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Preface

You often hear that in life, the journey is more important than the destination.
I believe the same thing is true for a PhD. Today marks the end of a journey
that turned out to be longer and better than I could have ever imagined when
I applied for this position almost six years ago. While I am very happy that I
reached the end, I will never forget everything that happened along the way
and the people that helped me to get here.

I was lucky enough to have two supervisors that complemented each other in
many different ways. Sabine, thank you for giving me the opportunity to start as
a PhD student in your group, and for giving me enough freedom throughout the
years to find my own way to do so. From the start, you were a caring supervisor
that made time for us whenever necessary despite your busy schedule. Your
vision on biomedical signal processing and your goal to develop algorithms that
can have a real impact on the life of patients are truly inspiring. Additionally,
the social events you organised at your house were always very nice and helped
Biomed to become the close research group it is today.
When I started my PhD, I specifically selected a topic where I could work on
real clinical applications. Rik, you ensured that I didn’t lose track of this side
of my research on the way and broadened my ‘engineering view’ multiple times.
While I very much enjoyed our monthly meetings, I enjoyed the discussions and
dinners at conferences even more!

I would also like to thank the other members of my examination committee,
Chairman Prof. Pierre Verbaeten, Prof. Lieven De Lathauwer, Prof. Johan
Suykens, Prof. Chris Van Hoof and Prof. Xiao Hu for the feedback and
comments both during the intermediate presentations and preliminary defense.
Lieven, thank you for introducing me to tensor methods. While challenging at
times, they certainly added another dimension to my research. Xiao, the four
months that I spent in San Francisco were for sure one of the highlights of my
PhD. Thank you for welcoming me in your research group, for the nice trips
and dinners and for coming all the way to Belgium for my defense. I sure hope
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to be back one day. Ran, Del, Jacob, Koa, Kais, Rich and Andrea, thank you
for making me feel part of the squad from day one!

Throughout the past five years I collaborated with many people, both inside and
outside Biomed, the university and Belgium. I want to thank all collaborators
for all the joint efforts and for broadening my knowledge on everything from
tensor methods to clinical applications. Special thanks to Bert for the nice
collaboration from day one, and for extensively answering all my questions at
any time of the day. I hope I could convince you that all these complicated
methods were worth it after all!

When I was looking for a PhD position, many factors influenced my decision:
the topic, the supervisor, the university,... but I never really considered what
turned out to be one of the most important things: the research group I would
end up in. Without a doubt, I made the perfect choice there: Biomed is the
best group of colleagues I could have wished for. A PhD is filled with ups and
downs, and in Biomed any success is a reason to celebrate, from pancakes to
celebrate an accepted paper to cookies to celebrate the end of another week.
Equally important however, there is also always someone around to talk you
through the difficult moments, no matter if they are personal or professional. I
therefore want to thank everybody who is or was part of Biomed during five
amazing years: Thank you all for the interesting discussions during lunch and
coffee breaks, for all the cake, the parties, the drinks, the sports activities and
so much more. I truly appreciated getting to know all of you, and while I could
write an additional book about all the things I will remember, there are several
people that deserve some extra words:
To everyone in the ‘party office’, present and past: Thank you for the company,
the talks, the chocolates and the pleasant atmosphere in general. Dorien and
Margot, thanks for the much-needed moral support the last months and for
taking such good care of our avocado plant. With all those cooking lessons, we
really have to plan that office dinner very soon! Special thanks to Laure for
staying part of the office even after you moved to Gasthuisberg: it honestly
feels like you never really left. Your unexpected messages and pictures these
last months could always make me smile.
Thomas and Rob, we started everything together five years ago, and I am really
happy both of you stuck with me until the end. Thomas, it was comforting to
know someone was going through the same thing as me last year, from getting
those final ADS credits to writing our PhD. Rob, thank you for being such a
good friend: for the games, the parties, and Papegaeien in de Reinaert but even
more important for being there (literally) whenever I needed to talk.
Alex, you were always up for ‘just one more drink’. Let’s have more fancy
lunches in the future, in Colombia, Belgium or anywhere in between. Jasper,
thank you for the many discussions during our coffee breaks and occasional
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carpooling, and for sharing your opinion on everything from foodsharing to
checkered shirts. Simon V.E., I am sorry that I could never join the football
trainings. Maybe I will have more time now? (I doubt it though). Mario,
you will forever be the kiwi guy for me, but I will remember your passion for
everything in life even longer. Lieven, you were often our much-needed moral
compass. Please keep on sending me facts of the day.
During my PhD, I supervised a number of very good master students, three
of which became colleagues later on. Ofelie, Jonathan and Simon G., I am
still very happy you chose one of my topics. I learned a lot while supervising
you and I hope you can say the same thing. Jonathan, I especially enjoyed
your continuous enthousiasm and our interesting discussions, from cell biology
to crazy projects with fancy figures. I hope we can have many more of those
discussions in the future.
Thank you to the biotensors team, most importantly Otto, Nico and Martijn,
for guiding me through the tensor world and for the nice collaborations and
discussions, both inside and outside the office.
Carolina, you were there for me from before I even started until the very last
day. I know you think I was Creepy every once in a while... but maybe that’s
just who I am. Nevertheless, the times we spent together both at conferences
and in Leuven are some of my happiest PhD memories, and I would gladly
buy you many more cocktails and/or purses if it meant we could keep working
together forever. Thank you for being a great colleague and an even better
friend.

Many thanks also to the rest of the people in STADIUS, in particular Ida,
Aldona, John, Elsy, Wim and Maarten for taking care of all our administrative
and practical issues and for letting me in my office every time I forgot my badge.
You make all our lives at STADIUS a lot easier! I also greatly acknowledge IWT
and VLAIO for providing me with a PhD grant for Strategic Basic Research
and FWO for the travel grant that made my research stay in San Francisco
possible.

Hoewel mijn doctoraat regelmatig de nodige vrije tijd in beslag nam, waren
er gelukkig genoeg mensen die ervoor zorgden dat ik op tijd en stond alle
werk-gerelateerde dingen even kon vergeten. Een meer dan verdiende dankjewel
aan mijn vrienden, vriendinnen en familie voor de interesse in mijn werk, maar
vooral voor de ontelbare leuke momenten!

Bedankt aan de Kempische furies, Chloë, Evelien, Eveline, Jessica, Liesbeth en
Lisanne: ik ken jullie al zo lang dat het lijkt alsof jullie er altijd geweest zijn, en
ik weet dat jullie er ook altijd zullen zijn. We maakten de voorbije jaren veel
mee samen, en ik kijk al uit naar wat de toekomst nog brengt. Ook veel dank
aan Joost, Gilles, Yves en Sam om onze decibels af en toe te tolereren.
Karen, Lotte en Elise, tien jaar nadat we in Analyse 1 naast elkaar kwamen te



iv PREFACE

zitten, sluiten we onze uniefjaren nu bijna echt af. Karen en Lotte, jullie toonden
op zoveel verschillende manieren wat een luxe het is om je beste vriendinnen op
wandelafstand te hebben wonen. Elise, Brussel is net iets verder, maar daardoor
gelukkig altijd een goed excuus om te brunchen. Of het nu was om mijn hart te
luchten of gewoon een avond buiten in de tuin te zitten, ik kon altijd bij jullie
terecht. Ook bedankt aan Pieter, Bram, Ann, Christiaan, Lisa, Klaas, Annelies,
Thibaut, Michiel, Niels B., Marijn, Filip, Maarten, Philippe J., Philippe L.,
François en Niels V. voor de fijne avonden en Ardennen-weekendjes de voorbije
jaren. Of om het (nog 1 keer) met de woorden van Maarten te zeggen: ‘Jullie
verdienen de Nobelprijs! ’
De busclub-etentjes zijn een vaste afspraak in mijn agenda geworden waar ik
telkens weer erg naar uitkijk. Liesbeth, Enid en Heleen, hoewel ik het gevoel
heb dat we elke keer dezelfde verhalen oprakelen, ben ik ze toch nog altijd niet
beu geraakt. Hopelijk houden we deze traditie nog heel lang vol.
Niels, Klaas en Leen, onze Alma-lunches waren soms moeilijk in te plannen maar
daardoor niet minder plezant. Bedankt voor het gezelschap en de ontspannende
babbels.

Mama en papa, Heleen en Charlotte, Nicholas en Evert, jullie waren altijd
mijn grootste supporters. Dankzij jullie weet ik dat waar ik ook ben of wat
er ook gebeurt, ik gelukkig altijd een enorm warme thuis heb om naar terug
te komen. Bedankt voor alles, van apero-donderdagen en zussenweekends tot
knuffels en ondersteunende woorden wanneer het even wat minder vlot ging. Een
weekend thuis zorgde er altijd voor dat ik alles weer helemaal kon relativeren en
ontspannen terug naar Leuven kon vertrekken. Zonder jullie stond ik vandaag
niet waar ik nu sta!

Thank you all! Bedankt iedereen!

Griet
Leuven, December 2018



Abstract

Sudden cardiac death (SCD) is one of the main causes of death worldwide,
accounting for approximately 4.5 million deaths per year. Since it occurs
relatively often in younger people, its socio-economic impact is much higher
than the impact of other major health issues like cerebrovascular disease. It
is therefore important to accurately determine which patients are at risk for
developing dangerous arrhythmias in order to implement optimal treatment
and prevention strategies. Prediction of sudden cardiac death is however not
an evident task, and providing reliable indicators has been a very active area of
research for many decades. This research therefore focuses on the development
of algorithms to extract potential SCD risk factors from the ECG signal, through
a combination of tensor methods and machine learning approaches.

Tensors are multilinear generalizations of vectors and matrices that can be used
to analyse all leads of the ECG channel simultaneously. Since the different
spatial leads give a global view of the heart in three dimensions, it makes sense
to fully exploit the shared information by combining the information from all
directions. The first part of this thesis therefore presents four tensor-based
methods to detect and analyse different ECG characteristics. We show that
by modifying the tensor decomposition, specific signal characteristics such as
changes in heart rate or increased noise levels can be taken into account. This
ensures that the developed methods can be optimally used in real-life scenarios,
which is confirmed by the good results on different clinical datasets.

The second part of this research is focused on QRS fragmentation (fQRS), a
promising risk factor for sudden cardiac death. Detection of fQRS heavily relies
on visual inspection, which has been shown to be dependent on rater experience.
Therefore, we propose a method to detect and quantify QRS fragmentation
using machine learning methods. Quantification of fQRS is a novel approach
to examining the biomarker, and we demonstrate that this innovative fQRS
score largely correlates to the certainty of QRS fragmentation in a signal. Since
the proposed fQRS score is determined objectively, the obtained results can
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be easily repeated in different datasets, which promotes the clinical use of this
parameter.

Finally, the last part of this thesis investigates to what extent advanced machine
learning methods can provide added value in modelling the survival of patients.
We show that the combination of the proposed fQRS score with advanced
survival models is better capable of predicting the survival time of patients than
commonly used statistical models.



Beknopte samenvatting

Plotse hartdood is een van de voornaamste doodsoorzaken wereldwijd die
jaarlijks verantwoordelijk is voor ongeveer 4.5 miljoen sterfgevallen. Aangezien
plotse hartdood relatief vaak voorkomt bij jongere mensen is de socio-
economische impact ervan veel groter dan bij andere grote gezondheidsproblemen
zoals cerebrovasculaire ziekten. Het is daarom erg belangrijk om op een accurate
manier te bepalen welke patiënten risico lopen op het ontwikkelen van gevaarlijke
hartritmestoornissen, zodat optimale behandelings- en preventiestrategieën
kunnen opgestart worden. Het voorspellen van plotse hartdood is echter geen
eenvoudig probleem, en het bepalen van betrouwbare indicatoren is reeds
verschillende decennia een zeer actief onderzoeksgebied. Dit onderzoek spitst
zich daarom toe op het ontwikkelen van algoritmen om potentiële risicofactoren
voor plotse hartdood uit het ECG signaal te extraheren. We maken hierbij
gebruik van een combinatie van tensor methoden en machinaal leren.

Tensoren zijn multilineaire veralgemeningen van vectoren en matrices die
gebruikt kunnen worden om alle kanalen van het ECG signaal gelijktijdig
te analyseren. Aangezien de verschillende ruimtelijke kanalen een globaal
zicht op het hart geven in drie dimensies, ligt het voor de hand om
deze gedeelde informatie ten volle uit te buiten door de informatie uit
de verschillende kanalen te combineren. Het eerste deel van deze thesis
stelt daarom vier tensor-gebaseerde methoden voor om verschillende ECG
karakteristieken te detecteren en te analyseren. We tonen aan dat door het
aanpassen van de tensorontbinding we rekening kunnen houden met specifieke
signaaleigenschappen zoals veranderingen in hartritme of toenames van het
ruisniveau. Dit zorgt ervoor dat de ontwikkelde methoden optimaal gebruikt
kunnen worden in levensechte scenario’s, wat aangetoond wordt door goede
resultaten op diverse klinische datasets.

Het tweede deel van dit onderzoek is gefocust op QRS fragmentatie (fQRS),
een veelbelovende risicofactor voor plotse hartdood. Detectie van fQRS maakt
voornamelijk gebruik van visuele inspectie, waarvan aangetoond is dat de

vii



viii BEKNOPTE SAMENVATTING

resultaten afhankelijk zijn van de ervaring van de beoordelaar. We ontwikkelden
daarom een methode om QRS fragmentatie te detecteren en te kwantificeren,
gebruik makend van technieken uit het machinaal leren. Kwantificatie van fQRS
is een nieuwe manier om deze biomerker te onderzoeken, en we demonstreren
dat deze nieuwe fQRS score nauw aansluit bij de zekerheid over de aanwezigheid
van fQRS. Aangezien de voorgestelde fQRS score op een objectieve manier
bepaald wordt, zijn de verkrijgde resultaten makkelijk repliceerbaar in andere
datasets, en kan op deze manier het klinische nut van deze parameter vergroot
worden.

Tenslotte wordt in het laatste deel van dit onderzoek onderzocht in welke
mate geavanceerde methoden uit het machinaal leren toegevoegde waarde
kunnen bieden om de overleving van patiënten te modelleren. Hierbij
tonen we aan dat de ontwikkelde fragmentatie score in combinatie met
geavanceerde overlevingsmodellen beter in staat zijn om de overlevingstijd
van een patiëntengroep te voorspellen dan standaard gebruikte statistische
modellen.
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Chapter 1

Introduction

1.1 Research motivations

Sudden cardiac death (SCD) is defined as ‘an unexpected natural death from a
cardiac cause within a short time period, generally ≤ 1 hour from the onset of
symptoms, in a person without any prior condition that would appear fatal’ [244].
It is one of the main causes of death worldwide, accounting for approximately
4.5 million deaths per year [179]. Since SCD occurs relatively often in younger
people (40% of all cases occurs before the age of 65 [41]), its socio-economic
impact is much higher than the impact of other major health issues such as
cerebrovascular disease, chronic lower respiratory disease or diabetes [201].

The majority of sudden deaths are attributed to acute cardiac arrhythmias. The
three major types of presenting rhythms are ventricular tachyarrhythmia (either
ventricular tachycardia (VT) or ventricular fibrillation (VF)), bradyasystole or
pulseless electrical activity (PEA) [179]. While these arrhythmia are mostly
caused by an underlying heart condition (up to 80% of patients who experience
sudden cardiac death have coronary artery disease (CAD) [244]), they are often
the first manifestation of a cardiac problem. Cardiac arrests may be reversed by
using a defibrillator that delivers an electric shock to restore the normal heart
rhythm [79]. However, since most cardiac arrests occur out of hospital in a
non-monitored environment and a shock must be administered within minutes
after the start of the arrhythmia, the overall survival rate for cardiac arrest is
lower than 5% [163].

It is therefore important to accurately determine which patients are at
risk for developing dangerous arrhythmias in order to implement optimal
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2 INTRODUCTION

treatment and prevention strategies. When an underlying cardiac condition is
diagnosed in time, it can often be managed to prevent deterioration. Patient
management involves lifestyle interventions, pharmacotherapy and/or device
therapy. Lifestyle interventions can aim at preventing deterioration of both
disease and comorbidities [176]. In patients with certain conditions such as
hypertrophic cardiomyopathy or long QT syndrome (LQTS), intense physical
activity is known to provoke arrhythmias [193, 36]. This specific patient group
can thus be restricted from endurance training. For CAD prevention on the
other hand, a sedentary lifestyle is known to potentially cause deterioration,
and these patients could thus benefit from additional activity [238].
The goal of pharmacotherapy is to control and improve the general heart
condition. It can include discontinuation of known pro-arrhythmic drugs or
prescription of anti-arrhythmic drugs such as beta-blockers [179].
Finally, an implantable cardioverter-defibrillator (ICD) detects ventricular
arrhythmia and ends most of them by delivering an electric shock, similar
to an external defibrillator. They were introduced more than 30 years ago and
have become indispensable for SCD prevention. An ICD can be implanted
as primary or secondary intervention [179]. Primary interventions consist of
ICD implantation in patients that did not have a previous cardiac arrest or
arrhythmias, but that are known to be at increased risk of SCD. Secondary
prevention on the other hand are patients who have experienced previous cardiac
arrests. While an ICD manages to terminate most ventricular arrhythmia,
its implantation can cause complications such as infections or lead failure.
Furthermore, when the device wrongly detects a ventricular arrhythmia, it
may administer an inappropriate shock which may result in adverse effects [55].
Therefore, proper selection of patients who would benefit from ICD implantation
is an important concern.

Prediction of SCD is however not an evident task, and providing reliable SCD
indicators has been a very active area of research for many decades. Screening of
patients can consist of a combination of invasive and non-invasive examinations.
The non-invasive approach includes imaging techniques such as echocardiography
to assess the function of the left ventricle together with analysis of electrical
conduction system of the heart measured by the electrocardiogram (ECG).

The ECG is a well-known diagnostic tool and one of the most preferred tests
in every day clinical practice [94]. It is widely-used in both hospitals and
ambulatory environments because it is easy to measure and contains an immense
amount of information about the condition of the heart. Moreover, its associated
cost is relatively low compared to most imaging techniques. In recent years,
advances in sensor technology and the introduction of wireless technologies have
lead to the development of various new ECG technologies, including wearable
devices and smartphone set-ups [94]. The rise of these novel technologies has
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introduced both opportunities and challenges in the field of ECG monitoring.
Improvements in digital filters led to more accurate noise removal methods
and increased signal qualities, which allows the detection and analysis of more
refined ECG characteristics [6, 144, 172]. Expansion of computing power and
storage capacity permit the use of more advanced signal processing techniques
and advances in material sciences have lead to the development of sensors that
can be worn for many days in a row [171, 182, 206].

Manual analysis of these enormous amounts of data has become a tedious,
time-consuming and expensive task. Also, visual interpretation is by definition
subjective and can be different for different observers, or even for the same
observer at different points in time, causing inter- and intra-rater variability.
Furthermore, for real-time applications where an immediate output is needed,
visual inspection is not feasible. Therefore, the need for automated ECG
processing methods that analyse the ECG signal in a computationally efficient
way increases. As digital health gains importance, it is expected that the use of
computerized ECG analysis will become an even more important tool that can
complement clinicians in their daily practice [136].

In a clinical context, ECG signals are mostly recorded with different leads, where
each lead corresponds to the cardiac electrical signal viewed from a different
spatial angle. The combination of these leads gives a global view from the
heart in three dimensions. It makes thus sense to analyse the signals from all
leads simultaneously, in order to fully exploit the information that is shared
over all dimensions. This can be done through the use of multilinear tensor
methods. Nowadays, automated ECG analysis in clinical practice and SCD risk
assessment is mainly limited to algorithms based on ’if-then’ logic: a number
of logical rules is defined based on previous knowledge from clinical practice
and implemented in an automated way. Machine learning methods however
permit to extract much more complicated patterns from data, and to combine
different features in a linear and non-linear way. It can thus be expected that
the combination of machine learning and tensor methods can provide significant
added value to current ECG analysis methods.

This research therefore aims at developing novel signal processing methods
to extract potential risk factors from the ECG signal in an automated and
reliable way through a combination of tensor methods and machine learning
algorithms. The next Sections first give a comprehensive introduction to the
physiological origin of the ECG signal, the abnormalities that can be observed
and the different measurement set-ups. Afterwards, an overview of the current
state of invasive and non-invasive SCD risk stratification is given, In Section 1.4,
the principal research goals of this thesis are given, together with an overview
of the different Chapters in Section 1.5. Finally, the major collaborations that
were set up during the course of this PhD are outlined in Section 1.6.
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1.2 The electrocardiogram

Since the ECG is used throughout the rest of the manuscript, it is evident to
start with some background information on the main concepts related to both
the physiological and technological basis of the signal. The explanations and
Figures are mainly based on [4, 44, 199] .

1.2.1 Physiological origin

The heart is the muscle that is responsible for pumping blood throughout the
body, providing it with oxygen and nutrients and removing waste products. It
consists of four chambers, two atria in the upper part of the heart and two
ventricles in the lower part. The heart receives deoxygenated blood in the right
atrium, from where it is transported via the right ventricle to the lungs, where
oxygen exchange takes place. The oxygen-rich blood is then transported back
to the left atrium and left ventricle where it is pumped out through the aorta
into the vestibular system. Atria and ventricles need to contract regularly to
keep this cycle going and provide a continuous flow of blood through the body.
When the cardiac cycle is interrupted, the heart fails to pump effectively and
oxygen supply to the tissues is halted. If the blood flow is not restored within
minutes, it leads to brain damage, tissue degeneration and ultimately death.
The synchronized contraction and relaxation of the cardiac muscle cells generates
an electrical potential difference, which can be measured by placing electrodes
on the body surface. The resulting signal is known as the ECG. Each part
of the cardiac cycle corresponds to a particular wave or segment in the ECG
signal:

1. The sinoatrial node (SA node) contains a group of pacemaking cells that
have the ability to spontaneously depolarize. They determine the heart
rate and autonomously generate an action potential. The spread of this
electrical impulse corresponds with the iso-electrical line preceding the P
wave.

2. As the electrical signal propagates through the atria, it causes depolarisa-
tion of the muscle cells. This causes the atria to contract, resulting in the
P wave in the ECG signal. The electrical activity spreads through the
atria via specialized internodal pathways from the sinoatrial node to the
atrioventricular node (AV node).

3. The AV node slows down the signal to avoid that atria and ventricles
contract simultaneously, which would hinder efficient blood flow between
the chambers. This leads to the iso-electrical PQ segment.
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Figure 1.1: Illustrations of the different steps in the cardiac cycle that give rise
to the different waves and segments in the electrocardiogram. Figure taken
from [199].
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4. The electrical signal is then passed to the bundles of His, the bundle
branches and Purkinje fibers. This starts depolarisation of the cells in
the ventricle and thus leads to ventricular contraction, visible in the ECG
as the QRS complex. Conduction in the Purkinje network happens very
rapidly (4 m/s), so that all contractile cells in the ventricle contract
almost simultaneously. Repolarisation of the atrial muscle cells happens
simultaneously, but is masked by the QRS complex.

5. After depolarisation, the muscle cells reach a plateau in the action
potential, during which no electrical activity takes place. This corresponds
to the iso-electrical ST-segment.

6. Finally, repolarisation and relaxation of the ventricles causes the T wave
in the ECG signal.

An illustration of the different steps is shown in Figure 1.1, taken from [199].
In normal cases, the cardiac cycle as described above repeats itself in a very
regular way, leading to a stable heart rhythm which is referred to as normal
sinus rhythm (NSR).

From Figure 1.1, it is clear that the ECG contains information about the
different electrical events in the heart. If there is an abnormality or disturbance
in any of the stages of the cardiac cycle, this is often also visible in the ECG. It
is therefore a valuable diagnostic tool to detect and analyse abnormalities in
the propagation pattern.

1.2.2 Abnormal patterns

Clinicians use the ECG signal to assess the condition of the electrical conduction
system of the heart. Changes in the cardiac behaviour will be reflected in the
ECG signal, and abnormalities in different stages of the cardiac cycle will affect
different waves and segments of the ECG. For example if the issue is related
to ventricular repolarisation, this will mainly be visible in the T wave and can
be diagnosed as such. In the remainder of this Section, we follow the structure
described in Clifford, Azuaje, and McSharry [44], which makes the distinction
between four major types of abnormal patterns that can be detected from the
ECG signal.

The first type are abnormalities in the heart rate. As explained in the previous
Section, in normal conditions the heart rate is regular and determined by the
pacemaker cells in the SA node. When the SA node fires more quickly or slowly
than usual, this is referred to as respectively sinus tachycardia or bradycardia.
Both types can be normal physiological responses to for example stress or fear,
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but might also be signs of underlying issues. The heart rate can be assessed by
calculating the time differences between consecutive QRS complexes (also called
RR-intervals). A time series of RR-intervals can be collected in a tachogram
and used to examine changes in heart rate and heart rate variability (HRV).

Apart from the SA node, the heart also contains additional regions in the AV
node, atria and ventricles that can generate an electrical impulse. In some cases,
for example when the rate of the other pacemakers exceeds the rate of the SA
node, these regions take over the role of pacemaker, this is known as ectopic
depolarization leading to ectopic beats. Depending on the origin of the electrical
impulse, they are known as premature atrial contractions (PAC) or premature
ventricular contractions (PVC). Other types of abnormal heartbeats exist, such
as for example escape beats that arise when there has been an excessively long
pause in the SA node.

The ECG can also reveal metabolic abnormalities such as ischemia, which can
occur when part of the heart is not receiving enough blood flow and which might
ultimately lead to myocardial cell death. It is often caused by coronary artery
disease and mainly changes the appearance of the T wave and ST segment in
the ECG. While typical ischemia patterns exist, they are only seen in a minority
and most ischemic events are characterized by non-specific ECG changes. Other
metabolic abnormalities which can be detected in the ECG signal are electrolyte
abnormalities such as hyper- and hypokalemia and calcium disturbances.

Finally, certain abnormalities of the geometry of the heart can also be assessed
with the ECG. This includes pathologies where part of the heart enlarges or part
of the heart undergoes cell death and scarring. While imaging techniques can
give a more comprehensive view of the location and extent of these geometrical
defects, examination of the ECG signal has become a convenient if imperfect
screening test for structural abnormalities, since they can change the trajectory
and/or magnitude of the electrical impulse. ECG analysis can then be used
as a first screening tool, after which imaging techniques can give a more
comprehensive view of the irregularities.

1.2.3 Measurement

The ECG signal can be measured in-subject, on-subject and off-subject, by
placing electrodes in the chest, on the body surface and in close proximity to
the subject respectively. The most common measurement set-up is however
the on-subject approach where multiple electrodes are placed on the chest
and/or limbs. Any pair of electrodes can be used to measure the potential
difference between the two corresponding electrode locations, and is called an
ECG lead or channel. The polarity of deflections in an ECG lead depends on
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(a) Standard placement of elec-
trodes for a 12-lead ECG recording.
Figure taken from [229].

(b) The different spatial angles
recorded with a 12-lead ECG.
Figure adapted from [184].

Figure 1.2: The 12-lead ECG is recorded with ten electrodes placed on the chest
and limbs, and gives a comprehensive three-dimensional view of the cardiac
electrical behaviour.

the direction of the electric wavefront: when depolarisation propagates towards
the positive electrode, the voltage is seen as positive and corresponds with an
upward deflection in the ECG. Vice versa, propagation in the opposite direction
is visible as a downward deflection.

In clinical practice, a 12-lead ECG configuration is a standard measurement set-
up. It is measured with ten electrodes on standardized places: four electrodes
are placed on the limbs and six on the chest. The electrodes are labelled
according to their location on the body surface:

• LA = Left Arm Electrode

• RA = Right Arm Electrode

• LL = Left Leg Electrode

• RL = Right Leg Electrode

• Vx = Chest electrodes V1 to V6

The placement of all electrodes for a 12-lead ECG recording is illustrated in
Figure 1.2a. Note that the limb leads are not placed on the limbs, but on a
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location on the chest near the limb. Electrically, placing an electrode at any
location on the limb is the same. However, if an electrode is placed further away
from the heart, this adds impedance of tissue resistance. Therefore placement
on the chest might be preferred.

The 12 leads derived from these electrodes can be separated into limb leads,
augmented leads and chest leads. The limb leads are derived from three pairs of
limb electrodes: lead I = LA−RA, lead II = LL−RA and lead III = LL−LA.
Note that the RL electrode is not used to obtain an ECG signal, but as reference
electrode to reduce the common mode interference. The augmented limb leads
aVL, aVR and aVF combine the signals from the limb leads to give additional
views. They take the difference between one limb electrode and a virtual
electrode consisting of the average of the two remaining electrodes. Finally, the
precordial or chest leads V1–V6 are derived from the six chest electrodes. The
negative electrode is a virtual electrode called Wilson’s Central Terminal, which
is the average of the signals from electrodes LA, RA and LL and corresponds
to the electrical centre of the heart.

Each ECG lead shows the electrical activity from one spatial angle, as can be
seen in Figure 1.2b. Together, the leads completely characterize the electrical
activity of the heart and give a comprehensive three-dimensional view. The
chest leads record the different angles in the horizontal plane while the limb leads
and augmented leads provide information about the vertical plane. Clinically,
the 12 leads are further divided into different regions, depending on which part
of the heart can be monitored with that lead. This way, a distinction is made
between the inferior region (leads II, III, aVF), lateral region (leads I, aVL, V6),
anterior region (leads V1–V5) [223]. The different regions allow localization of
cardiac effects. If there is for example ST elevation in leads V3 and V4 this
points to an anterior myocardial infection.

Twelve lead ECG signals are mainly used in a clinical context and are often
short-term measurements of ten seconds. They are mostly high-quality signals
since the patient can be asked to stay still for the duration of the recording.
Long-term ambulatory measurements are done with Holter monitors, which are
portable ECG recorders. They are required to detect events that only occur
occasionally and thus cannot be captured during a physical examination [120].
The patient has to wear the recording device during normal activities for several
days, and measurements are done with two or three chest leads. Nowadays
several wearable ECG recording systems exist that allow patients to record their
ECG signals with for example a smartphone. While these recording devices are
mostly used for single-lead ECG (typically lead I), they are very well suited
for intermittent monitoring, where patients can take an ECG measurement
whenever they experience an abnormal sensation.
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In short, the optimal type of measurement depends on the required recording
length and the desired number of leads. Depending on the application, clinical
ECGs, ambulatory recordings or wearable devices might be preferred.

1.3 Risk prediction of sudden cardiac death

The goal of SCD risk prediction is to identify patients at high risk of developing
dangerous arrhythmic events, in order to adapt their treatment strategies so
such events can be avoided. The ideal risk stratification method detects all
patients who will experience sudden cardiac death, but excludes everyone who
will not develop arrhythmia or who will die from other causes. Current risk
stratification approaches are not ideal for two main reasons. First, in many cases,
a population is divided into a low- and high-risk group. This dichotomization
however ignores the fact that risk is mostly a fluctuating continuum and hereby
reduces the amount of information available. Second, most strategies focus on
the patient group with the highest relative SCD risk while the total number
of deaths from this population often only accounts for a small proportion of
the number of deaths overall. This is referred to as the Myerburg paradox
[161]. In SCD risk prediction for example, current guidelines are mainly focused
on patients with a left ventricle ejection fraction (LVEF) ≤ 35% because the
incidence in this population is up to 30 times higher than average [179]. The
total number of events in the general population however greatly exceeds the
number of events in this population. This is illustrated in Figure 1.3, which
shows the incidence and total number of events in several risk groups.

To predict the risk of sudden cardiac death in an individual, different risk
factors have been identified that can be derived from the ECG and other clinical
examinations. The next sections give a short overview of some of the most
important risk factors. For a more comprehensive overview, we refer the reader
to [224]. Although many studies have been conducted to identify and detect
good prognostic risk factors, current strategies are far from ideal. This is
illustrated by the fact that currently only 20–30% of patients who receive an
ICD in primary prevention get appropriate shocks, and that the overall number
of SCDs is still very high, meaning that a substantial part of the population
that is at risk for SCD is not identified as such.

1.3.1 ECG-derived risk factors

SCD is the result of a combination of several factors, many of which can be
detected using the ECG.
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Figure 1.3: The impact of SCD in different populations, shown by comparing
the incidence of SCD in each group in grey and the total number of SCD events
per year in black. Figure adapted from [161, 224].

The first factor are disturbances in autonomic tone, which are caused by
imbalances between the sympathetic and parasympathetic nervous system.
Together they form the autonomic nervous system which regulates the physiology
of the heart (including the heart rate, rhythm and contractility). They can be
monitored with different HRV-measures in the time- and frequency-domain that
measure the variability and predictability of the RR-interval of normal beats
[191]. Some examples can be found in Appendix A, which lists a number of HRV-
features that can be used for the detection of atrial fibrillation. Additionally,
heart rate turbulence parameters have been defined that describe the behaviour
of the RR-interval after spontaneous PVCs [15]. Finally, the acceleration and
deceleration capacity of the heart rate over a long time can be quantified with
Phase-Rectified Signal Averaging (PRSA) [16]. The deceleration capacity has
been linked to SCD and total mortality in post-myocardial infarction patients
[14].

The QRS duration corresponds with the duration of ventricular activation.
An increased QRS duration (≥ 120 ms) indicates a delayed conduction of the
electrical signal in the ventricles. It has been shown that patients with an
abnormal QRS duration benefit more from a SCD implant [12, 160]. It can
be measured directly from the 12-lead ECG signal or from the signal-averaged
ECG (SAECG). The SAECG is calculated by taking the average of multiple
heartbeats in time. This is a form of synchronized averaging which is known
to reduce noise. In the ECG signal, it can furthermore reveal so-called late
potentials. Another ECG interval which is a known SCD risk factor is the QTc
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interval, corresponding to the duration of ventricular repolarization normalized
for heart rate. In large population studies, prolonged QTc is an independent
predictor of SCD [32]. It is however also influenced by non-cardiac factors such
as diabetes and obesity and is therefore perhaps rather a global risk factor [96].
Furthermore variability of the QT interval duration has also been suggested as
marker of repolarization instability which is also linked to arrhythmia [95].

T wave alternans (TWA) is an abnormal ECG pattern where the amplitude of
the T wave shows a beat-to-beat change in a characteristic ABABAB-pattern
[200]. It can be detected in healthy hearts at high heart rates, but if it also
arises at lower heart rates (≤ 110 beats per minute) it is a sign of electrically
unstable tissue and associated with increased mortality [40, 107].
Another abnormal pattern is QRS fragmentation (fQRS), where the QRS
complex exhibits additional deflections or notches [53]. It is caused by myocardial
scarring and its presence in specific cardiac regions is linked to ICD shocks and
mortality in certain patient groups [223].

Finally, most ventricular arrhythmia are initiated by premature ventricular
beats. The frequency and complexity of PVCs in a ECG recording has therefore
also been used as risk factor, which has shown promising results in ischemic
heart disease [13]. It should however be noted that PVCs are also common in
the general population.

1.3.2 Other risk factors

As mentioned earlier, the LVEF is one of the most widely used prognostic risk
factors. It is usually measured with an echocardiography. A LVEF ≤ 35% is
generally used as cut-off value, but has its limitations as mentioned before and
illustrated in Figure 1.3. Advanced imaging techniques such as cardiac MRI
can provide extra information about tissue characterization such as the extent
of tissue injuries after myocardial infarction.

The New York Heart Association (NYHA) classification is a risk scale that
combines several symptoms of congestive heart failure, which is associated with
many factors attributing to ventricular arrhythmias [179]. While some studies
have shown that the NYHA scale is a very strong independent predictor [237],
it is also a subjective scale which suffers greatly from inter-observer variability,
restricting its practical use.

Finally, invasive risk stratification is done as well by performing electrophysio-
logical studies with programmed electrical stimulation, but their clinical value
is debatable [179].
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1.4 Research objectives

As discussed in Section 1.1, the development of automated signal processing
methods is an important challenge in ECG analysis. Many of the risk factors
described earlier show conflicting results in different studies, making efficient
risk stratification additionally difficult. This can partially be explained by the
inter-observer variability related to visual analysis. The principal goal of this
research is therefore the development of objective and reliable algorithms for the
extraction of potential SCD risk factors from the ECG signal. Since ultimately
these algorithms would be used in clinical practice, they should be easy to
interpret and compute from the ECG signal.

Technically, a substantial part of this research is focused on exploring the use
of tensors in ECG analysis. Tensors are multilinear generalizations of vectors
and matrices that have been extensively used in many domains, but are a
rather novel concept in cardiac applications. A second objective of this thesis is
therefore to evaluate the potential of tensors in ECG processing, and to apply
tensor decomposition methods in a manner that takes into account the specific
characteristics of the signal. Many tensor methods exist as they rapidly gain
popularity, and the goal of this thesis does not consist in the development of
new mathematical techniques, but rather in applying existing methods in an
innovative way.

The first two research goals target the extraction of SCD risk factors from
the ECG signal. The final objective consists of using these features for risk
assessment in ICD patients. While many statistical risk models exist, we will
investigate whether the machine learning methods used throughout the research
can also provide added value here compared to state-of-the-art methods.

1.5 Chapter overview and personal contributions

The manuscript is divided in three main parts. The first part comprises two
background chapters that give the reader an introduction in respectively tensor
methods and machine learning methods necessary for the remainder of the
book. The next chapters are each focused on a different ECG application,
and present methods to detect and examine different ECG abnormalities. The
first four chapters specifically use tensor-based methods to analyse the ECG
signal, the final two chapters tackle the problem of detection and quantification
of QRS fragmentation. In Figure 1.4, the structure of this dissertation is
presented graphically, showing the connections between the different chapters.
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The chapters with the main personal contributions of this thesis are highlighted
in blue.

1.5.1 Part I: Background

The first part of this thesis consists of two Chapters meant to give some
background information related to the most important concepts connected with
tensors and machine learning.

Chapter 2

In this chapter, the use of tensors in ECG processing is introduced and motivated
to the reader. Tensors are multilinear generalizations of vectors and matrices,
and have been successfully applied in different domains. The main concepts
and methods that are used in Part II are explained, together with an overview
of the use of tensors in cardiac applications until now.

Chapter 3

The majority of the studies in this PhD apply different classification methods
to allocate signals or patients to a specific group. Classification is part of the
large field of machine learning, which is presented in this Chapter. It includes
the most important techniques for supervised and unsupervised classification,
as well as performance measures to quantify the results.

1.5.2 Part II: Tensor-based methods

The second part of the manuscript contains four Chapters that each present
a method to detect and analyse different ECG characteristics. All algorithms
proposed in this part rely on tensor-based approaches to decompose the ECG
signal.

Chapter 4

Chapter 4 presents a first application where tensors are used for ECG processing
and a first personal contribution. Here, the goal is to detect irregular heartbeats
such as PVCs and PACs in an unsupervised manner. The method was first
published as a conference paper [88], and has been extended to include a full
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validation on two publicly available datasets. Additionally, this Chapter contains
an analysis of the most important tensor decomposition parameters, which will
be used throughout the rest of the dissertation.

Chapter 5

The second personal contribution of this work consists of an algorithm for
automatic detection of T wave alternans, presented in Chapter 5. TWA is
a pattern that is associated with increased heart rates, and that becomes
problematic when detected at normal rates. The method uses the same approach
as described in Chapter 4, but is modified to deal with time changes within the
signal, as can happen when the heart rate changes. Preliminary results were
presented at two conferences [90, 91], and the final method was published as
[87].

Chapter 6

A method to analyse the changes in ECG morphology right before in-hospital
cardiac arrested is discussed in Chapter 6. This study was conducted during
a research visit in the University of California, San Francisco. We analysed
long-term signals of patients in the intensive care unit who suffered a cardiac
arrest. The main difficulty here is signal quality, as the signals contain significant
amounts of noise. The proposed method incorporates information about the
quality in the tensor decomposition to perform a more robust analysis, making
it well-suited for use with real-life signals. Results of a preliminary study on a
smaller dataset were published as a conference paper [86], and a paper describing
the full analysis is currently in review.

Chapter 7

The final tensor-based algorithm detects atrial fibrillation in single and multilead
ECG signals. Contrary to the previous Chapters, it uses the multilinear singular
value decomposition to decompose the ECG tensor, and classifies signals with a
combination of morphological features and heart rate variability features. Part
of the results have been presented at the 2018 IEEE Asilomar conference.
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1.5.3 Part III: QRS fragmentation

QRS fragmentation is one of the promising SCD risk factors described in Section
1.3. Detection however heavily relies on visual inspection, which has been shown
to be dependent on rater experience [225]. The final part of the research consists
of methods that use machine learning to detect and quantify fQRS.

Chapter 8

This Chapter describes a method to detect and quantify the presence of QRS
fragmentation in an ECG signal. It uses Phase-Rectified Signal Averaging and
Variational Mode Decomposition to segment and characterize the QRS complex.
The method is an original contribution of this work, which is accepted for
publication in IEEE Journal of Biomedical and Health Informatics. Preliminary
results were published as [89].

Chapter 9

The method described in the previous Chapter is used here to examine whether
the proposed fQRS score can be used as risk factor to predict mortality in a
population of ICD patients. Standard statistical techniques are compared with
more advanced machine learning methods to verify whether they have added
value. The method described in the first part of this chapter was presented at
Computing in Cardiology 2018, where it received a nomination as finalist for
the Rosanna Degani Young Investigator Award.

Chapter 10

The final chapter summarizes the thesis by listing the main contributions and
suggesting additional directions for future research. Two appendices contain
respectively a description and analysis of the heart rate variability features used
for AF detection and the method to construct and validate the noise model
used in Chapter 6.

1.6 Collaborations

This PhD research was conducted in the Biomed research group for biomedical
signal processing, which is part of the STADIUS Center for Dynamical
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Systems, Signal Processing and Data Analytics in the Department of Electrical
Engineering of KU Leuven, under the supervision of professor Sabine Van Huffel.
I collaborated with several people both within and outside the Biomed group,
leading to different (conference) publications.

The first collaboration, with Thomas De Cooman, Carolina Varon, Devy Widjaja
and Tim Willemen, was done in the framework of the 2014 Computing in
Cardiology Challenge, where we reached the first place in phase II of the
competition and the third place in phase III. Thomas De Cooman was the main
responsible who did most of the analysis, but I helped with development and
finetuning of the method. The method was first presented at Computing
in Cardiology 2014 [57], and an extended version was later published in
Physiological Measurement [56].

Next, I assisted Alexander Suárez León with his work on tensor-based detection
on irregular heartbeats, which can be seen as a follow-up to the method presented
in Chapter 4. I also presented this as a poster at Computing in Cardiology 2015
[205]. A next extension of this method was presented at the 2017 Computing
in Cardiology [204].

During my PhD I was the main supervisor of four master thesis students, whose
research also lead to several publications. The master thesis of Ofelie De Wel was
the start of the work on tensor-based irregular heartbeat detection. Discussions
during her thesis lead to the idea of the method proposed in Chapter 4, which
I developed and presented at Computing in Cardiology 2015 [88]. Jonathan
Moeyersons worked on T wave end detection methods, which was published in
the proceedings of BIOSIGNALS 2017 [150]. Together with Lieven Billiet, I
supervised the master thesis of Adriaan Lambrechts who examined a clinical
QT prolongation dataset collected by Eline Vandael from the department of
Clinical Pharmacology in the context of her PhD research [219]. The results of
this study are currently being written into two separate publications. Finally,
I supervised the thesis of Simon Geirnaert together with Sibasankar Padhy,
who worked on tensor-based detection of atrial fibrillation. This lead to the
method described in Chapter 7 which was presented at the IEEE Asilomar
2018 conference. The main concept of this method was developed by myself in
the context of the 2017 Computing in Cardiology challenge, Simon Geirnaert
worked out the full method and optimized the final classification.

Within the context of the research included in this thesis, I mainly collaborated
with Carolina Varon. She helped to start up the work on T wave alternans
detection based on a preliminary student project she supervised and provided
the code for PRSA used in Chapter 8. Part III, which includes all work related
to QRS fragmentation, was done in collaboration with her and Sibasankar
Padhy.
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Apart from collaborations within the BIOMED group, several collaborations
with other groups were also set up. The collaboration with the tensor group
of Lieven De Lathauwer was essential for the development of the tensor-based
methods in Part II of this thesis. Together with Martijn Boussé, I worked on
the development of a supervised approach for irregular heartbeat detection
which forms the basis for the AF detection method in Chapter 7 and which was
presented at the 2017 IEEE EMBS conference [26]. Furthermore, he provided
the Matlab code for the weighted tensor decompositions used in Chapter 6 and
provided valuable comments to the manuscript of the resulting paper. The
initial discussions that led to the method described in Chapter 7 were done with
him and Otto Debals. Michiel Vandecappelle developed the updating method
shortly described in Chapter 6. Furthermore, Nico Vervliet and the rest of the
group developed the Matlab toolbox Tensorlab [231] which was used throughout
the thesis.

Throughout my PhD, I contributed to the ERC Advanced Grant BIOTENSORS
(no. 339804), which aimed at the development of tensor methods for biomedical
signal processing applications. Within the project, I mainly worked on work
package 7, ’tensor-based blind source separation in functional monitoring’. The
methods described in Chapters 4-7 all fit within the BIOTENSORS framework.
Additionally, in 2014 I obtained an IWT research grant for Strategic Basic
Research (duration January 2015-December 2018). The research stay in UCSF
was supported by an FWO travel grant.

Different clinical partners were involved in this thesis, who helped to understand
the obtained results from a clinical point of view and provided the majority
of the ECG signals. This research was possible due to a strong collaboration
with the department of Cardiology of UZ Leuven. Prof. dr. Rik Willems,
co-supervisor of this PhD, and dr. Bert Vandenberk were involved in the clinical
interpretation and analysis of most of the results of this thesis. Additionally, the
extensive fQRS database described in part III was essential for the presented
results and was annotated by Bert Vandenberk, Tomas Robyns, Mathias Claeys,
Frederik Helsen and Sofie Van Soest, all associated with the department of
Cardiology.

An international clinical collaboration was set-up with prof. Xiao Hu from
the department of Physiological Nursing from the University of California San
Francisco during a three month research visit in San Francisco. He collected
and provided the large dataset of intensive care patients together with Duc Do
and Robin Ma. This resulted in the work presented in Chapter 6, of which
preliminary results were presented at Computing in Cardiology 2017 [86].

I would like to acknowledge and thank all collaborators, because the joint efforts
allowed me to gain different insights and perspectives which greatly influenced
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the work presented in the next Chapters. Furthermore the availability of clinical
ECG signals was essential to ensure that the developed methods could deal
with authentic ECG and noise characteristics, improving the practical usability
in the future.



Part I

Background





Chapter 2

Tensors and ECG

As explained in the introduction, this research proposes several tensor-based
ECG processing methods. While tensor methods have been successfully applied
in many fields from telecommunication to psychometrics, they are a rather novel
concept in the analysis of cardiac signals. This Chapter provides a background
to concepts and methods related to tensors, which will be used throughout the
rest of the thesis. First a motivation for the use of tensor methods in ECG
processing is given, after which the main concepts, methods and calculations are
introduced. Finally, a short literature overview of past applications of tensor
techniques in cardiac applications is given. The notations and definitions given
in this Chapter will be followed throughout the rest of the manuscript.

2.1 Introduction

In many applications, data and signals are measured and presented in a
natural two-dimensional structure: a speech signal can be captured by a set
of microphones, a digital image consists of horizontal and vertical pixels and
a clinical ECG signal is mostly measured with multiple spatial leads. Digital
signals like the previous examples are generally stored and analysed in matrix
structures.

It is however easy to imagine different situations where more than two parameters
describe these signals: speech signals from different speakers can be recorded
with the same microphone set, a colour image contains different RGB-values
for each pixel, and one might wish to compare the different heartbeats in

23
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an ECG signal for example. While matrices could technically be used to
analyse these multidimensional signals by constructing multiple matrices for
each additional parameter value and concatenating them in one big matrix;
there is no reason why the original multidimensionality of the data should
not be preserved and exploited maximally. This way the information that is
shared over all dimensions can be analysed simultaneously. This can be done
in a straightforward way through the use of tensors. Mathematically speaking,
tensors are higher-order generalizations of vectors and matrices. They have
been successfully applied in many different fields, including but not limited to
chemometrics, psychometrics and telecommunication applications [119, 42, 197].
In biomedical signal processing, they have gained popularity in neuroscience
applications such as epilepsy monitoring [18, 63, 3], brain tissue segmentation
[158, 23] and EEG processing [243, 126, 49].

This chapter introduces the use of tensors in ECG signal processing, a concept
which will be further expanded on in the next Chapters. Since the field of
tensors and tensor decomposition methods is increasing rapidly, the concepts
and methods explained in this Chapter are restricted to the methods that are
relevant for the rest of the thesis. For an extensive summary of the remaining,
we refer the reader to [119, 42, 197].
The next Sections first give a motivation for the use of tensors in ECG processing
(Section 2.2). Then, the most important concepts and tensor operations are
described in respectively Sections 2.3 and 2.4. Finally, Section 2.5 reviews the
use of tensor methods in different ECG applications in literature.

2.2 Motivation

ECG signals can be measured with one or multiple leads. Especially in clinical
contexts, multilead recordings are considered the golden standard. Furthermore,
long-term measurements are done with Holter monitors which typically have
a minimum of two channels. A big advantage of multilead measurements is
that each lead records the cardiac electrical activity from a different spatial
angle, and different leads thus complement each other. Together, they give a
comprehensive three-dimensional view of the electrical activity of the heart.

Most methods dealing with multilead ECG signals process different ECG leads
separately and later combine the results from all channels in a final step (also
referred to as late integration) [123, 101, 233]. This however fails to exploit
the correlations between the different leads and removes any structural link
between the different spatial angles. The use of tensors allows simultaneous
analysis of the complete ECG signal, making use of all the information present
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in the signal. For applications which require assessment of the global behaviour
of the heart, this forms a clear advantage.

While matrix-based methods have been used successfully in many applications,
they often put constraints on the signals in order to reach unique solutions.
Principal Component Analysis (PCA) for example requires the different
components to be orthogonal to each other, an assumption which is not
necessarily met in real-life conditions. Tensor techniques are however unique
under mild conditions (see also Section 2.4.3).

Finally, when dealing with biomedical signal processing problems, interpretabil-
ity of the final outcome is an important concept to keep in mind, especially when
the results need to be communicated with clinicians and patients. Nowadays,
deep learning methods such as artificial neural networks are rapidly gaining
popularity. While they have shown to be very powerful, they are in their core
black box methods. This means that it is not always straightforward to interpret
how the final result is calculated from the input values. Tensor methods on the
other hand can lead to interpretable components which can be physiologically
interpreted.

2.3 Basic concepts and notations

Generally speaking, N -dimensional data are represented by a Nth order tensor
T ∈ RI1×I2×...×IN . The number of modes of a tensor is equal to the order, e.g.
a tensor with three modes is a third-order tensor. Within this framework, it is
also possible to define scalars (N = 0), vectors (N = 1) and matrices (N = 2).
Figure 2.1 shows an example of these structures for orders up to three. From
here on, we refer to scalars with lower-case letters (t), to vectors with bold
lower-case letters (t) and to matrices with bold upper-case letters (T). Finally,
tensors are written as calligraphic letters (T ). Since, in the next Chapters,
only third-order tensors are used, the rest of the Chapter is mainly focused on
these structures. All Equations can however be easily adapted to higher-order
tensors.

A matrix T consists of row- and column vectors. In a similar way, mode-n
vectors or fibers are defined for tensors:

Definition 2.1 (mode-n vector). A mode-n vector of a tensor T ∈
RI1×I2×...×IN is the vector that is the result of fixing all indices except the nth
index.

In the matrix case, the columns form the mode-1 vectors and the rows the
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t

(a) Vector.

T

(b) Matrix.

T

(c) Third-order tensor.

Figure 2.1: Schematic representations of a vector (N = 1), matrix (N = 2) and
tensor (N = 3).

(a) Mode-1 vectors or fibers. (b) Mode-(2, 3) slices.

Figure 2.2: The mode-1 vertical vectors and mode-(2, 3) horizontal slices of
a 4 × 4 × 4-tensor. The other mode-n vectors and mode-(m,n) slices can be
constructed in a similar way.

mode-2 vectors. Figure 2.2a shows the mode-1 vectors (fibers) of a third-order
tensor.

A slice is defined in the same way:

Definition 2.2 (mode-(m,n) slice). A mode-(m,n) slice of a tensor T ∈
RI1×I2×...×IN is the matrix that is the result of fixing all indices except the mth

and nth index.

In a third-order tensor, the different types of slices are typically named after
their corresponding directions (similar to row and column vectors in matrices):
this way horizontal (mode-(2,3)), lateral (mode-(1,3)) and frontal (mode-(1,2))
slices are defined.

Finally, the Frobenius-norm of a tensor is defined as:

Definition 2.3 (Frobenius-norm). The Frobenius-norm ||T ||F ∈ R of a tensor
T ∈ RI1×I2×...×IN is calculated as:

||T ||F =

√√√√
I1∑

i1=1

I2∑

i2=1
...

IN∑

iN=1
t2i1,i2,...,iN
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mode-2 unfolding

Figure 2.3: The mode-2 unfolding of a 4× 4× 4 - tensor. The mode-2 vectors
make up the columns of the resulting 4× 16 - matrix.

It is essentially the multilinear generalization of the L2-norm commonly used in
vectors.

2.4 Tensor operations

The different tensor operations can be grouped in three main classes:
transformations, multiplications and decompositions. The main operations
of each class are summarized in the next Subsections.

2.4.1 Tensor-matrix transformations

In many applications, tensors are converted to matrices and vice versa. The
transformation from a tensor to a matrix is referred to as tensor unfolding
or flattening, a process where the elements of the tensor are reformatted in a
lower-order structure [119].

One way of transforming tensors to matrices is the case of mode-n unfolding or
matricization, which places the mode-n fibers of a tensor T as column-vectors
in a matrix:

Definition 2.4 (mode-n unfolding). The mode-n unfolding of a tensor T ∈
RI1×I2×···×IN is written as T(n). It maps the tensor elements (i1, i2, · · · , iN ) to
matrix elements (in, j), with:

j = 1 +
N∑

k=1
k 6=n

(ik − 1)Jk, met Jk =
k−1∏

m=1
m6=n

Im.

The mode-2 unfolding of a third-order tensor is presented in Figure 2.3. The
mode-1 and mode-3 unfoldings can be visualized in a similar way.
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Similarly to matricization, tensors can also be vectorized, e.g. transformed
into a vector. In that case, the mode-n fibers of the tensor are rearranged in a
vector.

When data or signals are naturally collected in matrix-format, they have to be
transformed into tensors in order to be able to apply tensor methods. This is
done through tensorization, where a vector or matrix is mapped onto a tensor
by creating additional modes. Many different tensorization methods exist, and
the choice of method is dependent on both the data and the application. An
overview of the most well-known deterministic and statistical techniques can be
found in [64].
In the next Chapters, tensorization will be mainly done through segmentation,
e.g. by dividing the signals in equal-length segments and stacking these in the
frontal slices of a third-order tensor. The main advantage of ECG signals is
that they contain ‘natural’ segments in the form of heartbeats or individual
ECG waves. Tensorizing them in such manner gives rise to third-order tensors
with modes time × channels × heartbeats, where each mode-2 vector contains
the temporal profile of one heartbeat in one channel.

2.4.2 Matrix- and tensor multiplications

Although this Chapter is focused on tensors, several matrix multiplications play
an important part in tensor calculations. The most relevant operations are the
Kronecker product, Kathri-Rao product and Hadamard product.

Definition 2.5 (Kronecker product). The Kronecker product A ⊗ B ∈
RI1I2×J1J2 between two matrices A ∈ RI1×J1 and B ∈ RI2×J2 is defined as:

A⊗B =




a11B a12B · · · a1J1B
a21B a22B · · · a2J1B
...

... . . . ...
aI11B aI12B · · · aI1J1B




The Kathri-Rao product is the columnwise Kronecker product, and it is defined
by:

Definition 2.6 (Kathri-Rao product). Given two matrices A ∈ RI1×I2 and
B ∈ RI3×I2 , then the Kathri-Rao product A�B ∈ RI1I3×I2 can be calculated
as:

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn

]
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Note that the Kathri-Rao product is only defined for matrices with the same
number of columns.
Finally, the Hadamard product is the element-wise multiplication of two matrices
of the same size:

Definition 2.7 (Hadamard product). Given two matrices A ∈ RI1×I2 and
B ∈ RI1×I2 , the Hadamard product A ∗B can be calculated as:

A ∗B =




a11b11 a12b12 · · · a1I1b1I1

a21b21 a22b22 · · · a2I1b2I1
...

... . . . ...
aI11bI11 aI12bI12 · · · aI1I2bI1I2




An important tensor-matrix multiplication is the mode-n product, which can
be seen as a generalisation of the matrix-matrix multiplication:

Definition 2.8 (mode-n product). The mode-n product T ·nU ∈ RI1×···×In−1×J×In+1×···×IN

between tensor T ∈ RI1×I2×···×IN and matrix U ∈ RJ×In has elements:

(T ·n U)i1...in−1jin+1...iN =
In∑

in=1
ti1i2...iNujin ,

for all indices.

The mode-n product multiplies each mode-n vector with U [119]. It can also
be explained in terms of the mode-n unfolding:

S = T ·n U⇔ S(n) = UT(n). (2.1)

In a similar way, the multiplication between two matrices A ∈ RI1×J and
B ∈ RJ×I2 can be written as a mode-2 product:

AB = A ·2 Bt. (2.2)

The inner product between two tensors is defined as:

Definition 2.9 (Inner product). The inner product 〈A,B〉 ∈ R between tensors
A,B ∈ RI1×I2×...IN is defined as:

〈A,B〉 =
I1∑

i1=1

I2∑

i2=1
. . .

IN∑

iN=1
ai1i2...iN bi1i2...iN .

Tensors with an inner product equal to zero are orthogonal.
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2.4.3 Tensor decompositions

Tensor decomposition methods decompose a tensor in the sum of a number
of low-rank components. Different approaches exist, of which the Canonical
Polyadic Decomposition (CPD) [99], Multilinear Singular Value Decomposition
(MLSVD) [61] and Block Term Decomposition (BTD) [58] are some well-known
methods. The choice of decomposition method depends on the application, and
more specifically on the characteristics of the data available and the desired
output. The next Chapters make use of the MLSVD and CPD to decompose
tensors, which will be explained next.

Multilinear Singular Value Decomposition

The multilinear singular value decomposition or higher-order singular value
decomposition is the multilinear generalization of the singular value decomposi-
tion (SVD) for matrices [61]. As a recap, the SVD of a matrix A ∈ RI1×I2 can
be written as follows:

Definition 2.10 (Singular Value Decomposition). The singular value decom-
position of a matrix A ∈ RI1×I2 is equal to:

A = UΣVt = Σ ·1 U ·2 V,

with:

• U ∈ RI1×I1 and V ∈ RI2×I2 orthogonal matrices,

• Σ ∈ RI1×I2 a diagonal matrix with non-negative, non-increasing real
numbers on the diagonal

σ1 ≥ σ2 ≥ · · · ≥ σmin(I1,I2) ≥ 0.

The diagonal entries σi are known as the singular values of A, the columns
of U and V are respectively called the left and right singular vectors. The
rank of the matrix is defined as the number of non-zero singular values. The
SVD of a matrix A is often used when one wants to compute a low-rank
approximation of A, since it can be proven (in the Eckart-Young theorem [74])
that the optimal rank-r approximation of A is calculated by removing the
singular vectors corresponding to the smallest singular values of A until r
singular vectors remain.

The MLSVD of a third-order tensor T is now defined as follows:
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T =

U(3)

U(1) U(2)S ≈

U(3)

U(1)
U(2)S

Figure 2.4: Visualization of the MLSVD and LMLRA of a third-order tensor T .

Definition 2.11 (Multilinear Singular Value Decomposition). The MLSVD of
a tensor T ∈ RI1×I2×I3 is equal to:

T = S ·1 U(1) ·2 U(2) ·3 U(3)

with:

• U(n) ∈ RIn×In orthogonal factor matrices

• S ∈ RI1×I2×I3 a core tensor with following properties:

– All-orthogonality : Two subtensors Sin=α and Sin=α are orthogonal
for all values of n, α and β (with α 6= β).

– Ordening : for all values of n holds:

||Sin=1||F ≥ ||Sin=2||F ≥ · · · ≥ ||Sin=In ||F ≥ 0,

The Frobenius-norms ||Sin=i||F = σ
(n)
i are the multilinear singular values of T

and the column vectors of U(n),∀n ∈ {1, 2, . . . , N} are the multilinear singular
vectors. A visualisation of the MLSVD for a third-order tensor is shown in
Figure 2.4.

The matrix rank can also be generalised to tensors: the multilinear rank of a
tensor is defined as:

Definition 2.12 (Multilinear rank). The multilinear rank (R1, R2, . . . , RN ) of
tensor T ∈ RI1×I2×···×IN is defined as the n-tuple of the mode-n ranks Rn,
with:

Rn = rankn(T ) = rank(T(n)).
The n-rank is thus the dimension of the vector space of the mode-n vectors, or
the number of linearly independent mode-n vectors.

The MLSVD can also be used to calculate a low multilinear rank approximation
(LMLRA) of a tensor T , but contrary to the matrix case it is not necessarily
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T =

c1

a1

b1

+ · · · +

cR

aR

bR

= A
B

C

Figure 2.5: Schematic representation of the Canonical Polyadic Decomposition
of a third-order tensor. The individual factor vectors ai, bi and ci for i = 1, ..., r
can be combined into factor matrices A,B and C.

the optimal approximation. Truncation can be done in a similar way as the
matrix case, e.g. by only keeping the mode-n singular vectors corresponding
to the highest mode-n singular values. While the LMLRA calculated in this
way is not perfect, it is usually a good approximation since the multilinear
singular values are ordered (see Definition 2.11), meaning that most ‘energy’
is concentrated in the vectors corresponding to the first singular values (the
part that is kept in the LMLRA). It is therefore considered a suitable solution
for most applications, which can be refined by iterative algorithms if necessary
[108].

Canonical Polyadic Decomposition

A Polyadic Decomposition expresses a tensor as a sum of rank-one components.
If the number of components is the minimal number of components necessary
to exactly decompose the tensor, this decomposition is called the Canonical
Polyadic Decomposition. For a third-order tensor T ∈ RI1×I2×I3 it is expressed
as:

T =
R∑

r=1
ar ⊗ br ⊗ cr (2.3)

with R the total number of components or rank of the decomposition and
ar ∈ RI1 , br ∈ RI2 and cr ∈ RI3 for r = 1, . . . , R the factor vectors. The factor
vectors can be combined into factor matrices for each mode, i.e.

A =
[
a1 a2 . . . ar

]

B =
[
b1 b2 . . . br

]

C =
[
c1 c2 . . . cr

]
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Using this notation, we can write Equation 2.3 more compactly as:

T =
R∑

r=1
ar ⊗ br ⊗ cr = JA,B,CK (2.4)

A schematical presentation of CPD for a third-order tensor is shown in Figure
2.5.

In Equations 2.3 and 2.4, R stands for the rank of the tensor decomposition or
the number of rank-1 components. For a canonical decomposition, R is equal to
the rank of the tensor. Note that the tensor rank is different from the multilinear
rank (Definition 2.12). While the definition of tensor rank is straightforward,
its determination is a non-trivial problem. Different approaches for automatic
rank estimation exist such as the core consistency diagnostic [31] or Rankest
contained in Tensorlab [231]. Both approaches gradually increase the tensor
rank and compare the results of the decomposition with the original tensor.
They however lead to an overestimation of the tensor rank for noisy signals [48],
and are therefore less suitable for biomedical signals which inherently contain
noise. In practice, visual inspection of the obtained components for different
ranks is very informative for evaluating the results and determining suitable
rank values. Another starting point are the multilinear singular values, which
can provide a lower-bound for determining the rank [42].

One of the main advantages of tensor decompositions compared to matrix-based
methods is that the resulting components are unique under mild conditions (up
to permutation and scaling). A general framework for uniqueness properties
of third-order tensors is presented in [70, 69]. This means that no additional
constraints have to be imposed on the data or factor matrices which is required
for matrix decompositions such as Principal Component Analysis (orthogonality)
or Independent Component Analysis (independence).

In the literature, many algorithms for CPD calculation can be found.
Throughout the thesis, Tensorlab [231] is used for virtually all tensor calculations.
Tensorlab is a Matlab-based toolbox which contains numerically optimized
methods for tensor calculations. CPD is computed with an optimization based
algorithm which starts from a (random) initialization that is iteratively updated
until convergence. It is possible that the algorithm obtains different outcomes
for different initializations, since it may converge to a local minimum instead of
the optimal solution. It can therefore be useful to evaluate the stability of the
results by evaluating the method over a considerable number of initializations.

While many other tensor decomposition methods exist, CPD can be considered
one of the most accessible approaches. Generally, it leads to components which
can be easily visualised and interpreted. Furthermore, different computation
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methods have been developed that deal with practical issues such as missing
data [232] or noisy signals [25]. In Chapters 4–7, these methods will be applied
to identify different ECG features, highlighting the power of these tensor
decompositions in cardiac applications.

2.5 An overview of tensors in ECG signal processing

Multilead ECG signals are described by two parameters, namely time and space.
Compared to other biomedical signals they are relatively noisefree and contain
an inherent structure. They therefore form prime candidates for use with tensor
methods. However, despite these favorable characteristics, tensors methods are
still only used in a limited number of ECG applications.

Tensors were first used in ECG processing to separate the fetal and maternal
electrocardiogram measured in pregnant women. This is essentially a blind
source separation problem where multiple electrodes are placed on the chest
and stomach of the expecting mother. The signal measured by these electrodes
contains a mixture of the heart signal of both the mother and the baby. Blind
source separation techniques such as Independent Component Analysis (ICA)
aim to separate both signals as accurately as possible. They have been applied
numerous times since 1995 [60, 62, 241, 38] and have been shown to outperform
classical methods such as adaptive filters [241]. While ICA is applied directly
to matrices, it can be seen as a tensor decomposition technique since in its core
it relies on diagonalization of third- or fourth-order tensors [59].

A large number of methods were developed in the context of the PhysioNet/-
Computing in Cardiology (CinC) Challenge, an annual competition that aims
at tackling ECG processing problems that are unsolved or not well-solved.
The 2013 challenge dealt with the problem of fetal ECG processing. For this
purpose, more than 25 teams developed techniques, of which seven teams used
tensor decomposition techniques. While a number of methods rely on the
aforementioned ICA [183, 20, 228, 133], different tensor-based methods were
also used. Niknazar, Rivet, and Jutten [165] reshape the measured signals in a
three-way tensor which is then decomposed with CPD, separating the maternal
and fetal ECG signals. A similar approach is taken by Akhbari et al. [7], but
here a weighted version of CPD is used in order to improve the robustness of
the method. While the CPD approaches did not lead to very good results, the
ICA-based methods by Behar, Oster, and Clifford [20] and Varanini et al. [228]
were the best-scoring methods overall. Other tensor decomposition methods
used for FECG separation are PARAFAC2 [2], a variant on CPD which allows
variations in one mode, and the periodic Tucker Decomposition [5].
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Automatic detection of various cardiac abnormalities is an important problem,
as discussed in Chapter 1. Irregular heartbeat detection refers to the task of
distinguishing normal sinus beats from abnormal beats. Li et al. [128] and
Huang and Zhang [104] both proposed tensor-based schemes, where spectral
information is used to construct tensors which are then decomposed with
higher-order variations of respectively Principal Component Analysis and Linear
Discriminant Analysis. Another abnormal heart rhythm is atrial fibrillation
(AF). It is one of the most prevalent arrythmia affecting an estimated one percent
of the general population. Block term decomposition has been applied to analyse
the atrial activity [185, 242] and automatically extract atrial sources [166] in
multilead ECG signals of patients with AF. Padhy et al. developed a multiscale
approach combining wavelet decompositions and MLSVD for detection of T
wave alternans [170] and classification of different types of myocardial infarction
[169]. Finally, some other examples of applications within ECG processing
which have been tackled with tensors are ECG denoising [121] and compression
[168, 52].

Note that several of the applications mentioned here are also discussed in
the remainder of the manuscript. Chapter 4 presents an unsupervised tensor-
based approach to irregular heartbeat classification and Chapter 5 deals with
automatic detection of T Wave Alternans. Finally the problem of AF detection
is tackled in Chapter 7.

2.6 Conclusion

Tensors are multilinear generalizations of vectors and matrices. This Chapter
introduces the use of tensors in ECG processing and gives the background
necessary for the next Chapters. The tensor decomposition methods described
in Section 2.4.3 will be used in Chapters 4–7 for automatic detection and analysis
of various cardiac problems.





Chapter 3

Machine learning and
classification

After the previous chapter introduced tensors and tensor methods, this chapter
gives a background to the different machine learning and classification techniques
used in this thesis. The different ECG applications handled all require the
classification of an ECG signal in different classes. Several classification methods
can be used to tackle this problem. They can be divided into two main groups,
explained in the different sections of this chapter: unsupervised techniques and
supervised techniques. A final section explains how the results obtained by these
classification methods can be evaluated.

3.1 Introduction

Machine learning was first defined in 1959 by Arthur Samuel as ‘a field
of study that gives computers the ability to learn without being explicitly
programmed’ [189]. Nowadays it has become a large, interdisciplinary field,
spanning computer science, statistics, information theory and even philosophy.
It involves many learning problems, including classification, regression, ranking
and dimensionality reduction.

In many biomedical applications, including the ECG applications tackled in
the next Chapters, the ultimate goal is classification: a patient or signal has
to be assigned to a certain group, and this decision has to be made using a
number of predefined features or characteristics. Take for example a doctor

37
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that diagnoses a patient: he effectively determines whether a patient is ill based
on patient characteristics such as body temperature or blood results. In the
next chapters, classification will for instance be used to determine whether a
heartbeat is normal or irregular or to classify whether a QRS complex contains
fragmentation.

Within the large field of classification methods, we can distinguish two
main types: supervised and unsupervised classification methods. Supervised
classification uses a set of training points where the true class labels are known.
The algorithms use this training set to learn the optimal way of mapping the
features onto the class label. Unsupervised approaches do not require training
data, the algorithm instead learns the underlying structure of the data. A
special class of machine learning methods deals with the problem of survival
analysis, which is mainly characterized by the presence of censored data where
the class label is not (yet) known. Several of the machine learning methods
can be adjusted to manage this specific type of data. Since this specific type of
problem is only tackled in Chapter 9, the key concepts of survival analysis will
be explained then.

The next sections describe the unsupervised and supervised classification
methods used in this work. Finally, the metrics that are standard used to
evaluate the performance of classification methods are described in section 3.4.

3.2 Unsupervised classification methods

Unsupervised classification methods do not rely on a training set of labeled data
to learn the underlying data structure and perform classification. Information is
grouped according to similarities or differences between the different data points.
One of the most common groups of unsupervised classification methods are
clustering methods. Note that in many applications, clustering is not necessarily
used for classification, but in an exploratory way to gain insights about the
available data.

Clustering refers to the process of defining coherent groups of data points
without requiring prior knowledge about the labels. A cluster is defined so all
data points within a cluster are similar to each other and different from data
points in other clusters [113]. Many different groups of clustering techniques
exist. Here, we consider four types of clustering techniques, which each have
their specific advantages and drawbacks: partitioning techniques, hierarchical
techniques, density-based techniques and spectral techniques [75]. The different
groups each contain many different methods. The next subsections explain one
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standard method for each group, which will be used in Chapter 4 to detect
irregular heartbeats.

For all methods, the number of clusters k is considered to be fixed and known
prior to the clustering. When k is not defined beforehand, a number of methods
to estimate the optimal value exist [187, 149]. In some applications, domain
knowledge can also be used to provide an estimate for k.

Partitioning techniques: k-medoids

The goal of partitioning-based clustering techniques is to divide the data in k
partitions that are iteratively updated in order maximize the similarity within
a cluster [75]. The most well-known partitioning clustering method is k-means
clustering, which detects a cluster by minimizing the squared error between the
cluster center (calculated as the empirical mean of a cluster) and the points
within the cluster [109]. While still very popular, it is known to be sensitive to
outliers. A more robust variation is k-medoids clustering [113]. The approach
is very similar to k-means clustering but while k-means clustering calculates
the distance between each cluster point and the centroid (e.g. the mean of the
cluster), k-medoids clustering uses a member of the cluster as cluster center,
referred to as the medoid. Initialization of the method can be done by either
selecting k random data points as medoids or by selecting the k farthest points
(e.g. the k points with the largest distance between them). The algorithm then
iterates over all data points and assigns each point to the closest medoid. In
a next step, the medoids are then updated by calculating the new center of
the clusters, which can cause some points to move between clusters (since their
distance to the new medoids might be smaller than the distance to their current
medoid). The last steps are repeated until the method converges and no more
data points change clusters.

Hierarchical techniques: agglomerative clustering

Agglomerative hierarchical clustering is a bottom-up approach which initially
represents each data point as a cluster of its own. The clusters are then iteratively
merged by combining clusters that are similar to each other, until the desired
cluster structure is obtained [109]. Merging can be done by different criteria,
such as single linkage, complete linkage or average linkage. In complete linkage
the distance between two clusters is defined as the maximum distance between
any data point in the first cluster and any data point in the second cluster.
Single linkage and average linkage use respectively the minimum and average
distance. In each step, the two clusters with the smallest linkage distance are
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Figure 3.1: Illustration of the OPTICS algorithm: The left panel shows a
simulated dataset with three obvious clusters in red, yellow and blue. The
OPTICS reachability plot is shown in the right panel, the three clusters show
up as valley of points with similar reachability distances.

combined into one cluster. Agglomerative clustering is a bottom-up approach:
each data point forms its own cluster in the beginning and by moving up in
the hierarchy, clusters are joined. An alternative is divisive clustering, which
is a top-down approach: all points start in one global cluster, which is split
recursively moving down the hierarchy.

Density-based techniques: OPTICS

Density-based clustering techniques define clusters as areas of high density that
are separated by areas of low density. One of the most popular density-based
algorithms is OPTICS (Ordering Points To Identify The Clustering Structure)
[10], which gained popularity since it requires minimal parameter optimization.
OPTICS orders the points in the dataset such that the points which are closest
to each other become neighbours in a so-called reachability-plot. Clusters show
up in the reachability plot as valleys of points with similar reachability distances
and can be extracted as such.

To illustrate the concept, we created a simulated dataset of 300 points with
three distinct clusters, shown in the left panel of Figure 3.1. The corresponding
reachability plot is shown on the right panel. It shows the reachability distance
from each point to its neighbour. Points within a cluster have similar reachability
distances, while points between clusters have higher distances, creating three
valleys corresponding to the initial clusters. The valleys can be extracted from
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the plot by detecting points with significantly higher reachability distances
which form the boundaries between clusters.

Spectral techniques

Spectral techniques do not make assumptions on the shape of clusters, but
instead treat it as a graph partitioning problem, where the data points that need
to be clustered are considered as nodes in a graph. An extensive introduction
can be found in Von Luxburg [235]. The first step of most spectral clustering
methods is to construct a similarity matrix of the data, e.g. a symmetric matrix
A with Ai,j ≥ 0 a similarity measure between points i and j. Next, the degree
matrix is constructed, which contains information about the degree of each point,
or the connections it has in the graph. The Laplacian matrix is then defined as
the difference between the similarity matrix and the degree matrix. Spectral
clustering techniques use the first k eigenvectors of a Laplacian matrix of A
as inputs for k-means clustering [235]. Different spectral clustering algorithms
make use of different types of graphs and different similarity measures [235].

3.3 Supervised classification techniques

Supervised classification techniques use a training set of labelled data to
effectively learn a function f(x) that represents the optimal way of mapping the
provided features x ∈ RD to the correct class label y, with D the length of the
feature vector or the dimension of the feature space. The direct consequence
is that a database of signals with known features and class labels has to be
available. Ultimately, the goal is to apply f(x) to new, unseen examples from a
test set xtest and still obtain a reliable prediction of the new class label ytest:
the method should be capable of generalizing.
As in unsupervised classification, many supervised techniques have been
developed. In the next Chapters, we mainly use Support Vector Machines
to perform classification in a supervised manner. Some alternatives are however
briefly discussed in Section 3.3.2.

3.3.1 Support Vector Machines

Support Vector Machines (SVM) are a class of supervised methods that can
be used for both classification and regression. It has been shown that they are
superior to other popular classifiers in many types of problems [148]. They are
also known to have good generalization properties. The basic idea of an SVM
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is to find a hyperplane which perfectly separates two classes [207, 227]. This
is done by maximizing the margin between the classes, and more specifically
by maximization of the distance between the hyperplane and the closest data
points of both classes (also called the support vectors). If all points closest to
the hyperplane satisfy |wTxi + b| = 1, then the margin between the classes is
defined as 2/||w||2 and can be maximized as such. When perfect separation
cannot be achieved, missclassifications are allowed by introducing a soft margin
constant (the slack variable) that penalizes points that lie on the wrong side of
the margin.
SVMs were originally developed for linearly separable data [226], and the
methods were later extended to include non-linear classification [227]. This
is done with a so-called feature map φ(·) : RD → RDh . The input data are
mapped to a higher-dimensional feature space which is used to train a linear
SVM.

The integration of all previous elements (e.g. the margin maximization,
introduction of slack variables and mapping of input points) leads to the
following convex optimisation problem [207]:

min
w,b,ξ

JP (w, ξ) =1
2wTw + c

N∑

i=1
ξi

s.t. yi[wTφ(xi) + b] ≥ 1− ξi,

ξi ≥ 0, ∀i = 1, . . . , N,

(3.1)

with ξi the slack variables, c a regularization constraint and N the total
number of points in the (training) dataset. The objective function in 3.1
consists of two parts: a regularization term and minimization of the number of
missclassifications. The hyperparameter c provides a balance between these two
parts: when c is too high, this will lead to overfitting, and vice versa: a value of
c that is too low causes underfitting.

The dual formulation of this optimization becomes the following quadratic
programming problem:
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max
α

JD(α) =− 1
2

N∑

i,j=1
yiyjK(xi, xj)αiαj +

N∑

i=1
αi

s.t.

N∑

i=1
αiyi = 0, 0 ≤ αi ≤ c, i = 1, . . . , N,

(3.2)

This optimisation problem has the following properties:

• When solving 3.2, many of the Lagrange multipliers αi are equal to
zero. Points corresponding to αi 6= 0 are the support vectors. Only the
distances between those points and the hyperplane are maximized. The
final formulation of the SVM is then:

y(x) = sign
(

N∑

i=1
αiyiK(x,xi) + b

)
(3.3)

This decision function can be expressed only in terms of the support
vectors.

• Neither the dual problem 3.2 nor the classification function 3.3 contain
the feature map φ(·). Only the inner products of the feature maps are
required. The kernel trick replaces these inner products with a positive
definite kernel function :

K(x, z) = φ(x)tφ(z). (3.4)

The main advantage of the kernel trick is that it avoids the (cost-intensive)
calculation of the high-dimensional feature space.
Different kernel function can be used. Three examples of popular kernels
are:

– The RBF (Radial Basis Function) kernel: K(x, z) = e−
||x−z||22
σ2 , with

σ2 a new hyperparameter that defines the non-linearity of the kernel.
– The linear kernel : K(x, z) = xtz.
– The polynomial kernel: K(x, z) = (xtz + τ)d, with d the degree of

the polynomial and τ ≥ 0.

Recently, the clinical kernel was proposed [51], which is a kernel that
was specifically designed for clinical data. It has separate expressions for
continuous, ordinal, categorical and binary data.
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Since both the primal and dual problem are convex optimization problems,
a global optimum can be found. This is a big advantage compared to other
supervised techniques such as neural nets, for which the optimization problem
is not convex so it can result in local optima.

SVMs are defined for binary classification problems, where the goal is to
distinguish between two classes. For multiclass problems, different binary SVMs
can be combined in different configurations:

• One-versus-all: in this paradigm, the k classes give rise to k binary
classifiers: one for each class versus the collection of the remaining
classes. Potential problems are the creation of unbalanced classes and
contradictions between assigned labels. A possible solution is to convert
the scores to posterior probabilities, which can be done with for example
Platt scaling [178].

• One-versus-one: this method trains a binary classifier for each combination
of classes, resulting in k(k−1)

2 SVMs, for k classes. This method focuses
on details that are different between classes. The final label belongs to
the class with the largest number of votes.

3.3.2 Other techniques

K-nearest neighbors

In k-nearest neighbors (kNN), a new datapoint xtest is compared with all points
from the training set. The k points closest to xtest are selected and it is assigned
the class label of the most frequent class among its k nearest neighbours. k is
usually small compared to the size of the training set. It is mostly used since
the results are easy to interpret and do not require a lot of calculation time.

Naive Bayes Classifier

Naive Bayes classifiers (NB) are examples of probabilistic classifiers, based on
the application of Bayes’ theorem:

P (A|B) = P (B|A)P (A)
P (B) , (3.5)

which describes the conditional probability of B given the prior probabilities
of A and B and the conditional probability of A. The prior probabilities P (A)
and P (B) and the conditional probability (P (B|A)) are all learned from the
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training set. It assumes independence among the features, e.g. the value of a
particular feature should be independent of the values of all other features.

Decision trees

Decision trees predict the output value y by answering a series of questions
about the input features x. The different features are repeatedly split into
subsets, which is repeated until all subsets are pure, e.g. they all share the
same class label y. The main advantage of decision trees is the interpretable
nature of the algorithms: the different subquestions can be visualised into a
tree-like structure that is very similar to the human way of thinking. Different
decision trees can be combined into a random forest, which is an ensemble
learning method that corrects for overfitting by balancing out the decisions
from different trees.

3.4 Performance evaluation

Classification methods can be evaluated by comparing the results of the
algorithm with the true labels of the data points, assuming these labels are
known. Supervised methods have to be tested on a separate test set, preferably
only using signals of patients not included in the training set. When the true
labels of the test signals are not known, which can be the case when evaluating
unsupervised methods, internal validation indices can be used. They measure
the similarity within a cluster and compare it with the differences between
clusters. A widely-used example is the Silhouette index [130].

When the true labels are known, which is the case for all datasets used in this
work, different performance metrics can be used. The next Sections discuss
the metrics used in the next Chapters, making a distinction between metrics
derived from the confusion matrix or Receiver Operating Characteristics (ROC)
curve.

3.4.1 Confusion matrix

A confusion matrix is a table which represents the number of instances in each
class versus the number of instances in each predicted class. It is an easy way
to visualize the performance of a classification method and various metrics
have been defined to quantify its contents. Figure 3.2 shows an example of a
confusion matrix for a binary classification problem. It reports the number of
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True label
Positive Negative

Predicted label Positive TP FP Ö PPV
Negative FN TN Ö NPV

×
Se

×
Sp

Figure 3.2: Example of a confusion matrix. Correct labels are indicated in green,
incorrect labels in red. Based on the confusion matrix, different performance
metrics can be evaluated, such as sensitivity, specificity, positive and negative
predictive value.

true positive (TP), true negative (TN), false positive (FP) and false negative
(FN) detections. With these numbers, following performance metrics can be
calculated:

• Sensitivity (Se) : TP
TP+FN

• Specificity (Sp) : TN
TN+FP

• Positive predictive value (PPV) : TP
TP+FP

• Negative predictive value (NPV) : TN
TN+FN

• False Positive Rate (FPR): FP
FP+TN

• Accuracy (Acc): TP+TN
TP+TN+FP+FN

The sensitivity can also be called recall, the positive predictive value is also
known as the precision. Note that the accuracy, which represents the fraction of
correct predictions, is not a reliable metric for imbalanced problems. Imagine a
dataset where 95% of the entries belong to the positive class. A classifier which
classifies all observations as positive has an accuracy of 95% in this dataset,
while not giving any useful output. Therefore, in unbalanced problems, we opt
to replace the accuracy with the F1-score:

F1 = 2. Precision.Recall
Precision + Recall

It is the harmonic mean of the precision and recall, or of the sensitivity and
PPV. The F1-score has different variations such as the F2- or F0.5-score exist,
but they are not considered here since they are less commonly used in the
applications handled in this research.
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3.4.2 Receiver Operating Characteristics curve

The Receiver Operating Characteristics (ROC) curve expresses the diagnostic
ability of a classifier by plotting the true positive rate versus the false positive
rate when the decision threshold is varied. It is a straightforward way to compare
the performance of different models and select the optimal one. Furthermore
it can also be used to define a good decision threshold, since changing the
threshold results in a different prediction and corresponding performance. The
ideal threshold can be determined by selecting the point in the upper left corner
of the curve.

The ROC curve can be quantified by calculating the Area Under the Curve
(AUC). A perfect classification method has an AUC value of 1, while a method
that makes random guesses has an AUC of 0.5. AUC values ≤ 0.5 are
theoretically possible but are in practice indicative of wrong labeling or an
incorrect training strategy.

3.5 Conclusion

This Chapter provided an overview of the different machine learning techniques
used in this research. Both unsupervised and supervised classification methods
were introduced, together with metrics to evaluate the final performance. In the
next Chapters, the various techniques will be used to classify ECG signals in
different classes. A special class of machine learning techniques, not mentioned
in this Chapter, are survival analysis methods. They will be introduced in
Chapter 9.
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Tensors





Chapter 4

Unsupervised detection of
irregular heartbeats

This Chapter presents a first application of tensors in ECG processing. The
tensor methods presented in Chapter 2 are applied for unsupervised detection of
irregular heartbeats in multilead ECG signals. The method more specifically uses
Canonical Polyadic Decomposition to decompose the ECG signal and applies
clustering methods to the resulting factor vectors to detect abnormal beats. This
Chapter also includes an analysis of the influence of different parameters on
the results. More specifically, the effect of the choice of rank, initialization and
number of channels are discussed. The method has been applied on two publicly
available databases in order to compare the results with state-of-the-art methods.
A first version of the method and preliminary results were previously published
as Goovaerts G., De Wel O., Vandenberk B., Willems R., and Van Huffel S.
(2015) Detection of irregular heartbeats using tensors. In Proceedings of the
43rd Computing in Cardiology Conference (CinC 2015) (pp. 573-576). Nice,
France [88].

4.1 Introduction

Cardiac arrhythmias affect millions of people and are the main cause of many
cases of sudden cardiac death. A large number of people could benefit from
a better and more reliable detection of cardiac dysfunction. An arrhythmia
is defined as any disturbance of the normal sinus rhythm. This can be a
perturbation or abnormality in the rate, the regularity, the site of origin or

51
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the conduction of the electrical impulses of the heart. In general, they can be
divided in two main groups: the first group, morphological arrhythmia, contains
arrhythmia that consist of only one heartbeat; the second group consists of
arrhythmia formed by a group of heartbeats and is called rhythmic arrhythmia
[135]. The focus of this Chapter lies in automatic detection of the first class,
e.g. morphological arrhythmia.

Various types of morphological arrhythima exist, each differing in the origin
and/or electrical pathway of the abnormal beat. The Association for the
Advancement of Medical Instrumentation (AAMI) has defined a standard
for how heartbeats should be annotated and classified and how different
methods should be evaluated and compared. This standard will be followed
throughout the Chapter. The complete standard is specified in ANSI/AAMI
EC57:1998/(R)2008 [1]. It defines 15 recommended arrhythmia classes that can
be further divided in three superclasses: Normal beats, atrial or supraventricular
beats and ventricular beats. Normal beats refer to beats that originate during
normal sinus rhythm. Atrial and ventricular beats respectively arise in the atria
or ventricles. Table 4.1 shows how the division of the 15 recommended classes
is done. The annotation types as used on Physionet [85] are mentioned in the
rightmost column.

Classification of heartbeats in different classes is important for two main reasons.
Firstly, heart rate variability studies, which are useful in many clinical and
non-clinical scenarios require series of normal RR-intervals. The presence of
ectopic beats or other abnormalities introduces abrupt changes in the RR time
series which can seriously disturb the values of HRV indices. Secondly, most
ventricular arrhythmia, which are potentially lethal, are initiated by premature
ventricular beats. Their frequency and complexity have been shown to be
predictive for predicting SCD in certain patient groups and have been used as
stratification tools in large clinical trials [13].

The irregular heartbeat detection problem is generally composed of three stages:
preprocessing, feature extraction and classification. Various features, such as RR
interval features [211, 66, 132], ECG morphology features [66, 129] and features
drawn from the wavelet transform [180, 181] have been proposed to characterize
the ECG. An overview of the most well-known methods, including results
on standard databases, can be found in [135]. In these traditional heartbeat
classification methods the ECG is typically represented as a vector. However, by
representing the ECG as a tensor more structural information can be preserved.
The application of tensor methods for heartbeat classification has been done
before [104, 128]. However, these methods all require a training stage and more
complicated optimization mechanisms. This chapter proposes an unsupervised
classification method that is based on tensor decomposition methods which does
not require a training stage. Different unsupervised clustering techniques are
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Table 4.1: List of classes and superclasses of irregular heartbeats as defined by
AAMI [1]. Only the superclasses used here are mentioned; an extra (super)class
of paced beats exists, but was omitted since paced recordings are not included
in this study. The rightmost column indicates the corresponding annotations as
used in Physionet [85].

Heartbeat class Type of heartbeat Annotation type

Normal
Normal Beat N
Left Bundle Branch Block L
Right Bundle Branch Block R

Atrial

Atrial Premature Beat (APB) A
Aberrated APB a
Nodal Premature Beat J
Premature Supraventricular Beat S
Atrial Escape Beat e
Junctional Escape Beat j

Ventricular
Ventricular Premature Beat V
Ventricular Escape Beat E
Fusion Ventricular and Normal F

compared to assess their performance, and the influence of different parameters
in the tensor decomposition on the final result is examined likewise.

The next Section describes the datasets used to develop the algorithm. Section
4.3 presents the proposed tensor-based method. In Section 4.4 and Section 4.5,
the results of the different analyses are respectively described and discussed,
followed by some concluding remarks in Section 4.6.

4.2 Data

The methods described in this Chapter have been applied on two publicly
available datasets, the INCART database and MIT-BIH database [153]. Both
datasets can be found on Physionet [85]. The following Sections give a brief
overview of the main characteristics of both databases.
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4.2.1 INCART database

The first database used is the St.-Petersburg Institute of Cardiological Technics
12-lead Arrhythmia (INCART) Database. This database was measured in the St.
Petersburg Institute of Cardiological Technics and contains 75 non-pacemaker
recordings of 30 minutes at a sampling frequency of 257Hz. All signals were
routine clinical 12 lead ECG signals. The signals were collected from 17 men and
15 women between 18 and 80 years old who were undergoing tests for coronary
artery disease. Preference was given to recordings of patients with ECGs
consistent with ischemia, coronary artery disease, conduction abnormalities
and arrhythmias. Heartbeat annotations, computed by an automatic algorithm
and manually corrected, are also provided. The full dataset contains 153 651
normal beats and 21 964 abnormal beats (1959 supraventricular and 20 005
ventricular beats, see Table 4.2)). Since this database is not often used in the
literature, it will be mainly used here to define the optimal parameters for the
tensor decomposition and to compare different clustering techniques.

4.2.2 MIT-BIH Arrhythmia database

The MIT-BIH Arrhythmia Database was collected in 1980 during a collaboration
between Boston’s Beth Israel Hospital and the MIT university [153]. It contains
48 half-hour recordings of two-channel ambulatory ECG recordings, obtained
from 47 subjects experiencing various types of cardiac arrythmia. The first lead
is always lead II, the second a variant of a precordial lead, mostly V1 and in
some occasions V2, V4 or V5. Recordings were selected to ensure that most
types of clinically significant arrythmias were included in the database. The
sampling frequency is 360Hz. All heartbeats were annotated by two or more
independent cardiologists, and disagreements were solved to obtain consensus in
all recordings. For this study, paced recordings were removed from the dataset.
The number of heartbeats in the different classes is summarized in Table 4.2.

Since the database contains a large variety of arrhythmia and has been publicly
available for over three decades, it has been widely used to evaluate and compare
irregular heartbeat classification methods. A framework to standardize the
evaluation of the results has been proposed in Luz et al. [135] and will be used
throughout the rest of the chapter.
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Table 4.2: Number of heartbeats of each of the types (normal, supraventricular
and ventricular) in both databases used in this Chapter.

Type INCART MIT-BIH

Normal 153 651 90 089
Supraventricular 1959 2779
Ventricular 20 005 7007
Total 175 615 99 875

4.3 Methods

The tensor-based irregular heartbeat detection method consists of four steps.
1) In the preprocessing stage, the noise is removed from the data before it
is tensorized. After 2) tensorization, 3) the tensor is decomposed so 4) the
irregular heartbeats can be detected.

4.3.1 Preprocessing

In the preprocessing stage, both baseline wander, powerline interference and high
frequency noise were removed from the ECG signal. The same preprocessing
approach as described in [66] was used in order to be able to effectively compare
the results from our method with the results of the different methods compared
in their study. First, baseline wander removal was done by applying two
consecutive median filters to each channel. The first median filter has a length
of 200 ms and removes the QRS complex and P wave, the second filter has a
width of 600 ms to remove the influence of the T wave. The resulting signal
represents the baseline of the signal and was finally subtracted from the original
ECG signal. Powerline interference and high frequency muscle noise were
removed with a Butterworth low-pass filter with order six and cut-off frequency
35 Hz.

Because the ECG signal has to be segmented into distinct heart cycles prior
to tensorization, the locations of the R peaks need to be known. Since R peak
detection was not the focus of this study, the annotations provided with the
databases were used here. In general, standard methods such the Pan-Tompkins
algorithm [173] or the wavelet-based ECG delineator developed by Martínez
et al. [143] can be used to detect the R-peaks with high accuracy.
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4.3.2 Tensorization

As explained in Section 2.4.1, the second-order multilead ECG signal has to be
transformed into a higher-order tensor prior to applying tensor decomposition
methods. This is referred to as tensorization. It can be done in many different
ways, depending on signal characteristics and the application at hand [64]. Since
the main interest here are the differences between consecutive heartbeats, a
heartbeats mode was created by segmenting the signal in different heartbeats and
stacking these heartbeats in a 3D manner. This way a tensor was constructed
where each frontal slice contained one heartbeat over all channels. Consider a
(preprocessed) multilead ECG signal with C leads and N samples that consists
of M heartbeats. This 2D signal X ∈ RC×N was transformed in a 3D tensor
X ∈ RC×J×M , with J the length of the segmentation window used to cut out
the heartbeats. The dimensions of X are thus channels × time × heartbeats.
While the temporal mode of the original signal contains the total length of the
ECG signal, the time mode of the tensor only has the duration of one heartbeat.

The segmentation was done by taking a fixed-length interval around the R
peak. The interval starts 200 ms before the R peak and has a length of 700 ms.
The different segments were normalized before stacking them in the tensor by
subtracting the mean and dividing by the standard deviation. If the heart rate
differs greatly among the signal (which can be the case in long-term recordings
or during stress tests) it may be necessary to apply resampling since it is
important that the different waves of the ECG signal are largely aligned. Note
that by segmenting the heartbeats around the R peaks, the QRS complexes
of the different beats in a signal were by definition synchronized. Figure 4.1
illustrates the tensorization process.

…
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Figure 4.1: Tensorization of the ECG signal: The multilead ECG signal is
mapped onto a third-order tensor by segmenting it in individual heartbeats and
stacking the heartbeats in the frontal slices of the tensor.



METHODS 57

4.3.3 Tensor decomposition

Many tensor decomposition methods exist, all leading to factors with different
ranks [119]. Here, Canonical Polyadic Decomposition (CPD), explained in
Section 2.4.3, is used to decompose the tensor X in a sum of R rank 1-tensors:

X =
R∑

r=1
ar ⊗ br ⊗ cr (4.1)

As discussed earlier, determination of R, the rank of the decomposition, is a
non-trivial problem. We therefore varied the value of R in order to determine
the optimal rank.

The results are R rank-one tensors each consisting of three loading vectors ar,br
and cr for r = 1, . . . , R which match the three dimensions of the original tensor.
They can be combined into three loading matrices A ∈ RC×R, B ∈ RJ×R
and C ∈ RM×R. The first loading matrix (A), corresponding to the channels
mode, is associated with the differences in heartbeat morphologies over different
channels. The second loading matrix B (time) shows the temporal profile of
the components. C corresponds to the heartbeats mode and gives an indication
of variations between different heartbeats in the tensor. The columns of this
matrix are further used for irregular heartbeat detection.

4.3.4 Clustering techniques

The irregular heartbeats can be distinguished from normal heartbeats by
examining the third loading matrix C. When a heartbeat significantly differs
from other heartbeats in the signal, this is visible in C. The values corresponding
to an irregular heartbeat are significantly different from the value of a normal
beat. Detection of the irregular heartbeats can be done in an unsupervised way
by applying clustering techniques, discussed earlier in Section 3.2.

We made two main assumptions about the data:

1. The data naturally consist of two main clusters, one representing normal
heartbeats and the other representing abnormal heartbeats. This is a
reasonable assumption as long as the abnormal heartbeats within a signal
all belong to the same class, e.g. if a signal contains either ventricular or
supraventricular beats.

2. The number of normal heartbeats is larger than the number of abnormal
heartbeats, and the largest cluster will thus be assigned to the normal
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Table 4.3: Confusion matrix (right) for the detection of abnormal heartbeats
and corresponding derivations for each class (left). The heartbeats of the
three classes (N, S, V ) are classified as normal (n) or abnormal (a). Correct
classifications are marked in green, incorrect labels in red.

TPn = Nn TPs = Sa TPv = V a

TNn = Sa+ V a TNs = Nn TNv = Nn

FPn = Sn+ V n FPs = Na FPv = Na

FNn = Na FNs = Sn FNv = V n

Result
n a

La
be

l N Nn Na
S Sn Sa
V Vn Va

class. This assumption is met in all signals in the database, since normal
heartbeats by definition make up the largest part of the ECG signal.

All clustering methods have their distinct advantages and disadvantages. To
select the optimal method, all four methods described in Section 3.2 (e.g. k-
medoids clustering, agglomerative clustering, OPTICS and spectral clustering)
were therefore applied to the dataset and compared.

4.3.5 Evaluation of performance

All clustering methods group the heartbeats in two classes: a normal class and
an abnormal class. By definition, the heartbeats in the largest class were labeled
normal. This means that the three original classes (normal, supraventricular
and ventricular) were mapped on two predicted classes (normal and abnormal).
The corresponding confusion matrix is shown on the right side of Table 4.3.

As mentioned in the Introduction, the AAMI has defined a standard for both
annotating irregular heartbeats (summarized in Table 4.1) and evaluating the
performance of different methods. The recommended evaluation measures are
the Sensitivity (Se), Positive Predictivity Value (PPV ), False Positive Rate
(FPR) and Overall Accuracy (Acc), also discussed in Chapter 3. Since heartbeat
classification is an extremely imbalanced problem, with the number of normal
heartbeats multiple times larger than the other classes, the overall accuracy is
strongly influenced by the results of the normal heartbeats. We therefore opted
to replace it with the F1-score.

Table 4.3 shows the confusion matrix, with the original labels N, S and V and
the resulting labels n and a. The number of TP, TN, FP and FN for each
class can be calculated with the equations on the left hand side of the Table.
This way, all evaluation measures were calculated for each class individually,
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for example:

F1i = 2TPi
2TPi + FNi + FPi

(4.2)

with i is the class label, which can be either N, S or V. F1N , F1S and F1V are
thus respectively the F1-scores for the normal, supraventricular and ventricular
classes. The other measures were calculated in a similar way using the Equations
in Section 3.4. Aggregate scores for the overall database were calculated by
averaging the individual metrics for each class, such as for example:

F1 = F1N + F1S + F1V
3 (4.3)

4.4 Results

This section is divided into three parts. First the detailed results of one case
study are described. Next, the sensitivity of the performance to the choice
of rank, initialization and number of channels is evaluated on the INCART
database. Finally, the results for the full MIT-BIH dataset are evaluated and
compared with standard methods.

4.4.1 Case study

As a case study, a segment containing the first 100 heartbeats of the first signal
(I01 ) of the INCART database described in Section 4.2.1 was selected. Figure
4.2 shows a four second sample of this signal. This particular segment contains
two irregular heartbeats which are highlighted in red. The full signal contains
five irregular heartbeats in total.

The signal was preprocessed and tensorized as described in Sections 4.3.1 and
4.3.2. As discussed in Section 2.4.3, there are different ways to estimate an
appropriate choice for CPD rank. Figure 4.3 shows the multilinear singular
values σi for the three modes. The first mode, the spatial mode, has singular
values that gradually decrease until r = 5. The other modes have one very
dominant singular value, after which the values decrease again gradually.
Another possibility for rank estimation is the method rankest, available in
Tensorlab, which calculates the ratio between the Frobenius norm of the original
tensor and the CPD result. Using this method, an estimate of 242 was obtained,
which might be optimal to exactly reconstruct the original tensor but is of little
practical use.
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Figure 4.2: Excerpt of four seconds of the ECG signal used in the case study,
with the irregular heartbeats indicated in red.
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Figure 4.3: Multilinear singular values σi of the signal used in the case study.

To explore the effect of changing the CPD rank, the value of R in Equation
4.1 was varied between 1 and 5. The resulting factor vectors are shown in
Figure 5.4. The different rows show the different ranks, and the factor vectors
for each mode are plotted in the different columns. For R = 1, shown in the
top row, the feature vectors have a straightforward physiological interpretation,
especially for the temporal and heartbeats mode. The temporal factor vector is
easily recognizable as a normal (regular) heartbeat, which is expected since the
majority of heartbeats are normal. Furthermore the morphology of a normal
heartbeat is similar over all channels, making it suitable to capture in a rank-one
component. The morphology changes over the different channels are visualized
in the spatial factor vector. From this vector we can for example conclude that
the polarity of the signal greatly varies over the different channels: heartbeats
in the first channel have an opposite polarity than heartbeats in the fourth and
seventh channels. This also has a physiological interpretation, since the polarity
of an ECG wave is related to the direction of the electrical wavefront, which
changes depending on the considered channel. Finally, the factor vector of the
heartbeats dimension is the most important for irregular heartbeat detection
since it shows the changes in the ECG over different heartbeats. The values
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Figure 4.4: Results of the selected case study signal for CPD ranks varying
from one to five. The factor vectors for all modes are shown in the different
columns.
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of this loading vector for normal heartbeats varies around -0.1. The abnormal
heartbeats are easily distinguishable by their higher values.

Increasing the CPD rank adds extra terms to the tensor decomposition,
visualized in the additional rows in respectively blue, red, yellow and green. It
is immediately clear that the first factor (shown in black) resulting from a CPD
of rank 1 is also present in the decompositions with higher ranks. While this
might seem straightforward, Kolda and Bader [119] show examples where the
best rank-one approximation of a tensor is not a factor in the best rank-two
approximation and so on. Comparison of the temporal vectors of the CPD
with rank 3 and 4 shows that this is indeed the case when the rank is further
increased. Another remarkable observation is that for a CPD with rank 5,
two components (plotted in yellow and blue) have near-identical temporal and
heartbeats profiles and opposite values in the spatial dimension. This is referred
to as degeneracy, where two components are almost equal up to a sign change
and is indicative of a wrongly-set rank [202].
Based on Figure 5.4, it seems that a decomposition with rank R = 1 is suitable
to distinguish regular from irregular heartbeats.

4.4.2 INCART database

As discussed earlier, the INCART database is a publicly available multilead
database. It is however not used very extensively in literature, and was therefore
mainly used here to analyse the effect of different parameter values on the final
result. More specifically, the influence of the CPD rank, clustering method and
number of available channels are discussed next. To evaluate the stability of
the obtained results, each experiment was run 100 times with different random
initializations. The minimum and maximum values over all runs are shown in
each Figure by shaded areas.

The main parameter to optimize in the tensor decomposition is the rank R. To
examine the effect of the choice of R on the result, the value was again varied
between 1 and 5 as in the previous Section. Figure 4.5 shows the results for
all clustering methods considered. F1i scores for each class are shown together
with the overall F1 score (in yellow). Minimal and maximal values over the 100
runs are indicated with the shaded areas, the average value is indicated with a
circle.

For all methods, a decomposition of rank 1 led to the best results. K-medoids
clustering and spectral clustering resulted in better F1-scores than the other
alternatives. The results for the classes of normal and ventricular beats were
significantly larger than the class of supraventricular beats. The overall F1-score
was largely influenced by the subpar results for the latter class. This could
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Figure 4.5: Results of different clustering algorithms for different CPD ranks.
Each method was run 100 times, and the minimal and maximal results are
shown together with the median.

be expected, since the morphology of supraventricular beats is in many cases
similar to the morphology of normal beats. In those cases, the classes of normal
and supraventricular beats will be overlapping and cannot be separated by
unsupervised techniques.

A rank-1 decomposition lead to very stable results, with no fluctuations in
the results of different trials. Increasing the rank added variation in the
results, which was confirmed by visual inspection of the components that
showed different solutions in each iteration. Since the tensor decomposition was
initialized randomly, convergence to a local optimum could thus not be avoided
in these cases.

Different measurement setups record ECG signals with a different number of
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Figure 4.6: Results of changing the number of channels in the tensor on the final
result. All experiments were repeated 100 times, and the shaded areas show
minimum and maximum values over all runs together with the mean value.

channels. In clinical practice, signals with two, three, six or twelve channels
are all encountered frequently. While the number of channels for a dataset is
fixed, the effect of the number of channels was examined by randomly selecting
n channels. Since the total number of channels here is twelve, n could be varied
between one and twelve. The CPD rank was fixed to one. The results can
be seen on Figure 4.6. The results for the supraventricular class were omitted
for clarity. The trend was however similar to the other classes. For all classes,
increasing the number of channels used improved the results. Optimal results
were obtained using all twelve ECG leads.

4.4.3 MIT-BIH database

Results on the INCART database indicated that for irregular heartbeat detection,
the optimal choice of rank was 1 and k-medoids or spectral clustering lead to
better results than the other clustering methods. The number of channels is
fixed and equal to 2 for the MIT-BIH database. The results of the proposed
tensor-based techniques were calculated using these settings and compared with
results from standard methods from literature. For fair comparison, only results
from automatic methods which do not require manually annotated beats are
reported.

Table 4.4 presents the results obtained using different methods. The methods
proposed in this Chapter are in the bottom two rows. From the Table we can
conclude that the tensor-based methods perform equally well or better than
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Normal Atrial Ventricular

Se (%) PPV (%) Se (%) PPV (%) Se (%) PPV (%)

de Chazal [66] 87 99 76 39 87 43
Mar [141] 90 99 83 34 87 61
Llamedo [131] 93 99 77 39 82 70
CPDkmedoids 95 94 19 37 90 75
CPDspectral 96 93 19 43 73 79

Table 4.4: Sensitivy and positive predictive value for each class obtained with
different methods on the MIT-BIH database. The best results for each column
are indicated in bold.

the reference methods for the classes of normal and ventricular beats. The
sensitivity results for atrial beats are clearly less than the other methods. The
positive predictive value is however the largest between all methods considered.

4.5 Discussion

This Chapter proposed a novel method for unsupervised detection of irregular
heartbeats. The method was tested on two publicly available datasets. From
the results obtained on both the INCART and MIT-BIH database we can
conclude that the tensor-based approach produces satisfiable results that are
comparable to or better than state-of-the art methods for the classes of normal
and ventricular beats. For atrial beats however, the results are considerably
worse. Since the developed method only extracts morphology-based feature
and the morphology of normal and atrial beats is very similar, both classes are
clustered together. A possible solution would to add a second set of RR-interval
features that characterize the irregular heart rhythm that often accompanies
episodes of atrial activity. This would however strongly increase the dimension of
the feature space, which might cause the performance of the clustering methods
to decrease.

Another consequence is that the cluster formed by the normal heartbeats
would spread out more and possibly split in multiple subclusters: while normal
beats have a very coherent morphology they can have very diverse heart rates.
Unsupervised classification with a fixed number of clusters would thus not lead
to good results. Several alternatives exist: a first possibility is to automatically
determine the number of clusters in the data set (such as for example with the
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methods described in [187, 149]). The different clusters can then be annotated
by an expert. This is referred to as semi-supervised classification. Another
approach is to use the combination of tensor-based morphological features and
heart rate variability features as input for a supervised classification method
such as support vector machines.

The MIT-BIH dataset contains signals measured in a two channel set-up.
The results from Figure 4.6 indicate that the results would improve further
if more channels were available. The lack of additional publicly available
multilead validation datasets can be considered a drawback of irregular heartbeat
detections in general.

An advantage of the proposed tensor-based approach compared to the methods
in Table 4.4 is that the results are easy to visualize and interpret: all factor
vectors from the tensor decomposition have a physiological interpretation. The
first- and second-order factor vectors could be further analysed to get more
global information about the ECG signal. Another large benefit of the proposed
method compared to the other methods mentioned in Table 4.4 is that only
one parameter, the CPD rank, had to be optimized in order to get the required
results.

The proposed framework is very general and can be used to detect different ECG
abnormalities with minor modifications. Depending on the part of the ECG
signal used to construct the tensor T , different ECG waves can be analysed.
This will be shown in the next Chapters, which analyse for example variations
in the T wave (Ch. 5) or general ECG morphology (Ch. 6).

4.6 Conclusion

This Chapter presented a first application of tensor decompositions in ECG
signal processing in the form of a method to detect irregular heartbeats. The
method leads to very good results when only taking normal and ventricular
beats into account, but fails to distinguish normal and atrial beats. However,
since most ventricular arrhythmia are initiated by PVCs, a type of ventricular
beats, this class is more important in the context of SCD risk estimation. The
frequency of ventricular beats has been used as a risk factor in earlier studies [13],
and can be calculated in a straightforward way with the proposed algorithm.



Chapter 5

Automatic detection of T
wave alternans

The previous Chapter showed how tensor decompositions can be used for
automatic determination of irregular heartbeats. In this Chapter, a similar
approach is used to detect T Wave Alternans, a promising risk factor for sudden
cardiac death. A practical issue when dealing with long-term ECG signals are the
changes in timing between different ECG waves. In this Chapter, this problem
is tackled by using an alternative method to decompose the tensor, PARAFAC2,
which allows variations in the factor vectors in one mode. This chapter was
published as: Goovaerts G., Vandenberk B., Willems R., & Van Huffel S.
(2017). Automatic detection of T wave alternans using tensor decompositions
in multilead ECG signals. Physiological measurement, vol. 38, no. 8, pp.
1513–1528 [87]. Preliminary results were also published as [90, 91].

5.1 Introduction

T wave alternans (TWA) is an example of a promising feature for risk
stratification of sudden cardiac death that can be derived from the ECG.
Studies have shown that the presence of TWA is correlated with the risk of
arrhythmia in patients with ischemic cardiomyopathy after previous myocardial
infarctions and long QT syndrome [107, 195, 40]. T wave alternans is defined as a
periodic beat-to-beat variation in the amplitude of the T wave. Large and small
T waves alternate in an ABABAB-pattern. Since the T wave represents the
repolarization of the ventricles, it is linked with the repolarization characteristics

67
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of the heart. When the variation between subsequent T waves is large enough,
TWA can be detected by visually inspecting the ECG signal. In cases where
the difference is only a few microvolts or when dealing with long ECG signals
this is however not feasible. Therefore (semi-)automatic methods are used that
can reliably detect TWA in the ECG signal.

Martínez and Olmos [142] give an overview of commonly used algorithms
for (semi-)automatic T Wave Alternans detection. Most methods start with
a preprocessing stage followed by the actual TWA detection. Examples of
commonly used methods are the correlation method [34], modified moving
average method [162] or spectral method [200]. Most methods decompose the
ECG signal to a beat-to-beat time series that contains the T wave characteristics.
The actual detection of T wave alternans is then done on this decomposed
signal.

The objective of this Chapter is to present a novel TWA detection method
based on tensor decompositions. The method is fully automated and both
detects and quantifies the amount of T Wave Alternans in a multilead ECG
signal. The main structure of the method is similar to the irregular heartbeat
detection method from Chapter 4: The signal is segmented and reorganized
in a tensor. By decomposing the tensor and analyzing the resulting factor
vectors, TWA can be detected and the amount of TWA can be estimated.
Preliminary results were presented in [90] and [91]. This chapter includes a full
validation on both artificial and clinical signals. Furthermore the use of the
more general PARAFAC2 tensor decomposition method makes application in
realistic situations possible.

In the next section the datasets on which the method has been evaluated are
described. Section describes the different steps necessary to detect T wave
alternans, including a description of the tensor decomposition method used here.
The results are summarized in Section , followed by discussion and conclusion.

5.2 Data

The method has been evaluated on three different datasets: a simulation dataset,
the TWA challenge database available on Physionet [85] and a dataset from the
University Hospitals Leuven.
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Figure 5.1: Example of a simulated signal from the same patient without noise
(left), moderate noise (middle) and heavy noise (right).

5.2.1 Simulation data

Artificial ECG and noise signals were generated using the OSET toolbox [188].
The artificial signals consist of the 12 standard ECG channels and are 30 seconds
long. The sampling frequency is 250 Hz. The signals were simulated by modeling
a cardiac dipole and linearly projecting it onto the body surface using the Dower
transform [71]. T wave alternans was simulated by introducing a constant offset
to each odd T wave as demonstrated in [47]. The level of TWA was varied
between 5 µV and 50 µV . After all signals were generated, the differences
between subsequent T waves were manually checked to ensure the TWA level
was consistent with the simulated levels. Fifty different patients were simulated
by calculating fifty Dower transformation matrices using least-sqaures fitting
based on signals of the PTB database available on Physionet [27, 85]. In order
to work with realistic ECG signals and to be able to test the robustness to
noise, realistic ECG noise was added to the signals using the noise generator
provided with [188]. The noise consists of a mixture of equal amounts of baseline
wander, muscle artifacts and electrode movements. A separate noise signal was
generated for each synthetic signal and superposed onto the signal. The SNR
value of the signals was varied to construct two sets with respectively moderate
noise (SNR = 15dB) and high noise (SNR = 5dB). Figure 5.1 illustrates the
noise level by showing a signal from one patient in all three conditions (without
noise, moderate noise, heavy noise).

5.2.2 Physionet dataset

The TWA database available on Physionet [85] was assembled for the Computing
in Cardiology Challenge of 2008 [152]. It contains 100 ECG signals sampled at
500 Hz. Most signals are 12-lead ECG channels, some signals only contain two or
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three channels. The duration of the signals is (approximately) two minutes. The
records were collected from different databases, and the final dataset contains
both real-life and artificial ECG signals. The signals are ranked according to
the level of T wave alternans present in the ECG. The exact amount of TWA is
not known.

5.2.3 University Hospitals Leuven dataset

The third dataset was obtained in the University Hospitals Leuven (Belgium),
and includes 33 Holter ECG signals from nine subjects. Selection of subjects
was done based on the results of a clinical TWA test (Cambridge Analytic
Spectral Method). Only subjects with multiple consistent positive or negative
tests were included in the dataset. During the test, subjects were asked to cycle
on a stationary bike. By increasing the workload, their heart rate is increased
from resting rate to 110 beats per minute. The dataset included 13 signals from
four subjects with positive clinical TWA tests (referred to as TWA group) and
20 signals from five subjects with negative clinical results (referred to as control
group). All ECG signals are recorded with a sampling frequency of 256 Hz.
Most records have three ECG channels (30/33 records), some only include two
channels (3/33 records). The signals are all between 14 and 23 minutes long.
The study was approved by the Ethical Committee of the University Hospitals
Leuven.

5.3 Methods

The complete TWA detection method consists of five steps. After 1)
preprocessing and 2) T wave segmentation, 3) a tensor containing all T waves
is constructed. 4) This tensor is then decomposed and 5) the decomposition
result is analyzed to detect and quantify T wave alternans.

5.3.1 Preprocessing

The preprocessing stage is necessary to remove noise from the signal so that it
does not affect the results of the TWA detection. When applying noise removal
methods, it is essential that the shape and amplitude of the T wave are not
altered since this could introduce errors in the final result. We considered
baseline drift and high frequency noise from for example muscle artifacts as
major noise sources in ECG signals. To remove baseline wander a method
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that removes the baseline by reducing quadratic variation was used [78]. The
quadratic variation [x] of a signal x ∈ Rn is defined as:

[x] =
n−1∑

k=1
(xk − xk+1)2 (5.1)

It can be seen as a measure for the stability in a signal, which increases with
increasing noise levels. Quadratic variation reduction calculates an estimate of
the baseline by solving a constrained convex optimization problem, with the
quadratic variation of the solution one of the constraints. The method has been
shown to outperform other state-of-the-art methods [78]. After that, the signal
was filtered with a low-pass filter with a cut-off frequency of 60 Hz to remove
high frequency noise. Since the T wave is typically contained in a frequency
band ranging from 2 to 35 Hz [33], this should not induce significant changes
in morphology of the T wave on a macroscopic scale. Finally the signals were
normalized to facilitate comparison between different signals.

5.3.2 T wave segmentation

In order to be able to detect transient T wave alternans (i.e. TWA that is only
present in certain segments of the ECG), a moving window of 50 heartbeats
was used to analyze the signals. T wave segmentation is preferred over T wave
delineation since the latter is sensitive to noise. T waves were segmented by
selecting a window with length J after each detected R peak. Since the length
of the QT interval changes with a changing heart rate, the start point st and
length of the windows J are dependent on the mean RR interval length over the
current analysis window of 50 heartbeats (RR). For st we made a distinction
between three possible RR ranges:

1. RR ≤ 0.6s: st = R peak + 100ms

2. 0.6s < RR < 1.1s: st = R peak + 150ms

3. RR ≥ 1.1s: st = R peak + 250ms

The window length J was 0.4
√
RR. The interval boundaries have been

determined experimentally to ensure accurate T wave segmentation and largely
correspond to other values found in literature [34].
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5.3.3 Tensor construction

In a similar way as Chapter 4, the ECG signal was transformed into a tensor
before applying tensor decompositions. Since the objective is T Wave Alternans
detection, the tensor should be constructed in such way that the changes in
T waves over different heartbeats were maximally emphasized. Therefore we
constructed a T wave tensor T : a third-order tensor that consists of the T
waves of all channels and heartbeats. The T waves of heartbeat one formed
the first frontal slice of the tensor, the T waves of the second heartbeat formed
the second slice, etc. This way, one tensor was constructed for each ECG
signal. Each tensor has three modes, channels x time x heartbeats. If the ECG
signal contains C channels and M heartbeats, the resulting tensor will have
dimensions (C × J ×M). Since we used a sliding window of 50 heartbeats to
analyze the signals,M was here fixed to 50. Note that both the second and third
dimensions contain temporal information: the second dimension contains the
signal of individual T waves while the third dimension shows a more long-term
view of the different heartbeats. Figure 5.2 illustrates the construction of the
tensor.

There is an important difference between the tensorization in the previous
Chapter and here: in Chapter 4, the individual heartbeats were segmented by
selecting a window around the R peaks. When these heartbeats are stacked one
after the other, the different heartbeats are automatically synchronized at the
R peak location (which is always at the same time location in the segmentation
window). Here, segmentation is done by taking a fixed-size window after the
R peak that contains the T wave. When for example the heart rate changes
within a signal, it is possible that the timing of the T wave with respect to the
R peak changes, and that the T waves of different beats are thus not strictly
aligned in the third mode.

5.3.4 Tensor decomposition

In the next step, the T-wave tensor T ∈ RC×J×M was decomposed to obtain the
factor vectors necessary to perform TWA detection. Two different decomposition
methods were compared: CPD and PARAFAC2.

Canonical Polyadic Decomposition (CPD)

Similar to the approach explained in the previous Chapter, CPD was the first
method used to break down the tensor in different factors. If T is a third-order
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Figure 5.2: Construction of the T wave tensor: the T waves of all channels are
segmented and stacked beat-by-beat in a 3D manner. The result is a tensor
T ∈ RC×J×50 with modes channels x time x heartbeats.

tensor, CPD can be expressed as:

T =
R∑

r=1
ar ⊗ br ⊗ cr (5.2)

The number of rank-1 terms R is the rank of the decomposition, ar,br and cr
for r = 1, ..., R are the factor vectors for each order. Building on the results
of Chapter 3, and since here the interest lies in the main variation between
subsequent T waves, only one component was extracted and therefore R was
restricted to one. The result of Equation 5.2 were then three factor vectors
a1 ∈ RN , b1 ∈ RJ and c1 ∈ R50 that correspond to the three modes of the
original tensor, channels, time and heartbeats.

CPD results in one loading vector for each tensor mode. If the tensor is low-
rank, the CPD model is accurate and these three vectors will capture the main
variations present in the tensor. When the ECG signal is relatively noisefree
and the T waves are perfectly aligned in the third mode, this assumption is
met and CPD will lead to correct results, similar to the results presented in
the previous Chapter. When there is however a variation in for example the
timing of subsequent T waves (as can be the case with a changing heart rate),
the tensor cannot be decomposed in rank-1 components and CPD will lead
to inaccurate results. In those cases it is better to use a more general tensor
decomposition method such as PARAFAC2.
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PARAFAC2

PARAFAC2 is a tensor decomposition method that is a variation of the standard
CPD [30]. The main difference is that PARAFAC2 is less restrictive than CPD
in the sense that it allows variations in the factor vectors of one mode. This is
especially useful when one of the factors contains a time shift. In this application,
such time shift arises if the T waves are not exactly aligned in time, for example
when the heart rate differs and the QT interval length changes. The difference
is shown in Figure 5.3, which shows schematic representations of CPD (Figure
5.3a) and PARAFAC2 (Figure 5.3b). If Xm ∈ RC×J is one frontal slice of
a tensor with the T waves of one heartbeat in all channels, this slice can be
modeled as:

Xm =
R∑

r=1
ar ⊗ br,m ⊗ cr + ε (5.3)

The subscript m implies that there is an individual loading vector br,m for
each frontal slice of the tensor, effectively making Br (the collection of loading
vectors for each heartbeat m) a loading matrix with dimensions J ×M . Each
row of this loading matrix corresponds to the temporal profile of a T wave in
one heartbeat, taking into account the possible time shifts in T waves due to
heart rate changes. M is thus the total number of heartbeats contained in one
tensor, and J the length of the T wave segmentation window.

Equation 5.3 will have a unique solution when the cross-product bTr,mbr,m
remains constant for all m. This is the case if the different rows of B are only
shifted in time. Under normal circumstances, e.g. when the ECG signal does not
contain an excessive amount of noise, this assumption is met and PARAFAC2
accurately decomposes the ECG signal.

5.3.5 Tensor decomposition results

The result of the tensor decomposition is a collection of three factor vectors
(or two factor vectors and one matrix in the case of PARAFAC2), which give
information about the structure of the signal in the three tensor modes. All
three components give valuable information about the T wave characteristics
in time and space, but only one was used for the actual detection of T wave
alternans. The first mode-1 factor vector corresponds to the spatial dimension.
This vector shows the variation of the T waves over the different channels. The
mode-2 factor vector (or matrix for PARAFAC2) shows the time course of the
T waves. If there is a time shift present this will manifest itself in the different
rows of the PARAFAC2 factor matrix. In the case of CPD this vector simply
shows the average T wave in the signal. The mode-3 factor vector expresses the
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(a) Canonical Polyadic Decomposition

(b) PARAFAC2

Figure 5.3: Comparison of the tensor decomposition methods: The result of
CPD are three factor vectors, while PARAFAC2 yields tw factor vectors and
one factor matrix since it allows variations in the second mode.

differences in the T wave in subsequent heartbeats. Only this vector was used
in the next step for further analysis.

5.3.6 Detection of T wave alternans

The actual detection of T Wave Alternans was done using the third factor vector
as explained in the previous paragraph. If a signal contains TWA, the typical
ABABAB-pattern that is present in the T wave amplitude will be captured by
the tensor decomposition as an alternating time series in the third dimension.
To detect TWA the number of consecutive turning points of cr, the loading
vector of the heartbeats dimension, were first detected. Turning points were
defined here as local minima or maxima, e.g. points where the derivative of
the factor vector changes sign. Since noise also causes (random) variations in
the T wave amplitude, a threshold on the minimum number of consecutive
turning points was introduced to avoid false positive detections. The threshold
was set to 10, since a preliminary study showed that this value leads to good
results with real-life signals [91]. The TWA magnitude was then determined by
summing the differences between all turning points.

Let TP be the vector of turning point indices (taking into account the minimal
number of 10 consecutive turning points) with length L, and cr the third loading
vector in the result of the tensor decomposition. The total TWA magnitude in
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a window can then be calculated as:

TWA =
L∑

i=2
|cr(TP (i))− cr(TP (i− 1))| (5.4)

5.4 Results

This section presents the results of TWA detection on different types of data.
In all cases a comparison between CPD and PARAFAC2 is done in order to
assess differences between both methods. First the detailed results for three
case studies (two signals containing TWA, one with and one without T wave
shift, and one signal without TWA) are qualitatively described. Next the results
for the three datasets considered are discussed. All experiments were performed
using MATLAB R2015b. Tensorlab is used for the tensor construction and
CPD decomposition [231]. PARAFAC2 is implemented in the N-way toolbox
[9].

5.4.1 Case study

We examined three sample signals taken from the Physionet database. The first
signal (twa11 ) did not present TWA, the second signal (twa99 ) contained a
significant amount of T wave alternans and the third signal (twa01 ) contained
both TWA and shifted T waves caused by changes in heart rate. This way we
could evaluate both the effect of the presence of TWA and a shift in T wave
position for both methods. All signals consised of 12 channels and were cropped
to 50 heartbeats. Figure 5.4 shows a ten second excerpt of the signals. None
of the signals contained obvious noise, meaning the results are not influenced
by signal quality. The complete signals (30 minutes, 12 channels) can be
found on https://physionet.org/pn3/twadb/. After tensorization and tensor
decomposition of all three signals (using both CPD and PARAFAC2), the
resulting loading vectors could be examined. The results are shown in Figure
5.5.

Figures 5.5a, 5.5d and 5.5g show the spatial vector for the signal without TWA,
with TWA and with TWA and T wave shift respectively which show the sign
and magnitude of the T wave in different channels. From Figure 5.5a we can
for example conclude that T waves in channel 9 had a larger amplitude than
those in channel 12. The temporal vectors, shown in Figure 5.5b, 5.5e and 5.5h
correspond to the shape of the T wave in time. Here the difference between CPD
and PARAFAC2 is obvious, especially in Figure 5.5h. The result for PARAFAC2
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Figure 5.5: Vectors a, b and c for signal without TWA (top row), a signal
with TWA (middle row) and a signal with TWA and shifted T waves (bottom
row). The results for CPD are plotted in red, the results for PARAFAC2 in
black. The three different columns show respectively the spatial, temporal and
heartbeats feature vectors.
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is a matrix, and each row of the matrix (corresponding to the temporal profile
for each heartbeat) is plotted on top of each other. The presence of a large T
wave shift in the third signal is evident. While CPD succeeded in capturing the
mean shape of the T wave, the difference in the timing of the subsequent waves
was discarded. This information is contained in the feature matrix obtained by
PARAFAC2. The other signals did not contain a large shift, as is demonstrated
by the small variation in the PARAFAC2 results of Figure 5.5b and 5.5e. Hence,
the results of CPD and PARAFAC2 were much more similar.

T wave alternans can be detected by analyzing the third loading vector. Figures
5.5c, 5.5f and 5.5i show this loading vector for all analyzed signals. On Figure
5.5c we see that, although there is a certain variation in the T wave magnitude
over different heartbeats, no clear pattern is visible. The typical ABABAB-
pattern is however clearly visible on Figure 5.5f and 5.5i. Note that in Figure
5.5f, there is only T wave alternans present in the first part of the signal. The
total TWA magnitude could then be calculated as defined in Equation 5.4. Note
that the results for PARAFAC2 and CPD are almost identical in Figure 5.5c
and 5.5f, while the results in Figure 5.5i differ significantly. This is caused by
the large T wave shift (see Figure 5.5i).

5.4.2 Artificial signals

We first analyzed the results of both proposed methods on a clean signal with
varying levels of T wave alternans. Then we investigated the influence of a
temporal shift in the T waves. Finally the robustness of the methods was tested
by changing the noise levels. All results are summarized in Figure 5.6. All
results shown are averaged over the 50 simulated patients, with the variance
among all patients indicated with the shaded areas.

The results for a signal without noise are presented in Figure 5.6a. The simulated
TWA level was varied between 5 µV and 50 µV . There is a clear correlation
between the simulated and estimated TWA magnitude, both for CPD and
PARAFAC2. There is very little variance between results for all patients: the
mean differences in estimated TWA levels over all patients was 3 µV and does
not change significantly with the simulated TWA level.

An artificial T wave shift was then introduced by moving the T wave
segmentation window a random number of samples (Figure 5.6b). The maximal
shift was varied between 0 and 50 ms and the TWA level was fixed to 25 µV .
The results are presented as the ratio between the estimated TWA and simulated
TWA, which should be 1 for a good detection. The results for PARAFAC2
stay approximately constant (between 0.98 and 1.01), even when the T wave
shift is maximal. CPD did not handle the increasing T wave shift well: for a
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(a) Simulated vs estimated TWA
levels for artificial signals without
noise.

(b) Estimated TWA levels for
different values of T wave shift.

(c) Simulated vs estimated TWA
levels for artificial signals with
moderate noise.

(d) Simulated vs estimated TWA
levels for artificial signals with high
noise.

Figure 5.6: Results for CPD (red) and PARAFAC2 (black) for four types of
artificial signals: Clean signals with varying amount of TWA (5.6a), clean
signals (TWA = 25 µV ) with changing T wave shift (5.6b), artificial signals
with a moderate (5.6c) and high (5.6d) noise level. The circles represent the
mean values over all 50 simulated patients, the shaded areas the variations in
the results.
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very small shift (between 0 and 10 ms) the result was correct, but for larger
shifts the results deteriorated quickly. For a maximal T wave shift of 50 ms the
average CPD result seems good, but the large variance among different patients
indicate that the obtained results varied greatly and were thus not reliable.

When introducing noise, the correlation between the simulated and estimated
TWA levels was maintained, although the estimated CPD levels were distinctly
smaller (5.6c). For a simulated TWA level of 50 µV , the average result obtained
with CPD was 39 µV , while the result of PARAFAC2 was more accurate
(43 µV ). The results show a larger spread for lower TWA levels, which could be
expected since the noise is more likely to mask the TWA in these cases. Both
methods showed less precise results under high noise level (see Figure 5.6d):
While the estimated TWA magnitudes on average increased with increasing
simulated TWA, there were clearly more variations when compared with Figure
5.6a and 5.6c. Here PARAFAC2 seems to underperform compared to CPD,
especially for low TWA levels.

5.4.3 Physionet database

To our knowledge, the Physionet database is the only publicly accessible labeled
TWA database. This makes it ideal for use as a benchmarking tool to make
comparison with existing methods possible. This can be done by ranking the
results from the TWA detection in order of magnitude, and comparing this
ranking with the reference ranking by calculating the Kendall rank correlation
coefficient between the two. A Kendall coefficient that is greater than 0.436 is
considered significant (p > 0.99). Both an order using CPD and PARAFAC2
were computed. The Kendall coefficients obtained were both significant, the
CPD coefficient being 0.79 and the PARAFAC2 coefficient 0.87. Table 5.1
compares the tensor-based scores with some methods found in literature and
the best result of the original TWA challenge. A coefficient of 0.87 and 0.79,
achieved using respectively PARAFAC2 and CPD, would have been the fourth
and sixth highest rank obtained during the challenge, and are both higher than
the values for some of the most widely used methods found in literature.

Figure 5.7 shows a comparison between the reference ranking of the signals and
the ranking obtained by respectively CPD (Figure 5.7 - left) and PARAFAC2
(Figure 5.7 - right). There is a clear correlation for both methods, which is
reflected in the high Kendall coefficient. The reference ranking and PARAFAC2
ranking correspond largely, and for most signals there is only a small difference
between the reference score and the PARAFAC2 score. A remarkable exception
is signal twa63, which has an intermediate amount of TWA according to the
reference ranking (position 52) but where no TWA is detected using the tensor-
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Method Kendall coefficient

CPD 0.7851
PARAFAC2 0.87
Periodic Component Analysis [151] 0.766
Modified Moving Average Method [162] 0.73
Spectral Method [200] 0.416
Best challenge [198] 0.911

Table 5.1: Kendall coefficient scores obtained by comparing the rankings from
different methods found in literature and the two proposed tensor-based methods
with the reference ranking for the Physionet database.
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Figure 5.7: Comparison between the reference ranking of the Physionet database
and the ranking obtained by CPD and PARAFAC2.



RESULTS 83

TWA group Control group
0

10

20

30

40

50

60

E
st

im
at

ed
 T

W
A

 m
ag

ni
tu

de

CPD

TWA group Control group

0

10

20

30

40

50

60

70

E
st

im
at

ed
 T

W
A

 m
ag

ni
tu

de

PARAFAC2

Figure 5.8: Estimated levels of T wave alternans using CPD (left) and
PARAFAC2 (right) in TWA group vs control group. The CPD results contain
several outliers which are represented in red. Their value was capped at 60 µV
(indicated with a dotted line) to increase clarity of the plotted results.

based approach (position 3 with both CPD and PARAFAC2). Further inspection
of this signal showed that this signal is taken from the Sudden Cardiac Death
Holter Database [92], a database containing signals from patients with sustained
ventricular tachyarrhythmia. In this signal in particular, the timing of the T
waves was considerably later than in other signals, leading to a suboptimal
segmentation and tensor construction. This, combined with the presence of the
ventricular tachyarrhythmia, most likely causes the incorrect result in this case.

5.4.4 Clinical dataset from the University Hospitals Leuven

When analyzing the clinical database, T wave alternans levels were calculated
in windows of 50 heartbeats as explained in Section 3.6. In order to present
results for the complete signals, the TWA levels in all windows were combined
by calculating the 90th percentile of all values of windows containing TWA,
resulting in one TWA value per signal. The detected levels of T wave alternans
in the University Hospitals Database are shown in Figure 6.4 for both tensor
decomposition methods.

The results are split according to the patient group (TWA vs control). When
comparing between groups, both PARAFAC2 and CPD showed higher TWA
amplitudes for the TWA group than for the control group, but the differences
were only significant with PARAFAC2 (p = 0.008). Additionally we also
analysed the number of windows which contain TWA in both groups. The
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Figure 5.9: ROC curve for classification using CPD (AUC = 0.64) and
PARAFAC2 (AUC = 0.88).

number was higher for the TWA group for both methods, but the result was
again only significant for PARAFAC2 (p = 0.03). On average TWA was detected
in double the windows of a signal in the TWA group than in the control group.
Since TWA is linked to increased heart rates we also performed an analysis of
the heart rate. This did however not reveal significant differences between both
groups (mean heart rate of 96.8±9 bpm in the TWA group vs 96.1±13 bpm
in the control group). Other signal characteristics such as signal length and
number of channels did not differ significantly between both groups either.

To provide a suggestion for a clinically useful TWA threshold, we have used
the values obtained by both CPD and PARAFAC2 to classify the signals as
either containing TWA or not. The ROC curve of these classifications is shown
in Figure 5.9. The AUC values of CPD and PARAFAC2 are respectively 0.64
and 0.88. Further analysis of the results for PARAFAC2 showed that for a
threshold of 13 µV the method obtains a sensitivity of 80% and a specificity of
83%, indicating that this might be a good cut-off for further use.

5.5 Discussion and Conclusion

In this Chapter, we presented a method to detect T wave alternans using
tensor decomposition methods. When comparing the two proposed tensor
decompositions, CPD and PARAFAC2, we can conclude that PARAFAC2
has clear advantages over CPD. While CPD obtained good results in ideal
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circumstances (e.g. no noise and perfectly aligned T waves), these conditions
are rarely met in real-life situations. This was also demonstrated by the superior
results of PARAFAC2 on the non-artificial signals in the Physionet database
and the clinical dataset from the University Hospitals Leuven. CPD failed to
deliver good results in these circumstances, as was shown by the non-significant
results on the patient data from the University Hospitals Leuven. CPD seems
however slightly more robust to noise, based on Figures 5.6c and 5.6d. Its
inability to deal with changing heart rates and moving T waves makes it
nevertheless unacceptable for real-life applications. While it is possible to
control changing heart rates up to a certain degree, the results in Figure 5.6b
show that CPD results deteriorate quickly and become unreliable even with a
minor change. Since small heart rate differences are unlikely to be avoided in
real-life circumstances (even with control for heart rate), CPD would not be a
good choice for use in clinical practice.

PARAFAC2 on the other hand yielded good results both on artificial and clinical
ECG signals. The difference was especially large in the presence of a T wave
shift such as in Figure 5.5h. Since this occurs frequently in clinical signals,
where a changing heart rate is expected, it is important that methods can deal
with this type of variation. Figure 5.6d shows that the results of PARAFAC2 are
less robust under high noise conditions. This indicates that it is presumably not
an optimal method for ambulatory measurements. However, since many TWA
tests occur in clinical environments where noise can be avoided to a certain
extent, this is not likely to be a large obstacle in real life. The results shown on
Figure 6.4 and 5.9 confirm this. Special attention for the choice of segmentation
window is however needed when dealing with patients that have conditions that
can alter the T wave interval and timing, such as Long QT Syndrome (LQTS).
The results on the Physionet Database seem to indicate that in extreme cases
the proposed segmentation window is not sufficient to detect TWA. It would
perhaps be a possibility to increase the length of the segmentation window in
patients with known LQTS.

When comparing the results of the Physionet Database with other methods,
the tensor-based approach performed better than the other methods found in
literature and obtained comparable results with the best-scoring method of the
CinC challenge [198] (0.87 vs 0.911). The Kendall coefficient only compares
the ranking of the different signals, and gives no information about whether
the estimation of the TWA magnitude is correct. For this a fully annotated
standardized TWA database with correct estimations of TWA magnitude is
necessary which does not exist at this moment.

When analyzing the results of the clinical dataset from the University
Hospitals Leuven, the difference between TWA positive signals and controls
was statistically significant for PARAFAC2 (p = 0.008). Note however that also
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in the control group a certain amount of TWA was still detected. This could
be explained by a suboptimal choice of detection threshold (e.g. the minimal
number of consequent sign changes for TWA presence). Full optimization of
this parameter (using a database where the exact amount of TWA is known
as explained earlier) could improve results here. Another possible explanation
however is that the clinical spectral based TWA test does not detect very low
levels of T wave alternans (< 10µV ). The spectral based method commercialized
by Cambridge heart was chosen as reference for the clinical dataset because
it is one of the 2 official FDA-cleared methodologies and has extensively been
studied [230]. To verify such hypothesis the artificial signals containing fixed
amounts of TWA could be analyzed by the clinical methods to compare the
results. This could be an interesting approach for a future study. The suggested
clinical threshold of 13 µV could also be validated in this way.

A limitation of this study is the small size of the clinical database of only nine
patients. In order to fully validate the clinical threshold and to verify whether
it has prognostic utility, a larger prospective dataset is needed. This would also
enable us to examine if the detected estimations of TWA magnitude correlate
with clinical findings such as occurrences of arrhythmic events. A dedicated
study would furthermore allow us to study the link between TWA levels and
heart rate, as multiple studies have shown that TWA increases with increasing
heart rate [118, 114, 35]. The limited sample size did not allow us to make
strong observations in this sense here.

The obtained results show that the tensor-based approaches are a promising
tool for TWA detection. They are fully automated and require only a minimal
amount of preprocessing. The presented method is fairly general and can (with
slight adaptations) also be utilized in different applications. Other types of
alternans such as ST alternans or QRS alternans can be evaluated easily by
constructing a tensor that consists of other ECG segments.

Based on the obtained results we can conclude that the proposed methods are a
robust way of detecting T Wave Alternans in different conditions. PARAFAC2
is a better choice as tensor decomposition method than CPD since the more
general structure supports time shifts in subsequent T waves.



Chapter 6

Analysis of changes in
heartbeat morphology prior to
in-hospital cardiac arrest

Following a similar approach to the previous Chapters, here we present another
algorithm that uses CPD to analyse the ECG signal. The main interest in this
Chapter is the analysis of changes in heartbeat morphology prior to in-hospital
cardiac arrest. For this study, a dataset with long-term patients in the intensive
care unit was collected in the UCSF/UCLA hospital. The data were however
characterized by large amounts of noise, diminishing the signal quality. In
order to make a robust tensor decomposition feasible, we therefore incorporated
information about the signal quality in the CPD optimization problem, which
allows more accurate analysis. Preliminary results of this study have been
published as "Goovaerts G., Van Huffel S., Hu X., "Tensor-based Analysis of
ECG changes prior to in-hospital cardiac arrest", in Proc. of the 44rd Annual
Computing in Cardiology, CinC, Rennes, France, Sep. 2017" [86]. The paper
describing the full method and results is currently under review in the IEEE
Journal of Transactions in Biomedical Engineering.

6.1 Introduction

In-hospital cardiac arrests account for approximately 40% of all cardiac arrests
[21]. Although patients who experience a cardiac arrest in a hospital have a

87
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higher chance of experiencing arrhythmia while being monitored and thus have
a higher chance of being resuscitated in time, only 20% of patients survives to
discharge [84]. Early patient identification would thus be very useful in this
environment. One strategy is to continuously monitor vital signs in patients and
identify patterns or changes in these signals that are predictive for a later cardiac
arrest in that patient. These methods can then be applied to out-of-hospital
cardiac arrest populations in the future.

When a patient experiences a cardiorespiratory arrest in a hospital, a ’code
blue’ is called, indicating a medical emergency or a person in need of immediate
medical attention. When a patient has an increased chance of deterioration
and eventually of cardiac arrest, rapid response teams are called in order to
start early interventions to avoid the occurrence of an actual code blue. In this
Chapter, we will therefore examine how the ECG signal morphology changes
prior to a code blue in patients with different causes of cardiac arrest. We make
a distinction between different types of cardiac arrest, since the underlying
mechanisms preceding different type of arrests are fundamentally different, and
therefore different ECG changes can be expected for the different patient groups.
The identification of ECG features that change significantly before a cardiac
arrest would allow a more precise monitoring and could therefore potentially
decrease the number of actual code blues. The ECG signal is chosen over other
vital signs since it can be measured non-invasively and monitoring equipment is
available in most clinical settings.

There have been many studies investigating the immediate mechanisms visible
on ECG signals that lead to a cardiorespiratory arrest [115, 134, 236], but
changes over a longer timescale (multiple hours before the cardiac arrest) are
less well-studied. Previous studies focused on bradyasystolic cardiac arrests
[67, 103] or heavily relied on manual measurements [68]. Our previous work
examined changes in ECG parameters between a stable period and the period
right before the cardiac arrest [86]. The study described here extends the
analysis to other causes of cardiac arrest, using automated methods that need
a minimum of user interaction. This makes them more useful for future use in
clinical practice.

The method proposed here introduces the use of weighted tensor decompositions,
which allow us to incorporate prior knowledge about the signal quality in the
tensor decomposition in the form of a weight tensor [167]. When choosing the
weights properly, they can automatically deal with the noise that is inherent
to biomedical signals, leading to a more accurate analysis and making them
better suited to work with real-life signals. The method used in this study
furthermore uses a computationally efficient weighting scheme [25], which is
essential for real-time processing. As such, this Chapter has the following main
contributions:
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• The application of computationally efficient weighted tensor decomposi-
tions to extract ECG features, which permits to correct for lower signal
qualities in quasi real-time.

• Development of a noise model to estimate the SNR value of each individual
heartbeat (fully described in Appendix B).

• The use of different analyses of changes in parameter values prior to
in-hospital cardiac arrest

• The inclusion of three different patient groups with different preceding
rhythms.

The rest of this Chapter is structured as follows: The next Section gives a
short description of the dataset used here. The different steps of the developed
method are described in Section 6.3. Sections 6.4 and 6.5 contain respectively
the results and discussion, after which the conclusion is summarized in Section
6.6.

6.2 Data

The dataset contained multilead ECG signals of patients that experienced a
code blue due to a cardiopulmonary arrest in the intensive care units of the
Medical Centers of the University of California in San Francisco (UCSF) and
Los Angeles (UCLA). All code blues occurred between 2013 and 2015. For
all patients, information was provided about the date and time of the code
blue, the type of cardiac arrest and whether they survived the code blue/and or
survived to discharge. Patients were divided in three different groups depending
on the preceding rhythm (directly prior to the arrest):

1. Ventricular tachycardia or ventricular fibrillation (VT/VF)

2. Asystole

3. Pulseless Electrical Activity (PEA)

For each patient, ECG signals from the last 24 hours before the code blue
occurred were extracted. However, not all patients were continuously monitored
over these 24 hours. Only patients with a total ECG length of more than three
hours were included in the study. Additionally, patients of which the cause of
cardiac arrest was not known or dubious were also excluded for analysis.
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Table 6.1: Number of patients with preceding rhythms in the dataset.

Cardiac arrest # patients %

VT/VF 33 20.6%
Asystole 28 17.5%
PEA 99 61.9%

The final dataset contained 160 recordings with a sampling frequency of 240 Hz.
The signals from UCSF contain 7 channels: I, II, III, V, aVR, aVL and aVF,
those from UCLA were measured with four leads. The number of patients in
each cardiac arrest group is summarized in Table 6.1.

6.3 Methods

Our method consists of five different steps: 1) The signals were first preprocessed
to remove major noise sources and detect R peaks. 2) The two-dimensional
signals were then transformed into a third-order tensor, which was subsequently
3) decomposed to extract a template heartbeat. 4) This heartbeat was used to
derive seven parameters 5) which were finally analysed in two different ways.

6.3.1 Preprocessing

Some ECG recordings contained corrupted portions in the beginning of the
recording, which were visually detected and deleted. All signals were then
preprocessed channel-by-channel. First a Butterworth high-pass filter with
order 2 and cutoff frequency 0.5 Hz was applied to remove baseline wander. The
filter was applied twice, first in forward and afterwards in backward direction
to remove phase distortion so the order is effectively doubled to 4. The filter
parameters were chosen in order to minimize deformations of the ECG signals,
as shown in [127]. Then the signals were normalized by calculating the modified
z-score z′, which is more robust to outliers than the standard z-score [106]

z′i = 0.6745(xi − x̃)
MAD

(6.1)

where x̃ denotes the median and MAD the median absolute deviation of the
signal. R peaks were detected using a multilead extension to the Pan-Tompkins
algorithm that fuses R-peaks detected in separate channels [125].
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6.3.2 Tensorization

We tensorized the preprocessed ECG data matrices into third-order tensors with
dimensions channel x time x heartbeats where each mode-two fiber represents
one heartbeat in one channel. First, the signals were segmented in individual
heartbeats of length I, obtaining J heartbeats for all M channels. Next, we
stacked all heartbeats in the third mode, resulting in a third-order tensor
T ∈ RM×I×J . Segmentation was done here by taking a fixed-size segmentation
window symmetrical around the R peak. The window length is 1.6RR (with
RR the mean RR interval length).

All signals were processed with a sliding window of 100 heartbeats without
overlap between subsequent windows. We constructed, decomposed and analysed
a tensor for each window, which allowed to capture the dynamic ECG changes
over time. The result of the tensor construction was thus one tensor T for each
100 beat window. Each tensor had three modes: the first mode was the spatial
mode which corresponded to the different ECG leads in the signal. The second
temporal mode showed the time course of the individual heartbeat and had a
varying length equal to the length of the segmentation window for each tensor.
Finally, the third mode was the heartbeat dimension with a fixed length of 100.

6.3.3 Tensor decomposition

Weighted Canonical Polyadic Decomposition

As explained before, CPD writes a tensor T as a sum of rank-one terms. Here
we used an alternative way to compute the CPD, namely Weighted CPD
(WCPD) which uses weighted least-squares instead of regular least-squares.
WCPD permits the incorporation of prior knowledge about the signal quality
in the tensor decomposition, giving lower weight to entries with higher noise
levels. This is done by introducing a weight tensor W ∈ RM×I×J with the
same dimensions as T ∈ RM×I×J into the standard CPD optimization problem
2.3. Each entry of W contains the weight for the corresponding entry of T .
A detailed explanation of the weight tensor construction follows in the next
paragraph. The new optimization problem is then:

min
A,B,C

1
2 ||W ∗ (T − JA,B,CK)||2F (6.2)

The optimization problem was solved using a novel Weighted Least Squares
approach (WLS) where the weight tensor is modelled by a polyadic
decomposition (as in Equation 2.3), enabling efficient weighting. The
computational details of the WLS algorithm can be found in [25].
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In the previous Chapters, a CPD rank of one was shown to lead to good results
[87, 88]. The same approach was used here. This means that the tensor T was
compressed into a single rank-one term, consisting of factor vectors a1 ∈ RM ,
b1 ∈ RI and c1 ∈ RJ . While the use of a different rank value was explored,
increasing the rank did not lead to improved results. This further confirmed
our initial choice.

Construction of weight tensor

The weight tensor W ∈ RM×I×J contains information about the signal quality,
e.g. entries with higher quality receive higher weights. The quality of ECG
signals is reduced by artifacts, which are technical or physiological. Technical
artifacts can be caused by equipment malfunctioning or electrode loosening.
During a technical artifact no ECG signal is measured; the corresponding entries
in T therefore receive a weight of 0, effectively eliminating them from further
analysis. Physiological artifacts are caused by for example muscle contractions
and are superimposed onto the ECG signal, reducing the Signal-to-Noise Ratio
(SNR). For signals which do not contain technical artifacts an estimate of the
SNR (calculated using a novel SNR model described in the next paragraph
and Appendix A) was therefore used as weight. We calculated one weight for
each complete mode-2 fiber, e.g. each full heartbeat in each channel. It was
thus assumed that the signal quality was the same during the time course of
one heartbeat but could differ from channel to channel or between different
heartbeats. Hence, the resulting weight tensor W has rank M , by construction,
with M equal to the number of channels in the ECG signal.

Technical artifacts Some typical examples of technical artifacts are shown in
Figure 6.1. They are characterized by extreme signal amplitudes (Fig 6.1b)
and/or very structured patterns (Fig 6.1a) that are substantially different from
physiological signals. Figure 6.1b includes three seconds of normal ECG signal
in the beginning and end as an amplitude reference. Since the artifacts were
extremely dissimilar from normal ECG signals, they could be detected with
the following straightforward heuristic. A heartbeat was determined to have a
technical artifact if at least five samples had either:

1. Modified z-score > 5

2. Modified z-score = 0

3. Constant derivative
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(a) Technical artifact with structured
pattern
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(b) Technical artifact with extreme
amplitude

Figure 6.1: Two examples of typical technical artifacts found in the dataset.
They can be easily detected and removed by setting their corresponding weights
in the weight tensor to zero.

The weights of technical artifacts were fixed to zero, as described in the previous
paragraph.

Physiological artifacts As explained earlier, we used an estimate of the SNR
of a heartbeat as weight in the case of physiological artifacts. We developed
a SNR model based on the MIT-BIH Noise Stress Test Database [156] which
contains ECG signals with standardized SNR values. The model contained
eight different features found in the literature that have been proven successful
in calculating the SNR of an ECG signal [45]:

1. Skewness

2. Kurtosis

3. Power in 6 different sub bands: 0-10 Hz, 10-20 Hz, 20-48 Hz, 48-52 Hz,
52-100 Hz, 100-120 Hz

A detailed explanation of the construction and validation of the SNR model
can be found in Appendix B.
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Figure 6.2: Illustration of the factor vectors of the weighted CPD for a typical
ECG signal. Each vector corresponds to one mode of the original tensor T .

6.3.4 Parameter calculation

The output of the weighted tensor decomposition are 3 factor vectors a1, b1 and
c1, corresponding to each mode of the tensor. Examples of each factor vector
for a typical ECG signal are depicted in Figure 6.2. They are identical to the
factor vectors used for irregular heartbeat detection in Chapter 4. The mode-1
vector a1 (Fig 6.2a) shows the distribution over the different ECG channels.
The mode-2 vector of the temporal dimension b1 can be seen as a template
heartbeat for all heartbeats in that window (Fig 6.2b). The mode-3 factor
vector c1 shows the differences among all heartbeats in a window (Fig 6.2c).
Since the analysis focused on the changes in ECG morphology, the mode-2
factor vector was used for further analysis. All factor vectors are by definition
unique up to scaling. Since there is only one term here, there is no permutation
ambiguity. In order to remove differences in scaling between different tensor
decompositions, all vectors were first normalized to unit length, b1 was then
rescaled by multiplying it with λ [119]

λ = ||a1||.||b1||.||c1|| (6.3)

with ||a1||, ||b1|| and ||c1|| the original norms of the vectors.

As explained earlier, the mode-2 factor vector corresponds to the model heartbeat
in the ECG signal. Standard techniques could thus be used to automatically
detect the individual ECG waves. Here, we used the wavelet-based ECG
delineator developed by Martinez et al. [143] to extract the locations of the
P wave peak, Q wave, R peak, S peak and T peak. Only the peak of the P
and T wave were detected since the begin and end points of these waves are
often hard to distinguish. All annotations were inspected visually and adjusted
where necessary. 7 different metrics were calculated for each analysed window:
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1. Mean heart rate in BPM (HR), calculated from the length of b1 (l) which
is equal to the segmentation window for each tensor (see Section 6.3.2):

l = 1.6RR

HR = 60.fs
RR



HR = 60.fs

l/1.6

with RR the mean RR interval length in samples and fs the sampling
frequency of the recording.

2. PR interval in ms (PR)

3. QRS interval in ms (QRS)

4. QT interval in ms (QTc), corrected for heart rate using Fridericia’s
correction formula [159]

QTc = QT
3
√
RR

(6.4)

5. Amplitude of the P wave (pAmp)

6. Amplitude of the R wave (rAmp)

7. Amplitude of the T wave (tAmp)

All parameters could be computed from the detected waves by either calculating
the differences between the corresponding time stamps (metrics 2–4) or by
measuring the amplitude of b1 at that point (metrics 5–7). Missing values, for
example in windows which fully consist of technical artifacts, were imputed
by linearly interpolating the parameter values between the last known value
and the next known value. Note that since all signals were normalized in the
preprocessing stage, the final three parameters do not present the ECG signal in
µV , but rather the normalized amplitudes. This facilitates comparison among
subjects.

6.3.5 Analysis of changes in parameter values

Two different analyses were performed. The first one examined the changes of
the different parameters compared to a baseline value in the beginning of the
recording. The second analysis looked at the dominant trend in the parameter
values.
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Changes from baseline

The first analysis detected significant changes from baseline. For each parameter
in each patient, an individual baseline value was defined as the median of the
first five available values. Each parameter in each analysis window was compared
to the baseline value, and changes were considered significant if they exceeded
a threshold value for at least 20 consecutive windows or if they were sustained
until the time of cardiac arrest, as was defined in [68]. Increases and decreases in
parameter values were examined separately. For PR, QRS and QTc a significant
change was a >20ms change from baseline value. For pAmp, rAmp and tAmp
a change was significant if the amplitude rises or falls larger than 20% from
baseline value. For heart rate measurements a difference of 25BPM was detected.
All baseline values and threshold values for PR, QRS and QTc interval lengths
were chose identical to [68] so results can be compared easily. Threshold values
for the other parameters (not analysed in [68]), were defined based on the work
by [37] which studies normal variations in the amplitudes of ECG waves during
stress testing.

Comparisons between groups (e.g. patients with different causes of cardiac
arrest) was performed with a Chi-Square test, which compares proportions
between different groups (in this case patients with different causes of cardiac
arrest). Since changes of 7 different parameters were tested, correction for
multiple comparisons was done with the Benjamini-Hochberg procedure to
decrease the false discovery rate [22]. All p-values were ranked in ascending
order, and each p-value was compared with its Benjamini-Hochberg critical
value ci to determine significance. ci was defined as:

ci = i

m
Q (6.5)

with i the rank of the p-value, m the total number of parameters and Q the
false discovery rate, set to a standard value of 10% in this case as suggested in
[145].

Dominant trend analysis

Determination of the dominant trend in a signal is a multi-scale approach to
the analysis of trends in a signal. The dominant trend is defined as the longest
monotonically increasing or decreasing duration for each metric [67]. After
detection of the dominant trend, explained in the next paragraph, we analysed
its duration, start and terminal value and slope, and compared values for all
groups. To detect the dominant trend in the values of all different parameters,
the procedure as outlined in [67] was followed. It consists of four different
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steps, which are applied to each series of parameter values. Since a tensor was
constructed for each window of 100 heartbeats, the time scale of the parameter
values is expressed in windows.

1. Let the sub-window length wl range from 10 to 150 windows. Create a
set of overlapping sub-windows for each wl that span the entire recording
with an increment of one window.

2. Perform robust linear fitting on each sub-window and record the signs of
the slope of the linear fit. The sign that occurred most is the dominant
slope sign. Robust linear fitting determines the best linear fit between the
begin and endpoint of the sub-window while disregarding outliers in the
signal.

3. Define the optimal sub-window length by calculating the sub-window
length that contained the largest number of dominant slope signs.

4. The dominant trend is the interval that has the most number of consecutive
dominant slope signs for the optimal window length.

When the dominant trend was detected, we easily determined its duration, slope,
start and terminal value. The differences between values for different groups
were tested with one-way Analysis of Variance (ANOVA) testing, followed by a
post-hoc Tukey’s honest significant difference test. ANOVA verifies whether
means of parameter values in different categories are statistically different or
not. If ANOVA yields statistically significant results, this indicates that at
least one mean is significantly different. Tukey’s honest significant difference
test is a one-step multiple comparison test to compare all pairs of means that
controls the family-wise error rate. For all tests a p-value <0.05 was considered
significant.

Figure 6.3 illustrates the different steps in detection of the dominant trend. The
signal depicted is a heart rate signal from the dataset with an obvious positive
trend in the last quarter of the signal. On Figure 6.3a, the different robust fits
for one sub-window length wl are plotted in black together with the heart rate
signal. Figure 6.3b shows the percentage of positive and negative signs for each
wl. Based on this figure the optimal window length is determined, indicated
with a dotted line. The dominant trend is then detected in the signal, and
shown on Figure 6.3c in red. Note that while the dominant trend is increasing,
there can be periods within the trend where the heart rate instantly decreases
(for instance around hour 16).
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Table 6.2: Results of the analysis of changes of feature values from baseline. The
table represents the percentage (%) of patients in each group with significant
increases or decreases in each parameter, together with the p-values from the
corresponding Chi-Square test. Two parameters show significant differences
between the three patient groups: PR-interval and QRS-interval prolongation.
The parameters related to the changes in ECG wave amplitude change significant
in a majority of patients over all groups.

Feature All VT/VF Asystole PEA p-value

HR+ 61,25 57,58 60,71 62,63 0,8737
HR- 25,00 24,24 25,00 25,25 0,9933
PR+ 45,00 63,64 50,00 37,37 0,0268*
PR- 38,13 39,39 50,00 34,34 0,3172
QRS+ 27,50 27,27 53,57 20,20 0,0023*
QRS- 15,63 15,15 25,00 13,13 0,3105
QTc+ 65,00 66,67 67,86 63,64 0,8951
QTc- 58,13 57,58 67,86 55,56 0,5061
pAmp+ 80,00 75,76 89,29 78,790 0,3732
pAmp- 74,38 72,73 85,71 71,72 0,3162
rAmp+ 81,25 78,79 85,71 80,81 0,7748
rAmp- 66,88 57,58 60,71 71,72 0,2447
tAmp+ 85,63 81,82 89,29 85,86 0,7055
tAmp- 72,50 69,70 67,86 74,75 0,7105

* denotes statistically significant results after correction for multiple
comparisons with the Benjamini-Hochberg procedure.

6.4 Results

The results of both analyses are summarized in this Section. All calculations
were performed in Matlab 2017b using Tensorlab for all tensor operations [231].
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6.4.1 Changes from baseline

Table 6.2 shows the result for the first analysis, e.g. the changes compared
to baseline values. All parameters changed significantly in at least 15% of all
patients. QRS interval shortening was least often detected, T wave amplitude
increase most often (85% of all patients). Remarkably, T wave amplitude
increase was also detected in 72.5%. Chi-square testing revealed significant
differences between the 3 considered groups in two parameters: PR interval
prolongation and QRS interval prolongation. Patients with VT/VF cardiac
arrests had more increases in PR interval duration. Patients with asystolic
arrests showed more increases in QRS interval length compared to other groups.
PEA patients had a lower chance of PR and QRS prolongation compared to
the other groups. For all groups, both increases and decreases in P, QRS and T
wave amplitude were highly prevalent, with significant changes in more than 2

3
of all patients overall. There were however no statistically significant differences
between the different groups.

6.4.2 Dominant trend analysis

After detection of the dominant trend in all seven parameters, four characteristics
of each dominant trend were compared between groups: the start value, terminal
value, slope and duration. ANOVA testing showed significant differences for 6
parameters, presented in Figure 6.4. The terminal value and duration of the
PR interval trend, the terminal value of the QRS interval trend and the begin-
and terminal value and duration of the QTc interval trend. Tukey’s honest
significant difference test was used to examine which groups differed significantly
from each other, results are indicated in Figure 6.4 with * (for p<0.05) and **
(for p<0.01). Results showed that all parameters were significantly different
between either the VT/VF and PEA group (PR interval trend duration and
all parameters derived from the QTc trends) or the asystole and PEA group
(terminal values of PR and QRS interval trends).

6.5 Discussion

This Chapter presented a method to automatically analyse changes in ECG
morphology over time. The method was applied to a dataset of ECG signals of
patients in the ICU to determine whether ECG morphology changes differently
in patients with different causes of cardiac arrest.
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Figure 6.4: Parameters derived from dominant trend analysis which showed
statistically significant differences between all groups, together with the p-value
results from one-way ANOVA. Results from Tukey’s hsd test are indicated with
* (p<0.05) and ** (p<0.01). Boxplots show median values and interquartile
ranges. Outliers are clipped to improve visualization.

First the changes compared to a baseline value in the beginning of the recording
were analysed. The parameters that showed significant changes, PR and QRS
interval prolongation, correspond with the findings of [68] where a similar
analysis was done with manual measurements on a different dataset. Both
baseline values and significant differences were defined identically to [68] so
a valid comparison could be made. While QTc interval prolongation is no
significant parameter in this dataset, the QTc interval increases in the majority
of patients. This also matches the results in [68] and other similar studies [134].
When further analysing the changes in wave amplitude, it is remarkable that
many signals showed both significant increases and decreases in the amplitudes
of all ECG waves. This indicates that the ECG amplitude experiences many
changes in the period before cardiac arrest that are larger than physiologically
normal changes. While they were not discriminative between the groups
considered in this experiment, they changed in a large majority of patients with
cardiac arrests and might therefore be of use for general patient monitoring.

When analysing the dominant trends in all parameters, six derived features
showed significant differences between groups. The parameters where the
dominant trend differed between the three groups largely correspond with the
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results of the first analysis: PR and QRS interval length. Differences in QTc
interval trends were also significant, while this parameter was not picked up in
the first analysis.

The start- and endpoint value as well as the duration of the trend in QTc interval
length were all significantly larger in VT/VF patients than PEA patients. Since
QTc prolongation is a known risk factor for Torsade de Pointes [17], a dangerous
form of ventricular tachycardia, this result is not surprising. It is also supported
by the findings in [134, 68].

When combining the results of both analyses, it can be concluded that changes
in interval length are more significant between groups of patients with different
causes of cardiac arrests than changes in amplitude. Changes in amplitude,
especially for P wave and T wave amplitude, are however more prevalent overall
and might thus be useful to monitor overall patient deterioration. To confirm
this, it would be beneficial to collect data from a group of control patients that
do not experience a code blue to verify the normal physiological variations in
different parameters. This could be the subject of a follow-up study in order to
transform the developed methods in useful clinical tools.

The Weighted Least-Squares approach used to compute the WCPD optimization
problem is computationally much more efficient than previous weighted tensor
decomposition methods. This is extremely beneficial for use in continuous
patient monitoring, where the delay between the physiological change and the
algorithmic output should be minimal. The current method gives an output for
each sliding window of 100 heartbeats (1–1.5 minutes), resulting in a quasi-real
time monitoring of ECG morphology. Recent advances in tensor methodology
however focus on the development of efficient tensor updating methods [220,
221]. This class of methods calculate a new tensor decomposition every time
new data arrives (for example after every heartbeat) in a time- and memory-
efficient way. Their use would lead to an improvement in the time resolution of
the results which could help in gaining a deeper understanding in the timing of
the changes in ECG morphology before cardiac arrests.

A first experiment was performed where CPD updating with low-rank weights
[221] was tested on a subset of the dataset considered here. The CPD was
updated for each new heartbeat (e.g. each new frontal slice of the tensor T .
Analysis of the time required to calculate the updated CPD showed that the
average computation time was less than 0.5 seconds, which is lower than the
normal RR-interval length. This indicates that the computationally efficient
approach to calculate both the WCPD and the updating can be performed
during the ‘waiting time’ for a new heartbeat, making this class of methods
convenient to use in real-time applications.
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6.6 Conclusion

We have developed a tensor-based method to analyse changes in ECG
morphology over time and used it to analyse changes prior to in-hospital
cardiac arrests in three groups of patients, each with a different cardiac arrest
mechanism. The results showed significant differences in multiple parameters
with both analyses that largely confirm findings from previous studies. The
developed methods work fully automated and are not dependent on the number
of channels or measurement devices. Although a follow-up analysis using signals
of control patients without cardiac arrests is necessary for validation, the current
results show that the proposed tensor-based method leads to clinically valid
results that are useful for identification of patients at risk for in-hospital cardiac
arrest.





Chapter 7

Automatic detection of atrial
fibrillation in single and
multilead ECG signals

While the previous Chapters presented methods that used Canonical Polyadic
Decomposition as a basis, this Chapter introduces an application where the
Multilinear Singular Value Decomposition is used to analyse ECG signals. Also,
the previous Chapter exclusively applied tensor methods on multilead ECG
signals, since tensorization can be done in an evident way. Many datasets
however also contain single lead signals, and therefore the added value of tensor
methods for single ECG processing is explored here. This Chapter proposes
a method to detect atrial fibrillation, which is the most frequent arrhythmia.
Unlike many ventricular arrhythmia it is not immediately fatal, but it may cause
pulmonary embolisms or stroke, making timely detection and treatment essential.
This Chapter is largely based on the master thesis of Simon Geirnaert, "Detectie
van voorkamerfibrillatie: een tensorgebaseerde methode" [83]. The main concept
of this method was developed by myself in the context of the 2017 Computing in
Cardiology challenge, Simon Geirnaert worked out the full method and finetuned
the final classification.
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7.1 Introduction

Atrial fibrillation (AF) is one of the most common cardiac arrhythmia, affecting
approximately one percent of the general population [82]. During AF, electrical
chaos originates in the atria which is added to the electrical signal in the
sinus node. The small electrical atrial impulses result in uncoordinated and
unsynchronized muscle contractions, which cause the atria to flutter or fibrillate.
The atrioventricular node filters these additional impulses so the ventricles still
contract normally, although at a highly irregular rate. Since the cardiac pump
function is mainly driven by ventricular contraction, it remains unaltered, but
the accumulation of blood in the atria can cause the formation of blood clots
which can lead to pulmonary embolisms or stroke [239].

Early detection is essential to start treatment which is often done with
medication [82]. Since AF has a profound effect on the electrical activity
of the heart, it can be diagnosed on the ECG signal, where it will affect both the
ECG morphology and the heart rate. During AF, the contraction of the atria
is replaced with fibrillations, eliminating the P wave (which is generated during
atrial contraction). In some cases, the P wave is replaced by high frequency
electrical activity, f-waves. The irregular heart rhythm is furthermore visible
in the tachogram, which will show more variations compared to normal sinus
rhythm.

This Chapter presents a method to automatically detect atrial fibrillation in
both single and multilead ECG signals. The method combines morphology-
based features and rhythm-based features in a SVM classifier. The morphology
features are calculated using tensors, with an approach similar to the method
described in Boussé et al. [26] to detect irregular heartbeats. Here, the latter
was extended and optimized for specific detection of atrial beats. As such it
can be seen as complementary to the method described in Chapter 4.

The next Sections first describe the datasets used in this Chapter. Afterwards
the proposed methods are described, first for single lead and afterwards for
multilead signals. Finally, the results are described and discussed in Section 7.4.

7.2 Data

The methods presented in this Chapter were applied to two separate datasets.
The dataset for AF detection in single lead ECG signals was taken from the 2017
Physionet/CinC Challenge. A multilead dataset was constructed by combining
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signals from the MIT-BIH AFIB dataset and the AFTDB dataset, both available
on Physionet. All signals were split in a model set, training set and test set.

7.2.1 Physionet/Computing in Cardiology Challenge 2017

The 2017 Physionet/Computing in Cardiology challenge aimed at tackling
the problem of automatic detection of atrial fibrillation in single lead ECG
signals [46]. A set of 12186 single lead ECG signals was made available by
AliveCor®. The signals were measured using their KardiaMobile device, which
is a smartphone-based monitoring system that measures single lead ECG that
correspond with lead I-signals (i.e. measurements between left and right arm).

3658 out of the 12186 signals were kept in a hidden test set that was used as an
external validation set during the competition. Since this test set has not been
made publicly available, the total dataset used here consists of 8528 signals in
total. All signals have been annotated on their underlying rhythm by AliveCor®

and adjusted afterwards by experts where necessary. The dataset consists of
four classes: normal signals, AF, rest and noisy. The normal class and AF
class consist of signals where the underlying rhythm is respectively normal
sinus rhythm (NSR) and atrial fibrillation. The rest class contains signals with
other abnormal rhythms such as bradycardia or tachycardia. Signals where
annotators disagreed about the label were also labelled as rest. Finally, the
noisy class contains signals that were too noisy to rate. Since noise detection is
an inherently different problem which lies beyond the scope of this work, this
class was not considered here.

The single lead ECG signals have a length between nine seconds and one minute.
The sampling frequency is 300 Hz. Table 7.1 shows how the signals are divided
over the different classes. Since the detection is done in a supervised way, the
available data were further divided in a model set, a training set and a test
set. 60% of the data were used in the modelling stage, 20% were used to train
the SVM classifier and 20% as independent test set. The ratios between the
different classes were balanced between all three sets.

7.2.2 MIT-BIH AFIB & AFTDB dataset

The multilead dataset was constructed by combining two publicly available
databases: the MIT-BIH Atrial Fibrillation dataset [155] and the AF
Termination Challenge dataset [154, 175], both available on Physionet [85].
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Set Class

Normal AF Rest Total

Model set 3062 413 1471 5117
Training set 994 163 493 1707
Test set 994 162 492 1704

Total 5050 738 2456 8528

Table 7.1: The data profile of the model, training and test set of the single lead
Physionet/CinC Challenge 2017 dataset.

MIT-BIH AFIB dataset The first dataset consists of 23 Holter signals
measured over ten hours with two channels. The sampling frequency is 250 Hz.
The dataset mainly contains signals of patients with paroxysmal or intermittent
atrial fibrillation. The different episodes of atrial fibrillation are annotated
together with normal signals. From these signals, 80 segments of one minute
were extracted at random, all containing portions of the signal with normal
sinus rhythm. Due to the small size of the original dataset, the short segments
do not all come from separate test persons, meaning that there is no full
independence between training and test set. In general however the variation
between normal signals from different patients is very small, meaning that
this set can be considered a representative dataset for normal signals. Note
that while segments of AF signals can technically also be extracted from this
dataset, analysis of the results and annotations indicated that the labelling of
AF segments was not trustworthy in all cases. Therefore a second dataset is
used for this purpose.

AFTDB dataset The AF Termination Challenge dataset contains 80 Holter
ECG signals. All signals have two channels, identical to the MIT-BIH AFIB
dataset, sampled at 128 Hz. All signals are atrial fibrillation signals with a
fixed length of one minute. The dataset was collected from a larger dataset
of Holter signals for a competition in 2004. This assures that all annotations
are checked manually, ensuring the quality and correctness of the labels. The
dataset is split into three subsets, used here as model, training and test set. All
sets contain signals from different patients. Within the model and training set
there may be signals from the same patient, but the signals in the test set are
all from different patients. This ensures that there is independence between the
different sets and within the test set.
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Set Class

Normal AF Total

Model set 30 30 60
Training set 20 20 40
Test set 30 30 60

Total 80 80 160

Table 7.2: The data profile of the model, training and test set of the MIT-BIH
AFIB & AFTDB dataset.

Final dataset The final dataset is a combination of all signals from the AFTDB
datasets and 80 randomly extracted normal segments of the MIT-BIH AFIB
dataset, with equal numbers of normal and AF signals. The signals from
the MIT-BIH dataset were resampled to obtain the same sampling frequency.
Table 7.2 gives a summary of all signals in the final dataset.

7.3 Methods

This section presents three different approaches for detection of atrial fibrillation
in single and multilead ECG signals. The three methods are all variations of one
main concept, which uses the (ML)SVD to model the morphology of heartbeats
and uses this as input for a supervised classification problem.

7.3.1 SVD-based detection in single lead ECG signals

This section describes the first method, which detects AF in single lead ECG
signals starting from the SVD. The next subsections describe the different parts
of the method: 1) preprocessing, 2) calculation of a representative heartbeat,
3) modelling and 4) classification. A flowchart depicting the workflow of the
individual steps is shown in Figure 7.1.

Preprocessing

Signals measured with wearable devices are known to suffer a lot from noise. This
is not different for ECG signals. Preprocessing is therefore required to improve
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Single lead ECG signal 1) Preprocessing

2) Calculate
representative heartbeat

Modelling or
classification stage?

3) Build
heartbeats model

4) Classify test signal

modellingclassification

Figure 7.1: Flowchart of the method to classify ECG signals and detect AF in
single lead ECG signals starting from the SVD.

the signal quality. More specifically baseline wander, powerline interference
and high frequency noise have to be removed. First, powerline interference is
eliminated with a notch filter with cut-off frequency of 60 Hz, where an extra
pole is added at radius r = 0.4 to improve stability. Baseline wander and high
frequency noise are removed with respectively Quadratic Variation Reduction
[78] and wavelet-based filtering [111], identically to previous Chapters. Multilead
signals are processed channel-by-channel. Finally, all signals are normalized by
extracting the mean of the signal and dividing by the standard deviation.

Calculation of representative beat

The next step consists of compressing the single lead ECG signal into one
representative heartbeat. Pan-Tompkins [173] is used to detect the R peaks in
the ECG signal. It is then segmented into different heartbeats similarly to the
previous Chapters. A fixed-length segmentation window of 580 ms, starting
250 ms before each R peak, is defined to ensure that the P wave and T wave
are both included. Similar values for segmentation windows can be found in
literature [26]. In a second step, alignment of different windows is optimized
by maximizing the cross-correlation between the different windows. Figure
7.2 visualises the segmentation of the heartbeats on the left-hand side, the
alignment is shown on the right.

In a next step, the aligned heartbeats X ∈ RK×N (with K the number of
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Figure 7.2: The left part of the Figure shows the segmentation of the ECG
signal in individual heartbeats by cutting out a window around each R peak.
Then, all heartbeats are aligned, shown on the right. The representative beat
obtained by compressing all beats with the SVD is superimposed on the aligned
beats in red.

beats and N the number of samples in a heartbeat) are compressed into one
representative heartbeat xr ∈ RN . For this the Singular Value Decomposition
of X is used. The Eckart-Young theorem [74] states that the best rank-r
approximation of a matrix X can be calculated by taking the first r terms of
its SVD (see also Section 2.4.3). For r equal to one, this becomes:

X ≈ σ1u1vt
1. (7.1)

Vector v1 ∈ RN serves as the basis vector of the heartbeats space. This vector
is rescaled to norm one and represents the representative heartbeat for the
signal. It is also ensured that the sign of the peak is positive. Approximating
the signal to one representative beat is meaningful since the variation between
beats within a (short term) signal is normally quite small, resulting in one
dominant singular value. Figure 7.3 shows the singular values for a random
signal in the dataset. There is one very dominant singular value, making a good
rank-1 approximation feasible. The result of the compression of the heartbeats
is shown on the right-hand side of Figure 7.2.

Model construction

In the next step, a distinction is made between the modelling and classification
stage. During the modelling stage, a model set of representative heartbeats is
used to construct a basis for the heartbeats space. The labels of the signals
in the model set (normal, AF or other) are considered known. The truncated
SVD forms the base for the model.



112 AUTOMATIC DETECTION OF ATRIAL FIBRILLATION IN SINGLE AND MULTILEAD ECG SIGNALS

0 5 10 15 20 25 30 35

i

0

2

4

6

8

10

12

14

i

Figure 7.3: The singular values of a random heartbeat matrix X. There is one
very dominant singular value, making a good rank-one approximation feasible
[83].

Dmodel ∈ RN×M is a matrix that contains all M representative heartbeats
xr ∈ RN from a model set of M ECG signals. The truncated SVD models this
matrix with a low-rank approximation:

Dmodel ≈ ÛtimeŜÛt
heartbeat, (7.2)

with Ûtime ∈ RN×r an orthonormal basis for the time subspace, Ûheartbeat ∈
RM×r an orthonormal basis for the heartbeats subspace and Ŝ ∈ Rr×r the core
matrix. In Equation 7.2, r stands for the rank of the truncated SVD. The
choice of r is crucial to obtain a model with good generalisation properties.
When r is too small, the model does not describe enough information, leading
to underfitting. A value that is too high will result in overfitting, where too
many non-relevant characteristics are modelled, leading to suboptimal detection.
Here, 5-fold cross-validation on the model set is used to optimize the choice of
r.

Equation 7.2 expresses each representative heartbeat x(i)
r ∈ RN , i ∈ {1, . . . ,M}

(e.g. each column from Dmodel) as:

x(i)
r ≈ ÛtimeŜc(i)

h = Bc(i)
h , (7.3)

with c(i)
h

t
∈ Rr the ith row from Ûheartbeat. This can be interpreted as follows:

the column vectors of B form an orthogonal basis for the heartbeats space.
Column vector c(i)

h is the coefficient vector that expresses the corresponding
heartbeat in this basis. These column vectors are unique up to sign and
scaling, and they will therefore be normalised. All normalised coefficient vectors
c̃(i)

h = sign(c(i)
h,1) c(i)

h∣∣∣∣c(i)
h

∣∣∣∣
2

then form a database, analogue to the work in [26].
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Each vector of this database has a known label, and is afterwards used for
classification of new signals.

Classification of new heartbeats

Algorithm 1 explains how the vector with morphological features is calculated
for a new representative heartbeat x(test)

r , given an annotated model matrix
Dmodel. After calculating the basis and constructing the database of normalised
coefficient vectors, a new coefficient vector c(test)

h can be calculated by projecting
the new heartbeat onto the heartbeats space (spanned by B). This comes down
to solving:

c(test)
h = Ŝ−1Û†timex(test)

r = Ŝ−1Ût
timex(test)

r , (7.4)

Comparison between the normalised (new) coefficient vector c̃(test)
h and the

coefficient vectors in the database is done by calculating the inner product:

si =
〈
c̃(test)

h , c̃(i)
h

〉
= c̃(test)t

h c̃(i)
h = cos(θi),∀i ∈ {1, . . . ,M}.

This score −1 ≤ si ≤ 1 measures the angle θi between two vectors as a measure
for the similarity between the vectors. The result of Algorithm 1, a vector of
morphological features f (test) ∈ RC with C the number of classes, represents
the resemblance between the new heartbeat and each of the classes. It is
determined by calculating a weighted average of the best W scores si of each
class c. Both the value of W (equal to 15) and the weight vector w were
empirically determined.

Finally, different classification algorithms can be used to obtain a classification
from the feature vector f (test). The most straightforward method is to assign
the test signal the label of the class which has the highest score. This method
is for example used during cross-validation to determine the optimal rank. In
the remainder of the Chapter, SVMs will be used for classification to simplify
the integration of the morphological feature vector with other HRV features.

7.3.2 MLSVD based detection for single lead ECGs

This Section describes a second method to detect AF in single lead ECG signals.
It is a higher-order extension of the previous method, relying on the MLSVD
instead of the SVD. The framework is similar to the flowchart shown in Figure
7.1, with an extra step to create the higher-order tensor: After preprocessing,
the ECG signal is compressed into one representative heartbeat. This is done
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Algorithm 1 Calculation of morphological features using SVD
Input: New representative heartbeat x(test)

r ∈ RN , annotated model matrix
Dmodel ∈ RN×M , rank r, weights w ∈ RW
Output: Vector with morphological features f (test) ∈ RC , with C the number
of classes

1: Calculate the truncated SVD with rank r:

Dmodel ≈ ÛtimeŜÛt
heartbeat

2: Construct database {c̃(i)
h }, with c̃(i)

h = sign(c(i)
h,1) c(i)

h∣∣∣∣c(i)
h

∣∣∣∣
2

, of normalised rows

c(i)
h

t
from Ûheartbeat,∀i ∈ {1, . . . ,M}

3: Construct basis matrix B = ÛtimeŜ
4: Solve

x(test)
r = Bc(test)

h

5: Normalise: c̃(test)
h ← sign(c(test)

h,1 ) c(test)
h∣∣∣∣c(test)

h

∣∣∣∣
2

6: for i = 1 . . .M do
7: Calculate similarity si:

si = c̃(test)t
h c̃(i)

h

8: end for
9: for c = 1 . . . C do

10: Calculate f (test)
c as weighted average w of the best W scores si, for i ∈ Cc,

the set of labels c
11: end for
12: return f (test)

in an identical way as the previous Section. Afterwards, the discrete wavelet
transform (DWT) is used to create an extra mode, leading to a model tensor,
which is used to construct a model to classify new ECG signals.

Tensorisation

The result of the first two steps, preprocessing and compression, is one
representative heartbeat xr ∈ RN for each single lead ECG signal. Instead of
collecting all heartbeats from the model set in a matrix, tensorisation is used
to add an extra dimension. As explained in Chapter 2.4.1, many tensorisation
approaches exist. Here the Redundant Wavelet Transform (RWT) is chosen
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to decompose the heartbeat in different frequency bands. The RWT converts
the first-order representative heartbeat vectors to second-order matrices, which
are then stacked in a third-order model tensor. The RWT is a variant of the
well-known Discrete Wavelet Transform (DWT), which has been used before
in combination with the MLSVD to characterize myocardial infarctions [169].
The main difference between DWT and RWT is that there is no down sampling
after each filter bank. The resulting scales thus automatically have the same
number of coefficients, leading to a straightforward tensorisation. The algorithm
is applied with a biorthogonal mother wavelet and five decomposition scales.
The appropriate number of scales J was determined with a heuristic equation
[8]:

J = blog2 fs − 2.96c. (7.5)

which leads to a value of five for signals sampled at 300 Hz.

Model construction

The next step is similar to Section 7.3.1 and consists of constructing a model
of the heartbeats space. A model tensor Dmodel ∈ RJ×N×M contains all
wavelet-transformed representative heartbeats X(i)

r ∈ RJ×N from a model set
with known labels. Figure 7.4 visualises this tensor, with modes scale × time
× signal index. The truncated MLSVD is used here as modelling tool. By
truncating in each mode individually, an orthonormal base is estimated for
each subspace (scale, time, heartbeats). The truncation leads to the following
rank-(rscale, rtime, rheartbeat) approximation of Dmodel, with rscale < J, rtime <
N, rheartbeat < M :

Dmodel ≈ Ŝ ·1 Ûscale ·2 Ûtime ·3 Ûheartbeat, (7.6)

with Ûscale ∈ RJ×rscale , Ûtime ∈ RN×rtime en Ûheartbeat ∈ RM×rheartbeat

orthonormal matrices that form approximations of the corresponding subspaces.
The core tensor Ŝ ∈ Rrscale×rtime×rheartbeat explains the interaction between the
three modes.

The optimal rank can, similarly to Section 7.3.1, be determined using
cross-validation. The main difference is that here, a multilinear rank
(rscale, rtime, rheartbeat) has to be determined, compared to one rank-value in the
previous case. Again, an interval of rank values can be determined based on
analysis of the multilinear singular values. To restrict the complexity of the
rank optimisation, the three values will be optimised sequentially. This iterative
optimisation can be visualised as follows:



116 AUTOMATIC DETECTION OF ATRIAL FIBRILLATION IN SINGLE AND MULTILEAD ECG SIGNALS

Figure 7.4: A visualisation of the model tensor Dmodel. The first mode is the
scale mode, and the mode-2 vectors are the wavelet coefficients in time. The
third mode collects all representative heartbeats from the model sets [83].
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This method changes one rank at a time while fixing the other two. In practice,
the method converges fast with good initial values. The disadvantage is that
the method does not guarantee an optimal solution since not all possible
combinations are evaluated. It however leads to satisfactory results in practice.

Given the low multilinear rank approximation of a model tensor Dmodel, then
for each tensorized representative heartbeat X(i)

r ∈ RJ×N , it holds that:

X(i)
r ≈ Ŝ ·1 Ûscale ·2 Ûtime︸ ︷︷ ︸

B

·3c(i)
h

t
, (7.7)

with c(i)
h

t
∈ Rrheartbeat the ith row from Ûheartbeat and B ∈ RJ×N×rheartbeat .

Applying Equation (2.1) on Equation (7.7) results in:

vec
(
X(i)

r

)t
≈ c(i)

h
t
B(3)

⇔ vec
(
X(i)

r

)
≈ Bt

(3)c
(i)
h ,

(7.8)
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with Bt
(3) ∈ RJN×rheartbeat equal to:

B = Ŝ ·1 Ûscale ·2 Ûtime

⇒ B(3) = Ŝ(3)(Ûtime ⊗ Ûscale)t

⇔ Bt
(3) = (Ûtime ⊗ Ûscale)ŜT

(3),

(7.9)

Bt
(3) serves as a basis for the heartbeats space over all scales. Similar as in

Section 7.3.1, the normalised coefficient vectors c̃(i)
h = sign(c(i)

h,1) c(i)
h∣∣∣∣c(i)

h

∣∣∣∣
2

form a

database with known labels.

Classification of new heartbeats

After construction of the model, a new (wavelet-transformed) representative
heartbeat X(test)

r can be classified similarly to the method explained in
Section 7.3.1. Algorithm 2 shows how to calculate the morphological feature
vector f (test) ∈ RC , with C the number of heartbeat classes. The representative
heartbeat (decomposed in different scales) is projected onto the new heartbeat
basis. The steps after this projection are identical to Algorithm 1. An SVM
can then use the morphological feature values as input for further classification.

7.3.3 MLSVD-based detection for multilead ECGs

In a clinical setting, ECG is usually measured with multiple leads. This section
therefore describes a method to detect AF in multilead ECG signals using the
same principles as the previous methods. Another difference is that here, several
approaches to perform the final classification are considered. Since multilead
ECG signals can be tensorized in a natural way, no additional tensorization step
is required, making the multilead approach similar to the method described
in Section 7.3.1. A last variant describes an approach to classify single lead
ECGs using a database of multilead ECG. This coupling can be useful when an
annotated multilead database is available (for example after a clinical study),
which can then be used with signals measured by wearable devices.



118 AUTOMATIC DETECTION OF ATRIAL FIBRILLATION IN SINGLE AND MULTILEAD ECG SIGNALS

Algorithm 2 Calculation of morphological features using MLSVD
Input: New representative heartbeat x(test)

r ∈ RN , annotated model tensor
Dmodel ∈ RJ×N×M , multilinear rank (rscale, rtime, rheartbeat), weights w ∈ RW
Output: Vector with morphological features f (test) ∈ RC , with C the number
of classes

1: X(test)
r ← RWT(x(test)

r ) ∈ RJ×N , with J levels and the bior4.4-wavelet
2: Calculate the truncated MLSVD with multilinear rank

(rscale, rtime, rheartbeat):

Dmodel ≈ Ŝ ·1 Ûscale ·2 Ûtime ·3 Ûheartbeat

3: Construct database {c̃(i)
h }, with c̃(i)

h = sign(c(i)
h,1) c(i)

h∣∣∣∣c(i)
h

∣∣∣∣
2

, of normalised rows

c(i)
h

t
rom Ûheartbeat,∀i ∈ {1, . . . ,M}

4: Construct basis matrix B = (Ûtime ⊗ Ûscale)ŜT
3

5: Solve
vec
(
X(test)

r

)
= Bc(test)

h

in a least-squares way
6: Normalise: c̃(test)

h ← sign(c(test)
h,1 ) c(test)

h∣∣∣∣c(test)
h

∣∣∣∣
2

7: for i = 1 . . .M do
8: Calculate similarity si:

si = c̃(test)t
h c̃(i)

h

9: end for
10: for c = 1 . . . C do
11: Calculate f (test)

c as weighted average w of the best W scores si, for i ∈ Cc,
the set of labels c

12: end for
13: return f (test)
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Model construction

A model set of multichannel ECG signals is used as basis for the model. As
in the previous methods, the ECG signals are first preprocessed channel-by-
channel to improve the signal quality. They are then compressed into one
representative heartbeat per channel. Since a multilead ECG signal naturally
has a second-order structure, stacking the representative beats as frontal slices
of a model tensor Dmodel automatically leads to a tensorisation which preserves
the structural information between all channels. D ∈ Rnk×N×M has modes
channels × time × heartbeats, with nk the number of leads per signal, N the
number of samples per representative heartbeat and M the number of signals
in the model set. The truncated MLSVD can again be used to calculate a low
multilinear rank approximation to obtain the following model:

Dmodel ≈ Ŝ ·1 Ûchannel ·2 Ûtime ·3 Ûheartbeat, (7.10)

where Ûchannel ∈ Rnk×rchannel(rchannel < nk), Ûtime ∈ RN×rtime(rtime < N) and
Ûheartbeat ∈ RM×rheartbeat(rheartbeat < M) form an orthonormal basis for the
corresponding subspaces. The optimal multilinear rank is determined using
cross-validation. Each multilead ECG signal with k channels and thus k
representative heartbeats X(i)

r ∈ Rnk×N can then be written as

vec
(
X(i)

r

)
≈ Bc(i)

h ,

with B = Bt
(3) ∈ RnkN×rheartbeat the mode-3 unfolding of the tensor B =

Ŝ ·1 Ûchannel ·2 Ûtime:

B = (Ûtime ⊗ Ûchannel)ŜT
(3).

The columns of B then form a basis for all channels. The coefficient vector
expresses a multilead ECG signal in all channels simultaneously.

The normalised coefficient vectors {c̃(i)
h }, with c̃(i)

h = sign(c(i)
h,1) c(i)

h∣∣∣∣c(i)
h

∣∣∣∣
2

, make

up a labelled database which can be used for classification.

Classification of new heartbeats

The classification of an unseen multilead test signal is done in a similar way as
described in Algorithm 2, but X(test)

r ∈ Rnk×N now follows directly from the
calculation of the representative heartbeats. The coefficients vector c(test)

h can
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be calculated by solving the following linear system:

vec
(
X(test)

r

)
= Bc(test)

h . (7.11)

Solution per channel In (7.11), the coefficient vector c(test)
h is calculated

coupled over all channels. Another possibility is to calculate an individual
coefficient vector for each channel. For representative heartbeat x(i,k)

r in channel
k ∈ {1, . . . , nk} (the kth row from X(i)

r ), we can write (using Equation 7.10):

x(i,k)
r ≈ Ŝ ·1 c(k)

k
t

·2 Ûtime ·3 c(i)
h

t

⇔ x(i,k)
r

t ≈ (Ûtime ⊗ c(k)
k

t
)ŜT

(3)︸ ︷︷ ︸
Bk

c(i)
h ,

(7.12)

with c(k)
k

t
∈ Rrchannel the kth row from Ûchannel.

The solution of (7.12) results after comparison of each vector c̃(test,k)
h with the

database, in a new vector of morphological features f (test) ∈ RnkC . This vector
represents the morphological similarity of each lead in the test signal with each
class. It is however expected that these features are less informative than the
features obtained by Equation 7.11 since the coefficient vectors in the database
are calculated for all channels simultaneously. It can even be seen as a step
backwards towards the matrix-case, where the combination of information from
all channels is only done in a later phase (late integration), failing to exploit the
structure present in the data. We therefore do not consider this an appropriate
solution here. It will however be picked back up in the next Section to couple
single- and multilead recordings.

SVD-based variant The modelling of the data using the MLSVD results in
an independent modelling of the time- and channel-mode. It is however also
possible to use the mode-3 unfolding Dmodel,(3) ∈ RM×nkN to perform the
modelling with the truncated SVD, calculating a simultaneous model of the
time and channel space:

DT
model,(3) ≈ ÛtkŜÛt

heartbeat,

with Ûtk ∈ RnkN×r, Ûheartbeat ∈ RM×r and Ŝ ∈ Rr×r. Algorithm 1 can then
classify a new ECG signal after concatenation of each channel (vec

(
X(test)

r
)
).
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Comparison of the results using the MLSVD and SVD-approach gives
information how much performance is added by modelling the channel space
individually, and quantifies the added value of tensor methods in this application.

Combination of single- and multilead ECG signals

Single-lead ECG signals are rapidly gaining importance in the context of digital
health since they can be more easily recorded with wearable devices. Contrary
to multilead measurements they however do not contain any spatial information,
and only reflect the cardiac electrical activity from one single angle. This section
briefly describes a framework to detect AF in single lead channels using a model
set obtained from a multilead dataset. The combination of datasets allows the
use of a larger amount of data, leading to more reliable and better classification
methods. One can also imagine scenarios where an annotated dataset has been
collected and is supplemented with unannotated single lead recordings. The
proposed method allows to combine these datasets without requiring extra
labelling effort.

In general, the channel of the single lead ECG signal is known beforehand. In
the KardiaMobile signals of the Physionet database for example, measurements
are done between the left and right hand, corresponding to lead I. In that case,
the procedure of Section 7.3.3 (Solution per channel) can be used to classify
the representative heartbeat of a single lead ECG signal. The model set of
multilead signals then forms the corresponding basis matrix Bk from (7.12),
with the correct channel index k.

The methods described in the previous Sections use model and test signals
measured with similar devices in a similar context, which makes a comparison
between coefficient vectors feasible. When combining datasets with signals from
different devices, this comparison is less meaningful since there is an increased
chance that measurement circumstances change: differently-placed electrodes,
technical errors or inverted leads are all possible. When there is uncertainty
about the lead, comparing the signal with a labelled database is less meaningful,
and we therefore propose to use the coefficient vector directly as a feature vector:
f = c̃(k)

h ∈ Rrheartbeat .

7.3.4 Combination of morphological and HRV characteristics

For the final method, the morphological features derived with one of the methods
described in the previous Sections are combined with features based on heart
rate variability. Figure 7.5 shows how the integration between the (ML)SVD-
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based detection and the HRV characteristics leads to a global method to detect
AF in single- or multilead ECG signals. The HRV characteristics used are:

• AVRR: Average RR interval

• RMSSD: Root Mean Square of the differences between subsequent RR
intervals (∆RR)

• pRR50: Fraction of subsequent RR intervals that differ more than 50ms

• Cov(∆RR): Coefficient of variance of the ∆RR intervals

• min(RR): Minimal RR interval

• HTI: HRV Triangular Index, which characterizes the concentration of the
RR interval histogram

• SD1/SD2 ratio: Characterizes the Poincaré plot of RR intervals

• AFEvidence: Characterizes the Poincaré plot of ∆RR intervals

• ApEn: Approximate entropy, which is equivalent to the complexity of
the signal

• Toeplitz distance: Quantifies the uniformity of RR intervals

A more extensive explanation of the HRV features and their calculation can be
found in Appendix A.

Figure 7.5 shows a flowchart of the global method which integrates the ML(SVD)-
based methods and the HRV features with a SVM. The full method determines
the class of a new test signal using the combined feature vector. Depending on
the database, this can be a binary or multiclass classification problem. Many
databases define a ‘rest’ class, which contains all signals that do not show
sinus rhythm or AF. They can be signals with other arrhythmia or signals
where no consensus on the underlying rhythm could be reached. The multiclass
classification problem is solved using a one-versus-one approach. Optimization
of hyperparameters is done with ten-fold cross validation.

The SVM is trained using the training sets defined in both databases. The
training sets contain signals that are not included in the model set (used to
determine the morphological features) or the test set (used to obtain the final
classification results). To optimize classification performance, different SVM
kernels were tested and compared.
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Single- or multilead
ECG-signal

Preprocessing
(per channel)

Calculate representative
heartbeat (per channel)Calculate HRV features
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classification stage?
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heartbeats
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Class: NSR, AF, (Rest)

modellingclassification

Figure 7.5: Flowchart of the global AF detection method. The method integrates
the HRV features described in Appendix A with the morphological features
obtained using (ML)SVD in a SVM.
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7.3.5 Evaluation of results

After the modelling and training stage, the performance of the algorithm is
determined by applying the method on an independent test set. Dependent on
the dataset used, the methods either perform binary or multiclass classification:
the Physionet/CinC dataset has 3 classes (normal, AF and other), the multilead
database has only two classes (normal and AF). To evaluate the results, we
will mainly use the F1-score and AUC value as defined in Section 3.4. The F1
score is first calculated for each class individually, resulting in F1n, F1a, F1n,
for respectively the normal class, AF class and rest class. The global F1-score is
then defined as the average of the individual scores of the different classes. The
AUC value is only used to evaluate the results of binary classification problems,
and can thus not be used in the single-lead dataset.

7.4 Results and Discussion

First, the results for AF detection in single lead ECG signals are summarized
and discussed. Both the SVD- and MLSVD-based approaches are evaluated
and compared. Furthermore, the influence of parameters such as the size of
the model set is examined. The results for multilead signals and the coupling
between single- and multilead are described next.

7.4.1 AF detection in single lead ECG signals

Table 7.3 gives a summary of the results on the CinC/Physionet dataset,
obtained with weight vector w ∈ R15 (from Algorithm 1) equal to:
[0.3478 0.1739 0.1304 0.0870 0.0435 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 0.0217 ]t.

SVD-based detection

Figure 7.6a shows the singular values of the model matrix Dmodel ∈ R176×4946,
which were used to get a first estimate for an appropriate truncation rank. The
singular values decrease quickly, as predicted in Section 7.3.1. Based on this
Figure, the search interval for the rank was defined as [1, 30], since these singular
values contain most of the energy. After 10-fold cross-validation, the optimal
rank was found to be 22. Figure 7.6b shows the evolution of the cross-validation
performance in function of the rank r. When the rank is too small (≤ 10), the
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Method Kernel P (%) F1n, F1a, F1r F1

SVD, without HRV Linear 70.02 0.813,0.570,0.396 0.593
SVD, without HRV RBF 69.60 0.812,0.561,0.381 0.585
SVD, without HRV Polynomial 69.78 0.812,0.563,0.389 0.588
MLSVD, without HRV Linear 70.45 0.815,0.585,0.404 0.601
MLSVD, without HRV RBF 70.75 0.815,0.590,0.402 0.602
MLSVD, without HRV Polynomial 70.75 0.817,0.589,0.407 0.604
SVD + HRV RBF 80.22 0.866,0.796,0.647 0.770
MLSVD + HRV RBF 79.85 0.865,0.796,0.640 0.767
Only HRV RBF 77.67 0.853,0.760,0.585 0.732
Only HRV Polynomial 74.70 0.840,0.673,0.529 0.681

Table 7.3: Results for the different methods on the Physionet/CinC Challenge
2017 dataset. The MLSVD has an optimal multilinear rank of (16, 3, 14) while
the SVD has rank 22.

model does not contain all relevant information and is thus underfitted. The
performance is maximal for 15 ≤ r ≤ 30. When the rank increases further, the
performance starts to drop again due to overfitting.

The influence of the size of the model set is also evaluated. Figure 7.7 shows how
the results for the different classes change when changing the number of signals
used to construct the SVD model. For each size of model set, a random model
set was selected and results were tested on the remainder of the dataset. Each
experiment was repeated 20 times with different random sets, the average over
all runs is shown on the Figure. The rank is fixed to 22. The largest increase
in performance is seen for the class of AF signals. This is not coincidentally
the class with the least number of signals: more AF signals lead to a better
model and better performance. For other classes the results increase less, since
they already have a considerable number of signals in the model set to begin
with. Figure 7.7 confirms that the initial choice for size of model set (which was
chosen based on the standard 60/40 distribution for training/test set) forms a
good trade-off between size of model set and performance.

After construction of the model, the morphological features are calculated for
both the training and test set Figure 7.8 plots the two-dimensional projections
of f ∈ R3 for each combination of classes. From the Figure it is clear that there
is a clear separation between the normal and AF classes on one hand and AF
and rest classes on the other hand. The classes of normal and rest signals are
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Figure 7.6: The singular values of the model matrix and results of cross-
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True label
NSR AF Rest

Predicted label
NSR 1755 18 215
AF 94 145 86
Rest 521 49 415

Table 7.4: Confusion matrix of the best-scoring SVD-based method, combining
morphological and HRV features (F1 = 0.770).

however strongly overlapping: many signals in the rest category show a large
(morphological) resemblance to normal signals. To illustrate this, Figure 7.9
shows an example of such signal from the rest class that resembles a normal
signal. It corresponds to the circled data point on Figure 7.8b.

Table 7.3 indicates that, without using HRV features, the SVM with linear kernel
obtains the best results with an F1 score of 0.593. Changing the kernel does
not seem to have a significant influence on the results. Adding HRV features
however improves the results drastically, since the features were selected to
discriminate AF signals (see Appendix A for a full analysis): Using only HRV
features, a global F1 score of 0.732 can be obtained. The optimal score overall
(F1 = 0.77) is achieved by combination of the morphological and HRV features.
This confirms that the proposed method does have a significant added value
for identification of abnormal rhythms. Note that the highest increase in
performance is accomplished in the rest class. The normal class has the best
classification performance for all classifiers.

Table 7.4 shows the confusion matrix, with the predicted labels versus the true
labels for all classes for the SVD-based classification method. The number of AF
signals that are classified as normal is minimal. This is clinically relevant, since
the argument can be made that these false negatives (e.g. AF signals that are
missed) are more dangerous than normal signals that are classified as abnormal.
As expected, most missclassifications are seen between the normal and rest class.
The HRV features used here were specifically selected to distinguish AF signals
and Figure 7.8 already showed that also the morphological features were more
discriminative for AF and normal signals. It could be helpful to divide this
rest class further in more specific subclasses to obtain a better performance.
Furthermore it should be mentioned that the rest class does not only contain
signals with a different cardiac rhythm, but also signals where no consensus
could be reached between different raters. This means that this class most
likely also contains normal and AF signals, adding further to the difficulty of
classifying them correctly.
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Figure 7.9: An example of a representative heartbeat that strongly resembles a
normal beat, corresponding to the circled datapoint in Figure 7.8. The large
resemblance with a normal beat is probably due to the presence of a clear P-
and T-wave, resulting in fNSR > fRest [83].
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Figure 7.10: The multilinear singular values of the model tensor Dmodel, after
tensorization with the RWT [83].

MLSVD-based detection

Similarly to Figure 7.6a, Figure 7.10 shows the multilinear singular values of
the model tensor Dmodel ∈ R6×176×4946. As predicted in Section 7.3.2, the rank
of the scale mode is lower than six. After sequential 10-fold cross-validation,
the optimal multilinear rank is fixed to (16, 3, 14).

Table 7.3 indicates that the MLSVD-based approach does not have any added
value compared to the SVD approach for single lead ECG signals. Without
integration of the HRV features, the performance seems slightly better but the
increase is negligible. The results did not improve when changing the multilinear
rank. Adding the HRV features causes the MLSVD performance to drop under
the SVD performance; especially for the rest class the SVD approach seems to
work better. The wavelet-based tensorization thus does not achieve the desired
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effect: for this application, time-frequency analysis does not add any useful
information to the representative heartbeat. Therefore we can conclude that,
to detect AF in single lead signals, the method that combines morphological
features obtained by the SVD approach with the HRV features is preferred over
a multilinear method. While the results are very comparable, calculating the
RWT and MLSVD is computationally more expensive, making it less suitable
for long-term signals or real-time applications.

As explained in Section 7.2.1, the single lead dataset was collected in the context
of the 2017 Computing in Cardiology/Physionet Challenge, an annual ECG
processing competition. The best algorithms developed during the competition
obtained a global F1-score of 0.83 [138, 240, 209, 102, 54] while the worst
performance had an F1-score of 0.25 [46]. The proposed method obtains a
result of 0.76, which would have lead to a shared 38th place out of 67 official
participants. It is important to note that a large part of the top-scoring methods
used deep learning methods for classification [209, 102, 54]. While obviously
powerful, they have one big disadvantage: since the features are learned from
the data, they are rarely interpretable, which is important when communicating
the results with both cardiologists and patients. While the SVM used here is
also considered a black-box method, both the morphology and HRV features
have physiological meaning.

Another important remark is that the comparison is done based on results from
a different test set. The test set used during the competition was hidden and
has not been made publicly available. Using a separate test set would mean that
the full public dataset of 8528 could be used to model the dataset and train the
SVM. Per Figure 7.7, this could mean an extra increase in performance. Finally,
the best result achieved on this dataset was a global F1-score of 0.83. This
performance can be seen as the best possible performance, since combining the
results of different top-scoring methods did not increase performance further,
according to the challenge organisers. Since annotation is done manually, errors
in the labelling cannot be avoided especially taking into account the size of the
dataset used here. This is especially harmful for supervised methods, where
errors in the training set can seep through to the test set. It effectively puts
an upper limit to the maximal detection performance meaning that methods
that obtain significantly higher scores are probably due to overfitting. It is
an important factor to keep into account when evaluating the performance on
manually annotated datasets.
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Figure 7.11: The multilinear singular values of the model tensor Dmodel ∈
R2×76×60 of the MIT-BIH AFIB & AFTDB dataset [83].

7.4.2 AF detection in multilead ECG signals

In this Section, the results of the methods described in Section 7.3.3 are evaluated
on a dataset of multilead ECG signals.

Table 7.5 shows the results on the combined MIT-BIH AFIB & AFTDB dataset,
obtained with the following weight vector:
[0.3902 0.1951 0.1463 0.0976 0.0488 0.0244 0.0244 0.0244 0.0244 0.0244 ]t

Section 7.4.2 described three different ways to classify a new signal: the first
method searches for a coupled coefficient vector, the second method finds a
solution per channel and the final variant uses an SVD-variant to the algorithm

MLSVD, coupled over all channels

Prior to MLSVD, the multilinear rank of the decomposition has to be defined.
This is again done with 20-fold cross validation. The multilinear values of the
model tensor are shown in Figure 7.11 for all three modes. The optimal rank is
estimated to be (1, 23, 23).

The results in Table 7.5 indicate that only using the morphological features
f ∈ R2 a good discrimination is possible between normal and AF signals.
Figure 7.12a shows the features for all signals in both the training and test
set together with the SVM decision boundary. Two clusters can be clearly
distinguished: the samples in the upper left part of the plot correspond with
signals which show a large morphological similarity with AF signals (fAF >
fnormal) while the points in the lower right part show a larger correspondence
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Figure 7.12: The morphological features f ∈ R2 for the training- and test set
of the MIT-BIH AFIB & AFTDB dataset, for the SVD- and MLSVD-based
approaches. The linear decision boundary obtained by the SVM is shown as
well [83].

with normal signals (fnormal > fAF). The linear decision boundary is capable
of separating these points: there is only one FP detection in the training set
and three FNs in the test set.

Adding the HRV features results in a perfect classification: the two classes are
completely separable. Note that only using HRV features the AUC is also 1,
meaning that this feature set is very informative to separate normal and AF
signals. While the morphological features thus not add extra performance per
se, they do contain a lot of information. This is confirmed by training a linear
SVM to the complete feature set (morphological + HRV) and analysing the
weights of the different features:

vt = [ fNSR fAF AVRR RMSSD pRR50 HTI min(RR) SD1/SD2 ApEn Toeplitz CoV(∆RR) AFEvidence

−0.5466 0.4227 −0.2158 0.2619 0.4972 0.4466 −0.1354 −0.1181 0.4549 0.2688 0.2871 0.5059
]
,

The coefficients corresponding to the morphological features have the highest
value, and are thus most important to verify whether AF is present or not.
Note that the other coefficients are consistent with Figure A.2: large values
for AVRR, min(RR) or SD1/SD2-ratio indicate normal signals while the other
features imply the presence of atrial fibrillation.
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Figure 7.13: The ROC curves for the results of the linear SVM on MIT-BIH
AFIB & AFTDB test set, for the SVD- and MLSVD-based approach. The
MLSVD obtains a higher specificity for the same sensitivity and has a larger
area under the curve [83].

MLSVD-based, solution per channel

The coefficient vector can also be determined for each channel individually
(see Section 7.3.3). Table 7.5 confirms the hypothesis from Section 7.3.3 that
the performance is lower compared to the coupled coefficient vector. The first
channel seems to be more informative than the second channel when visually
comparing the ROC curves, even though they have the same AUC value.

SVD-based solution

Figure 7.12b shows the morphological features f ∈ R2 and linear decision
boundary after calculating the coefficient vector with the SVD-based approach
(see Section 7.3.3). Visually we can already determine that the two clusters
are more difficult to separate: there is more overlap between the classes in the
area around the decision boundary. Table 7.5 and Figure 7.13 validate this
confirmation. The AUC is smaller and while the sensitivity is the same, the
specificity is smaller for the MLSVD-based method. This confirms the utility of
using multilinear methods for AF classification for multilead ECG signals.
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Set Class

NSR AF Total

Model set (multilead) 80 80 160
Training set (single lead) 3030 443 3473
Test set (single lead) 2020 295 2315

Table 7.6: Data profile of the model, training and test set of combination of the
Physionet/CinC Challenge 2017 and the MIT-BIH AFIB & AFTDB dataset.

7.4.3 Detection of AF in single lead ECG signals in combina-
tion with multilead ECG signals

Data

To evaluate the performance of the combination of single- and multilead signals,
the model set was constructed using 160 two-channel ECG signals from the
MIT-BIH AFIB& AFTDB dataset (see Table 7.2), while the training and test
set consist of the signals from the Physionet/CinC Challenge dataset, without
the rest class (since this class is not present in the model set, and can thus not
be classified). Table 7.6 shows the number of signals in each set.

Results and discussion

The feature vector is now equal to the normalised coefficient vector: rhythms
are not defined by the similarity with signals from the model set, but directly
by the coefficients. The multilinear rang is still equal to (1, 23, 23). This implies
that the feature vector is now a 23-dimensional vector: f = c̃(k)

h ∈ R23. Since
the training set is sufficiently large, this is however not a problem. Adding the
HRV features results in a total feature vector of length 33.
Table 7.7 shows the results on the independent test set, after training the SVM.
Using only the morphological coefficient vector, a strong discrimination between
normal and AF signals is possible.

It is remarkable that combining the HRV and morphological features leads to
better results than solely using the HRV features. Deeper analysis of the results
show multiple signals which are wrongly classified using only HRV features.
Figure 7.15 shows an example of the tachogram and representative heartbeat of
such signal: using only the HRV features, the signal is classified as normal while
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Method Kernel P (%) AUC F1n, F1v F1

MLSVD RBF 93.56 0.955 0.964,0.707 0.836
MLSVD, HRV RBF 97.75 0.991 0.987,0.908 0.948
HRV RBF 97.02 0.974 0.983,0.875 0.929

Table 7.7: The results for different methods on the combination of the
Physionet/CinC 2017 Challenge dataset and MIT-BIH AFIB & AFTDB dataset.
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Figure 7.14: ROC curves for the SVMs on the combination of the
Physionet/CinC Challenge 2017 test set and the MIT-BIH AFIB & AFTDB
dataset.

the true label is AF. Adding the morphological features corrects the classification.
The tachogram in Figure 7.15a shows some irregularities but not enough to be
classified as AF. Figure 7.15b shows the representative heartbeat, where the
P wave is clearly absent. The morphological features are thus decisive in this
case. Other classification errors using HRV features are the result of incorrect
R peak detection (such as for example cases where an R peak is missed). The
morphological features are able to correct these errors. The combination of
the morphological and HRV features results in a global F1-score of 0.948 with
AUC of 0.991. This is better than the HRV features and morphological features
individually. The ROC-curves of the three classifiers are shown in Figure 7.14.
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(a) The tachogram. (b) The representative heartbeat.

Figure 7.15: The tachogram and representative heartbeat of a signal that was
wrongly classified based on the HRV, but correctly classified when adding
morphology information [83].

7.5 Conclusion

This Chapter presented a series of methods to detect atrial fibrillation from
single and multilead ECG signals. While the use of tensors did not provide
added value for AF detection in single lead signals, we also presented a method
where single and multilead signals can be combined, leading to excellent results
on the single lead signals. The combination of morphological features and heart
rate variability features leads to stronger results than the use of either feature
set individually.





Part III

QRS Fragmentation





Chapter 8

Detection and Quantification
of QRS Fragmentation

The third part of this research focuses on QRS fragmentation, which is a
promising SCD risk predictor that can be derived from the 12-lead ECG signal.
Currently, detection of QRS fragmentation is done visually, however this is
a time-consuming process which may lead to subjective results. We therefore
propose a method to detect and quantify QRS fragmentation in ECG signals in
an automated way using machine learning approaches. The method described
in this Chapter will be published as: Goovaerts G., Padhy S., Vandenberk B.,
Varon C., Willems R., and Van Huffel S., A Machine Learning Approach for
Detection and Quantification of QRS Fragmentation. Accepted for publication
in IEEE Journal of Biomedical and Health Informatics. Preliminary results
were published earlier as [89].

8.1 Introduction

Another promising marker for prediction of sudden cardiac death that can be
detected in the 12-lead ECG is QRS fragmentation (fQRS). It is defined by Das
et al. [53] as the presence of an additional R wave (R’) or a notch in the nadir
of the S wave in at least two contiguous leads on the 12-lead ECG. Das et al.
showed that fQRS can be a convenient marker of myocardial scar, which may
lead to high-risk cardiac events like heart failure, need for revascularization, or
sudden cardiac death [177, 53]. Other studies have linked the presence of QRS

141
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Figure 8.1: Examples of different subtypes of fragmented QRS complexes.

fragmentation to adverse outcome in patients with Brugada syndrome [157] and
defibrillator shocks [223].

While the presence of fQRS was first noticed in 1969 by Flowers et al. [80],
to the best of our knowledge, there have only been a few studies that focus
on automated fQRS detection [139, 110]. Until now, visual assessment of each
lead individually is considered to be the gold standard in clinical practice.
Interpreting ECG signals is however time-consuming, expensive, and most
importantly requires adequate training of clinicians in order to get reliable
results. Recently, we have shown that visual fQRS assessment is not ideal as
the inter-observer variability differs significantly depending on the expertise
level of the observers [223]. Therefore, automated methods for fQRS detection
should be considered and can serve as a complementary tool for the clinician.

Currently, fQRS detection is done where each lead is given a score of 0 or 1
depending on the absence or presence of fragmentation. Fragmentation can
however take many forms as the number and location of deflections varies.
This is illustrated in Figure 8.1 which shows several examples of fragmented
QRS complexes, each with a different number of deflections or notches. Binary
scoring might therefore not be optimal since it fails to capture differences
between fQRS subtypes. It is furthermore expected that the spatial and
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temporal characteristics of the deflections can be important prognostic factors
in determining patient outcome [100]. This Chapter therefore proposes an
automatic and objective method to determine a fQRS score that quantifies the
certainty of the presence of QRS fragmentation in each lead.

For this, a necessary step is an accurate segmentation of the QRS complex.
QRS segmentation is a mature technology and nowadays a number of methods
have been developed, including time-domain, frequency-domain and transform-
domain methods. A broad methodological review on QRS segmentation can
be found in [144]. In the past two decades, wavelet transform methods such
as [143] have been widely adopted. Recently, empirical mode decomposition
(EMD) has also been used to segment the QRS complex [11, 172]. EMD is an
empirical algorithm with lack of a theoretical basis that is known to be sensitive
to noise. Additionally, it has been shown that EMD introduces distortions
in the beginning and end of the QRS complex, which may cause erroneous
results in this specific application [192]. The majority of methods including the
wavelet- and EMD-based approaches are non-adaptive and hence cannot be used
when signal characteristics change extensively. To overcome these limitations,
Dragomiretskiy and Zosso proposed variational mode decomposition (VMD)
[72]. VMD is based on the framework of variational theory and adaptively
determines the relevant frequency band. In the last four years, it has been
successfully used in different fields including ECG applications like arrhythmia
characterization [147, 140] or detection of shockable ventricular arrhythmia
[210]. In this work, we apply VMD to segment the QRS complex and extract
features that help quantify the certainty of fQRS.

In this Chapter, machine learning is used to detect fQRS and quantify its
degree of certainty. In our previous study [89], phase-rectified signal averaging
(PRSA) was used to extract features that characterize QRS fragmentation.
Here, additional features are computed from the results of VMD and combined
in a classifier. The main goal here is to assess whether the combination of
this novel feature set with different machine learning approaches succeeds in
both detecting and quantifying fQRS in a continuous way. The comprehensive
approach conducted in this study has the following main contributions:

• Accurate segmentation of the QRS complex using VMD

• Extracting VMD- and PRSA-based features that characterize the certainty
of fragmentation in a lead

• Comparison of different machine learning methods for fQRS detection
and quantification

• The assessment of the certainty of the presence of QRS fragmentation in
a continuous way as opposed to a binary classification
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The remainder of the Chapter is organized as follows. The database used in this
work is described in Section 8.2. The different steps required for calculating
the fQRS score are described in Section 8.3. Results of the proposed method
(including accuracy of the QRS segmentation) with comparison of evaluation
performance among different classifiers are presented in Section 8.4. The
experimental results are discussed in 8.5. Finally, conclusions of the proposed
work are given in Section 8.6.

8.2 Data

For this study, a dataset of 12-lead ECG signals recorded in 723 patients before
the implantation of a cardiac defibrillator (ICD) in the prevention of sudden
cardiac death due to cardiac arrhythmia was used. All signals were recorded in
the University Hospitals Leuven, Belgium. The ECG signals are digitized with
a sampling frequency of 250 Hz and have a duration of ten seconds. ECGs from
patients with ventricular pacing or cardiac arrhythmia like atrial fibrillation
were excluded since they have altered ECG morphologies. While these patients
might exhibit QRS fragmentation, they were insufficiently represented in the
dataset in order for the machine learning algorithms to learn their specific ECG
characteristics. We therefore decided to remove them. A total of 616 records
were included in the final dataset. Clinically, lead aVR is not used for fQRS
analysis [223, 225]. This lead was therefore excluded from all records in this
analysis. The study was approved by the ethical committee of the University
Hospitals Leuven (S56074/ML9965).

The database was fully annotated by five readers on the presence of fQRS in each
lead: they individually gave a score of 1 if fQRS was present and 0 otherwise.
The persons who scored the signals were all clinicians: four cardiologists in
training and one cardiology laboratory technician. Two of the readers were
considered experienced observers in fQRS analysis, due to their involvement
in previous studies and the three remaining ones were novice in fQRS analysis
prior to this project but received training prior to scoring the signals. All five
readers are experienced in research. The scores of all raters can be combined
by summing them, resulting in a total score. If all readers agree that a lead
does not show fQRS, the total score is 0; similarly, the total score is 5 if all
readers agree on the presence of fQRS in a lead. Leads where some raters
disagree have intermediate values. The total score given by all raters is thus
related to the uncertainty of the raters about the presence of fQRS. In other
words, a higher score means more raters have scored the signal as fragmented
and the fragmentation is assumed to be more prominent in that lead. Signals
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Table 8.1: Frequency of occurrence of different scores, obtained by summing
the annotations from all five readers, in the database.

Total score Counts Percent

0 2775 40.95
1 894 13.19
2 490 7.23
3 390 5.76
4 553 8.16
5 1674 24.7

with certain absence of fragmentation will have lower scores. The frequency of
occurrence of the scores (0 to 5) in the dataset is shown in Table 8.1. A full
description of the scoring process, including results on inter- and intra-rater
variability can be found in [223].

8.3 Methods

The block diagram of the proposed method for fQRS quantification in ECG
signals is depicted in Figure 8.2. It consists of four main steps: 1) preprocessing,
2) QRS segmentation using VMD, 3) feature extraction and 4) classification.
Each step is described in detail in the following subsections.

8.3.1 Preprocessing

In the preprocessing step, baseline wander and high-frequency noise were
removed from ECG signals. Baseline wander was removed by passing each
lead through a digital fourth-order Butterworth high-pass filter with cut-off
frequency of 0.5 Hz and high-frequency noise components using a fourth-order
Butterworth low-pass filter with cut-off frequency of 70 Hz. The filters were
applied both in forward and backward direction to get zero-phase distortion.
Then, the signal was normalized by calculating the z-score of each lead in order
to remove the amplitude differences between different recordings.
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8.3.2 VMD-based QRS segmentation

Variational Mode Decomposition

In this study, variational mode decomposition was applied to segment the QRS
complexes. VMD adaptively decomposes a real-valued multi-component signal
x(t) into K discrete number of modes or components uk(t) with k = 1, ...,K.
All components have certain sparsity properties, and the bandwidth in spectral
domain is considered as the sparsity prior of each mode. All modes are mostly
compact around their center frequencies ωk.

The bandwidth of a mode is evaluated in three steps: (i) the analytic signal
of the real-valued signal is computed using the Hilbert transform such that
the frequency spectrum becomes unilateral, (ii) the frequency spectrum of the
analytic signal corresponding to each mode is shifted to baseband regions by
multiplying it with the factor e−iωkt, (iii) then, the bandwidth is estimated
through the squared L2-norm of the gradient of the demodulated signal.
Mathematically, this constrained variational problem can be expressed as follows

min
{uk},{ωk}

{∑
k

∥∥∥∂t
[(

δ(t)+ j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥
2

2

}

s.t.
∑

k

uk(t) = x(t)
(8.1)

where δ is the Dirac-Delta function, ∗ is the convolution operator, and {uk}
and {ωk} represent the set of modes and center frequencies, respectively.

The constrained problem in Equation (8.1) can be solved by converting it into
an unconstrained problem using the balancing parameter α and the Lagrangian
multiplication parameter λ(t). The modified equation with the augmented
Lagrangian multiplier is expressed as

L({uk},{ωk}, λ) := α
∑

k

∥∥∥∂t
[(

δ(t)+ j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥
2

2

+
∥∥∥∥∥x(t)−

∑

k

uk(t)
∥∥∥∥∥

2

2

+
〈
λ(t), x(t)−

∑

k

uk(t)
〉
.

(8.2)

The above Equation (8.2) is solved using the alternate direction method of
multipliers [28]. We have skipped the intermediate steps to solve this equation
and some other related algorithms as these are beyond the scope of this
work. The readers are encouraged to refer to the original article for the full
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implementation of the VMD method [72]. The solutions to Eq. (8.2) in the
Fourier domain represent all modes and their central frequencies where each
mode and its center frequency are updated iteratively as

Ûn+1
k (ω) =

X̂(ω)−∑i 6=k Ûi(ω) + λ̂(ω)
2

1 + 2α(ω − ωk)2 (8.3)

ωn+1
k =

∫∞
0 ω

∣∣∣Ûk(ω)
∣∣∣
2
dω

∫∞
0

∣∣∣Ûk(ω)
∣∣∣
2
dω

(8.4)

where X̂(ω), Ûi(ω), λ̂(ω), and Ûn+1
k (ω) are the Fourier transforms of the

respective time domain representations. The Wiener filter structure in Equation
(8.3) makes the VMD method more robust to noise and sampling [93]. Finally,
the real part of the inverse Fourier transform of Ûn+1

k (ω) gives the time domain
representation of the modes. The center frequency in each iteration in Equation
(8.4) is the center of gravity of the corresponding positive part of mode’s power
spectrum.

QRS segmentation

From the VMD algorithm discussed above, it is clear that VMD is a parametrized
signal decomposition method. VMD requires two parameters to be fixed: the
number of modes K and the bandwidth control parameter α. Initialization of
these parameters is a non-trivial problem, since wrong parameter choices may
create problems like mode splitting (where one component is shared by several
modes) or mode mixing (where multiple components are decomposed into one
mode) [93]. To avoid this problem, we adopted the optimization technique
developed by Guo et al. [93] to fix the number of decomposition modes K and
balancing parameter α prior to applying VMD. After optimization, these values
were fixed to K = 5 and α = 100. The other input VMD parameters, namely
the time step of the dual ascent and the tolerance of the convergence criterion
were set to standard values 0 and 1e−6 [72]. All central frequencies ωk were
uniformly distributed at initialization.

VMD was applied to each ECG lead x(t) resulting in a decomposition into 5
modes:

x(t) =
5∑

k=1
uk(t) (8.5)

where uk(t) is the kth mode. Figure 8.3 shows an example of an ECG segment
after preprocessing with the corresponding modes u1–u5 in different rows. The
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Figure 8.3: Example of ECG signal with the corresponding modes of the output
of Variational Mode Decomposition with k = 5 and α = 100.

modes are sorted by their central frequency in ascending order. It can be
observed that different components (or characteristic waves) of the ECG signal
are decomposed into different modes. The low-frequency components appear in
lower modes and vice versa. The QRS complex is a high frequency wave with
sharp amplitude and thus appears in higher modes (u2-u4). Based on the fact
that the modes are mostly compact around their center frequencies, the QRS
complex and hence the Q and S points can best be detected using u3, which
is amplitude-normalized to obtain u3,norm. The complete QRS segmentation
algorithm consists of three main steps, which are illustrated in the different
rows of Figure 8.4:

1. R peak detection
Square u3,norm in order to obtain u2

3,norm to enhance the main peaks
in u3,norm (corresponding to QRS complexes) and minimize noise peaks.
Detect the R peaks in u2

3,norm by finding local maxima with an amplitude
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Figure 8.4: Illustration of the three main steps for QRS segmentation, applied
to the signal shown in Figure 8.3. First the R peaks are detected in u2

3,norm.
Then the QRS complex is segmented in u3,norm. Finally the QRS locations are
optimized in the original ECG signal. The R peaks are depicted in blue, the
beginning and end of the QRS complex in respectively red and green.

higher than 0.075. The minimal distance between two consecutive peaks
must be larger than 0.5 seconds. This corresponds to a maximal heart
rate of 120 beats per minute which is realistic for ECG signals measured
in rest. For signals with potentially increased heart rates, this parameter
can easily be changed to accommodate them.

2. QRS segmentation
Transfer the R peaks to u3,norm. The beginning of the QRS complex
corresponds to the first zero-crossing before the first local minimum
preceding the R-peak in u3,norm. Similarly, the end of the QRS complex
can be found by detecting the first zero-crossing after the first local
minimum after the R peak.

3. QRS optimization
Optimize the locations of the Q and S points by finding a local minimum
in the ECG signal in the neighbourhood (± 5 samples) of the points
detected in u3,norm.

QRS segmentation was done in each lead separately. In a final stage,
segmentations in all leads were combined in an automated way to remove false
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detections. False positive detections can occur when the ECG signal contains
noise with characteristics similar to QRS complexes. They were removed by
first calculating in how many leads a QRS complex was detected at a certain
time instance and subsequently removing QRS complexes that were detected in
less than half of the ECG leads. False negative detections were solved similarly
by automatically adding QRS complexes in leads where a complex was missed
by the algorithm. The start- and end points for these additional complexes
were selected as the mean start- and end points of the complexes detected by
the algorithm in the other leads of the signal.

Finally all points between the end of the QRS complex and the beginning of
the next complex are set to zero since they will not be analyzed further.

8.3.3 Feature extraction

In this subsection, feature extraction using PRSA and VMD is discussed. PRSA
feature extraction was used in our earlier study [89], and the same approach has
been adopted in this work. All features were extracted from the QRS complexes
segmented using the method described in the previous subsection.

PRSA-based features

Phase-rectified signal averaging aims to detect and quantify quasi-periodic
oscillations masked by multi-component non-stationary signals [16]. The method
consists of three steps:

(i) Selection of anchor points
First, two sets of anchor points qi were selected according to certain
properties in the QRS complex. The anchor points can be selected in
different ways [16]; here, a first set of anchor points consists of all points
located on the increasing part of the QRS complex (q+

i ), a second set
contains all points on decreasing parts of the QRS complex(q−i ).

(ii) Window selection
Then, temporal windows of length 2L were selected around each anchor
point. The anchor points which were too close (< L ms) to the beginning
or end of the complex were discarded since for these points no such window
can be selected. The choice of L is dependent on the characteristics of the
signal: it must be larger than the period of the slowest oscillation that
should be detected. Here L is fixed to 20 ms, similarly to [89].
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(iii) Averaging
In the final step, the PRSA curve q̃ was obtained by aligning all windows
and averaging them. The windows corresponding to decreasing anchor
points q−i were inverted before calculating the average, e.g. window(q−i ) =
−window(q−i ). Inverting the windows is necessary to ensure that all
windows have similar slopes.

The different steps to calculate the PRSA curve for a normal and a fragmented
beat are shown in Figure 8.5. Two positive and two negative anchor points are
highlighted in respectively red, cyan and green, blue to highlight the changes in
the signals. For a normal beat (depicted in the top row), all increasing anchor
points are located in the first part of the QRS complex and all decreasing
points in the second part due to the very simple morphology of the wave. Most
windows are thus similar in shape and the PRSA curve can be approximated
by a straight line. When a signal shows fragmentation (shown in the bottom
row), the anchor points are not contained in one part of the QRS complex.
The surrounding windows thus exhibit more differences which result in a PRSA
curve with a smaller inclination, which can be seen by comparing the rightmost
panels of Figure 8.5.

To extract features from the PRSA curve, it was approximated with a linear fit.
Three parameters were extracted to quantify the curve:

(i) Mean derivative of the PRSA curve (sl): 1
2L
∑2L
t=0

dq̃(t)
dt

(ii) Slope of the linear fit (m)

(iii) Intercept of the linear fit with the y-axis (c).

VMD-based features

Fragmentation introduces additional high-frequency components in the ECG
signal, which in turn causes extra oscillations in the VMD modes that contain
QRS information. Therefore the central frequencies of these modes also increase.
As discussed in Subsection 8.3.2, modes u1 and u2 contain the low-frequency
ECG components such as P- and T-waves, and other modes mostly carry the
high-frequency components such as the QRS complex. Due to the presence of
notches or additional waves, it is expected that the number of local optima
per QRS complex will increase with respect to the certainty of fQRS. Hence,
two different VMD-based features were extracted from modes u3, u4 and
u5: the average number of local optima per QRS complex (pks3, pks4, pks5)
and the central frequency of the QRS complexes in the considered modes
(ωQRS3 , ωQRS4 , ωQRS5 ), leading to a total of six VMD-based features.
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One additional feature was extracted directly from the QRS complex: the
number of local peaks in the ECG signal per QRS complex, pksECG. This
feature was combined with the three PRSA features and six VMD features to
obtain a total of ten features for each lead.

8.3.4 Classification

The extracted features were used as input to a classifier in order to detect
and quantify QRS fragmentation. The performance of SVMs with a linear,
polynomial and radial basis function kernel was compared to select the kernel
which obtains the best performance. In order to define the optimal SVM
parameters, automatic Bayesian optimization of hyperparameters (both the
soft margin constant and kernel parameters) using 10-fold cross-validation was
performed. Additionally, to illustrate the effectiveness of the proposed method,
the performance of three different classifiers (K-nearest neighbors (kNN), Naive
Bayes classifier (NB), and TreeBagger (TB)) was also evaluated and compared
with the results obtained by SVMs. The output of the classifiers (e.g. the score
belonging to the positive class) was transformed to a score between 0 and 1
through the use of Platt scaling, which fits a logistic regression model to the
output [178]. The obtained score is taken as fQRS score and is expected to
reflect the certainty of fQRS in a channel.

The dataset used in this study contained 6776 signals in total (616 records
with 11 leads per record). These signals were divided into one training and
two test sets. To train the classifier, only signals where all experts agreed on
the presence of QRS fragmentation were used. There were 2775 normal signals
and 1674 fragmented signals without disagreement (see Table 8.1). These were
randomly split in 80% training set and 20% test set. Both sets had equal ratios
of normal and fragmented signals. A second test set contained all signals that
were not used in the training stage. The first test set was used to evaluate the
performance of the method for fQRS detection: since all raters agreed on the
label for all signals in this set, this label was considered to be correct and binary
classification could be done. The second test set on the other hand was used to
assess whether the developed score reflected the certainty of QRS fragmentation
in an ECG signal.

The training set and the first test set are fully independent: signals from the
same patient are only present in one of both sets. Since the second test set
contains all ECG channels were no perfect agreement was reached, it also
contains channels from patients in the training set, and both sets are not fully
independent.
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8.3.5 Performance evaluation metrics

Different measures were used to evaluate the performance of the developed
method. Statistical analyses of parameter values were done with one-way
Analysis of Variance (ANOVA) with the F-test [186] followed by a post-hoc test
analysis based on Tukey’s honest significant difference (hsd) test. These tests
were carried out to verify whether means of different categories are significantly
different or not. ANOVA assesses the relative size of variance among category
means compared to the average variance within categories and is an appropriate
test for evaluating the effect of categorical independent variables on a continuous
response variable. The F-ratio, the value obtained from the ratio of the variance
between categories and the variance within categories, was used as the parameter
to decide the statistically significant performance. The F-test represents the
determination of the significance of the F-ratio by comparing it to a critical
value derived from the probability distribution. The null hypothesis that the
means of all categories are equivalent is rejected if the F-ratio is greater than the
critical value. If the F-test is statistically significant, then there is, in principle,
at least one significant difference in means. Then, a post-hoc test e.g. Tukey’s
hsd test was executed to perform specific comparisons to discover the origin(s)
of the difference. In all tests, a p-value < 0.01 was considered statistically
significant.

Performance of the different classifiers was evaluated by constructing Receiver
Operator Characteristic curves (ROC) and calculating the corresponding Area
Under The Curve (AUC). The results of fQRS detection were further quantified
by calculating the number of True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) detections and computing the sensitivity
(Se), specificity (Sp) and accuracy (Acc).

8.4 Results

The full dataset was analyzed using the proposed method depicted in Figure 8.2.
In this section, we present the results of the different analyses. All experiments
in this work were performed using MATLAB R2017b.

8.4.1 QRS segmentation

To evaluate the results of the proposed approach to QRS segmentation, the
publicly available QT database was used, which contains 105 ECG signals of
15 minutes with manually determined wave boundaries [122]. The database
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Table 8.2: Accuracy results of QRS segmentation of the proposed method and
three state-of-the art alternative approaches on the QT database. Mean and
standard deviation of the difference between the provided annotations and the
segmentation obtained by the algorithm are given in ms.

QRSon QRSoff

Method mean std mean std

Proposed method -3.6 11.16 6.67 17.28
Martínez et al. [143] 4.6 7.7 0.8 8.7
Madeiro et al. [137] -3.4 11.6 -6.5 12.3
Akhbari et al. [6] -5 10 1.5 11.5

has been used extensively as benchmark tool for ECG delineation algorithms.
The performance is quantified by calculating the mean deviation and standard
deviation between the VMD-based segmentation and the manual annotations.

The proposed R peak detection algorithm detected 98.11% of all R peaks
correctly. This is equivalent to the results found in literature [143, 137, 6]. The
accuracies of the delineation of the onset and offset of the QRS complex are
summarized in Table 8.4. The results for segmentation of the QRS onset are
comparable to the state-of-the art algorithms. The standard deviation of the
QRS offset detection is slightly worse than the results reported by Madeiro et
al. [137] and Akhbari et al. [6], but the difference is limited to five ms, which is
equal to one sample for signals sampled at 250 Hz.

8.4.2 Analysis of feature values

Figure 8.6 shows box plots for all ten features. Each set of box plots is calculated
by computing the particular feature value for all leads of all signals and grouping
them per total score (e.g. the sum of the scores by all raters). As discussed in
Section 8.2, the total score is a substitute for the (un)certainty of fQRS in an
ECG lead. We observe that for all features the feature values gradually change
with changing total score. The average slope of the PRSA curve and the slope
of the linear fit are both inversely related to fQRS certainty, which is expected
based on the examples in Figure 8.5. Similarly, the intercept of the linear fit
increases with increasing certainty. The number of peaks per QRS complex
in the VMD modes regularly increases with the level of fragmentation. The
increase in the median values in modes u4 and u5 is more prominent compared
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Table 8.3: Significance results of the post-hoc analysis for the comparison of
the VMD- and PRSA-based features using Tukey’s hsd test. Results are shown
only between the consecutive categories. ’Y’ stands for statistically significant
with p <0.01. p-values are mentioned for all non-significant results.

Compared categories: 0-1 1-2 2-3 3-4 4-5

PRSA-based features

Avg. slope (sl) Y Y 0.465 0.064 Y
Slope (m) Y Y 0.453 0.112 Y
Intercept (c) Y Y 0.387 0.165 Y

VMD-based features

ωQRS
3 Y 0.014 0.999 0.013 Y

ωQRS
4 Y Y 0.788 Y Y

ωQRS
5 Y 0.212 0.904 0.277 Y

pks3 Y 0.020 0.774 0.015 Y
pks4 Y Y 0.410 Y Y
pks5 Y 0.201 0.541 0.337 Y

pksECG Y Y 0.821 Y Y

to the medians in u3. It is interesting to note that the central frequency of the
QRS complexes in these modes also follows the same trend.

ANOVA is used to statistically compare the means of the values in different
score groups. Here, the null hypothesis is that the mean of a feature is identical
for all six categories. The F-ratio results reveal that for all features, there is at
least one mean that is significantly different from one or more categories. As
this happens for all features, we only present the post-hoc analysis.

Table 8.3 shows the post-hoc analysis based on the Tukey’s hsd test that
shows which categories differ from each other by comparing the means between
consecutive categories. Significant p-values (p <0.01) are indicated with ‘Y’.

8.4.3 Classifier performance

In this subsection, we present the performance of different classifiers for fQRS
detection and quantification. As mentioned in Section 8.3.4, the classifiers were
trained on 80% of the signals without disagreement between the raters. The
other signals were used for evaluation during the testing stage.
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Figure 8.7: ROC curves for fQRS detection with all classifiers together with
the corresponding AUC values.

Table 8.4: Comparison of the fQRS classification results from the proposed
method with methods from literature. The obtained sensitivity, specificity and
accuracy on the first test set are mentioned.

Method Se (%) Sp (%) Acc (%)

Proposed method 86% 89% 88%
Jin et al. [110] 72% 78% 75%
Maheshwari et al. [139] 84% 87% 85%
Bono et al. [24] 75% 78% 77%

Figure 8.7 shows the ROC curves with corresponding AUC values for all
classifiers. Here, the test set consists of the 20% remaining signals with perfect
agreement. The true class of these signals is considered to be certain so
classification can be performed. The differences between the SVMs with different
kernels are negligible (AUC = 0.947 (lin), 0.948 (pol) and 0.948 (RBF)). The
KNN classifier (AUC = 0.941) performs slightly worse than the SVMs while
the performance of the NB (AUC = 0.896) and TB (AUC = 0.886) classifiers
are comparatively worse.

Table 8.4 finally summarizes the sensitivity, specificity and accuracy results
obtained by applying the proposed method (SVM with RBF kernel) and the three
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alternative algorithms [110, 139, 24] on the first test set. The other approaches
use the wavelet transform [138, 24] or intrinsic time-scale decomposition [110]
to decompose the ECG signal and detect fQRS from features obtained from the
decomposed signal.

The box plots in Figure 8.8 show the fQRS quantification results. Here, the test
dataset contains all instances that are not considered in the training stage. The
box plot for each category is computed by combining the fQRS scores for all
signals with the same total score. The output scores from most classifiers follow
an increasing trend with respect to the different categories. The results for the
NB and TB classifiers are considerably worse than the other classifiers. Results
for SVM and KNN classifiers are again comparable, but the interquartile range
for the different SVM box plots is smaller than for KNN. Furthermore the range
of SVM scores spans the full range (0–1) while the range for the other classifiers
is limited to a smaller interval.

8.5 Discussion

This study proposes an innovative method to detect and quantify fQRS. In the
first step, the QRS complexes are segmented using a novel VMD-based algorithm.
According to Table 8.2, the approach gives results that are comparable to many
state-of-the-art algorithms. While the widely-used wavelet-based method from
Martínez et al. [143] obtains superior results, the differences are limited to a
few samples.

Figure 8.6 and Table 8.3 summarize results for the feature values in different
groups. The values for all features change gradually with increasing raters’ scores,
indicating that the reasoning in Section 8.3.3 is correct: fragmentation has a
significant influence on the PRSA curve and introduces extra high frequency
components in the results of VMD, which in turn give rise to extra peaks.
Table 8.3 shows that all features are significantly different between the most
extreme groups (0-1 and 4-5). The median differences between other groups
are not always statistically significant, but there is a clear trend for all features
which can also be noticed in Figure 8.6. The feature values for signals with a
total score of 2 and 3 are similar, with p-values larger than 0.35. This is not
unexpected since the signals in these groups are comparable: they represent
the signals which are scored as fragmented by approximately half of the experts
and normal by the other half.

Once the PRSA- and the VMD-based features have been extracted from the
QRS complexes, they were fed into different classifiers in order to evaluate
and compare their performance. Experimental results presented in Figure 8.7
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show that all classifiers give good results for detecting signals with clear QRS
fragmentation. SVMs are slightly superior to other classifier types. The results
in Table 8.4 show that our approach outperforms the other methods, although
the results obtained by [139] are in the same range. A second test set was used
to evaluate the performance for fQRS quantification. Here the goal was to verify
whether the developed score is representative for the certainty of the presence of
fQRS in an ECG lead. Platt scaling transforms the classifier output to a score
between 0 and 1, which corresponds to the posterior probability of the classifier.
This results in the box plots shown in Figure 8.8. For the different types of
SVMs, the fQRS score varies between 0 and 1 and linearly changes with the
total score from all experts. As explained in Section II, the total score is related
to the certainty of fQRS in a lead. It is therefore expected that leads with a
questionable fQRS presence (represented by a total score of 1–2, where only one
or two raters observe fQRS in that lead) have lower fQRS scores than leads with
a probable (total score of 3–4) or certain presence (total score = 5). Figure 8.8
confirms this hypothesis. If the boxplots of the different scores are compared,
the boxplot heights of values 0 and 5 are significantly smaller than the heights
of the intermediate values. This confirms that the classifier output for values
1–4 is indeed more uncertain than for the extreme values. This is also expected,
since the true label contains more uncertainty (for the intermediate values, the
presence or absence of QRS fragmentation is after all not certainly known).
While the number of outliers in the boxplot corresponding to a total score of 0
seems large at first sight, they represent less than 2% of all signals in the second
test set. These outliers can have different explanations: For some signals, the
QRS segmentation is not 100% accurate, which can have an influence on the
feature values. For other signals, an increased noise level can change the ECG
characteristics and have an influence on the final classification. The fact that
the number of outliers is small and the good AUC scores obtained on the first
test set however confirms that this is only the case in a small minority of the
data.

KNN also results in a stepwise increasing score, while the results of NB and TB
are considerably worse. The scores obtained by KNN, however, do not span the
full range between 0 and 1 but are limited from 0.05 to 0.95. It has been shown
before that Platt calibration of KNN classifiers can lead to diminished results
while the results of SVM classifiers are significantly boosted [39, 164]. Since
SVMs also result in superior detection results (shown on Figure 8.7), SVM
classifiers are preferred over other classification methods.

In this study the performances of three different SVM kernels (linear, polynomial
and RBF kernels) were compared. They all have similar results both in fQRS
detection and quantification. Since the numerical results are almost identical,
the choice of kernel does not appear to have a significant effect in this application.
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In general, however, the RBF kernel is preferred in such cases since it is known
to be a universal approximator.

The results presented in this Chapter demonstrate that the proposed fQRS score
is an effective way of detecting and quantifying QRS fragmentation. Comparison
with existing techniques shows that the proposed method outperforms other
methods found in literature. The extensive scoring done by five independent
raters is a strong indicator that the results are robust to inter-rater variability
and can be generalized to other datasets. This should, however, be validated
with other datasets scored in a similar way. The availability of scores by different
raters also allows us to evaluate the quantification of fQRS certainty in an
objective way, which is a novel approach to examine the biomarker.

Clinically, QRS fragmentation is scored on a per-lead basis, after which the
detections in separate leads are combined per cardiac region. Future work
includes combining the fQRS scores in a similar way to achieve a score per
cardiac region which can be used for clinical validation. The final goal is to
verify whether a continuous way of scoring QRS fragmentation also leads to
superior results in clinical studies that focus on analyzing patient outcomes.
This will be explored in the next Chapter.

8.6 Conclusion

This Chapter presents a novel and precise way to detect and quantify QRS
fragmentation in ECG signals using machine learning techniques. The fQRS
score represents the certainty of QRS fragmentation in a continuous way based
on fQRS annotations from five experts. The features extracted using VMD and
PRSA show values that change gradually with increasing fQRS certainty. The
fQRS score obtained using SVM classifiers is closely related to the total score
given by all raters which is representative for the fragmentation in a lead.

The developed method is an automated and objective way of characterizing
fQRS and will thus lead to results that are more reliable than scoring based
on visual analysis which is known to be dependent on rater experience. It is
therefore expected that the proposed fQRS score will also benefit the practical
use of the parameter in clinical practice.





Chapter 9

Risk Assessment of All-Cause
Mortality using a QRS
fragmentation score

The previous Chapter proposed a method to automatically detect and quantify
QRS fragmentation. The goal of this Chapter is to examine the clinical utility
of this novel parameter in the assessment of the risk on all-cause mortality.
Additionally, we will use a combination of standard statistical models and more
advanced SVM approaches to verify whether the use of machine learning methods
can provide further added value here. The first part of this Chapter, related to
the determination of optimal cut points, was published as Goovaerts G., Padhy
S., Varon C., Vandenberk B., Willems R., Van Huffel S., "Risk on all-cause
mortality in ICD patients using a novel QRS fragmentation score", in Proc.
of the 45th Annual Computing in Cardiology, CinC 2018, Maastricht, The
Netherlands, Sep. 2018, where it was nominated as one of the finalists for the
Rosanna Degani Young Investigator Award.

9.1 Introduction

QRS fragmentation was defined in the previous Chapter as the presence of
extra deflections or notches on the QRS complex [53]. It is known to be an
independent predictor for ICD shocks and mortality in certain patient groups
[223]. More specifically, in primary prevention the presence of fQRS in the

165
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anterior channels can predict all-cause mortality while inferior fQRS is associated
with appropriate ICD shocks [223]. The previous Chapter presented a method
to automatically determine an objective fQRS score that reflects the certainty
of QRS fragmentation in an ECG lead. We showed that the proposed algorithm
obtains good detection results and that the quantification is in line with the
combined score from five experts. The objective of this Chapter is now to
examine whether this novel parameter also has potential to be used as risk
factor for all-cause mortality in ICD patients. Since previous research showed
that the location of fQRS contains important diagnostic information, we will
furthermore examine whether these findings can be replicated using our novel
approach.

In a first study [222], the goal was to verify whether the PRSA-features presented
in Chapter 8 can lead to better predictions of appropriate ICD shocks and
all-cause mortality than traditional visual assessment. There, we showed that
if PRSA-features are used as input to an SVM-classifier, the predictive value
improved significantly for the prognosis of appropriate shocks. For all-cause
mortality, the dataset considered in [222] was too small and contained not enough
events to make strong conclusions. The obtained results however reassured us
of the power of the developed approach and inspired the work described in this
Chapter.

Since a larger dataset was collected for the purpose of developing the fQRS
detection method, this dataset will be further used here to assess the risk on
all-cause mortality, which is a prime example of survival analysis. Support
vector machines can be used for the analysis of survival data by considering
survival up to a certain cut-off time t as a binary variable, the approach taken
in [222]. It however leads to a significant loss of information, as outlined in
[77]: First, in order to include as many events as possible, the cut-off t should
be as long as possible. On the other hand, in many clinical studies patients
are only followed for a certain period, and no further information is available
about the patient status after that period, they are lost to follow-up. For binary
classification of survival data, all patients lost to follow-up before the cut-off
will be discarded, favouring a low t. Second, when dichotomizing the survival
time, all events that occur before the cut-off time t are handled in the same way,
regardless of the moment when they occurred. There may however be valuable
information in the exact time of the event, which is lost this way. In the past
years however, some extensions of SVMs that are able to handle the specific
characteristics of survival data have been developed and will be evaluated here.

In this Chapter, we will use a combination of standard statistical methods
and more advanced machine learning methods to examine to what extent the
developed score is useful as a prognostic risk factor in a population of ICD
patients. The goal of this Chapter is therefore twofold:
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1. Verify whether the novel QRS fragmentation score has added value
compared to standard clinical characteristics to predict mortality in a
group of ICD patients

2. Verify whether advanced machine learning techniques have added value
compared to standard statistical survival models

Since survival analysis methods have some specific differences compared to
standard regression and machine learning techniques, the next Section first
gives a summary of the most important concepts and methods, largely based
on Bradburn et al. [29] and Clark et al. [43]. Section 9.3 provides an overview
of the dataset. The methods to analyse this data are described in Section 9.4,
and the results and discussion follow in Sections 9.5 and 9.6 respectively.

9.2 Survival analysis

Chapter 3 gave an overview of some important concepts in machine learning,
which can be used to classify samples in different categories. A specific subset
of methods deals with survival analysis, which involves the description and
modelling of time-to-event data [29, 43]. Another goal is to identify risk factors
that influence the risk on experiencing the event under analysis such that a
negative event can be avoided. As such it is closely related to regression, but
the main difficulty in survival analysis lies in the presence of censored data.
Censored data are data which are not completely observed. In the context of
survival analysis, where the event under study is the time of death of patients,
not all patients are followed until their time of death. For those patients, the
only information that is available is the fact that they were alive at the end of
the study period, and that their survival time is at least equal to some time t.
Their data are right-censored, and the censoring time represents a lower bound
on the event time. There are generally speaking three reasons why censoring
occurs:

1. A subject does not experience the event before the end of the study

2. A subject is lost to follow-up during the study period

3. A subject withdraws from the study

Apart from right-censoring, data can also be left-censored, where only an upper
bound of the event time is known. It is however less common in the datasets
used here. Regardless of the type of censoring, we have to assume that the
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censoring is non-informative about the event. When patients for example drop
out of a medical study because their condition is worsening, the censoring might
give information about the endpoint and is considered informative.

Censored data are generally described as 3-tuples of a binary event variable δ
which is set to 1 if the event occurs and is thus equal to 0 for censored subjects,
the time-to-event t and a feature vector of covariates x ∈ RD with D the number
of features considered. The time-to-event is also called the failure or survival
time. Note that the events studies in survival analysis do not have to be related
to survival. The same techniques can be used to study the reliability of products
or phenomena such as employment and inflation.

9.2.1 Kaplan-Meier analysis

The survival function S(t) is a function that gives the probability that a subject
will survive past time t, or that the event did not occur before time t. Kaplan-
Meier (KM) estimators are non-parametric estimators that can be used to model
S(t), meaning that they do not assume that the survival times follow a known
probability distribution [112]. It is calculated by ranking the survival times of
all patients in decreasing order:

For a dataset with N patients, let the observed survival times for each patient
be:

t1 ≤ t2 ≤ t3... ≤ tN

Then, let ni be the total number of non-censored subjects until time ti, and di
the total number of events happening until time ti. The Kaplan-Meier estimator
is then expressed as:

Ŝ(t) =
∏

ti≤t

(ni − di)
ni

, for 0 ≤ t ≤ tN (9.1)

The estimation of the survival function Ŝ(t) is thus a stepwise decreasing function
that changes value only at the time of an event. The results of the Kaplan-Meier
estimator are typically expressed in a curve which shows the probability of
survival over time. These Kaplan-Meier plots form a straightforward way to
compare survival functions between different patient groups.

Evaluation

The Kaplan-Meier curves of two patient groups can be statistically compared
with the log-rank test, in order to verify whether there are statistically significant
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differences between the survival functions of both groups [174]. The groups may
be for example patients undergoing different treatments or different prognostic
groups. The log-rank test is a variant of the chi-square test and measures the
observed number of events Oi versus the expected number of events Ei for each
time instant. The test statistic is calculated by:

X2 =
g∑

i=1

(Oi − Ei)2

Ei
(9.2)

with g the number of groups. This value is then compared to a χ2 distribution
with (g − 1) degrees of freedom, which results in a p-value that expresses the
statistical significance.

Another way to compare survival functions between two groups is by calculating
the hazard ratio (HR), a measure of the relative survival in the two groups. It
is estimated by:

HR = O1/E1
O2/E2

(9.3)

It can be interpreted as the chance of an event occurring in group 1 divided by
the chance of an event occurring in group 2. An HR of 1 indicates that there is
no difference in survival between the groups.

9.2.2 Cox proportional-hazards model

The hazard function h(t) is similar to the survival function, but describes the
probability that an individual has an event at time t. It can be estimated
with the Cox proportional hazards model (Cox PH model), one of the most
well-known and widely used methods to model survival data [50]. While it does
not assume a statistical distribution of survival time, its main assumption is
the proportional hazards assumption: it assumes that the effect of variables on
survival time is time-independent, and that the hazards of two subjects are thus
proportional over time.

The hazard function of the Cox PH model is as follows:

h(t) = h0(t) ∗ exp(
∑

i=1,...,D
bixi) (9.4)

Here, h0(t) is the baseline hazard, which is multiplied by a factor for each
covariate xi, for i = 1, ..., D. The baseline hazard corresponds to the value of
the hazard if all variables xi are equal to zero. The coefficients exp(bi) represent
the hazard ratios for all parameters. A hazard ratio exp(bi) > 1 implies that
as the value of xi increases, the hazard will increase in proportion and the
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probability of survival will decrease. Note that the baseline hazard may change
in time while the hazard ratios of the variables are constant.

The coefficients bi are estimated using partial likelihood estimators, which is
similar to the maximal likelihood estimators used in linear and logistic regression.

Evaluation

Cox PH models can be evaluated and compared using the c-index or concordance
index, which is defined as a measure of the amount of agreement between the
predicted and observed survival [98]. It can be considered as an alternative to
the AUC-value for survival models. It is calculated as the ratio of the number
of concordant pairs and the number of comparable pairs. Two observations are
comparable if the ranking of their event times is known. In the context of right-
censored data, a pair of events is comparable if both events are non-censored
or for a pair with one censored observation and one event, if the time of the
event comes before the total observation time for the censored observation. A
comparable pair is concordant if the survival order as predicted by the model is
the same as the observed survival order.

9.2.3 Survival SVM

The general framework of SVM-based classification was described in Section 3.3.
It is however also possible to apply SVMs to regression problems, where the
desired result is no longer a discrete class label but rather a continous output
value. This is referred to as Support Vector Regression (SVR) [73]. Recently,
several methods to extend SVM formulations for survival analysis were proposed
[77, 196, 217]. We will now explain three different approaches that use either
regression constraints, ranking constraints or a hybrid combination of both.

Regression approach

The regression approach directly starts from the SVR formulation and aims
at finding a function to estimate the survival time t̃ using covariates x ∈ RD,
taking into account censoring information [196].

The standard SVR problem is similar to the classification SVM problem
described in Section 3.3.1 [73]. It predicts a continuous value ŷ as the
linear combination of the kernel-transformed variables φ(x) and a constant
b: ŷ = wTφ(x) + b. Similarly to Equation 3.1, this is stated as an optimization
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problem where a loss function needs to be minimized, subject to a number of
constraints. The constraints are chosen to make sure that the predicted values
ŷ have at most ε deviation from the actual values yi obtained from the training
data, while keeping ε as small as possible. This can be written as the following
convex optimization problem:

min
w,b,ε,ε∗

1
2wTw + γ

n∑

i=1
(εi + ε∗i )

s.t. wTφ(xi) + b ≥ yi − εi, ∀i = 1, ..., n

−wTφ(xi)− b ≥ −yi − ε∗i , ∀i = 1, ..., n

εi ≥ 0 ∀i = 1, ..., n

ε∗i ≥ 0 ∀i = 1, ..., n

(9.5)

For censored observations, the exact survival time is not known, but is known
to be larger than the censoring time. This implicates that predicted survival
times that are greater than the censoring time do not need to be penalized.
Similarly, predicted times lower than the survival time require penalization as
usual. For uncensored observations, the same constraints as in the standard
SVR model still hold. The support vector regression model for censored data
can therefore be formulated as:

min
w,b,ε,ε∗

1
2wTw + γ

n∑

i=1
(εi + ε∗i )

s.t. wTφ(xi) + b ≥ yi − εi, ∀i = 1, ..., n

− δi(wTφ(xi) + b) ≥ −δiyi − ε∗i , ∀i = 1, ..., n

εi ≥ 0 ∀i = 1, ..., n

ε∗i ≥ 0 ∀i = 1, ..., n

(9.6)

Here, survival predictions for censored and non-censored data are penalized
similarly. Alternatives which used different penalizations for censored and
non-censored data exist [116], but require extra parameters to be tuned which
strongly increases computation time [217].
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Ranking approach

The goal of the ranking approach is to predict risk ranks between individuals
instead of calculating an estimate of the survival time. As such, the aim is
comparable to maximizing the c-index described earlier. The methods proposed
by Van Belle et al. [214] and Evers and Messow [77] penalize a comparable pair
of observations for which the order as predicted by the SVM model is different
from the observed order. The model is therefore formulated by Van Belle et al.
[214] as:

min
w,ε

1
2wTw + γ

n∑

i=1

∑

j:yi>yj

εij

s.t. wT (φ(x(j))− φ(x(i))) ≥ 1− εij ,∀i = 1, ..., n;∀j > i

εij ≥ 0, ∀i = 1, ..., n;∀j > i

(9.7)

Only comparisons between comparable pairs (xi, yi, δi) and (xj , yj , δj) are
included. This model will be referred to as vanbelle1.

The major disadvantage is that a quadratic programming problem of O
(
n2)

needs to be solved. Therefore, an alternative formulation of this problem, from
hereon called vanbelle2, was proposed that reduced the number of constraints
to O (n) [215]. The reduction is done by comparing each data point i with only
its nearest comparable neighbour j̄(i) instead of comparing it with all available
comparable points j:

min
w,ε

1
2wTw + γ

n∑

i=1
εi

s.t. wT (φ(xi)− φ(xj̄(i))) ≥ yi − yj̄(i) − εi,∀i = 1, ..., n

εi ≥ 0, ∀i = 1, ..., n

(9.8)
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Hybrid approach

The hybrid approach combines the regression and ranking models and includes
the constraints from both Eq. 9.6 and Eq. 9.8 [217]:

min
w,ε

1
2wTw + γ

n∑

i=1
εi + µ

n∑

i=1
(ξi + ξ∗i )

s.t. wT (φ(xi)− φ(xj̄(i))) ≥ yi − yj̄(i) − εi,∀i = 1, ..., n

wTφ(xi) + b ≥ yi − ξi, ∀i = 1, .., n

− δi(wTφ(xi) + b) ≥ −δiyi − ξ∗i , ∀i = 1, ..., n

εi, ξi, ξ
∗
i ≥ 0, ∀i = 1, ..., n

(9.9)

All survival SVM models explained above are implemented in the R-package
survivalsvm, which can be used to fit and evaluate several survival models
[81]. It includes four different kernels that can be used with all models: linear,
additive, RBF and polynomial. As with Cox PH models, different models can
be compared by calculating and comparing their respective c-indices.

9.3 Data

The dataset used in this Chapter consists of data from the same patients
used in the previous Chapter. It contains 616 patients who were followed in
the University Hospitals Leuven between October 1996 until December 2013,
excluding patients with pacemakers or abnormal heart rhythms such as atrial
fibrillation. Demographic, clinical and electrocardiographic data before the first
implantation of the ICD were collected from their electronic medical record.
The dataset has no variables with missing values. The ECG signals from all
patients were used to calculate an fQRS score for each lead with the method
described in Chapter 8.

The full dataset is composed of more than 20 clinical variables including QTc
duration, age at the moment of ICD implantation, clinical history,... From this
list, nine features were selected to construct a baseline clinical model. The model
includes age, gender, etiology of cardiac disease, LVEF, the presence of left
bundle branch block, renal function and use of beta-blockers, ACE-inhibitors
and anti-arrhythmic drugs. The included features were selected because they
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were pointed out as strong prognostic factors in either previous examination of
this patient group or large population studies.

The primary endpoints included in the database are first appropriate shock and
all-cause mortality. Endpoints were collected until 31-12-2014. The endpoint
considered here is all-cause mortality at 7.5 years (the mean follow-up time of
all patients). Out of the 616 patients, 126 died during the follow-up period.

9.4 Methods

In this Chapter, we analysed the available data in two separate ways. The
first method is based on the Kaplan-Meier analysis and aims at verifying if
the proposed fQRS score can be used to dichotomize the patients in a high-
and low-risk group. In the second part, the goal is to verify whether the it
can improve the accuracy of risk prediction when combined with survival SVM
methods.

9.4.1 Optimal cut point determination

The first method aims to examine whether the proposed fQRS score can be used
to divide the patients in a low- and high-risk group. A second goal is to analyse
which channels are more useful to predict all-cause mortality. We dichotomized
the fQRS score of each lead by determining an optimal cut point θch for each
channel to distinguish a high-risk and low-risk group. The patients were first
divided in a training and test set: 2

3 of the patients were used to determine the
cut points, the remainder was used to test the results. Training and test groups
contained equal ratios of censored and non-censored patients.

Since the focus here is to determine the usability of the fQRS score for risk
assessment, only univariate analyses were considered here. Kaplan-Meier
analysis was used to calculate survival curves, risk tables and hazard ratios
[112]. Statistical differences between the curves of two groups were analysed
with log-rank tests.

In order to get a robust estimate of the optimal cut point that is less dependent
on the choice of training set, we used bootstrapping to generate 2500 bootstrap
samples. Each bootstrap sample was drawn from the training set. Optimal cut
points for each channel ch and each bootstrap sample i were determined with
the minimum p-value approach: for each possible threshold a log-rank test was
performed, and the threshold which generated the lowest p-value was selected
as cut point θ̂i,ch.
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The optimal cut point θch for each channel was then defined as the median of
the cut points θ̂i,ch of all bootstrap samples. 95% confidence intervals (CI) for
the median were calculated as described in [146]:

CI = θch ± 1.7 1.25R
1.35
√
N

(9.10)

with R the interquartile range and N the number of bootstrap samples.

The optimal cutpoints θch were finally used to dichotomize the test set and
construct the corresponding survival curves. Differences were again evaluated
with the log-rank test, with p<0.05 considered statistically significant.

9.4.2 Comparison of survival models

A second part of this chapter consists of the comparison and evaluation of
different methods to estimate a survival model, in order to evaluate whether
machine learning approaches provide added value compared to standard
statistical methods. Furthermore, the standard clinical baseline model described
in Section 9.3 was compared to the baseline model combined with fQRS scores
to examine the utility of using the proposed score in survival analysis.

The Cox PH model was considered as reference model, since it is the most
commonly used multivariate approach in medical research [29]. It was compared
with the four survival SVM models described in Section 9.2.3 (regression,
vanbelle1, vanbelle2 and hybrid) using linear, clinical and RBF kernels. The
clinical kernel was developed specifically for use with clinical data and makes a
distinction between continuous, ordinal and nominal variables [51].

For all models, parameters were tuned with 5 × 10-fold nested cross-validation:
the data were randomly divided in five equally-sized subsamples, and in each
iteration, one of the five samples was used as independent test set. The models
were then trained on the remaining samples using 10-fold cross validation. The
c-index was used to evaluate all models. To assess whether the model including
both the clinical variables and fQRS scores is significantly better than the
baseline model, the methods from Hanley and McNeil [97] were used. They
define a critical ratio z, calculated as:

z = c1 − c2√
SE2

1 + SE2
2 − 2rSE1SE2

(9.11)

where c1 and SE1 refer to the average observed c-statistic and estimated
standard error of the first model, c2 and SE2 describe the second model and r
stands for the correlation between c1 and c2. The standard error is calculated as
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Training set Test set

Channel θopt 95%C.I. p-value HR

I 0.47 0.4574-0.4856 0.484 1.25
II 0.24 0.2239-0.2560 0.112 1.76
III 0.44 0.4368-0.4431 0.887 0.96
aVL 0.43 0.4189-0.4410 0.589 1.18
aVF 0.65 0.6355-0.6644 0.464 0.80
V1 0.52 0.5137-0.5263 0.757 1.15
V2 0.66 0.6531-0.6669 0.218 1.58
V3 0.58 0.5633-0.5967 0.014 2.23
V4 0.25 0.2446-0.2553 0.028 1.98
V5 0.77 0.7671-0.7728 0.102 1.73
V6 0.68 0.6690-0.6910 0.047 1.94

Table 9.1: Optimal cut points, 95% confidence intervals and results on the test
set for each channel.

the standard deviation divided by the square root of the number of observations.
The z-statistic can then be used to derive a p-value, and p < 0.05 was considered
significant.

9.5 Results

9.5.1 Optimal cut point determination

Table 9.1 shows the value of the optimal cut point and confidence interval
(determined on the training set) for each channel and the results on the test set.
The optimal threshold varied greatly between channels: the lowest threshold is
reached for channel V4 (= 0.25), the highest for channel V5 (= 0.77). For three
channels, applying the optimal cut point on the independent test set lead to
statistically significant differences in survival times between both groups: V3,
V4 and V6. The corresponding Kaplan-Meier curves for these channels can be
seen in Figure 9.1. They include risk tables and hazard ratios. Two additional
channels, II and V5 show notable trends (p ≈ 0.1).



RESULTS 177

0 1 3 5 7.5

Time (years)

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

p = 0.0149
HR = 2.23 (0.96 - 5.16)

46

175

39

156

25

120

11

93

5

58

x >= 0.58

x < 0.58

(a) Channel V3

0 1 3 5 7.5

Time (years)

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

p = 0.0287
HR = 1.98 (1.09 - 3.6)

123

98

105

90

73

72

48

56

23

40

x >= 0.25

x < 0.25

(b) Channel V5

0 1 3 5 7.5

Time (years)

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

p = 0.0473
HR = 1.94 (0.869 - 4.32)

44

177

37

158

24

121

16

88

9

54

x >= 0.68

x < 0.68

(c) Channel V6

Figure 9.1: Kaplan-Meier plots of channels with statistically significant
differences (p < 0.05) between survival curves. The risk tables represent
the number of patients alive at different time instances for fQRS scores higher
and lower than θch.
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Baseline model Baseline + fQRS

Method Kernel C-index Rank C-index Rank

vanbelle1 linear 0.59± 0.04 10 0.66± 0.08 3*
additive 0.58± 0.04 11 0.58± 0.05 11
RBF 0.60± 0.05 8 0.65± 0.03 4*

vanbelle2 linear 0.62± 0.06 7 0.62± 0.10 7
additive 0.57± 0.05 12 0.56± 0.08 13
RBF 0.57± 0.04 12 0.6± 0.10 10

regression linear 0.66± 0.04 3 0.69± 0.07 2
additive 0.65± 0.06 5 0.58± 0.14 11
RBF 0.64± 0.05 3 0.65± 0.09 4

hybrid linear 0.65± 0.05 5 0.70± 0.07 1*
additive 0.67± 0.07 1 0.62± 0.11 7
RBF NA - NA -

Cox PH model 0.67± 0.07 1 0.65± 0.04 4

Table 9.2: Results of the different survival models using only clinical parameters
(baseline model) or the combination of clinical parameters and fQRS scores
(baseline + fQRS). C-indices from the five subsamples are reported as mean
and standard deviation, together with the overall rank for each model. Models
where the combination of baseline and fQRS resulted in significantly increased
c-index (p<0.05) are indicated with *.

9.5.2 Comparison of survival models

The results of the different survival models are summarized in Table 9.2. The
c-indices for all models are reported as the mean value and standard deviation
obtained from the results of the subsamples. Each model also received a rank
based on the average c-index, with 1 assigned to the best-scoring model and 13
to the worst-scoring method. The result for the hybrid model with RBF kernel
is not mentioned since calculation time for this classifier exceeded acceptable
lengths, and the computation was interrupted after five days.

The results for the clinical baseline model were compared with the models
combining clinical parameters and fQRS scores. Models where adding fQRS
scores resulted in significantly higher c-indices (p<0.05) are marked in bold.



DISCUSSION 179

This was the case for three models: vanbelle1 with linear and RBF kernel
and the hybrid model with linear kernel. The other models with linear and
RBF kernel also showed increases in c-index after adding fQRS scores, but the
increases were not significant. The SVM models with additive kernels often
resulted in a lower c-index when fQRS scores were included. A similar result
can be seen for the Cox PH model, where the c-index decreased from 0.67 to
0.65.

For the clinical baseline model, the Cox PH model and the hybrid model with
additive kernel obtained the highest rank, corresponding to a c-index of 0.67.
For the combined model, different SVMs scored better than Cox PH. Here the
hybrid model with linear kernel resulted in an average c-index of 0.70.

9.6 Discussion

In this Chapter, the potential to use the fQRS score as prognostic risk factor
for all-cause mortality was explored. We analysed this in two different ways,
using a combination of standard statistical models and SVM-based machine
learning algorithms.

In the first part of this study, the fQRS scores in different channels were used
to divide a dataset of ICD patients into two groups in order to assess their
risk on all-cause mortality. Dichotomization of continuous variables in survival
analysis is a debatable subject since the choice of optimal cut point should be
done in a way that results can be generalized. The use of bootstrapping on
the training set and evaluation of the performance on an independent test set
however ensures that the optimal cut points determined here are minimally
dependent on the choice of training set.

Results on the test set indicate that the fQRS score in three different channels
(V3, V4 and V6) can be used as an indication of the risk on all-cause mortality
in ICD patients. Hazard ratios derived from the Kaplan Meier plots shown in
Figure 9.1 are approximately 2 (1.94-2.23). This means that the probability of
all-cause mortality for patients with fQRS in these channels is roughly double
the probability for other patients. Similar conclusions can be drawn from the
risk tables. The table for channel V3 shows that only 5/46 patients (10%) with
a fQRS score larger than 0.58 in V3 is alive at the end of the analysis period
compared to 58/175 patients (33%) with fQRS score lower than the threshold.

V3 and V4, the channels with the lowest p-values are located in the anterior
regions of the heart. This corresponds with findings in [223], where the presence
of fQRS in anterior channels was an independent risk factor for mortality in a
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subset of the same patient population. This confirms that the proposed method
to detect fQRS is not only capable of reproducing the results of visual fQRS
detection, but also reaches results that are comparable to clinical studies.

Kaplan-Meier analysis is an example of univariate analysis, where the effect
of one variable at a time is examined. While this is valuable to confirm the
potential of the fQRS score, using the parameter in a multivariate method such
as the Cox proportional-hazards model is more meaningful, since risk assessment
is mostly done by combining multiple parameters. This was done in the second
part of this Chapter, where the fQRS scores of the different channels were added
to a baseline model with nine clinical parameters.

The results in Table 9.2 show that the fQRS scores do not improve the result of
the Cox PH model, and even lead to a slight decrease in the average c-index.
This can be explained by the large number of variables: the baseline model has
9 variables, the fQRS score adds 11 extra features resulting in a model with 20
variables in total. In Harrell et al. [98], a rule of thumb is defined that states
that "in order to have predictive discrimination that validates on a new sample,
no more than m/10 predictors should be examined,..., where m is the number
of uncensored event times in the training set" [98]. When too many variables
are included, the risk on overfitting increases. Here, the total number of events
in the dataset was 126 (see Section 9.3). This is sufficient to fit a survival model
with 9 variables, but clearly not enough for a model that includes 20 covariates.

SVMs are widely used to deal with high-dimensional data in classification or
regression problems. It has been shown that survival SVMs show the same
characteristic and also have good applicability and performance in problems
involving high-dimensional data [212]. Table 9.2 confirms that this finding also
holds for this dataset: for many of models based on survival SVM, adding fQRS
scores to the baseline model does increase the c-index of the model.

There are however large differences between the different SVM models and
even more striking contrasts between the different kernels. The additive kernel
consistently leads to poor results for the baseline + fQRS model, and even leads
to decreased performance in most cases. One possible explanation is that the
additive kernel was designed specifically to be used with clinical data, which
often consist of binary, ordinal or categorical variables [51]. The baseline model
uniquely contains clinical variables, and here the additive kernel obtains good
results: the hybrid SVM model with additive kernel leads to the highest c-index.
The fQRS scores are however all continuous variables, which are not targeted
specifically by the additive kernel. The combined baseline + fQRS feature set
therefore contains mostly continuous features, and can therefore perhaps be
better modelled by linear and RBF kernels. Similar findings are reported in
Van Belle et al. [213], where the additive kernel led to good models in many
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datasets, but performed worse than linear kernels in datasets where the number
of continuous variables greatly exceeded the number of categorical variables.

The best overall performance was obtained by the hybrid SVM model with
linear kernel, using the combination of the baseline model and fQRS scores.
This model obtained an average c-index of 0.70, which is considered a good
model. This indicates that both the proposed fQRS score and the use of machine
learning models have added value in assessing the risk on cardiac mortality.
The addition of extra features and the use of SVM models however come at
the cost of increased computation time. Practically, computation time was
mostly influenced by the number of parameters that needed to be optimized.
The hybrid model needs optimization of an extra hyperparameter and the RBF
kernel also requires tuning of an extra kernel parameter. The hybrid model with
RBF kernel therefore needed an enormous calculation time, and computation
was ceased after five days. This is an important consideration to keep in mind
when determining the optimal approach.

Clinically, the presence of fQRS in a cardiac region is determined based on
a combination of channels rather than single channels. Combining scores per
cardiac region is therefore a logical extension of this study. This can be done
by simply summing scores of individual channels or by more advanced machine
learning techniques. For instance, Interval Coded Survival methods [218], which
are based on SVMs and capable of modelling both linear and non-linear trends
in data in an interpretable way could be used for this purpose. ICS models have
been extended to deal with censored data [216], which would be very useful in
this application.

Finally, the only endpoint considered here was all-cause mortality at 7.5 years.
Results presented in [223] and [222] however indicated that fQRS is even more
strongly associated with the risk on appropriate ICD shocks. Applying the
methods proposed on this Chapter to alternative endpoints could therefore
potentially lead to even stronger findings.

9.7 Conclusion

This Chapter aimed at assessing whether the fQRS score proposed in Chapter
8 could be used to predict the risk of all-cause mortality in a dataset of ICD
patients. A second aim was focused on exploring the added value of using
machine learning techniques based on SVM in survival analysis. We presented
two different ways to tackle these goals. Both methods showed the potential of
the fQRS score as a prognostic risk factor, and the second method furthermore
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showed that several SVM models add significant performance compared to the
Cox proportional hazards model generally used in clinical research.

In the previous Chapter, we showed that the proposed fQRS score performs
well in both detection and quantification of QRS fragmentation. The additional
results presented here further indicate the power of our proposed approach, and
indicate that the final fQRS score can have significant added value in prediction
of all-cause mortality. This novel way of detecting and quantifying QRS
fragmentation is therefore a promising way to promote the clinical usefulness of
the parameter.



Chapter 10

Conclusions and Future
directions

In the introduction, the three major research objectives for this thesis were
defined as 1) the development of algorithms for extraction of SCD risk factors,
2) exploration of the use of tensors in ECG analysis and 3) risk assessment.
This final Chapter summarizes the conclusions related to each of these principal
goals in Section 10.1. Finally, Section 10.2 provides suggestions for potential
future research directions.

10.1 Conclusions

Sudden cardiac death is one of the main causes of death worldwide with a severe
socio-economic impact. Patients at risk for SCD can often be treated to prevent
arrhythmic events, but current risk assessment strategies are far from ideal, as
described in Chapter 1. The development of novel ECG analysis methods that
can extract risk factors in an automated and objective way has the potential to
improve the current risk stratification. Therefore, we have focused the research
in this PhD on three main goals:

1. Develop algorithms for extraction of SCD risk factors

2. Explore the use of tensors in ECG analysis

3. Assess the mortality risk in ICD patients using novel machine learning
methods

183
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The methods presented in the previous Chapters all contributed to one or more
of these research objectives. The next Sections summarize the major findings
related to each objective and list the most important conclusions.

10.1.1 Algorithms for SCD risk factor extraction

The first objective of this PhD was the development of algorithms to extract
features from the ECG that can potentially assess the risk on sudden cardiac
death. Section 1.3 listed a number of risk factors currently used in SCD risk
prediction. Chapters 4–8 each presented a method to extract and analyse a
different risk factor from the multilead ECG.

The method presented in Chapter 4 aimed at separating normal and abnormal
beats in an unsupervised manner. Results on two separate public datasets
indicate that while the method does not succeed in detecting atrial beats, the
performance for ventricular beat detection is comparable or better than state-
of-the-art unsupervised approaches. Since ventricular arrhythmia are mostly
initiated by this type of irregular beat, and the frequency of PVCs is thought to
be useful as prognostic risk factor, this is nevertheless an important result. While
the method is not suitable as general irregular heartbeat detection, it would be
effective as PVC detection algorithm. The combination of the morphological
tensor-based features could furthermore be combined with heart rate variability
features in a supervised classifier to further improve performance.

Chapter 5 aimed at detecting and quantifying T wave alternans. The proposed
method is capable of dealing with changing heart rates through the use of
PARAFAC2. Since in clinical practice TWA is often detected with a bicycle
test, this is an important practical consideration. The extensive validation on
multiple databases indicates that the method is capable of producing precise
results in many different circumstances.

The study described in Chapter 6 did not focus on one particular risk factor
but rather aspired to characterize changes in overall ECG morphology prior
to in-hospital cardiac arrest. Different features that have the potential to
distinguish different types of cardiac arrest were identified and could be used
in the future for patient monitoring. Further validation of the results with a
control database containing patients in the intensive care without cardiac arrest
is however required to confirm that the obtained results can be generalized to
other risk groups.

Atrial fibrillation is a frequent arrhythmia that is not immediately fatal but
that is nevertheless linked to an increased risk of SCD. In Chapter 7 we studied
different ways to detect AF in single and multilead ECG signals. The proposed
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algorithm successfully managed to identify AF patterns in both signal types
using a combination of HRV and morphological features. In the final step, the
coupling of single and multilead databases was explored which permits the
combination of clinical and wearable ECG signals. As digital health becomes
increasingly important, incorporating signals of wearable devices in clinical
practice will become more and more important, making the method a promising
way to analyse signals from mobile devices in the future.

The final risk factor considered in this work is QRS fragmentation. A method
to detect and quantify fQRS was proposed in Chapter 8. The quantification
of fQRS is a novel approach to examining this feature that can however be
perceived as more realistic as fQRS is not necessarily a binary phenomenon.
We showed that the developed fQRS score correlates closely to visual scores
given by five experts and that the method detects signals with certain fQRS
with high accuracies. Furthermore the extensive dataset that was collected for
this purpose can be used to advance future research in this area.

10.1.2 Tensors in ECG analysis

The second goal of the thesis was to explore the use of tensors in cardiac
applications. This objective was tackled in the different Chapters contained in
Part II, and some of the conclusions were already summarized in the previous
Section. Here we will discuss the main findings related to the tensor part.

Tensors are a rather novel concept in ECG signal processing, as illustrated by the
limited number of tensor-related cardiac applications described in Section 2.5.
The development of the tensor-based methods described in Part II can therefore
be considered as one of the main achievements of this research. We showed that
tensors can be applied in a straightforward way on different types of real-life
ECG signals to extract clinically meaningful components. We furthermore
highlighted the flexible nature of different tensor decompositions that allowed
to adapt the decompositions to the characteristics of the signals at hand. The
proposed framework can easily be extended to other types of applications,
opening the door for the development of additional tensor-based approaches.

Chapters 4–6 used Canonical Polyadic Decomposition as main building block to
decompose and analyse the ECG signal. Although CPD can be considered as one
of the more simple tensor methods, we have showed throughout the dissertation
that it is nevertheless capable of reaching strong results. CPD decomposes a
tensor in a sum of rank-1 components. Since the structure of the components is
fixed, the decomposition rank is the only parameter that requires optimization.
This makes the method straightforward to use. Additionally, CPD mostly
produces results that are easy to interpret and can be linked to physiology. In
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biomedical signal processing, where the result of tensor decomposition is used
afterwards for clinical analyses, this is a noteworthy advantage.

CPD is a widely-used method, and many adaptations exist that can be used to
adjust algorithms to specific aspects of the problem under analysis. In Chapter
5 for example, we showed that allowing variations in the factor vectors of one
mode lead to improved results in real-life signals where the heart rate might
change over the course of a signal. Additionally, the use of weighted tensor
decompositions was explored in Chapter 6, where incorporating prior knowledge
about the signal quality in the cost function led to more robust analyses in the
presence of heavy noise.

While the simplicity of CPD has many benefits, it also comes with the
disadvantage of reduced flexibility. The algorithm is very powerful for assessment
of global features of the ECG, but is less optimal for a lead-per-lead analysis.
In those cases, other approach like the multilinear singular value decomposition
are better suited. This was shown in Chapter 7, where we used the MLSVD in
various ways for atrial fibrillation detection. Compared to CPD, a multilinear
decomposition rank however had to be determined which requires the use of
more advanced optimization techniques.

10.1.3 Risk assessment in ICD patients

Finally, the third objective was to assess the cardiac risk in ICD patients using
machine learning methods. This objective was the focus of Chapter 9, where
the goal was to use the fQRS score to assess the risk of all-cause mortality.

We showed that machine learning methods can provide added value to risk
assessment in two different ways. First, the fQRS score was calculated by using
a list of feature vectors as input to an SVM classifier. Adding these objectively
determined features to a list of clinical features improved the accuracy of most
survival models. Second, we also used survival SVMs to build the survival
model itself. Comparison with the standard Cox proportional hazard model
indicated that SVMs also provide added value here: the best performance was
reached with a hybrid survival SVM model, combining regression and ranking
constraints. Especially in high-dimensional feature spaces, where standard
statistical models are easily overfitted, the advantage was clear.

The major drawback of using survival SVMs to build a survival model is the
increased computation time. Depending on the constraints and kernels used,
one to three SVM and kernel parameters have to be optimized in order to to
train the classifier. Especially for the hybrid SVM with RBF kernel, which has
three additional parameters, the training process lasted excessively long and
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had to be interrupted after five days. This is an important obstacle to keep in
mind, in particular when working with extensive datasets that contain a large
number of variables.

10.2 Future directions

10.2.1 Algorithms for SCD risk factor extraction

The algorithms presented in this work focused on the detection of specific risk
factors. However, many more potential features exist that can be determined
using the ECG signal. A straightforward future direction therefore consists of
the development of additional algorithms to extract more potential risk factors

The majority of the methods presented in this work can be used to detect
other irregularities after minor modifications. Depending on which part of the
signal is used to construct the tensor, different ECG segments can be analysed.
Changes in the ST segment, which is known to change after ischemia, could
for example be examined by constructing a tensor which contains different ST
segments, allowing analysis of ST segments in time.

One of the main bottlenecks for algorithm development is however the availability
of high-quality labelled databases. While many publicly available databases
exist, the quality of both the signals and annotations is often not sufficient to
perform accurate validations. Furthermore, many of them have been recorded
many decades ago with outdated equipment. Making more datasets publicly
available would benefit the development of novel algorithms, since comparison
with a golden standard is an essential step in the development process.

The algorithms described in this thesis are all available as Matlab-based
algorithms. In order to be used in a practical manner in clinical practice,
it is necessary to present both the methods and results in a user-friendly
way in graphical user interfaces. Recently, a graphical user interface for QT
interval analysis was proposed, which contains the irregular heartbeat detection
method described in Chapter 4 as one of the building blocks [203]. The other
methods proposed in this thesis could be included in a similar way, leading to a
comprehensive toolbox that can be used for different aspects of ECG analysis.

Finally, the development and continuous rise of novel ECG technologies will lead
to an enormous expansion of data that will become available in the coming years.
Many of these signals will be measured by wearable devices, which will bring
on very specific challenges in ECG analysis. The development of ECG patches
that can be worn for many days in a row will allow patients to be followed
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closely for many days or even weeks in a row. On the other hand, including
ECG measurement technologies in wearable devices such as smart watches gives
patients the opportunity of recording short-term ECG recordings whenever
they have unfamiliar sensations. While these short-term and long-term signals
are very different from each other, they can both be used to assess the risk of
sudden cardiac death on an even larger scale. The development of dedicated
ECG analysis methods that can handle these immense amounts of signals and
process them in a efficient and fully automated way will surely facilitate the
extraction of features from these novel data sources.

10.2.2 Tensors in ECG analysis

The tensor-based methods proposed in this research primarily used CPD as
building block for further analysis. CPD leads to interpretable components in
the form of factor vectors which were used to detect useful features. In most
algorithms however, only one feature vector corresponding to one tensor mode
was used for further analysis. It would however be interesting to analyse the
feature vectors corresponding to the other modes since they might also contain
valid diagnostic information that is not considered now. An example is the
application handled in Chapter 6, where changes in ECG morphology prior
to cardiac arrest were characterized. The analysis uniquely focused on the
morphology that could be examined from the second factor vector. The first
and third vectors, equivalent to the spatial mode and heartbeats mode, could
however be used to analyse how the signal changes in space and whether there
is increased variance between different heartbeats in a window.

CPD is a powerful method which can be easily adapted to deal with specific
signal characteristics. It is however also limited in the sense that the rank of
the components is restricted to 1. Exploring the use of more advanced tensor
decompositions in cardiac applications is therefore an additional suggestion for
future research. A block term decomposition approximates a tensor by a sum
of low multilinear rank terms [58]. The ranks are however not restricted to 1
here, allowing a greater flexibility. A special case is the (L,L, 1)-decomposition,
which has been successfully used in a number of EEG applications [105, 243].
Furthermore, exploring the use of tensor decompositions for features that are
detected in a single channel is another topic that was not handled in this
dissertation but that is a logical extension of the presented work. The detection
of QRS fragmentation is for example done for each lead individually, and tensor
methods could be applied here as well.

The use of tensor decompositions for single lead ECG signal is another future
direction that has a lot of potential. As more and more wearable devices are
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equipped with ECG recording devices, the amount of single lead ECG signals
is expected to increase drastically in the next years. Singe lead ECG signals
require an extra tensorization step prior to tensor decomposition methods. In
Chapter 7, the discrete wavelet transform was used to transform the signals
to a tensor, which did unfortunately not create any added value. Exploring
different tensorization techniques could however improve results. Löwnerization
is an example of a tensorization that enable separation of signals into rational
functions. It has been successfully applied for the separation of fetal and
maternal ECG and could therefore be further applied in additional cardiac
applications [65].

The use of tensor updating was briefly explored in Chapter 6. It is a promising
approach for most real-time monitoring methods, where an immediate output
is required. Here, tensor updating was applied in a very straightforward way,
by updating the result of the tensor decomposition for each new heartbeat.
The updating could however be taken even further, by for example not only
updating the results of the tensor decomposition but also updating the rank of
the decomposition as the signals are changing over the course of time.

Tensors can also be applied for data fusion, where signals from different sources
are analysed simultaneously. While joint analysis of measurements from different
signal types has not been explored in this thesis, it has the potential to reveal
additional features that describe the interaction between different biosignals.
It is for example known that the cardiorespiratory coupling, which describes
the influences of respiration on heart rate and blood pressure, is different for
healthy and sick people. Using data fusion approaches on the combination of
ECG and respiration or blood pressure would open the door to the development
of algorithms to analyse a whole new class of biomarkers, potentially leading to
new insights in the mechanisms of sudden cardiac death.

10.2.3 Risk assessment in ICD patients

In Chapter 9, the fQRS score was used to assess the risk of all-cause mortality.
Including additional risk factors calculated using the algorithms from Chapters
4–7 is a logical future step in order to examine whether the other methods
developed in the context of this PhD can be used in a similar way. Additionally,
using extra endpoints would be interesting to verify whether the other findings
from Vandenberk et al. [223] related to appropriate ICD shocks could be
replicated.

Chapter 9 also presented a method to determine optimal cut-off values to
dichotomize the patient group in a low- and high risk group. There is however
no reason to restrict this analysis to one cut-off threshold: If multiple cut-offs
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can be determined that divide the patients in multiple risk groups, this might
lead to a more accurate partition of the patient group. The ultimate goal is to
determine a continuous risk score that presents the SCD risk as a value between
0 and 1. This could be done through the use of interval-coded scoring models
[218], which are models that calculate a risk score using SVMs and that present
the output in an interpretable way. Since adaptations for survival models have
been developed [216], they can be straightforwardly applied in future research.

Finally, validation of the results on larger independent datasets is required to
ensure that the developed models are also applicable on different datasets and
that the findings can be replicated in patients from other hospitals. Together,
the collection of algorithms developed in this research present different ways to
analyse the ECG signals in an innovative way. Including the proposed features
in larger clinical risk prediction models can potentially open the door to new
insights in clinical diagnostics and sudden cardiac death prediction.



Appendix A

List of Heart Rate Variability
features

The method for detection of atrial fibrillation proposed in Chapter 7 combines
morphological features (calculated using tensor-based approaches) with HRV
features. The included HRV features were selected after a review of the available
literature. This Appendix first describes the features used here in Section A.1,
and analyses the correlation between the different features in Section A.1.2. All
results and Figures in the Appendix are taken from [83].

A.1 Feature Description

One of the main characteristics of atrial fibrillation is the irregular contraction
of the atria. Features that characterize the heart rhythm are therefore a popular
tool to describe and detect AF. A (visual) tool to analyse the RR intervals in time
is the tachogram. Figure A.1 shows a normal ECG signal with corresponding
tachogram on the left hand side. The right hand side shows an example of an
AF signal and tachogram. It is clear that the variability in the latter is bigger.

This section explains some of the most widely-used HRV features that can make
a distinction between AF and NSR. They are divided in statistical, geometrical
and non-linear characteristics. The difference between normal and AF signals
is illustrated with the Physionet/CinC Challenge 2017 dataset, described in
Section 7.2.1. The different features are calculated for all normal and AF
signals to emphasize the differences between both rhythms. Afterwards, a
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(d) Tachogram of AF signal.

Figure A.1: An ECG signal with NSR (left) and AF (right) with their
corresponding tachograms. There is clearly a larger variability in the RR
intervals of the AF signal [83].

non-parametrized probability distribution for each class is defined by a kernel
density estimator. This produces a probability estimate from the sample data,
similarly to a histogram. The result is however not divided into discrete bins,
but rather smoothed to obtain a continuous probability curve [76].

A.1.1 Statistical features

The first class of HRV features consists of statistical measures, derived from the
statistical moments of RR intervals and ∆RR-intervals (defined as differences
between RR intervals) [194, 117].
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Figure A.2: The estimated non-parametric probability distributions for all ten
HRV-features calculated using the Physionet/CinC Challenge 2017 dataset [83].
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AVRR

One of the most straightforward features is the average RR interval length
(AVRR) since AF is associated with increased heart rates [82]. Figure A.2a
shows the probability distributions of AVRR for normal (blue) and AF signals
(red). While both distributions show some overlap, discrimination is possible.

RMSSD

The Root Mean Square of Successive Differences (RMSSD) calculates the RMS
value of the ∆RR-values and gives an indication of short-term variations in the
heart rate [194]:

RMSSD =

√√√√ 1
N − 1

N−1∑

i=1
∆RR2

i =

√√√√ 1
N − 1

N−1∑

i=1
(RRi+1 − RRi)2, (A.1)

with N the number of RR intervals in the signals. Figure A.2b shows that the
RMSSD is higher for AF signals.

pRR50

pRR50 measures the fraction of subsequent RR intervals that differ more than
50 ms:

pRR50 = #(∆RRi > 50 ms)
N − 1 . (A.2)

This feature strongly correlates with RMSSD [194]. Figure A.2c shows a large
difference between the feature values of AF and normal signals.

In principle, only normal heartbeats are used to calculate this feature. This
however requires a separate heartbeat classification stage which was beyond the
scope of this study. Figure A.2c indicates that this feature can also discriminate
between these two classes without extra classification.

CoV(∆RR)

Another popular feature is the coefficient of variance (CoV) of the ∆RR-intervals
(CoV(∆RR)) [208]:

CoV(∆RR) = σ∆RR
AVRR , (A.3)
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with σ∆RR the standard deviation of the ∆RR-intervals. Figure A.2d indicates
another strong correlation with RMSSD with similar large differences between
both classes.

min(RR)

A non-linear statistical feature which is not strongly correlated with the previous
features is the minimal RR interval length (min(RR)). Figure A.2e indicates
that in signals with AF the shortest difference between RR intervals is smaller
than in normal signals.

Other statistical features

Many other statistical features exist, such as the standard deviation of the RR
intervals, the number of RR intervals larger than 50ms, the difference between
the minimal and maximal heart rate, . . . . They were not included here since
they show very strong correlations with some of the previous features or can
only be measured confidently on long-term signals [194].

A.1.2 Geometric and other non-linear characteristics

Geometric features represent and describe the heart rate in a geometrical way
[117]. Popular techniques are the RR-interval histogram and Poincaré plots.

HTI

The HRV Triangular Index (HTI) is defined based on the RR-interval histogram
as the inverse of the relative frequency of the most frequent bin [194, 117, 234]:

HTI = N

fmax
. (A.4)

It describes how concentrated the RR-interval histogram is, i.e. how many of the
RR-intervals are located in the same bin. Based on the probability distributions
shown in Figure A.2f, we can conclude that for normal signals the histogram of
the heart rate is more concentrated.
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(a) The Poincaré plot of RR intervals.
For a normal signal, the RR intervals
are clustered around the first bisector.
(Figure from [117])

(b) Poincaré plot of the ∆RR-intervals,
with projected 2D-histogram. (Figure
from [190])

Figure A.3: Poincaré plots of the RR- and ∆RR-interval required for calculation
of the SD1/SD2-ratio and AFEvidence.

SD1/SD2-ratio

A popular tool in non-linear HRV analysis is the Poincaré plot, which plots
the RR intervals compared to the next value (e.g. RRn versus RRn+1). Figure
A.3a shows an example of a Poincaré plot of an ECG signal. For normal signals,
the cloud is concentrated around the first bisector. To analyse the plot, an
ellipse can be fitted to the plot. SD1 and SD2 are then defined as the standard
deviations of the projections on the major ellipsoidal axes [117]:

SD1 = 1√
2
RMSSD and SD2 =

√
2SDRR2 − 1

2RMSSD2,

with SDRR the standard deviation of the RR-intervals.

An interesting derived feature is then the ratio between SD1 and SD2, which
characterizes the unpredictability of the RR-intervals [194]. Figure A.2g confirms
that the instability is higher in the case of AF.

AFEvidence

AFEvidence uses a 2D-histogram of the Poincaré plot of the ∆RR-intervals
[190]. Figure A.3b shows the projection of a Poincaré plot on a 2D histogram.
The histogram consists of a 2D raster of bins (shown as squares on the Figure),
where each bin contains the number of points with corresponding (∆RR(i),
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∆RR(i-1))-values. The histogram is divided into twelve segments, as shown on
the Figure. Each segment contains similar (∆RR(i), ∆RR(i-1))-pairs. Pairs in
section 11, with ∆RR(i) > 0 and ∆RR(i-1) < 0 for example contain segments
with a sequence of ’long-short-long’ RR intervals [190]. For a normal signal,
segment zero contains most points, since the RR-interval length is normally
rather stable (and ∆RR is thus not expected to change much). AFEvidence is
therefore defined as:

AFEvidence = IrregularityEvidence−OriginCount− 2PACEvidence, (A.5)

with




IrregularityEvidence =
12∑

n=1
BinCountn,

PACEvidence =
4∑

n=1
(PointCountn − BinCountn)+

∑

n=5,6,10
(PointCountn − BinCountn)−

∑

n=7,8,12
(PointCountn − BinCountn),

In these Equations, PointCountn is the number of points in segment n,
BinCountn the number of bins in segment n that contain at least one point and
OriginCount the number of points in segment zero.

ApEn

Approximate entropy (ApEn) is a measure for short-term signals based on
entropy that measures the complexity of a signal: the higher ApEn, the more
insecurity between different segments of the signal [124, 194, 4]. It is thus
expected that AF signals have a larger ApEn value in the RR intervals. This
is confirmed by Figure A.2i, which shows that there is a significant difference
between the entropy of normal and AF signals.
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Toeplitz-distance

A final feature, specifically developed for this study, quantifies the uniformity
in the RR-intervals of the complete signal (compared to local measures such as
RMSSD). Algorithm 3 summarizes the algorithm to calculate the feature [64].

Algorithm 3 Calculation of Toeplitz-distance
Input: Vector q ∈ NN containing R peak positions
Output: Toeplitz-distance td

1: Construct the symmetric distance matrix D ∈ RN×N , with Dij = qj −
qi, 1 ≤ i, j ≤ N

2: Calculate g ∈ R2N−1, with gi =
average(

[
DN−i+1,1 DN−i+2,2 · · · DN,i

]
) and g2N−i = gi, 1 ≤ i ≤ N

3: Construct the Toeplitz matrix Dtoep ∈ RN×N with generating vector g
4: Calculate the Toeplitz-distance as: td = 1

N ‖D−Dtoep‖F
5: return td

If the RR-intervals are perfectly stable, the distance matrix D would be a perfect
Toeplitz-matrix with constant diagonals. The Toeplitz-distance quantifies the
distance between D and the closest Toeplitz-matrix, which is expected to be
larger for AF signals with a larger RR-interval variability. Figure A.2j shows
indeed that the RR-intervals for normal signals show a more uniform character
compared to AF signals.

Other characteristics

Heart rate variability analysis can be useful for many applications, including
stress measurements, sleep studies, monitoring of athletes,... Therefore many
additional features can be found in literature. Some of most widely used
characteristics include frequency-based features, which measure the energy in
different spectral intervals, and additional non-linear approaches such as fractal
measures. These features were not used in this study, since they often require
long-term ECG signals to make a reliable estimate. Since the signals in the
available AF datasets were limited in length, they could therefore not be used
here.
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A.2 Linear analysis of features

The covariance matrix of the (normalised) feature set, which contains the
Pearson correlation coefficients between the different features, shows to what
extent the different features are linearly related. It is shown in Table A.1.

The strongest linear relations, indicated in bold, are between: AVRR and
min(RR), RMSSD and pRR50, RMSSD and Cov(∆RR) and pRR50 and
CoV(∆RR). This confirms the observations from the previous Section.
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Appendix B

Construction and Validation
of Noise Model

In order to construct the weight tensor required for calculating the weighted
tensor decomposition used in Chapter 6, a method to reliably estimate the
signal quality of each heartbeat is necessary since it is used as additional input
in the optimization problem. For this we constructed a model that estimates
the Signal-to-Noise ratio (SNR) of each heartbeat in each channel based on
different parameters.

In literature, many methods can be found that estimate the ECG signal quality,
however a large number of these methods is not applicable in this case. For
some quality estimators, such as the method described in Behar et al. [19],
the goal is not to estimate the SNR, but mainly to classify ECG signals as
good or bad quality (e.g. clinically usable or not), which is not applicable in
this case. Other methods require a longer period of ECG signal, using for
example measures based on heart rate or heart rate variability. Furthermore,
methods that compare heartbeats to each other or to a template heartbeat
are not desired either, since in the context of prediction of cardiac arrest we
expect the heartbeat morphology to change over time due to changes in patient
condition.

We therefore opted to develop a novel SNR method, taking into account these
considerations. The next Sections describe the construction and validation of
the proposed model.
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B.1 Construction of SNR model

To construct the model, we used the MIT-BIH Noise Stress Test Database
[156] (available on Physionet [85]), which contains 12 half-hour ECG recordings
from two subjects with known SNR levels varying from -6dB to 24dB. The
recordings were created by starting from two clean recordings and adding
calibrated amounts of realistic ECG noise. The noise consists of a mixture of
baseline wander and high-frequency noise, similar to muscle artifacts. Half of
the available data (e.g. all heartbeats from all SNR levels from one subject)
was used as a training set, the other half, consisting of all heartbeats from
the second subject, as a test set. Based on the literature, eight features were
selected that have been shown to work effectively in estimating ECG signal
quality, and that can be easily calculated based on one single-lead heartbeat
[45]:

1. Sample skewness s of a heartbeat x:

s = E(x− µ)3

σ3 (B.1)

with µ and σ respectively the mean and standard deviation of the heartbeat
x.

2. Sample kurtosis k of a heartbeat x:

k = E(x− µ)4

σ4 (B.2)

3. Power in 6 different subbands: 0–10 Hz, 10–20 Hz, 20–48 Hz, 48–52 Hz,
52–100 Hz, 100–120 Hz

All features were derived from the preprocessed ECG signal, e.g. after baseline
wander removal and normalization (using the methods described in Section
6.3.1).

A linear regression model was fitted using all heartbeats of the available training
data, using the SNR labels provided in the dataset as predictor variables.

B.2 Validation of SNR model

The SNR model was first tested on the heartbeats in the test set of the MIT-BIH
database. Afterwards it was further validated using a subset of the clinical
dataset used in Chapter 6 to verify whether the SNR model could be generalized
for use on other real-life datasets.
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Figure B.1: Boxplots depicting the results of applying the SNR model on the
test set. There is a clear correlation between the SNR values estimated by the
proposed noise model and the true noise levels.
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Figure B.2: Examples of segments of the same patient without noise (left),
moderate noise (middle) and heavy noise (right). The clean segment contains
no visual noise, the segment with moderate noise contains a considerate amount
of baseline wander and the noisy segments is corrupted by both low- and high
frequency artifacts.

B.2.1 MIT-BIH Noise Stress Database

Figure B.1 shows the result of applying the SNR model on the test set grouped
by SNR level. The Root Mean Square Error is 4.6dB. There is a clear correlation
between the estimated SNR levels and the true SNR levels.
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Figure B.3: Histograms of SNR values for each noise class: noisy (blue), medium
(yellow) and clean (orange) heartbeats: The SNR values of noisy segments are
clearly lower than clean segments, with intermediate values for medium quality
segments.

B.2.2 Clinical database

In order to verify whether the developed model can be applied on the current
dataset (for which no reference SNR values are available), we selected 15
segments from five signals: five with good quality and no detectable artifacts,
five with medium quality (some artifacts present, but ECG waves still clearly
recognizable in the majority of the signal) and five with bad quality signal. Each
segment contains approximately 100 heartbeats, resulting in 1500 heartbeats
overall. Excerpts of all segments are shown in Figure B.2. The SNR model was
then used to calculate a quality estimate for each heartbeat in each segment.
The results are presented as histograms for each class (clean, medium and noisy)
and shown in Figure B.3. It is clear that the different segments resulted in
different SNR values. The heartbeats in the clean segment obtained a SNR
value between 10 and 22, with an average of 15 dB. The heartbeats in the
segment with medium quality on the other hand had SNR values around 7 dB
and ranged between -2 and 18. Finally the noisy segment had much lower SNR
values, between -15 and 5.

To summarize, we developed a linear regression model to estimate the SNR
value of individual heartbeats. The model uses eight statistical and spectral
features that have lead to good results in previous studies. The model was
trained and tested on the MIT-BIH Noise Stress Database and validated on
the clinical database. Results on both databases show that the model achieves
good agreement with either reference SNR scores or visual analysis.
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