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Abstract This paper discusses the use of Sub-System Global Modahetgezation (SS-
GMP) reduced multibody models in an augmented discretendete Kalman filter (A-
DEKF) to generate a general formalism for online coupletkfitgout estimation in mech-
anisms. The SS-GMP approach is proposed to reduce a gendtiddady model of a me-
chanical system into a real-time capable model without idenable loss in accuracy. In
order to use these reduced models with an extended Kalman ftie necessary deriva-
tives of this model are provided. An exponential integnrascheme is used to discretize the
model in order to be compatible with discrete time filtersafly, the augmented approach
is used for the estimation, in which the unknown externatderare considered as addi-
tional states to be estimated. The proposed approach datedi numerically and compared
to three other filtering approaches. The validation dermates that the proposed approach
provides accurate results while still maintaining reatdiperformance.

Keywords Global Modal ParameterizatiorKalman filter- force estimation

1 Introduction

In many mechanical applications, there is a large need tevkihe current state of the

system: for control purposes it is crucial to take apprdprection, for health monitoring

the condition of the system has to be known, ... The mostgtifarward approach to this

problem is the direct measurement of the state of interaste@ften however, this is not

feasible. Measurement location can be hard to reach, secantbe prohibitively expensive
or no sensor might even exist for the variable of interestorter to address this issue,
state estimators have made a huge rise over the last dedduesise was kickstarted by

the introduction of the Kalman filter [1], and many variatsoof this approach have been
presented over the years [2]. The main strength of this ndeththat it optimally leverages

the a-priori knowledge of a system, by the use of a model, badneasurements.
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For many mechanical systems however, there are two maitigabproblems in state-
estimation:

— design of an appropriate system nominal model,
— unknown input forces.

The state-estimator generally requires an accurate modsidier to provide good re-
sults. Currently the general approach is still to creatmtified) ad-hoc models for the use
in the filter [3-5]. The trade-off which has to be kept in mintiem creating these models
is between computational load and accuracy. This procespedfific model generation is
typically time-consuming and it can be difficult to tune thergameters of these models to
match the real system. Multibody simulation provides a galfeamework to develop high
fidelity models for mechanical systems [6]. Ideally thesedais would also be applied for
the state-estimation of these systems [7, 8]. Unfortupdkés last approach leads to models
which cannot be run in real-time together with an extendelinda filter for systems with
multiple degrees-of-freedom (DOFs). In order to allow tise of complex design models
for state-estimation purposes, this work proposes a nesilimodel reduction technique
for multibody systems, namely the Sub-System Global Modahfeterization (SS-GMP).
This method is a system-level model reduction techniquerfoltibody systems. Whereas
the original GMP approach [9, 10] did not perform well in theese of multiple DOFs, SS-
GMP allows the division of a mechanism into multiple sub-mgdvhich can be efficiently
reduced by GMP and can then be connected back together filttjislwork the SS-GMP
approach is proposed for systems consisting of rigid baatiellocalized force elements. A
brief summary of the methodology is provided in Sec. 2. Sgeiitention is given to the
formulation of the appropriate derivative matrices reedifor the evaluation of the Kalman
filter. In practice, also the determination of the paransetérthe model might be an issue.
These parameters could be obtained through a proper pamaidentification beforehand
or could also be updated through parameter estimation icaads [12—14], which show
similarities to the methods proposed in this work.

The second issue for many mechanical systems is the fadhe&put-forces are not
known. Regular state estimators assume that the inputsetgytstem are known, but in
practice this is rarely the case. This typically leads teH&eaors on the state estimates and
degraded performance. In order to alleviate this issuesrabauthors have proposed bias-
free Kalman filters [15,16]. However, in mechanical systénis often of special interest
to obtain an estimate of the external loads to a system as We is clearly the case in
vehicle applications where the unknown friction coeffi¢igtv, 18] and vertical displace-
ment of the road is usually unknown but crucial for propertcanHowever this issue can
be extended to many other domains as well, like mechatr¢h8s21] and biomechanics.
Several variations of the regular Kalman filter have beempgsed to perform combined
state and input estimation [22—-24]. These approaches caatbgorized undeanknown
input observerg25] and have the advantage that they provide a simultanestimation
of states and forces. Even though accelerometers are cogumed in mechanical appli-
cations, cheap gyroscopic sensors based on MEMS technalegyecoming increasingly
popular. Therefore it is likely that no direct feedthrougbnfi the inputs to the measure-
ments is present and the approach by Gillghsl. [24] is not applicable. In this work the
augmented Kalman filter is chosen in order to take the unkriaputs into account [22],
which has been applied with success to linear [26] and nealifL 7] mechanical systems. In
this work the augmented approach is applied to an extendbdagefilter due to the nonlin-
ear equations of motion for the multibody system. Moreoweorder to maximize real-time
performance the filter is described in the discrete time donges formulation is more suit-
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able for efficient implementation. The resultant filteriqgpeoach is armugmented discrete
extended Kalman filteA-DEKF). The algorithm for this filter is discussed in Sec.I3
order to obtain discrete time equations from the continuaimas equations of motion for the
multibody system, an exponential discretization [27] iplegal.

Finally the proposed approach is validated numericallyen.&. A planar half-car sys-
tem is simulated with realistic measurement properties. Afoposed approach is shown to
provide superior performance to two basic disturbancenestirs and a linearized A-DKF.
Moreover the proposed A-DEKF approach coupled with an SSP@hMdel is shown to be
real-time capable through an implementation in Fortran.

2 Connected Sub-System Global Modal Parameterization

In this work the Sub-System Global Modal Parameterizat®8-GMP) approach is pro-
posed as model reduction method to create models for mexiayistems for use in state
estimators. This approach was first introduced in the frafmead-time simulation of flexi-
ble multibody systems [11] and is applied to rigid mechamsismthis work.

In this section, equations are presented for the planar foaghe sake of clarity, but
results can be easily extended to the spatial case as pddentNaets [11] for flexible
systems.

The SS-GMP modeling approach consists of two steps [11]:

— Preprocessingduring this phase, the model is split up into sub-modelsctvltian be
reduced separately. Subsequently the reduction, acepalihe GMP approach [9,10],
is performed for a grid of possible configurations and théesyamatrices are stored for
each sub-model.

— Processingduring the simulation, the equations of motion for eachsdulel are evalu-
ated based on the interpolation of the stored system magite the equations presented
hereafter. After each sub-model is evaluated, the redurigl@fs are eliminated and the
equations of motion for the full system are evaluated.

2.1 Dividing model into sub-models

The SS-GMP is developed specifically for mechanical systshish are the assembly of
multiple sub-mechanisms with closed kinematic loops (Ejgln the case of a regular GMP
reduction, systems with a large number of independent DOdtddMead to a very high-
dimensional reduced model which could not be run efficiefthe SS-GMP approach on
the other hand is based on the division of a complex systeonsimialler systems with un-
connected independent DOFs except for a common mechaniaohed frame (MAF), as
shown in Fig. 1.

Once the model of the full system is split into sub-modelssthsub-models are reduced
according to the GMP approach such that their behavior caefresented by a reduced
unconstrained formulation with a minimal number of DOFs.

Irrespective of the original model formulation (Cartes@ordinates, natural coordi-
nates, ...) the reduced generalized coordingfies one sub-model are:

Xo
g=|po|- 1
6
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Fig. 1 Reduced coordinates for a SS-GMP

The reduced sub-model is described by the positg@and orientationpg of its moving
reference frame and the relative mechanism motion withetsjp this frame, denoted by
a minimal set of coordinate®, as shown in Fig. 1. In this work no linearizations are per-
formed for the model reduction, but this could be added tdahmulation in accordance to
Naets [11].

Through a nonlinear transformation, the unreduced DOFssaftasystenx; and their
derivatives can be obtained from the reduced coordirfates

X=X+ R(po)p (&), 2
X = %o+ R(Po),p, Fop(8) + R(po) ¥4 8, €)
% = %o+ 2R(Po),po Fo¥" @ 8 + R(Po). popo Po?P(8)

+R(po) W 62+ R(Po).p, Fop(8) + R(po) W@ 6. )

Due to the use of the MAF, a rotation matfXpo) is required, which transforms the coor-
dinates expressed with respect to the local frame to theabfodime. In these equations, the
nonlinear transformation functign(8,) is defined, which relates the unreduced coordinates
with respect to the MAF to a minimal set of reduced coordis&eThe derivative of this
nonlinear function is defined as:

pg =w, (5)

which is a set of projection modes which are also depender@ .om the GMP formal-
ism, these nonlinear functions are determined by samptiagonfiguration of the system
over a predetermined grid of possible configurations. Thesdigurations are stored and
during simulation an Overhauser interpolation is used anghd, which allows a continu-
ous function between the sampling points up to the first dévig. The interpolation for a
configurationd; in the interval[8X, 6%"1] for a matrix A with derivativesdA is then given
by:

6 — 6k
S= m, (6)
A= (1-352+25%) A 4 (352 — 28%) A+
+(5— 282+ S)dA 4 (—S + S%)d AL, @)

1 the derivative of a matriA with respect to a variable is denoted a#\j,
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This choice of interpolation function leads to an accemaéVel of continuity at minimal
cost.

With the degrees-of-freedom for each sub-model definedetjutions of motion for
each model can be derived.

2.2 Equations of motion for sub-models

This section briefly reviews the equations of motion for a-suwel. It is important to

notice that these equations are the same, irrespectiveeadrtbinal modeling approach.
This is a major advantage because it implies that the prapfisering formalism can be

used to generate a KF for any original multibody modelingrapph without the necessity
to perform any additional derivations of the model to obiain a KF-eligible form.

This section also offers the exact derivatives of the diffiéerforces with respect to the
reduced DOFs because these will be crucial for a proper tperaf the extended Kalman
filter as described in Sec. 3. In this section only the finalatigns are provided, for a full
derivation of these equations the reader is referred ta [I1i¢ forces which make up the
equations of motion can be split into: inertial forces, intd forces and external forces.

Inertial forces. The inertial forces constitute the velocity dependent gyopic forces and
the acceleration dependent forces.
An additional projection matri® is required in order to evaluate the inertial forces:

o-[37 )

This transformation matrix transforms the sub-system dioatesg; to the MAF, withm?
the number of minimal mechanism coordinates. With thisemiapn matrix the sub-system
mass-matrix is:

M; = D" M¢(8)D. ©)

In this equationMc(8) is the reduced mass-matrix with respect to the MAF, whictejseth-
dent on the configuration of the systé&with respect to the MAF. The reduced mass-matrix
is obtained by projecting the unreduced mass-matrix agitbesicby Naets [11], such that
the online computations are independent of the unreducedbeuof DOFs. This matrix is
also stored during the preprocessing and obtained througlpbplation during the simula-
tion. For the gyroscopic forces, the derivatives of the rmaatrix with respect to the DOFs
g are required:

Mi,po = D_TpoMc(el)D+ DTMC(GI)D,p07 (10)
Mig = D"Mc4q(8)D. (11)
Just as the local mass-matrix, also the derivative of thal lemuced mass-matriM g, is

stored and this allows the use of the cubic Overhauser iolegipn for the mass-matrix. The
gyroscopic forces on DOFcan then be computed as:

j < A :
ngr = kZ:L (Mi7kqi ) a-— Eqi Mi, G- (12)
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The required derivatives of the gyroscopic forces with eespo the position and velocity
of d are:

_ o, 1
Forg = 2, (Mhad) & = 50 (13)
with
Mipo.pe = D po.poMc(6)D + DT Mc(6)D po,po + 2D ToMc(6)D, po, (14)
Mip.6 = DTpOMCﬂ(GI)D"'DTMC,&(GI)D,pm (15)
Mig.po = DlpoMc,g (68)D+D"Mc g (8)D g, (16)
Mig g = D"Mcg.6(6)D. (17)
and
_ mo _ 1
Fleg = > (ML) +Mha - @Ml +Mja). (18)

k=1

With these forces and derivatives, the inertial contritmsi to the equations of motion re-
quired for the Kalman filter can be evaluated.

Internal forces. Even though the current work focuses on rigid multibody eys, internal
forces can still be present due to the presence of force eksnieg. springs) in the model.
For the case where a force-element is acting on the MAF, tbesgibutions are consid-
ered as external forces because these are not internal tedheed model. Only the force-
elements which are acting on the relative rigid DAsre considered as internal forces.
The reduced internal forcdg are also obtained by projecting the unreduced (nonlinear)
internal forces=X; onto the reduced DOFs, similar to the process describedin [2

Fa =0, (19)

FRo =0, (20)
T

F = (W) R (e(8)), (21)

with associated generalized stiffness-mat-'riﬁﬁqi fully zero, except for :
T T
Fg = (W) Ri(p(8) W4+ (W) R (o(8)). (22)

These vectors and matrices are again stored and intergalatang simulation.

External forces.The external forces (these are generalized forces so thisagiplies to
torques) are assumed to be defined to be acting upon the eededoordinates. In order
to get the effect on the reduced DOFs, they should be prajexti¢he derivative of Eq. (2):

Fekt = X,Tqi Fokt (23)

In order to be able to evaluate the KF properly, also the divie of these forces are re-
quired:
eq>I<LQi = XLi-Qi FgXtJrXLi FoxtxXai - (24)
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The necessary additional derivatives to evaluate thistiomecan be extracted from Eq. (3)-

4).

All force contributions, except for the acceleration degEamt forces, can be consolidated
into a generalized force vectgr for sub-model:

gi(Qi:Qi: FEXX'[) = _Flnt(Qi) - ngr(Qi:Qi) _X:I;]i eXXt7 (25)
such that the equations of motion for a sub-model can beenrés:
Miti = gi(ai, Gi, Fax)- (26)

2.3 First order system equations of motion

In order to evaluate the full system, a back-transformagiéminating the redundant DOFs
for the MAFs of the different sub-models has to be perfornidds can be obtained by ap-
plying a linear projectiors onto the coordinates of tiresub-models, such that no additional
constraints need to be added to solve the equations of motion

01
Sg=|...{, (27)
On
with
|:|3 0 0}
Olmf...O
S= . (28)
I30... 0
00"'|mﬁ

The full mass-matrix and force vector for the full model isrguosed from the matrices of
the sub-models as:

My... 0
M=S"|0..0]S (29)
0 ..My,

[91(a1, 61, F)

g(Qv q Fext) = ST (30)

_gn (qm an F(;(X'[)

With this projection, the equations of motion for all the ssystems can be combined into
the non-redundant equations of motion for the full system:

Mq = g(q, q: FEXI)- (31)

In previous works the equations of motion have always beesgnted in second-order
form. The formulations for state-estimators are howeverllg derived for first-order sys-
tems (exceptions are eg. presented in the work by Herna@8¢z Therefore, the equations
of motion have to be written as:

W= f (W, Fext), (32)
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with

we m . (33)

The nonlinear system equatidrfor the case of these mechanical systems is:
F (W o) — { L9 } . (34)
M~"9(0, 4, Fext)

Furthermore, both the discretization scheme and the KFineedjue derivative matrix
F of this equation. The derivative of the generalized forgpression with respect to the
minimal coordinates is:

. 91,0, (01, 1, F) - 0 |
gq=S _ S (35)

L 0 ce gnﬂn (qn» GO, Fexxt)_

916, (01,01, F) - 0 |
gg="5" _ S (36)

L 0 s gnﬂn (qn» GO, Fexxt)_

With these equation$; becomes:
F (W, Fext) g = 0 37)
rex.q = _M_lg(q7 Q7 Fext),q - M_lM.qM_lg(q7q7 FEXt) '
In

f(W,Fext) g = 4 ) 38
(WFex)a = {\-1(q b Fort] (38)
F = [f(WFext)q (W Fex).q]- (39)

With these equations, the system can be discretized andtbeded Kalman filter can be
evaluated. Even though the above derivation was made f@idmar case (only one rotation
parameter), these results can easily be generalized tpdkialsase. In the following section
these equations will be exploited to create a coupled 8tptefestimator.

3 Augmented discrete extended Kalman filter

This work focuses on combined state and input filtering foclnamical systems. Regular
Kalman filtering leads to bias-errors in the case of an unknmput, such that an adapted
method has to be applied. In mechanical systems, the ekiepus to the system are often
unknown or very difficult to model. Moreover, it might be higtuseful have an estimate
of these unknown forces for many applications as well. Ia Wrk the augmented Kalman
filter is used, in which the unknown forcasare added as additional states to be estimated.
This leads to the augmented state vegitr

W= M . (40)

In order to estimate the unknown input forces, some form oflehbas to be provided for
these variables. In this work a random walk model is usedy witntinuous time model
equation:

a=r,. (41)
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In this equatiorr, is continuous time noise, which indicates that the rate ahge is ex-
pected to be a random process. This approach has been apjiliesiiccess for linear me-
chanical systems by Lourens [26] and higher order versibtisoapproach have been used
by Ray [17,18]. The zeroth order model employed here alloveglgrersatility for different
input forces at a minimal computational load.

Many nonlinear Kalman filter formulations have been proposeer the years and in
this work the discrete extended Kalman filter (DEKF) is egplih In order to use the con-
tinuous time equations provided in the previous sectiomgiijuations of motion need to be
discretized. This discretization is discussed in Sec.Subsequently, the algorithm for the
A-DEKF approach is briefly reviewed in Sec. 3.2.

3.1 Discretization of equations of motion

The discrete extended Kalman filter is most suitable for-tiea¢ purposes because it is
specifically developed for digital implementation and aHoiteration-less integration. In
order to be able to apply the DEKF to the continuous time egusiof motion of multibody
systems, the equations of motion need to be discretized.
With the inclusion of the augmented states for the unknoweoefs, the continuous time

system equations are:

W p—

4-

In this equatiory, is a projection matrix which projects the unknown forceseaebtimated
to the corresponding location in the full force-vector apds the noise-vector which deter-
mines the rate of change of the unknown forces. This equatiarbe summarized as:

0 la

(W, Fext + saa)} . [0} _ (42)

W= f* (W, Fext) + M. (43)

This augmented function also has a new derivative méttix

F* = £ (W', Fext) we, (44)
F —M~1x]
= »d
-6 M0 )

In order to perform the discretization many approacheg.elxighis work a nonlinear
exponential solver, more specifically the Exponentialliteei Euler solver, is applied [27].
At a given timety this method provides a solution for the statetat:

At
Wiep1 = W+ /o e dn £* (W, Fext) (46)

Many different forms of the exponential solver for nonlineystems exist and this ap-
proach is best suited for strongly nonlinear simulatiort,ibdoes require the computation
of all derivatives at each timestep. The exact solution efittbegral in this equation would
require the computation of the inversekgf, but as is apparent from Eqg. (45), this matrix is
singular. To circumvent this problem, a Taylor approximatof the matrix-exponential is
used instead:

eFk*n ~ | +Fk*_’7Jr (Fk*)zrlz +

1
1 o ...+T+O(n”+ ). 47
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Approximating this exponential by a finite sum will limit thenestep for a stable solu-
tion, but this limitation will only be secondary to the liratton on the timestep due to the
nonlinearity of the system. This polynomial function candasily integrated such that the
discretized equation of motion becomes (foméhorder approximation of the matrix expo-
nential):

W1 = fa(Wi, Fext), (48)
n

) i
—wict 3 (A ) e P (49)

=

Moreover, also the derivativg of this function with respect to the states has to be computed
for the Kalman filter:

Fa = faw, (50)
0 j+1
I+Z( )= 14U >Fk Z ( (?i/\;* JA:-1!> P (W Fe). - (51)

In this equation the last contribution is neglected. Thigragimation will have limited ef-
fect on the accuracy of the filter. If the system is close tedinthe timestep can be selected
relatively large but the derivative & will be negligible with respect t&*, so this approxi-
mation is valid. If the system is strongly nonlinear, a rigkly small timestep is required for
accurate time-integration. This small timestep will leadatnegligible contribution of the
last term with respect to the other terms. Moreover, computie derivatives of * would
add considerable computational complexity and jeopamiaktime performance. With this
approximation, the Jacobian matrix becomes:

|+Z( llAt)Fk (52)

Besides the regular equations of motion, also the dise@toehavior of the expected
noise on the model has to be considered. In this work, theermisthe continuous time
multibody model is assumed to be zero and all noise is assamete unknown force,
with covarianceR,. In this case the discretized noise vector for the augmesyetemr
becomes:

rw =~ Fira, (53)

and the covariance matrix for the discretized time stRjgess:
Rur ~ F§Ra (F§) " (54)

In generalR, is not exactly known and is used as a tuning parameter forltheifi order to
get a satisfactory trade-off between the model and the memsunts [26]. This is also the
approach followed in this work. In the general case therdsis ancertainty on the model,
which can be taken into account by adjusting and Ry«. This case is not investigated
further in this work in order to focus on the problem of ingstimation.
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3.2 A-DEKF algorithm

The augmented discrete extended Kalman filter (A-DEKF) éppsed in this work to pro-
vide a coupled estimation of the states and inputs to a mediaystem.

The nonlinear discrete time system equatiénbtained by the algorithm described in
Sec. 3.1, are:

Wi = fa(Wic_1, Fext) + rwe (55)

This equation is now in a form suitable for discrete extenidaktinan filtering. The first part
of this equation represents the nominal system equatichth@second part represents the
discretized process noisg- with covarianceR,: which expresses the uncertainty on the
model.

The system equations of motion are complemented by the i(a@m) measurement
equations:

Yk = h(Wy, Fext) +Ty. (56)

In this equationyk contains the sensor measurements obtained by the (nafimeasure-
ment equatiorh with measurement noigg with covarianceR,. In this work the measure-
ment noise is assumed stationary and to be added lineatlgllldtheory can easily be ex-
tended to the case of nonlinear noise addition accordinget&@KF formalism.

With these system equations, the A-DEKF equations can beedefully analogous to
the equations for a regular DEKF. The defining property ofkhéman-filter is the fact that
it aims to minimize the trace of the expected covariaRcef the error of the estimated
states with respect to the real states [2]. For the aboveitledcset of equations the DEKF-
algorithm for a timeste becomes [2]:

R- = FaP ,FJ +Ry, (57)

V\r|:_ = fd(\l\r&i_lyFeXt)7 (58)

Kq =R HT (HR HT+R) ", (59)

Wit = Wi+ Ki(Yk — h(W, Fext)), (60)

Pk+ = (I —KkH)Pk’, (61)

with

I:d = fd (w';,l, Fext),\/\m (62)

H == h(V\erFext)_W*. (63)

The calculation of the derivative of the measurement eqoatis usually rather straightfor-
ward and the derivative of the discretized system equat®discussed in the next section.
In this DEKF approach, first an estimate of the states and-eavariance is computed in
Eq. (57)-(58). Based on these estimates, the Kalmankais computed which is used to
correct the initial estimates based on the measurements.i(6B)-(61). It is interesting to
notice that the estimation of the inputs is fully integratedhe regular Kalman filter, the
changes are included in the model.
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Fig. 2 Half-car modeled used for validation.

4 Numerical validation

In order to validate the proposed approach, a numericaflatdin of the A-DEKF with
an SS-GMP model is performed. The validation is performeMatlab and the proposed
approach is compared to three different approaches to sbiesistently superior results. In
order to validate the computational efficiency of the A-DEW#h an SS-GMP model, this
method is also implemented in Fortran.

Firstly the model used is described. Next the differentriitigg methods are briefly dis-
cussed and finally the simulation results are shown.

4.1 Model description
In this work a half-car system, shown in Fig. 2, is used todatk the proposed coupled

state/input-estimation approach. The system consistearfbody and a four-bar suspension
on the left and right side. The properties of each body arensanized in Table 1.

Table 1 Properties of the different bodies of the half-car

masskg rot.iner.[kgnf] b[m  h[m|
car-body 400 100 0.5 2
beam 1 5 1 0.5 /
beam 2 3 0.7 0.3 /
beam 3 6 1.3 0.5385 /
beam 4 5 1 0.5 /
beam 5 3 0.7 0.3 /
beam 6 6 1.3 0.5385 /

The suspension is controlled by a spring at each side. Tipeisgys each have a constant
stiffness of 4KN/mand have a linear force-displacement behavior. No damperadaed
in this example.

As external loading, gravity and vertical wheel forces gvpli@d. For the estimation,
these forces are split into two sets. The gravity is addednasvik to the model, as are
the static wheel forces as response to the gravity. Theblarjzart of the wheel forces is
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assumed to be unknown and has to be estimated. In this validaere is no real wheel-
road interaction model and this effect is simply modeled pglgng vertical forces to the
wheel hubs.

Five measurements are performed to feed back to the filterabeelerometer measure-
ments are performed on the horizontal and vertical posiidhe body. These accelerome-
ters are attached to the car-body and thus provide acdelesan the frame attached to the
body:

_ 1% _ T %

Yacc [yE) } R( pO) yo} . (64)
For the models in the filters, these accelerations are eealihArough the equations of mo-
tion, leading to nonlinear measurement equations. Furtbes, three gyroscopic measure-
ments are performed: one measurement on the angular yetwicihe car body and two
measurements for the relative angular velocities of theef@uspension arms. These mea-
surements are chosen because they present a realistio spti® they can be performed
by low-cost MEMS sensors. For the noise on the measuremansial white noise is as-
sumed with realistic values for MEMS sensors. The covaadnc the sensors is provided
in Table 2.

Table 2 Sensor covariances

acc.xp | 0.8m/
accyp | 0.8m/s?
gyr.po | 0.2rad/s
gyr.61 | 0.2rad/s
gyr.62 | 0.2rad/s

It is important to notice that these measurements do nottteat observable system.
Over time this will lead to a divergence of the estimated davece and the Kalman filter
will deteriorate. The divergence manifests itself as at dnif the position-level coordinates
and forces and the rate is dependent on the magnitudes afthgances. For shorter time-
spans as presented in this paper and in [17, 18, 26] this &missue because the rate of drift
is sufficiently low. For long term estimation purposes gosilevel measurements (such as
inclinometers, optical positioning systems, GPS) or $§itabg techniques [30] need to be
added in order to obtain reliable results.

A sampling frequency of kHzis used in this work for the measurements and the time-
integration for the filters is run at the same frequency seetliiea measurement for each
filtering step.

Reference modelThe reference model is expressed in Cartesian coordinatéisef center
of gravity for each body. The constraints on the multiboggtem are taken into account
through an R-projection approach [31]. The equations ofonadre integrated with a gen-
eralizeda-solver [32] with timestep insand spectral radiug. = 0.8.

SS-GMP modelThe SS-GMP reduced model consists of 2 sub-models, as sindwig.il.
The mass of the car-body is fully assigned to one of the twersatlels and the car-body is
just a dummy body in the other sub-model. The MAF is attachi¢bdeacenter of gravity of
the car body for each sub-model. For the parameterizatitimeatelative mechanism motion
0, the angle between the car-body and the lower-suspensiorisachosen in each model.
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With these choices each sub-model has four DOFs and the &dkhhas five DOFs. The
possible configurations span the rare- [—0.4,0.63] rad with a discretization step of
AQ =2mrad The storage of the reduced model requirés\B.

4.2 Filters for comparison

In order to create some frame of reference for the propos@®EKF, this method is com-
pared to three other methods. In the following paragraphk eethod is briefly discussed
for this application. In each case the model covarianced tebe tuned depending on the
input-force. An input force with a larger derivative (egghér frequency) requires a larger
force covariance.

Separate Kalman filtering with model inversiohhe most straightforward approach to the
problem of performing the state estimation and the inputregion of this system, would
be to split up the problem into a separate state estimatiduaa this to compute the inputs
through a system inversion, which is a simple linear probfema given configuration in
this case. Moreover it is also possible to neglect a systexhetaitogether and usefall
integrator approach, in which each measurement signal is filtered aggharThis leads to
adisturbance observedR5]. The continuous time state equations which allow theafghe
acceleration measurements are:

q 010 [q 0
gl =1]o01| [g|+|0]. (65)
q 000| |§] |re¢

This leads to linear system equations for the filter so a egliscrete Kalman filter (DKF)

can be used to filter the states. In this case the covariantiexrfa each separate signal
has to be tuned for optimal performance. This leads to camees for the accelerations of
the different variables which are given in Table 3. It has ¢onoted that the acceleration

Table 3 State covariances for DKF estimator

Ry, | le—3(m/s%)?
Ry, | le—3(m/s%)?
R, | 1el(rad/s?)?
Ry, | led(rad/s®)?
Ry, | led(rad/s®)?

measurements are performed in a vehicle attached frambesstimation of the angle of
the bodypg has to be performed first in order to allow for a projectionted aicceleration
measurements to obtain the acceleration in the globalereder frame. This approach is
referred to as thBKF method in this paper.

A-DKF with linearized model.The second estimator which is considered, is the linear aug-
mented discrete Kalman filter (A-DKF). In this approach thistem equations are approx-
imated by a linearization of the multibody equations aroth@initial configuration of the
system. In this case the two unknown forces are also addedtas according to the higher
described random walk method. This approach is added im tvdiéghlight the added value
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of using a multibody model instead of a linearized model,cluhis still common practice.
In this case only two parameters need to be tuned, being treiances for the two un-
known forces. Since both forces can be assumed to have sbettavior, both are assigned
the same expected covariance. After manual optimizatierctivariance for the unknown
forces was set tB, = 165 (N/s)2. This approach is referred to as theDKF method in this
paper.

DEKF with model inversionln this case a discrete extended Kalman filter (DEKF) is ap-
plied to the nonlinear SS-GMP model. For this estimator thtes are not augmented with
the unknown input forces and all forces are assumed knowa.uhkertainty to the model

is located in the force equilibrium. The covariance matrixtioe states is computed similar
to the augmented case and the force covariance is fixBg-atles (N)2. In this approach,
the unknown forces are evaluated by applying the estimdsgessto the inverse model of
the system, which again lead tasturbance observd@5]. This approach is referred to as
the DEKF method in the remainder of this chapter.

A-DEKEF. Finally the proposed method in this paper is applied. Thereurged discrete ex-
tended Kalman filter is applied to the nonlinear SS-GMP madalescribed in the previous
sections with the two unknown external forces as augmeritgdss The uncertainty con-
centrated in the rate of change of the unknown input-foroetiaeir covariance after tuning
is set atR, = 1€6 (N/s). This model is also implemented in Fortran in order to vetiig
real-time capability. This approach is referred to asAHREKF method in this paper.

4.3 Simulation results

For the validation, a simulation of.9 seconds is performed. In this simulation a constant
force, equal to half the reaction force for the gravitatidoace, augmented by a sinusoidal
force is applied at each wheel. These input forces are showigi 3.

First of all, the tracking behavior for the measurementimgared. Fig. 4 shows the
time history of the measurements and their filtered couatésgor the A-DEKF approach
proposed in this work. The strength of the Kalman filteringrapch is immediately ap-
parent when considering the evolution of themeasurement. Due to the noise of the ac-
celerometer this signal is completely distorted but afterfiltering it looks much better. All
other considered filters provide rather good accuracy ®mntleasured variables so they are
not shown in this figure.

In order to get a more comprehensive view of the performardbeodifferent filters,
Fig. 5 shows the average variance of the five filtered statdsn@spect to the exact states
and their derivative$: , o

O.(qi)zz % (q:est_qltruth) . (66)
=1 M
Fig. 5 indicates that the A-DEKEF is able to produce overalreneliable results than the
three other filters. The DKF method provides rather incdestsresults over the different
variables since each is handled by a separate filter. It isagparent that the A-DKF ap-
proach is not able to properly track the behaviorxgfecause this motion is caused by
nonlinear couplings in the model which are not present irittearized model. The DEKF

2 These variances are averaged over 50 simulation-runs aiitiom noise generated bgndnin MAT-
LAB.
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0 0.1 0.2 0.3 0.4
t[s]

Fig. 3 Applied input forces to reference simulation (truth-mgdel

approach also clearly leads to bigger errors than the A-DBRjFroach because the un-
known input typically leads to biases in the results of thteffil

Furthermore also the behavior of the estimates of the vamian the input forces has
to be considered. Fig. 6 shows the course of the two estinfatees and Fig. 7 shows the
averaged covariances between the exact forces and theatstinFig. 6-7 further enforce
the conclusion that the A-DEKF approach is able to deliveueate results. All three model
based approaches (A-DKF, DEKF and A-DEKF) however seemduige relatively accu-
rate results whereas the DKF method clearly provide infggezformance. This is mainly
due to the poor tracking d¥; and 8, by the DKF approach and these variables are crucial
for the spring-forces. The estimated forces show a slightih respect to the real force.
This is logical since the resulting estimate will be somesgh@etween the actual force and
the force predicted by the random walk model which prediatersstant force. Other force
models might provide better results for this case but coolthgromise in versatility for
other force shapes.

The above results clearly demonstrate that the A-DEKF amralelivers consistently
superior results to the other approaches. Furthermord;@#€TRAN simulation of the A-
DEKF estimator with the SS-GMP model only take®®seconds for .@ seconds of sim-
ulation. Real-time performance can easily be obtainedHerconsidered system with the
proposed A-DEKF algorithm with an SS-GMP model

3 All simulations are performed on an Intel C@® Duo E6550 2.33GHz processor without exploitation
of multi-threading
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Fig. 4 Tracking of measured variables.

5 Conclusion

In this paper a methodology is proposed to use Sub-SystemaGModal Parameteriza-
tion (§S-GMP) reduced multibody models in an augmentedelis@xtended Kalman filter
(A-DEKF) to generate a general formalism for online coupitate/input estimation for
mechanical systems. The use of the SS-GMP approach allawesajang real-time capa-
ble models from high fidelity multibody models of a mechah&gstem. Special attention
is paid to the derivation of the nonlinear Jacobians of thgaggns of motion which are
required for an accurate evaluation of the Kalman filter.

In many mechanical applications it is essential to providestimation of the external
input forces since these might be very difficult if not impb$esto determine in advance.
In order to allow simultaneous state and input estimatiora@gmented Kalman approach
is adopted in which the unknown forces are added as addititates to be estimated. A
discrete version of the filter is employed because this allfov a more efficient imple-
mentation. An additional novelty is the use of an exponénigcretization scheme for the
nonlinear SS-GMP equations of motion in order to match theeht the filter. Through
a numerical validation the accuracy of the proposed A-DEKErfivith SS-GMP model is
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Fig. 5 Average covariance of error on measured variables.

shown and the Fortran implementation of this formalism ig &b run faster than real-time
on a standard PC.

It has to be remarked that the proposed approach is not rebtistespect to wrong
initial conditions because this state cannot be observédtive current sensor setup. This
non-observability will also eventually lead to divergerafethe Kalman-filter. In order to
remedy these issues position level measurements, suchRS aighal for the body, have to
be added. Future research will focus on these observaistities and the effects of different
(biased) noise sources such as engine noise and aerodyeiects.
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Fig. 7 Averaged covariance of error on input force estimates.
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