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Preface

You often hear that in life, the journey is more important than the destination.
I believe the same thing is true for a PhD. Today marks the end of a journey
that turned out to be longer and better than I could have ever imagined when
I applied for this position almost six years ago. While I am very happy that 1
reached the end, I will never forget everything that happened along the way
and the people that helped me to get here.

I was lucky enough to have two supervisors that complemented each other in
many different ways. Sabine, thank you for giving me the opportunity to start as
a PhD student in your group, and for giving me enough freedom throughout the
years to find my own way to do so. From the start, you were a caring supervisor
that made time for us whenever necessary despite your busy schedule. Your
vision on biomedical signal processing and your goal to develop algorithms that
can have a real impact on the life of patients are truly inspiring. Additionally,
the social events you organised at your house were always very nice and helped
Biomed to become the close research group it is today.

When I started my PhD, I specifically selected a topic where I could work on
real clinical applications. Rik, you ensured that I didn’t lose track of this side
of my research on the way and broadened my ‘engineering view’ multiple times.
While I very much enjoyed our monthly meetings, I enjoyed the discussions and
dinners at conferences even more!

I would also like to thank the other members of my examination committee,
Chairman Prof. Pierre Verbaeten, Prof. Lieven De Lathauwer, Prof. Johan
Suykens, Prof. Chris Van Hoof and Prof. Xiao Hu for the feedback and
comments both during the intermediate presentations and preliminary defense.
Lieven, thank you for introducing me to tensor methods. While challenging at
times, they certainly added another dimension to my research. Xiao, the four
months that I spent in San Francisco were for sure one of the highlights of my
PhD. Thank you for welcoming me in your research group, for the nice trips
and dinners and for coming all the way to Belgium for my defense. I sure hope
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to be back one day. Ran, Del, Jacob, Koa, Kais, Rich and Andrea, thank you
for making me feel part of the squad from day one!

Throughout the past five years I collaborated with many people, both inside and
outside Biomed, the university and Belgium. I want to thank all collaborators
for all the joint efforts and for broadening my knowledge on everything from
tensor methods to clinical applications. Special thanks to Bert for the nice
collaboration from day one, and for extensively answering all my questions at
any time of the day. I hope I could convince you that all these complicated
methods were worth it after all!

When I was looking for a PhD position, many factors influenced my decision:
the topic, the supervisor, the university,... but I never really considered what
turned out to be one of the most important things: the research group I would
end up in. Without a doubt, I made the perfect choice there: Biomed is the
best group of colleagues I could have wished for. A PhD is filled with ups and
downs, and in Biomed any success is a reason to celebrate, from pancakes to
celebrate an accepted paper to cookies to celebrate the end of another week.
Equally important however, there is also always someone around to talk you
through the difficult moments, no matter if they are personal or professional. I
therefore want to thank everybody who is or was part of Biomed during five
amazing years: Thank you all for the interesting discussions during lunch and
coffee breaks, for all the cake, the parties, the drinks, the sports activities and
so much more. I truly appreciated getting to know all of you, and while I could
write an additional book about all the things I will remember, there are several
people that deserve some extra words:

To everyone in the ‘party office’; present and past: Thank you for the company,
the talks, the chocolates and the pleasant atmosphere in general. Dorien and
Margot, thanks for the much-needed moral support the last months and for
taking such good care of our avocado plant. With all those cooking lessons, we
really have to plan that office dinner very soon! Special thanks to Laure for
staying part of the office even after you moved to Gasthuisberg: it honestly
feels like you never really left. Your unexpected messages and pictures these
last months could always make me smile.

Thomas and Rob, we started everything together five years ago, and I am really
happy both of you stuck with me until the end. Thomas, it was comforting to
know someone was going through the same thing as me last year, from getting
those final ADS credits to writing our PhD. Rob, thank you for being such a
good friend: for the games, the parties, and Papegaeien in de Reinaert but even
more important for being there (literally) whenever I needed to talk.

Alex, you were always up for ‘just one more drink’ Let’s have more fancy
lunches in the future, in Colombia, Belgium or anywhere in between. Jasper,
thank you for the many discussions during our coffee breaks and occasional
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carpooling, and for sharing your opinion on everything from foodsharing to
checkered shirts. Simon V.E., I am sorry that I could never join the football
trainings. Maybe I will have more time now? (I doubt it though). Mario,
you will forever be the kiwi guy for me, but I will remember your passion for
everything in life even longer. Lieven, you were often our much-needed moral
compass. Please keep on sending me facts of the day.

During my PhD, I supervised a number of very good master students, three
of which became colleagues later on. Ofelie, Jonathan and Simon G., I am
still very happy you chose one of my topics. I learned a lot while supervising
you and I hope you can say the same thing. Jonathan, I especially enjoyed
your continuous enthousiasm and our interesting discussions, from cell biology
to crazy projects with fancy figures. I hope we can have many more of those
discussions in the future.

Thank you to the biotensors team, most importantly Otto, Nico and Martijn,
for guiding me through the tensor world and for the nice collaborations and
discussions, both inside and outside the office.

Carolina, you were there for me from before I even started until the very last
day. I know you think I was Creepy every once in a while... but maybe that’s
just who I am. Nevertheless, the times we spent together both at conferences
and in Leuven are some of my happiest PhD memories, and I would gladly
buy you many more cocktails and/or purses if it meant we could keep working
together forever. Thank you for being a great colleague and an even better
friend.

Many thanks also to the rest of the people in STADIUS, in particular Ida,
Aldona, John, Elsy, Wim and Maarten for taking care of all our administrative
and practical issues and for letting me in my office every time I forgot my badge.
You make all our lives at STADIUS a lot easier! I also greatly acknowledge IWT
and VLAIO for providing me with a PhD grant for Strategic Basic Research
and FWO for the travel grant that made my research stay in San Francisco
possible.

Hoewel mijn doctoraat regelmatig de nodige vrije tijd in beslag nam, waren
er gelukkig genoeg mensen die ervoor zorgden dat ik op tijd en stond alle
werk-gerelateerde dingen even kon vergeten. Een meer dan verdiende dankjewel
aan mijn vrienden, vriendinnen en familie voor de interesse in mijn werk, maar
vooral voor de ontelbare leuke momenten!

Bedankt aan de Kempische furies, Chloé, Evelien, Eveline, Jessica, Liesbeth en
Lisanne: ik ken jullie al zo lang dat het lijkt alsof jullie er altijd geweest zijn, en
ik weet dat jullie er ook altijd zullen zijn. We maakten de voorbije jaren veel
mee samen, en ik kijk al uit naar wat de toekomst nog brengt. Ook veel dank
aan Joost, Gilles, Yves en Sam om onze decibels af en toe te tolereren.

Karen, Lotte en Elise, tien jaar nadat we in Analyse 1 naast elkaar kwamen te
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zitten, sluiten we onze uniefjaren nu bijna echt af. Karen en Lotte, jullie toonden
op zoveel verschillende manieren wat een luxe het is om je beste vriendinnen op
wandelafstand te hebben wonen. Elise, Brussel is net iets verder, maar daardoor
gelukkig altijd een goed excuus om te brunchen. Of het nu was om mijn hart te
luchten of gewoon een avond buiten in de tuin te zitten, ik kon altijd bij jullie
terecht. Ook bedankt aan Pieter, Bram, Ann, Christiaan, Lisa, Klaas, Annelies,
Thibaut, Michiel, Niels B., Marijn, Filip, Maarten, Philippe J., Philippe L.,
Francgois en Niels V. voor de fijne avonden en Ardennen-weekendjes de voorbije
jaren. Of om het (nog 1 keer) met de woorden van Maarten te zeggen: ‘Jullie
verdienen de Nobelprijs!’

De busclub-etentjes zijn een vaste afspraak in mijn agenda geworden waar ik
telkens weer erg naar uitkijk. Liesbeth, Enid en Heleen, hoewel ik het gevoel
heb dat we elke keer dezelfde verhalen oprakelen, ben ik ze toch nog altijd niet
beu geraakt. Hopelijk houden we deze traditie nog heel lang vol.

Niels, Klaas en Leen, onze Alma-lunches waren soms moeilijk in te plannen maar

daardoor niet minder plezant. Bedankt voor het gezelschap en de ontspannende
babbels.

Mama en papa, Heleen en Charlotte, Nicholas en Evert, jullie waren altijd
mijn grootste supporters. Dankzij jullie weet ik dat waar ik ook ben of wat
er ook gebeurt, ik gelukkig altijd een enorm warme thuis heb om naar terug
te komen. Bedankt voor alles, van apero-donderdagen en zussenweekends tot
knuffels en ondersteunende woorden wanneer het even wat minder vlot ging. Een
weekend thuis zorgde er altijd voor dat ik alles weer helemaal kon relativeren en
ontspannen terug naar Leuven kon vertrekken. Zonder jullie stond ik vandaag
niet waar ik nu stal!

Thank you alll Bedankt iedereen!

Griet
Leuven, December 2018



Abstract

Sudden cardiac death (SCD) is one of the main causes of death worldwide,
accounting for approximately 4.5 million deaths per year. Since it occurs
relatively often in younger people, its socio-economic impact is much higher
than the impact of other major health issues like cerebrovascular disease. It
is therefore important to accurately determine which patients are at risk for
developing dangerous arrhythmias in order to implement optimal treatment
and prevention strategies. Prediction of sudden cardiac death is however not
an evident task, and providing reliable indicators has been a very active area of
research for many decades. This research therefore focuses on the development
of algorithms to extract potential SCD risk factors from the ECG signal, through
a combination of tensor methods and machine learning approaches.

Tensors are multilinear generalizations of vectors and matrices that can be used
to analyse all leads of the ECG channel simultaneously. Since the different
spatial leads give a global view of the heart in three dimensions, it makes sense
to fully exploit the shared information by combining the information from all
directions. The first part of this thesis therefore presents four tensor-based
methods to detect and analyse different ECG characteristics. We show that
by modifying the tensor decomposition, specific signal characteristics such as
changes in heart rate or increased noise levels can be taken into account. This
ensures that the developed methods can be optimally used in real-life scenarios,
which is confirmed by the good results on different clinical datasets.

The second part of this research is focused on QRS fragmentation (fQRS), a
promising risk factor for sudden cardiac death. Detection of fQRS heavily relies
on visual inspection, which has been shown to be dependent on rater experience.
Therefore, we propose a method to detect and quantify QRS fragmentation
using machine learning methods. Quantification of fQRS is a novel approach
to examining the biomarker, and we demonstrate that this innovative fQRS
score largely correlates to the certainty of QRS fragmentation in a signal. Since
the proposed fQRS score is determined objectively, the obtained results can



vi ABSTRACT

be easily repeated in different datasets, which promotes the clinical use of this
parameter.

Finally, the last part of this thesis investigates to what extent advanced machine
learning methods can provide added value in modelling the survival of patients.
We show that the combination of the proposed fQRS score with advanced
survival models is better capable of predicting the survival time of patients than
commonly used statistical models.



Beknopte samenvatting

Plotse hartdood is een van de voornaamste doodsoorzaken wereldwijd die
jaarlijks verantwoordelijk is voor ongeveer 4.5 miljoen sterfgevallen. Aangezien
plotse hartdood relatief vaak voorkomt bij jongere mensen is de socio-
economische impact ervan veel groter dan bij andere grote gezondheidsproblemen
zoals cerebrovasculaire ziekten. Het is daarom erg belangrijk om op een accurate
manier te bepalen welke patiénten risico lopen op het ontwikkelen van gevaarlijke
hartritmestoornissen, zodat optimale behandelings- en preventiestrategieén
kunnen opgestart worden. Het voorspellen van plotse hartdood is echter geen
eenvoudig probleem, en het bepalen van betrouwbare indicatoren is reeds
verschillende decennia een zeer actief onderzoeksgebied. Dit onderzoek spitst
zich daarom toe op het ontwikkelen van algoritmen om potentiéle risicofactoren
voor plotse hartdood uit het ECG signaal te extraheren. We maken hierbij
gebruik van een combinatie van tensor methoden en machinaal leren.

Tensoren zijn multilineaire veralgemeningen van vectoren en matrices die
gebruikt kunnen worden om alle kanalen van het ECG signaal gelijktijdig
te analyseren. Aangezien de verschillende ruimtelijke kanalen een globaal
zicht op het hart geven in drie dimensies, ligt het voor de hand om
deze gedeelde informatie ten volle uit te buiten door de informatie uit
de verschillende kanalen te combineren. Het eerste deel van deze thesis
stelt daarom vier tensor-gebaseerde methoden voor om verschillende ECG
karakteristieken te detecteren en te analyseren. We tonen aan dat door het
aanpassen van de tensorontbinding we rekening kunnen houden met specifieke
signaaleigenschappen zoals veranderingen in hartritme of toenames van het
ruisniveau. Dit zorgt ervoor dat de ontwikkelde methoden optimaal gebruikt
kunnen worden in levensechte scenario’s, wat aangetoond wordt door goede
resultaten op diverse klinische datasets.

Het tweede deel van dit onderzoek is gefocust op QRS fragmentatie (fQRS),
een veelbelovende risicofactor voor plotse hartdood. Detectie van fQRS maakt
voornamelijk gebruik van visuele inspectie, waarvan aangetoond is dat de
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resultaten afhankelijk zijn van de ervaring van de beoordelaar. We ontwikkelden
daarom een methode om QRS fragmentatie te detecteren en te kwantificeren,
gebruik makend van technieken uit het machinaal leren. Kwantificatie van fQRS
is een nieuwe manier om deze biomerker te onderzoeken, en we demonstreren
dat deze nieuwe fQRS score nauw aansluit bij de zekerheid over de aanwezigheid
van fQRS. Aangezien de voorgestelde fQRS score op een objectieve manier
bepaald wordt, zijn de verkrijgde resultaten makkelijk repliceerbaar in andere
datasets, en kan op deze manier het klinische nut van deze parameter vergroot
worden.

Tenslotte wordt in het laatste deel van dit onderzoek onderzocht in welke
mate geavanceerde methoden uit het machinaal leren toegevoegde waarde
kunnen bieden om de overleving van patiénten te modelleren. Hierbij
tonen we aan dat de ontwikkelde fragmentatie score in combinatie met
geavanceerde overlevingsmodellen beter in staat zijn om de overlevingstijd
van een patiéntengroep te voorspellen dan standaard gebruikte statistische
modellen.
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Chapter 1

Introduction

1.1 Research motivations

Sudden cardiac death (SCD) is defined as ‘an unexpected natural death from a
cardiac cause within a short time period, generally < 1 hour from the onset of
symptoms, in a person without any prior condition that would appear fatal’ [244].
It is one of the main causes of death worldwide, accounting for approximately
4.5 million deaths per year [179]. Since SCD occurs relatively often in younger
people (40% of all cases occurs before the age of 65 [41]), its socio-economic
impact is much higher than the impact of other major health issues such as
cerebrovascular disease, chronic lower respiratory disease or diabetes [201].

The majority of sudden deaths are attributed to acute cardiac arrhythmias. The
three major types of presenting rhythms are ventricular tachyarrhythmia (either
ventricular tachycardia (VT) or ventricular fibrillation (VF)), bradyasystole or
pulseless electrical activity (PEA) [179]. While these arrhythmia are mostly
caused by an underlying heart condition (up to 80% of patients who experience
sudden cardiac death have coronary artery disease (CAD) [244]), they are often
the first manifestation of a cardiac problem. Cardiac arrests may be reversed by
using a defibrillator that delivers an electric shock to restore the normal heart
rhythm [79]. However, since most cardiac arrests occur out of hospital in a
non-monitored environment and a shock must be administered within minutes
after the start of the arrhythmia, the overall survival rate for cardiac arrest is
lower than 5% [163].

It is therefore important to accurately determine which patients are at
risk for developing dangerous arrhythmias in order to implement optimal
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treatment and prevention strategies. When an underlying cardiac condition is
diagnosed in time, it can often be managed to prevent deterioration. Patient
management involves lifestyle interventions, pharmacotherapy and/or device
therapy. Lifestyle interventions can aim at preventing deterioration of both
disease and comorbidities [176]. In patients with certain conditions such as
hypertrophic cardiomyopathy or long QT syndrome (LQTS), intense physical
activity is known to provoke arrhythmias [193, 36]. This specific patient group
can thus be restricted from endurance training. For CAD prevention on the
other hand, a sedentary lifestyle is known to potentially cause deterioration,
and these patients could thus benefit from additional activity [238].

The goal of pharmacotherapy is to control and improve the general heart
condition. It can include discontinuation of known pro-arrhythmic drugs or
prescription of anti-arrhythmic drugs such as beta-blockers [179].

Finally, an implantable cardioverter-defibrillator (ICD) detects ventricular
arrhythmia and ends most of them by delivering an electric shock, similar
to an external defibrillator. They were introduced more than 30 years ago and
have become indispensable for SCD prevention. An ICD can be implanted
as primary or secondary intervention [179]. Primary interventions consist of
ICD implantation in patients that did not have a previous cardiac arrest or
arrhythmias, but that are known to be at increased risk of SCD. Secondary
prevention on the other hand are patients who have experienced previous cardiac
arrests. While an ICD manages to terminate most ventricular arrhythmia,
its implantation can cause complications such as infections or lead failure.
Furthermore, when the device wrongly detects a ventricular arrhythmia, it
may administer an inappropriate shock which may result in adverse effects [55].
Therefore, proper selection of patients who would benefit from ICD implantation
is an important concern.

Prediction of SCD is however not an evident task, and providing reliable SCD
indicators has been a very active area of research for many decades. Screening of
patients can consist of a combination of invasive and non-invasive examinations.
The non-invasive approach includes imaging techniques such as echocardiography
to assess the function of the left ventricle together with analysis of electrical
conduction system of the heart measured by the electrocardiogram (ECG).

The ECG is a well-known diagnostic tool and one of the most preferred tests
in every day clinical practice [94]. It is widely-used in both hospitals and
ambulatory environments because it is easy to measure and contains an immense
amount of information about the condition of the heart. Moreover, its associated
cost is relatively low compared to most imaging techniques. In recent years,
advances in sensor technology and the introduction of wireless technologies have
lead to the development of various new ECG technologies, including wearable
devices and smartphone set-ups [94]. The rise of these novel technologies has
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introduced both opportunities and challenges in the field of ECG monitoring.
Improvements in digital filters led to more accurate noise removal methods
and increased signal qualities, which allows the detection and analysis of more
refined ECG characteristics [6, 144, 172]. Expansion of computing power and
storage capacity permit the use of more advanced signal processing techniques
and advances in material sciences have lead to the development of sensors that
can be worn for many days in a row [171, 182, 206].

Manual analysis of these enormous amounts of data has become a tedious,
time-consuming and expensive task. Also, visual interpretation is by definition
subjective and can be different for different observers, or even for the same
observer at different points in time, causing inter- and intra-rater variability.
Furthermore, for real-time applications where an immediate output is needed,
visual inspection is not feasible. Therefore, the need for automated ECG
processing methods that analyse the ECG signal in a computationally efficient
way increases. As digital health gains importance, it is expected that the use of
computerized ECG analysis will become an even more important tool that can
complement clinicians in their daily practice [136].

In a clinical context, ECG signals are mostly recorded with different leads, where
each lead corresponds to the cardiac electrical signal viewed from a different
spatial angle. The combination of these leads gives a global view from the
heart in three dimensions. It makes thus sense to analyse the signals from all
leads simultaneously, in order to fully exploit the information that is shared
over all dimensions. This can be done through the use of multilinear tensor
methods. Nowadays, automated ECG analysis in clinical practice and SCD risk
assessment is mainly limited to algorithms based on ’if-then’ logic: a number
of logical rules is defined based on previous knowledge from clinical practice
and implemented in an automated way. Machine learning methods however
permit to extract much more complicated patterns from data, and to combine
different features in a linear and non-linear way. It can thus be expected that
the combination of machine learning and tensor methods can provide significant
added value to current ECG analysis methods.

This research therefore aims at developing novel signal processing methods
to extract potential risk factors from the ECG signal in an automated and
reliable way through a combination of tensor methods and machine learning
algorithms. The next Sections first give a comprehensive introduction to the
physiological origin of the ECG signal, the abnormalities that can be observed
and the different measurement set-ups. Afterwards, an overview of the current
state of invasive and non-invasive SCD risk stratification is given, In Section 1.4,
the principal research goals of this thesis are given, together with an overview
of the different Chapters in Section 1.5. Finally, the major collaborations that
were set up during the course of this PhD are outlined in Section 1.6.
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1.2 The electrocardiogram

Since the ECG is used throughout the rest of the manuscript, it is evident to
start with some background information on the main concepts related to both
the physiological and technological basis of the signal. The explanations and
Figures are mainly based on [4, 44, 199] .

1.2.1 Physiological origin

The heart is the muscle that is responsible for pumping blood throughout the
body, providing it with oxygen and nutrients and removing waste products. It
consists of four chambers, two atria in the upper part of the heart and two
ventricles in the lower part. The heart receives deoxygenated blood in the right
atrium, from where it is transported via the right ventricle to the lungs, where
oxygen exchange takes place. The oxygen-rich blood is then transported back
to the left atrium and left ventricle where it is pumped out through the aorta
into the vestibular system. Atria and ventricles need to contract regularly to
keep this cycle going and provide a continuous flow of blood through the body.
When the cardiac cycle is interrupted, the heart fails to pump effectively and
oxygen supply to the tissues is halted. If the blood flow is not restored within
minutes, it leads to brain damage, tissue degeneration and ultimately death.
The synchronized contraction and relaxation of the cardiac muscle cells generates
an electrical potential difference, which can be measured by placing electrodes
on the body surface. The resulting signal is known as the ECG. Each part
of the cardiac cycle corresponds to a particular wave or segment in the ECG
signal:

1. The sinoatrial node (SA node) contains a group of pacemaking cells that
have the ability to spontaneously depolarize. They determine the heart
rate and autonomously generate an action potential. The spread of this
electrical impulse corresponds with the iso-electrical line preceding the P
wave.

2. As the electrical signal propagates through the atria, it causes depolarisa-
tion of the muscle cells. This causes the atria to contract, resulting in the
P wave in the ECG signal. The electrical activity spreads through the
atria via specialized internodal pathways from the sinoatrial node to the
atrioventricular node (AV node).

3. The AV node slows down the signal to avoid that atria and ventricles
contract simultaneously, which would hinder efficient blood flow between
the chambers. This leads to the iso-electrical PQ segment.
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CORRELATION BETWEEN AN ECG AND ELECTRICAL EVENTS IN THE HEART
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Figure 1.1: Illustrations of the different steps in the cardiac cycle that give rise
to the different waves and segments in the electrocardiogram. Figure taken

from [199].



6 INTRODUCTION

4. The electrical signal is then passed to the bundles of His, the bundle
branches and Purkinje fibers. This starts depolarisation of the cells in
the ventricle and thus leads to ventricular contraction, visible in the ECG
as the QRS complex. Conduction in the Purkinje network happens very
rapidly (4 m/s), so that all contractile cells in the ventricle contract
almost simultaneously. Repolarisation of the atrial muscle cells happens
simultaneously, but is masked by the QRS complex.

5. After depolarisation, the muscle cells reach a plateau in the action
potential, during which no electrical activity takes place. This corresponds
to the iso-electrical ST-segment.

6. Finally, repolarisation and relaxation of the ventricles causes the T wave
in the ECG signal.

An illustration of the different steps is shown in Figure 1.1, taken from [199].
In normal cases, the cardiac cycle as described above repeats itself in a very
regular way, leading to a stable heart rhythm which is referred to as normal
sinus rhythm (NSR).

From Figure 1.1, it is clear that the ECG contains information about the
different electrical events in the heart. If there is an abnormality or disturbance
in any of the stages of the cardiac cycle, this is often also visible in the ECG. It
is therefore a valuable diagnostic tool to detect and analyse abnormalities in
the propagation pattern.

1.2.2 Abnormal patterns

Clinicians use the ECG signal to assess the condition of the electrical conduction
system of the heart. Changes in the cardiac behaviour will be reflected in the
ECG signal, and abnormalities in different stages of the cardiac cycle will affect
different waves and segments of the ECG. For example if the issue is related
to ventricular repolarisation, this will mainly be visible in the T wave and can
be diagnosed as such. In the remainder of this Section, we follow the structure
described in Clifford, Azuaje, and McSharry [44], which makes the distinction
between four major types of abnormal patterns that can be detected from the
ECG signal.

The first type are abnormalities in the heart rate. As explained in the previous
Section, in normal conditions the heart rate is regular and determined by the
pacemaker cells in the SA node. When the SA node fires more quickly or slowly
than usual, this is referred to as respectively sinus tachycardia or bradycardia.
Both types can be normal physiological responses to for example stress or fear,
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but might also be signs of underlying issues. The heart rate can be assessed by
calculating the time differences between consecutive QRS complexes (also called
RR-intervals). A time series of RR-intervals can be collected in a tachogram
and used to examine changes in heart rate and heart rate variability (HRV).

Apart from the SA node, the heart also contains additional regions in the AV
node, atria and ventricles that can generate an electrical impulse. In some cases,
for example when the rate of the other pacemakers exceeds the rate of the SA
node, these regions take over the role of pacemaker, this is known as ectopic
depolarization leading to ectopic beats. Depending on the origin of the electrical
impulse, they are known as premature atrial contractions (PAC) or premature
ventricular contractions (PVC). Other types of abnormal heartbeats exist, such
as for example escape beats that arise when there has been an excessively long
pause in the SA node.

The ECG can also reveal metabolic abnormalities such as ischemia, which can
occur when part of the heart is not receiving enough blood flow and which might
ultimately lead to myocardial cell death. It is often caused by coronary artery
disease and mainly changes the appearance of the T wave and ST segment in
the ECG. While typical ischemia patterns exist, they are only seen in a minority
and most ischemic events are characterized by non-specific ECG changes. Other
metabolic abnormalities which can be detected in the ECG signal are electrolyte
abnormalities such as hyper- and hypokalemia and calcium disturbances.

Finally, certain abnormalities of the geometry of the heart can also be assessed
with the ECG. This includes pathologies where part of the heart enlarges or part
of the heart undergoes cell death and scarring. While imaging techniques can
give a more comprehensive view of the location and extent of these geometrical
defects, examination of the ECG signal has become a convenient if imperfect
screening test for structural abnormalities, since they can change the trajectory
and/or magnitude of the electrical impulse. ECG analysis can then be used
as a first screening tool, after which imaging techniques can give a more
comprehensive view of the irregularities.

1.2.3 Measurement

The ECG signal can be measured in-subject, on-subject and off-subject, by
placing electrodes in the chest, on the body surface and in close proximity to
the subject respectively. The most common measurement set-up is however
the on-subject approach where multiple electrodes are placed on the chest
and/or limbs. Any pair of electrodes can be used to measure the potential
difference between the two corresponding electrode locations, and is called an
ECG lead or channel. The polarity of deflections in an ECG lead depends on
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Figure 1.2: The 12-lead ECG is recorded with ten electrodes placed on the 