϕ with parameter γ.

In the next subsection we list some of the advantages that the properties of
proximal majorizing models pose over the classical Definition 2.7.

2.3.2 Properties

Theorem 2.13 (Regularity of the PMM mapping). For any proximal majoriz-
ing modelM∈Mϕ, the PMM mapping TM is osc, nonempty- and compact-
valued. In particular, TM satisfies Assumption 2.I.

Proof. Due to the lower bound in 2.10.p2, we have

M(w;x) ≥ ϕ(w) + m1
2 ‖w − x‖

2 ≥ inf ϕ+ m1
2 ‖w − x‖

2.

Since ϕ is proper and lower bounded, it holds that inf ϕ ∈ R and thereforeM
is level bounded in w locally uniformly in x, cf. Def. 1.20. Moreover, for any
z ∈ domϕ (such z exists due to properness of ϕ) we have

inf
w∈Rn

M(w;x) ≤M(z;x) ≤ ϕ(z) + m2
2 ‖z − x‖

2 <∞,

hence the parametric infimum with respect to w is everywhere finite. The
claimed properties of TM then follow from [106, Thm. 1.17].

Lemma 2.14 (Basic inequality). LetM∈Mϕ and x ∈ Rn be fixed. Then,

M(x̄;x) ≤ ϕ(x) for all x̄ ∈ TM(x),

and equality holds iff x ∈ fix TM.
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Proof. For any x̄ ∈ TM(x) we have

ϕ(x)
2.10.p1

=M(x;x) ≥ inf
w∈Rn

M(w;x)(def)=M(x̄;x).

Thus, equality holds iff M(x;x) = infw∈RnM(w;x), which is equivalent to
having x ∈ argminw∈RnM(w;x)(def)= TM(x).

We conclude the subsection with a useful inequality that relates the norm of
the subgradients after one MM step with the fixed-point residual.

Lemma 2.15 (An error-bound-like inequality). Let M be a proximal model
for ϕ, and suppose that the difference δ(w) :=M(w;x)− ϕ(w) is differentiable
with Lδ-Lipschitz gradient. Then,

dist(0, ∂̂ϕ(x̄)) ≤ Lδ‖x− x̄‖ for all x ∈ Rn and x̄ ∈ TM(x).

Proof. Due to property 2.10.p2, it holds that

m1
2 ‖w − x‖

2 ≤ δ(w) ≤ m2
2 ‖w − x‖

2,

and in particular ∇δ(x) = 0. Combined with the Lδ-Lipschitz continuity of ∇δ,
we obtain ‖∇δ(x̄)‖ ≤ Lδ‖x− x̄‖. Since x̄ minimizes w 7→ M(w;x), we have

0 ∈ ∂̂wM(x̄;x) = ∂̂ϕ(x̄) +∇δ(x̄),

hence −∇δ(x̄) ∈ ∂̂ϕ(x̄). Thus, dist(0, ∂̂ϕ(x̄)) ≤ ‖ −∇δ(x̄)‖ ≤ Lδ‖x− x̄‖.

The requirements for δ in Lemma 2.15 are actually restrictive, but they suffice to
our purposes. Indeed, if δ is strictly continuous, then the inclusion (as opposed
to equality) 0 ∈ ∂̂wM(x̄;x) ⊆ ∂̂ϕ(x̄) + ∂̂δ(x̄) still holds (cf. Lem. 1.3(iii)), and
we then infer that −v ∈ ∂̂ϕ(x̄) for some v ∈ ∂̂δ(x̄). In order to ensure a bound
of the form ‖v‖ ≤ L‖x− x̄‖, it then suffices to require the following calmness
condition: there exists L ≥ 0 such that

max
v∈∂̂δ(w)

‖v‖ ≤ L‖w − x‖ for all w ∈ Rn.

Thus, we infer from [106, Thm. 9.13(a)-(f)] that a sufficient condition for Lemma
2.15 to hold is having δ locally Lipschitz-continuous with modulus growing at
most linearly with respect to ‖w − x‖ (which is indeed the case when δ is
Lipschitz-differentiable).
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The inequality in Lemma 2.15 is closely related to the error bound condition
under which linear convergence of some proximal algorithms can be established,
see [77, 41]. The key difference is that an error bound would require the
subdifferential at x, as opposed to the one at x̄ ∈ TM(x). Although less
powerful, the given inequality has still some useful consequences.

2.3.3 Partial ordering

As the extreme Examples 2.8 and 2.9 confirm, it is intuitive that the more
a model M penalizes points (w;x) far from (x;x), the more the minimizers
defining TM will be close to x, hence the likelier for x to be a fixed point.
In this sense, being a fixed point for a “high” model may be regarded as a
loose property; on the contrary, if x is fixed with respect to a “low” model, the
extreme scenario depicted in Example 2.9 may suggest that x is closer to be a
(local) optimum. In the next pages we will confirm this intuition, and we will
indeed quantify, to some extent, local optimality of a point in terms of how
much a model can be “pushed down” without affecting the status of being a
fixed point. “Pushing down” is to be meant in the sense of considering a lower
model; it thus becomes necessary to formalize how models can be compared
one another. An intuitive such option is to define a pointwise ordering, agreeing
thatM is lower thanM′ ifM(w;x) ≤M′(w;x) holds for all points x,w ∈ Rn.
Nevertheless, to enforce some degree of uniformity when comparing models it is
convenient to work with a coarser partial ordering, which we define next.

Definition 2.16. Given two majorizing modelsM,M′ ∈Mϕ, we writeM ≺
M′ to indicate thatM≤M′ pointwise, and

M(w;x) <M′(w;x) for all (w;x) ∈ domM with w 6= x.

The relation M � M′ then indicates that either M = M′ or M ≺ M′; the
relations � and � are defined accordingly.

The restriction w 6= x in Definition 2.16 rules out points on the diagonal
{(x;x) | x ∈ Rn} where all elements ofMϕ must agree, as prescribed by property
2.7.p1. Further restricting to points (w;x) ∈ domM ensures that infinite values
are not compared. In the case of proximal models M,M′ ∈ Mϕ, in light of
property 2.10.p2 having M(w;x) = ∞ is equivalent to having x /∈ domϕ,
and in particular all proximal models have same domain. Thus,M ≺M′ for
proximal models indicates that the strict inequality < holds pointwise wherever
theM andM′ can differ.

Lemma 2.17 (Existence of extrema). Relative to the partial ordering �, any
family A ⊆Mϕ of proximal models admits an (lsc) supremum and an infimum
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in Mϕ. In particular, the family of all proximal models has (w;x) 7→ ϕ(w) as
infimum andM0 as in Example 2.8 as supremum.

Proof. That (w;x) 7→ ϕ(w) andM0 are the extrema of Mϕ is trivial. Suppose
that A 6= ∅, and consider the pointwise supremum M̄ := sup(A ,≥). Clearly,
M̄ ∈Mϕ, and since proximal models are lsc by definition, it follows from [106,
Prop. 1.26(a)] that M̄ is lsc as well. Notice thatM �M′ implies the pointwise
inequalityM≤M′, hence one can easily verify that M̄ is the sought supremum.
The claim for the infimum is similar, except that lower semicontinuity cannot
be deduced.

Although they always exist, extrema of families of majorizing models should be
treated with care, lest intuitive properties of total order relations are mistakenly
attributed to a partial ordering such as �. For instance, having sup(A ,�) =M0
for a family A of majorizing models does not imply, given a model M̄, the
existence of a modelM∈ A such thatM � M̄. To see this, consider

M̄(w;x) := ϕ(w) + ‖w − x‖2

and A := {Mk | k ∈ N}, where

Mk(w;x) := ϕ(w) + 1
2‖w − x‖

2 + k‖w − x‖.

Then, (A ,�) is even totally ordered and its supremum isM0, yet no model
Mk satisfiesMk � M̄ (in fact, not evenMk ≥ M̄).

The following result shows how by raising proximal models towards the supre-
mumM0 the pathological behavior depicted in Example 2.8 is approached.

Lemma 2.18. Let (Mk)k∈N ⊂ (Mϕ,�) be an increasing sequence of proximal
models such that sup(Mk)k∈N = M0. Then, limsupk→∞ TMk(x) = {x} for
any x ∈ domϕ.

Proof. Due to property 2.10.p2 and since (Mk)k∈N is increasing, there exists
m1 > 0 (independent of k) such that

Mk(w; z) ≥ ϕ(w) + m1
2 ‖w − z‖

2 for all w, z ∈ Rn and k ∈ N. (2.4)

Let x ∈ domϕ be fixed and let x̄k ∈ TMk(x) be arbitrary. We have

ϕ(x)
2.14
≥Mk(x̄k;x)

(2.4)
≥ ϕ(x̄k) + m1

2 ‖x− x̄k‖
2 ≥ inf ϕ+ m1

2 ‖x− x̄k‖
2.
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Since ϕ(x) <∞, it follows that (x̄k)k∈N is bounded. To arrive to a contradiction,
suppose that a subsequence (x̄kj )j∈N converges to a point x̄ 6= x, and let
B := B(x̄; ‖x− x̄‖). Then, with similar arguments we obtain

ϕ(x)
2.14
≥ limsup

j∈N
Mkj (x̄kj ;x) ≥ limsup

j∈N
inf
w∈B
Mkj (w;x) =∞,

where the second inequality follows from the fact that x̄kj ∈ B for large enough
j’s, and the last equality from the fact thatM0(w;x) =∞ for all w ∈ B. This
contradicts the fact that x ∈ domϕ.

2.4 Criticality

In this section we finally establish the intuitive connections brought forth in
the previous section linking fixed points with local optima. As a byproduct, the
compatibility (in the sense of Definition 2.6) of a PMM mapping TM and the
minimization of ϕ will be established. Theorem 2.22 will then provide a first
hint in support of the chosen partial ordering between models. Further evidence
will be given later on with the introduction in Definition 2.31 of a “threshold”
function, that measures the “optimality” of a point by analyzing the fixed sets
of sufficiently large models.

We begin by establishing a terminology to replace the vague term “solution” (to
problem (P)) with a more specific dedicated expression. A constructive way to
assess whether a point complies with this definition will be given in Corollary
2.24.

Definition 2.19 (Criticality). We say that x̄ ∈ Rn is a critical point for ϕ
if there exists a proximal modelM∈Mϕ such that x̄ ∈ fix TM.

In the MM setting addressed in [15], this property is referred to as strong
stationarity and is shown to be stronger than directional stationarity and
necessary for global optimality. These facts still hold in the proximal MM
framework addressed in this thesis, as the next result shows; see also Theorem
2.25 and Prop. 2.33.

Proposition 2.20 (Higher-order stationarity of critical points). Suppose that
x̄ is critical for ϕ; then,

ϕ(x)− ϕ(x̄) ≥ O(‖x− x̄‖2).
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In particular, not only 0 ∈ ∂̂ϕ(x̄), but for all ϑ ∈ [0, 1) the following stronger
stationarity property holds:

lim inf
x→x̄
x 6= x̄

ϕ(x)− ϕ(x̄)
‖x− x̄‖1+ϑ ≥ 0. (2.5)

Proof. LetM∈Mϕ be such that x̄ ∈ fix TM. We have,

ϕ(x)− ϕ(x̄)
2.10.p1

= ϕ(x)−M(x̄; x̄)
2.10.p2
≥M(x; x̄)− m2

2 ‖x− x̄‖
2 −M(x̄; x̄)

≥ inf
w∈Rn

M(w; x̄)−M(x̄; x̄)− m2
2 ‖x− x̄‖

2

= − m2
2 ‖x− x̄‖

2,

where the last equality follows from the fact that x̄ ∈ TM(x̄).

The bound ϑ < 1 in the higher-order stationarity property (2.5) is tight, and
we need to accept the fact that saddle points or maxima cannot be avoided, as
shown in the next example.

Example 2.21. Consider ϕ : R2 → R given by

ϕ(x) = max
{
−1, (x1 − x2)2 − 3

2x
2
2
}
,

which has a saddle point at x̄ = (0, 0). However, x̄ also happens to be critical:
consider the proximal point modelMpp

γ of Example 2.12 with γ < 1/2. Then

TM
pp
γ (x̄) = proxγϕ(0, 0) = {(0, 0)} = {x̄}.

The next result shows that the partial ordering � among proximal models is
paralleled by an inclusion of the fixed sets, in the sense that the lower the model,
the stronger the property of being a fixed point. It also shows an interesting
fact when the relation is strict which will be important later on in the thesis
when regularity properties will be discussed.

Theorem 2.22. For any pair of proximal modelsM,M′ ∈Mϕ, the following
hold:

(i) IfM �M′, then fix TM ⊆ fix TM′ .
(ii) IfM ≺M′, then TM′(x) = {x} for all x ∈ fix TM.
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Proof. To ease the notation, let us denote T := TM and T ′ := TM′ .

♠ 2.22(i). Let x ∈ fix T . Then, for all x̄′ ∈ T ′(x) we have

ϕ(x)
2.10.p1

=M(x;x) ≤M(x̄′;x) ≤M′(x̄′;x)(def)= inf
w∈Rn

M′(w;x)

≤M′(x;x)
2.10.p1

= ϕ(x),

where the first inequality follows from the fact that x ∈ T (x). Therefore,
M′(x;x) = infw∈RnM′(w;x), hence x ∈ T ′(x).

♠ 2.22(ii). Let x̄′ ∈ T ′(x); to arrive to a contradiction, suppose that x̄′ 6= x.
Then, M(x̄′;x) ≤ M′(x̄′;x) < ∞, hence M(x̄′;x) <M′(x̄′;x), cf. Def. 2.16.
We have

ϕ(x)
2.14
=M′(x̄′;x) >M(x̄′;x) ≥ inf

w∈Rn
M(w;x) =M(x;x)

2.10.p1
= ϕ(x),

where the second equality follows from the fact that x ∈ T (x). Thus, we obtained
the contradiction ϕ(x) > ϕ(x).

Corollary 2.23. Let x̄ be a critical point for ϕ, and let A ⊂ (Mϕ,�) be a
totally ordered family of proximal models such that sup A =M0. Then, there
existsM∈ A such that x̄ ∈ fix TM.

Proof. Suppose that x̄ ∈ fix M̄ for some proximal model M̄ (not necessarily
in A ), and let (Mk)k∈N ⊆ A be an increasing sequence pointwise converging
toM0. For k ∈ N, let x̄k ∈ TMk(x̄). From Lem. 2.18 it follows that (x̄k)k∈N
is contained in a bounded set B (x̄ is critical, and in particular x̄ ∈ domϕ).
Then, there exists k ∈ N such thatMk(w; x̄) ≥ M̄(w; x̄) for all w ∈ B. Thus,

ϕ(x̄)
2.10.p1

= M̄(x̄; x̄) = inf
w∈Rn

M̄(w; x̄) ≤ M̄(x̄k; x̄) ≤Mk(x̄k; x̄)
2.14
≤ ϕ(x̄),

from which we infer that Mk(x̄k; x̄) = ϕ(x̄). Lem. 2.14 then ensures that
x̄ ∈ TMk(x̄).

Notice that, although closely related, the result cannot be shown by directly
invoking Thm. 2.22(i). In fact, the existence of a model in A (globally) greater
thanM cannot be guaranteed, as discussed in Section 2.3.3.

As seen in Example 2.12, proxγϕ is a PMM mapping, specifically the one
relative to the proximal model Mpp

γ (w;x) = ϕ(w) + 1
2γ ‖w − x‖

2. The family
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PP = (Mpp
γ )γ>0 is totally ordered and satisfiesMpp

γ ↗M0 as γ ↘ 0. Corollary
2.23 can thus be invoked, resulting in the following constructive criterion for
checking whether a point is critical or not.

Corollary 2.24. A point x̄ is critical for ϕ iff there exists γ > 0 such that
x̄ ∈ proxγϕ(x̄).

The next result completes the assert of Proposition 2.20 by providing a converse
implication: local minimizers are critical points, and critical points are almost
second-order optimal.

Theorem 2.25 (Criticality of local minima). Let x be a local minimum of ϕ;
then x is critical. In fact, for any totally ordered family A ⊂ (Mϕ,�) of proximal
models satisfying sup A =M0 there existsM∈ A such that x ∈ fix TM.

Proof. Since A is totally ordered, there exists a sequence (Mk)k∈N ⊆ A such
that Mk ↗ M0 as k → ∞. To ease the notation, let T k := TMk . Due to
property 2.10.p2 and the monotonicity of (Mk)k∈N, there exists m1 > 0 such
thatMk(w;x) ≥ ϕ(w)+m1

2 ‖w−x‖
2 for all x,w ∈ Rn. Let x be a local minimum

for ϕ, and for all k ∈ N let x̄k ∈ T k(x). It follows from Lem. 2.18 that x̄k → x
as k →∞. In particular, since x is a local minimum, there exists k̄′ ∈ N such
that ϕ(x̄k) ≥ ϕ(x) for all k ≥ k̄′. Therefore,

ϕ(x)
2.14
≥Mk̄′(x̄k̄

′
;x) ≥ ϕ(x̄k̄

′
) + m1

2 ‖x− x̄
k̄′‖2 ≥ ϕ(x) + m1

2 ‖x− x̄
k̄′‖2,

where the second inequality follows from the fact that x̄k̄′ ∈ T k̄′(x). We then
conclude that x = x̄k̄

′ ∈ T k̄′(x).

2.5 Generalized proximal majorization-minimization
GPMM schemes

Given a proximal modelM∈Mϕ, the regularity properties assessed in Theorem
2.13 ensure that F = TM fits into the general fixed-point framework (FP).
Apart from having all accumulation points critical for ϕ, hence being compatible
with problem (P) in the sense of Definition 2.6, such a “pure” majorization-
minimization scheme has also the advantage of being a descent algorithm on the
cost function, in the sense that (ϕ(xk))k∈N is monotonically (strictly) decreasing.
However, limiting the analysis to these iterative schemes only would rule out
many splitting algorithms that do not have a “pure” MM nature, such as the
Douglas-Rachford splitting or the sibling ADMM. For the sake of developing a
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universal theory, we sacrifice the simplicity of a pure MM scheme by including
a possible change of variable G as introduced in Definition 2.6.

Definition 2.26 (Generalized proximal MM schemes). Given

p1 a proximal modelM : Rn × Rn → R for ϕ, and

p2 a transient mapping, that is, an LG-Lipschitz continuous
and µG-strongly monotone mapping G : Rn → Rn,

with F ∼ (M, G) we indicate the collection of fixed-point mappings
Fλ : Rn → Rn, indexed over a relaxation parameter λ 6= 0,
defined as

Fλ := id− λ(id− TM) ◦G. (2.6)

Fixed-point iterations of Fλ constitute a generalized proxi-
mal MM (GPMM) scheme, or simply (pure) proximal MM
(PMM) scheme in case G ≡ id.

It follows from Lemma 1.1 that transients are invertible and their inverse is
Lipschitz continuous as well. Although these requirements of Lipschitz continuity
and strong monotonicity could actually be dropped, as plain or strict continuity
would suffice to our purposes in most cases, for the sake of a simpler exposition
we prefer to stick to these assumptions, which, in any case, will be satisfied in all
the investigated splitting algorithms. The next result assesses the fundamental
compatibility of the scheme (2.6) and the optimization problem (P); the role
of G as transition from the fixed-point variable s of the mappings Fλ to the
optimization variable x will then be clear. In particular, we will see that from
fixed points of G we can recover stationary points of ϕ, due to a one-to-one
correspondence with fixed points of the pure MM scheme TM.

Theorem 2.27 (Compatibility of GPMM schemes). LetM∈Mϕ be a proximal
model for ϕ. Then, for every continuous bijection G : Rn → Rn and λ ∈ R\{0},
the mapping Fλ : Rn ⇒ Rn as in (2.6) is osc, with Fλ(s) nonempty and compact
for all s ∈ Rn. Moreover, the following inclusions hold:

argminϕ ⊆ G(fixFλ) = fix TM ⊆ zer ∂̂ϕ. (2.7)

In particular, the fixed-point mapping Fλ is compatible with ϕ.
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Proof. The properties of Fλ follow from the similar ones of TM shown in Thm.
2.13 and the continuity of G. We have

s̄ ∈ Fλ(s̄) ⇔ s̄ ∈ s̄− λ
[
G(s̄)− TM

(
G(s̄)

)]
⇔ G(s̄) ∈ TM

(
G(s̄)

)
,

where the first implication follows from the definition of Fλ, and the second one
from the invertibility of G and the fact that λ 6= 0. Thus, G(fixFλ) = fix TM.
Suppose now that x ∈ argminϕ and let x̄ ∈ TM(x). Then,

minϕ
2.10.p1

=M(x, x) ≥M(x̄, x)
2.10.p2
≥ ϕ(x̄) + m1

2 ‖x− x̄‖
2 ≥ minϕ+ m1

2 ‖x− x̄‖
2,

from which it follows that x̄ = x, hence the inclusion argminϕ ⊆ fix T . Finally,
the inclusion fix TM ⊆ zer ∂̂ϕ follows from Prop. 2.20.

2.6 Representation of proximal algorithms

To finalize the general framework investigated in this chapter, let us formally
define how to represent a proximal algorithm in terms of majorizing models
and transient functions. To this end, for the sake of an example let us consider
the most elementary MM scheme, namely, the proximal point algorithm (PPA).
As briefly discussed in Example 2.12, for γ > 0 we have that proxγϕ is the
(pure) PMM mapping TM(x) relative to the proximal modelM(w;x) = ϕ(x) +

1
2γ ‖w − x‖

2. Thus, the modelM (together with the identity transient mapping
G = id) in the generalized MM framework captures PPA with all possible
relaxation parameters, yet is bound to a unique stepsize γ, having

Fλ(s) = (1− λ)s+ λproxγϕ(s)

for all λ 6= 0. This is somehow an unavoidable consequence of the different
nature of γ and λ, the former being intrisic in the fixed-point black box, and
the latter simply amounting to an a posteriori averaging.

This is readily solved by identifying PPA with a family of models PP =
(Mpp

γ )γ>0 indexed over a parameter γ. Minimal requirements on the parametriza-
tion γ 7→ MA

γ facilitate operating with such a collection, and the inclusion of
possible transients allows to recover all generalized PMM schemes. This leads
to the following definition.

Definition 2.28. A generalized proximal MM (GPMM) algorithm for
problem (P) is a collection

A = (Mγ , Gγ)γ∈(0,γ̄)
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indexed over a stepsize parameter γ ranging between 0 and γ̄ ∈ (0,∞], where

p1 (Mγ , Gγ) is a GPMM scheme as in (2.6) for all γ ∈ (0, γ̄],

p2 Mγ � Mγ′ whenever 0 < γ < γ′ < γ̄ (hence in particular the models form
a totally ordered family), and

p3 supγ∈(0,γ̄)Mγ =M0 (equivalently,Mγ ↗M0 as γ ↘ 0 pointwise).

2.6.1 Notational conventions

To give more emphasis to the GPMM family and to the parameters γ and λ,
we will adopt the following conventions:

• Aλ will indicate the GPMM algorithm with relaxation parameter λ. The
GPMM fixed-point mapping with stepsize γ and relaxation λ will thus be
indicated by FAλ

γ .

• We will write T A
γ in place of TM

A
γ (this definition is independent of λ);

in particular,
FAλ
γ := id− λ(id− T A

γ ) ◦Gγ . (2.8)

• We shall adopt the superscript notationMA
γ to emphasize that the model

belongs to the GPMM collection A .

• When Gγ ≡ id for all γ ∈ (0, γ̄), that is, when representing a pure PMM
algorithm, the transients Gγ may be omitted from the notation.

• The symbols m1(γ) and m2(γ) will denote the constants m1 and m2
in property 2.10.p2, respectively, relative to the proximal model Mγ .
Similarly, µGγ and LGγ will denote the strong convexity and Lipschitz
moduli, respectively, of the transients Gγ as in property 2.26.p2. Whenever
clear from context, γ may be removed to ease the notation.

It is also convenient to introduce the residual mapping RA
γ : Rn ⇒ Rn, given

by

RA
γ (s) := 1

γ

(
id− T A

γ

)
◦Gγ(s), (2.9)

so that the GPMM fixed-point mapping FAλ
γ can be expressed as

FAλ
γ (s) = s− λγRA

γ (s).
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To ease the notation and avoid repetitions, unless differently specified, it
will be assumed that A = (Mγ , Gγ)γ∈(0,γ̄) is a GPMM algorithm for (the
proper and lsc) function ϕ : Rn → R and that γ ∈ (0, γ̄) is a stepsize.

Example 2.29 (Proximal point as a GPMM algorithm). The proximal point
algorithm fits into the GPMM framework through the following representation:

PP = (Mγ)γ>0 where Mpp
γ (w;x) = ϕ(w) + 1

2γ ‖w − x‖
2.

In particular, m1(γ) = m2(γ) = 1/γ and LGγ = µGγ = 1 are the constants in
properties 2.10.p2 and 2.26.p2.

2.6.2 The criticality threshold

The following result is an adaptation of Theorem 2.22 to GPMM algorithms,
owing to property 2.28.p2; simply put, the higher the value of γ, hence the
lower the model, the stronger the property of being a fixed point of T A

γ .

Proposition 2.30. Whenever 0 < γ < γ′ < γ̄ it holds that fix T A
γ ⊇ fix T A

γ′ .

Recall from Corollary 2.23 that in every totally ordered family of models with
M0 as supremum, for all critical points x there exists a frontier model above
which x is fixed, and below which x is not. In light of properties 2.28.p2 and
2.28.p3, we can thus represent the criticality threshold in terms of the parameter
γ, as in the following definition.

Definition 2.31 (Criticality threshold). The criticality threshold of a
GPMM algorithm A = (Mγ , Gγ)γ∈(0,γ̄) is the function ΓA : Rn → [0, γ̄] defined
as

ΓA (x) := sup
{
γ ∈ (0, γ̄) | x ∈ fix T A

γ

}
,

with the convention sup ∅ = 0. In other words, ΓA (x) is the unique index in
[0, γ̄] such that

p1 T A
γ (x) = {x} for all γ < ΓA (x), and

p2 x /∈ T A
γ (x) for all γ > ΓA (x).

In particular, a point x is critical iff ΓA (x) > 0.

It is important to observe that the characterization of criticality of a point x
highlighted in Definition 2.31, namely the fact that ΓA (x) > 0, does not depend
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on the GPMM algorithm A . This confirms the criterion proposed in Corollary
2.24 where A = PP, the proximal point algorithm, was considered. In other
words, if x is a critical point, then for every GPMM algorithm A it is a
fixed point of the PMM mapping T A

γ for all stepsizes small enough. In the next
chapters we will see how the criticality threshold plays a fundamental role in
establishing regularity properties of envelope functions at critical points.

Example 2.32. Relative to the proper, lsc, and lower bounded function ϕ :
R→ R defined by

ϕ(x) = 1
2x

2 + δZ(x),

let us consider the proximal point algorithm as in Example 2.29. Notice that
every point x ∈ domϕ = Z is a local minimum, hence it must be critical as
ensured by Theorem 2.25. In fact, it can be easily verified that

proxγϕ(x) = ΠZ
(

x
1+γ

)
for all x ∈ R,

and that the inclusion ΠZ
(

x
1+γ

)
3 x holds iff x ∈ Z and γ < 1/2|n| (with

‘ 10 =∞’). Thus,

Γpp(x) =


∞ if x = 0,

1
2|n| if x ∈ Z \ {0},
0 if x /∈ Z

is the criticality threshold of the proximal point algorithm for ϕ.

The fact that the global minimum x = 0 has the highest threshold is not a
coincidence. This is a straightforward consequence of properties 2.10.p1 and
2.10.p2 of proximal models.

Proposition 2.33 (Total criticality of global minima). Let x? ∈ argminϕ.
Then, T A

γ (x?) = {x?} for every γ ∈ (0, γ̄). In particular, ΓA (x?) = γ̄.

Notice that strong local minimality is not enough to ensure total criticality, as
Example 2.32 clearly demonstrates.



Chapter 3

Proximal envelopes
MM Lyapunov functions

3.1 Majorization-minimization value functions

The smoothness properties of the Moreau envelope of a proper, convex, and
lsc function ϕ (cf. Thm. 1.14(iii)) make it possible to address the constrained
and nonsmooth minimization of ϕ by means of gradient descent on the smooth
envelope function ϕγ with stepsize 0 < τ < 2/Lϕγ = 2γ. As first noticed by
Rockafellar [103], this simply amounts to (relaxed) fixed-point iterations of the
proximal point operator, namely

x+ = (1− λ)x+ λproxγϕ(x), (3.1)

where λ = τ/γ ∈ (0, 2) is a relaxation parameter. The scheme, known as proximal
point algorithm and first introduced by Martinet [81], is well covered by the
broad theory of monotone operators, where convergence properties can be easily
derived with simple tools of Fejérian monotonicity, see e.g., [10, Thm.s 23.41 and
27.1]. Nevertheless, not only does the interpretation as gradient method provide
a beautiful theoretical link, but it also enables the employment of acceleration
techniques exclusively stemming from smooth unconstrained optimization, such
as Nesterov’s extrapolation [54] or quasi-Newton schemes [30], see also [19] for
extensions to the dual formulation.

Even if ϕ is nonconvex, although not anymore differentiable the Moreau envelope
still exhibits more regularity over the original function ϕ, being it real valued
(as opposed to extended-real valued) and, in fact, strictly continuous (cf. Prop.
1.12(ii)). The quadratic penalty appearing in the subproblem that defines the
proximal mapping, cf. Def. 1.11, has a regularization effect on function ϕ when

48
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considering the value function ϕγ , namely, the Moreau envelope.

The appeal of the Moreau envelope goes beyond its regularity. Proximal point
iterations x+ ∈ proxγϕ(x) are easily seen to generate a sequence such that

ϕ(x+) ≤ ϕ(x)− 1
2γ ‖x− x

+‖2,

and one can expand the arguments in the proof of Theorem 2.4 to infer that
every accumulation point of the sequence is stationary; in terms of the fixed-
point framework of Section 2.1, the cost function ϕ itself, although extended-real
valued, serves as Lyapunov function for proximal point iterations. This, however,
is no longer the case if one considers relaxed iterations as in (3.1) with λ 6= 1; as
a matter of fact, the nonconvexity of domϕ may result in having ϕ(x+) =∞.
This limitation is readily solved if one considers the Moreau envelope instead,
for it can be easily verified that relaxed proximal point iterations (3.1) satisfy

ϕγ(x+) ≤ ϕγ(x)− 2−λ
2λγ ‖x− x

+‖2; (3.2)

see Example 3.21 for the details. Real valuedness (and lower boundedness) of
ϕγ make the Moreau envelope a suitable Lyapunov function for the fixed-point
iterations (3.1) for any λ ∈ (0, 2), and one can again infer (subsequential)
convergence of the proximal point algorithm for any relaxation λ ∈ (0, 2), as
opposed to λ = 1 only.

These observations suggest to extend the definition of envelope function to the
more general, yet closely related, proximal majorizing models investigated in the
previous chapter. While all the argumentations can quite easily be extended for
all pure proximal MM algorithms, the presence of transient functions Gγ makes
the analysis of generalized proximal MM algorithms more complicated. Once
again, it is important to clearly distinguish the variable s of the fixed-point
mapping FAλ

γ from the optimization variable x. This distinction will require
the introduction of two envelope functions, a model envelope (M-envelope)
that operates on the optimization variable x, and an algorithmic (fixed-point)
envelope (F-envelope) that operates on the fixed-point variable s. In case of
pure MM schemes, the two will coincide; more generally, they are related by
the transient mapping Gγ .

Definition 3.1 (M- and F-envelope functions). Let A = (Mγ , Gγ)γ∈(0,γ̄) be
a GPMM algorithm for ϕ. The M-envelope (model envelope) of ϕ with
parameter γ ∈ (0, γ̄) is the function ϕM

A
γ : Rn → R given by

ϕM
A
γ (x) := min

w∈Rn
MA

γ (w;x)
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(independent of the transient Gγ), while its F-envelope (fixed-point or
algorithmic envelope) is ϕA

γ : Rn → R defined by

ϕA
γ (s) := ϕM

A
γ
(
Gγ(s)

)
= min

w∈Rn
MA

γ

(
w;Gγ(s)

)
.

Notice that for all x ∈ Rn and x̄ ∈ T A
γ (x) one has

ϕM
A
γ (x) =MA

γ (x̄;x),

and similarly, for all s ∈ Rn

ϕA
γ (s) =MA

γ (x̄;x), where x = Gγ(s) and x̄ ∈ T A
γ (x).

In particular, evaluating the M- and F-envelopes requires exactly the same
operations needed for one iteration of the GPMM algorithm with stepsize
γ. Therefore, once a GPMM step has been performed, the evaluation of the
envelopes comes at the sole cost of evaluating the proximal model at known
points.

3.2 Properties

3.2.1 Inequalities

The following result extends some known inequalities relating a function to its
Moreau envelope.

Theorem 3.2 (M-envelope: sandwich property). For all x ∈ Rn the following
hold for theM-envelope:

(i) ϕM
A
γ (x) ≤ ϕ(x), with equality holding iff x ∈ T A

γ (x).

(ii) −m2
2 ‖x− x̄‖

2 ≤ ϕ(x̄)− ϕM
A
γ (x) ≤ − m1

2 ‖x− x̄‖
2 for all x̄ ∈ T A

γ (x).

(iii) inf ϕMA
γ = inf ϕ and argminϕMA

γ = argminϕ.

Proof.

♠ 3.2(i). We have ϕM
A
γ (x) = infw∈RnMA

γ (w;x) ≤MA
γ (x;x) = ϕ(x), where

the last equality is due to 2.10.p1. From this we also easily infer the claimed
necessary and sufficient condition for equality.
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♠ 3.2(ii). By definition of T A
γ , for all points x̄ ∈ T A

γ (x) we have ϕM
A
γ (x) =

MA
γ (x̄;x) and the claimed inequalities follow from the bounds in 2.10.p2.

♠ 3.2(iii). Consider a sequence (xk)k∈N such that ϕM
A
γ (xk)→ inf ϕMA

γ , and
for all k ∈ N let x̄k ∈ T A

γ (xk). We have

inf ϕMA
γ

3.2(i)
≤ inf ϕ ≤ ϕ(x̄k)

3.2(ii)
≤ ϕM

A
γ (xk)→ inf ϕMA

γ as k →∞,

proving that inf ϕMA
γ = inf ϕ. Combined with the inequality ϕM

A
γ ≤ ϕ we

infer that argminϕ ⊆ argminϕMA
γ .

Suppose now that x ∈ argminϕMA
γ and let x̄ ∈ T A

γ (x); from 3.2(ii) we have
that

inf ϕMA
γ ≤ ϕ(x̄)

3.2(ii)
≤ ϕM

A
γ (x)− m1

2 ‖x− x̄‖
2 = inf ϕMA

γ − m1
2 ‖x− x̄‖

2,

hence x = x̄ ∈ argminϕ.

A trivial change of variable yields the following equivalent result involving the
F-envelope.

Corollary 3.3 (F-envelope: sandwich property). For all s ∈ Rn, denoting
x := Gγ(s),

(i) ϕA
γ (s) ≤ ϕ(x), with equality holding iff x ∈ T A

γ (x).

(ii) −m2
2 ‖x− x̄‖

2 ≤ ϕ(x̄)− ϕA
γ (s) ≤ − m1

2 ‖x− x̄‖
2 for all x̄ ∈ T A

γ (x).

(iii) inf ϕA
γ = inf ϕ and Gγ(argminϕA

γ ) = argminϕ.

Proposition 3.4 (Connection with the Moreau envelope). We have

ϕ
1/m1 ≤ ϕM

A
γ = ϕA

γ ◦G−1
γ ≤ ϕ

1/m2 .

Proof. Let x ∈ Rn and x̄ ∈ T A
γ (x) be fixed. We have

ϕM
A
γ (x) =MA

γ (x̄;x)
2.10.p2
≥ ϕ(x̄) + m1

2 ‖x− x̄‖
2 ≥ ϕ1/m1(x).

Moreover, for all p ∈ proxϕ/m2
(x) we have

ϕ
1/m2(x) = ϕ(p) + m2

2 ‖x− p‖
2
2.10.p2
≥MA

γ (p;x) ≥ ϕM
A
γ (x).
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The following result shows that local minimizers of ϕ are stable with respect to
fixed-point iterations of T A

γ .

Proposition 3.5 (Stability of minimizers). Let x? be a local minimum for ϕ.
Then, for all γ < ΓA (x?) there exists ε = ε(γ) > 0 such that

ϕ(x̄) ≥ ϕM
A
γ (x̄) ≥ ϕ(x?) for all x ∈ B(x?; ε) and x̄ ∈ T A

γ (x).

Proof. The inequality ϕ(x̄) ≥ ϕM
A
γ (x̄) is due to Thm. 3.2(i) and holds globally.

As to the other inequality, since T A
γ (x?) = {x?}, cf. property 2.31.p1, we may

invoke Thm. 3.6 to infer that x? is a local minimum for ϕM
A
γ . The claim now

follows from the outer semicontinuity of T A
γ , cf. Thm. 2.13. In fact, for an

arbitrary sequence (xk, x̄k)k∈N ⊂ gph T A
γ with xk → x? as k →∞, necessarily

x̄k → x?, hence eventually ϕM
A
γ (x̄k) ≥ ϕM

A
γ (x?) = ϕ(x?), where the equality

follows from Thm. 3.2(i).

3.2.2 Equivalence

Theorem 3.6 (Equivalence of local minimality). For any s̄ ∈ fixFAλ
γ , denoting

x̄ := Gγ(s̄) (hence x̄ ∈ fix T A
γ ), the following statements are equivalent:

(a) x̄ is a (strong) local minimum for ϕM
A
γ .

(b) s̄ is a (strong) local minimum for ϕA
γ .

When any of the property above holds, then x̄ is a (strong) local minimum for
ϕ; the converse implication holds provided that T A

γ (x̄) = {x̄} (or, equivalently,
that FAλ

γ (s̄) = {s̄}).

Proof. The equivalence of (strong) local minimality between the envelopes is a
direct consequence of the Lipschitz continuity and Lipschitz invertibility of Gγ .
That (strong) local minimality for ϕM

A
γ implies that for ϕ follows from the fact

that ϕM
A
γ “supports” ϕ at x̄, namely that ϕM

A
γ ≤ ϕ and ϕM

A
γ (x̄) = ϕ(x̄), cf.

Thm. 3.2(i).

It remains to show the converse. Suppose that T A
γ (x̄) = {x̄} and that there

exists µ ≥ 0 such that ϕ(x) ≥ ϕ(x̄) + µ
2 ‖x− x̄‖

2 for all x sufficiently close to
x̄. Let δ := 1

2 min {µ,m1} ≥ 0, and note that δ = 0 iff µ = 0. Thus, contrary
to the claim suppose that for all k ∈ N there exists xk ∈ B(x̄; 1/k) such that
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ϕM
A
γ (xk) < ϕM

A
γ (x̄) + δ

2‖x
k − x̄‖2. Let x̄k ∈ T A

γ (xk); since T A
γ is osc and

T A
γ (x̄) = {x̄}, necessarily x̄k → x̄ as k →∞. We have

ϕ(x̄k)
3.2(i)
≤ ϕM

A
γ (xk)− m1

2 ‖x
k − x̄k‖2

< ϕM
A
γ (x̄) + δ

2‖x
k − x̄‖2 − m1

2 ‖x
k − x̄k‖2

= ϕ(x̄) + δ
2‖x

k − x̄‖2 − m1
2 ‖x

k − x̄k‖2.
By using the inequality 1

2‖a− c‖
2 ≤ ‖a− b‖2 + ‖b− c‖2 holding for all vectors

a, b, c ∈ Rn, we have
ϕ(x̄k) < ϕ(x̄) + δ‖x̄k − x̄‖2 +

(
δ − m1

2
)
‖xk − x̄k‖2

≤ ϕ(x̄) + µ
2 ‖x̄

k − x̄‖2,

where the last inequality follows from the definition of δ. Thus, we obtain
ϕ(x̄k) < ϕ(x̄) + µ

2 ‖x̄
k − x̄‖2 for all k ∈ N, hence the contradiction since x̄k is

arbitrarily close to x̄k.

The necessity of single valuedness of T A
γ (x̄) for inferring the converse implication

can be demonstrated with a simple example. Consider the proximal point
algorithm as in Example 2.29 applied to the minimization of ϕ(x) := 1

2x
2 +

δ{0,1}(x) on R. Clearly, x̄ = 1 is a strong local minimum, and it can be easily
verified that

x̄ � 1

γ � 1
γ � 1/2

Figure 3.1: Where the PMM mapping
T A
γ is not single valued, local minimal-

ity may fail to be preserved. The pathol-
ogy occurs at the criticality threshold; for
smaller stepsizes, (strong) local minimal-
ity is instead preserved.

proxγϕ(1) =

1 if γ < 1,
{0, 1} if γ = 1,
0 otherwise.

For every γ < 1 = Γpp(x̄), the single valuedness of proxγϕ(x̄) results in the
strong local minimality of x̄ for the envelope function ϕγ , inherited by that
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on the original function ϕ. On the contrary, for γ = 1 the point x̄ is not even
stationary for ϕγ , in the sense that 0 /∈ ∂̂ϕγ(x̄). Figure 3.1 provides a graphical
representation of the pathology occurring at the threshold value γ = 1.

Theorem 3.7 (Equivalence of level boundedness). The following are equivalent:

(a) ϕ is level bounded;

(b) ϕM
A
γ is level bounded;

(c) ϕA
γ is level bounded.

Proof.

♠ 3.7(b) ⇒ 3.7(a). From Thm. 3.2(i) we know that ϕM
A
γ ≤ ϕ, hence if ϕM

A
γ

is level bounded then so is ϕ.

♠ 3.7(b) ⇐ 3.7(a). Suppose that ϕM
A
γ is not level bounded. Then, there exists

α ∈ R and (xk)k∈N ⊆ lev≤α ϕM
A
γ such that ‖xk‖ → ∞ as k → ∞. For all

k ∈ N, let x̄k ∈ T A
γ (xk); then, it follows from Thm. 3.2(ii) that

ϕ(x̄k) ≤ ϕM
A
γ (xk)− m1

2 ‖x
k − x̄k‖2 ≤ α− m1

2 ‖x
k − x̄k‖2 for all k ∈ N.

If (x̄k)k∈N is bounded, then ϕ is lower unbounded; otherwise, ‖x̄k‖ → ∞ as
k →∞. Either way, ϕ cannot be level bounded.

♠ 3.7(b) ⇔ 3.7(c). This follows from the continuity of Gγ and G−1
γ , as any

continuous function maps bounded sets to bounded sets.

3.2.3 Regularity

Proposition 3.8 (Continuity). Both ϕM
A
γ and ϕA

γ are lsc and with full domain.
If, additionally, the model MA

γ is continuous (cf. Def. 2.11), then ϕM
A
γ and

ϕA
γ are continuous.

Proof. The claim on theM-envelope follows from [106, Thm. 1.17(c)] (which
applies, as shown in the proof of Thm. 2.13). In particular, the full domain
property is a consequence of the fact that argminwMA

γ (w;x) 6= ∅ for all
x ∈ Rn. Since ϕA

γ = ϕM
A
γ ◦Gγ and Gγ is continuous, all the claims are equally

valid for the F-envelope.
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Proposition 3.9 (Quadratic upper bound). For all x, x? ∈ Rn it holds that

ϕA
γ (G−1

γ (x))(def)= ϕM
A
γ (x) ≤ ϕ(x?) + m2

2 ‖x− x?‖
2.

In particular, if x? ∈ T A
γ (x?) is a fixed point, then

ϕM
A
γ (x) ≤ ϕM

A
γ (x?) + m2

2 ‖x− x?‖
2 ∀x ∈ Rn.

Proof. This is a direct consequence of the quadratic upper bound property
2.10.p2 ofMA

γ , namely

ϕM
A
γ (x)(def)= min

w∈Rn
MA

γ (w;x) ≤MA
γ (x?;x)

2.10.p2
≤ ϕ(x?) + m2

2 ‖x− x?‖
2,

and the fact that ϕM
A
γ (x?) = ϕ(x?) whenever x? is a fixed point of T A

γ , cf.
Thm. 3.2(i).

As a consequence of the quadratic upper bound, even though the envelopes may
fail to be continuous the discontinuity “jumps” are bounded by quantities that
depend on the residual.

Proposition 3.10 (Continuity at fixed points). For every x ∈ Rn the M-
envelope satisfies

0 ≤ limsup
x′→x

ϕM
A
γ (x′)− ϕM

A
γ (x) ≤ m2−m1

2 dist(x, T A
γ (x))2.

In particular, envelope functions are continuous at fixed points.

Proof. The first inequality is due to lsc, cf. Prop. 3.8. Let x, x′ ∈ Rn be fixed,
and let x̄ ∈ T A

γ (x). Then,

ϕM
A
γ (x′) ≤ ϕ(x̄) + m2

2 ‖x
′ − x̄‖2 ≤ ϕM

A
γ (x)− m1

2 ‖x− x̄‖
2 + m2

2 ‖x
′ − x̄‖2,

where the first inequality follows from Prop. 3.9 and the second one from the
sandwiching property, cf. Thm. 3.2(ii). By letting x′ → x, from the arbitrarity
of x̄ ∈ T A

γ (x) the sought upper bound follows.

3.2.4 The KL property

As disclosed at the beginning of the chapter, proximal envelopes will be shown to
be suitable Lyapunov functions for fixed-point iterations of GPMM algorithms.
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Once this is proven, subsequential convergence of the algorithms can be deduced
from the more general analysis detailed in Theorem 2.4. Nevertheless, there
are favorable cases in which global convergence to a unique limit point can
be established, even with asymptotic linear rates. The key ingredient is the
so-called Kurdyka-Łojasiewicz property, which we define next.

Definition 3.11 (KL property). A proper and lsc function h : Rn → R has
the Kurdyka-Łojasiewicz (KL) property at x? ∈ dom ∂h if there exist a
concave desingularizing function (or KL function) ψ : [0, η]→ [0,+∞)
for some η > 0 and a neighborhood Ux? of x?, such that

p1 ψ(0) = 0;

p2 ψ is C1 with ψ′ > 0 on (0, η);

p3 for all x ∈ Ux? s.t. h(x?) < h(x) < h(x?) + η it holds that

ψ′
(
h(x)− h(x?)

)
dist

(
0, ∂h(x)

)
≥ 1. (3.3)

Lemma 3.12 (Uniformized KL function [25, Lem. 6]). Suppose that a function
h is constant on a compact nonempty and connected set ω, with value, say, h?.
If h has the KL property at all points x? ∈ ω, then there exist η, ε > 0 and a
function ψ : [0, η]→ [0,∞) such that

p1 ψ(0) = 0;

p2 ψ is C1 with ψ′ > 0 on (0, η);

p3 for all points x such that dist(x, ω) < ε and h? < h(x) < h? + η it holds
that

ψ′
(
h(x)− h?

)
dist

(
0, ∂h(x)

)
≥ 1. (3.4)

The KL property is a mild requirement enjoyed by semialgebraic functions and
by subanalytic functions which are continuous on their domain [24, 23] see
also [74, 75, 63]. We remind that a set A ⊆ Rn is semialgebraic if it can be
expressed as

A =
p⋃
i=1

q⋂
j=1
{x ∈ Rm | Pij(x) = 0, Qij(x) < 0}

for some polynomial functions Pij , Qij : Rn → R, and that a function h : Rn →
Rm (in fact, even set valued h : Rn ⇒ Rm) is semialgebraic if gph h is a
semialgebraic subset of Rn+m. Since semialgebraic functions are closed under
parametric minimization, semialgebraic models yield semialgebraic evelopes.
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More precisely, in all such cases the desingularizing function can be taken of the
form ψ(s) = %sϑ for some % > 0 and ϑ ∈ (0, 1], in which case it is usually referred
to as a Łojasiewicz function. The following result states this formally.

Theorem 3.13 (Łojasiewicz property for semialgebraic models). Suppose that
the proximal modelMA

γ is semialgebraic. Then, ϕM
A
γ is semialgebraic, and in

particular has the Łojasiewicz property. The same holds for ϕA
γ if, additionally,

Gγ is semialgebraic.

Proof. As detailed in [6, §2], parametric minimization of a semialgebraic function
is still semialgebraic, hence ϕM

A
γ is semialgebraic and thus has the Łojasiewicz

property [24]. The claim on ϕA
γ follows from the fact that semialgebraicity is

preserved under composition [23, Prop. 2.2.6(i)].

Inequality (3.3) (or (3.4)) indicates that, up to a reparametrization with ψ, the
function h grows linearly around the point x? (or the region ω). Intuitively, a
p-th power growth of h can be desingularized with a p-th root, as illustrated in
the next example.

Lemma 3.14 (p-th power growth and Łojasiewicz property). Let x? be a
stationary point for h, and let h? := h(x?). Suppose that there exists a (convex)
neighborhood U? of x? in which the following properties hold:

p1 (local convexity) function h̃ := h+ δU? is convex;

p2 (p-th power growth) h ≥ h? + c
2 dist( · , ω)p for some c > 0 and p ≥ 1,

where ω := h−1({h?}).

Then, h has the Łojasiewicz property at x? with exponent ϑ = 1/p.

Proof. Because of convexity of h̃ and the fact that h̃ = h ≥ h? on U?, the set

lev≤h? h̃ = h−1({h?}) ∩ U?

is convex. In particular, up to possibly restricting U?, we may assume that U?
is closed and that ∅ 6= Πω(x) ⊆ U? for any x ∈ U?. Let η := supU? h− h? and
let ψ(s) := %sϑ for some % > 0 and ϑ ∈ (0, 1] to be determined. Fix any x ∈ U?
such that h? < h(x) < h? + η (equivalently, x ∈ U? such that h(x) 6= h?), and
let x̄ ∈ Πω(x). Then, x̄ ∈ U? and h(x̄) = h?. Due to the locality of the definition
of the subdifferential ∂, notice that ∂h(x) ⊆ ∂h̃(x). Then, for any vx ∈ ∂h(x)
one has

c
2‖x− x̄‖

p = c
2 dist(x, ω)p ≤ h(x)− h? = h̃(x)− h̃(x̄) ≤ 〈vx, x− x̄〉
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≤ ‖vx‖‖x− x̄‖,

where the second inequality holds without an o(‖x−x?‖) term due to convexity
of h̃. From the arbitrarity of vx ∈ ∂h(x), it follows that

c
2‖x− x̄‖

p ≤ h(x)− h? ≤ dist(0, ∂h(x))‖x− x̄‖.

In particular,

ψ′
(
h(x)− h?

)
dist

(
0, ∂h(x)

)
= %ϑ(h(x)− h?)ϑ−1 dist

(
0, ∂h(x)

)
≥ %ϑ (h(x)− h?)ϑ

‖x− x̄‖

≥ scϑ

2ϑp‖x− x̄‖
pϑ−1%.

By selecting ϑ = 1/p ∈ (0, 1] and % = p

(c/2)1/p > 0 the sought KL inequality (3.3)
is obtained.

The requirement of convexity cannot be removed from Lemma 3.14, unless
additional assumptions are made. To see this, consider function h(x) := x2(2 +
sin 1

x ), defined on R. Then, h is continuously differentiable and has the quadratic
growth at x? = 0, but it does not admit a Łojasiewicz function (in fact, not
even a KL function). This is because h(x)− h(x?) > 0 for any x 6= x?, and for
every neighborhood U? of x? there exists x ∈ U? \ {x?} such that h′(x?) = 0, as
it can be easily verified, hence the KL inequality (3.3) can never be satisfied.

The next result establishes the equivalence of the KL property on theM- and
F-envelopes.

Theorem 3.15. Suppose that ϕM
A
γ is strictly continuous. Then, for every

nonempty set ω ⊆ Rn the following are equivalent:

(a) ϕM
A
γ has the KL property on ω.

(b) ϕA
γ has the KL property on G−1

γ (ω).

In fact, up to strictly positive scalings, there is a one-to-one correspondence
between the KL functions for ϕA

γ and those for ϕM
A
γ .

Proof. We will prove the result for arbitrary strictly continuous functions
h : Rn → R and Lipschitz homeomorphisms G : Rn → Rn.
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Let x̄ ∈ ω be fixed and let L be a Lipschitz modulus for G−1. By combining
Lem. 1.3(ii) with [106, Thm.s 10.49 and 9.62] we have that

∂(h ◦G)(x) ⊆
{
M>v |M ∈ ∂CG(x), v ∈ ∂h(G(x))

}
for all x ∈ ωε.

Due to L-Lipschitz continuity of G−1, it holds that ‖M>v‖ ≥ 1
L‖v‖ for any

M ∈ ∂CG(x̄) and v ∈ Rn. Therefore,

dist
(
0, ∂(h ◦G)(x̄)

)
≥ min

{
‖M>v‖ |M ∈ ∂CG(x̄), v ∈ ∂h(G(x̄))

}
≥ 1

L min {‖v‖ | v ∈ ∂h(G(x̄))}

= 1
L dist

(
0, ∂h(G(x̄))

)
.

Suppose now that ψ is a KL function for h at G(x̄). Then, for x close enough
to x̄ and with h(G(x)) > h(G(x̄)) we have that h(G(x)) − h(G(x̄)) is in the
domain of ψ, hence

dist
(
0, ∂(h ◦G)(x)

)
≥ 1

L dist
(
0, ∂h(G(x))

)
≥ 1

Lψ(h(G(x))−h(G(x̄))) ,

proving that Lψ is a KL function for h ◦G at x̄. By interchanging G with G−1,
the converse implication is similarly derived.

In conclusion of this section we establish sufficient conditions ensuring the
Łojasiewicz property with exponent ϑ = 1/2 when the residual RA

γ , as defined
in (2.9), is differentiable.

Proposition 3.16 (Residual nonsingularity and Łojasiewicz property). Let s?
be a fixed point for FAλ

γ . Suppose that the following hold:

a1 RA
γ is differentiable at s? with nonsingular Jacobian JRA

γ (s?).

a2 there exists m > 0 such that dist(0, ∂ϕA
γ (s)) ≤ mdist(0,RA

γ (s)) holds for
all s close to s?.

Then, ϕA
γ has the Łojasiewicz property with exponent ϑ = 1/2 at s?.

Proof. Let ψ(t) = ct1/2 with c > 0 to be determined. For s close to s?, necessar-
ily RA

γ is single valued. Moreover, the nonsingularity assumption entails the
existence of α > 0 such that ‖RA

γ (s)‖ ≥ α‖s− s?‖. Here, we used the fact that
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s? is critical and hence RA
γ (s?) = 0. Whenever ϕA

γ (s) > ϕ? := ϕA
γ (s?), we have

ψ′
(
ϕA
γ (s)− ϕ?

)
dist

(
0, ∂ϕA

γ (s)
)

= c

2
√
ϕA
γ (s)− ϕ?

dist
(
0, ∂ϕA

γ (s)
)

≥ cm

2
√
ϕA
γ (s)− ϕ?

‖RA
γ (s)‖

≥ cmα√
2m2

,

where in the last inequality we used the quadratic bound of Prop. 3.9. By taking
c =

√
2m2
mα we obtain the sought Łojasiewicz function ψ.

3.3 Lyapunov functions for proximal algorithms

We are now ready to show how proximal envelopes fit into the fixed-point
Lyapunov framework for ensuring convergence of GPMM algorithms. Specifically,
we will show that the F -envelope ϕA

γ serves as Lyapunov function for the GPMM
iterations of FAλ

γ , provided that the stepsize γ is small enough and that the
relaxation λ is sufficiently close to 1. To this end, it will suffice to show that ϕA

γ

satisfies the sufficient decrease property 2.2.p1, as formalized in the next result.
Lemma 3.17 (Necessity and sufficiency of the sufficient decrease). The F-
envelope ϕA

γ is a Lyapunov function for FAλ
γ iff there exists c > 0 such that

ϕA
γ (s̄) ≤ ϕA

γ (s)− c
2‖s− s̄‖

2

holds for all s ∈ Rn and s̄ ∈ FAλ
γ (s).

Proof. Since inf ϕA
γ = inf ϕ and since ϕA

γ has full domain, cf. Cor. 3.3(iii)
and Prop. 3.8, both the lower boundedness prescribed by property 2.2.p1 and
the real valuedness are covered. The only missing ingredient is the sufficient
decrease property 2.2.p2, which is exactly what required in the statement.

3.3.1 Sufficient decrease: a priori estimates

In this subsection we provide sufficient conditions involving the parameters m1,
m2, LGγ and µGγ of properties 2.10.p2 and 2.26.p2 (all depending on the step-
size γ), that ensure that the F -envelope is a Lyapunov function for the GPMM
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fixed-point iterations of FAλ
γ . Although possibly very loose estimates, they can

be computed with elementary algebra without the need of any in-depth analysis,
resulting in easy criteria for determining ranges of stepsizes γ and relaxation
parameters λ with which FAλ

γ fixed-point iterations are (subsequentially) con-
vergent. In the dedicated Chapter 6, a more sophisticated analysis will tighten
such ranges for the Douglas-Rachford splitting; in fact, (some of) the given
ranges will prove to be optimal.

Theorem 3.18. For all λ 6= 0, s ∈ Rn, and s+ ∈ FAλ
γ (s) it holds that

ϕA
γ (s+) ≤ ϕA

γ (s)− m2

2

(2µGγ
λ
− 1− ρM

λ2 − L2
Gγ

)
‖s− s+‖2, (3.5)

where ρM := m1/m2.

Proof. Let x := Gγ(s) and x+ := Gγ(s+); then, there exists x̄ ∈ T A
γ (x) such

that s+ = s− λ(x− x̄). We have

ϕA
γ (s+) = ϕM

A
γ (x+) ≤MA

γ (x̄;x+)

2.10.p2
≤ ϕ(x̄) + m2

2 ‖x
+ − x̄‖2

3.2(ii)
≤ ϕM

A
γ (x)− m1

2 ‖x− x̄‖
2 + m2

2 ‖x
+ − x̄‖2

= ϕA
γ (s)− m1

2 ‖x− x̄‖
2

+ m2
2 ‖x

+ − x‖2 + m2
2 ‖x− x̄‖

2 −m2〈x− x+, x− x̄〉.

Since x− x̄ = 1
λ (s− s+), the inequality becomes

ϕA
γ (s+) ≤ ϕA

γ (s) + m2−m1
2λ2 ‖s− s+‖2 + m2

2 ‖x
+ − x‖2 − m2

λ 〈x− x
+, s− s+〉

≤ ϕA
γ (s)−

(
m2µG
λ − m2−m1

2λ2 − m2L
2
G

2

)
‖s− s+‖2,

hence the claimed expression.

Corollary 3.19 (Sufficient decrease of GPMM schemes). Let ρMγ
:= m1/m2,

ρGγ := µGγ/LGγ , and ∆ := 1− ρ2
Gγ

(1− ρMγ
). Then, ϕA

γ is a Lyapunov function
for FAλ

γ provided that

1−
√

∆
ρGγLGγ

< λ <
1 +
√

∆
ρGγLGγ

.
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In particular, for any such stepsize γ and relaxation λ the convergence results
of Theorem 3.22 apply to the fixed-point iterations of FAλ

γ .

Proof. Denoting ξ := (µGγλ)−1, it follows from Thm. 3.18 that ϕA
γ (s+) ≤

ϕA
γ (s) −

m2µ
2
Gγ

2 c‖s − s+‖2, where c := 2ξ − (1 − ρMγ
)ξ2 − ρ2

Gγ
. By imposing

c > 0 and solving with respect to ξ one obtains

1−
√

∆
1− ρMγ

< ξ <
1 +
√

∆
1− ρMγ

,

where ∆ := 1− ρ2
Gγ

(1− ρMγ
is a strictly positive constant (since ρGγ , ρMγ

∈
(0, 1]). After easy algebraic manipulations one obtains the range of λ as in the
statement, hence that ϕA

γ satisfies the sufficient decrease property 2.2.p2. The
claim then follows from Lem. 3.17.

For pure PMM schemes, the analysis is much simpler. This fact, a direct
consequence of Corollary 3.19 and stated next, extends and details the analysis
of the proximal point algorithm discussed at the beginning of the chapter, see
Example 3.21.

Corollary 3.20 (Sufficient decrease of PMM schemes). Suppose that Gγ ≡ id
for all γ’s (hence FAλ

γ ≡ T A
γ and ϕA

γ ≡ ϕM
A
γ ). Then, for all λ > 0, x ∈ Rn

and x+ ∈ FAλ
γ (x) it holds that

ϕA
γ (x+) ≤ ϕA

γ (x)− m2
2λ2

(
ρM − (1− λ)2)‖x− x+‖2,

where ρM := m1/m2. In particular, if 1−√ρM < λ < 1+√ρM, then ϕA
γ = ϕM

A
γ

is a Lypunov function for FAλ
γ , hence the convergence results of Theorem 3.22

apply to its fixed-point iterations.

Proof. The inequality follows from Thm. 3.18 and the feasible range from Cor.
3.19; in fact, Gγ = id is µGγ -strongly monotone and LGγ -Lipschitz continuous
with µGγ = LGγ = 1.

Example 3.21 (Proximal point algorithm). As detailed in Example 2.29, the
proximal point is a pure PMM algorithm with m1(γ) = m2(γ) = 1/γ. Its model
and algorithmic envelopes coincide, and equal the Moreau envelope ϕγ . Corollary
3.20 then readily applies, resulting in

ϕγ(x+) ≤ ϕγ(x)− 2−λ
2γλ ‖x− x

+‖2
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for all x+ ∈ Fppλ
γ (x) = (1− λ)x+ λproxγϕ(x), thus confirming what revealed

in (3.2).

3.4 Convergence of GPMM algorithms

We conclude the chapter by furnishing the claimed convergence results of GPMM
algorithms. As expected, subsequential convergence will easily follow from the
similar result in the more general fixed-point framework that opened Chap-
ter 2. The KL property, discussed and analyzed in Section 3.2.4, will allow the
development of stronger convergence results, which will pattern the similar ones
shown in particular cases, see e.g., [5].

Theorem 3.22. Consider the fixed-point iterations (sk)k∈N generated by FAλ
γ ,

and let xk := Gγ(sk). If ϕA
γ satisfies the sufficient decrease property 2.2.p2 for

FAλ
γ , then the following hold:

(i) The fixed-point residual (dist(0,RA
γ (sk)))k∈N is square summable; in

particular, minj≤k dist(0,RA
γ (sj)) ∈ O(1/

√
k).

(ii) The set ω of accumulation points of the sequence (xk)k∈N satisfies ω ⊆
fix T A

γ ⊆ zer ∂̂ϕ.

(iii) If ϕ is level bounded, then (sk)k∈N and (xk)k∈N are bounded, and ω is
a nonempty, compact, and connected set satisfying dist(xk, ω) → 0 as
k →∞.

(iv) ϕM
A
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕM
A
γ (xk))k∈N.

Proof. We know from Lem. 3.17 that ϕA
γ is a Lyapunov function for FAλ

γ .
Moreover, by definition of FAλ

γ , for all k ∈ N there exists x̄k ∈ T A
γ (xk) such

that sk+1 = sk − λ(xk − x̄k).

♠ 3.22(i). Follows from Thm. 2.4(i) together with the fact that

dist(xk, T A
γ (xk)) ≤ ‖xk − x̄k‖ = 1

λ‖s
k − sk+1‖.

♠ 3.22(ii). Follows from Thm. 2.4(ii) and (2.7).

♠ 3.22(iii). Follows from Thm. 2.4(iii) together with the fact that the continuous
function Gγ maps bounded sets to bounded sets.
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♠ 3.22(iv). That ϕM
A
γ ≡ ϕ on ω follows from Thm. 3.2(i) in light of the inclusion

ω ⊆ fix T A
γ . Due to properties 2.2.p1 and 2.2.p2 of Lyapunov functions, the

sequence (ϕM
A
γ (xk))k∈N = (ϕA

γ (sk))k∈N is decreasing and admits a finite limit,
be it ϕ?. From Thm. 3.2(ii) we have that∣∣∣ϕ(x̄k)− ϕM

A
γ (xk)

∣∣∣ ≤ m2
2 ‖x

k − x̄k‖2,

and since ‖xk − x̄k‖ → 0 we infer that ϕ(x̄k)→ ϕ?. Let x? ∈ ω be fixed, and
consider a subsequence (xjk)k∈N that converges to x?. Then, also (x̄jk)k∈N → x?.
We have

ϕ(x?) ≤ ϕ? ≤ ϕM
A
γ (xjk) ≤MA

γ (x?;xjk)
2.10.p2
≤ ϕ(x?) + m2

2 ‖x
jk − x?‖2

where the first inequality is due to lower semicontinuity, the second one to the
fact that (ϕM

A
γ (xk))k∈N is decreasing, and the third one from the definition of

MA
γ -envelopes. Since (xjk)k∈N → x?, we conclude that ϕ(x?) = ϕ?, and the

claim follows from the arbitrarity of x? ∈ ω.

Theorem 3.23 (Global convergence). Suppose that the following hold:

a1 ϕ is level bounded;

a2 ϕA
γ satisfies the sufficient decrease property 2.2.p2 for FAλ

γ ;

a3 ϕM
A
γ has the KL property;

a4 there exists m > 0 such that dist(0, ∂ϕMA
γ (x)) ≤ mdist(x, T A

γ (x)) holds
for all x close to fix T A

γ .

Let (sk)k∈N be a sequence generated by fixed-point iterations of FAλ
γ , and let

xk := Gγ(sk). Then, the following hold:

(i) (xk)k∈N converges to a point x? ∈ fix T A
γ ⊆ zer ∂̂ϕ (hence (sk)k∈N

converges to G−1
γ (x?)).

(ii) The fixed-point residual (dist(0,RA
γ (sk)))k∈N is summable, and in par-

ticular minj≤k dist(0,RA
γ (sk)) ∈ O(1/k).

Proof. From Thm.s 3.22(iii) and 3.22(iv) we have that the sequence (xk)k∈N
remains bounded, that the set of accumulation points ω is a nonempty, compact
and connected set such that dist(xk, ω) → 0 as k → ∞, and that ϕM

A
γ is

constant on ω. Let ϕ? be the value of ϕM
A
γ on ω. Let the constants δ, ε > 0 and
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the uniformized KL function ψ be as in Lem. 3.12. Up to possibly discarding
the first iterates, without loss of generality we may assume that dist(xk, ω) < ε

and ϕM
A
γ (xk) < ϕ? + η for all k ∈ N, so that

∆k := ψ
(
ϕM

A
γ (xk)− ϕ?

)
are well-defined quantities for all k ∈ N. Similarly, we may also assume that
all points xk are close enough to ω ⊆ fix T A

γ so that the bound 3.23a4 holds.
Let c > 0 be the sufficient decrease constant of the Lyapunov function ϕA

γ (cf.
2.2.p2), and let x̄k ∈ T A

γ (xk) be such that sk+1 = sk − λ(xk − x̄k). Then,

ϕM
A
γ (xk)− ϕM

A
γ (xk+1) = ϕA

γ (sk)− ϕA
γ (sk+1)

≥ c
2‖s

k − sk+1‖2 = cλ2

2 ‖x
k − x̄k‖2. (3.6)

We have

∆k −∆k+1 ≥ ψ′
(
ϕM

A
γ (xk)− ϕ?

)(
ϕM

A
γ (xk)− ϕM

A
γ (xk+1)

)
3.12.p3
≥ 1

dist
(
0, ∂ϕMA

γ (xk)
)(ϕMA

γ (xk)− ϕM
A
γ (xk+1)

)
(3.6)
≥ cλ2‖xk − x̄k‖2

2 dist
(
0, ∂ϕMA

γ (xk)
)

3.23a4
≥ cλ2‖xk − x̄k‖2

2mdist
(
xk, T A

γ (xk)
)

≥ cλ2

2m ‖x
k − x̄k‖. (3.7)

We may then telescope the inequality to obtain

∆0 ≥
∑
k∈N

(
∆k −∆k+1

)
≥ cλ2

2m
∑
k∈N
‖xk − x̄k‖ = cλ2

2m
∑
k∈N
‖sk − sk+1‖,

where the first inequality follows from the fact that ∆k ≥ 0. This shows
that the sequence (sk)k∈N has finite length, and therefore is convergent, hence
so is (xk)k∈N due to continuity of Gγ . That the limit of (xk)k∈N belongs to
fix T A

γ ⊆ zer ∂̂ϕ is a consequence of Thm. 3.22(ii), and the claim on the rate
of convergence can be shown by arguing as in the proof of Thm. 2.4(i).
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Theorem 3.24 (Linear convergence). Suppose that the assumptions of Theorem
3.23 are satisfied, and that the KL function can be taken of the form ψ(t) =
ctϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈N, (xk)k∈N, and
dist(0,RA

γ (sk)) are R-linearly convergent.

Proof. Let xk := Gγ(sk) and rk := xk − x̄k. We know from Thm. 3.23 that the
sequence (xk)k∈N converges to a point x?, and that rk → 0 as k →∞. For all
k’s large enough such that xk is sufficiently close to x?, we have

‖rk‖ ≥ dist(xk, T A
γ (xk))

3.23a4

≥ 1
m dist

(
0, ∂ϕM

A
γ (xk)

)
(due to 3.23a3) ≥ 1

mψ′
(
ϕM

A
γ (xk)− ϕ(x?)

)
= 1
mcϑ

(
ϕM

A
γ (xk)− ϕ(x?)

)1−ϑ
. (3.8)

Therefore,

∆k := ψ
(
ϕM

A
γ (xk)− ϕ(x?)

)
= c
(
ϕM

A
γ (xk)− ϕ(x?)

)ϑ ≤ c(mcϑ‖rk‖) ϑ
1−ϑ ,

where the last inequality follows from (3.8). Since rk → 0 as k →∞, for all k’s
large enough it holds that mcϑ‖rk‖ ≤ 1. Moreover, having ϑ ≥ 1/2 implies that
ϑ

1−ϑ ≥ 1, hence
(
mcϑ‖rk‖

) ϑ
1−ϑ ≤ mcϑ‖rk‖ for all k’s large enough. We may

thus continue the inequality as

∆k ≤ mc2ϑ‖rk‖. (3.9)

Let Bk :=
∑
j≥k ‖rj‖. Then,

‖sk − s?‖ ≤
∑
j≥k

‖sj − sj+1‖ = λ
∑
j≥k

‖xj − x̄j‖ = λBk. (3.10)

We have

Bk =
∑
j≥k

‖rj‖
(3.7)
≤ 2m
cλ2

∑
j≥k

(∆j −∆j+1) = 2m
cλ2 ∆k

(due to (3.9)) ≤ 2ϑm2c

λ2 ‖rk‖ = 2ϑm2c

λ2 (Bk −Bk+1).
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By suitably rearranging, we obtain that for all k’s large enough it holds that

Bk+1 ≤
(
1− λ2

2ϑm2c

)
Bk,

hence, that (Bk)k∈N is asymptotically Q-linearly convergent. The claimed R-
linear convergence rates then follow from (3.10) and from the fact that ‖rk‖ ≤
Bk.



Chapter 4

Acceleration of nonconvex splitting algorithms

4.1 A new backtracking paradigm
for continuous Lyapunov functions

In the next chapters we will see that, under due assumptions, many splitting
algorithms fit into the proposed GPMM framework. In this perspective, the
theory developed so far serves a twofold purpose. First, it establishes a novel
(and unified) convergence analysis of known splitting algorithms applied to
nonconvex problems. Secondly, it sets the ground for building new methods on
top of the known ones, which at negligible additional cost per iteration may
result in an outstanding performance improvement. This chapter deals with this
second objective. Interestingly, most (if not all) known splitting algorithms that
fit into the generalized proximal MM framework are based on continuous models,
in the sense of Definition 2.11. As a result, not only are the correspondingM-
and F -envelope functions real valued, but they are also continuous, as ensured
by Proposition 3.8.

Continuity of the Lyapunov function is the key property over which this chap-
ter depends. In fact, although the same arguments could even be applied to
the abstract Lyapunov framework briefly investigated in Section 2.1 by sim-
ply restricting the analysis to continuous functions L, now that we are well
acquainted with proximal envelopes and GPMM algorithms this degree of gener-
ality is no longer needed. Nevertheless, for the sake of understanding how plain
continuity can be of any use, let us suppose that L ∈ C0(Rn) is a Lyapunov
function for some osc and nonempty-valued fixed-point mapping F : Rn ⇒ Rn,
and let c > 0 be the sufficient decrease constant as in property 2.2.p2. Suppose
that the current iterate is s ∈ Rn, and let d ∈ Rn be an arbitrary candidate
update direction at s. What d is, and how it is retrieved is irrelevant at the mo-

68
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ment; suffice it to say that the choice of an update direction d represents our
degree of freedom for extending a known (splitting) algorithm while maintain-
ing its (subsequential) convergence properties, and that “ideally” we would like
to replace the fixed-point update s 7→ s+ ∈ F(s) with the chosen s+ = s+ d,
for we have reason to believe this choice will lead us closer to a fixed point of
F . In order to distinguish between the proposed modification and the original
fixed-point iteration, let us establish the convention of denoting s̄ ∈ F(s) (as
opposed to s+ which we shall reserve to the modified update), and refer to it
as a nominal update. Let us also suppose that the current iterate s is not a
fixed point of F , for otherwise a solution would be found and there would be
no reason to investigate any further. Due to the sufficient decrease property of
the Lyapunov function L, we know that

L(s̄) ≤ L(s)− c
2‖s− s̄‖

2 for any nominal update s̄ ∈ F(s).

However, nothing can be said as to whether L(s+d) is also (sufficiently) smaller
than L(s) or not, nor can we hope to enforce the condition with a classical
backtracking s + τd for small τ > 0, as no notion of descent is known to L
(which is continuous but not necessarily differentiable); moreover the direction d
is even arbitrary. Is there a way to design a linesearch ensuring that the wanted
update, or something close to it, also satisfies a sufficient decrease? Here is
where continuity comes into the picture.

Let us replace the sufficient decrease constant c with a smaller value, say, αc
for some α ∈ (0, 1). Then, not only does s̄ satisfy the sufficent decrease with
constant αc, but due to continuity of L so do all the points around: loosely
speaking,

L(s′) ≤ L(s)− αc
2 ‖s− s̄‖

2 for all s′ close to s̄. (4.1)

The idea is then to “push” the candidate update s+d towards the “safe” update
s̄ until the relaxed decrease condition (4.1) holds. One way to do so is through a
linesearch along the segment connecting the “ideal” update s+ d and the “safe”
nominal update s̄, as follows:
τ ← 1
repeat s+ = (1− τ)s̄+ τ(s+ d)
until L(s+) ≤ L(s)− αc

2 ‖s− s̄‖
2.

The caveat of this approach is that it assumes that L is an explicit function,
in the sense that its value can be computed at any point. On the contrary,
this was not an issue in the previous chapters where only nominal algorithms
were investigated. To underline the significance of the claim, recall that for
convex splitting algorithms L = dist( · ,fixF)2 is a suitable Lyapunov function,
cf. (2.2), which is also continuous. Unfortunately, however, such a Lyapunov
function is of no use, as its value, in meaningful problems, cannot be evaluated.
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A solution to this problem will be proposed in Chapter 8, where by means of
properties of projections and averaged mappings L will be approximated by
using available information.

This solution, however, does not apply in the nonconvex setting investigated
here, which is where envelope functions yet again prove their worth. Indeed,
when L = ϕA

γ is an envelope function, one evaluation requires only one nominal
step: any s̄ ∈ FAλ

γ (s) is expressed as

s̄ = s− λ(x− x̄) for some x̄ ∈ T A
γ (x),

hence
ϕA
γ (s) = ϕM

A
γ (x) =MA

γ (x̄;x).

4.2 The CLyD algorithmic framework

Algorithm 4.1. Continuous-Lyapunov Descent framework

Require • γ, λ s.t. the continuous function ϕA
γ satisfies the

sufficient decrease 2.2.p2 with c > 0 for FAλ
γ

• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate s0 ∈ Rn
• tolerance ε > 0

Provide x∗ with dist
(
x∗, T A

γ (x∗)
)
≤ ε

1: for k = 0, 1, 2, . . . do

2: Do one nominal FAλ
γ -step: xk = Gγ(sk)

x̄k ∈ T A
γ (sk)

s̄k = sk − λ(xk − x̄k)
3: if ‖xk − x̄k‖ ≤ ε then
4: return x∗ = x̄k

5: Select an update direction dk ∈ Rn at sk
6: Let τk ∈

{
2−i | i ∈ N

}
be the largest such that

ϕA
γ (sk+1) ≤ ϕA

γ (sk)− α c2‖s
k − s̄k‖2, (4.2)

where sk+1 := (1− τk)s̄k + τk(sk + dk)
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The ideas discussed in the previous section lead to the Continuous-Lyapunov
Descent algorithm (CLyD), detailed in Algorithm 4.1. We begin by showing
that the proposed algorithm maintains the subsequential convergence properties
of the underlying nominal scheme.

Theorem 4.1 (Subsequential convergence of (nonmonotone) CLyD). The
following hold for the iterates generated by CLyD (Alg. 4.1) with tolerance
ε = 0:

(i) The residual (‖xk− x̄k‖)k∈N is square-summable; in particular, it vanishes
with rate minj≤k dist(xj , T A

γ (xj)) ∈ O(1/
√
k).

(ii) The set ω of accumulation points of (xk)k∈N satisfies ω ⊆ fix T A
γ ⊆

zer ∂̂ϕ.

If, additionally, ‖dk‖ → 0 as k →∞, then the following also hold:

(iii) If ϕ is level bounded, then (sk)k∈N, (xk)k∈N, (s̄k)k∈N, and (x̄k)k∈N are
bounded, and ω is a nonempty, compact and connected set satisfying
dist(xk, ω)→ 0 as k →∞.

(iv) ϕM
A
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕM
A
γ (xk))k∈N.

All the claims remain valid if the linesearch condition (4.2) is replaced by the
following nonmonotone version:

ϕA
γ (sk+1) ≤ L̄k − α c2‖s

k − s̄k‖2, (4.3)

where, for any sequence (tk)k∈N ⊆ [0, 1] bounded away from 0, L̄k are recursively
defined as follows:

L̄k :=
{
ϕA
γ (s0) if k = 0,

(1− tk)L̄k−1 + tkϕ
A
γ (sk) otherwise.

Proof. The feasibility of the linesearch for arbitrary directions dk has been
extensively discussed in the previous section. Moreover, the first part of the
proof is similar to that of Thm. 3.22, so we simply outline the details.

♠ 4.1(i). We have

∑
k∈N
‖sk − s̄k‖2

(4.2)
≤ 2
αc

∑
k∈N

(
ϕA
γ (sk)− ϕA

γ (sk+1)
)
≤ 2
αc

(
ϕA
γ (s0)− inf ϕ

)2.2.p1
<∞,
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where in the third inequality we used the fact that inf ϕA
γ = inf ϕ, cf. Cor.

3.3(iii).

♠ 4.1(ii). Suppose that a subsequence (skj )j∈N converges to a point s?. Since
(‖sk − s̄k‖)k∈N → 0, it also holds that s̄kj → s? as j →∞. Thus,

s? = lim
j→∞

s̄kj ∈ limsup
j→∞

FAλ
γ (skj ) ⊆ FAλ

γ (s?),

where the last inclusion follows from the fact that FAλ
γ is osc.

♠ 4.1(iii). Since (sk)k∈N ⊂ lev≤ϕA
γ (s0), the sequence is bounded provided ϕA

γ

is level bounded, which in turn is equivalent to having ϕ level bounded, cf. Thm.
3.7. Then, due to continuity of Gγ , necessarily also (xk)k∈N is bounded.
If, additionally, ‖dk‖ → 0 as k →∞, then since τk ∈ [0, 1] for all k’s we have

‖sk+1− sk‖ =
∥∥(1− τk)s̄k + τk(sk +dk)− sk

∥∥ ≤ (1− τk)‖sk− s̄k‖+ τk‖dk‖ → 0

as k →∞. The proof now follows from Lem. 2.3.

Let us now prove the claim for the nonmonotone variant. We start by showing
that the linesearch is indeed feasible, and that for all k ∈ N the following hold:

(v) L̄k ≥ ϕA
γ (sk).

(vi) L̄k+1 ≤ L̄k − tk+1αc‖sk − s̄k‖2.

For k = 0, inequality 4.1(v) holds as equality, and in particular the nonmonotone
linesearch condition (4.3) is satisfied by small enough stepsizes. Suppose now
that up to iteration k ≥ 0 the inequality holds and in particular the nonmonotone
linesearch is feasible; then,

L̄k+1 = (1− tk+1)L̄k + tk+1ϕ
A
γ (sk+1)

≥ (1− tk+1)ϕA
γ (sk+1) + tk+1ϕ

A
γ (sk+1)

= ϕA
γ (sk+1),

where in the inequality the nonmonotone linesearch (4.3) was used. Hence,
4.1(v) holds for all k’s, and the linesearch is always feasible. The inequality in
4.1(vi) then readily follows from the fact that L̄k+1 ≥ ϕA

γ (sk+1). In particular,
L̄k ≥ inf ϕA

γ > −∞ for all k; we may then telescope the linesearch inequality
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(4.3) to arrive to

∞ > L̄0 − inf ϕA
γ ≥ αc

∑
k∈N

tk‖sk − s̄k‖2 ≥ αctmin
∑
k∈N
‖sk − s̄k‖2,

where tmin := infk∈N tk, which is strictly positive by assumption. We may now
trace the proof of the monotone variant to arrive to the same conclusions.

An interesting observation is that for pure PMM schemes with no relaxation,
that is, if G = id and λ = 1, continuity of the envelope function is not required
for the well definedness of the algorithm. In fact, in this case upper bounds on
the number of backtracking of τk can be established without any continuity
requirement. To see this, let x, d ∈ Rn be fixed, and let x̄ ∈ T A

γ (x) be the result
of a nominal PMM-step. For τ ∈ [0, 1], consider x+

τ := (1− τ)x̄+ τ(x+d). Then,

ϕM
A
γ (x+

τ )
3.9
≤ ϕ(x̄) + m2

2 ‖x̄− x
+
τ ‖2

≤ ϕM
A
γ (x)− c

2‖x̄− x‖
2 + m2

2 ‖x̄− x
+
τ ‖2

= ϕM
A
γ (x)− c

2‖x̄− x‖
2 + m2τ

2

2 ‖x̄− x− d‖
2

≤ ϕM
A
γ (x)− c

2‖x̄− x‖
2 +m2τ

2(‖x̄− x‖2 + ‖d‖2).

Thus, ϕM
A
γ (x+

τ ) ≤ ϕM
A
γ (x) − α c2‖x − x̄‖2 when τ ≤

√
(1−α)c

2m2
1

1+‖d‖2/‖x−x̄‖2 .
Since τ is halven every time the linesearch condition (4.2) does not hold, it
follows that

G = id, λ = 1 ⇒ τk ≥ 1
2

√
(1−α)c

2m2
1

1+‖dk‖2/‖xk−x̄k‖2
∀k

in CLyD (Alg. 4.1). In order to drop the assumption of continuity as well as
to upper bound the number of τ -bactrackings for any GPMM scheme with
relaxation, one could consider replacing the s-update rule with

s+ = (1− τ)G−1(x̄+
0 ) + τ(s+ d),

where s+
0 ∈ FAλ

γ (s) is the result of a nominal FAλ
γ -update, x+

0 = G(s+
0 ), and

x̄+
0 ∈ T A

γ (x+
0 ). In fact, similarly to the chain of inequalities above,

ϕA
γ (s+)(def)= ϕM

A
γ (G(s+))

(Prop. 3.9) ≤ ϕ(x̄+
0 ) + m2

2 ‖G(s+)− x̄+
0 ‖2
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(Thm. 3.2(ii)) ≤ ϕM
A
γ (x+

0 ) + m2
2 ‖G(s+)− x̄+

0 ‖2

= ϕA
γ (s+

0 ) + m2
2 ‖G(s+)− x̄+

0 ‖2

≤ ϕA
γ (s)− c

2‖s− s
+
0 ‖2 + m2

2 ‖G(s+)− x̄+
0 ‖2.

Then, we may use LG-Lipschitz continuity of the transient mapping G to infer
that

‖G(s+)− x̄+
0 ‖ ≤ LG‖s+ −G−1(x̄+

0 )‖ = τLG‖G−1(x̄+
0 )− s− d‖,

and a lower bound on τ ensuring the linesearch condition (4.2) can then be
easily established, without the need of continuity of ϕA

γ .

The problem of this strategy is that it requires inverting the transient mapping
G (for computing the point G−1(x+

0 ), an operation that is not prescribed
by the nominal FAλ

γ -iterations. As detailed in the next section, by using the
backtracking proposed in CLyD (Alg. 4.1) we can instead improve the underlying
GPMM scheme without the need to complicate the oracle of its iterations. For
this reason and for simplicity of the exposition, although most convergence
results could easily be extended, the variant here introduced will not be further
discussed in the thesis.

4.3 Choice of directions

Although the proposed algorithmic framework is robust to any choice of direc-
tions dk, on the contrary its efficacy is greatly affected by the specific selection.
This section provides an overview on some update directions dk that can be
conveniently considered.

The termination criterion for CLyD (Alg. 4.1) is based on (the norm of) the
fixed-point residual of the underlying splitting schemes

RA
γ (s) = 1

γ (x− x̄) = 1
γλ (s+ − s).

Under some assumptions, which will be investigated case by case in the remaining
chapters, close to critical points the residual mapping RA

γ becomes a well-
behaved single-valued function, possibly enjoying Lipschitzian or differentiability
properties. As a result, one ends up solving a system of nonlinear equations,
namely finding s? such that RA

γ (s?) = 0.
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As a way to speed up convergence, one possibility is to employ directions
stemming from fast methods for nonlinear equations, namely

dk = −HkRA
γ (sk),

where the linear operator Hk mimicks JRA
γ (sk)−1. When the residual is differ-

entiable or admits some Jacobian approximations, one can indeed consider an
exact Newton step as update direction. However, the combination of nonconvex-
ity and nonsmoothness in the investigated problems makes this property quite
uncommon. Moreover, even when this is the case, the computation of (gener-
alized) Jacobians and the consequent solution of linear system to retrieve the
Newton direction fails to preserve the simple oracle of the nominal splitting
algorithms.

For these reasons, we limit the analysis to quasi-Newton schemes which, starting
from any invertible matrix H0 (typically a positve multiple of the identity)
perform low-rank updates based on available quantities. Such quantities are
pairs of vectors (pk, qk), where pk is the difference between iterates and qk the
difference of the respective fixed-point residuals: denoting sk+1

0 := sk + dk the
update tried first in the backtracking (that is, with τ = 1), these vectors are
given by {

pk = sk+1
0 − sk

qk = rk+1
0 − rk,

with rk := 1
λγ (sk − s̄k) ∈ RA

γ (sk) (4.4)

and similarly rk0 ∈ RA
γ (sk0). As it will be clear in the proof of Theorem 4.7, this

particular choice of pk and qk rather than the conventional pk = sk+1 − sk and
qk = rk+1 − rk, is suited for the proposed innovative linesearch. We will now
list a few update rules for Hk based on the indicated pairs.

4.3.1 (L-)BFGS

Start with H0 � 0 and update as follows:

Hk+1 = Hk + 〈pk, qk〉+ 〈Hkqk, qk〉
(〈pk, qk〉)2 pkp

>
k−

Hkqks
>
k+ skq

>
kHk

〈pk, qk〉
.

Whenever 〈pk, qk〉 ≤ 0, one can either set Hk+1 = Hk or use a different vector
pk as proposed in [100]. The limited-memory variant L-BFGS [88, Alg. 7.4],
which does not require storage of full matrices Hk or matrix-vector products
but only storage of the last few pairs and scalar products, can be conveniently
considered.
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Although very well performing in practice, to the best of our knowledge fast
convergence of BFGS can only be shown when the Jacobian at the limit point
is symmetric, which hardly ever holds in our framework. We suspect, however,
that the good performance of BFGS derives from the observation that, when it
exists, the Jacobian of RA

γ is similar (in the sense of conjugacy) to a symmetric
matrix.

4.3.2 A modified Broyden scheme

Fix ϑ̄ ∈ (0, 1), e.g., ϑ̄ = 0.2, an invertible matrix H0, and update as follows:

Hk+1 = Hk + pk −Hkqk
〈pk, (1/ϑk − 1)pk +Hkqk〉

p>kHk, (4.5a)

where

ϑk :=
{

1 if |γk| ≥ ϑ̄
1−sgn(γk)ϑ̄

1−γk if |γk| < ϑ̄
and γk := 〈Hkq

k, pk〉
‖pk‖2

, (4.5b)

with the convention that sgn 0 = 1. The original Broyden formula [28] corre-
sponds to ϑk ≡ 1, whereas this specific selection ensures that all matrices Hk

are invertible [99]. Under some regularity assumptions at the limit point, in
Theorem 4.7 this modified Broyden method will be shown to trigger superlinear
convergence.

We should remark, however, that extensive numerical evidence seems to agree
that BFGS directions as in Section 4.3.1 yield the best performance. In fact, with
as little as a five-to-ten-vector buffer, the limited memory L-BFGS is extremely
beneficial and requires negligible algebraic operations (few scalar products only
per iteration). For the time being, the Broyden scheme investigated here serves
only for theoretical purposes. Nevertheless, it will find a practical utility in
Chapter 8, where a limited-memory variant will be also proposed.

4.3.3 Anderson acceleration

Fix a buffer size m ≥ 1 and start with H0 = I. For k ≥ 1, let

Hk = I + (Pk −Qk)(Q>kQk)−1Q>k,

where the columns of matrix Pk are the last vectors pk−M , · · · , pk−1 and those
of Qk are the last vectors qk−M , · · · , qk−1, with M = min {k,m}. If Qk is not
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full-column rank, for x ∈ RM the product (Q>kQk)−1x is meant in a least-square
sense. This is a limited-memory scheme, which requires only the storage of few
vectors and the solution of a small M ×M linear system. Anderson acceleration
originated in [2]; here we use the interpretation well explained in [45] of (inverse)
multi-secant update: Hk is the matrix closest to the identity (with respect to
the Frobenius norm) among those satisfying HkQk = Pk.

4.4 Global and (super)linear convergence

Theorem 4.2 (Global convergence). Consider the iterates generated by CLyD
(Alg. 4.1) with tolerance ε = 0. Suppose that the following hold:

a1 ϕ is level bounded;

a2 TheM-envelope ϕM
A
γ has the KL property;

a3 there exists m > 0 such that dist(0, ∂ϕMA
γ (x)) ≤ mdist(x, T A

γ (x)) holds
for all x close to fix T A

γ ;

a4 there exists D > 0 such that ‖dk‖ ≤ D‖sk − s̄k‖ for all k’s.

Then, the following hold:

(i) (xk)k∈N converges to a point x? ∈ fix T A
γ ⊆ zer ∂̂ϕ (hence (sk)k∈N

converges to G−1
γ (x?)).

(ii) The residual is summable and in particular minj≤k dist(xk, T A
γ (xk)) ∈

O(1/k).

Proof. Let L be a Lipschitz modulus for Gγ and G−1
γ . We have

ϕA
γ (sk)− ϕA

γ (sk+1) ≥ α c2‖s
k − s̄k‖2 ≥ α c

2L2 ‖xk − x̄k‖2,

which is exactly the inequality (3.6) in Thm. 3.23 (with a different constant). We
may thus trace the proof therein up to equation (3.7) to infer that (‖xk−x̄k‖)k∈N
is summable. Moreover,

‖sk+1 − sk‖ ≤ (1− τk)‖sk − s̄k‖+ τk‖dk‖
4.2a4
≤ (1 +D)‖sk − s̄k‖

≤ (1 +D)L‖xk − x̄k‖,
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proving that (‖sk+1−sk‖)k∈N is summable too, and thus converges to a point s?.
Because of Lipschitz continuity, also (xk)k∈N converges to some point x?, in fact,
to x? = G−1

γ (s?). That x? ∈ fix T A
γ ⊆ zer ∂̂ϕ follows from Thm. 4.1(ii).

Theorem 4.3 (Linear convergence). Suppose that the assumptions of Theorem
4.2 are satisfied, and that the KL function can be taken of the form ψ(s) =
csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈N, (xk)k∈N, and
dist(xk, T A

γ (xk)) are R-linearly convergent.

Proof. The proof is exactly the same as that of Thm. 3.24, with the only
exception that in (3.10) the inequality ‖sj − sj+1‖ ≤ L‖xj − x̄j‖ is to be used,
as opposed to the equality ‖sj − sj+1‖ = λ‖xj − x̄j‖ therein.

4.5 Superlinear convergence

In the sequel, we will make use of the notion of superlinear directions that
we define next.

Definition 4.4 (Superlinear directions [44, §7.5]). We say that (dk)k∈N are
superlinearly convergent directions for a sequence (sk)k∈N converging
to a point s? if

lim
k→∞

‖sk + dk − s?‖
‖sk − s?‖

= 0.

The next result consititutes a key component of the methodology, as it shows
that the proposed algorithm does not suffer from the Maratos effect [80], a
well-known obstacle for fast local methods that inhibits the acceptance of the
unit stepsize. On the contrary, we will show that whenever the directions (dk)k∈N
of CLyD (Alg. 4.1) are superlinear, then indeed the unit stepsize is eventually
always accepted, and the algorithm reduces to the (undamped) local method
sk+1 = sk + dk, and (xk)k∈N then converges superlinearly.

Theorem 4.5 (Acceptance of the unit stepsize and superlinear convergence).
Consider the iterates generated by CLyD (Alg. 4.1). Suppose that the following
hold:

a1 (xk)k∈N converges to a strong local minimum of ϕ;

a2 (dk)k∈N are superlinearly convergent directions with respect to (sk)k∈N;

a3 γ 6= ΓA (x?);
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Then, there exists k̄ ∈ N such that

ϕA
γ (sk + dk) ≤ ϕA

γ (sk)− α c2‖s
k − s̄k‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to sk+1 = sk + dk and converge
superlinearly.

Proof. Let L be a Lipschitz modulus for the transient mapping Gγ and its
inverse. We know from Thm. 3.6 and the property 2.31.p1 of the criticality
threshold that s? = G−1

γ (s?) is a strong local minimum for ϕA
γ : there exist

ε, µ > 0 such that

ϕA
γ (s)− ϕ? ≥ µ

2 ‖s− s?‖
2 ∀s ∈ B(s?; ε),

where ϕ? := ϕA
γ (s?) = ϕ(x?) (the second equality is due to Cor. 3.3(i)).

Combined with the quadratic upper bound of the F -envelope, see Prop. 3.9, we
obtain

ϕA
γ (sk + dk)− ϕ?
ϕA
γ (sk)− ϕ?

≤ m2

µ

‖Gγ(sk + dk)− x?‖2

‖xk − x?‖2
≤ m2L

2

µ

‖sk + dk − s?‖2

‖sk − s?‖2
,

holding for all k’s sufficiently large. In particular,

εk :=
ϕA
γ (sk + dk)− ϕ?
ϕA
γ (sk)− ϕ?

→ 0 as k →∞.

Thus, for all k’s large enough we have that εk ≤ 1 − α, and also ϕA
γ (s̄k) =

ϕM
A
γ (x̄k) ≥ ϕ? as ensured by Prop. 3.5. Hence, eventually,

ϕA
γ (sk + dk)− ϕA

γ (sk) =
(
ϕA
γ (sk + dk)− ϕ?

)
−
(
ϕA
γ (sk)− ϕ?

)
= (εk − 1)

(
ϕA
γ (sk)− ϕA

γ (s̄k)
)

≤ − α c2‖s
k − s̄k‖2,

which proves the claim.

Theorem 4.6 (Dennis-Moré condition). Consider the iterates generated by
CLyD (Alg. 4.1). Suppose that the following hold:

a1 (sk)k∈N converges to a point s? at which RA
γ is strictly differentiable and

with nonsingular Jacobian JRA
γ (s?).
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a2 The Dennis-Moré condition holds:

lim
k→∞

‖RA
γ (sk) + JRA

γ (s?)dk‖
‖dk‖

= 0. (4.6)

Then, (dk)k∈N are superlinearly convergent directions with respect to (sk)k∈N.

Proof. The Dennis-Moré condition (4.6) implies that

0←
RA
γ (sk) + JRA

γ (s?)dk −RA
γ (sk + dk)

‖dk‖
+
RA
γ (sk + dk)
‖dk‖

as k →∞. Due to strict differentiability, the first term on the right-hand side
vanishes, hence so does the second. Moreover, nonsingularity of RA

γ (s?) implies
that there exists α > 0 such that

‖RA
γ (s)‖ = ‖RA

γ (s)−RA
γ (s?)‖ ≥ α‖s− s?‖

holds for all s close to s?. Here, the first equality is due to the fact that Gγ(s?)
is critical, hence 0 = RA

γ (s?) (equality, as opposed to inclusion, holds due to
the assumption of differentiability). We thus have

0←
‖RA

γ (sk + dk)‖
‖dk‖

≥ α‖s
k + dk − s?‖
‖dk‖

≥ α ‖sk + dk − s?‖
‖sk + dk − s?‖+ ‖sk − s?‖

= α

‖sk+dk−s?‖
‖sk−s?‖

1 + ‖sk+dk−s?‖
‖sk−s?‖

,

as k →∞, and in particular ‖s
k+dk−s?‖
‖sk−s?‖ → 0.

We conclude the section showing that employing Broyden directions (4.5) enables
superlinear convergence rates, provided that RA

γ is Lipschitz continuously
semidifferentiable at the limit point, see [59].

Theorem 4.7 (Superlinear convergence with Broyden directions). Consider
the iterates generated by CLyD (Alg. 4.1) with directions dk selected with the
modified Broyden method of Section 4.3.2. Suppose that the following hold:
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a1 (sk)k∈N converges to a point s? at which RA
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRA
γ (s?) (in particular,

RA
γ is strictly differentiable there).

a2 there exists m > 0 such that dist(0, ∂ϕA
γ (s)) ≤ mdist(0,RA

γ (s)) holds for
all s close to s?.

Then, the Dennis-Moré condition (4.6) is satisfied, and in particular all the
claims of Theorem 4.6 hold.

Proof. Denoting G? := JRA
γ (s?), we have

‖qk −G?pk‖
‖pk‖

=
‖RA

γ (sk+1)−RA
γ (sk)−G?(sk+1 − sk)‖
‖sk+1 − sk‖

,

and since sk → x?, due to [59, Lem. 2.2] there exists L > 0 such that
‖qk−G?pk‖
‖pk‖ ≤ Lmax

{
‖sk+1 − x?‖, ‖sk − x?‖

}
for k large enough. Consequently,

due to Thm. 3.24 and Prop. 3.16, ‖qk−G?pk‖‖pk‖ is summable. Let Bk := H−1
k and

Ek := Bk −G?, and let ‖ · ‖F denote the Frobenius norm. With a simple modi-
fication of the proofs of [59, Thm. 4.1] and [4, Lem. 4.4] that takes into account
the scalar ϑk ∈ [ϑ̄, 2− ϑ̄], we obtain

‖Ek+1‖F ≤
∥∥∥Ek(I− ϑk pk(pk)>

‖pk‖2

)∥∥∥
F

+ ϑk
‖qk −G?pk‖
‖pk‖

≤ ‖Ek‖F −
ϑ̄(2− ϑ̄)
2‖Ek‖F

‖Ekpk‖2

‖pk‖2
.

Consequently, (‖Ek‖F )k∈N is decreasing, and in particular its supremum Ē :=
sup(‖Ek‖F )k∈N is finite. By rearranging the inequality above, we obtain

ϑ̄(2− ϑ̄)
2Ē

∑
k∈N

‖Ekpk‖2

‖pk‖2
≤
∑
k∈N

ϑ̄(2− ϑ̄)
2‖Ek‖F

‖Ekpk‖2

‖pk‖2

≤
∑
k∈N

(‖Ek‖F − ‖Ek+1‖F )

≤ ‖E0‖F .
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Therefore, since pk = sk+1
0 − sk = dk = −HkRA

γ (sk), we have that

‖Ekpk‖
‖pk‖

= ‖(Bk −G?)pk‖
‖pk‖

=
‖RA

γ (sk) +G?dk‖
‖dk‖

is square summable, hence the Dennis-Moré condition (4.6).



Chapter 5

Forward-backward splitting

5.1 Introduction

We now consider composite minimization problems

minimize
x∈Rn

ϕ(x) ≡ f(x) + g(x) (5.1)

under the following requirements.

Assumption 5.I (FBS: basic assumption). In problem (5.1)

a1 f ∈ C1,1(Rn) is Lf -smooth, hence σf -hypoconvex with |σf | ≤ Lf .

a2 g : Rn → R is proper and lsc.

a3 A solution exists, that is, argminϕ 6= ∅.

Both f and g are allowed to be nonconvex, making (5.1) prototypic for a
plethora of applications spanning signal and image processing, machine learning,
statistics, control and system identification. A well-known algorithm addressing
(5.1) is forward-backward splitting (FBS), also known as proximal gradient
method, amounting to fixed-point iterations

x+ ∈ proxγg (x− γ∇f(x)), (5.2)

where γ > 0 is a stepsize parameter.

The name forward-backward splitting is a loan from monotone operator theory,
where given a maximally monotone (set-valued) operator A and a cocoercive
(single-valued) operator B, the problem of finding x ∈ zer(A+B) is addressed

83
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by interleaving forward steps id− γB and backward steps (id + γA)−1 for some
stepsize parameter γ > 0. In fact, when both f and g are convex, problem (5.4)
is equivalent to finding x ∈ zer ∂ϕ = zer(A+B), where A := ∂g is maximally
monotone, and B := ∇f is L−1

f -cocoercive [10, Cor. 18.17 and Thm. 20.25].
In this case, the forward step becomes a gradient descent id − γ∇f and the
backward step the proximal mapping proxγg [10, Prop. 16.44], hence the name
proximal gradient method in optimization. Thanks to this theoretical link, when
both f and g are convex, relaxed fixed-point iterations of the (single-valued)
forward-backward operator, namely

xk+1 = (1− λk)xk + λk proxγg (xk − γ∇f(xk)),

are known to converge to a minimizer of ϕ for any stepsize γ ∈ (0, 2/Lf)
and any choice of relaxation parameters (λk)k∈N ⊂

(
0, 2 − γ/2Lf

)
as long as∑

k∈N λk
(
2− γ/2Lf − λk

)
=∞ [10, Cor. 28.9]. Moreover, FBS enjoys a global

rate O(1/k) in terms of objective value, and accelerated variants, also known
as fast forward-backward splitting (FFBS) or accelerated proximal gradient
method, can be derived thanks to the work of Nesterov [83, 122, 16, 86], that
only require minimal additional computations per iteration but achieve the
optimal global convergence rate of order o(1/k2) [7].

When f and/or g are nonconvex, convergence results can be established by
viewing FBS as a (pure) PMM algorithm. As we will see in the next section,
this requires reducing the range of the stepsize to γ ∈ (0, 1/Lf). Before that, let
us first observe that proximal gradient iterations (5.2) are well defined for any
stepsize in such range.

Remark 5.1 (Feasible stepsizes for FBS). Under Assumption 5.I, for all x ∈ Rn
it holds that

inf ϕ ≤ f(x) + g(x) ≤ f(0) + 〈∇f(0), x〉+ Lf
2 ‖x‖

2 + g(x),

hence, for all r > Lf the function x 7→ g(x) + r
2‖x‖

2 is lower bounded. It then
follows from the definition of prox-boundedness that g is prox-bounded with
threshold γg ≥ 1/Lf . Proposition 1.12 then ensures that proxγg is nonempty-
valued for any stepsize γ < 1/Lf , thus forward-backward iterations (5.2) are well
defined.

5.2 FBS as a PMM algorithm

We now show that, when Assumption 5.I is satisfied, FBS is a pure PMM
scheme, that is to say, FBS fits into the fixed-point iteration framework (2.6)
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Forward-backward splitting FB ∼ (Mfb
γ )γ∈(0,1/Lf )

γ̄ : 1/Lf (ensures m1 > 0)

Mfb
γ (w;x) : g(w) + f(x) + 〈∇f(x), w − x〉+ 1

2γ ‖w − x‖
2 (5.4)

T fb
γ (x) : proxγg (x− γ∇f(x))

Rfb
γ (x) : 1

γ (x− T fb
γ (x)) (2.9)

ϕfb
γ (x) : f(x)− γ

2 ‖∇f(x)‖2 + gγ(x− γ∇f(x)) (5.7)

m1(γ) : 1−γLf
γ (5.5)

m2(γ) : 1−γσf
γ (5.5)

Lδ : 1−γσf
γ Lem. 2.15

Table 5.1: FBS with stepsize γ ∈ (0, 1/Lf): parameters of the proximal model.
The F-envelope, denoted as ϕfb

γ , is the forward-backward envelope function.

with Gγ ≡ id. To facilitate the reading, all the elements and the parameters
are summarized in Table 5.1.

Let us consider one iteration x 7→ x+ with stepsize γ < 1/Lf . We have

x+ ∈ proxγg (x− γ∇f(x))

= argmin
w∈Rn

{
g(w) + 1

2γ ‖w − x+ γ∇f(x)‖2
}

(5.3)

= argmin
w∈Rn

{
g(w) + 〈∇f(x), w − x〉+ 1

2γ ‖w − x‖
2 + γ

2 ‖∇f(x)‖2
}
.

By adding the constant quantity f(x) − γ
2 ‖∇f(x)‖2 into the function being

minimized, we obtain that x+ ∈ argminw∈RnMfb
γ (w;x), where

Mfb
γ (w;x) := g(w) + f(x) + 〈∇f(x), w − x〉+ 1

2γ ‖w − x‖
2. (5.4)

It follows from the quadratic bound (1.5) thatMfb
γ is a proximal model for ϕ

with constants as in property 2.10.p2 given by

m1 = 1−γLf
γ and m2 = 1−γσf

γ . (5.5)
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Lemma 5.2. Suppose that Assumption 5.I is satisfied. Then, the difference

δ(w) :=Mfb
γ (w;x)− ϕ(w) = f(x) + 〈∇f(x), w − x〉 − f(w) + 1

2γ ‖w − x‖
2

is Lδ-Lipschitz differentiable with Lδ = 1−γσf
γ for any x ∈ Rn. In particular,

for any x̄ ∈ T fb
γ (x) it holds that

dist(0, ∂̂ϕ(x̄)) ≤ 1−γσf
γ ‖x− x̄‖.

Proof. Since ∇δ(w) = 1
γ (w − γ∇f(w)) − 1

γ (x− γ∇f(x)), for all w,w′ ∈ Rn it
holds that

〈∇δ(w)−∇δ(w′), w − w′〉 = 1
γ ‖w − w

′‖2 − 〈∇f(w)−∇f(w′), w − w′〉.

From (1.5) we then obtain that the scalar product is bounded as

1−γLf
γ ‖w − w′‖2 ≤ 〈∇δ(w)−∇δ(w′), w − w′〉 ≤ 1−γσf

γ ‖w − w′‖2,

hence the claimed Lipschitz continuity. The rest of the proof then follows from
Lem. 2.15.

5.3 Forward-backward envelope

Consistently with Definition 3.1 and since FBS is a pure PMM scheme (the
transient function is Gγ = id), we have

ϕfb
γ (x)(def)= min

w∈Rn
Mfb

γ (w;x)

= min
w∈Rn

{
g(w) + f(x) + 〈∇f(x), w − x〉+ 1

2γ ‖w − x‖
2
}
. (5.6)

We name this function forward-backward envelope (FBE). Since the
minimum in (5.3) is, by definition, gγ(x− γ∇f(x)), and in passing to (5.4) the
term f(x) − γ

2 ‖∇f(x)‖2 was added, we easily infer the following alternative
expression of the FBE in terms of the Moreau envelope of g:

ϕfb
γ (x) = f(x)− γ

2 ‖∇f(x)‖2 + gγ(x− γ∇f(x)). (5.7)

The FBE was first introduced in [92] for convex problems with f twice continu-
ously differentiable, and later generalized in [113] by discarding the convexity
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assumption of f . Under these assumptions the FBE was shown to be continu-
ously differentiable, see [112, 94] for further details and more differentiabilty
properties. The more general analysis dealt here was investigated in [120]; all
the results are special cases of the unified analysis provided in Chapter 3.

Theorem 5.3 (FBE: sandwich property). Suppose that Assumption 5.I is
satisfied and let γ ∈ (0, 1/Lf) be fixed. For all x ∈ Rn the following hold:

(i) ϕfb
γ (x) ≤ ϕ(x), with equality holding iff x ∈ T fb

γ (x).

(ii) 1−γLf
2γ ‖x− x̄‖2 ≤ ϕfb

γ (x)− ϕ(x̄) ≤ 1−γσf
2γ ‖x− x̄‖

2 for all x̄ ∈ T fb
γ (x).

(iii) inf ϕfb
γ = inf ϕ and argminϕfb

γ = argminϕ.

Proof. Follows from Theorem 3.2(ii), since m1(γ) = 1−γLf
2γ and m2(γ) = 1−γσf

2γ ,
cf. Table 5.1.

Theorem 5.4 (FBE: equivalence of local minimality). Suppose that Assumption
5.I is satisfied, and let γ ∈ (0, 1/Lf) and x̄ ∈ fix T fb

γ be fixed. The following hold:

(i) If x̄ is a (strong) local minimum for ϕfb
γ , then it is a (strong) local

minimum for ϕ.

(ii) If T fb
γ (x̄) = {x̄}, (e.g., if γ < Γfb(x̄)) then the converse also holds.

Proof. See Theorem 3.6.

Theorem 5.5 (FBE: Equivalence of level boundedness). Suppose that Assump-
tion 5.I is satisfied. For any γ ∈ (0, 1/Lf), ϕ is level bounded iff ϕfb

γ is level
bounded.

Proof. See Theorem 3.7.

5.3.1 Regularity properties

Since f , ∇f , and gγ are strictly continuous, the following regularity property of
the FBE is immediately deduced from the expression (5.7).

Proposition 5.6 (Strict continuity of the FBE). Suppose that Assumption 5.I
is satisfied. For any γ ∈ (0, 1/Lf) the FBE ϕfb

γ is a strictly continuous function.

Notice that (nonstrict) continuity of ϕfb
γ could directly be inferred from Propo-

sition 3.8, being the sections x 7→ Mfb
γ (w;x) continuous for any w ∈ Rn.
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Proposition 5.7. Suppose that Assumption 5.I is satisfied. If x̄ is critical,
then for all γ ∈ (0,Γfb(x̄)) the Moreau envelope gγ is strictly differentiable at
x̄− γ∇f(x̄) with ∇gγ(x̄− γ∇f(x̄)) = −∇f(x̄).

In particular, if f is (strictly) twice differentiable at x̄, then ϕfb
γ is (strictly)

differentiable at x̄ with ∇ϕfb
γ (x̄) = 0.

Proof. It follows from Prop. 1.12 that gγ is strictly continuous with

∂gγ
(
x̄− γ∇f(x̄)

)
⊆ 1

γ

[
x̄− γ∇f(x̄)− T fb

γ (x̄)
]2.31.p1

= {−∇f(x̄)},

and the claim on gγ then follows by invoking Lem. 1.3(iv). The last part follows
from the chain rule of differentiation.

5.3.2 First-order differentiability

In the favorable case in which g is convex and f ∈ C2(Rn), the FBE enjoys
global continuous differentiability [113]. In our setting, prox-regularity acts
as a surrogate of convexity; the interested reader is referred to [106, §13.F] for
a detailed discussion.

Definition 5.8 (Prox-regularity). Function g is said to be prox-regular at
x0 for v0 ∈ ∂g(x0) if there exist ρ, ε > 0 such that for all x′ ∈ B(x0; ε) and

(x, v) ∈ gph ∂g s.t. x ∈ B(x0; ε), v ∈ B(v0; ε), and g(x) ≤ g(x0) + ε

it holds that g(x′) ≥ g(x) + 〈v, x′ − x〉 − ρ
2‖x

′ − x‖2.

Lemma 5.9 ([106, Ex. 13.35]). Function g is prox-regular at x? for v̄ iff
g − 〈v̄, · 〉 is prox-regular at x̄ for 0.

To help better visualize this definition, let us consider the local geometrical
property that it entails on the function’s epigraph [98, Cor. 3.4, Thm. 3.5]. If g
is prox-regular at x0 for v0 for some constants ε, ρ > 0 as in Definition 5.8, then
there exists a neighborhood of (x0 + v0/ρ, g(x0)− 1/ρ) in which the projection
on epi g ∩

(
B(x0; ε)×B(v0; ε)

)
is single valued.

Prox-regularity is a mild requirement enjoyed globally and for any subgradient
by all convex functions, with ε = +∞ and ρ = 0. When g is prox-regular at x0
for v0, then for sufficiently small γ > 0 the Moreau envelope gγ is continuously
differentiable in a neighborhood of x0 + γv0 [98]. To our purposes, when needed,
prox-regularity of g will be required only at critical points x?, and only for the
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subgradient −∇f(x?). Therefore, with a slight abuse of terminology we define
prox-regularity of critical points as follows.
Definition 5.10 (Prox-regularity of critical points). We say that a critical
point x? is prox-regular if g is prox-regular at x? for −∇f(x?).

Clearly, if g is convex then any critical point is prox-regular. Prox-regularity
of critical points is a mild requirement, also considering that the fact of being
critical itself entails some regularity properties as shown in Proposition 5.7. We
now prove an important result that connects prox-regularity with first-order
properties of the FBE.
Theorem 5.11 (Continuous differentiability of ϕfb

γ and error bound). Suppose
that Assumption 5.I is satisfied, and let x? be a prox-regular critical point. Then,
for all γ ∈ (0,Γfb(x?)) there exists a neighborhood Ux? of x? on which the
following properties hold:

(i) T fb
γ and Rfb

γ are strictly continuous, and in particular single-valued.

(ii) dist(0, ∂ϕfb
γ (x)) ≤ (1− γσf )‖Rfb

γ (x)‖; in fact, it suffices to have Rfb
γ (x)

single-valued for this to hold.

(iii) If f is of class C2 (resp. C2+) around x?, then ϕfb
γ ∈ C1 (resp. ϕfb

γ ∈ C1+)
with ∇ϕfb

γ = [I− γ∇2f ]Rfb
γ .

Proof. Due to property 2.31.p1 of the criticality threshold, we have that
Mfb

γ (x?;x?) <Mfb
γ (x;x?) whenever x 6= x?. Expanding as in (5.4), the inequal-

ity reduces to

g(x) > g(x?)− 〈∇f(x?), x− x?〉 − 1
2γ ‖x− x?‖

2 ∀x ∈ Rn \ {x?}. (5.8)

From [98, Thm. 4.4] applied to the “tilted” function x 7→ g(x+ x?)− g(x?)−
〈∇f(x?), x〉 and in light of Lem. 5.9, it follows that there is a neighborhood V
of x? − γ∇f(x?) in which proxγg is strictly continuous and gγ is of class C1+

with
∇gγ(x) = γ−1(x− proxγg(x)

)
∀x ∈ V.

♠ 5.11(i). Follows from the fact that strict continuity is preserved under com-
position.
♠ 5.11(ii). Since ∇f is strictly continuous, it is differentiable on a set D with
negligible complement in Rn. Due to the chain rule of differentiation and the
fact that gγ ∈ C1, ϕfb

γ is differentiable on D, with

∇ϕfb
γ (w) =

(
I− γ∇2f(w)

)
(∇f(w) +∇gγ(w − γ∇f(w)))
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=
(
I− γ∇2f(w)

)(
∇f(w) + 1

γ

(
w − γ∇f(w)− T fb

γ (w)
))

=
(
I− γ∇2f(w)

)
Rfb
γ (w) (5.9)

for all w ∈ D, where the second equality follows from Prop. 1.12(iv) and the
chain rule of differentiation. We may then invoke [106, Thm. 9.61] to infer that

∂ϕfb
γ (x) ⊇ ∂Bϕfb

γ (x)

=
{
v ∈ Rn | ∃(xk)k∈N ⊂ D : xk → x, ∇ϕfb

γ (xk)→ v
}

= limsup
D3w→x

(
I− γ∇2f(w)

)
Rfb
γ (w).

Therefore,

dist
(
0, ∂ϕfb

γ (x)
)
≤ dist

(
0, limsup

D3w→x

(
I− γ∇2f(w)

)
Rfb
γ (w)

)
≤ (1− γσf ) dist

(
0, limsup

D3w→x
Rfb
γ (w)

)
= (1− γσf ) dist

(
0, Rfb

γ (x)
)
, (5.10)

where the last equality follows from osc and single valuedness of Rfb
γ at x.

♠ 5.11(iii). If f is C2 around x? and ∇f is continuous, by possibly narrowing
Ux? we may assume that f ∈ C2(Ux?) and x−γ∇f(x) ∈ V for all x ∈ Ux? . The
claimed expression for ∇ϕfb

γ follows from (5.9).

Since prox-regularity is enjoyed globally by convex functions, the following
special case is a straightforward consequence.

Corollary 5.12 (First-order properties for convex g). Additionally to Assump-
tion 5.I, suppose that g is convex and that f ∈ C2(Rn) (resp. f ∈ C2+(Rn)).
Then, for all γ > 0 all the properties in Theorem 5.11 hold globally (i.e., for all
x? ∈ Rn with Ux? = Rn).

When f = 0, Theorem 5.11 restates the known fact that if g is prox-regular
at x? for 0 ∈ ∂g(x?), then gγ is continuously differentiable around x? with
∇gγ(x) = 1

γ (x − proxγg(x)). Notice that the bound γ < Γfb(x?) is tight: in
general, for γ = Γfb(x?) no continuity of T fb

γ nor continuous differentiability of
ϕfb
γ around x? can be guaranteed. In fact, even when x? is Γfb(x?)-critical, T fb

γ

might even fail to be single-valued and ϕfb
γ differentiable at x?. To see this, let

us consider once again function ϕ as in Section 3.2.2. This time, simply for the
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sake of generalizing the analysis, let us decompose it as ϕ = f + g, where

f(x) = 1
2x

2 and g(x) = δ{0,1}(x).

Clearly, f is Lf -smooth and σf hypoconvex with Lf = σf = 1, and the FB
operator is

T fb
γ (x) = Π{0,1}((1− γ)x).

In particular,

T fb
γ (1) = Π{0,1}(1− γ) =

1 if γ < 1/2,
{0, 1} if γ = 1/2,
0 otherwise,

which indicates that x̄ = 1 has FB-criticality threshold Γfb(x̄) = 1/2.

x̄ � 1

γ � 0.5
γ � 0.4

Figure 5.1: Around prox-regular
critical points the FBE ϕfb

γ is con-
tinuously differentiable, provided that
the stepsize γ is smaller than the crit-
icality threshold.

From the expression (5.7) we can write the FBE as

ϕfb
γ (x) = 1−γ

2 ‖x‖
2 + 1

2γ dist((1− γ)x, S)2.

At the critical point x = 1, which satisfies Γfb(1) = 1/2, g is prox-regular for any
subgradient. For any γ ∈ (0, 1/2) it is easy to see that ϕfb

γ is differentiable in a
neighborhood of x = 1. However, for γ = 1/2 the distance function has a first-
order singularity in x = 1, due to the 2-valuedness of T fb

γ (1) = ΠS(1/2) = {0, 1}.
As shown in Figure 5.1, the scenario is much similar to what observed in
Figure 3.1 for the case of the proximal point algorithm (i.e., with f = 0 in the
decomposition of ϕ).

The next example depicts a different kind of pathological situation, namely the
lack of prox-regularity at critical points.

Example 5.13 (Prox-nonregularity of critical points). Consider ϕ = f+g where
f(x) = 1

2x
2, g(x) = δS(x) and S = {1/n | n ∈ N≥1} ∪ {0}. For x0 = 0 we have
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Γfb(x0) = +∞, however g fails to be prox-regular at x0 for v0 = 0 = −∇f(x0).
For any ρ > 0 and for any neighborhood V of (0, 0) in gph g it is always possible
to find a point arbitrarily close to (0,−1/ρ) with multi-valued projection on V .
Specifically, the midpoint Pn =

( 1
2 ( 1
n + 1

n+1 ), − 1/ρ
)
has a 2-valued projection

on gph g for any n ∈ N≥1, being it Πgph g(Pn) = {1/n, 1/n+1}. By considering a
large n, Pn can be made arbitrarily close to (0,−1/ρ) and at the same time its
projection(s) arbitrarily close to (0, 0). It follows that g cannot be prox-regular
at 0 for 0, for otherwise such projections would be single-valued close enough
to (0, 0) [98, Cor. 3.4 and Thm. 3.5]. As a result, gγ(x) = 1

2γ dist(x, S)2 is
not differentiable around x = 0, and indeed at each midpoint 1

2 ( 1
n + 1

n+1 ) for
n ∈ N≥1 it has a nonsmooth spike.

To underline how unfortunate the situation depicted in Example 5.13 is, notice
that adding a linear term λx to f for any λ 6= 0, yet leaving g unchanged,
restores the desired prox-regularity of each critical point. Indeed, this is trivially
true for any nonzero critical point; besides, g is prox-regular at 0 for any λ > 0,
while for any λ < 0 the point 0 is not critical. The reason why prox-regularity
fails to hold in the above example is due to the density of isolated points close
to 0.

5.3.3 Second-order differentiability

In this section we discuss sufficient conditions for twice-differentiability of the
FBE at critical points. Additionally to prox-regularity, which is needed for local
continuous differentiability, we will also need generalized second-order properties
of g. The interested reader is referred to [106, §13] for an extensive discussion
on epi-differentiability.

Assumption 5.II. With respect to a given critical point x?

(i) ∇2f exists and is (strictly) continuous around x?;

(ii) g is prox-regular and (strictly) twice epi-differentiable at x? for −∇f(x?),
with its second order epi-derivative being generalized quadratic:

d2g(x?|−∇f(x?))[d] = 〈d,Md〉+ δS(d), ∀d ∈ Rn (5.11)

where S ⊆ Rn is a linear subspace and M ∈ Rn×n. Without loss of
generality we take M symmetric, and such that range(M) ⊆ S and
ker(M) ⊇ S⊥.1

1This can indeed be done without loss of generality: if M and S satisfy (5.11), then it
suffices to replace M with M ′ = 1

2 ΠS(M +M>) ΠS to ensure the desired properties.
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We say that the assumptions are “strictly” satisfied if the stronger conditions
in parenthesis hold.

Twice epi-differentiability of g is a mild requirement, and cases where d2g is
generalized quadratic are abundant [104, 105, 95, 96]. Moreover, prox-regular
and C2-partly smooth functions g (see [68, 36]) comprise a wide class of functions
that strictly satisfy Assumption 5.II(ii) at a critical point x? provided that strict
complementarity holds, namely if −∇f(x?) ∈ relint ∂g(x?). In fact, it follows
from [36, Thm. 28] applied to the tilted function g̃ = g + 〈∇f(x?), · 〉 (which is
still C2-partly smooth and prox-regular at x?, cf. [68, Cor. 4.6] and Lem. 5.9)
that proxγg̃ is continuously differentiable around x? for γ small enough (in fact,
for γ < Γfb(x?)). From [97, Thm 4.1(g)] we then obtain that g̃ is strictly twice
epi-differentiable at x? with generalized quadratic second-order epiderivative,
and the claim follows by tilting back to g.

We now show that the properties required in Assumption 5.II are all that is
needed for ensuring first-order properties of the proximal mapping and second-
order properties of the FBE at critical points. The result is more general than
the one in [113], as here g is allowed to be nonconvex.

Theorem 5.14 (Twice differentiability of ϕfb
γ ). Additionally to Assumption

5.I, suppose that Assumption 5.II is (strictly) satisfied with respect to a critical
point x?. Then, for any γ ∈ (0,Γfb(x?))

(i) proxγg is (strictly) differentiable at x? − γ∇f(x?) with symmetric and
positive semidefinite Jacobian

Pγ(x?) := J proxγg(x? − γ∇f(x?)); (5.12)

(ii) Rfb
γ is (strictly) differentiable at x? with Jacobian

JRfb
γ (x?) = 1

γ [I− Pγ(x?)Qγ(x?)], (5.13)

where Qγ := I− γ∇2f ;

(iii) ϕfb
γ is (strictly) twice differentiable at x? with symmetric Hessian

∇2ϕfb
γ (x?) = Qγ(x?)JRfb

γ (x?). (5.14)

Proof.

♠ 5.14(i). It follows from [97, Thm.s 3.8 and 4.1] that proxγg is (strictly)
differentiable at x?− γ∇f(x?) iff g (strictly) satisfies assumption 5.II(ii). Conse-
quently, if f is of class C2 around x? (and in particular strictly differentiable at
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x? [106, Cor. 9.19]), Rfb
γ (x) = 1

γ

(
x− proxγg (x− γ∇f(x))

)
is (strictly) differ-

entiable at x? with Jacobian as in (5.13) due to the chain rule of differentiation
(and the fact that strict differentiability is preserved by composition). For
γ′ ∈ (γ,Γfb(x?)) and w ∈ Rn we have

d2g(x?|−∇f(x?))[w] = lim inf
w′→w
τ→0+

g(x? + τw′)− g(x?) + τ〈∇f(x?), w′〉
τ2
/2

(due to (5.8)) ≥ − 1
γ′ ‖w‖

2.

The expression (5.11) of the second-order epi-derivative then implies 〈Mw,w〉 ≥
− 1

γ′ ‖w‖
2 for all w ∈ Rn (since Mw = 0 for w ∈ S⊥). Therefore, λmin(M) ≥

− 1/γ′ > − 1/γ, proving I + γM to be positive definite, and in particular
invertible. To obtain an expression for Pγ(x?) = J proxγg(x? − γ∇f(x?)) we
can apply [106, Ex. 13.45] to the function g + 〈∇f(x?), · 〉 so that, letting
d2g = d2g(x?|−∇f(x?))[ · ] and ΠS the idempotent and symmetric projection
matrix on S,

Pγ(x?)d = prox(γ/2)d2g(d) = argmin
d′∈S

{
1
2 〈d
′,Md′〉+ 1

2γ ‖d
′ − d‖2

}
= ΠS argmin

d′∈Rn

{
1
2 〈ΠS d

′,M ΠS d
′〉+ 1

2γ ‖ΠS d
′ − d‖2

}
= ΠS

(
ΠS [I + γM ] ΠS

)†ΠS d

= ΠS [I + γM ]−1 ΠS d, (5.15)

where † indicates the pseudo-inverse, and last equality is due to [18, Facts
6.4.12(i)-(ii) and 6.1.6(xxxii)]. Apparently, JPγ(x?) is symmetric and positive
semidefinite.

♠ 5.14(ii). With basic calculus rules it can be easily verified that, since
Rfb
γ (x?) = 0, ∇ϕfb

γ = QγRfb
γ is (strictly) differentiable at x? provided that

Qγ is (strictly) continuous at x? and Rfb
γ is (strictly) differentiable at x?.

♠ 5.14(iii). A simple application of the chain rule proves (5.14); moreover,
combined with (5.13) we obtain

∇2ϕfb
γ (x?) = 1

γ [Qγ(x?)−Qγ(x?)Pγ(x?)Qγ(x?)],

and since both Qγ(x?) and Pγ(x?) are symmetric, so is ∇2ϕ(x?).

Again, when f ≡ 0 Theorem 5.14 covers the differentiability properties of the
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proximal mapping (and consequently the second-order properties of the Moreau
envelope, due to the identity ∇gγ(x) = 1

γ (x− proxγg(x))) as discussed in [97].

We now provide a key result that links nonsingularity of the Jacobian of the
forward-backward residual Rfb

γ to strong (local) minimality for the original
cost ϕ and for the FBE ϕfb

γ , under the generalized second-order properties of
Assumption 5.II.

Theorem 5.15 (Conditions for strong local minimality). Additionally to As-
sumption 5.I, suppose that Assumption 5.II is satisfied with respect to a critical
point x?, and let γ ∈ (0,min {Γfb(x?), 1/Lf}). The following are equivalent:

(a) x? is a strong local minimum for ϕ.

(b) x? is a local minimum for ϕ and JRfb
γ (x?) is nonsingular.

(c) the (symmetric) matrix ∇2ϕfb
γ (x?) is positive definite.

(d) x? is a strong local minimum for ϕfb
γ .

(e) x? is a local minimum for ϕfb
γ and JRfb

γ (x?) is nonsingular.

Proof. It follows from Thm. 5.14 that both JRfb
γ (x?) and ∇2ϕfb

γ (x?) exist, and
that the latter is symmetric.

♠ 5.15(a) ⇔ 5.15(d). Follows from Thm. 5.4.

♠ 5.15(d) ⇔ 5.15(c). Trivial, since ∇2ϕfb
γ (x?) exists.

♠ 5.15(c) ⇔ 5.15(b). Apparent from (5.14), since Qγ(x?) � 0.

5.4 Convergence results

Theorem 5.16 (Finite termination of relaxed FBS). Under Assumption 5.I,
the iterates generated by FBS (Alg. 5.1) satisfy

ϕfb
γ (xk+1) ≤ ϕfb

γ (xk)− 1−γσf
2γλ2

(
1−γLf
1−γσf − (1− λ)2

)
‖xk − xk+1‖2.

In particular, the algorithm terminates in a finite number of iterations and
yields a point x∗ satisfying dist(0, ∂̂ϕ(x∗)) ≤ ε.

Proof. It follows from Thm. 3.22 and Cor. 3.20 that for any ε > 0 the algorithm
terminates in a finite number of iterations. That dist(0, ∂̂ϕ(x∗)) ≤ ε follows
from Lem. 5.2, by observing that 1− γσf ≤ 1 + γσf ≤ 2.
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Algorithm 5.1. Forward-backward splitting with relaxation

Require • initial iterate x0 ∈ Rn
• stepsize γ ∈ (0, 1/Lf)
• tolerance ε > 0
• relaxation λ ∈

(
1−
√
κ, 1 +

√
κ
)
, where κ := 1−γLf

1−γσf .

Provide x∗ with ϕ(x∗) ≤ ϕ(x0) and dist(0, ∂̂ϕ(x∗)) ≤ ε.

1: for k = 0, 1, . . . do
2: x̄k ∈ proxγg

(
xk − γ∇f(xk)

)
3: if 1

2γ ‖x
k − x̄k‖ ≤ ε then

4: return x∗ = x̄k

5: xk+1 = (1− λ)xk + λx̄k

Let us now analyze the asymptotic behavior of relaxed FBS without termination
criterion, that is, when setting the tolerance as ε = 0 in FBS (Alg. 5.1).

Theorem 5.17 (Asymptotic convergence of relaxed FBS). Suppose that As-
sumption 5.I is satisfied, and donsider the iterates generated by FBS (Alg. 5.1)
with tolerance ε = 0. The following hold:

(i) The forward-backward residual (‖xk − x̄k‖)k∈N is square-summable; in
particular, minj≤k ‖xj − x̄j‖ ∈ O(1/

√
k).

(ii) (xk)k∈N and (x̄k)k∈N have the same accumulation points, on which ϕ
has the same value (this being the limit of the sequence (ϕfb

γ (xk))k∈N or,
equivalently, of (ϕ(x̄k))k∈N). Moreover, the set ω of such accumulation
points satisfies ω ⊆ fix T fb

γ ⊆ zer ∂̂ϕ.

(iii) If ϕ is level bounded, then (xk)k∈N is bounded, and ω is a nonempty,
compact and connected set satisfying dist(xk, ω)→ 0 as k →∞.

(iv) ϕfb
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕfb
γ (xk))k∈N (or, equivalently, of (ϕ(x̄k))k∈N.

Proof. Follows from Thm. 3.22 in light of Cor. 3.20. (That (xk)k∈N and (x̄k)k∈N
have the same accumulation points follows from the fact that ‖xk − x̄k‖ → 0 as
k →∞).

Theorem 5.18 (Global convergence of relaxed FBS). Suppose that Assumption
5.I is satisfied, and consider the iterates generated by FBS (Alg. 5.1) with
tolerance ε = 0. Suppose further that the following hold:



A QUASI-NEWTON FBS 97

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 ϕfb
γ has the KL property.

Then, the following hold:

(i) (xk)k∈N converges to a point x? ∈ fix T fb
γ ⊆ zer ∂̂ϕ.

(ii) The forward-backward residual (‖xk − x̄k‖)k∈N is summable, and in par-
ticular minj≤k ‖xj − x̄j‖ ∈ O(1/k).

Proof. Follows from Thm. 3.23, in light of Cor. 3.20 and Thm. 5.11(ii).

Theorem 5.19 (Linear convergence of relaxed FBS). Suppose that Assumption
5.I is satisfied, and consider the iterates generated by FBS (Alg. 5.1) with
tolerance ε = 0. Suppose further that the following hold:

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 ϕfb
γ has the KL property and the KL function is of the form ψ(s) = csϑ for

some c > 0 and ϑ ≥ 1/2.

Then, the sequences (xk)k∈N and (dist(0,Rfb
γ (xk)))k∈N are R-linearly conver-

gent.

Proof. Follows from Thm. 3.24, in light of Cor. 3.20 and Thm. 5.11(ii).

5.5 A quasi-Newton FBS

Theorem 5.20 (Subsequential convergence of (nonmonotone) CLyD-FBS).
Suppose that Assumption 5.I is satisfied. Then, the following hold for the
iterates generated by CLyD-FBS (Alg. 5.2) with tolerance ε = 0:

(i) The residual (‖xk− x̄k‖)k∈N is square-summable; in particular, it vanishes
with rate minj≤k dist(xj , T fb

γ (xj)) ∈ O(1/
√
k).
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Algorithm 5.2. CLyD-FBS

Require • stepsize γ ∈ (0, 1/Lf)
• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate x0 ∈ Rn
• tolerance ε > 0

Provide x∗ with dist
(
0, ∂ϕ(x∗)

)
≤ ε

1: for k = 0, 1, 2, . . . do
2: Do one nominal FB-step: x̄k ∈ proxγg

(
xk − γ∇f(xk)

)
3: if 1

2γ ‖x
k − x̄k‖ ≤ ε then

4: return x∗ = x̄k

5: Select an update direction dk ∈ Rn at xk
6: Let τk ∈

{
2−i | i ∈ N

}
be the largest such that

ϕfb
γ (xk+1) ≤ ϕfb

γ (xk)− α 1−γLf
2γ ‖xk − x̄k‖2, (5.16)

where xk+1 := (1− τk)x̄k + τk(xk + dk)

(ii) The set ω of accumulation points of (xk)k∈N satisfies ω ⊆ fix T fb
γ ⊆

zer ∂̂ϕ.

If, additionally, ‖dk‖ → 0 as k →∞, then the following also hold:

(iii) If ϕ is level bounded, then (xk)k∈N and (x̄k)k∈N are bounded, and ω is
a nonempty, compact and connected set satisfying dist(xk, ω) → 0 as
k →∞.

(iv) ϕfb
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕfb
γ (xk))k∈N.

All the claims remain valid if the linesearch condition (5.16) is replaced by the
following nonmonotone version:

ϕfb
γ (xk+1) ≤ L̄k − α c2‖x

k − x̄k‖2, (5.17)

where, for any sequence (tk)k∈N ⊆ [0, 1] bounded away from 0, L̄k are recursively
defined as follows:

L̄k :=
{
ϕfb
γ (x0) if k = 0,

(1− tk)L̄k−1 + tkϕ
fb
γ (xk) otherwise.
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Proof. Follows from Theorem 4.1.

5.5.1 Global and (super)linear convergence

Theorem 5.21 (Global convergence). Additionally to Assumption 5.I, suppose
that the following hold for the iterates generated by CLyD-FBS (Alg. 5.2) with
tolerance ε = 0.

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10.

a3 The FBE ϕfb
γ has the KL property.

a4 there exists D > 0 such that ‖dk‖ ≤ D‖xk − x̄k‖ for all k.

Then, the following hold:

(i) (xk)k∈N converges to a point x? ∈ fix T fb
γ ⊆ zer ∂̂ϕ.

(ii) The residual is summable and in particular minj≤k dist(xj , T fb
γ (xj)) ∈

O(1/k).

Proof. Follows from Theorems 5.11(ii) and 4.2.

Theorem 5.22 (Linear convergence). Suppose that the assumptions of Theorem
5.21 are satisfied, and that the KL function can be taken of the form ψ(s) =
csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈N, (xk)k∈N, and
dist(xk, T fb

γ (xk)) are R-linearly convergent.

Proof. Follows from Theorem 4.3.

Theorem 5.23 (Acceptance of the unit stepsize and superlinear convergence).
Suppose that Assumption 5.I is satisfied, and consider the iterates generated by
CLyD-FBS (Alg. 5.2). Suppose further that the following hold:

a1 (xk)k∈N converges to a strong local minimum of ϕ;

a2 (dk)k∈N are superlinearly convergent directions with respect to (xk)k∈N;

a3 γ 6= Γfb(x?).



100 FORWARD-BACKWARD SPLITTING

Then, there exists k̄ ∈ N such that

ϕfb
γ (sk + dk) ≤ ϕfb

γ (sk)− α 1−γLf
2γ ‖xk − x̄k‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to xk+1 = xk + dk and converge
superlinearly.

Proof. Follows from Theorem 4.5.

Theorem 5.24 (Dennis-Moré condition). Suppose that Assumption 5.I is
satisfied, and consider the iterates generated by CLyD-FBS (Alg. 5.2). Suppose
further that the following hold:

a1 (xk)k∈N converges to a strong local minimum x? at which Assumption 5.II
is (strictly) satisfied.

a2 The Dennis-Moré condition holds:

lim
k→∞

‖Rfb
γ (xk) + JRfb

γ (x?)dk‖
‖dk‖

= 0. (5.18)

Then, (dk)k∈N are superlinearly convergent directions with respect to (xk)k∈N.

Proof. If follows from Theorems 5.14(ii) and 5.15 that Rfb
γ is strictly differen-

tiable at x? and has nonsingular Jacobian there. The proof then follows from
Theorem 4.6.

Theorem 5.25 (Superlinear convergence with Broyden directions). Suppose
that Assumption 5.I is satisfied, and consider the iterates generated by CLyD-
FBS (Alg. 5.2) with directions dk selected with Broyden method (4.5). Suppose
further that the following hold:

a1 (xk)k∈N converges to a point x? at which Rfb
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRfb
γ (x?) (in particular,

Rfb
γ is strictly differentiable there).

Then, the Dennis-Moré condition (5.18) is satisfied, and in particular all the
claims of Theorem 5.24 hold.

Proof. Follows from Theorem 4.7 together with the observation that single
valuedness of Rfb

γ around x? (due to semidifferentiability) ensures the required
error bound assumption 4.7a2, cf. Thm. 5.11(ii).
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5.6 Simulations

We now present numerical results with the proposed method. In CLyD-FBS (Alg.
5.2) we used the nonmonotone variant described in Theorem 5.20 with (tk)k∈N
selected as in [126, 72], namely: tk = (ηck + 1)−1, c0 = 1, and ck+1 = 0.85ck + 1.
We performed experiments with the following choices of update directions:

• Broyden (modified) as in Section 4.3.2 with ϑ̄ = 10−4;

• BFGS as in Section 4.3.1;

• L-BFGS, namely the limited-memory variant of BFGS as in [88, Alg. 7.4]
with memory 10.

We only show the results with full quasi-Newton updates (Broyden, BFGS) for
one of the examples: for the other experiments we focus on L-BFGS, which is
better suited for large-scale problems. Although JRfb

γ is nonsymmetric at the
critical points in general, we observed that the symmetric updates of BFGS and
L-BFGS perform very well in practice and outperform the Broyden method.

We compared CLyD-FBS (Alg. 5.2) with the nominal FBS, the inertial FBS
(denoted IFBS) proposed in [26, Eq. (7)] with parameter β = 0.2, and the
nonmonotone accelerated FBS (denoted AFBS) proposed in [72, Alg. 2] for
fully nonconvex problems. All experiments were performed in MATLAB. The
implementation of the methods used in the tests is available online.2

5.6.1 Dictionary learning

Expressing large data by means of only few elements from a collection of vectors
is an important problem in machine learning and signal processing. The challenge
is finding such a collection of vectors, known as dictionary, that can accurately
represent data signals in the sparsest way. In mathematical terms, given m
signals y1, . . . , ym ∈ Rn we wish to find k dictionary atoms d1, . . . , dk ∈ Rn in
such a way that each yj can be represented, or accurately approximated, as a
sparse linear combination of them. If we stack the data in a matrix Y ∈ Rn×m,
and the dictionary atoms in a matrix D ∈ Rn×k (to be found), the problem can
be expressed as follows [1]

minimize
D,C

1
2‖Y −DC‖

2
F subject to ‖di‖2 = 1 i = 1, . . . , k,

‖cj‖0 ≤ N j = 1, . . . ,m,
‖cj‖∞ ≤ T j = 1, . . . ,m,

(5.19)

2http://github.com/kul-forbes/ForBES

http://github.com/kul-forbes/ForBES
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where C = [c1, . . . , cm] ∈ Rk×m is a matrix containing the sought coefficients,
and N ∈ N and T > 0 are parameters. Differently from [1], we bound the set
of feasible points by means of the `∞-norm constraint; this artificial constraint
ensures that ∇f is globally Lipschitz continuous over the feasible domain.
Moreover, we explicitly constrain the norm of the dictionary atoms: this causes
no loss of generality, as the objective value of (5.19) is unchanged if the j-th
atom dj and the j-th row of C are scaled by reciprocal factors.

The problem can be expressed in the canonical form (5.1) by letting f(D,C) =
1
2‖Y −DC‖

2
F and g(D,C) = δS(D,C), where

S =
{
D ∈ Rn×k | ‖dj‖2 = 1, j = 1 . . . k

}
×
{
C ∈ Rk×m | ‖cj‖0 ≤N

‖cj‖∞≤T,
j = 1 . . .m

}
is the product of Euclidean spheres and box-constrained `0 balls. Both f and
g are nonconvex. The projection of (D,C) onto S is simple and column-wise
separable: the columns dj of D are scaled by their `2 norm, while the N largest
coefficients (in absolute value) of the columns cj of C are projected onto the
box [−T, T ] and the other ones are set to zero, see e.g., [14, Alg. 3 and Ex. 4.6].

We tested our algorithm on 50 problems with N = 3, n = 20, m = 500 and
k = 50, for a total of 26000 variables each. We chose T = 106 as a large bound
for the `∞ norm of the columns of C. Problems were generated according to [1,
§V.A]: first, a dictionary Dgen ∈ R20×50 was randomly generated with normal
entries, and each column was normalized to one. Then, a matrix Cgen ∈ R50×500

was constructed with 3 normally distributed nonzero coefficients per column.
Then we set Y = CgenDgen + V , where V ∈ R20×500 is a matrix with normally
distributed entries with variance 10−2.

We compared FBS, AFBS and CLyD-FBS (Alg. 5.2)(L-BFGS), using a back-
tracking procedure to adaptively adjust the stepsize γ. IFBS could not be
applied due to the lack of an adaptive stepsize-selection rule for the algorithm
[26]. Moreover, we did not test CLyD-FBS (Alg. 5.2) with Broyden and (full)
BFGS directions because of the prohibitive overhead of storing and operating
with 26000× 26000 matrices.

Figure 5.2 shows the performance profile of the algorithms by comparing the
time needed to reach an accuracy of ‖rk‖ ≤ 10−4 starting from (D0, C0) = (0, 0).
In most of the cases, CLyD-FBS (Alg. 5.2)(L-BFGS) exhibited a speedup of
a factor 5-to-100 with respect to FBS, and 3-to-60 with respect to AFBS, at
reaching a critical point.
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Figure 5.2: Dictionary learning. Performance profiles of FBS, AFBS and CLyD-
FBS (Alg. 5.2) with L-BFGS directions when applied to 50 randomly generated
problems with n = 20, m = 500, k = 50, T = 106 and N = 3. The algorithms are
executed until tolerance ‖Rfb

γ (xk)‖ ≤ 10−4 is reached. In the great majority of
cases, the employment of L-BFGS directions with the proposed framework reaches
a critical point significantly faster than FBS and its nonconvex accelerated variant
AFBS.

5.6.2 Nonconvex sparse approximation

Here we consider the problem of finding a sparse solution x ∈ Rn to a least-
squares problem Ax = b, where A ∈ Rm×n and b ∈ Rm. Sparsity can be induced
by constraining or penalizing the `0 quasi-norm of x, namely the number of
nonzero elements of x, but due to the challenges of nonconvexity it is often the
case that the `1 norm is used instead. As well explained and documented in [124],
the use of the (square root of the) `1/2 quasi-norm, namely ‖x‖1/21/2 =

∑n
i=1 |xi|

1/2,
is in some sense optimal in trading-off representativeness of the solution and
numerical simplicity of the `0 and `1 approaches, respectively. The problem
then becomes

minimize
x∈Rn

1
2‖Ax− b‖

2
2 + λ‖x‖1/21/2, (5.20)
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n λ FBS IFBS AFBS ZeroFPR(L-BFGS)
avg/max (s) avg/max (s) avg/max (s) avg/max (s)

500 0.10 0.141/0.405 0.159/0.449 0.135/0.221 0.037/0.088
0.03 0.498/2.548 0.688/3.962 0.274/0.430 0.084/0.126
0.01 1.305/5.445 1.721/4.942 0.570/1.157 0.152/0.560

1000 0.10 0.176/0.287 0.231/0.659 0.228/0.483 0.021/0.077
0.03 0.576/2.756 0.645/4.165 0.382/0.841 0.091/0.275
0.01 1.864/9.740 2.391/8.311 0.795/1.446 0.222/0.438

2000 0.10 0.291/0.599 0.392/0.719 0.393/0.640 0.025/0.055
0.03 0.553/1.841 0.602/3.270 0.464/0.702 0.088/0.198
0.01 2.108/10.934 2.439/8.010 0.979/1.411 0.271/0.464

Table 5.2: Nonconvex sparse approximation. The table shows average and maxi-
mum CPU time required to reach ‖Rfb

γ (xk)‖ ≤ 10−6 in 100 random experiments.
Each algorithm was run on the same set of randomly generated problems, with
x0 = 0.

where λ > 0 is a regularization parameter. Function ‖x‖1/21/2 is separable, and its
proximal mapping can be computed in closed form as follows, see [124, Thm. 1]:[

prox
γ‖·‖

1/2
1/2

(x)
]
i

= 2
3

(
1 + cos 2

3

(
π − arccos γ8(|xi|/3)−

3/2
))
xi, i = 1, . . . , n.

We ran numerical experiments consistently with the setting of [37, Sec. 8.2]. We
considered different scenarios obtained by changing the regularization term λ
and the size of A, keeping a constant column-to-row ratio of n/m = 5 for matrix
A. Matrix A was generated with random Gaussian entries, with zero mean and
variance 1/m, while vector b was generated as b = Axorig + v where xorig ∈ Rn
was randomly generated with k = 5 nonzero normally distributed entries, and
v ∈ Rn is a noise vector with zero mean and variance 1/m.

For each scenario, we solved 100 randomly generated problems and compared
the performance of all algorithms in terms of CPU time to reach an accuracy of
‖rk‖ ≤ 10−6. For all algorithms and problems, we used x0 = 0 as the starting
iterate. Average and worst-case performance of the algorithms in each of the
nine scenarios are illustrated in Table 5.2; apparently, CLyD-FBS (Alg. 5.2) is
significantly faster than FBS, IFBS and AFBS, even in a worst-case-to-average
comparison.

Figure 5.3 shows the convergence rates of the algorithms in one of the generated
problems. Since CLyD-FBS (Alg. 5.2) employs a linesearch, and therefore the
complexity of each iteration is unknown a priori, we recorded the number
of matrix-vector products by A and A> performed during the iterations, and
displayed it on the horizontal axis. Apparently, CLyD-FBS (Alg. 5.2) with
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Broyden directions achieves superlinear convergence, beating the linear of FBS,
IFBS and AFBS. This comparison also confirms the claimed great performance
of (L-)BFGS directions.
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Figure 5.3: Nonconvex sparse approximation. Convergence of fixed-point residual
and cost in FBS, IFBS, AFBS and CLyD-FBS (Alg. 5.2), for different choices
of the search directions and for n = 1500, λ = 0.03.



Chapter 6

Douglas-Rachford splitting

6.1 Introduction

First introduced in [40] for finding numerical solutions of heat differential
equations, the Douglas-Rachford splitting (DRS) is now considered a
textbook algorithm in convex optimization or, more generally, in monotone
inclusion problems. Similarly to FBS, the objective to be minimized is split
as the sum of two functions, resulting in the following canonical framework
addressed by DRS:

minimize
s∈Rp

ϕ(s) ≡ ϕ1(s) + ϕ2(s). (6.1)

Here, ϕ1, ϕ2 : Rp → R are proper, lower semicontinuous (lsc), extended-real-
valued functions. Starting from some s ∈ Rp, one iteration of DRS applied to
(6.1) with stepsize γ > 0 and relaxation parameter λ > 0 amounts to

u ∈ proxγϕ1
(s)

v ∈ proxγϕ2
(2u− s)

s+ = s+ λ(v − u).
(DRS)

The case λ = 1 corresponds to the classical DRS, whereas for λ = 2 the scheme
is also known as Peaceman-Rachford splitting (PRS). When both ϕ1 and ϕ2
are convex functions, DRS iterations are known to converge for any γ > 0 and
λ ∈ (0, 2), yielding a minimizer of ϕ [10, Cor. 28.3].

Although the scheme does not involve any gradients and is thus applicable
even when both functions ϕ1 and ϕ2 are nonsmooth, in order to frame it as a
generalized PMM scheme we will need to work under the same assumptions as

106
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FBS.
Assumption 6.I (DRS: basic assumption). In problem (6.1)

a1 ϕ1 ∈ C1,1(Rn) is Lϕ1-smooth, hence σϕ1 -hypoconvex with |σϕ1 | ≤ Lϕ1 .

a2 ϕ2 : Rn → R is proper and lsc.

a3 A solution exists, that is, argminϕ 6= ∅.

Clearly, one can repropose the same remark about prox-boundedness of ϕ2
discussed in Remark 5.1.
Remark 6.1 (Feasible stepsizes for DRS). Under Assumption 6.I, both func-
tions ϕ1 and ϕ2 are prox-bounded with threshold at least 1/Lϕ1 (the claim on ϕ1
follows from Thm. 1.15). In particular, for any stepsize γ < 1/Lϕ1 DRS iterations
are well defined.

Those in Assumption 6.I are indeed the same requirements under which global
convergence of nonconvex DRS applied to general problems has been established
[71, 69], specifically for the cases λ = 1 and λ = 2; other results are problem-
specific and mostly concerned with local convergence. These mainly focus on
feasibility problems, where the goal is to find points in the intersection of
nonempty closed sets A and B subjected to some regularity conditions. This is
done by applying DRS to the minimization of the sum of the indicator functions
ϕ1 = δA and ϕ2 = δB. The minimization subproblems in DRS then reduce to
(set-valued) projections onto either set, regardless of the stepsize parameter
γ > 0. This is the case of [9], for instance, where A and B are finite unions of
convex sets. Local linear convergence when A is affine, under some conditions
on the (nonconvex) set B, are shown in [55, 56].

Although this particular application of DRS does not comply with our require-
ments, as ϕ1 fails to be Lipschitz-differentiable, however replacing δA with
ϕ1 = 1

2 dist2
A yields an equivalent problem which fits into our framework when

A is a convex set. In terms of DRS iterations, this simply amounts to replacing
ΠA, the projection onto set A, with a “relaxed” version ΠA,t := (1− t)id + tΠA

for some t ∈ (0, 1). Then, it can be easily verified that for any α, β ∈ (0,+∞]
one DRS-step applied to

minimize
s∈Rp

α
2 dist2

A(s) + β
2 dist2

B(s) (6.2)

results in
s+ ∈ (1− λ/2)s+ λ/2 ΠB,q ΠA,p s (6.3)

for p = 2αγ
1+αγ and q = 2βγ

1+βγ . Notice that (6.3) is the λ/2-relaxation of the “method
of alternating (p, q)-relaxed projections” ((p, q)-MARP) [13]. The (non-relaxed)
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(p, q)-MARP is recovered by setting λ = 2, that is, by applying PRS to (6.2).
Local linear convergence of MARP was shown when A and B, both possibly
nonconvex, satisfy some constraint qualifications, and also global convergence
when some other requirements are met. When set A is convex, then α

2 dist2
A is

convex and α-Lipschitz differentiable; our theory then ensures convergence of
the fixed-point residual and subsequential convergence of the iterations (6.3)
for any λ ∈ (0, 2), p ∈ (0, 1) and q ∈ (0, 1], without any requirements on the
(nonempty closed) set B. Here, q = 1 is obtained by replacing β

2 dist2
B with δB ,

which can be interpreted as the hard penalization obtained by letting β =∞.
The non-relaxed MARP is not covered due to the non-strong convexity of dist2

A,
however λ can be set arbitrarily close to 2.
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Figure 6.1: Maximum stepsize γ ensuring convergence of DRS (Fig. 6.1a) and
PRS (Fig. 6.1b); comparison of our bounds (blue plot) with [71] for DRS and
[69] for PRS. On the x-axis the ratio between hypoconvexity parameter σ and the
Lipschitz modulus L of the gradient of the smooth function. On the y-axis, the
supremum of stepsize γ such that the algorithms converge.

The work [71] presents the first general analysis of global convergence of (non-
relaxed) DRS for fully nonconvex problems where one function is Lipschitz
differentiable. In [69] PRS is also considered under the additional requirement
that the smooth function is strongly convex with strong-convexity/Lipschitz
moduli ratio of at least 2/3. Both papers show that for sufficiently small step-
sizes one iteration of DRS or PRS yields a sufficient decrease on an augmented
Lagrangian. However, due to the lower unboundedness of the augmented La-
grangian the vanishing of the fixed-point residual could not be shown, unless ϕ
has bounded level sets.
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Other than completing the analysis to all relaxation parameters λ ∈ (0, 4), as
opposed to λ ∈ {1, 2}, we improve their results by showing convergence for a
considerably larger range of stepsizes and, in the case of PRS, with no restriction
on the strong convexity modulus of the smooth function. We also show that
our bounds are optimal whenever λ ∈ (0, 2]. The extent of the improvement is
evident in the comparisons outlined in Figure 6.1.

6.2 DRS as a GPMM algorithm

We now show that under Assumption 6.I DRS and all its relaxations fit into
the generalized PMM scheme (2.6). As done for FBS, to facilitate the reading
all the elements and the parameters are summarized in Table 6.1.

Let us consider one DRS iteration s 7→ (u, v, s+) with stepsize γ < 1/Lϕ1 .
Since ϕ1 is differentiable, it follows from Proposition 1.12(vi) that variable
u = proxγϕ1

(s) satisfies ∇ϕ1(u) = 1
γ (s−u). As first noted in [93], the v-update

thus boils down to

v ∈ proxγϕ2
(2u− s) = proxγϕ2

(u− γ∇ϕ1(u)), (6.4)

which is a forward-backward step at u. As seen in the previous chapter, FBS is
the pure PMM scheme (Mfb

γ )γ∈(0,1/Lϕ1 ); we thus can write DRS iterations as

s+ = s+ λ(v − u)

∈ s− λ
(
id− T fb

γ

)
(u)

= s− λ
(
id− T fb

γ

)
◦ proxγϕ1

(s). (6.5)

It follows that DRS fits into the generalized framework, identified as

DR ∼ (Mfb
γ , proxγϕ1

)γ∈(0,1/Lϕ1 ). (6.6)

With this identification, we can condensate (6.6) into

s+ ∈ Fdrλ
γ (s) := s+ λ(v − u),

where u, v are as in (DRS).
Remark 6.2. Under Assumption 6.I, in light of Theorem 1.15 the transient
mappingGγ = proxγϕ1

is µGγ -strongly monotone and LGγ -Lipschitz continuous,
with

µGγ = 1
1+γLϕ1

and LGγ = 1
1+γσϕ1

.
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Douglas-Rachford splitting DR ∼ (Mdr
γ ,proxγϕ1

)γ∈(0,1/Lϕ1 )

γ̄ : 1/Lϕ1

Mdr
γ : Mfb

γ same MM model

T dr
γ : T fb

γ as FBS with

m1(γ) : 1−γLϕ1
γ f = ϕ1 and g = ϕ2

m2(γ) : 1−γσϕ1
γ (see Table 5.1)

Lδ : 1−γσϕ1
γ

Rdr
γ (s) : u−v

γ (with u, v as in (DRS)) (6.5)

ϕdr
γ : ϕfb

γ ◦ proxγϕ1
(5.7)

Gγ : proxγϕ1
(6.5)

G−1
γ : id + γ∇ϕ1 Rem. 6.2

µGγ : 1
1+γLϕ1

Rem. 6.2

LGγ : 1
1+γσϕ1

Rem. 6.2

Table 6.1: Douglas-Rachford splitting with stepsize γ ∈ (0, 1/Lϕ1): parameters of
the proximal model. Being based on the same proximal MM model as FBS, the
M-envelope ϕM

dr
γ = ϕM

fb
γ = ϕfb

γ is the FBE. The F-envelope, denoted as ϕdr
γ ,

is the Douglas-Rachford envelope function ϕdr
γ = ϕfb

γ ◦ proxγϕ1
.

Consequently, the inverse of Gγ , namely

G−1
γ = id + γ∇ϕ1,

is (1 + γLϕ1)-Lipschitz continuous and (1 + γσϕ1)-strongly monotone.

Since the proximal model of DRS is the same as that of FBS, the error bound
in Lemma 5.2 can be imported verbatim.
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Lemma 6.3. Suppose that Assumption 6.I is satisfied, and let s 7→ (u, v, s+)
be a DRS update with stepsize γ ∈ (0, 1/Lϕ1). Then,

dist(0, ∂̂ϕ(v)) ≤ 1−γσf
γ ‖u− v‖.

6.3 Douglas-Rachford envelope

The F-envelope associated to the GPMM scheme DRS is the Douglas-
Rachford envelope (DRE), namely

ϕdr
γ (s) := ϕfb

γ ◦ proxγϕ1
(s). (6.7)

A glance at the expression (5.6) of the FBE shows that

ϕdr
γ (s) = ϕ1(u) + ϕ2(v) + 〈∇ϕ1(u), v − u〉+ 1

2γ ‖v − u‖
2 (6.8)

= L1/γ(u, v, 1
γ (u− s)), (6.9)

where (u, v) are the variables appearing in one iteration of DRS starting from
s, and L1/γ is the (1/γ)-augmented Lagrangian associated to the equivalent
problem formulation

minimize
x,z∈Rn

ϕ1(x) + ϕ2(z) subject to x− z = 0,

namely,

L1/γ(x, z, y) = ϕ1(x) + ϕ2(z) + 〈y, x− z〉+ 1
2γ ‖x− z‖

2.

In fact, the Lagrange multiplier is

y = −∇ϕ1(u) = 1
γ (s− u), (6.10)

as it follows from Theorem 1.15(i).

The DRE was first introduced in [93] for convex problems with ϕ1 twice
continuously differentiable. Under these assumptions the DRE was shown to be
continuously differentiable. The more general analysis dealt here was investigated
in [119]. Further properties of the DRE can be imported verbatim from the
unified analysis provided in Chapter 3.

Theorem 6.4 (DRE: sandwich property). Suppose that Assumption 6.I is
satisfied, and let γ ∈ (0, 1/Lϕ1) be fixed. For all s ∈ Rn, u = proxγϕ1

(s), and
v ∈ proxγϕ2

(2u− s), the following hold:
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(i) ϕdr
γ (s) ≤ ϕ(u), with equality holding iff s ∈ Fdrλ

γ (s).

(ii) 1−γLϕ1
2 ‖u− v‖2 ≤ ϕdr

γ (s)− ϕ(v) ≤ 1−γσϕ1
2 ‖u− v‖2.

(iii) inf ϕfb
γ = inf ϕ and proxγϕ1

(argminϕfb
γ ) = argminϕ.

Proof. Follows from Cor. 3.3.

Theorem 6.5 (DRE: equivalence of local minimality). Suppose that Assumption
6.I is satisfied, and let γ ∈ (0, 1/Lϕ1), s̄ ∈ fixFdrλ

γ , and ū := proxγϕ1
(s̄) be fixed.

The following hold:

(i) If s̄ is a (strong) local minimum for ϕdr
γ , then ū is a (strong) local

minimum for ϕ.

(ii) If Fdrλ
γ (s̄) = {s̄}, (e.g., if γ < Γdr(ū)) then the converse also holds.

Proof. See Thm. 3.6.

Theorem 6.6 (DRE: Equivalence of level boundedness). Suppose that Assump-
tion 6.I is satisfied. Then, for any γ ∈ (0, 1/Lϕ1), ϕ is level bounded iff ϕfb

γ is
level bounded.

Proof. See Thm. 3.7.

6.3.1 Regularity properties

Proposition 6.7 (Strict continuity of the DRE). Suppose that Assumption 6.I
is satisfied. Then, for any γ ∈ (0, 1/Lϕ1) the DRE ϕdr

γ is a strictly continuous
function.

Proof. Since ϕdr
γ = ϕfb

γ ◦ proxγϕ1
, the claim follows from the strict continuity

of ϕfb
γ and the Lipschitz continuity of proxγϕ1

, cf. Prop. 5.6 and Rem. 6.2.

Proposition 6.8. Suppose that Assumption 6.I is satisfied, and let s̄ be such
that Fdrλ

γ (s̄) = {s̄}. If ϕ1 is (strictly) twice differentiable at s̄, then ϕdr
γ is

(strictly) differentiable at s̄ with ∇ϕdr
γ (s̄) = 0.

Proof. Let ū := proxγϕ1
(s̄). Then, since T dr

γ = T fb
γ we have that T fb

γ (ū) = {ū},
and Prop. 6.8 ensures that ϕfb

γ is (strictly) differentiable at ū with ∇ϕfb
γ (ū) = 0.
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Then, for all si and ui := proxγϕ1
(si), i = 1, 2, we have that

|ϕdr
γ (s1)− ϕdr

γ (s2)|
‖s1 − s2‖

=
|ϕfb
γ (u1)− ϕfb

γ (u2)|
‖s1 − s2‖

≤ (1 + γLϕ1)
|ϕfb
γ (u1)− ϕfb

γ (u2)|
‖u1 − u2‖

where the last equality follows from the strong monotonicity of proxγϕ1
, cf.

Rem. 6.2. (Strict) differentiability of ϕdr
γ at s̄ with ∇ϕdr

γ (s̄) = 0 then easily
follows from that of ϕfb

γ , cf. Prop. 5.7.

6.3.2 The DRE as a Lyapunov function

We now proceed to showing that the DRE can conveniently serve as Lyapunov
function for DRS, so that one can directly import all the convergence results
developed in the general framework of Section 3.3.

A first result can be derived from Theorem 3.18 with no effort by simply plugging
the constants m1,m2, µGγ , LGγ corresponding to the GPMM scheme of DRS
with stepsize γ, cf. Table 6.1. Indeed, after simple algebra one obtains that
the ϕdr

γ is a Lyapunov function for Fdrλ
γ provided that ξ := γLϕ1 solves the

following cubic inequality

(1− p+ p3)ξ3 + (2− 2p+ p2)ξ2 + (1− 2p)ξ − 1 < 0, (6.11)

where p := σϕ1/Lϕ1 ∈ [−1, 1], and that λ is bounded in some range contained in
(0, 2). Although for any p ∈ [−1, 1] one can always find small enough stepsizes γ
such that ξ = γLϕ1 satisfies (6.11), it turns out that this estimate is extremely
loose. The following result uses more sophisticated inequalities and provides
sensibly better ranges. In fact, we will show in Section 6.4.1 that for any
relaxation λ ∈ (0, 2] the given bounds are tight, as DRS is not ensured to
converge otherwise. For the sake of a comparison, in the worst-case scenario
p = −1, (6.11) imposes γLϕ1 <

√
5−2
2 ≈ 0.24 and additional constraints on λ,

whereas the tight bound is γLϕ1 < 1 − λ/2 for any λ ∈ (0, 2); if ϕ1 is convex,
hence p = 0, (6.11) imposes γLϕ1 < 0.47, while the tight bound is γLϕ1 < 1
for any λ ∈ (0, 2). The result also investigates the employment of stepsizes
λ ∈ [2, 4); it will also be shown that no guarantee of convergence of DRS can
be established for λ /∈ (0, 4).

Theorem 6.9 (Sufficient decrease on the DRE). Suppose that Assumption
6.I is satisfied, and consider one DRS update s 7→ (u, v, s+) for some stepsize
γ < min

{
2−λ

2[σϕ1 ]− ,
1
Lϕ1

}
and relaxation λ ∈ (0, 2). Then,

ϕdr
γ (s)− ϕdr

γ (s+) ≥ c
(1+γLϕ1 )2 ‖s− s+‖2, (6.12)
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where, denoting pϕ1 := σϕ1/Lϕ1 ∈ [−1, 1], c > 0 is defined by1

c = 2− λ
2λγ −

{
Lϕ1 max

{
[pϕ1 ]−

2(1−[pϕ1 ]−) ,
1
2 −

γLϕ1
λ

}
if pϕ1 ≥ λ

2 − 1,
[σϕ1 ]−
λ otherwise.

(6.13)

If ϕ1 is strongly convex, then (6.12) also holds for

2 ≤ λ < 4
1+
√

1−pϕ1
and pϕ1λ−δ

4σϕ1
< γ <

pϕ1λ+δ
4σϕ1

, (6.14)

where δ :=
√

(pϕ1λ)2 − 8pϕ1(λ− 2), in which case

c = 2−λ
2λγ + σϕ1

λ ( 1
2 −

γLϕ1
λ ). (6.15)

Proof. Let (u+, v+) be generated by one DRS iteration starting at s+. Then,

ϕdr
γ (s+) = min

w∈Rn

{
ϕ1(u+) + ϕ2(w) + 〈∇ϕ1(u+), w − u+〉+ 1

2γ ‖w − u
+‖2

}
and the minimum is attained at w = v+. Therefore, letting ρ be as in Thm.
1.10,

ϕdr
γ (s+) ≤ ϕ1(u+) + 〈∇ϕ1(u+), v − u+〉+ ϕ2(v) + 1

2γ ‖u
+ − v‖2

= ϕ1(u+) + 〈∇ϕ1(u+), u− u+〉+ 〈∇ϕ1(u+), v − u〉+ ϕ2(v)

+ 1
2γ ‖u

+ − v‖2

(Thm. 1.10) ≤ ϕ1(u)− ρ(u, u+) + 〈∇ϕ1(u+), v − u〉+ ϕ2(v) + 1
2γ ‖u

+ − v‖2

= ϕ1(u)− ρ(u, u+) + 〈∇ϕ1( u ), v − u〉+ ϕ2(v) + 1
2γ ‖u

+ − v‖2

+〈∇ϕ1(u+)−∇ϕ1(u), v − u〉

= ϕdr
γ (s)− ρ(u, u+) + 〈∇ϕ1(u+)−∇ϕ1(u), v − u〉+ 1

2γ ‖u− u
+‖2

+ 1
γ 〈u

+ − u, u− v〉.

1A one-line expression is c = 2−λ
2λγ −min

{
[pϕ1 ]−
λ

, Lϕ1 max
{

[σϕ1 ]−
2(1−[pϕ1 ]−) ,

1
2 −

γLϕ1
λ

}}
.
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Since u − v = 1
λ (s − s+) = 1

λ (u − u+) + γ
λ (∇ϕ1(u) − ∇ϕ1(u+)), as it follows

from Thm. 1.15(i), it all simplifies to

ϕdr
γ (s)−ϕdr

γ (s+) ≥ 2−λ
2γλ ‖u−u

+‖2− γ
λ‖∇ϕ1(u+)−∇ϕ1(u)‖2 +ρ(u, u+). (6.16)

It will suffice to show that

ϕdr
γ (s)− ϕdr

γ (s+) ≥ c‖u− u+‖2;

inequality (6.12) will then follow from the 1
1+γLϕ1

-strong monotonicity of
proxγϕ1

, see Thm. 1.15(ii). We now proceed by cases.

♠ Case 1: λ ∈ (0, 2).
Let σ := −[σϕ1 ]− = min {σϕ1 , 0} and L ≥ Lϕ1 be such that L + σ > 0; the
value of such an L will be fixed later. Then, σ ≤ 0 and ϕ1 is L-smooth and
σ-hypoconvex. We may thus choose ρ(u, u+) as in Thm. 1.10(ii) with these
values of L and σ. Inequality (6.16) then becomes

ϕdr
γ (s)−ϕdr

γ (s+)
L ≥

(
2−λ
2λξ + p

2(1+p)

)
‖u+−u‖2+ 1

L2

(
1

2(1+p)−
ξ
λ

)
‖∇ϕ1(u+)−∇ϕ1(u)‖2,

where ξ := γL and p := σ/L ∈ (−1, 0]. Since ∇ϕ1 is Lϕ1-Lipschitz continuous,
the claim holds provided that the constant

c

L
=


2−λ
2λξ + p

2(1+p) if 0 < 1
2(1+p) −

ξ
λ ,

2−λ
2λξ + p

2(1+p) + L2
ϕ1
L2

(
1

2(1+p) −
ξ
λ

)
otherwise,

(6.17)

is strictly positive. Now, let us consider two subcases:

• Case 1a: 0 < λ ≤ 2(1 + σ/Lϕ1).
Then, σ ≥ − 2−λ

2 Lϕ1 > −Lϕ1 and we can take L = Lϕ1 . Consequently,
p = σ/Lϕ1 , ξ = γLϕ1 , and (6.17) becomes

c

Lϕ1

= 2− λ
2λγLϕ1

+
{

p
2(1+p) if γ < λ

2(1+p) ,
1
2 −

γLϕ1
λ otherwise.

(6.18)

Let us verify that in this case any γ such that γ < 1/Lϕ1 yields a strictly
positive coefficient c. If 0 < γLϕ1 <

λ
2(1+p) ≤ 1, then

c
Lϕ1

= 2−λ
2λγLϕ1

+ p
2(1+p) >

2−λ
2λ + p

λ = 1+p
λ −

1
2 ≥ 0,
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where in the inequality we used the fact that λ < 2 and p ≤ 0. If instead
λ

2(1+p) < γLϕ1 < 1, then

c
Lϕ1

= 2−λ
2λγLϕ1

+ 1
2 −

γLϕ1
λ > 2−λ

2λ + 1
2 −

1
λ = 0.

Either way, the sufficient decrease constant c is strictly positive. Since
σ = −[σϕ1 ]− and

2−λ
2λγ + σ

2(1+p) ≤
2−λ
2λγ + Lϕ1

2 −
γL2

ϕ1
λ ⇔ γ ≤ λ

2(Lϕ1+σ) ,

from (6.18) we conclude that c is as in (6.12).
• Case 1b: 2(1 + σ/Lϕ1) < λ < 2.
Necessarily σ < 0, for otherwise the range of λ would be empty. In
particular, σ = σϕ1 , and the lower bound on λ can be expressed as
σϕ1 < − 2−λ

2 Lϕ1 . Consequently, L := −2σϕ1
2−λ is strictly larger than Lϕ1 , and

in particular σ +L = σϕ1 +L > 0. The ratio of σ and L is thus p = λ
2 − 1,

and (6.17) becomes

c = 2−λ
2λγ +


σϕ1
λ if γ < 2−λ

−2σϕ1
σϕ1
λ −

γL2
ϕ1
λ + 2−λ

−2σϕ1λ
L2
ϕ1

otherwise.
(6.19)

Let us show that, when γ < 2−λ
−2σϕ1

= 1
L , also in this case the sufficient

decrease constant c is strictly positive. We have

c
L = 2−λ

2λγL + σϕ1
λ

1
L >

2−λ
2λ + σϕ1

λ
2−λ
−2σϕ1

= 0,

hence the claim. This concludes the proof for the case λ ∈ (0, 2).

♠ Case 2: λ ≥ 2.
In this case we need to assume that ϕ1 is strongly convex, that is, that σϕ1 > 0.
Instead of considering a single expression of ρ, we will rather take a convex
combination of those in Thm.s 1.10(i) and 1.6(d), namely

ρ(u, u+) = (1− α)σϕ1
2 ‖u− u

+‖2 + α 1
2Lϕ1
‖∇ϕ1(u)−∇ϕ1(u+)‖2

for some α ∈ [0, 1] to be determined. (6.16) then becomes

ϕdr
γ (s)−ϕdr

γ (s+)
Lϕ1

≥
(

2−λ
2λξ + (1−α)p

2

)
‖u−u+‖2+ 1

L2
ϕ1

(
α
2 −

ξ
λ

)
‖∇ϕ1(u)−∇ϕ1(u+)‖2,

where ξ := γLϕ1 and p := σϕ1/Lϕ1 ∈ (0, 1]. By restricting ξ ∈ (0, 1), since λ ≥ 2
one can take α := 2ξ/λ ∈ (0, 1) to make the coefficient multiplying the gradient
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norm vanish. We then obtain

c
Lϕ1

= 2−λ
2λξ + (λ−2ξ)p

2λ . (6.20)

Imposing c > 0 results in the following second-order equation in variable ξ,

2pξ2 − pλξ + (λ− 2) < 0. (6.21)

The discriminant is ∆ := (pλ)2 − 8p(λ− 2), which, for λ ≥ 2, is strictly positive
iff

2 ≤ λ < 4
1+
√

1−p ∨ λ > 4
1−
√

1−p .

Denoting δ :=
√

∆ =
√

(pλ)2 − 8p(λ− 2), the solution to (6.21) is pλ−δ
4p < ξ <

pλ+δ
4p . However, the case λ ≥ 4 has to be discarded, as pλ−δ

4p > 1 in this case,
contradicting the fact that p ≤ 1. To see this, suppose λ ≥ 4. Then,

pλ−δ
4p < 1 ⇔ p(λ− 4) < δ

⇔ p2(λ− 4)2 < ∆ = (pλ)2 − 8p(λ− 2)

⇔ p(2− λ) < 2− λ,

hence p > 1, which contradicts the fact that σϕ1 ≤ Lϕ1 . Thus, the only feasible
ranges are the ones given in (6.14), hence the claimed sufficient decrease constant
c, cf. (6.20).

Corollary 6.10. Under Assumption 6.I, for any stepsize γ and relaxation λ
as in Theorem 6.9, the DRE ϕdr

γ is a Lyapunov function for the fixed-point
iterations of Fdrλ

γ .

6.4 Convergence results

Theorem 6.11 (Finite termination of relaxed DRS). The iterates generated
by DRS (Alg. 6.1) satisfy

ϕdr
γ (sk+1) ≤ ϕdr

γ (sk)− cλ2

(1+γLϕ1 )2 ‖uk − vk‖2,

where c > 0 is as in Theorem 6.9. In particular, the algorithm terminates in a
finite number of iterations and yields a point x∗ satisfying dist(0, ∂̂ϕ(x∗)) ≤ ε.

Proof. Follows from Thm. 3.22 in light of Cor. 3.20 and Lem. 6.3. The fact
that dist(0, ∂̂ϕ(x∗)) ≤ ε follows the same arguments as in the proof of Thm.
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Algorithm 6.1. Douglas-Rachford splitting with relaxation

Require • initial iterate s0 ∈ Rn;
• tolerance ε > 0;
• stepsize and relaxation γ, λ > 0 as follows:{

0 < γ < min
{

2−λ
2[σϕ1 ]− ,

1
Lϕ1

}
and λ ∈ (0, 2), or

pλ−δ
4σϕ1

< γ < pλ+δ
4σϕ1

and 2 ≤ λ < 4
1+
√

1−p ,

where p := σϕ1/Lϕ1 and δ :=
√

(pλ)2 − 8p(λ− 2).
Provide x∗ with ϕdr

γ (x∗) ≤ ϕdr
γ (x0) and dist(0, ∂̂ϕ(x∗)) ≤ ε.

1: for k = 0, 1, . . . do
2: uk = proxγϕ1

(sk)
3: vk ∈ proxγϕ2

(2uk − sk)
4: if 1

2γ ‖u
k − vk‖ ≤ ε then

5: return x∗ = vk

6: sk+1 = sk + λ(vk − uk)

5.16.

Theorem 6.12 (Asymptotic convergence of relaxed DRS). Suppose that As-
sumption 6.I is satisfied, and consider the iterates generated by DRS (Alg. 6.1)
with tolerance ε = 0. The following hold:

(i) The Douglas-Rachford residual (‖uk − vk‖)k∈N is square-summable; in
particular, minj≤k ‖uj − vj‖ ∈ O(1/

√
k).

(ii) (uk)k∈N and (vk)k∈N have the same cluster points, all of which are sta-
tionary for ϕ and on which ϕ has the same value, this being the limit of
(ϕdr
γ (sk))k∈N. In fact, the set ω of accumulation points of (vk)k∈N (and

of (uk)k∈N) satisfies ω ⊆ fix T fb
γ ⊆ zer ∂̂ϕ.

(iii) If ϕ is level bounded, then (sk, uk, vk)k∈N is bounded, and ω is a nonempty,
compact and connected set satisfying dist(vk, ω)→ 0 as k →∞.

(iv) ϕdr
γ ≡ ϕ on (id + γ∇ϕ1)(ω), the value being the limit of the (decreasing)

sequence (ϕdr
γ (sk))k∈N (or, equivalently, of (ϕ(vk))k∈N).

Proof. Follows from Thm. 3.22 in light of Cor. 6.10.
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Since both proxγϕ1
and its inverse are (continuous and) strongly monotone,

it is easy to verify that ϕdr
γ has the KL property iff so does ϕfb

γ ; the same
arguments extend to the Lojasiewicz property, in which case the exponent is
also preserved.

Theorem 6.13 (Global convergence of relaxed DRS). Suppose that Assumption
6.I is satisfied, and consider the iterates generated by DRS (Alg. 6.1) with
tolerance ε = 0. Suppose further that the following hold:

a1 ϕ is level bounded.

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10 (with f = ϕ1 and g = ϕ2).

a3 ϕdr
γ (or, equivalently, ϕfb

γ ) has the KL property.

Then, the following hold:

(i) (vk)k∈N converges to a point x? ∈ fix T fb
γ ⊆ zer ∂̂ϕ.

(ii) The Douglas-Rachford residual (‖uk − vk‖)k∈N is summable, and in par-
ticular minj≤k ‖uj − vj‖ ∈ O(1/k).

Proof. Follows from Thm. 3.23, in light of Cor. 6.10 and Thm. 5.11(ii) (since
ϕfb
γ is theM-envelope of DRS).

Theorem 6.14 (Linear convergence of relaxed DRS). Suppose that Assumption
6.I is satisfied, and consider the iterates generated by DRS (Alg. 6.1) with
tolerance ε = 0. Suppose further that the following hold:

a1 ϕ is level bounded;

a2 All accumulation points of the sequence are prox-regular, in the sense of
Definition 5.10 (with f = ϕ1 and g = ϕ2).

a3 ϕdr
γ (or, equivalently, ϕfb

γ ) has the KL property and the KL function is of
the form ψ(s) = csϑ for some c > 0 and ϑ ≥ 1/2.

Then, the sequences (vk)k∈N and (dist(0,Rdr
γ (sk)))k∈N are R-linearly conver-

gent.

Proof. Follows from Thm. 3.24, in light of Cor. 6.10 and Thm. 5.11(ii) (since
ϕfb
γ is theM-envelope of DRS).
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6.4.1 Tightness of the ranges

When both ϕ1 and ϕ2 are convex and ϕ1 + ϕ2 attains a minimum, well-known
results of monotone operator theory guarantee that for any λ ∈ (0, 2) and γ > 0
the residual uk − vk generated by DRS iterations vanishes (see e.g., [10, Cor.
28.3]). In fact, the whole sequence (uk)k∈N converges and ϕ1 needs not even
be differentiable in this case. On the contrary, when ϕ2 is nonconvex then the
bound γ < 1/Lϕ1 plays a crucial role, as the next example shows.

Theorem 6.15 (Necessity of γ < 1/Lϕ1). For any L > 0 and σ ∈ [−L,L] there
exist ϕ1, ϕ2 : Rp → R satisfying the following properties

p1 ϕ1 is L-smooth and σ-hypoconvex;

p2 ϕ2 is proper and lsc;

p3 argmin(ϕ1 + ϕ2) 6= ∅;

p4 for all s0 ∈ Rp, γ ≥ 1/L, and λ > 0, the sequence (sk)k∈N generated by
DRS iterations with stepsize γ and relaxation λ starting from s0 satisfies
‖sk − sk+1‖ 6→ 0 as k →∞.

Proof. Fix t > 1, and let ϕ = ϕ1 + ϕ2, where ϕ2 = δ{±1} and

ϕ1(x) =
{
L
2 x

2 if x ≤ t,
L
2 x

2 − L−σ
2 (x− t)2 otherwise.

(6.22)

Notice that domϕ = {±1}, and therefore ±1 are the unique stationary points
of ϕ (in fact, they are also global minimizers). It can be easily verified that ϕ1
and ϕ2 satisfy properties 6.15.p1, 6.15.p2 and 6.15.p3. Moreover, proxγϕ1

is
well defined iff γ < 1/[σ]−, in which case

proxγϕ1
(s) =

{
s

1+γL if s ≤ t(1 + γL),
s−γ(L−σ)t

1+γσ otherwise,
(6.23)

proxγϕ2
= sgn, where sgn(0) = {±1}. Let now s0 ∈ Rp, 1/L ≤ γ < 1/[σ]−, and

λ > 0 be fixed, and consider a sequence (sk)k∈N generated by DRS with stepsize
γ and relaxation λ, starting at s0. To arrive to a contradiction, suppose that
‖sk−sk+1‖ = λ‖uk−vk‖ → 0 as k →∞. For any k ∈ N we have vk = − sgn(sk)
if sk ≤ t(1 + γL), resulting in

uk − vk ∈

{
sk

1+γL + sgn(sk) if sk ≤ t(1 + γL),
sk

1+γσ −
γ(L−σ)t

1+γσ − v
k otherwise,
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where vk is either 1 or −1 in the second case. Since uk − vk → 0, then

min
{∣∣ sk

1+γL + sgn(sk)
∣∣, ∣∣ sk

1+γσ −
L−σ
1+γσγt− 1

∣∣, ∣∣ sk

1+γσ −
L−σ
1+γσγt+ 1

∣∣}→ 0.

Notice that the first element in the set above is always larger than 1, and
therefore eventually sk will be always close to either (L− σ)γt+ (1 + γσ) or
(L− σ)γt− (1 + γσ), both of which are strictly smaller than t(1 + γL) (since
t > 1). Therefore, eventually sk ≤ t(1 + γL) and the residual will then be
uk − vk = sk

1+γL + sgn(sk) which is bounded away from zero, contradicting the
fact that uk − vk → 0.

Theorem 6.16 (Necessity of 0 < λ < 2(1 + γσ)). For any L > 0 and σ ∈
[−L,L] there exist ϕ1, ϕ2 : Rp → R satisfying the following properties

p1 ϕ1 is L-smooth and σ-hypoconvex;

p2 ϕ2 is proper, lsc, and strongly convex;

p3 argmin(ϕ1 + ϕ2) 6= ∅;

p4 for all s0, 0 < γ < 1/L, and λ > 2(1+γσ), the sequence (sk)k∈N generated by
DRS with stepsize γ and relaxation λ starting from s0 satisfies ‖sk−sk+1‖ 6→
0 as k →∞ (unless s0 is a fixed point for DRS).

Proof. Let ϕ = ϕ1 + ϕ2, where ϕ1 is as in (6.22) with t = 1, and ϕ2 = δ{p} for
some p > 1. Let γ < 1/L, λ ≥ 2(1 +γσ). Starting from s0 6= (1 +γσ)p+γ(L−σ)
(so that u0 6= p), consider DRS with stepsize γ and relaxation λ. To arrive to a
contradiction, suppose that the residual vanishes. Since vk = proxγϕ2

(2uk −
sk) = p, necessarily uk → p; therefore, eventually uk > 1 and in particular

uk+1+γ L−σ
1+γσ = 1

1+γσ s
k+1 = 1

1+γσ (sk+λ(p−uk)) = uk+γ L−σ
1+γσ + λ

1+γσ (p−uk),

where the identity sk = (1 + γσ)uk + γ(L− σ) was used, cf. (6.23). Therefore,∣∣uk+1 − p
∣∣ =

∣∣1− λ
1+γσ

∣∣∣∣uk − p∣∣ ≥ ∣∣uk − p∣∣,
where the inequality is due to the fact that λ ≥ 2(1 + γσ). Since u0 6= p due
to the choice of s0, apparently (uk)k∈N is bounded away from p, hence the
contradiction.

Let us draw some conclusions:
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• The nonsmooth function ϕ2 is (strongly) convex in Theorem 6.16, therefore
even for fully convex formulations the bound 0 < λ < 2(1 + γσϕ1) needs be
satisfied.

• If λ > 2 (which is feasible only if ϕ1 is strongly convex, i.e., if σϕ1 > 0), then,
regardless of whether also ϕ2 is (strongly) convex or not, we obtain that the
stepsize must be lower bounded as γ > λ−2

2σϕ1
. In the more general setting of

σ-strongly monotone operators in Hilbert spaces, hence σ ≥ 0, the similar
bound λ < min {2(1 + γσ), 2 + γσ + 1/γσ} has been recently established in
[82].

• Combined with the bound γ < 1/Lϕ1 shown in Theorem 6.15, we infer that
(at least when ϕ2 is nonconvex) necessarily 0 < λ < 2(1 + σϕ1/Lϕ1) and
consequently λ ∈ (0, 4).

Theorem 6.17 (Tightness). Unless the generality of Assumption 6.I is sacri-
ficed, when λ ∈ (0, 2) or ϕ1 is not strongly convex, γ < min

{
1
Lϕ1

, 2−λ
2[σϕ1 ]−

}
is

a tight bound for ensuring convergence of DRS. Similarly, PRS (i.e., DRS with
λ = 2) is ensured to converge iff ϕ1 is strongly convex and γ < 1/Lϕ1 .

6.5 A quasi-Newton DRS

Theorem 6.18 (CLyD-DRS (nonmonotone): subsequential convergence). Sup-
pose that Assumption 6.I is satisfied. Then, the following hold for the iterates
generated by CLyD-DRS (Alg. 6.2) with tolerance ε = 0:

(i) The residual (‖uk−vk‖)k∈N is square-summable; in particular, it vanishes
with rate minj≤k dist(sj ,Fdrλ

γ (sj)) ∈ O(1/
√
k).

(ii) The set ω of accumulation points of (uk)k∈N satisfies ω ⊆ fix T dr
γ ⊆

zer ∂̂ϕ.

If, additionally, ‖dk‖ → 0 as k →∞, then the following also hold:

(iii) If ϕ is level bounded, then (uk)k∈N and (vk)k∈N are bounded, and ω is
a nonempty, compact and connected set satisfying dist(vk, ω) → 0 as
k →∞.

(iv) ϕdr
γ ≡ ϕ on ω, the value being the limit of the (decreasing) sequence

(ϕdr
γ (sk))k∈N.
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Algorithm 6.2. CLyD-DRS

Require • stepsize γ, relaxation λ, and sufficient decrease constant
c as in Thm. 6.9

• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial iterate s0 ∈ Rn
• tolerance ε > 0

Provide x∗ with dist
(
0, ∂ϕ(x∗)

)
≤ ε

1: for k = 0, 1, 2, . . . do
2: Do one nominal DR-step: uk = proxγϕ1

(sk)
vk ∈ proxγϕ2

(2uk − sk)
s̄k = sk + λ(vk − uk)

3: if 1
2γ ‖u

k − vk‖ ≤ ε then return x∗ = vk

4: Select an update direction dk ∈ Rn at sk
5: Let τk ∈

{
2−i | i ∈ N

}
be the largest such that

ϕdr
γ (sk+1) ≤ ϕdr

γ (sk)− αcλ2

(1+γLϕ1 )2 ‖uk − vk‖2, (6.24)

where sk+1 := (1− τk)s̄k + τk(sk + dk)

All the claims remain valid if the linesearch condition (6.24) is replaced by the
following nonmonotone version:

ϕdr
γ (sk+1) ≤ L̄k − αcλ2

(1+γLϕ1 )2 ‖uk − vk‖2, (6.25)

where, for any sequence (pk)k∈N ⊆ [0, 1] bounded away from 0, L̄k are recursively
defined as follows:

L̄k :=
{
ϕdr
γ (s0) if k = 0,

(1− pk)L̄k−1 + pkϕ
dr
γ (sk) otherwise.

Proof. Follows from Theorem 4.1.

6.5.1 Global and (super)linear convergence

Theorem 6.19 (Global convergence). Additionally to Assumption 6.I, suppose
that the following hold for the iterates generated by CLyD-DRS (Alg. 6.2) with
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tolerance ε = 0.

a1 ϕ is level bounded.

a2 All accumulation points of the sequence (vk)k∈N are prox-regular, in the
sense of Definition 5.10.

a3 The DRE ϕdr
γ has the KL property.

a4 There exists D > 0 such that ‖dk‖ ≤ D‖uk − vk‖ for all k’s.

Then, the following hold:

(i) (vk)k∈N converges to a point x? ∈ fix T dr
γ ⊆ zer ∂̂ϕ.

(ii) The residual is summable and in particular minj≤k dist(sj ,Fdrλ
γ (sj)) ∈

O(1/k).

Proof. Follows from Theorems 5.11(ii) and 4.2 (since ϕfb
γ is theM-envelope of

DRS).

Theorem 6.20 (Linear convergence). Suppose that the assumptions of Theorem
6.19 are satisfied, and that the KL function can be taken of the form ψ(s) =
csϑ for some c > 0 and ϑ ≥ 1/2. Then, the sequences (sk)k∈N, (vk)k∈N, and
dist(sk,Fdrλ

γ (sk)) are R-linearly convergent.

Proof. Follows from Theorem 4.3.

Theorem 6.21 (Acceptance of the unit stepsize and superlinear convergence).
Consider the iterates generated by CLyD-DRS (Alg. 6.2). Additionally to As-
sumption 6.I, suppose that the following hold:

a1 (uk)k∈N converges to a strong local minimum u? of ϕ.

a2 (dk)k∈N are superlinearly convergent directions with respect to (sk)k∈N.

a3 γ 6= Γdr(u?).

Then, there exists k̄ ∈ N such that

ϕdr
γ (sk + dk) ≤ ϕdr

γ (sk)− αcλ2

(1+γLϕ1 )2 ‖uk − vk‖2 for all k ≥ k̄.

In particular, eventually the iterates reduce to sk+1 = sk + dk and converge
superlinearly.
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Proof. Follows from Theorem 4.5.

Theorem 6.22 (Dennis-Moré condition). Consider the iterates generated by
CLyD-DRS (Alg. 6.2). Additionally to Assumption 6.I, suppose that the following
hold:

a1 (uk)k∈N converges to a strong local minimum u? at which Assumption 5.II
is (strictly) satisfied (with f = ϕ1 and g = ϕ2).

a2 The Dennis-Moré condition holds:

lim
k→∞

‖Rdr
γ (sk) + JRdr

γ (x?)dk‖
‖dk‖

= 0. (6.26)

Then, (dk)k∈N are superlinearly convergent directions with respect to (sk)k∈N.

Proof. Follows from the same arguments of Thm. 5.24.

Theorem 6.23 (Superlinear convergence with Broyden directions). Consider
the iterates generated by CLyD-DRS (Alg. 6.2) with directions dk selected with
Broyden method (4.5). Additionally to Assumption 6.I, suppose that the following
hold:

a1 (uk)k∈N converges to a point u? at which Rdr
γ is Lipschitz-continuously

semidifferentiable and with nonsingular Jacobian JRdr
γ (u?) (in particular,

Rdr
γ is strictly differentiable there).

Then, the Dennis-Moré condition (6.26) is satisfied, and in particular all the
claims of Theorem 6.22 hold.

Proof. Follows from the same arguments of Thm. 5.25.



Chapter 7

Alternating direction method of multipliers

7.1 Introduction

Closely related to DRS and possibly even more popular is the alternating
direction method of multipliers (ADMM), first appeared in [51, 47], see
also [50] for a recent historical overview. ADMM addresses linearly constrained
optimization problems

minimize
(x,z)∈Rm×Rn

f(x) + g(z) subject to Ax+Bz = b, (7.1)

where f : Rm → R, g : Rn → R, A ∈ Rp×m, B ∈ Rp×n, and b ∈ Rp. Starting
from some z ∈ dom g and y ∈ Rp, one ADMM iteration amounts to the following
steps: 

x+ ∈ argmin Lβ( · , z, y)
y+ = y + β(Ax+ +Bz − b)
z+ ∈ argmin Lβ(x+, · , y+).

(7.2)

Here, the penalty parameter β > 0 plays the role of a stepsize, and

Lβ(x, z, y) := f(x) + g(z) + 〈y,Ax+Bz − b〉+ β
2 ‖Ax+Bz − b‖2 (7.3)

is the β-augmented Lagrangian of (7.1) with y ∈ Rp as Lagrange equality
multiplier. For convex problems ADMM is DRS applied to a dual formulation
[46], and its convergence properties for arbitrary penalty parameters β > 0
are well documented in the literature, see e.g., [27]. ADMM can be seen as
fixed-point iterations on the Lagrange multiplier y, with x and z serving as
intermediate variables as u and v do in DRS iterations, and for this reason
the y-update is usually the last. For reasons that will soon be clear, as well as

126
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to preserve the alphabetical order of the variables, we consider this “shifted”
version; the classical ADMM is recovered by simply starting the update from
the z-update.1

Relaxing ADMM with some parameter λ requires the introduction of an in-
between variable y+/2. For the sake of completeness we will thus study the
following more general formulation:

y+/2 = y − β(1− λ)(Ax+Bz − b)
x+ ∈ argmin Lβ( · , z, y+/2)
y+ = y+/2 + β(Ax+ +Bz − b)
z+ ∈ argmin Lβ(x+, · , y+).

(ADMM)

Clearly, when λ = 1 (that is, in absence of relaxation) one has y+/2 = y and the
scheme reduces to the unrelaxed ADMM version (7.2).

As detailed in the next section, the numerous attempts to extend the applicability
of ADMM to nonconvex problems brought forth a patchwork of standalone
results, possibly involving implicit constants and burdened with non-trivial
assumptions. However, hidden in the convex setting the recent work [125]
established a universal primal equivalence of ADMM and DRS: under no
assumptions, one ADMM update can be retrieved by one of DRS applied to an
equivalent problem reformulation. This is the milestone of our approach, as the
analysis of ADMM can be simplified down to that of DRS, well covered in the
previous chapter.

7.1.1 Overview on nonconvex ADMM

Before proceeding with our analysis, let us briefly summarize some related work
on nonconvex ADMM.

A primal equivalence of DRS and ADMM has been observed in [11, Rem. 3.14]
when A = −B = I and λ = 1. In [125, Thm. 1] the equivalence is extended to
arbitrary matrices; although limited to convex problems, the result is easily
extendable. Our generalization to any relaxation parameter (and nonconvex
problems) is largely based on this result and uses the same problem reformulation
proposed therein. The relaxation considered in this paper corresponds to that
introduced in [42]; it is worth mentioning that another type of relaxation

1Conventionally, updates follow the order (x, z, y), whereas the shifted version of ADMM
here proposed would update z first, then x, and lastly y. Of course, it is simply a matter of
swapping the primal variables x and z and the functions f and g in problem formulation
(7.1), hence there is really no loss of generality in the update order adopted here.
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has been proposed, corresponding to λ = 1 in (ADMM) but with a different
steplength for the y-update: that is, with β replaced by θβ for some θ > 0. The
known convergence results for θ ∈ (0, 1+

√
5

2 ) in the convex case, see [49, §5],
were recently extended to nonconvex problems and for θ ∈ (0, 2) in [52].

In [123] convergence of ADMM is studied for problems of the form

minimize
x=(x0...xp),z

g(x) +
∑p
i=0 fi(xi) + h(z) subject to Ax +Bz = 0.

Although addressing a more general class of problem than (7.1), when specialized
to the standard two-function formulation analyzed in this paper it relies on
numerous assumptions. These include Lipschitz continuous minimizers of all
ADMM subproblems (in particular, uniqueness of their solution), whereas we
allow for multiple minimizers and make almost no requirement on the nonsmooth
function. For instance, the requirements rule out interesting cases involving
discrete variables or rank constraints.

−1 −0.5 0 0.5 1

1/4L

1/2L

3/4L

1/L

hypoconvexity/Lipschitz ratio σ/L

Range of 1/β in ADMM (λ � 1)

Ours
Hong et al. / Li-Pong
Guo-Han-Wu / Wang-Yin-Zeng
Gonçalves et al.

Figure 7.1: Maximum inverse of
the penalty paramenter 1/β ensuring
convergence of ADMM; comparison
between our bounds (blue plot) and
[52, 53, 58, 70, 123]. On the x-axis
the ratio between hypoconvexity and
smoothness moduli of the image func-
tion (Af). The analysis is made for a
common framework: 2-block ADMM
with no Bregman or proximal terms,
A invertible and B identity. Notice
that, due to the proved analogy of
DRS and ADMM, our theoretical
bounds coincide in Fig. 6.1a and 7.1.

In [58] a class of nonconvex problems with more than two functions is presented
and variants of ADMM with deterministic and random updates are discussed.
The paper provides a nice theory and explicit bounds for the penalty paramenter
in ADMM, which agree with ours in worst- and best-case scenarios but are more
restrictive otherwise (cf. Fig. 7.1 for a more detailed comparison). The main
limitation of the proposed approach, however, is that the theory only allows for
functions either convex or smooth, differently from ours where the nonsmooth
term can basically be any function. Once again, many interesting applications
are not covered.

The work [70] studies a proximal ADMM where a possible Bregman divergence
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term in the second block update is considered. By discarding the Bregman term
so as to recover the original ADMM scheme, the same bound on the stepsize
as in [58] is found. Another proximal variant is proposed in [52], under less
restrictive assumptions related to the concept of smoothness relative to a matrix
that we will introduce in Definition 7.7. When matrix B has full-column rank,
the proximal term can be discarded and their method reduces to the classical
ADMM.

The problem addressed in [53] is fully covered by our analysis, as they consider
ADMM for (7.1) where f is L-Lipschitz continuously differentiable and B is
the identity matrix. Their bound β > 2L for the penalty parameter is more
conservative than ours; in fact, the two coincide only in worst-case scenarios.

7.2 A universal equivalence of ADMM and DRS

In this section we show step by step how to express ADMM as DRS on an
equivalent problem, under no convexity assumptions and for arbitrary penalty
relaxation parameters. We will pattern the arguments in [125, Thm. 1]; in doing
so, it will be important to understand how variables in both algorithms are
related.

7.2.1 An unconstrained problem reformulation

We start by eliminating the linear coupling between x and z and bring the
problem into the form (P) addressed by DRS. To this end, let us introduce a
slack variable s ∈ Rp and rewrite (7.1) as

minimize
x,z,s

f(x) + g(z) subject to Ax = s, Bz = b− s.

Since the problem is independent of the order of minimization [106, Prop. 1.35]
we may minimize first with respect to (x, z) to arrive to

minimize
s∈Rp

inf
x∈Rm

{f(x) | Ax = s}+ inf
z∈Rn

{g(z) | Bz = b− s}.

The two parametric infima define two image functions, cf. Definition 1.16: indeed,
ADMM problem formulation (7.1) can be expressed as

minimize
s∈Rp

(Af)(s) + (Bg)(b− s), (7.4)
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which is exactly (P) with ϕ1 = (Af) and ϕ2 = (Bg)(b− ·). Apparently, unless A
and B are injective the correspondence between variable s in (7.4) and variables
x, z in (7.1) may fail to be one to one, as s is associated to sets of variables
x ∈ X(s) and z ∈ Z(s) defined as

X(s) := argmin
x∈Rm

{f(x) | Ax = s}

and
Z(s) := argmin

z∈Rn
{g(z) | Bz = b− s}.

7.2.2 From ADMM to DRS

To show the claimed equivalence, it remains to show that DRS applied to

minimize
s∈Rp

ϕ1(s) + ϕ2(s) (7.5)

with ϕ1 = (Af) and ϕ2 = (Bg)(b− · ) is equivalent to ADMM applied to the
original formulation (7.1).

Theorem 7.1 (Primal equivalence of DRS and ADMM). Starting from a
triplet (x, y, z) ∈ Rm × Rp × Rn, consider an ADMM-update applied to problem
(7.1) with relaxation λ and large enough penalty β > 0 so that any ADMM
minimization subproblem has solutions. Lets

:= Ax− y/β
u := Ax
v := b−Bz

and, similarly,

s
+ := Ax+ − y+

/β
u+ := Ax+

v+ := b−Bz+.
(7.6)

Then, the variables are related as follows:
s+ = s+ λ(v − u)
u+ ∈ proxγϕ1

(s+)
v+ ∈ proxγϕ2

(2u+ − s+),
where

ϕ1 := (Af)
ϕ2 := (Bg)(b− · )
γ := 1/β.

Moreover,

(i) ϕ1(u+) = (Af)(Ax+) = f(x+),

(ii) ϕ2(v+) = (Bg)(Bz+) = g(z+),

(iii) −y+ ∈ ∂̂ϕ1(u+) = ∂̂(Af)(Ax+),

(iv) −A>y+ ∈ ∂̂f(x+), and
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(v) dist(−B>y+, ∂̂g(z+)) ≤ β‖B‖‖Ax+ +Bz+ − b‖.

If, additionally, A has full row rank, ϕ1 ∈ C1,1(Rp) is Lϕ1-smooth, and β > Lϕ1 ,
then it also holds that

(vi) ϕdr
γ (s+) = Lβ(x+, z+, y+).

Proof. Observe first that, as shown in Prop. 1.17(iii), it holds that

proxγϕ1
⊇ A argmin

{
f + 1

2γ ‖A · − s‖
2
}
. (7.7a)

Similarly, with a simple change of variable one obtains that

proxγϕ2
⊇ b−B argmin

{
g + 1

2γ ‖B · + s− b‖2
}
. (7.7b)

Let (s, u, v) and (s+, u+, v+) be as in (7.6). We have

s+ λ(v − u) = Ax− 1
β y − λ(Ax+Bz − b)

= Ax− 1
β y

+/2 − (Ax+Bz − b)

= − 1
β y

+ +Ax+ = s+,

where in the second and third equality the ADMM update rule for y+/2 and y+,
respectively, was used. Moreover,

u+ = Ax+ ∈ A argmin Lβ( · , z, y+/2)
(7.7a)
⊆ proxϕ1/β(b−Bz − y+/2/β) = proxϕ1/β(s+),

where the last equality uses the identity b−Bz−y+/2/β = v−γy+(1−λ)(u−v) =
s + λ(v − u) = s+. Next, observe that 2u+ − s+ = 2Ax+ − (Ax+ − y+/β) =
Ax+ + y+/β, hence

v+ = b−Bz+ ∈ b−B argmin Lβ(x+, · , y+)

(7.7b)
⊆ proxϕ2/β(Ax+ + y+/β) = proxϕ2/β(2u+ − s+).

Let us now show the numbered claims.

♠ 7.1(i) & 7.1(ii). Follow from Prop. 1.17(ii).
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♠ 7.1(iii). Since u+ ∈ proxγϕ1
(s+) and −y+ = 1

γ (s+ − u+), the claim follows
from Prop. 1.12(vi).

♠ 7.1(iv). This follows from the optimality conditions of x+ in the ADMM-
subproblem defining the x-update. Alternatively, the claim can also be deduced
from 7.1(iii) and Prop. 1.18.

♠ 7.1(v). The optimality conditions in the ADMM-subproblem defining the
z-update read

0 ∈ ∂̂zLβ(xk+1, zk+1, yk+1) = B>(Axk+1 +Bzk+1 − b+ yk+1/β),

and the claim readily follows.

♠ 7.1(vi). Suppose now that ϕ1 is Lϕ1-smooth (hence A is surjective, for
otherwise ϕ1 has not full domain), and that β > Lϕ1 . Due to smoothness, the
inclusion in 7.1(iii) can be strengthened to ∇ϕ1(u+) = − y+. We may then
invoke the expression (6.8) of the DRE to obtain

ϕdr
γ (s+) = ϕ1(u+) + ϕ2(v+) + 〈∇ϕ1(u+), v+ − u+〉+ 1

2γ ‖v
+ − u+‖2

= f(x+) + g(z+) + 〈y+, Ax+ +Bz+ − b〉+ β
2 ‖Ax

+ +Bz+ − b‖2

= Lβ(x+, z+, y+).

7.3 Convergence results

In order to extend the theory developed for DRS to ADMM we shall impose
that ϕ1 and ϕ2 as in (7.4) comply with Assumption 6.I.

Assumption 7.I (Requirements for the ADMM formulation (7.1)). The fol-
lowing hold for problem (7.1):

a1 f : Rm → R and g : Rn → R are proper and lsc.

a2 A is surjective, and β is large enough so that the ADMM subproblems have
solution.

a3 ϕ1 := (Af) ∈ C1,1(Rp) is L(Af)-smooth, hence σ(Af)-hypoconvex with
|σ(Af)| ≤ L(Af).

a4 ϕ2 := (Bg) is lsc.



CONVERGENCE RESULTS 133

Algorithm 7.1. ADMM with relaxation

Require • initial triplet (x0, z0, y0) ∈ Rm × dom g × Rn

• tolerance ε > 0
• stepsize and relaxation γ, λ > 0 as follows: β > max

{
2[σϕ1 ]−

2−λ , Lϕ1

}
and λ ∈ (0, 2), or

4σϕ1
pλ+δ < β <

4σϕ1
pλ−δ and 2 ≤ λ < 4

1+
√

1−p ,

where ϕ1 = (Af), ϕ2 = (Bg)(b− · ),
p := σϕ1/Lϕ1 , and δ :=

√
(pλ)2 − 8p(λ− 2).

Provide KKT-suboptimal (x∗, z∗, y∗), in the sense that
• ‖Ax∗ +Bz∗ − b‖ ≤ ε

β ,
• −A>y∗ ∈ ∂̂f(x∗), and
• dist(−B>y∗, ∂̂g(z∗)) ≤ ‖B‖ε.

1: for k = 0, 1, . . . do
2: yk+1/2 = yk − β(1− λ)(Axk +Bzk − b)
3: xk+1 ∈ argminx Lβ(x, zk, yk+1/2)
4: yk+1 = yk+1/2 + β(Axk+1 +Bzk − b)
5: zk+1 ∈ argminz Lβ(xk+1, z, yk+1)
6: if β‖Axk+1 +Bzk+1 − b‖ ≤ ε then
7: return (x∗, z∗, y∗) = (xk+1, zk+1, yk+1)

a5 Problem (7.1) has a solution: argmin Φ 6= ∅, where Φ(x, z) := f(x) + g(z) +
δAx+Bz=b.

Theorem 7.2 (Finite termination of relaxed ADMM). Suppose that Assumption
7.I holds. Then, the iterates generated by ADMM (Alg. 7.1) satisfy

Lβ(xk+1, zk+1, yk+1) ≤ Lβ(xk, zk, yk)− cλ2

(1+γLϕ1 )2 ‖Axk +Bzk − b‖2,

where c > 0 is as in Theorem 6.9 with γ = 1/β. In particular, the algorithm ter-
minates in a finite number of iterations and yields a triplet (x∗, z∗, y∗) satisfying

? ‖Ax∗ +Bz∗ − b‖ ≤ ε
β ,

? −A>y∗ ∈ ∂̂f(x∗), and
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? dist(−B>y∗, ∂̂g(z∗)) ≤ ‖B‖ε.

Proof. Follows from Thm. 6.12 and the equivalence provided in Thm. 7.1.

Theorem 7.3 (Asymptotic convergence of ADMM). Suppose that Assumption
7.I is satisfied, and let ϕ1, ϕ2, and Φ be as defined therein. Starting from
(x−1, y−1, z−1) ∈ Rm × Rp × Rn, consider a sequence (xk, yk, zk)k∈N generated
by ADMM with penalty β = 1/γ and relaxation λ, where γ and λ are as in
Theorem 6.9. The following hold:

(i) Lβ(xk+1, zk+1, yk+1) ≤ Lβ(xk, zk, yk) − cλ2

(1+γLϕ1 )2 ‖Axk + Bzk − b‖2,
where c is as in Theorem 6.9, and the residual (Axk + Bzk − b)k∈N
vanishes with mini≤k ‖Axi +Bzi − b‖ = o(1/

√
k).

(ii) all cluster points (x, z, y) of (xk, zk, yk)k∈N satisfy the KKT conditions

• −A>y ∈ ∂f(x)
• −B>y ∈ ∂g(z)
• Ax+Bz = b,

and attain the same cost f(x) + g(z), this being the limit of the sequence
(Lβ(xk, zk, yk))k∈N.

(iii) the sequence (Axk, yk, Bzk)k∈N is bounded provided that the cost function
Φ is level bounded. If, additionally, f ∈ C1,1(Rm), then the sequence
(xk, yk, zk)k∈N is bounded.

Proof. Let s0 := Ax0−y0/β, and consider the sequence (sk, uk, vk)k∈N generated
by DRS applied to (7.5), with stepsize γ, relaxation λ, and starting from s0.
Then, for all k ∈ N it follows from Thm. 7.1 that the variables are related ass

k = Axk − yk/β
uk = Axk

vk = b−Bzk,

and satisfy
ϕ1(uk) = f(xk)
ϕ2(vk) = g(zk)
ϕdr
γ (sk) = Lβ(xk, zk, yk)

and


yk = −∇ϕ1(uk)
−A>yk ∈ ∂̂f(xk)
dist(−B>yk, ∂̂g(zk))→ 0.

♠ 7.3(i). Readily follows from Thm. 6.12.
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♠ 7.3(ii). Suppose that for some K ⊆ N the subsequence (xk, yk, zk)k∈K
converges to (x, y, z); then, necessarily Ax+Bz = b. Moreover,

(Af)(Ax) ≤ f(x) ≤ lim inf
K3k→∞

f(xk) = lim inf
K3k→∞

(Af)(Axk) = (Af)(Ax),

where the second inequality is due to the fact that f is lsc, and the last
one to the fact that (Af) is continuous. Therefore, f(xk) → f(x), and
the inclusion −A>yk ∈ ∂̂f(xk) in light of the definition of subdifferen-
tial results in −A>y ∈ ∂f(x). In turn, since ϕ1(uk) + ϕ1(vk) converges to
ϕ1(Ax) + ϕ2(b−Bz) = (Af)(Ax) + (Bg)(Bz) as it follows from Thm. 6.12(ii),
a similar reasoning shows that g(zk) → g(z) as K 3 k → ∞. Thus, since
dist(−B>yk, ∂̂g(zk))→ 0, g-attentive outer semicontinuity of ∂g, see [106, Prop.
8.7], implies that −B>y ∈ ∂g(z). Finally, that f(x) + g(z) equals the limit of the
whole sequence (Lβ(xk, zk, yk))k∈N then follows from Thm. 6.12(ii) through
the identity ϕdr

γ (sk) = Lβ(xk, zk, yk).

♠ 7.3(iii). Once we show that ϕ = ϕ1 + ϕ2 is level bounded, boundedness of
(Axk, Bzk, yk)k∈N will follow from Thm. 6.12(iii). For α ∈ R we have

lev≤α ϕ =
{
s | inf

x
{f(x) | Ax = s}+ inf

z
{g(z) | Bz = b− s} ≤ α

}
=
{
s | inf

x,z
{f(x) + g(z) | Ax = s, Bz = b− s} ≤ α

}
= {Ax | f(x) + g(z) ≤ α, ∃z : Ax+Bz = b}

= {Ax | (x, z) ∈ lev≤α Φ, ∃z}.

Since ‖Bz‖ ≤ ‖B‖‖z‖ ≤ ‖B‖‖(x, z)‖ for any x, z, it follows that if lev≤α Φ is
bounded, then so is lev≤α ϕ. Suppose now that f ∈ C1,1(Rn) is Lf -smooth, and
for all k ∈ N let ξk := xk −A>(AA>)−1(Axk +Bzk − b). Then, Aξk = b−Bzk,
hence f(ξk) + g(zk) = Φ(ξk, zk), and ξk − xk → 0 as k →∞. We have

|Φ(ξk, zk)− (f(xk) + g(zk))| =
∣∣f(ξk)− f(xk)

∣∣
≤ |〈∇f(xk), ξk − xk〉|+ Lf

2 ‖ξ
k − xk‖2

≤
∣∣〈yk, Axk −Aξk〉∣∣
+Lf

2 ‖A
>(AA>)−1‖2‖Axk +Bzk − b‖2,

where in the second inequality the identity ∇f(xk) = −A>yk was used, cf. Thm.
7.1(iv). In particular, f(ξk) − f(xk) → 0 as k → ∞, and therefore Φ(ξk, zk)
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converges to a finite quantity (the limit of Lβ(xk, zk, yk)). Since Φ is level
bounded, necessarily (ξk, zk)k∈N is bounded, hence so is (xk)k∈N.

As a consequence of the Tarski-Seidenberg theorem, functions ϕ1 := (Af) and
ϕ2 := (Bg)(b− · ) are semialgebraic provided f and g are, see e.g., [23]. In fact,
(Af) is the result of the parametric minimization of F (s, x) over variable x,
where F (s, x) = f(x) + δ{0}(Ax− s), and as such

epi(Af) = cl (epi(Af)) = cl (ΠRp epiF ).

Here, the first equality is due to the assumption of lsc of (Af), and the second
follows from [106, Prop. 1.18]. Then, since F is semialgebraic if so is f , and
since the closure of a semialgebraic set is still semialgebraic, we conclude that
(Af) is semialgebraic. Clearly, the same arguments hold for (Bg)(b− · ).

Therefore, sufficient conditions for global convergence of ADMM (Alg. 7.1)
follow from the similar result for DRS (Alg. 6.1), through the primal equivalence
of the algorithms illustrated in Theorem 7.1. We should emphasize, however,
that the equivalence identifies uk = Axk and vk = b − Bzk, and thus only
convergence of (Axk)k∈N and (Bzk)k∈N can be deduced (as opposed to that of
(xk)k∈N and (zk)k∈N).

Theorem 7.4 (Global convergence of relaxed ADMM). Consider the iterates
generated by ADMM (Alg. 7.1) with tolerance ε = 0. Suppose that Assumption
7.I is satisfied, and let Φ be as defined therin. Suppose further that the following
hold:

a1 Φ is level bounded.

a2 f and g are semialgebraic.

a3 All accumulation points of the sequence (Axk)k∈N are prox-regular, in the
sense of Definition 5.10 (with f ← (Af) and g ← (Bg)(b− · )).

Then, the following hold:

(i) The sequence (Axk, yk, Bzk)k∈N is convergent.

(ii) The ADMM residual (‖Axk+Bzk−b‖)k∈N is summable, and in particular
minj≤k ‖Axj +Bzj − b‖ ∈ O(1/k).
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7.4 Sufficient conditions

In this section we provide some sufficient conditions on f and g ensuring that
Assumption 7.I is satisfied.

7.4.1 Lower semicontinuity

Proposition 7.5 (Lsc of (Bg)). Suppose that Assumptions 7.Ia1 and 7.Ia2 are
satisfied. Then, (Bg) is proper. Moreover, it is also lsc provided that for all z̄ ∈
dom g the set Z(s) := argminz {g(z) | Bz = s} is nonempty and dist(0, Z(s))
is bounded for all s ∈ B dom g close to Bz̄.

Proof. Properness is shown in Prop. 1.17(i). Let (sk)k∈N ⊆ lev≤α(Bg) for some
α ∈ R and suppose that sk → s̄. Then, due to the characterization of [106,
Thm. 1.6] it suffices to show that s̄ ∈ lev≤α(Bg). The assumption ensures the
existence of a bounded sequence (zk)k∈N such that eventually Bzk = sk and
(Bg)(sk) = g(zk). By possibly extracting, zk → z̄ and necessarily Bz̄ = s̄. Then,

(Bg)(s̄) ≤ g(z̄) ≤ lim inf
k→∞

g(zk) = lim inf
k→∞

(Bg)(sk) ≤ α,

hence s̄ ∈ lev≤α(Bg).

The requirement in Proposition 7.5 is weaker than Lipschitz continuity of the
map s 7→ Z(s), which is the standing assumption in [123] for the analysis of
ADMM. In fact, no uniqueness or boundedness of the sets of minimizers is
required, but only the existence of minimizers not arbitrarily far.

The pathological behavior occurring when this condi-
tion is not met can be well visualized by considering
g : R2 → R defined as

g(x, y) =
{
−|x| if |xy| ≥ 1,
1− q(|xy|)(1 + |x|) otherwise, (7.8)

g(0
,
·)

�
1

g( · , 0) � 1

g(x , 1/x) � −|x |
convex

combination

where q(t) is any function such that q(0) = 0 < q(t) < 1 = q(1) for all t ∈ (0, 1).
In the picture, a graphical representation of the piecewise definition on the
positive orthant of R2 (the function is mirrored in all other orthants). On the
axes, f achieves its maximum value, that is, 1. In the gray region |xy| ≥ 1,
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f(x, y) = −|x|. In the white portion, f is extended by means of a convex
combination of 1 and −|x|. g and B := [1 0] are ADMM-feasible, meaning
that argminw∈R2

{
g(w) + β

2 ‖Bw − s‖
2
}
6= ∅ for all s ∈ R and β large enough

(in fact, for all β > 0, being g( · , y) + β
2 ‖ · − s‖2 coercive for any y ∈ R).

However, (Bg)(s) = − |s| if s 6= 0 while (Bg)(0) = 1, resulting in the lack
of lsc at s = 0. Along kerB = {0} × R, by keeping x constant g attains a
minimum at {(x, y) | xy ≥ 1} for x 6= 0, which escapes to infinity as x→ 0, and
g(x, x−1) = −|x| → 0. However, if instead x = 0 is fixed (as opposed to x→ 0),
then the pathology comes from the fact that g(0, · ) ≡ 1 > 0. The interpolating
function q simply models the transition from a constant function on the axes and
a linear function in the regions delimited by the hyperbolae. For any k ∈ N it
can thus be chosen such that g is k times continuously differentiable; the choice
q(t) = 1

2 (1− cosπt), for instance, makes g ∈ C1(R2). In particular, (high-order)
continuous differentiability is not enough a requirement for (Bg) to be lsc.

The next result provides necessary and sufficient conditions ensuring the image
function (Bg) to inherit lower semicontinuity from that of g. It will be evident
that pathological cases such as the one depicted in (7.8) may only occur due to
the behavior of g at infinity.

Theorem 7.6. For any lsc function g : Rn → R and B ∈ Rp×n, the image
function (Bg) is lsc iff

lim inf
‖d‖→∞
Bd→0

g(z̄ + d) ≥ inf
d∈kerB

g(z̄ + d) ∀z̄ ∈ dom g. (7.9)

In particular, if g is level bounded then (Bg) is lsc.

Proof. Observe first that the right-hand side in (7.9) is (Bg)(Bz̄). Suppose
now that (7.9) holds, and given s̄ ∈ dom(Bg) consider a sequence (sk)k∈N ⊆
lev≤α(Bg) for some α ∈ R and such that sk → s̄. Then, it suffices to show that
s̄ ∈ lev≤α(Bg). Let (zk)k∈N be such that Bzk = sk and g(zk) ≤ (Bg)(sk) + 1/k
for all k ∈ N. If, up to possibly extracting, there exists z such that zk → z
as k → ∞, then the claim follows with a similar reasoning as in the proof
of Prop. 7.5. Suppose, instead, that tk := ‖zk‖ → ∞ as k → ∞, and let
dk := zk − z̄, where z̄ ∈ dom g is any such that Bz̄ = s (such a z̄ exists, being
s̄ ∈ dom(Bg) = B dom g). Since Bdk = B(zk − z̄) = sk − s̄→ 0, we have

(Bg)(s̄) = inf
d∈kerB

g(z̄ + d) ≤ lim inf
k→∞

g(z̄ + dk) = lim inf
k→∞

g(zk)

≤ lim inf
k→∞

(Bg)(sk) + 1
k ≤ α,
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proving that s̄ ∈ lev≤α(Bg).

To show the converse implication, suppose that (7.9) does not hold. Thus, there
exist z̄ ∈ dom g and (dk)k∈N ⊂ Rn such that Bdk → 0 as k → ∞, and such
that, for some ε > 0,

g(z̄ + dk) + ε ≤ inf
d∈kerB

g(z̄ + d) = (Bg)(Bz̄) ∀k.

Then, sk := B(z̄ + dk) satisfies sk → Bz̄ as k →∞, and

(Bg)(Bz̄) ≥ lim inf
k→∞

g(z̄ + dk) + ε ≥ lim inf
k→∞

(Bg)(sk) + ε,

hence (Bg) is not lsc at Bz̄.

The asymptotic function g∞(d̄) := lim infd→d̄, t→∞ g(td)
t is a tool used in [8] to

analyze the behavior of g at infinity and derive sufficient properties ensuring
lsc of (Bg). These all ensure that the set of minimizers Z(s) as defined in
Proposition 7.5 is nonempty, although this property is not necessary as long
as lower semicontinuity is concerned. To see this, it suffices to modify (7.8) as
follows

g(x, y) =
{
−|x| if |xy| ≥ 1,
e−y

2 − q(|xy|)(e−y2 + |x|) otherwise,

that is, by replacing the constant value 1 on the y axis with e−y
2 . Then,

the epi-composition (Bg)(s) = −|s| is lsc, but the set of minimizers
argminw {g(w) | Bw = 0} = {0} × argminy e−y

2 is empty at s = 0.

7.4.2 Smoothness

We now turn to the smoothness requirement of (Af). To this end, we introduce
the notion of smoothness with respect to a matrix, as follows
Definition 7.7 (Smoothness relative to a matrix). We say that a function
h : Rn → R is smooth relative to a matrix C ∈ Rp×n, and we write
h ∈ C1,1

C (Rn), if h is differentiable and ∇h satisfies the following Lipschitz
condition: there exist Lh,C and σh,C with |σh,C | ≤ Lh,C such that

σh,C‖C(x− y)‖2 ≤ 〈∇h(x)−∇h(y), x− y〉 ≤ Lh,C‖C(x− y)‖2 (7.10)

whenever ∇h(x),∇h(y) ∈ rangeC>.

This condition is similar to that considered in [52], where ΠrangeA>∇f is required
to be Lipschitz. The paper analyzes convergence of a proximal ADMM; standard
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ADMM can be recovered when matrix A is invertible, in which case both
conditions reduce to Lipschitz differentiability of f . In general, our condition
applies to a smaller set of points only, as it can be verified with f(x, y) = 1

2x
2y2

and A = [1 0]. In fact, ΠrangeA>∇f(x, y) =
(
xy2

0
)
is not Lipschitz continuous;

however, ∇f(x, y) ∈ rangeA> iff xy = 0, in which case ∇f ≡ 0. Then, f is
smooth relative to A with Lf,A = 0.

To better understand how this notion of regularity comes into the picture, notice
that if f is differentiable, then ∇f(x) ∈ rangeA> on some domain U if there
exists a differentiable function q : AU → R such that f(x) = q(Ax). Then, it is
easy to verify that f is smooth relative to A if the local “reparametrization” q is
smooth (on its domain). From an a posteriori perspective, if (Af) is smooth, then
due to the relation A>∇(Af)(Azs) = ∇f(zs) holding for zs ∈ argminz:Az=s f(z)
(cf. Prop. 1.18), it is apparent that q serves as (Af). Therefore, smoothness
relative to A is somewhat a minimal requirement for ensuring smoothness of
(Af).

Theorem 7.8 (Smoothness of (Af)). Let A ∈ Rp×n be surjective and f : Rn →
R be lsc. Suppose that there exists β ≥ 0 such that the function f + β

2 ‖A · − s‖
2

is level bounded for all s ∈ Rp. Then, the image function (Af) is smooth on Rp,
provided that either

(i) f ∈ C1,1
A (Rn), in which case L(Af) = Lf,A and σ(Af) = σf,A,

(ii) or f ∈ C1,1(Rn), and X(s) := argmin {f(x) | Ax = s} is single valued
and Lipschitz continuous with modulus M , in which case

L(Af) = LfM
2 and σ(Af) =

{
σf/‖A‖2 if σf ≥ 0,
σfM

2 σf < 0;

(iii) or f ∈ C1,1(Rn) is convex, in which case L(Af) = Lf
σ+(A>A) and σ(Af) =

σf/‖A‖2.

Proof. As shown in Prop. 1.17(i), (Af) is proper. The surjectivity of A and
the level boundedness condition ensure that for all α ∈ R and s ∈ Rp the set
{x | f(x) ≤ α, ‖Ax− s‖ < ε} is bounded for some ε > 0 (in fact, for all ε > 0).
Then, we may invoke [106, Thm. 1.32] to infer that (Af) is lsc, that the set
X(s) := argminx {f(x) | Ax = s} is nonempty for all s ∈ Rp, and that the
function H(x, s) := f(x) + δ{0}(Ax− s) is uniformly level bounded in x locally
uniformly in s, in the sense of [106, Def. 1.16]. Moreover, since f is differentiable,
observe that ∂∞H(x,Ax) = range

(
A>

I
)
for all x ∈ Rm. Hence, for all s ∈ Rp it
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holds that

∂∞(Af)(s) ⊆
⋃

x∈X(s)

{y | (0, y) ∈ ∂∞H(x, s)} = kerA>= {0},

where the inclusion follows from [106, Thm. 10.13]. By virtue of [106, Thm. 9.13],
we conclude that (Af) is strictly continuous and has nonempty subdifferential
on Rp. Fix si ∈ Rp and yi ∈ ∂(Af)(si), i = 1, 2, and let us proceed by cases.

♠ 7.8(i) and 7.8(ii). It follows from Prop. 1.18 and continuous differentiability
of f that A>yi ∈ ∂f(xi) = {∇f(xi)}, for some xi ∈ X(si), i = 1, 2. We have

〈y1 − y2, s1 − s2〉 = 〈y1 − y2, Ax1 −Ax2〉 = 〈A>y1 −A>y2, x1 − x2〉

= 〈∇f(x1)−∇f(x2), x1 − x2〉. (7.11)

If 7.8(i) holds, since ∇f(xi) = A>yi ∈ rangeA>, i = 1, 2, smoothness of f
relative to A implies

σf,A‖s1 − s2‖2 = σf,A‖Ax1 −Ax2‖2

≤ 〈y1 − y2, s1 − s2〉 ≤ Lf,A‖Ax1 −Ax2‖2 = Lf,A‖s1 − s2‖2

for all si ∈ Rp and yi ∈ ∂(Af)(si), i = 1, 2.
Otherwise, if 7.8(ii) holds, then

σf‖x1 − x2‖2 ≤ 〈y1 − y2, s1 − s2〉 ≤ Lf‖x1 − x2‖2

and from the bound 1
‖A‖‖s1 − s2‖ ≤ ‖x1 − x2‖ ≤M‖s1 − s2‖ we obtain

σ(Af)‖s1 − s2‖2 ≤ 〈y1 − y2, s1 − s2〉 ≤ L(Af)‖s1 − s2‖2

with the constants σ(Af) and L(Af) as in the statement. The claimed smoothness
and hypoconvexity then follow by invoking Lem. 1.9.

♠ 7.8(iii). It follows from [57, Thm. D.4.5.1 and Cor. D.4.5.2] that (Af) is a
convex and differentiable function satisfying ∇(Af)(s) = y, where y satisfies
A>y = ∇f(x) and x is any element of X(s). For yi = ∇(Af)(si) and xi ∈ X(si),
i = 1, 2, the equalities in (7.11) hold. In turn,

〈s1 − s2, y1 − y2〉 ≥ 1
Lf
‖A>(y1 − y2)‖2 ≥ σ+(A>A)

Lf
‖ΠrangeA(y1 − y2)‖2

= σ+(A>A)
Lf

‖y1 − y2‖2,
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where the first inequality is due to 1/Lf -cocoercivity of ∇f , see [84, Thm. 2.1.5],
the second inequality is a known fact (see e.g., [52, Lem. A.2]), and the equality
is due to the fact that A is surjective. We may again invoke [84, Thm. 2.1.5]
to infer the claimed Lf

σ+(A>A) -smoothness of (Af). Since (Af) is convex (thus
0-hypoconvex), if σf = 0 there is nothing more to show. The case σf > 0 follows
from Prop. 1.19.

Notice that the condition in Theorem 7.8(ii) covers the case when f ∈ C1,1(Rn)
and A has full column rank (hence is invertible), in which case M = 1/σ+(A).
This is somehow trivial, since necessarily (Af)(s) = f ◦A−1 in this case.

7.5 A quasi-Newton ADMM

In light of the equivalence shown in Theorem 7.1 we can directly translate
CLyD-DRS (Alg. 6.2) into a corresponding ADMM enhancement. The following
result, easily deducible from the proof of the Theorem 7.1, shows how to convert
a DRS update s 7→ (u, v) in terms of an ADMM update.

Lemma 7.9. Starting from a point s̄ ∈ Rp, consider a DRS-update s̄ 7→ (ū, v̄)
with stepsize γ = 1/β for ϕ1 = (Af) and ϕ2 = (Bg)(b − · ). Let y0 ∈ Rp and
z0 ∈ dom g be any such that

s̄ = b−Bz0 − 1
β y0.

Then, ϕdr
γ (s̄) = Lβ(x̄, z̄, ȳ), where

x̄ = argminx L (x, z0, y0)
ȳ = y0 + β(Ax̄+Bz0 − b)
z̄ ∈ argminz L (x̄, z, ȳ).

In fact, ū = Ax̄ and v̄ = b−Bz̄.

With some algebraic manipulations on CLyD-DRS (Alg. 6.2) using this result,
one obtains the ADMM variant CLyD-ADMM (Alg. 7.2), that inherits the
convergence guarantees shown in the previous chapter. For the sake of describing
the nonmonotone linesearch variant, we repropose the subsequential convergence
statement.

Theorem 7.10 (CLyD-ADMM (nonmonotone): subseq convergence). Suppose
that Assumption 7.I is satisfied, and let Φ be as defined therein. Then, the fol-
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Algorithm 7.2. CLyD-ADMM

Require • penaly β and relaxation λ as in ADMM (Alg. 7.1)
• sufficient decrease constant c as in Thm. 7.3
• scaling factor α ∈ (0, 1) for sufficient decrease constant
• initial triplet (x−1, y−1, z−1)
• tolerance ε > 0

Provide KKT-suboptimal (x∗, z∗, y∗), in the sense that
• ‖Ax∗ +Bz∗ − b‖ ≤ ε

β ,
• −A>y∗ ∈ ∂̂f(x∗), and
• dist(−B>y∗, ∂̂g(z∗)) ≤ 3‖B‖ε.

(for brevity, rk := Axk +Bzk − b)
1: Do a nominal ADMM-step: y−1/2 = y−1 − β(1− λ)r−1

x0 = argminx Lβ(x, z−1, y−1/2)
y0 = y−1/2 + β(Ax0 +Bz−1 − b)
z0 ∈ argminz Lβ(x0, z, y0)

2: for k = 0, 1, 2, . . . do
3: if β‖rk‖ ≤ ε then
4: return (x∗, y∗, z∗) = (xk, yk, zk)
5: Select an update direction dk ∈ Rp at yk
6: Let τk ∈

{
2−i | i ∈ N

}
be the largest such that

Lβ(xk+1, zk+1, yk+1) ≤ Lβ(xk, zk, yk)− αcλ2

(1+γLϕ1 )2 ‖rk‖2, (7.12)

where yk+1/2 = yk−β
[(

1−λ(1− τk)
)
rk + τkd

k
]
and (xk+1, zk+1, yk+1)

comes from a nominal ADMM-step:
xk+1 = argminx Lβ(x, zk, yk+1/2)
yk+1 = yk+1/2 + β(Axk+1 +Bzk − b)
zk+1 ∈ argminz Lβ(xk+1, z, yk+1).
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lowing hold for the iterates generated by CLyD-ADMM (Alg. 7.2) with tolerance
ε = 0:

(i) The residual (‖rk‖)k∈N is square-summable; in particular, it vanishes with
rate minj≤k ‖rj‖ ∈ O(1/

√
k).

(ii) all cluster points (x, z, y) of (xk, zk, yk)k∈N satisfy the KKT conditions

• −A>y ∈ ∂f(x),
• −B>y ∈ ∂g(z),
• Ax+Bz = b.

If, additionally, ‖dk‖ → 0 as k →∞, then the following also hold:

(iii) the sequence (Axk, yk, Bzk)k∈N is bounded provided that the cost function
Φ is level bounded. If, additionally, f ∈ C1,1(Rm), then the sequence
(xk, yk, zk)k∈N is bounded.

(iv) all cluster points (x, z, y) of (xk, zk, yk)k∈N attain the same cost f(x) +
g(z), this being the limit of the sequence (Lβ(xk, zk, yk))k∈N.

All the claims remain valid if the linesearch condition (7.12) is replaced by the
following nonmonotone version:

Lβ(xk+1, zk+1, yk+1) ≤ L̄k − αcλ2

2(1+γLϕ1 )2 ‖rk‖2, (7.13)

where, for any sequence (pk)k∈N ⊆ [0, 1] bounded away from 0, L̄k are recursively
defined as follows:

L̄k :=
{

Lβ(x0, z0, y0) if k = 0,
(1− pk)L̄k−1 + pkLβ(xk, zk, yk) otherwise.

7.6 Simulations

7.6.1 Sparse principal component analysis

Given a data matrixW ∈ Rm×n, the goal of sparse principal component analysis
(SPCA) is to explain as much variability in the data by using only few variables,
say, k � n. Denoting Σ := W>W the covariance matrix of W , this can be done
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by solving the following problem:

maximize
z∈Rn

〈z,Σz〉 subject to ‖z‖ = 1, ‖z‖0 ≤ k,

where the `0-quasi-norm ‖z‖0 denotes the number of nonzero elements of vector
z. Although the constraint ‖z‖ = 1 can be convexified to ‖z‖ ≤ 1 without
affecting the solution, the problem is still inherently nonconvex due to the
`0-constraint and the concavity of the cost function, being the maximization of
〈z,Σz〉 equal to the minimization of −〈z,Σz〉. Complying with Assumption 6.I,
DRS can be readily applied to this problem. However, as the problem size grows
a big limitation is the need to store and operate with large matrices. To account
for this issue, we consider the following consensus formuluation: having fixed a
number of agents N ≥ 1, decompose matrix W into N row blocks W1, . . . ,WN

so that W>= [W>1 · · · W>N] and 〈z,Σz〉 =
∑N
i=1 ‖Wiz‖2, introduce N copies

x1, . . . , xN of z (stacked in a vector x ∈ RnN ), and solve

minimize
x∈RNn,z∈Rn

−
N∑
i=1
‖Wixi‖2 subject to ‖z‖ = 1, ‖z‖0 ≤ k,

xi = z, i = 1 . . . N.

Denoting
Z := {z ∈ Rn | ‖z‖ = 1, ‖z‖0 ≤ k}

the feasible domain, the problem can be cast in ADMM form as

minimize
x∈RNn,z∈Rn

N∑
i=1
−‖Wixi‖2︸ ︷︷ ︸
f(x)

+ δZ(z)︸ ︷︷ ︸
g(z)

subject to x =

 I
...
I

z. (7.14)

Apparently, the ADMM matrix B ∈ RnN×n is the vertical stacking of N
many n × n (negative) identity matrices, A is the nN × nN identity matrix
and b is the zero RnN vector. Notice that Assumption 7.I is satisfied, as
rangeA = RnN and (Af) = f has Lipschitz-continuous gradient with modulus
L(Af) = Lf = maxi=1...N ‖Wi‖ ≤ ‖W‖.

Notice that the z-update as prescribed by ADMM comes at negligible cost,
since

argmin
z∈Rn

{
δZ(z) + β

2 ‖x−Az‖
2
}

= ΠZ
( 1
N

∑N
i=1 xi

)
∀x ∈ RnN ,

and ΠZ(z) amounts to setting to zero the n− k smallest components of z (in
absolute value), and then projecting on the `2-sphere by simply dividing by the
norm. The x-update, instead, amounts to solving (in parallel) a (small) linear



146 ALTERNATING DIRECTION METHOD OF MULTIPLIERS

system for i = 1 . . . N :

argmin
xi∈Rn

{
−‖Wixi‖2 + β

2 ‖xi − z‖
2
}

= (βI−W>iWi)−1βz

= z +W>i (βI−WiW
>
i )−1Wiz,

where the second equality uses the Woodbury identity. The Cholesky factors of
the mi ×mi matrix βI−WiW

>
i (where mi denotes the number of rows of the

block Wi), i = 1 . . . N , can be computed offline to efficiently solve the linear
systems at each x-update, resulting in O

(∑N
i=1m

2
i

)
memory requirement, as

opposed to O(N2) = O
(∑N

i=1mi

)2 (let alone the operational cost) needed for
the original single-agent problem expression.

This consensus reformulation, however, increases the problem size and thus
the ill conditioning, and for moderate values of m, n and N the convergence
of plain ADMM is already prohibitively slow, cf. Figure 7.2. On the contrary,
the adoption of L-BFGS directions in CLyD-ADMM (Alg. 7.2) robustifies the
performance at the negligible cost of few scalar products per iteration.

Figure 7.2 shows the result of a random simulation. We considered a randomly
generated data matrix W ∈ R200×4000 with sparsity 0.2, and we split W in N
blocks of equal size as in (7.14) with N ∈ {5, 10, 25, 50}. In each experiment the
penalty parameter in both CLyD-ADMM (Alg. 7.2) and the nominal ADMM
was set to β = 2.1L(Af). We selected L-BFGS directions with memory 10, and
σ = 10−4 as sufficient decrease parameter (largely below the maximum value
for all instances). Both algorithms were started at the same randomly generated
initial point, and the tolerance was set to ε = 10−6.
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Figure 7.2: Comparison between ADMM (in blue) and the L-BFGS enhancement
(in red) for the consensus SPCA problem (7.14) for different number of agents
N = 5, 10, 25, 50. On the x-axis, the number of linear systems solved (needed for
the x-update), which in the case of plain ADMM coincides with the number of
iterations. This is the unique expensive operation, as the z-update is negligible.
Coordinate (x, y) in the plot indicates the minimum ADMM residual y achieved
after x many solutions of linear systems. Apparently, ADMM is severly affected
by N , whereas the great performance of the L-BFGS enhancement through CLyD-
ADMM (Alg. 7.2) remains stable.



Chapter 8

SuperMann
A universal CLyD framework for convex splitting algorithms

8.1 Introduction

After the in-depth analysis on nonconvex problems carried out so far, in this
final chapter we investigate what more we can do when the problem at hand
is instead convex. In doing so, we will stick to the objective of deriving fast
methods that preserve operation and iteration complexity as plain splitting al-
gorithms. The result will be a universal scheme that globalizes Newton-type
methods of most splitting algorithms defined on real Hilbert spaces. Admittedly
with an intended pun, since it exhibits super linear convergence rates and gener-
alizes the Krasnosel’skǐı-Mann iterations we name our algorithm SuperMann.
Furthermore, we show that the modified Broyden method discussed in Section
4.3.2 fits into this framework and enables superlinear asymptotic convergence
rates. One of the most appealing properties of SuperMann is that, contrary to
the envelope-based approaches, achieving superlinear convergence does not ne-
cessitate nonsingularity of the Jacobian at the solution, but the milder property
of metric subregularity. This relaxation considerably widens the range of prob-
lems which can be solved efficiently, in that, for instance, the solutions need not
be isolated for superlinear convergence to take place.

To some extent, SuperMann can be identified as an “approximate”-CLyD glob-
alization framework, where the continuous Lyapunov potential is the (implicit
and unknown) function L = dist( · ,fixF)2. Given an arbitrary update direc-
tion d at s, a novel hyperplane projection step ensures that for stepsizes τ small
enough the update s+ = s+(τ ; d) satisfies a sufficient decrease on L. There-
fore, although the true value of L remains unknown, the sufficient decrease
can be suitably lower bounded, hence the interpretation as an approximate-

148
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continuous-Lyapunov descent algorithm. Most importantly, we will show that
also SuperMann is robust against the Maratos effect, as anytime the directions
are superlinear,1 unit stepsize is eventually accepted.

8.1.1 Contributions

The contributions can be summarized as follows:

(1) In Section 8.4 we design a universal algorithmic framework (Algorithm
8.1) for finding fixed points of nonexpansive operators, which generalizes
the classical Krasnosel’skǐı-Mann (KM) scheme and possessess its same
global and local convergence properties.

(2) In Section 8.5 we introduce a novel separating hyperplane projection
tailored for nonexpansive mappings; based on this, in Definition 8.11 we
then propose a generalized KM iteration (GKM).

(3) We define a line search based on the novel projection, suited for any
nonexpansive operator and update direction (Theorem 8.12).

(4) In Section 8.6 we combine these ideas and derive the SuperMann scheme
(Alg. 8.2), an algorithm that

• globalizes the convergence of Newton-type methods for finding fixed
points of nonexpansive operators (Theorem 8.13);
• reduces to the local method xk+1 = xk + dk when the directions dk

are superlinear, as it is the case for the modified Broyden scheme of
Section 4.3.2 (Theorems 8.16 and 8.19);
• has superlinear convergence guarantees without the usual requirement

of nonsingularity of the Jacobian at the limit point, but simply under
metric subregularity; in particular, the solution need not be unique!

8.1.2 Chapter organization

The chapter is organized as follows. Section 8.2 serves as an informal introduction
to highlight the known limitations of fixed-point iterations and to motivate
our interest in Newton-type methods with some toy examples. The formal
presentation begins in Section 8.3 with the introduction of some basic notation
and known facts. In Section 8.4 we define the problem at hand and propose

1The definition of superlinear directions meant here is slightly different from the one given
in Definition 4.4. The intended notion will be given in Definition 8.14.
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a general abstract algorithmic framework for solving it. In Section 8.5 we
provide a generalization of the classical KM iterations that is key for the global
convergence and performance of SuperMann, an algorithm which is presented
and analyzed in Section 8.6. Finally, in Section 8.7 we show how the theoretical
findings are backed up by promising numerical simulations, where SuperMann
dramatically improves classical splitting schemes.

8.2 Motivating examples

Given a nonexpansive operator T : Rn → Rn, consider the problem of finding a
fixed point, i.e., a point x? ∈ Rn such that x? = Tx?. The independent works of
Krasnosel’skǐı and Mann [62, 79] provided a very elegant solution which is simply
based on recursive iterations x+ = (1−α)x+αTx with α ∈ (0, ᾱ) for some ᾱ ≥ 1.
The method, known as Krasnosel’skǐı-Mann scheme or KM scheme for short,
has been studied intensively ever since, also because it generalizes a plethora of
optimization algorithms. It is well known that the scheme is globally convergent
with square-summable and monotonically decreasing residual R = id− T (in
norm), and also locally Q-linearly convergent if R is metrically subregular
at the limit point x?. Metric subregularity basically amounts to requiring the
distance from the set of solutions to be upper bounded by a multiple of the
norm of R for all points sufficiently close to x?; it is quite mild a requirement
— for instance, it does not entail x? to be an isolated solution — and as such
linear convergence is quite frequent in practice. However, the major drawback
of the KM scheme is its high sensitivity to ill conditioning of the problem,
and cases for which convergence is prohibitively slow in practice despite the
theoretical (sub)linear rate are also abundant. Illustrative examples can be easily
constructed for the problem of finding a point in the intersection of two closed
convex sets C1 and C2 with C1 ∩ C2 6= ∅. The problem can be solved by means
of fixed-point iterations of the (nonexpansive) alternating projections
operator T = ΠC2 ◦ΠC1 .

In Figure 8.1 we consider the case of two polyhedral cones, namely

C1 =
{
x ∈ R2 | 0.1x1 ≤ x2 ≤ 0.2x1

}
and

C2 =
{
x ∈ R2 | 0.3x1 ≤ x2 ≤ 0.35x1

}
.

Alternating projections is then linearly convergent (to the unique intersection
point 0) due to the fact that R = id− T is piecewise affine and hence globally
metrically subregular. However, the convergence is extremely slow due to the
pathological small angle between the two cones, as it is apparent in Figure 8.1.



MOTIVATING EXAMPLES 151

5 10 15 20 25 30 35 40
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Distance from solution

KM
Line search
Broyden
Newton

5 10 15 20 25 30 35 40
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Fixed-point residual R

KM
Line search
Broyden
Newton

x? x0C1

C2

KM
Line search
Broyden
Newton

Figure 8.1: Alternating projections on polyhedral cones.
R = id − ΠC2 ◦ΠC1 is globally metrically subregular, however the Q-linear
convergence of the KM scheme is very slow.

As an attempt to overcome this frequent phenomenon, [48] proposes a fore-
tracking linesearch heuristic which is particularly effective when subsequent
fixed-point iterations proceed along almost parallel directions. Iteration-wise, in
such instances the line search does yield a considerable improvement upon the
plain KM scheme; however, each foretrack prescribes extra evaluations of T and
unless T has a specific structure the computational overhead might outweight
the advantages. Moreover, its asymptotic convergence rates do not improve
upon the plain KM scheme. Figure 8.2 illustrates this fact relative to

C1 =
{
x ∈ R2 | x2

1 + x2
2 ≤ 1

}
and C2 =

{
x ∈ R2 | x1 = 1

}
.

Despite a good performance on early iterations, the line search cannot improve
the asymptotic sublinear rate of the plain KM scheme due to the fact that the
residual is not metrically subregular at the (unique) solution x? = (1, 0). In
particular, it is evident that medium-to-high accuracy cannot be achieved in a
reasonable number of iterations with either methods.
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Figure 8.2: Alternating projections on ball
and tangent line.
With or without line search the KM scheme is
not linearly convergent due to the fact that the
residual R is not metrically subregular at x?.

In response to this limitation there comes the need to include some “first-order-
like information”. Specifically, the problem of finding a fixed point of T can be
rephrased in terms of solving the system of nonlinear (monotone) equations
Rx = 0, which could possibly be solved efficiently with Newton-type methods. In
the toy simulations of this section, the purple lines correspond to the semismooth
Newton iterations

x+ = x−G−1Rx for some G ∈ ∂CRx,

where ∂CR is the Clarke generalized Jacobian of R (the convex hull of
the Bouligand subdifferential, see [44, Def. 7.1.1]). Interestingly, in the pro-
posed simulations this method exhibits fast convergence even when the
limit point is a non isolated solution, as in the case of the second-order
cone C1 =

{
x ∈ R3 | x3 ≥ 0.1

√
x2

1 + x2
2

}
and the tangent plane C2 ={

x ∈ R3 | x3 = 0.1x2
}
considered in Figure 8.3.

However, computing the generalized Jacobian might be too demanding and
require extra information not available in closed form. For this reason we focus
on quasi-Newton methods

x+ = x−HRx,

where the linear operator H is progressively updated with only evaluations of R
and direct linear algebra in such a way that the vector HRx is asymptotically
a good approximation of a Newton direction G−1Rx. The yellow lines in the
simulations of this section correspond to H being selected with the Broyden
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Figure 8.3: Alternating projections on second-order cone and tangent plane.
In contrast with the slow sublinear rate of KM both with and without line search,
and despite the non isolatedness of any solution, Broyden scheme exhibits an
appealing linear convergence rate.

quasi-Newton method.

The crucial issue is convergence itself. Though in these trivial simulations it is
not the case, it is well known that Newton-type methods in general converge only
when close to a solution, and may even diverge otherwise. In fact, globalizing
the convergence of Newton-type methods is a key challenge in optimization, as
the dedicated recent book [61] confirms.

In this chapter we provide the SuperMann scheme, a globalization strategy
for Newton-type methods (or any local scheme in general) that applies to
any (nonsmooth) monotone equation deriving from fixed-point iterations of
nonexpansive operators. Our method covers almost all splitting schemes in
convex optimization, such as the forward-backward and Douglas-Rachford
splittings, ADMM, and the versatile three-term Vũ-Condat splitting discussed
more in detail in §8.7.3. We also provide sufficient conditions at the limit point
under which the method reduces to the local scheme and converges superlinearly.

8.3 Notation and known results

8.3.1 Hilbert spaces and bounded linear operators

Throughout the chapter, H is a real separable Hilbert space endowed with an
inner product 〈 · , · 〉 and with induced norm ‖ · ‖. The Euclidean norm and
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scalar product are denoted as ‖ · ‖2 and 〈 · , · 〉2 , respectively.

Given (xk)k∈N ⊂ H and x ∈ H we write xk ⇀ x to denote weak convergence of
(xk)k∈N to x. The set of weak sequential cluster points of (xk)k∈N is indicated
as W(xk)k∈N.

The set of bounded linear operators H → H is denoted as B(H). The adjoint
operator of L ∈ B(H) is indicated as L∗, i.e., the unique operator in B(H) such
that 〈Lx, y〉 = 〈x, L∗y〉 for all x, y ∈ H.

8.3.2 Nonexpansive operators and Fejér sequences

We now briefly recap some known definitions and results of nonexpansive
operator theory that will be used in the chapter.

Definition 8.1. An operator T : H → H is said to be

(i) nonexpansive (NE) if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ H;

(ii) averaged if it is α-averaged for some α ∈ (0, 1), i.e., if there exists a
nonexpansive operator S : H → H such that T = (1− α)id + αS;

(iii) firmly nonexpansive (FNE) if it is 1/2− averaged.

Clearly, for any NE operator T the residual R = id − T is monotone, in the
sense that 〈Rx−Ry, x− y〉 ≥ 0 for all x, y ∈ H; if T is additionally FNE, then
not only is R monotone, but it is FNE as well. For notational convenience we
extend the definition of α-averagedness to the case α = 1 which reduces to plain
nonexpansiveness.

For λ ∈ R we indicate the λ-averaging of T as

Tλ := (1− λ)id + λT.

Notice that
id− Tλ = λ(id− T ) for all λ ∈ R, (8.1)

and therefore fix Tλ = fix T for all λ 6= 0. Moreover, if T is α-averaged and
λ ∈ (0, 1/α], then

Tλ is αλ-averaged (8.2)

[10, Prop. 4.40] and in particular T1/2α is FNE.

Definition 8.2. Relative to a nonempty set S ⊆ H, a sequence (xk)k∈N ⊂ H is

(i) Fejér (-monotone) if ‖xk+1− s‖ ≤ ‖xk − s‖ for all k ∈ N and s ∈ S;
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(ii) quasi-Fejér (monotone) if for all s ∈ S there exists a summable
sequence (εk(s))k∈N such that

‖xk+1 − s‖2 ≤ ‖xk − s‖2 + εk(s) ∀k ∈ N.

This definition of quasi-Fejér monotonicity is taken from [31] where it is referred
to as of type III, and generalizes the classical definition [43].

Theorem 8.3. Let T : H → H be an NE operator with fix T 6= ∅, and suppose
that (xk)k∈N ⊂ H is quasi-Fejér with respect to fix T . If (xk − Txk)k∈N → 0,
then there exists x? ∈ fix T such that xk ⇀ x?.

Proof. From [31, Prop. 3.7(i)] we have W(xk)k∈N 6= ∅; in turn, from [10, Cor.
4.28] we infer that W(xk)k∈N ⊆ fix T . The claim then follows from [31, Thm.
3.8].

8.4 General abstract framework

Although this chapter analyses fixed-point iterations, differently from the rest of
the thesis the fixed point operator F , here rather denoted as T , is single valued
and Lipschitz continuous with modulus 1. More specifically, the following will
be assumed throughout the chapter.

Assumption 8.I. T : H → H is an α-averaged operator for some α ∈ (0, 1]
and with fix T 6= ∅. With R := id− T we denote its (2α-Lipschitz continuous)
fixed-point residual.

We also stick to this notation, so that, whenever mentioned, T , R, and α are
as in Assumption 8.I. Our goal is to find a fixed point of T , or, equivalently, a
zero of R:

find x? ∈ fix T = zerR. (8.3)

In this section we introduce Algorithm 8.1, an abstract procedure to solve
problem (8.3). The scheme is not implementable in and of itself, as it gives no hint
as to how to compute each of the iterates, but it rather serves as a comprehensive
ground framework for a class of algorithms with global convergence guarantees.
In Section 8.6 we will derive the SuperMann scheme, an implementable instance
which also enjoys appealing asymptotic properties.

The general framework prescribes three kinds of updates.
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Algorithm 8.1 General framework for finding a fixed point of the α-averaged
operator T with residual R = id− T

Require x0 ∈ H, c0, c1, q ∈ [0, 1), σ > 0
Initialize η0 = rsafe = ‖Rx0‖, k = 0

1. If Rxk = 0, then stop.

2. If ‖Rxk‖ ≤ c0ηk, then set ηk+1 = ‖Rxk‖, proceed with a blind update
xk+1 and go to step 4.

3. Set ηk+1 = ηk and select xk+1 such that

3(a) either the safe condition ‖Rxk‖ ≤ rsafe holds, and xk+1 is educated:

‖Rxk+1‖ ≤ c1‖Rxk‖

in which case update rsafe = ‖Rxk+1‖+ qk;
3(b) or it is Fejérian with respect to fix T :

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk‖2 ∀z ∈ fix T. (8.4)

4. Set k ← k + 1 and go to step 1.

K0) Blind updates. Inspired from [30], whenever the residual ‖Rxk‖ at
iteration k has sufficiently decreased with respect to past iterates we
allow for an uncontrolled update. For an efficient implementation such
guess should be somehow reasonable and not completely a “blind” guess;
however, for the sake of global convergence the proposed scheme is robust
to any choice.

K1) Educated updates. To encourage favorable updates, similarly to what
has been proposed in [61, §5.3.1] and [44, §8.3.2] an educated guess xk+1
is accepted whenever the candidate residual is sufficiently smaller than
the current.

K2) Safeguard (Fejérian) updates. This last kind of updates is similar
to K1 as it is also based on the goodness of xk+1 with respect to xk.
The difference is that instead of checking the residual, what needs be
sufficiently decreased is the distance from each point in fix T . This is
meant in a Fejérian fashion as in Definition 8.2.

Blind K0- and educated K1-updates are somehow complementary: the former
is enabled when enough progress has been made in the past, whereas the
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latter when the candidate update yields a sufficient improvement. Progress
and improvement are meant in terms of a linear decrease of (the norm of) the
residual; at iteration k, K0 is enabled if ‖Rxk‖ ≤ c0‖Rxk̄‖, where c0 ∈ [0, 1) is a
user-defined constant and k̄ is the last blind iteration before k; K1 is enabled if
‖Rxk+1‖ ≤ c1‖Rxk‖ where c1 ∈ [0, 1) is another user-defined constant and xk+1
is the candidate next iterate. To ensure global convergence, educated updates
are authorized only if the current residual ‖Rxk‖ is not larger than ‖Rxk̃+1‖
(up to a linearly decreasing error qk̃); here k̃ denotes the last K1-update before
k.

While blind K0- and educated K1-updates are in charge of the asymptotic
behavior, what makes the algorithm convergent are safeguard K2-iterations.

8.4.1 Global weak convergence

To establish a notation, we partition the set of iteration indices K ⊆ N as
K0∪K1∪K2. Namely, relative to Algorithm 8.1, K0 K1 and K2 denote the sets
of indices k passing the test at steps 2, 3(a) and 3(b), respectively. Furthermore,
we index the sets K0 and K1 of blind and educated updates as

K0 = {k1, k2, · · ·}, K1 = {k′1, k′2, · · ·}. (8.5)

To rule out trivialities, throughout the chapter we work under the assumption
that a solution is not found in a finite number of steps, so that the residual
of each iterate is always nonzero. As long as it is well defined, the algorithm
therefore produces an infinite number of iterates.

Theorem 8.4 (Global convergence of the general framework Algorithm 8.1).
Consider the iterates generated by Algorithm 8.1 and suppose that for all k it is
always possible to find a point xk+1 complying with the requirements of either
step 2, 3(a) or 3(b), and further satisfying

‖xk+1 − xk‖ ≤ D‖Rxk‖ ∀k ∈ K0 ∪K1 (8.6)

for some constant D ≥ 0. Then,

(i) (xk)k∈N is quasi-Fejér monotone with respect to fix T ;

(ii) Rxk → 0 with (‖Rxk‖)k∈N ∈ `2;

(iii) (xk)k∈N converges weakly to a point x? ∈ fix T ;

(iv) if c0 > 0 the number of blind updates at step 2 is infinite.
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Proof.

♠ 8.4(i). We start by observing that because of (8.6) and the triangular in-
equality, for all k ∈ K0 ∪K1 we have

‖xk+1 − z‖ ≤ ‖xk − z‖+D‖Rxk‖ ∀z ∈ fix T (8.7)
and since R is 2α-Lipschitz continuous we also have that

‖Rxk+1‖ ≤ ‖Rxk‖+ ‖Rxk+1 −Rxk‖ ≤ (1 + 2αD)‖Rxk‖. (8.8)

By combining [31, Prop. 3.2(i)] with (8.4) and (8.7), it follows that in or-
der to prove quasi-Fejér monotonicity it suffices to show that the sequence
(‖Rxk‖)k∈K0∪K1

is summable. Let K0 and K1 be indexed as in (8.5). Since ηk
is kept constant whenever k /∈ K0,

ηk` = ‖Rxk`−1‖ ≤ c0ηk`−1 ≤ · · · ≤ c
`−1
0 ηk1 = c`−1

0 η0 ∀k` ∈ K0. (8.9)

In particular, (‖Rxk`‖)k`∈K0
is summable (regardless of whether K0 is finite or

not).
As for k′` ∈ K1, the safeguard parameter rsafe ensures that

‖Rxk′
`
‖ ≤ ‖Rxk′

`−1+1‖+ qk
′
`−1 ≤ c1‖Rxk′

`−1
‖+ qk

′
`−1 ≤ c1‖Rxk′

`−1
‖+ q`−1

holds for all k′` ∈ K1. Iterating the inequality, for any ρ ∈ (0, 1) such that
ρ > max {c1, q} we have

‖Rxk′
`
‖ ≤ ρ`−1‖Rxk′1‖+

`−1∑
i=1

ci−1
1 ρ`−i ≤ Cρ`, (8.10)

where C := 1
ρ

(
‖Rxk′1‖+

∑
i∈N (c1/ρ)i

)
< ∞. In particular, also (‖Rxk‖)k∈K1

is summable.

♠ 8.4(ii). Due to quasi-Fejér monotonicity, for all z ∈ fix T there exists
(εk(z))k∈N ∈ `

+
1 such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + εk(z).

By combining this with (8.4) and telescoping the inequalities, we obtain that
for all z ∈ fix T

‖x0 − z‖2 ≥ σ
∑
k∈K2

‖Rxk‖2 −
∑

k∈K0∪K1

εk(z). (8.11)
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Since the sequence (εk(z))k∈K0∪K1
is summable, then so is (‖Rxk‖2)k∈K2

. In
turn, since (‖Rxk‖)k∈K0∪K1

is also summable it follows that the whole sequence
of residuals is square-summable.

♠ 8.4(iii). Follows by combining 8.4(ii) with Thm. 8.3.

♠ 8.4(iv). Trivially follows from the already proven point 8.4(ii), together with
the observation that since ηk is kept constant whenever k /∈ K0, the condition
‖Rxk‖ ≤ c0ηk will be satisfied infinitely often if c0 > 0.

8.4.2 Local linear convergence

More can be said about the convergence rates if the mapping R possesses
metric subregularity. Differently from (bounded) linear regularity [12],
metric subregularity is a local property and as such it is more general. For a
(possibly multivalued) operator R, metric subregularity at x̄ is equivalent to
calmness of R−1 at Rx̄ [39, Thm 3.2], and is a weaker condition than metric
regularity and Aubin property. We refer the reader to [106, §9] for an extensive
discussion.

Definition 8.5 (Metric subregularity at zeros). Let R : H → H and x̄ ∈ zerR.
R is metrically subregular at x̄ if there exist ε, γ > 0 such that

dist(x, zerR) ≤ γ‖Rx‖ ∀x ∈ B(x̄; ε). (8.12)

γ and ε are (one) modulus and (one) radius of subregularity of R at x̄,
respectively.

In finite-dimensional spaces, if R is differentiable at x̄ ∈ zerR and x̄ is isolated
in zerR (e.g., if it is the unique zero), then metric subregularity is equivalent
to nonsingularity of JRx̄. Metric subregularity is however a much weaker
property than nonsingularity of the Jacobian, firstly because it does not assume
differentiability, and secondly because it can cope with ‘wide’ regions of zeros;
for instance, any piecewise linear mapping is globally metrically subregular
[101].

If the residual R = id−T of the α-averaged operator T is metrically subregular
at x̄ ∈ zerR = fix T with modulus γ and radius ε, then

1
γ dist(x,fix T ) ≤ ‖Rx‖ ≤ 2αdist(x,fix T ) ∀x ∈ B(x̄; ε). (8.13)

Consequently, if ‖Rxk‖ → 0 for some sequence (xk)k∈N ⊂ H, so does
dist(xk,fix T ) with the same asymptotic rate of convergence, and viceversa.
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Metric subregularity is the key property under which the residual in the classi-
cal KM scheme achieves linear convergence; in Theorem 8.8 we show that this
asymptotic behavior is preserved in the general framework of Algorithm 8.1.
We first need to prove two lemmas.

Lemma 8.6 (Asymptotic properties of K0 and K1). Suppose the hypotheses
of Theorem 8.4 hold and let (xk)k∈N be the sequence generated by Algorithm 8.1.
Then,

(i) (‖Rxk‖)k∈K0
is Q-linearly convergent;

(ii) (‖Rxk‖)k∈K1
is R-linearly convergent;

(iii) if c0 > 0 then for some % ∈ (0, 1] and β ∈ R

`0(k) ≥ % `1(k)− β ∀k ∈ N,

where `j(k) := #{k′ ∈ Kj | k′ ≤ k}, j = 0, 1, 2, is the number of times
Kj was visited up to iteration k.

Proof.

♠ 8.6(i) and 8.6(ii). Already shown in (8.9) and (8.10).

♠ 8.6(iii). If c1 = 0, then K1 = ∅ and the claim trivially holds with % = 1 and
β = 0. Otherwise, from (8.10) and due to the definition of `1(k) there exist
C > 0 and ρ ∈ (0, 1) such that

‖Rxk‖ ≤ Cρ`1(k) ∀k ∈ K1.

If k ∈ K1, then ‖Rxk‖ didn’t pass the test at step 2, therefore

Cρ`1(k) ≥ ‖Rxk‖ ≥ ηk
(8.9)
= ‖Rx0‖c`0(k)

0 .

The proof now follows by simply taking the logarithm on the outer inequality.

Lemma 8.7. Let (uk)k∈N ⊂ [0,+∞) be a sequence, and let K1,K2 ⊆ N be
such that N = K1 ∪K2. Let K1 be indexed as K1 = {k′0, k′1 . . .}, and suppose
that there exist a, b > 0 and ρ ∈ (0, 1) such that

uk+1 ≤ auk for all k ∈ N,
uk′

`
≤ bρ` for all k′` ∈ K1,

uk+1 ≤ ρuk for all k ∈ K2.

Then, there exists σ ∈ (0, 1) such that uk ≤ abσk.
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Proof. To exclude trivialities we assume that K1 and K2 are both infinite. To
arrive to a contradiction, for all σ ∈ (0, 1) let k = k(σ) be the minimum such
that uk > abσk. Let σ ≥ ρ be fixed. If k − 1 ∈ K2, then

ρuk−1 ≥ uk > abσk ≥ abρσk−1

and therefore uk−1 > abσk−1 which contradicts minimality of k. It follows that
necessarily k− 1 ∈ K1, hence k− 1 = k′` ∈ K1 for some ` ∈ N. For all n ∈ N, let

k′`n = k(ρ1/n)− 1, i.e., the minimum such that uk′
`n

+1 > abρ
k′
`n

+1

n . Combining
with the property of K1 we obtain

abρ
k′
`n

+1

n < uk′
`n

+1 ≤ auk′
`n
≤ abρ`n (8.14)

and in particular `n ≤
k′`n
n . This means that up to k = k′`n there are at most

k/n elements in K1, and consequently at least k − k/n in K2. Therefore,

bρ
k+1
n

(8.14)
< uk ≤ a

k/nρk−
k/nu0.

Taking the k-th square root on the outer inequality yields

(1/ρ)1−2/n−1/nk
< (u0/b)1/k

a
1/n.

By letting n→∞ (hence k →∞) we arrive to the contradiction ρ ≥ 1.

Theorem 8.8 (Linear convergence of the general framework Algorithm 8.1).
Suppose that the hypotheses of Theorem 8.4 hold, and suppose further that
(xk)k∈N converges strongly to a point x? (this being true if H is finite dimen-
sional) at which R is metrically subregular.

Then, (xk)k∈N and (Rxk)k∈N are R-linearly convergent.

Proof. Letting ek := dist(xk,fix T ), because of (8.8) and (8.13) there exists
B > 1 such that

‖Rxk+1‖ ≤ B‖Rxk‖ and ek+1 ≤ Bek ∀k ∈ N. (8.15)

Suppose that R is metrically subregular at x? with radius ε > 0 and modulus
γ > 0; since xk → x?, up to an index shifting without loss of generality we may
assume that (xk)k∈N ⊂ B(x?; ε). Let zk = Πfix T xk, so that ek = ‖xk − zk‖; by
combining (8.4) and (8.13) we obtain

e2
k+1 ≤ ‖xk+1 − zk‖2 ≤ ‖xk − zk‖2 − σ‖Rxk‖2 ≤ ρ2e2

k ∀k ∈ K2, (8.16)
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where ρ :=
√

1− σ/γ2 ∈ (0, 1). By possibly enlarging ρ we assume ρ ≥
max {c0, c1}.

If c0 = 0, then K0 = ∅ and by using Lem. 8.6(ii) and (8.15) we may invoke
Lem. 8.7 to infer R-linear convergence of the sequence (ek)k∈N and conclude
the proof.

Therefore, let us suppose that c0 > 0, so that due to Thm. 8.4(iv) the set K0
contains infinite many indices. We now show that there exists n ∈ N such that
every n consecutive indices at least one is in K0. Let k ∈ K0 be fixed and
suppose that k + 1 . . . k + n+ 1 /∈ K0.

• If c1 = 0 then K1 = ∅ and all such indices belong to K2. Then,

‖Rxk+n+1‖
(8.13)
≤ 2αek+n+1

(8.16)
≤ 2αρnek+1

(8.15)
≤ 2αBρnek

(8.13)
≤ 2αγBρn‖Rxk‖.

Since k + n + 1 /∈ K0, then ‖Rxk+n+1‖ failed the test at step 3 and
therefore

c0‖Rxk‖ = c0ηk+n+1 < ‖Rxk+n+1‖ ≤ 2αγBρn‖Rxk‖,

which proves that n cannot be arbitrarily large.

• If instead c1 > 0, let n1 be the number of indices among k + 1 . . . k + n
that belong to K1, and n2 = n− n1 those belonging to K2. Then, from
iteration k+ 1 to k+ n+ 1 the distance from the fixed set has reduced n2
times (at least) by a factor ρ and, due to (8.15), increased at most by a
factor B the remaining n1 times:

‖Rxk+n+1‖
(8.13)
≤ 2αek+n+1 ≤ 2αρn2Bn1ek+1

(8.15)
≤ 2αρn2Bn1+1ek

(8.13)
≤ 2αγρn2Bn1+1‖Rxk‖.

Again, since k+n+ 1 /∈ K0 we have c0‖Rxk‖ < 2αγρn2Bn1+1‖Rxk‖, and
therefore

n1 >
ln c0/2αγ

lnB − 1 + ln 1/ρ
lnB n2.

In particular, for large n the number n1 of indices in K1 grows propor-
tionally with respect to n, and from Lem. 8.6(iii) we conclude once again
that n cannot be arbitrarily large (since the number of visits to K0 does
not change from k + 1 to k + n).

So far we proved that there exists n ∈ N such that every n indices at least one
belongs to K0. In particular, indexing K0 = {k0, k1 · · ·} we have that k` ≤ n`,
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hence
‖Rxk`‖ ≤ c`0‖Rx0‖ ≤

(
c

1/n
0
)k`‖Rx0‖ ∀k` ∈ K0. (8.17)

Moreover, any k ∈ N is at most n− 1 indices away from the nearest previous
index k` ∈ K0; combined with (8.17) and by invoking (8.15) we obtain

‖Rxk‖ ≤ Bn−1‖Rx0‖
(
c

1/n
0
)k` ≤ Bn−1‖Rx0‖

(
c

1/n
0
)k

proving the sought R-linear convergence of (‖Rxk‖)k∈N. It follows that for some
b > 0 and r ∈ (0, 1) we have ‖Rxk‖ ≤ brk for all k ∈ N; then,

‖xk − x?‖ ≤
∑
j≥k

‖xj+1 − xj‖
(8.6)
≤ D

∑
j≥k

‖Rxj‖ ≤ bD
∑
j≥k

rj = bD

1− r r
k,

where in the second inequality we used the bound (8.6), which also holds for
k ∈ K2 (up to possibly enlarging D) due to the fact that for k ∈ K2 under
metric subregularity we have

‖xk+1 − xk‖ ≤ ‖xk+1 − zk‖+ ‖xk − zk‖ ≤ 2ek
(8.13)
≤ 2γ‖Rxk‖.

This shows that (xk)k∈N is R-linearly convergent too.

8.4.3 Main idea

Being interested in solving the nonlinear equation (8.3), one could think of
implementing one of the many existing fast methods for nonlinear equations that
achieve fast asymptotic rates, such as Newton-type schemes. At each iteration,
such schemes compute an update direction dk and prescribe steps of the form
xk+1 = xk + τkdk, where τk > 0 is a stepsize that needs to be sufficiently small
in order for the method to enjoy global convergence; on the other hand, fast
asymptotic rates are ensured if τk = 1 is eventually always accepted. The stepsize
is a crucial feature of fast methods, and a feasible τk is usually backtracked
with a line search on a smooth merit function. Unfortunately, in meaningful
applications of the problem at hand arising from fixed-point theory the residual
mapping R is nonsmooth, and the typical merit function x 7→ ‖Rx‖2 does not
meet the necessary smoothness requirement.

What we propose in this chapter is a hybrid scheme that allows for the em-
ployment of any (fast) method for solving nonlinear equations, with global
convergence guarantees that do not require smoothness, but which is based only
on the nonexpansiveness of T . Once fast directions dk are selected, Algorithm
8.1 can be specialized as follows:
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1) blind updates as in step 2 shall be of the form xk+1 = xk + dk;

2) educated updates as in step 3(a) shall be of the form xk+1 = xk + τkdk,
with τk small enough so as to ensure the acceptance condition ‖Rxk+1‖ ≤
c1‖Rxk‖;

3) safeguard updates as in step 3(b) shall be employed as last resort both
for globalization purposes and for well definedness of the scheme.

Ideally, the scheme should eventually reduce to the local scheme xk+1 = xk +dk
when good directions dk are used.

In Section 8.5 we address the problem of providing explicit safeguard updates
that comply with the quasi-Fejér monotonicity requirement of step 3(b). Because
of the arbitrarity of the other two updates, once we succeed in this task Algo-
rithm 8.1 will be of practical implementation. In Section 8.6 we will then discuss
specific K0- and K1-updates to be used at steps 2 and 3(a) that ensure global
and fast convergence, yet maintaining the simplicity of fixed-point iterations of
T (evaluations of T and direct linear algebra).

8.5 Generalized Mann Iterations

8.5.1 The classical Krasnosel’skǐı-Mann scheme

Starting from a point x0 ∈ H, the classical Krasnosel’skǐı-Mann scheme (KM)
performs the following updates

xk+1 = Tλkxk = (1− λk)xk + λkTxk (8.18)

and converges weakly to a fixed point of T provided that λk ∈ [0, 1/α] and
(λk(1/α− λk))k∈N /∈ `1 [10, Thm. 5.14]. The key property of KM iterations is
Fejér monotonicity:

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − λk(1/α− λk)‖Rxk‖2 ∀z ∈ fix T.

In particular, in Algorithm 8.1 KM iterations can be used as safeguard updates
at step 3(b). The drawback of such a selection is that it completely discards the
hypothetical fast update direction dk that blind and educated updates try to
enforce. This is particularly penalizing when the local method for computing the
directions dk is a quasi-Newton scheme; such methods are indeed very sensitive
to past iterations, and discarding directions is neither theoretically sound nor
beneficial in practice.
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In this section we provide alternative safeguard updates that while ensuring the
desirable Fejér monotonicity are also amenable to taking into account arbitrary
directions. The key idea lies in intepreting KM iterations as projections onto
suitable half-spaces (see Fig. 8.4), and then exploiting known properties of
projections. These facts are shown in the next result. To this end, let us remark
that the projection ΠC onto a nonempty closed and convex set C is FNE [10,
Prop. 4.16], and that consequently its λ-averaging ΠC,λ is λ/2-averaged for any
λ ∈ (0, 2], as it follows from (8.2).

Proposition 8.9 (KM iterations as projections). For x ∈ H, define

Cx = CT,αx :=
{
z ∈ H | ‖Rx‖2 − 2α〈Rx, x− z〉 ≤ 0

}
. (8.19)

Then,

(i) x ∈ Cx iff x ∈ fix T ;

(ii) fix T =
⋂
x∈H Cx;

(iii) for any λ ∈ [0, 1/α] it holds that Tλx = ΠCx,2αλ x = (1 − 2αλ)x +
2αλΠCx x.

Proof. The set Cx can be equivalently expressed as

Cx =
{
z ∈ H | 〈x− T1/2αx, z − T1/2αx〉 ≤ 0

}
.

8.9(i) is of immediate verification, and 8.9(ii) then follows from [10, Cor. 4.25]
combined with (8.2).

We now show 8.9(iii). If Rx = 0, then x ∈ fix T and Cx = H, and the claim is
trivial. Otherwise, notice that

Cx =
{
z ∈ H | 〈Rx, z〉 ≤ 〈Rx, x− 1

2αRx〉
}
, (8.20)

and the claim can be readily verified using the formula for the projection on a
halfspace Hv,β := {z ∈ H | 〈v, z〉 ≤ β}, namely

ΠHv,β x = x− [〈v, x〉 − β]+
‖v‖2

v, (8.21)

defined for v ∈ H \ {0} and β ∈ R [10, Ex. 29.20(iii)].
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• •

•

z x

Tx

Figure 8.4: Mann iteration of a FNE operator T as projection on Cx (the blue
half-space, as defined in (8.19) for α = 1/2). The outer circle is the set of all
possible images of a nonexpansive operator, given that z is a fixed point. The
inner circle corresponds to the possible images of firmly nonexpansive operators.
Notice that Cx separates x from z as long as Tx is contained in the small circle,
which characterizes firm nonexpansiveness.

8.5.2 Generalized Mann projections

Though particularly attractive for its simplicity and global convergence prop-
erties, the KM scheme (8.18) finds its main drawback in its convergence rate,
being Q-linear at best and highly sensitive to ill conditioning of the problem.
In response to this issue, Algorithm 8.1 allows for the integration of fast local
methods still ensuring global convergence properties. The efficiency of the re-
sulting scheme, which will be proven later on, is based on an ad hoc selection of
safeguard updates for step 3(b) which is based on the following generalization
of Proposition 8.9.

Proposition 8.10. Suppose that x,w ∈ H are such that

ρ := ‖Rw‖2 − 2α〈Rw,w − x〉 > 0. (8.22)

For λ ∈ [0, 1/α] let
x+ := x− λ ρ

‖Rw‖2
Rw. (8.23)

Then, the following hold:

(i) x+ = ΠCw,2αλ x where Cw = CT,αw as in (8.19);

(ii) ‖x+ − z‖2 ≤ ‖x− z‖2 − λ(1/α− λ) ρ2

‖Rw‖2 ∀z ∈ fix T .
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Proof. 8.10(i) easily follows from (8.20) and (8.21), since by condition (8.22)
the positive part in the formula may be omitted. In turn, 8.10(ii) follows from
[10, Prop. 4.35(iii)] by observing that ΠCw,2αλ is αλ-averaged due to [10, Prop.
4.16] and (8.2), and that fix T ⊆ Cw as shown in Prop. 8.9(ii).

Notice that condition (8.22) is equivalent to x /∈ Cw. Therefore, Proposition
8.10(ii) states that whenever a point x lies outside the half-space Cw for some
w ∈ H, since fix T ⊆ Cw (cf. Prop. 8.9) the projection onto Cw moves closer
to fix T . This means that after moving from x along a candidate direction d
to the point w = x+ d, even though w might be farther from fix T the point
x+ = ΠCw x is not. We may then use this projection as a safeguard step to
prevent from diverging from the set of fixed points. Based on this, we define a
generalized KM update along a direction d.

Definition 8.11 (GKM update). A generalized KM update (GKM) at x
along d for the α-averaged operator T : H → H with relaxation λ ∈ [0, 1/α] is

x+ :=
{
x if w ∈ fix T
x− λ [ρ]+

‖Rw‖2Rw othwerwise,

where w = x+ d and ρ := ‖Rw‖2 − 2α〈Rw,w − x〉. In particular, d = 0 yields
the classical KM update x+ = Tλx.

8.5.3 Line search for GKM

It is evident from Definition 8.11 that a GKM update trivializes to x+ = x
if either w ∈ fix T or ρ ≤ 0. Having w ∈ fix T corresponds to having found a
solution to problem (8.3), and the case deserves no further investigation. In this
section we address the remaining case ρ ≤ 0, showing how it can be avoided by
simply introducing a suitable line search. In order to recover the same global
convergence properties of the classical KM scheme we need something more than
simply imposing ρ > 0. The next result addresses this requirement, showing
further that it is achieved for any direction d by sufficiently small stepsizes.

Theorem 8.12. Let x, d ∈ H and σ ∈ [0, 1) be fixed, and consider

τ̄ =
{

1 if d = 0
1−σ
4α
‖Rx‖
‖d‖ otherwise.

Then, for all τ ∈ (0, τ̄ ] the point w = x+ τd satisfies

ρ := ‖Rw‖2 − 2α〈Rw,w − x〉 ≥ σ‖Rw‖‖Rx‖. (8.24)
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Figure 8.5: SuperMann iteration of a FNE operator T as projection on Cw.
(a) the darker orange region represents the area in which Tw must lie given the
points x, Tx and the fixed point z as prescribed by firm nonexpansiveness of T .
(b) if Tw lies (also) in the ball Bx,w as in (8.25), then the half-space Cw (shaded
in orange) separates x from w, which is to be avoided.
(c) when w is close enough to x the feasible region for Tw has empty intersection
with Bx,w and Cw does not contain x.

Proof. Let a constant c ≥ 0 to be determined be such that

τ‖d‖ = ‖w − x‖ ≤ c‖Rx‖.

Observe that ρ = 4α2〈w − T1/2αw, x− T1/2αw〉, and recall from (8.1) and (8.2)
that T1/2α is FNE with residual id− T1/2α = 1

2αR. Then,

ρ = 4α2(‖w − T1/2αw‖2 + 〈w − T1/2αw, x− w〉
)

using Cauchy-Schwartz inequality,
≥ 4α2‖w − T1/2αw‖

(
‖w − T1/2αw‖ − ‖x− w‖

)
the bound on ‖x− w‖,

≥ 2α‖Rw‖
(
‖w − T1/2αw‖ − 2αc‖x− T1/2αx‖

)
the (reverse) triangular inequality,

≥ 2α‖Rw‖
(
(1− 2αc)‖x− T1/2αx‖ − ‖(id− T1/2α)w − (id− T1/2α)x‖

)
the nonexpansiveness of id− T1/2α

≥ 2α‖Rw‖
( 1−2αc

2α ‖Rx‖ − ‖w − x‖
)

and again the bound on ‖w − x‖,
≥ (1− 4αc)‖Rw‖‖Rx‖

equating σ = 1− 4αc the assert follows.
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Notice that if d = 0, then ρ = ‖Rx‖2 ≥ σ‖Rx‖2 for any σ ∈ [0, 1), and therefore
the line search condition (8.24) is always satisfied; in particular, the classical
KM step x+ = Tx is always accepted regardless of the value of σ.

Let us now observe how a GKM projection extends the classical KM depicted in
Figure 8.4 and how the line search works. In the following we use the notation of
Theorem 8.12, and for the sake of simplicity we consider σ = 0 in (8.24) and a
FNE operator T . Suppose that the fixed point z and the points x, Tx, and w are
as in Figure 8.5a; due to firm nonexpansiveness, the image Tw of w is somewhere
inside both orange circles. We want to avoid the unfavorable situation depicted
in Figure 8.5b, where the couple (w, Tw) generates a halfspace Cw that contains
x, i.e., such that ρ ≤ 0: in fact, with simple algebra it can be seen that ρ ≤ 0 iff
Tw belongs to the dashed circle of Figure 8.5b:

Bx,w := {w̄ | 〈w − w̄, x− w̄〉 ≤ 0}. (8.25)

Since the dashed orange circle (in which Tw must lie) is simply the translation
by a vector Tx− x of Bx,w, both having diameter τ‖d‖, for sufficiently small τ
the two have empty intersection, meaning that ρ > 0 regardless of where Tw is.

8.6 The SuperMann scheme

In this section we introduce the SuperMann scheme (Alg. 8.2), a special instance
of the general framework of Algorithm 8.1 that employs GKM updates as
safeguard K2-steps. While the global worst-case convergence properties of
SuperMann are the same as for the classical KM scheme, its asymptotic behavior
is determined by how blind K0- and educated K1-updates are selected. In
Section 8.6.2 we will characterize the “quality” of update directions and the
mild requirements under which superlinear convergence rates are attained; in
particular, Section 8.6.3 is dedicated to the analysis of quasi-Newton Broyden
directions.

The scheme follows the same philosophy of the general abstract framework.
The main idea is globalizing a local method for solving the monotone equation
Rx = 0, in such a way that when the iterates get close enough to a solution the
fast convergence of the local method is automatically triggered. Approaching a
solution is possible thanks to the generalized KM updates (step 5(b)), provided
enough backtracking is performed, as ensured by Prop. 8.10(ii) and Thm. 8.12.
When a basin of fast (i.e., superlinear) attraction for the local method is reached,
the (norm of) Rx will decrease more than linearly, and the condition triggering
the educated updates of step 5(a) (which is checked first) will be verified without
performing any backtracking.
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Algorithm 8.2 SuperMann scheme for solving (8.3), given an α-averaged
operator T with residual R = id− T

Require x0 ∈ H, c0, c1, q ∈ [0, 1), β, σ ∈ (0, 1), λ ∈ (0, 1/α).
Initialize η0 = rsafe = ‖Rx0‖, k = 0

1. If Rxk = 0, then stop.

2. Choose an update direction dk ∈ H

3. (K0) If ‖Rxk‖ ≤ c0ηk, then set ηk+1 = ‖Rxk‖, proceed with a blind
update xk+1= wk:= xk+dk and go to step 6.

4. Set ηk+1 = ηk and τk = 1.

5. Let wk = xk + τkdk.

5(a) (K1) If the safe condition ‖Rxk‖ ≤ rsafe holds and wk is educated:

‖Rwk‖ ≤ c1‖Rxk‖

then set xk+1 = wk, update rsafe = ‖Rwk‖+ qk, and go to step 6.
5(b) (K2) If ρk := ‖Rwk‖2 − 2α〈Rwk, wk − xk〉 ≥ σ‖Rwk‖‖Rxk‖

then set
xk+1 = xk − λ

ρk
‖Rwk‖2

Rwk

otherwise set τk ← βτk and go to step 5.

6. Set k ← k + 1 and go to step 1.

To discuss its global and local convergence properties we stick to the same
notation of the general framework of Algorithm 8.1, denoting the sets of blind,
educated, and safeguard updates as K0, K1 and K2, respectively.

8.6.1 Global and linear convergence

To comply with (8.6), we impose the following requirement on the magnitude
of the directions (see also Rem. 8.20).

Assumption 8.II. There exists a constant D ≥ 0 such that the directions
(dk)k∈N in the SuperMann scheme (Alg. 8.2) satisfy

‖dk‖ ≤ D‖Rxk‖ ∀k ∈ N. (8.26)
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Theorem 8.13 (Global and linear convergence of the SuperMann scheme).
Consider the iterates generated by the SuperMann scheme (Alg. 8.2) with (dk)k∈N
selected so as to satisfy Assumption 8.II. Then,

(i) (xk)k∈N is quasi-Fejér monotone with respect to fix T ;

(ii) τk = 1 if dk = 0, and τk ≥ min
{
β 1−σ

4αD , 1
}
otherwise.

(iii) Rxk → 0 with (‖Rxk‖)k∈N ∈ `2;

(iv) (xk)k∈N converges weakly to a point x? ∈ fix T ;

(v) if c0 > 0 the number of blind updates at step 3 is infinite.

Moreover, if (xk)k∈N converges strongly to a point x? (this being true if H is
finite dimensional) at which R is metrically subregular, then

(vi) (xk)k∈N and (Rxk)k∈N are R-linearly convergent.

Proof. Because of Thm. 8.12 we know that for any direction dk a feasible
stepsize τk complying with the requirements of step 5(b) will eventually be
found, lower bounded as in 8.13(ii) due to Thm. 8.12 and Assumption 8.II. In
particular, the scheme is well defined. Moreover, from Prop. 8.10(ii) we have
that there exists a constant σ > 0 such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − σ‖Rxk‖2 for all k ∈ K2 and z ∈ fix T .

It follows that the SuperMann scheme is a special case of Alg. 8.1 and the proof
entirely follows from Thm.s 8.4 and 8.8.

8.6.2 Superlinear convergence

Though global convercence of the SuperMann scheme is independent of the
choice of the directions dk, its performance and tail convergence surely is not. We
characterize the quality of the directions dk in terms of the following definition.

Definition 8.14 (Superlinear directions for the SuperMann scheme). Relative
to the sequence (xk)k∈N generated by the SuperMann scheme, we say that
(dk)k∈N ⊂ H are superlinear directions if the following limit holds

lim
k→∞

‖R(xk + dk)‖
‖Rxk‖

= 0.
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Remark 8.15. Definition 8.14 makes no mention of a limit point x? of the
sequence (xk)k∈N, differently from the previously given Definition 4.4, taken from
[44, §7.5] that instead requires ‖xk+dk−x?‖

‖xk−x?‖ to be vanishing with no mention of
R. Due to 2α-Lipschitz continuity of R, whenever the directions dk are bounded
as in (8.26) we have

‖R(xk + dk)‖
‖Rxk‖

≤ 2αD‖xk + dk − x?‖
‖dk‖

.

Invoking [44, Lem. 7.5.7] it follows that Definition 8.14 is implied by the one in
[44] and is therefore more general.

Theorem 8.16. Consider the iterates generated by the SuperMann scheme
(Alg. 8.2) with either c0 > 0 or c1 > 0, and with (dk)k∈N being superlinear
directions as in Definition 8.14. Then,

(i) eventually, stepsize τk = 1 is always accepted and safeguard updates
K2 are deactivated (i.e., the scheme reduces to the local method xk+1 =
xk + dk);

(ii) (Rxk)k∈N converges Q-superlinearly;

(iii) if the directions dk satisfy Assumption 8.II, then (xk)k∈N converges R-
superlinearly;

(iv) if c0 > 0, then the complement of K0 is finite.

Proof.

♠ 8.16(i) and 8.16(iv). Let w0
k := xk + dk. Superlinear convergence of (dk)k∈N

then reads ‖Rw
0
k‖

‖Rxk‖ → 0. In particular, if c1 > 0 then there exists k̄ ∈ N such that
‖Rw0

k‖ ≤ c1‖Rxk‖ for all k ≥ k̄, i.e., the point w0
k = xk + dk will always pass

condition at step 5(a) resulting in xk+1 = w0
k = xk + dk for all k ≥ k̄.

Similarly, if c0 > 0 then K0 is infinite as shown in Thm. 8.13(v); moreover, for
` ∈ N

‖Rxk`+1‖
ηk`+1

= ‖Rxk`+1‖
‖Rxk`‖

= ‖R(xk` + dk`)‖
‖Rxk`‖

→ 0 as `→∞

and therefore the ratio eventually is always smaller than c0, resulting in k`+ 1 ∈
K0 for ` large enough. Consequently, the sequence will eventually reduce to
xk+1 = xk + dk.
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♠ 8.16(ii) and 8.16(iii). Q-superlinear convergence of (Rxk)k∈N follows from
the fact that xk+1 = xk + dk for k ≥ k̄. In particular, (‖Rxk‖)k∈N is summable
and there exists a sequence (δk)k∈N → 0 such that ‖Rxk+1‖ ≤ δk‖Rxk‖ for all
k. If ‖dk‖ ≤ D‖Rxk‖ for some D > 0, then∑

k≥k̄

‖xk+1 − xk‖ ≤ D
∑
k≥k̄

‖Rxk‖ <∞,

which implies that (xk)k∈N is a Cauchy sequence, and hence converges to a
point, be it x?. Moreover, by possibly enlarging D so as to account for the
iterates k < k̄, we have

‖xk − x?‖ ≤
∑
j≥k

‖xj+1 − xj‖ ≤ D
∑
j≥k

‖Rxj‖

≤ Dδ0δ1 · · · δk−1
∑
j∈N
‖Rxj‖ =: ∆k.

This shows that (xk)k∈N is R-superlinearly convergent, since ∆k+1/∆k = δk →
0.

Theorem 8.16 shows that when the directions dk are good, then eventually the
SuperMann scheme reduces to the local method xk+1 = xk+dk and consequently
inherits its local convergence properties. The following result specializes to the
choice of semismooth Newton directions.

Corollary 8.17 (Superlinear convergence for semismooth Newton directions).
Suppose that H is finite dimensional, and that R is semismooth. Consider the
iterates generated by the SuperMann scheme (Alg. 8.2) with either c0 > 0 or
c1 > 0 and directions dk chosen as solutions of

(Gk + µkid)dk = −Rxk for some Gk ∈ ∂CRxk, (8.27)

where ∂CR denotes the Clarke generalized Jacobian of R and 0 ≤ µk → 0.
Suppose that the sequence (xk)k∈N converges to a point x? at which all the
elements in ∂CR are nonsingular.

Then, (dk)k∈N are superlinear directions as in Definition 8.14, and in particular
all the claims of Theorem 8.16 hold.

Proof. Any Gk ∈ ∂CR is positive semidefinite due to the monotonicity of R,
and therefore dk as in (8.27) is well defined for any µk > 0. The bound (8.26)
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holds due to [44, Thm. 7.5.2]. Moreover,

‖Rxk +Gkdk‖
‖dk‖

= µk → 0 as k →∞,

and the proof follows invoking [44, Thm. 7.5.8(a)] and Rem. 8.15.

Notice that since ∂CR = id − ∂T , nonsingularity of the elements in ∂CR(x?)
is equivalent to having ‖G‖ < 1 for all G ∈ ∂T (x?), i.e., that T is a local
contraction around x?.

However, in the same spirit of the previous chapters we are oriented towards
choices of directions that (1) are defined for any nonexpansive mapping, regard-
less of the (generalized) first-order properties, and that (2) require exactly the
same black-box oracle as the original KM scheme. Once again we shall thus
investigate the employment of quasi-Newton directions.

Theorem 8.18 (Dennis-Moré criterion for superlinear convergence). Consider
the iterates generated by the SuperMann scheme (Alg. 8.2) and suppose that
(xk)k∈N converges strongly to a point x? at which R is strictly differentiable.
Suppose further that the update directions (dk)k∈N satisfy Assumption 8.II and
the Dennis-Moré condition

lim
k→∞

‖Rxk + JR(x?)dk‖
‖dk‖

= 0. (8.28)

Then, the directions dk are superlinear as in Definition 8.14. In particular, all
the claims of Theorem 8.16 hold.

Proof.

0
(8.28)

= lim
k→∞

∥∥Rxk + JR(x?)dk +
(
R(xk + dk)−R(xk + dk)

)∥∥
‖dk‖

= lim
k→∞

∥∥R(xk + dk)
∥∥

‖dk‖

(8.26)
≥ 1
D

lim
k→∞

∥∥R(xk + dk)
∥∥

‖Rxk‖

where in the second equality we used strict differentiability of R at x?.
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8.6.3 The modified Broyden scheme

In practical application the Hilbert space H is finite dimensional, and conse-
quently it can be identified with Rn. Consistently with the discussion in Section
4.3, the computation of quasi-Newton directions dk in the SuperMann scheme
amounts to selecting

dk = −HkRxk, (8.29)

where Hk are linear operators recursively defined with low-rank updates. To
avoid notational clashes, we indicate such pairs of vectors as (sk, yk) instead of
(pk, qk) as in (4.4). In particular,{

sk = wk − xk
yk = Rwk −Rxk.

(8.30)

Contrary to what experienced with the envelope-based approach, the Broyden
scheme seems to be more beneficial than BFGS.

Theorem 8.19 (Superlinear convergence of the SuperMann scheme with Broy-
den directions). Suppose that H is finite dimensional. Consider the sequence
(xk)k∈N generated by the SuperMann scheme (Alg. 8.2), (dk)k∈N being selected
with the modified Broyden scheme of (4.3.2) for some ϑ̄ ∈ (0, 1) and with pairs
as in (8.30).

Suppose that (Hk)k∈N remains bounded, and that R is calmly semidifferentiable
and metrically subregular at the limit x? of (xk)k∈N. Then, (dk)k∈N satisfies the
Dennis-Moré condition (8.28). In particular, all the claims of Theorem 8.18
hold.

Proof. The proof is similar to that of Thm. 4.7. Let G? = JRx? ∈ Rn×n and
let ‖ · ‖ denote the Euclidean norm. From [59, Lem. 2.2] we have that there
exist a constant L and a neighborhood Ux? of x? such that

‖yk −G?sk‖
‖sk‖

= ‖Rwk −Rxk −G?(wk − xk)‖
‖wk − xk‖

≤ Lmax {‖xk − x?‖, ‖wk − x?‖}.

Because of (8.26), the fact that τk ≤ 1, and the triangular inequality we have
‖wk − x?‖ ≤ ‖xk − x?‖+D‖Rxk‖ and consequently∑

k∈N

‖yk −G?sk‖
‖sk‖

≤ L
∑
k∈N

(
‖xk − x?‖+D‖Rxk‖

)
<∞
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where the last inequality follows from Thm. 8.13(vi).

Let Ek = Bk − G? and let ‖ · ‖F denote the Frobenius norm. With a simple
modification of the proofs of [59, Thm. 4.1] and [4, Lem. 4.4] that takes into
account the scalar ϑk ∈ [ϑ̄, 2− ϑ̄] we obtain

‖Ek+1‖F ≤
∥∥∥Ek(id− ϑk sks

>
k

‖sk‖2

)∥∥∥
F

+ ϑk
‖yk −G?sk‖
‖sk‖

≤ ‖Ek‖F −
ϑ̄(2− ϑ̄)
2‖Ek‖F

‖Eksk‖2

‖sk‖2

The last term on the right-hand side, be it σk, is summable and therefore the
sequence (Ek)k∈N is bounded. Let Ē := sup(‖Ek‖F )k∈N, then

‖Ek+1‖F − ‖Ek‖F ≤ σk −
ϑ̄(2− ϑ̄)

2Ē

(
‖(Bk −G?)sk‖

‖sk‖

)2
.

Telescoping the above inequality, summability of σk ensures that of the sequence
‖(Bk−G?)sk‖2

‖sk‖2 , proving in particular the claimed Dennis-Moré condition (8.28).

Remark 8.20. It follows from Theorem 8.13(iv) that the SuperMann scheme is
globally convergent as long as ‖dk‖ ≤ D‖Rxk‖ for some constant D. To enforce
it we may select a (large) constant D > 0 and as a possible choice truncate
dk ← D ‖Rxk‖‖dk‖ dk whenever dk does not satisfy (8.26).

Let us observe that in order to achieve superlinear convergence the SuperMann
scheme does not require nonsingularity of the Jacobian at the solution. This is
the standard requirement for asymptotic properties of quasi-Newton schemes,
which is needed to show first that the method converges at least linearly. [4]
generalizes this property invoking the concepts of (strong) metric (sub)regularity
(see also [39] for an extensive review on these properties). However, if R is
strictly differentiable at x?, then strong subregularity, regularity and strong
regularity are equivalent to injectivity, surjectivity and invertibility of JR(x?),
respectively, these conditions being all equivalent for mappings H → H with H
finite dimensional. In particular, contrary to the SuperMann scheme standard
approaches require the solution x? at least to be isolated, a property that rules
out many interesting applications (cf. §8.7.1).
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Restarted (modified) Broyden scheme

The Broyden scheme requires storing and operating with n× n matrices, where
n is the dimension of the optimization variable, and is consequently feasible in
practice only for small problems. Alternatively, one can restrict the Broyden
update rule to only the most recent pairs of vectors (si, yi). As detailed in Al-
gorithm 8.3, this can be done by keeping track of the last vectors si and some
auxiliary vectors s̃i = si−Hiỹi

〈si,Hiỹi〉2 . These are stored in some buffers S and S̃,
which are initially empty and can contain up to m vectors. The memory m is a
small integer typically between 3 and 20; when the memory is full, the buffers
are emptied and Broyden scheme is restarted. The choice of a restarted rather
than a limited-memory variant obviates the need of a nested for-loop to account
for Powell’s modification.

8.6.4 Parameters selection in SuperMann

As shown in Theorem 8.16, the SuperMann scheme makes sense as long as either
c0 > 0 or c1 > 0; indeed, safeguard K2-steps are only needed for globalization,
while it is blind K0- and educated K1-steps that exploit the quality of the
directions dk. Evidently, K1-updates are more reliable than K0-updates in that
they take into account the residual of the candidate next point. As such, it is
advisable to select c1 close to 1 and use small values of c0 if more conservatism
and robustness are desired. To further favor K1-updates, the parameter q used
for updating the safeguard rsafe at step 5(a) may be also chosen very close to 1.

As to safeguard K2-steps, a small value of σ makes condition (8.24) easier to
satisfy and results in fewer backtrackings; the averaging factor λ may be chosen
equal to 1 whenever possible, i.e., if α � 1 (which is the typical case when,
e.g., T comes from splitting schemes in convex optimization), or any close value

Algorithm 8.3 Restarted Broyden scheme with memory m
Input: old buffers S, S̃; new pair (s, y); current Rx
Output: new buffers S, S̃; update direction d
1: d← −Rx, s̃← y
2: for i = 1 . . .#S do
s̃← s̃+ 〈si, s̃〉2 s̃i, d← d+ 〈si, d〉2 s̃i

3: compute ϑ as in (4.5b) with γ = 1
‖s‖22
〈s̃, s〉2

4: s̃← ϑ
(1−ϑ+ϑγ)‖s‖22

(s− s̃), d← d+ 〈s, d〉2 s̃
5: if #S = m then S, S̃ ← [ ] else S ← [S, s], S̃ ← [S̃, s̃]
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otherwise. In the simulations of Section 8.7 we used c0 = c1 = q = 0.99, σ = 0.1,
λ = 1 and β = 1/2. For a matter of scaling, we multiplied the summable term
qk by ‖Rx0‖ in updating the parameter rsafe at step 5(a). The directions were
computed according to the restarted modified Broyden scheme (Alg. 8.3) with
memory m = 20 and ϑ̄ = 0.2; we applied the truncation rule as in Remark 8.20
with D = 104. We also imposed a maximum of 8 backtrackings after which a
nominal KM iteration would be executed.

8.6.5 Comparisons with other methods

Hybrid global and local phase algorithms

Blind K0-updates in the SuperMann scheme are inspired from [30, Alg. 1], and
so is the notation K0 = {k0, k1, . . .}.

Educated K1- and safeguard K2-updates instead play the role of inner- and
outer-phases in the general algorithmic framework described in [61, §5.3] for
finding a zero of a candidate merit function ϕ (e.g. ϕ(x) = 1

2‖Rx‖
2 in our case).

Differently from [61, Alg. 5.16] where all previous inner-phase iterations are
discarded as soon as the required sufficient decrease is not met, the SuperMann
scheme allows for an alternation of phases that eventually stabilizes on the fast
local one, provided the solution is sufficiently regular. Our scheme is more in
the flavor of [61, Alg. 5.19], although with less conservative requirements for
triggering inner K1-updates (ϕ(xk+1) is here compared with ϕ(xk), whereas in
the cited scheme with the smallest past value).

Inexact Newton methods for monotone equations

The GKM updates are closely related to the extra-gradient steps described in
[109, Alg. 2.1]. This work introduces an inexact Newton algorithm for solving
systems of continuous monotone equations Rx = 0, where id−R needs not be
nonexpansive. At a given point x, first a direction d is computed as (possibly
approximate) solution of Gd = −Rx, where G is some positive definite matrix;
then, an intermediate point w = x+ τd is retrieved with a line search on τ that
ensures the condition

‖Rw‖2 − 〈Rw, x− Tw〉 ≤ − στ‖d‖2 (8.31)



THE SUPERMANN SCHEME 179

d≈G−1Rx

• •

•

•

z x

Tx

w

(a)

d
• •

•

••

z x
Tx

w
Tw

(b)

Cw Hw

d
• •

•

••

•
•

z x
Tx

w
Tw

x+
x+

GKM

(c)

Figure 8.6: The positive definiteness of G prevents the update directions d in
the scheme of [109] to point in the gray-shaded area. As a result, differently from
the GKM scheme the cited algorithm is not robust to any choice of direction
(e.g., it cannot accept the one as in Figure 8.5). In any case, the half-space Cw
onto which x is projected according to the GKM scheme is properly contained in
the half-space Hw corresponding to the update of [109]; consequently, the GKM
update is always closer to any solution.

for some σ > 0; here, we defined T := id−R to highlight the symmetry with
(8.19). Finally, the new iterate is given by x+ = ΠHw x, where

Hw :=
{
z ∈ H | ‖Rw‖2 − 〈Rw, z − Tw〉 ≥ 0

}
. (8.32)

Letting Cw be the half-space as in Prop. 8.10, so that x+
GKM

= ΠCw x (for
simplicity we set λ = 1), for the half-spaces (8.32) it holds that

zerR ⊆ Cw ⊆ Hw,

the last inclusion holding as equality iff Rw = 0. This means that in the GKM
scheme, the same w yields an iterate x+

GKM
which is closer to any z ∈ zerR with

respect to x+ (cf. Fig. 8.6). Notice further that the hyperplanes delimiting the
two half-spaces are parallel, with bdryCw passing by Tw (or T1/2αw for generic
α’s) and bdryHw by w.

The requirement of positive definiteness of matrix G in defining the update
direction d is due to the fact that [109] addresses a broader class of monotone
operators; we instead exploited at full the nonexpansiveness of id−R and as a
result have complete freedom in selecting d (Fig. 8.6a) and better projections
(Fig. 8.6c).
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Line-search for KM

The recent work [48] proposes an acceleration of the classical KM scheme for
finding a fixed point of an α-averaged operator T based on a line search on
the relaxation parameter. Namely, instead of the nominal update x̄ = Tλx
with λ ∈ [0, 1/α] as in (8.18), values λ′ > 1/α are first tested and the update
x+ = Tλ′x is accepted as long as ‖Rx+‖ ≤ c1‖Rx̄‖ holds for some constant
c1 ∈ (0, 1).

In the setting of the SuperMann scheme, this corresponds to selecting dk =
−Rxk, discarding blind updates (i.e., setting c0 = 0), foretracking educated
updates and using plain KM iterations as safeguard steps. Convergence can be
enhanced and the method is attractive when T = S2 ◦ S1 is the composition of
an affine mapping S1 and a cheap operator S2, in which case the line search
is inexpensive. However, though preserving the same theoretical convergence
guarantees of KM (hence of the SuperMann scheme), it does not improve its
best-case local linear rate.

Although other choices dk may also be considered, fast directions such as Newton-
type ones would be discarded and replaced by nominal KM updates every time
the candidate point xk + dk does not meet some requirements. Avoiding this
take-it-or-leave-it behavior is exactly the primary goal of GKM iterations, so
that candidate good directions are never discarded.

8.7 Simulations

We conclude with some numerical examples to give tangible evidence of the
robustifying and enhancing effect that the SuperMann scheme has on fixed-point
iterations. In all simulations we deactivated blind updates by setting c0 = 0,
and we selected σ = 10−3 for safeguard updates and c1 = q = 1−σ for educated
updates. Due to problem size we used restarted Broyden directions with a
memory buffer of 20 vectors.

8.7.1 Cone programs

We consider cone problems of the form

minimize
x∈Rn

〈c, x〉 subject to Ax+ s = b, s ∈ K, (8.33)
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where K is a nonempty closed convex cone. Almost any convex program can
be recast as (8.33), and many convex optimization solvers address problems by
first translating them into this form. The KKT conditions for optimality of the
primal-dual couple

(
(x?, s?), (y?, r?)

)
are

Ax? + s? = b, s? ∈ K, A>y? + c = r?, r? = 0, y? ∈ K?, c>x? + b>y? = 0

where K∗ is the dual cone of K. A recently developed conic solver for (8.33)
is SCS [89], which solves the corresponding so-called homogeneous self-dual
embedding

find u ∈ C subject to Qu ∈ C∗, (8.34)

where

C = Rn ×K∗ × R+ and Q =

 0 A> c
−A 0 b
−c> −b> 0

.
Problem (8.34) can be equivalently reformulated as the variational inequality

find u ∈ C s.t. 0 ∈ Qu+NC(u). (8.35)

Indeed, for all u ∈ C we have

NC(u) = {y | 〈v − u, y〉 ≤ 0 ∀v ∈ C} = {u}⊥ ∩ {y | 〈v, y〉 ≤ 0 ∀v ∈ C}

= {u}⊥ ∩ (−C∗),

where the second equality follows by considering, e.g., v = 1
2u and v = 3

2u,
which both belong to C being it a cone. From this equivalence and the fact that
Qu ∈ {u}⊥ for any u due to the skew symmetry of Q, the equivalence of (8.34)
and (8.35) is apparent. This leads to the short and elegant interpretation of
SCS as Douglas-Rachford splitting (DRS) applied to the splitting NC +Q in
(8.35), which, after a well known change of variables and index shifting, readsũk+1 ≈ (I +Q)−1(uk + vk)

uk+1 = ΠC(ũk+1 − vk)
vk+1 = vk − ũk+1 + uk+1.

(8.36)

The “≈” symbol refers to the fact that vk may be retrieved inexactly by means
of conjugate gradient (CG) method; see [89] for a detailed discussion.
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Here we consider instead DRS applied to the (equivalent) splitting Q+NC in
(8.35), namely vk+1 ≈ (I +Q)−1(uk)

wk+1 = ΠC(2vk+1 − uk)
uk+1 = uk + wk+1 − vk+1.

(8.37)

For any initial point u0, the variable vk converges to a solution to (8.35) [10,
Thm. 26.11]. DRS is a (firmly) nonexpansive operator and as such it can be
integrated in the SuperMann scheme with λ ∈ (0, 2); in these simulations we
set λ = 1.

We run a cone problem (8.33) of size m = 487 and n = 325, with density 0.01
and condition number 100, both by solving exactly the linear systems and by
adopting the CG technique. C is the cartesian product of all the primitive cones
implemented in SCS solver: positive orthant, second-order, positive semidefinite,
(dual) exponential, and (dual) power cones. We reported primal residual, dual
residual, and duality gap; consistently with SCS’ termination criterion, the
algorithm is stopped when all these quantities are below some tolerance [89,
§3.5], which we set to 10−6.

Notice that if u solves (8.34), or equivalently (8.35), then so does any multiple
tu with t > 0. In particular no isolated solution exists, and therefore whenever
the residual R of the DRS operator is differentiable at a solution u?, JR(u?)
is singular. Fortunately, the SuperMann scheme does not necessitate nonsin-
gularity of the Jacobian but merely metric subregularity, the same property
that enables linear convergence rate of the original DRS (or equivalently SCS).
In particular, whenever the original SCS scheme is linearly convergent, the
SuperMann enhancement is provably superlinear provided that R is strictly
differentiable at the limit point. However, since restarted Broyden directions
are implemented instead of the full-memory method, rather than superlinear
convergence we expect an “extremely steep” linear convergence.

In Figure 8.7 we can observe how the original SCS scheme (blue) converges at
a fair linear rate; however, its super-enhancement greatly outperforms it both
when solving linear systems exactly and approximately.

8.7.2 Lasso

We consider a lasso problem

minimize
x∈Rn

1
2‖Ax− b‖

2 + ν‖x‖1
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Figure 8.7: Comparison between Splitting Cone Solver [89] (blue) and its en-
hancement with the SuperMann scheme for solving a cone program (8.33).
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(a) On the x-axis the number of times a linear system is solved, the most expensive
operation, needed for computing the resolvent of Q. SCS performs quite well, however
its super-enhancement converges considerably faster in terms of operations.
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(b) Comparison with respect to the same problem, but with linear systems solved
approximately with CG on a reduced system. On the x-axis the number of times
the operators A and A> are called, which amount to the most expensive operations.
Apparently, solving the system inexactly does not affect the comparison between SCS
and super-SCS.

where A ∈ Rm×n, b ∈ Rm and ν > 0. In Figure 8.7 the comparison of forward-
backward splitting (or proximal gradient, in blue) and its super-enhanced version
(red) on a random problem with m = 1500 n = 5000 and ν = 10−2. On the
x-axis the number of matvecs, being them the most expensive operations of FB
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and hence of super-FB, and on the y-axis the fixed-point residual. Superlinear
convergence cannot be observed due to the fact that a limited-memory method
is used for computing directions, however an outstanding speedup is noticeable.
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Figure 8.7: Comparison between FBS and
Super-FBS (using modified Broyden limited-
memory directions) in a lasso problem.

8.7.3 Constrained linear optimal control

For matrices At and Bt of suitable size, t = 0, . . . , N − 1, consider a state-input
dynamical system

xt+1 = Atxt +Btut, t = 0, . . . , N − 1, (8.38a)

where x0 ∈ Rnx is given, and the next states xt ∈ Rnx are determined by the
user-defined inputs uτ ∈ Rnu , τ = 0, . . . , t− 1. States x = (x1, . . . , xN ) can be
expressed in terms of the inputs u = (u0, . . . , uN−1) through a linear operator
L ∈ RNnx×Nnu as x = Lu + b for some constant b ∈ RNnx . The goal is to
choose inputs that minimize a cost

`(u,x) =
N−1∑
t=0

`t(ut, xt) + `N (xN ) (8.38b)

subject to some constraints

xt+1 ∈ Xt+1, ut ∈ Ut, t = 0, . . . , N − 1. (8.38c)
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Vũ-Condat splitting

The constraint sets in (8.38c) are typically simple and easy to project onto
(boxes, Euclidean balls. . . ). However, while simple input constraints can be
easily handled, due to the coupling enforced by the dynamics (8.38a), expressing
Xt+1 in terms of the optimization variable u results in much more complicated
sets (polyhedra, ellipsoids. . . ). To avoid this complication we make use of the
extremely versatile algorithm that Vũ-Condat three-term splitting offers [35,
Alg. 3.1]. In its general form, the algorithm addresses problems of the form

minimize
x∈Rn

f(x) + g(x) + h(Lx) (8.39)

where f : Rn → R is convex with Lf -Lipschitz continuous gradient, g : Rn → R
and h : Rm → R are convex, and L ∈ Rn×m, by iterating the following steps:{

x+ = proxτg
(
x− τ(∇f(x) + L>y)

)
y+ = proxτh∗

(
y + σL(2x+ − x)

)
.

(8.40)

Here, 0 < τ < 2
Lf

and 0 < σ < 1
‖L‖2

( 1
τ −

Lf
2
)
are stepsizes, and y ∈ Rm

is a Lagrange multiplier. Vũ-Condat splitting is a primal-dual method that
generalizes FBS by allowing an extra nonsmooth term h and a linear operator
L (by neglecting h and L one recovers the proximal gradient iterations of FBS).

The optimal control problem (8.38) can be cast into Vũ-Condat splitting form
(8.39) by simply letting f(u) = `(u, Lu), g = δU and h = δX ( · + b), where
U = U0 × · · · × UN−1 and X = X1 × · · · × XN (in particular, n = Nnu and
m = Nnx). Then, proxτg = ΠU and proxσh∗(y) = y − σΠX (σ−1y + b) + b.
Notice that ΠU and ΠX are fully decoupled as the projection of each input and
state onto the corresponding constraint set. Moreover, the full matrix L needs
not be computed, as both L and L> can be treated as abstract operators that
simulate forward and backward dynamics.

Apparently, the appeal of Vũ-Condat splitting in addressing the optimal con-
trol problem lies in the extreme simplicity of its operations and low memory
requirements, making it particularly suited for medium-to-large-scale problems
in which traditional interior point algorithms fail. However, like all first-order
methods it is extremely sensitive to ill conditioning, which gets worse as the
problem size increases. Fortunately, this splitting fits into the SuperMann frame-
work. The operator T that maps (x, y) into (x+, y+) as in (8.40) is averaged
in the Hilbert space HP , where HP is defined as Rn × Rm equipped with the
scalar product 〈z, z′〉P := 〈z, Pz′〉, where P :=

(
τ−1I −L>
−L σ−1I

)
[35, proof of Thm.

3.1].
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Oscillating masses experiment

We tried this approach on the benchmark problem of controlling a chain of
oscillating masses connected by springs and with both ends attached to walls.
The chain is composed of 2K bodies of unit mass subject to a viscous friction
of 0.1, the springs have elastic constant 1 and no damping, and the system is
controlled through K actuators, each being a force acting on a pair of masses,
as depicted in Figure 8.8. Therefore nx = 4K (the states are the displacement
from the rest position and velocity of each mass) and nu = K. The inputs are
constrained in [−2, 2], while the position and velocity of each mass is constrained
in [−5, 5].

The continuous-time system was discretized with a sampling time Ts = 0.1s.
We considered quadratic stage costs 1

2x
>Qx for the states and 1

2u
>u for the

inputs, where Q is diagonal positive definite with random diagonal entries, and
generated a random (feasible) initial state x0. Notice that a QP reformulation
would require the computation of the full cost matrix, differently from the
splitting approach where only the small dynamics matrices A and B are needed,
as L and L> can be abstract operators.

u1

u2

· · ·

uK−1

uK

Figure 8.8: Oscillating masses.

We simulated different scenarios for all combinations of K ∈ {8, 16} and N ∈
{10, 20, 30, 40, 50}. We compared Vu-Condat splitting (VC) with its ‘super’
enhancement (SuperVC); parameters were set as detailed in Section 8.6.4. Table
8.1 offers an overview of the experiment: SuperVC is roughly 13 times faster on
average and 21 times better in worst-case performance than VC algorithm in
reaching the termination criterion ‖Rxk‖ ≤ 10−4‖Rx0‖.
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Number of calls to L and L> (×103)
K = 8 N = 10 N = 20 N = 30 N = 40 N = 50

avg max avg max avg max avg max avg max
VC 19.0 337.1 15.0 174.4 25.0 400+ 21.0 136.5 16.0 61.9

SVC 1.0 5.5 1.0 4.3 2.0 19.3 2.0 10.9 2.0 6.6

K = 16 N = 10 N = 20 N = 30 N = 40 N = 50
avg max avg max avg max avg max avg max

VC 62.0 400+ 30.0 344.9 30.0 400+ 65.0 400+ 29.0 318.6
SVC 4.0 39.5 2.0 11.6 3.0 46.6 8.0 58.1 3.0 26.1

Table 8.1: Comparison between Vũ-Condat algorithm (VC) and its “super”
enhancement (SuperVC) in solving the oscillating masses problem with ‖Rxk‖ ≤
10−4‖Rx0‖ as termination criterion. Average and worst performances among
25 simulations with randomly generated starting point x0 for each combination
of K ∈ {8, 16} and N ∈ {10, 20, 30, 40, 50}. The tables compare the number of
calls to the operators L and L>, which are the expensive operations (the rest are
projections on boxes). In four problems Vũ-Condat exceeded 4 · 105 many calls
(corresponding to 105 iterations) and was stopped prematurely.



Conclusions

In this thesis we carried out an in-depth analysis of splitting algorithms in the
nonconvex setting. The main contribution and novelty of the methodology is
twofold:

• We pioneered a general framework where splitting algorithms are rep-
resented and identified by two components: an inner majorizing model,
and an outer transformation mapping. The properties of what we defined
“proximal” models set the ground for building a solid theory of convergence,
reminiscent of that of Lyapunov type that ensures stability of dynamical
systems. Proximal envelopes, here generalized for any splitting algorithm
covered by the framework, proved to be suitable such Lyapunov functions.

• Building upon the proposed framework, a new linesearch strategy was pro-
posed. Solely based on the continuity of the Lyapunov functions, property
enjoyed by the investigated proximal envelopes, the Continuous-Lyapunov
Descent paradigm (CLyD) allows to customize any proximal algorithm
with arbitrary update directions. Once again proximal envelopes prove
to be the perfect Lyapunov candidates, as (1) they allow to preserve the
operational complexity of the underlying splitting algorithms, and (2)
robustify CLyD against the Maratos effect: when good directions are se-
lected, unitary stepsize is eventually always accepted and fast convergence
thus triggered.

For both the forward-backward and the Douglas-Rachford splittings, it is shown
how the solution of elementary algebraic inequalities is enough for obtaining
bounds on stepsizes and relaxation parameters so as to ensure convergence.
Nevertheless, with more sophisticated analysis of the Douglas-Rachford envelope,
tight convergence results were derived. In light of a primal equivalence between
the algorithms, as a byproduct tight convergence results for ADMM were easily
inferred.

188
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A CLyD-like framework restricted to convex splitting algorithms was also
proposed. Although bound to convexity, the SuperMann scheme allows to
accelerate pretty much any splitting algorithm, including those with a purely
primal-dual nature that cannot be captured by proximal envelopes, as it is the
case of the recent Vũ-Condat splitting.

Future directions

This thesis already accomplished some of the open research directions advanced
in [112], such as a higher-order analysis of the Douglas-Rachford envelope, the
derivation of Douglas-Rachford splitting-based Newton-type methods, and the
consequent adaptation of the findings to ADMM. Nevertheless, other promising
workplans such as the integration with augmented Lagrangian methods therein
suggested have not been covered yet. In this perspective, we believe that the
CLyD framework constitutes a valid tool for the achievement of such goals.

The analysis of other algorithms such as the proximal ADMM and the Chambolle-
Pock splitting [29] in a fully nonconvex setting is already being investigated.
Partially presented at an invited workshop of the 2018 European Control
Conference, the study is providing further evidence in support of the potential
of the proximal framework pioneered in the thesis. It is also worth pointing
out that, for fully nonconvex problems and under a smoothness assumption as
already investigated in [73], the recent Davis-Yin three-term splitting algorithm
[38] falls in the GPMM framework; the convergence results of Corollary 3.19
and Theorem 3.22, as well as quasi-Newton enhancements through the CLyD
Algorithm 4.1 are thus readily applicable. Nevertheless, as it was the case of the
Douglas-Rachford splitting, a more in-depth analysis may yield tighter results.

Further extensions are also being considered:

• Bregman-type models. A challenging yet extremely powerful possible general-
ization of the framework consists in replacing the quadratic bounds defining
the proximal models with a nonsymmetric Bregman distance. Embracing
Bregman-type extensions of popular algorithms in a unified framework and
consequently simplifying their arduous convergence analysis is an attractive
prospect: not only would this considerably widen the range of covered meth-
ods, but it would also open the possibility to provide new purely primal
interpretations of algorithms that are so far only understood through duality
arguments, such as the Vũ-Condat splitting. Thus, similarly to what done in
the thesis with the ADMM, nonconvex (and quasi-Newton) primal-dual algo-
rithms would then be possible. In this perspective, due to its high degree of
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generality encompassing the asymmetric forward-backward-adjoint (AFBA)
splitting proposed in [66] is a particularly appealing goal.

• Block-coordinate and matrix-free variants. When facing the “big-data” reality,
operating with huge variables and/or matrices may constitute a problem. Due
to their amenability to operate on small portions of the problem at a time,
incorporating randomized and block-coordinate variants in the investigated
framework would create a major impact on modern huge-scale applications
such as those arising in machine learning [22, 33, 65, 85]. An efficient man-
agement of matrices and even high-order tensors is already being investigated
for the funded EOS SeLMA project,2 and applications on embedded hard-
ware with low memory and computational capabilities have already produced
promising accomplishments [3, 107].

• Higher-order smoothing. The seemingly impractical use of third-order informa-
tion in smooth minimization was recently shown to be feasible in some special
cases [87]. A question then arises as to whether the proximal framework can
be extended so that envelopes may take advantage of higher order smooth-
ness, in such a way that more problems can be solved with the third-order
techniques proposed. Motivated by the known smoothing effect that proximal
minimization reflects on the Moreau envelope, an intuitive approach would
be to analyze higher-order properties of the envelope functions in the attempt
to broaden the class of problems for which such a method is “implementable”.
Alternatively, the investigated framework may be restricted to higher-order
MM models, although this option may lead to difficult evaluations of the
resulting MM mapping (the inner minimization problems).

Ultimately, it would be desirable to address some technical questions that,
although supported by much evidence, so far have only been conjectured. One
of these regards the often observed good performance of BFGS directions in the
CLyD framework. We suppose that this behavior owes to fact that, despite being
nonsymmetric, the involved Jacobians are similar to symmetric and positive
definite matrices, hence in particular have all strictly positive eigenvalues. We
also consider analyzing the iterations from a manifold perspective, whence
results on partly smooth functions may prove to be useful [68, 36].

Another still unanswered issue relates to the assumptions needed for ensur-
ing global and linear convergence of proximal algorithms and their CLyD
enhancements. In particular, we have reasons to believe that the requirement of
prox-regularity needed for the FBE to satisfy the error bound inequality as in

2Structured Low-Rank Matrix/Tensor Approximation, https://www.esat.kuleuven.be/
stadius/selma/. Fonds de la Recherche Scientifique — FNRS and the Fonds Wetenschappelijk
Onderzoek — Vlaanderen under EOS Project 30468160 (SeLMA).

https://www.esat.kuleuven.be/stadius/selma/
https://www.esat.kuleuven.be/stadius/selma/
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Theorem 5.11(ii) could be dropped. As equation (5.10) indicates, answering the
conjecture boils down to showing whether or not for arbitrary proper, lsc, and
prox-bounded functions g the following equality holds

limsup
w→x
w 6=x

proxγg(w) = proxγg(x),

stronger than the mere inclusion ‘⊆’ ensured by outer semicontinuity of proxγg.
The closest we got to a positive answer is by either assuming the nonsmooth term
to be an indicator function, or the proximal mapping to be at most two-valued
(around the critical points of interest).

In the same spirit, succeeding in reducing the assumptions to ensure superlinear
convergence of the investigated algorithms would also be extremely appealing. A
first step in this direction was obtained with the SuperMann scheme, which was
shown to achieve superlinear convergence under no nonsingularity requirements,
but merely metric subregularity (and suitable regularity assumptions). A similar
result was recently achieved in [117], where the semismooth forward-backward
truncated-Newton method first proposed in [94] was suitably adapted to the
CLyD framework. Other than considerably simplifying the convergence analysis,
this modification was the turning point that allowed to drop the nonsingularity
assumption and to further reduce the other needed regularity requirements.
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