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Abstract This paper discusses the use of Sub-System Global Modal Parameterization (SS-
GMP) reduced multibody models in an augmented discrete extended Kalman filter (A-
DEKF) to generate a general formalism for online coupled state/input estimation in mech-
anisms. The SS-GMP approach is proposed to reduce a general multibody model of a me-
chanical system into a real-time capable model without considerable loss in accuracy. In
order to use these reduced models with an extended Kalman filter, the necessary deriva-
tives of this model are provided. An exponential integration scheme is used to discretize the
model in order to be compatible with discrete time filters. Finally, the augmented approach
is used for the estimation, in which the unknown external forces are considered as addi-
tional states to be estimated. The proposed approach is validated numerically and compared
to three other filtering approaches. The validation demonstrates that the proposed approach
provides accurate results while still maintaining real-time performance.

Keywords Global Modal Parameterization· Kalman filter· force estimation

1 Introduction

In many mechanical applications, there is a large need to know the current state of the
system: for control purposes it is crucial to take appropriate action, for health monitoring
the condition of the system has to be known, . . . The most straightforward approach to this
problem is the direct measurement of the state of interest. Quite often however, this is not
feasible. Measurement location can be hard to reach, sensors can be prohibitively expensive
or no sensor might even exist for the variable of interest. Inorder to address this issue,
state estimators have made a huge rise over the last decades.This rise was kickstarted by
the introduction of the Kalman filter [1], and many variations of this approach have been
presented over the years [2]. The main strength of this method is that it optimally leverages
the a-priori knowledge of a system, by the use of a model, and the measurements.
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For many mechanical systems however, there are two main practical problems in state-
estimation:

– design of an appropriate system nominal model,
– unknown input forces.

The state-estimator generally requires an accurate model in order to provide good re-
sults. Currently the general approach is still to create (simplified) ad-hoc models for the use
in the filter [3–5]. The trade-off which has to be kept in mind when creating these models
is between computational load and accuracy. This process ofspecific model generation is
typically time-consuming and it can be difficult to tune the parameters of these models to
match the real system. Multibody simulation provides a general framework to develop high
fidelity models for mechanical systems [6]. Ideally these models would also be applied for
the state-estimation of these systems [7,8]. Unfortunately this last approach leads to models
which cannot be run in real-time together with an extended Kalman filter for systems with
multiple degrees-of-freedom (DOFs). In order to allow the use of complex design models
for state-estimation purposes, this work proposes a nonlinear model reduction technique
for multibody systems, namely the Sub-System Global Modal Parameterization (SS-GMP).
This method is a system-level model reduction technique formultibody systems. Whereas
the original GMP approach [9,10] did not perform well in the case of multiple DOFs, SS-
GMP allows the division of a mechanism into multiple sub-models which can be efficiently
reduced by GMP and can then be connected back together [11]. In this work the SS-GMP
approach is proposed for systems consisting of rigid bodiesand localized force elements. A
brief summary of the methodology is provided in Sec. 2. Special attention is given to the
formulation of the appropriate derivative matrices required for the evaluation of the Kalman
filter. In practice, also the determination of the parameters of the model might be an issue.
These parameters could be obtained through a proper parameter identification beforehand
or could also be updated through parameter estimation techniques [12–14], which show
similarities to the methods proposed in this work.

The second issue for many mechanical systems is the fact thatthe input-forces are not
known. Regular state estimators assume that the inputs to the system are known, but in
practice this is rarely the case. This typically leads to bias-errors on the state estimates and
degraded performance. In order to alleviate this issue, several authors have proposed bias-
free Kalman filters [15,16]. However, in mechanical systemsit is often of special interest
to obtain an estimate of the external loads to a system as well. This is clearly the case in
vehicle applications where the unknown friction coefficient [17,18] and vertical displace-
ment of the road is usually unknown but crucial for proper control. However this issue can
be extended to many other domains as well, like mechatronics[19–21] and biomechanics.
Several variations of the regular Kalman filter have been proposed to perform combined
state and input estimation [22–24]. These approaches can becategorized underunknown
input observers[25] and have the advantage that they provide a simultaneousestimation
of states and forces. Even though accelerometers are commonly used in mechanical appli-
cations, cheap gyroscopic sensors based on MEMS technologyare becoming increasingly
popular. Therefore it is likely that no direct feedthrough from the inputs to the measure-
ments is present and the approach by Gillijnset al. [24] is not applicable. In this work the
augmented Kalman filter is chosen in order to take the unknowninputs into account [22],
which has been applied with success to linear [26] and nonlinear [17] mechanical systems. In
this work the augmented approach is applied to an extended Kalman filter due to the nonlin-
ear equations of motion for the multibody system. Moreover,in order to maximize real-time
performance the filter is described in the discrete time domain, as formulation is more suit-
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able for efficient implementation. The resultant filtering approach is anaugmented discrete
extended Kalman filter(A-DEKF). The algorithm for this filter is discussed in Sec. 3. In
order to obtain discrete time equations from the continuoustime equations of motion for the
multibody system, an exponential discretization [27] is applied.

Finally the proposed approach is validated numerically in Sec. 4. A planar half-car sys-
tem is simulated with realistic measurement properties. The proposed approach is shown to
provide superior performance to two basic disturbance estimators and a linearized A-DKF.
Moreover the proposed A-DEKF approach coupled with an SS-GMP model is shown to be
real-time capable through an implementation in Fortran.

2 Connected Sub-System Global Modal Parameterization

In this work the Sub-System Global Modal Parameterization (SS-GMP) approach is pro-
posed as model reduction method to create models for mechanical systems for use in state
estimators. This approach was first introduced in the frame of real-time simulation of flexi-
ble multibody systems [11] and is applied to rigid mechanisms in this work.

In this section, equations are presented for the planar casefor the sake of clarity, but
results can be easily extended to the spatial case as presented by Naets [11] for flexible
systems.

The SS-GMP modeling approach consists of two steps [11]:

– Preprocessing: during this phase, the model is split up into sub-models which can be
reduced separately. Subsequently the reduction, according to the GMP approach [9,10],
is performed for a grid of possible configurations and the system matrices are stored for
each sub-model.

– Processing: during the simulation, the equations of motion for each sub-model are evalu-
ated based on the interpolation of the stored system matrices and the equations presented
hereafter. After each sub-model is evaluated, the redundant DOFs are eliminated and the
equations of motion for the full system are evaluated.

2.1 Dividing model into sub-models

The SS-GMP is developed specifically for mechanical systemswhich are the assembly of
multiple sub-mechanisms with closed kinematic loops (Fig.1). In the case of a regular GMP
reduction, systems with a large number of independent DOFs would lead to a very high-
dimensional reduced model which could not be run efficiently. The SS-GMP approach on
the other hand is based on the division of a complex system into smaller systems with un-
connected independent DOFs except for a common mechanism attached frame (MAF), as
shown in Fig. 1.

Once the model of the full system is split into sub-models, these sub-models are reduced
according to the GMP approach such that their behavior can berepresented by a reduced
unconstrained formulation with a minimal number of DOFs.

Irrespective of the original model formulation (Cartesiancoordinates, natural coordi-
nates, . . . ) the reduced generalized coordinatesq for one sub-modeli are:

qi =





x0

p0

θi



 . (1)
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Fig. 1 Reduced coordinates for a SS-GMP

The reduced sub-model is described by the positionx0 and orientationp0 of its moving
reference frame and the relative mechanism motion with respect to this frame, denoted by
a minimal set of coordinatesθi , as shown in Fig. 1. In this work no linearizations are per-
formed for the model reduction, but this could be added to theformulation in accordance to
Naets [11].

Through a nonlinear transformation, the unreduced DOFs of asub-systemxi and their
derivatives can be obtained from the reduced coordinates1:

x = x0+R(p0)ρ(θi), (2)

ẋ = ẋ0+R(p0),p0 ṗ0ρ(θi)+R(p0)Ψ xθi θ̇i , (3)

ẍ = ẍ0+2R(p0),p0 ṗ0Ψxθi θ̇i +R(p0),p0,p0 ṗ0
2ρ(θi)

+R(p0)Ψxθi
,θi

θ̇2
i +R(p0),p0 p̈0ρ(θi)+R(p0)Ψ xθi θ̈i . (4)

Due to the use of the MAF, a rotation matrixR(p0) is required, which transforms the coor-
dinates expressed with respect to the local frame to the global frame. In these equations, the
nonlinear transformation functionρ(θi) is defined, which relates the unreduced coordinates
with respect to the MAF to a minimal set of reduced coordinates θi . The derivative of this
nonlinear function is defined as:

ρ,θi =Ψ xθi , (5)

which is a set of projection modes which are also dependent onθi . In the GMP formal-
ism, these nonlinear functions are determined by sampling the configuration of the system
over a predetermined grid of possible configurations. Theseconfigurations are stored and
during simulation an Overhauser interpolation is used on this grid, which allows a continu-
ous function between the sampling points up to the first derivative. The interpolation for a
configurationθi in the interval

[

θ k
i ,θ

k+1
i

]

for a matrixA with derivativesdA is then given
by:

s =
θi −θ k

i

θ k+1
i −θ k

i

, (6)

A = (1−3s2+2s3)Ak+(3s2
−2s3)Ak+1

+(s−2s2+s3)dAk+(−s2+s3)dAk+1. (7)

1 the derivative of a matrixA with respect to a variableb is denoted asA,b



Online state and input force estimation 5

This choice of interpolation function leads to an acceptable level of continuity at minimal
cost.

With the degrees-of-freedom for each sub-model defined, theequations of motion for
each model can be derived.

2.2 Equations of motion for sub-models

This section briefly reviews the equations of motion for a sub-model. It is important to
notice that these equations are the same, irrespective of the original modeling approach.
This is a major advantage because it implies that the proposed filtering formalism can be
used to generate a KF for any original multibody modeling approach without the necessity
to perform any additional derivations of the model to obtainit in a KF-eligible form.

This section also offers the exact derivatives of the different forces with respect to the
reduced DOFs because these will be crucial for a proper operation of the extended Kalman
filter as described in Sec. 3. In this section only the final equations are provided, for a full
derivation of these equations the reader is referred to [11]. The forces which make up the
equations of motion can be split into: inertial forces, internal forces and external forces.

Inertial forces. The inertial forces constitute the velocity dependent gyroscopic forces and
the acceleration dependent forces.

An additional projection matrixD is required in order to evaluate the inertial forces:

D =

[

R(p0)
T 0

0 I1+mθ

]

. (8)

This transformation matrix transforms the sub-system coordinatesqi to the MAF, withmθ

the number of minimal mechanism coordinates. With this projection matrix the sub-system
mass-matrix is:

Mi = DTMc(θi)D. (9)

In this equation,Mc(θi) is the reduced mass-matrix with respect to the MAF, which is depen-
dent on the configuration of the systemθi with respect to the MAF. The reduced mass-matrix
is obtained by projecting the unreduced mass-matrix as described by Naets [11], such that
the online computations are independent of the unreduced number of DOFs. This matrix is
also stored during the preprocessing and obtained through interpolation during the simula-
tion. For the gyroscopic forces, the derivatives of the mass-matrix with respect to the DOFs
qi are required:

Mi,p0 = DT
,p0Mc(θi)D+DTMc(θi)D,p0, (10)

Mi,θi = DTMc,θi (θi)D. (11)

Just as the local mass-matrix, also the derivative of the local reduced mass-matrixMc,θi is
stored and this allows the use of the cubic Overhauser interpolation for the mass-matrix. The
gyroscopic forces on DOFj can then be computed as:

F j
gyr =

mq

∑
k=1

(

M j
i,kq̇

k
i

)

q̇i −
1
2

q̇T
i Mi, j q̇i . (12)
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The required derivatives of the gyroscopic forces with respect to the position and velocity
of ql

i are:

F j
gyr,ql

i
=

mq

∑
k=1

(

M j
i,k,l q̇

k
i

)

q̇i −
1
2

q̇T
i Mi, j,l q̇i , (13)

with

Mi,p0,p0 = DT
,p0,p0Mc(θi)D+DTMc(θi)D,p0,p0+2DT

,p0Mc(θi)D,p0, (14)

Mi,p0,θi = DT
,p0Mc,θi (θi)D+DTMc,θi (θi)D,p0, (15)

Mi,θi ,p0 = DT
,p0

Mc,θi (θi)D+DTMc,θi (θi)D,p0, (16)

Mi,θi ,θi = DTMc,θi ,θi (θi)D. (17)

and

F j
gyr,q̇l

i
=

mq

∑
k=1

(

M jl
i,kq̇

k
i

)

+M j
i,l q̇i −

1
2
(q̇T

i Ml
i, j +Ml

i, j q̇i). (18)

With these forces and derivatives, the inertial contributions to the equations of motion re-
quired for the Kalman filter can be evaluated.

Internal forces.Even though the current work focuses on rigid multibody systems, internal
forces can still be present due to the presence of force elements (eg. springs) in the model.
For the case where a force-element is acting on the MAF, thesecontributions are consid-
ered as external forces because these are not internal to thereduced model. Only the force-
elements which are acting on the relative rigid DOFsθi are considered as internal forces.
The reduced internal forcesFqi

int are also obtained by projecting the unreduced (nonlinear)
internal forcesFx

int onto the reduced DOFs, similar to the process described in [28]:

Fx0
int = 0, (19)

F p0
int = 0, (20)

Fθi
int =

(

Ψ xθi

)T
Fx

int (ρ(θi)) , (21)

with associated generalized stiffness-matrixFqi
int,qi

fully zero, except for :

Fθi
int,θi

=
(

Ψ xθi

)T
Fx

int,x (ρ(θi))Ψ xθi +
(

Ψ xθi
,θi

)T
Fx

int (ρ(θi)) . (22)

These vectors and matrices are again stored and interpolated during simulation.

External forces.The external forces (these are generalized forces so this also applies to
torques) are assumed to be defined to be acting upon the unreduced coordinatesx. In order
to get the effect on the reduced DOFs, they should be projected on the derivative of Eq. (2):

Fqi
ext = xT

,qi
Fx

ext. (23)

In order to be able to evaluate the KF properly, also the derivative of these forces are re-
quired:

Fqi
ext,qi

= xT
,qi ,qi

Fx
ext+xT

,qi
Fx

ext,xx,qi . (24)
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The necessary additional derivatives to evaluate this function can be extracted from Eq. (3)-
(4).

All force contributions, except for the acceleration dependent forces, can be consolidated
into a generalized force vectorgi for sub-modeli:

gi(qi , q̇i ,F
x
ext) =−Fint(qi)−Fgyr(qi , q̇i)−xT

,qi
Fx

ext, (25)

such that the equations of motion for a sub-model can be written as:

Mi q̈i = gi(qi , q̇i ,F
x
ext). (26)

2.3 First order system equations of motion

In order to evaluate the full system, a back-transformationeliminating the redundant DOFs
for the MAFs of the different sub-models has to be performed.This can be obtained by ap-
plying a linear projectionSonto the coordinates of then sub-models, such that no additional
constraints need to be added to solve the equations of motion:

Sq=





q1

. . .
qn



 , (27)

with

S=













[

I3 0 . . . 0
0 Imθ

1
. . . 0

]

. . .
[

I3 0 . . . 0
0 0 . . . Imθ

n

]













. (28)

The full mass-matrix and force vector for the full model is composed from the matrices of
the sub-models as:

M = ST





M1 . . . 0
0 . . . 0
0 . . . Mn



S, (29)

g(q, q̇,Fext) = ST





g1(q1, q̇1,Fx
ext)

. . .
gn(qn, q̇n,Fx

ext)



 . (30)

With this projection, the equations of motion for all the sub-systems can be combined into
the non-redundant equations of motion for the full system:

Mq̈= g(q, q̇,Fext). (31)

In previous works the equations of motion have always been presented in second-order
form. The formulations for state-estimators are however usually derived for first-order sys-
tems (exceptions are eg. presented in the work by Hernandez [29]). Therefore, the equations
of motion have to be written as:

ẇ= f (w,Fext), (32)
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with

w=

[

q
q̇

]

. (33)

The nonlinear system equationf for the case of these mechanical systems is:

f (w,Fext) =

[

q̇
M−1g(q, q̇,Fext)

]

. (34)

Furthermore, both the discretization scheme and the KF require the derivative matrix
F of this equation. The derivative of the generalized force-expression with respect to the
minimal coordinates is:

g,q = ST





g1,q1(q1, q̇1,Fx
ext) . . . 0

. . .
0 . . . gn,qn(qn, q̇n,Fx

ext)



S, (35)

g,q̇ = ST





g1,q̇1(q1, q̇1,Fx
ext) . . . 0

. . .
0 . . . gn,q̇n(qn, q̇n,Fx

ext)



S. (36)

With these equations,F becomes:

f (w,Fext),q =

[

0
M−1g(q, q̇,Fext),q−M−1M,qM−1g(q, q̇,Fext)

]

, (37)

f (w,Fext),q̇ =

[

Inq

M−1g(q, q̇,Fext),q̇

]

, (38)

F =
[

f (w,Fext),q f (w,Fext),q̇
]

. (39)

With these equations, the system can be discretized and the extended Kalman filter can be
evaluated. Even though the above derivation was made for theplanar case (only one rotation
parameter), these results can easily be generalized to the spatial case. In the following section
these equations will be exploited to create a coupled state/input-estimator.

3 Augmented discrete extended Kalman filter

This work focuses on combined state and input filtering for mechanical systems. Regular
Kalman filtering leads to bias-errors in the case of an unknown input, such that an adapted
method has to be applied. In mechanical systems, the external inputs to the system are often
unknown or very difficult to model. Moreover, it might be highly useful have an estimate
of these unknown forces for many applications as well. In this work the augmented Kalman
filter is used, in which the unknown forcesa are added as additional states to be estimated.
This leads to the augmented state vectorw∗:

w∗ =

[

w
a

]

. (40)

In order to estimate the unknown input forces, some form of model has to be provided for
these variables. In this work a random walk model is used, with continuous time model
equation:

ȧ= ra. (41)
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In this equationra is continuous time noise, which indicates that the rate of change is ex-
pected to be a random process. This approach has been appliedwith success for linear me-
chanical systems by Lourens [26] and higher order versions of this approach have been used
by Ray [17,18]. The zeroth order model employed here allows good versatility for different
input forces at a minimal computational load.

Many nonlinear Kalman filter formulations have been proposed over the years and in
this work the discrete extended Kalman filter (DEKF) is employed. In order to use the con-
tinuous time equations provided in the previous section, the equations of motion need to be
discretized. This discretization is discussed in Sec. 3.1.Subsequently, the algorithm for the
A-DEKF approach is briefly reviewed in Sec. 3.2.

3.1 Discretization of equations of motion

The discrete extended Kalman filter is most suitable for real-time purposes because it is
specifically developed for digital implementation and allows iteration-less integration. In
order to be able to apply the DEKF to the continuous time equations of motion of multibody
systems, the equations of motion need to be discretized.

With the inclusion of the augmented states for the unknown forces, the continuous time
system equations are:

[

ẇ
ȧ

]

=

[

f (w,Fext+Saa)
0

]

+

[

0
ra

]

. (42)

In this equationSa is a projection matrix which projects the unknown forces to be estimated
to the corresponding location in the full force-vector andra is the noise-vector which deter-
mines the rate of change of the unknown forces. This equationcan be summarized as:

ẇ∗ = f ∗(w∗,Fext)+ rw∗ . (43)

This augmented function also has a new derivative matrixF∗:

F∗ = f ∗(w∗,Fext),w∗ , (44)

=

[

F −M−1xT
,qSa

0 0

]

. (45)

In order to perform the discretization many approaches exist. In this work a nonlinear
exponential solver, more specifically the Exponentially Fitted Euler solver, is applied [27].
At a given timetk this method provides a solution for the states attk+1:

w∗

k+1 = w∗

k +
∫ ∆ t

0
eF∗

k ηdη f ∗(w∗

k,Fext) (46)

Many different forms of the exponential solver for nonlinear systems exist and this ap-
proach is best suited for strongly nonlinear simulation, but it does require the computation
of all derivatives at each timestep. The exact solution of the integral in this equation would
require the computation of the inverse ofF∗

k , but as is apparent from Eq. (45), this matrix is
singular. To circumvent this problem, a Taylor approximation of the matrix-exponential is
used instead:

eF∗

k η
≈ I +

F∗

k η
1!

+

(

F∗

k

)2 η2

2!
+ ...+

(

F∗

k

)n ηn

n!
+O(ηn+1). (47)
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Approximating this exponential by a finite sum will limit thetimestep for a stable solu-
tion, but this limitation will only be secondary to the limitation on the timestep due to the
nonlinearity of the system. This polynomial function can beeasily integrated such that the
discretized equation of motion becomes (for annth order approximation of the matrix expo-
nential):

w∗

k+1 = fd(w
∗

k,Fext), (48)

= w∗

k +
n

∑
j=1

(

(F∗

k )
j−1 ∆ t j

j!

)

f ∗(w∗

k,Fext). (49)

Moreover, also the derivativeFd of this function with respect to the states has to be computed
for the Kalman filter:

Fd = fd,w∗ , (50)

= I +
n

∑
j=1

(

(F∗

k )
j−1 ∆ t j

j!

)

F∗

k +
n−1

∑
j=1

(

∂
(

F∗

k

) j−1

∂w∗

∆ t j+1

j +1!

)

f ∗(w∗

k,Fext). (51)

In this equation the last contribution is neglected. This approximation will have limited ef-
fect on the accuracy of the filter. If the system is close to linear, the timestep can be selected
relatively large but the derivative ofF∗ will be negligible with respect toF∗, so this approxi-
mation is valid. If the system is strongly nonlinear, a relatively small timestep is required for
accurate time-integration. This small timestep will lead to a negligible contribution of the
last term with respect to the other terms. Moreover, computing the derivatives ofF∗ would
add considerable computational complexity and jeopardizereal-time performance. With this
approximation, the Jacobian matrix becomes:

Fd ≈ I +
n

∑
j=1

(

(F∗

k )
j−1 ∆ t j

j!

)

F∗

k . (52)

Besides the regular equations of motion, also the discretized behavior of the expected
noise on the model has to be considered. In this work, the noise on the continuous time
multibody model is assumed to be zero and all noise is assumedon the unknown force,
with covarianceRa. In this case the discretized noise vector for the augmentedsystemrw∗

becomes:

rw∗ ≈ Fa
d ra, (53)

and the covariance matrix for the discretized time statesRw∗ is:

Rw∗ ≈ Fa
d Ra (F

a
d )

T . (54)

In generalRa is not exactly known and is used as a tuning parameter for the filter in order to
get a satisfactory trade-off between the model and the measurements [26]. This is also the
approach followed in this work. In the general case there is also uncertainty on the model,
which can be taken into account by adjustingrw∗ and Rw∗ . This case is not investigated
further in this work in order to focus on the problem of input-estimation.
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3.2 A-DEKF algorithm

The augmented discrete extended Kalman filter (A-DEKF) is proposed in this work to pro-
vide a coupled estimation of the states and inputs to a mechanical system.

The nonlinear discrete time system equationsfd, obtained by the algorithm described in
Sec. 3.1, are:

w∗

k = fd(w
∗

k−1,Fext)+ rw∗ (55)

This equation is now in a form suitable for discrete extendedKalman filtering. The first part
of this equation represents the nominal system equations and the second part represents the
discretized process noiserw∗ with covarianceRw∗ which expresses the uncertainty on the
model.

The system equations of motion are complemented by the (nonlinear) measurement
equations:

yk = h(w∗

k,Fext)+ ry. (56)

In this equationyk contains the sensor measurements obtained by the (nonlinear) measure-
ment equationh with measurement noisery with covarianceRy. In this work the measure-
ment noise is assumed stationary and to be added linearly, but all theory can easily be ex-
tended to the case of nonlinear noise addition according to the EKF formalism.

With these system equations, the A-DEKF equations can be derived fully analogous to
the equations for a regular DEKF. The defining property of theKalman-filter is the fact that
it aims to minimize the trace of the expected covariancePk of the error of the estimated
states with respect to the real states [2]. For the above described set of equations the DEKF-
algorithm for a timestepk becomes [2]:

P−

k = FdP+
k−1FT

d +Rw∗ , (57)

w∗−

k = fd(w
∗+
k−1,Fext), (58)

Kk = P−

k HT (HP−

k HT +Ry
)−1

, (59)

w∗+
k = w∗−

k +Kk(yk−h(w∗−

k ,Fext)), (60)

P+
k = (I −KkH)P−

k , (61)

with

Fd = fd(w
∗

k−1,Fext),w∗ , (62)

H = h(w∗

k,Fext),w∗ . (63)

The calculation of the derivative of the measurement equations is usually rather straightfor-
ward and the derivative of the discretized system equationsis discussed in the next section.
In this DEKF approach, first an estimate of the states and error-covariance is computed in
Eq. (57)-(58). Based on these estimates, the Kalman gainKk is computed which is used to
correct the initial estimates based on the measurements in Eq. (60)-(61). It is interesting to
notice that the estimation of the inputs is fully integratedin the regular Kalman filter, the
changes are included in the model.
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4 Numerical validation

In order to validate the proposed approach, a numerical validation of the A-DEKF with
an SS-GMP model is performed. The validation is performed inMatlab and the proposed
approach is compared to three different approaches to show consistently superior results. In
order to validate the computational efficiency of the A-DEKFwith an SS-GMP model, this
method is also implemented in Fortran.

Firstly the model used is described. Next the different filtering methods are briefly dis-
cussed and finally the simulation results are shown.

4.1 Model description

In this work a half-car system, shown in Fig. 2, is used to validate the proposed coupled
state/input-estimation approach. The system consists of acar-body and a four-bar suspension
on the left and right side. The properties of each body are summarized in Table 1.

Table 1 Properties of the different bodies of the half-car

mass[kg] rot. iner.[kgm2] b [m] h [m]
car-body 400 100 0.5 2
beam 1 5 1 0.5 /
beam 2 3 0.7 0.3 /
beam 3 6 1.3 0.5385 /
beam 4 5 1 0.5 /
beam 5 3 0.7 0.3 /
beam 6 6 1.3 0.5385 /

The suspension is controlled by a spring at each side. These springs each have a constant
stiffness of 40kN/m and have a linear force-displacement behavior. No dampers are added
in this example.

As external loading, gravity and vertical wheel forces are applied. For the estimation,
these forces are split into two sets. The gravity is added as known to the model, as are
the static wheel forces as response to the gravity. The variable part of the wheel forces is



Online state and input force estimation 13

assumed to be unknown and has to be estimated. In this validation there is no real wheel-
road interaction model and this effect is simply modeled by applying vertical forces to the
wheel hubs.

Five measurements are performed to feed back to the filter. Two accelerometer measure-
ments are performed on the horizontal and vertical positionof the body. These accelerome-
ters are attached to the car-body and thus provide accelerations in the frame attached to the
body:

yacc=

[

ẍ′0
ÿ′0

]

= R(p0)
T
[

ẍ0

ÿ0

]

. (64)

For the models in the filters, these accelerations are evaluated through the equations of mo-
tion, leading to nonlinear measurement equations. Furthermore, three gyroscopic measure-
ments are performed: one measurement on the angular velocity of the car body and two
measurements for the relative angular velocities of the lower suspension arms. These mea-
surements are chosen because they present a realistic option since they can be performed
by low-cost MEMS sensors. For the noise on the measurements,normal white noise is as-
sumed with realistic values for MEMS sensors. The covariance for the sensors is provided
in Table 2.

Table 2 Sensor covariances

acc.x0 0.8 m/s2

acc.y0 0.8 m/s2

gyr. p0 0.2 rad/s
gyr. θ1 0.2 rad/s
gyr. θ2 0.2 rad/s

It is important to notice that these measurements do not leadto an observable system.
Over time this will lead to a divergence of the estimated covariance and the Kalman filter
will deteriorate. The divergence manifests itself as a drift on the position-level coordinates
and forces and the rate is dependent on the magnitudes of the covariances. For shorter time-
spans as presented in this paper and in [17,18,26] this is notan issue because the rate of drift
is sufficiently low. For long term estimation purposes position level measurements (such as
inclinometers, optical positioning systems, GPS) or stabilizing techniques [30] need to be
added in order to obtain reliable results.

A sampling frequency of 1kHz is used in this work for the measurements and the time-
integration for the filters is run at the same frequency so there is a measurement for each
filtering step.

Reference model.The reference model is expressed in Cartesian coordinates for the center
of gravity for each body. The constraints on the multibody-system are taken into account
through an R-projection approach [31]. The equations of motion are integrated with a gen-
eralizedα-solver [32] with timestep 1msand spectral radiusρ∞ = 0.8.

SS-GMP model.The SS-GMP reduced model consists of 2 sub-models, as shown in Fig. 1.
The mass of the car-body is fully assigned to one of the two sub-models and the car-body is
just a dummy body in the other sub-model. The MAF is attached at the center of gravity of
the car body for each sub-model. For the parameterization ofthe relative mechanism motion
θ , the angle between the car-body and the lower-suspension arm is chosen in each model.
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With these choices each sub-model has four DOFs and the full model has five DOFs. The
possible configurations span the rangeθ = [−0.4,0.63] rad with a discretization step of
∆θ = 2 mrad. The storage of the reduced model requires 1.3 MB.

4.2 Filters for comparison

In order to create some frame of reference for the proposed A-DEKF, this method is com-
pared to three other methods. In the following paragraphs each method is briefly discussed
for this application. In each case the model covariances need to be tuned depending on the
input-force. An input force with a larger derivative (eg. higher frequency) requires a larger
force covariance.

Separate Kalman filtering with model inversion.The most straightforward approach to the
problem of performing the state estimation and the input estimation of this system, would
be to split up the problem into a separate state estimation and use this to compute the inputs
through a system inversion, which is a simple linear problemfor a given configuration in
this case. Moreover it is also possible to neglect a system model altogether and use afull
integrator approach, in which each measurement signal is filtered separately. This leads to
adisturbance observer[25]. The continuous time state equations which allow the use of the
acceleration measurements are:





q̇
q̈...
q



=





0 1 0
0 0 1
0 0 0









q
q̇
q̈



+





0
0

r...q



 . (65)

This leads to linear system equations for the filter so a regular discrete Kalman filter (DKF)
can be used to filter the states. In this case the covariance matrix for each separate signal
has to be tuned for optimal performance. This leads to covariances for the accelerations of
the different variables which are given in Table 3. It has to be noted that the acceleration

Table 3 State covariances for DKF estimator

R...
x 0 1e−3 (m/s3)2

R...
y 0 1e−3 (m/s3)2

R...
p0 1e1 (rad/s3)2

R...
θ 1 1e4 (rad/s3)2

R...
θ 2 1e4 (rad/s3)2

measurements are performed in a vehicle attached frame, so the estimation of the angle of
the bodyp0 has to be performed first in order to allow for a projection of the acceleration
measurements to obtain the acceleration in the global reference frame. This approach is
referred to as theDKF method in this paper.

A-DKF with linearized model.The second estimator which is considered, is the linear aug-
mented discrete Kalman filter (A-DKF). In this approach the system equations are approx-
imated by a linearization of the multibody equations aroundthe initial configuration of the
system. In this case the two unknown forces are also added as states according to the higher
described random walk method. This approach is added in order to highlight the added value
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of using a multibody model instead of a linearized model, which is still common practice.
In this case only two parameters need to be tuned, being the covariances for the two un-
known forces. Since both forces can be assumed to have similar behavior, both are assigned
the same expected covariance. After manual optimization the covariance for the unknown
forces was set toRa = 1e5 (N/s)2. This approach is referred to as theA-DKF method in this
paper.

DEKF with model inversion.In this case a discrete extended Kalman filter (DEKF) is ap-
plied to the nonlinear SS-GMP model. For this estimator the states are not augmented with
the unknown input forces and all forces are assumed known. The uncertainty to the model
is located in the force equilibrium. The covariance matrix on the states is computed similar
to the augmented case and the force covariance is fixed atRa = 1e6 (N)2. In this approach,
the unknown forces are evaluated by applying the estimated states to the inverse model of
the system, which again lead to adisturbance observer[25]. This approach is referred to as
theDEKF method in the remainder of this chapter.

A-DEKF. Finally the proposed method in this paper is applied. The augmented discrete ex-
tended Kalman filter is applied to the nonlinear SS-GMP modelas described in the previous
sections with the two unknown external forces as augmented states. The uncertainty con-
centrated in the rate of change of the unknown input-forces and their covariance after tuning
is set atRa = 1e6 (N/s)2. This model is also implemented in Fortran in order to verifythe
real-time capability. This approach is referred to as theA-DEKF method in this paper.

4.3 Simulation results

For the validation, a simulation of 0.4 seconds is performed. In this simulation a constant
force, equal to half the reaction force for the gravitational force, augmented by a sinusoidal
force is applied at each wheel. These input forces are shown in Fig. 3.

First of all, the tracking behavior for the measurements is compared. Fig. 4 shows the
time history of the measurements and their filtered counterparts for the A-DEKF approach
proposed in this work. The strength of the Kalman filtering approach is immediately ap-
parent when considering the evolution of the ¨x0-measurement. Due to the noise of the ac-
celerometer this signal is completely distorted but after the filtering it looks much better. All
other considered filters provide rather good accuracy for the measured variables so they are
not shown in this figure.

In order to get a more comprehensive view of the performance of the different filters,
Fig. 5 shows the average variance of the five filtered states with respect to the exact states
and their derivatives2:

σ (qi)2 =
nt

∑
k=1

(qi
est−qi

truth)
2

nt
. (66)

Fig. 5 indicates that the A-DEKF is able to produce overall more reliable results than the
three other filters. The DKF method provides rather inconsistent results over the different
variables since each is handled by a separate filter. It is also apparent that the A-DKF ap-
proach is not able to properly track the behavior ofx0 because this motion is caused by
nonlinear couplings in the model which are not present in thelinearized model. The DEKF

2 These variances are averaged over 50 simulation-runs with random noise generated byrandn in MAT-
LAB.
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Fig. 3 Applied input forces to reference simulation (truth-model).

approach also clearly leads to bigger errors than the A-DEKFapproach because the un-
known input typically leads to biases in the results of the filter.

Furthermore also the behavior of the estimates of the variation on the input forces has
to be considered. Fig. 6 shows the course of the two estimatedforces and Fig. 7 shows the
averaged covariances between the exact forces and the estimates. Fig. 6-7 further enforce
the conclusion that the A-DEKF approach is able to deliver accurate results. All three model
based approaches (A-DKF, DEKF and A-DEKF) however seem to provide relatively accu-
rate results whereas the DKF method clearly provide inferior performance. This is mainly
due to the poor tracking ofθ1 andθ2 by the DKF approach and these variables are crucial
for the spring-forces. The estimated forces show a slight lag with respect to the real force.
This is logical since the resulting estimate will be somewhere between the actual force and
the force predicted by the random walk model which predicts aconstant force. Other force
models might provide better results for this case but could compromise in versatility for
other force shapes.

The above results clearly demonstrate that the A-DEKF approach delivers consistently
superior results to the other approaches. Furthermore, theFORTRAN simulation of the A-
DEKF estimator with the SS-GMP model only takes 0.05 seconds for 0.4 seconds of sim-
ulation. Real-time performance can easily be obtained for the considered system with the
proposed A-DEKF algorithm with an SS-GMP model3.

3 All simulations are performed on an Intel CoreR©2 Duo E6550 2.33GHz processor without exploitation
of multi-threading
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Fig. 4 Tracking of measured variables.

5 Conclusion

In this paper a methodology is proposed to use Sub-System Global Modal Parameteriza-
tion (SS-GMP) reduced multibody models in an augmented discrete extended Kalman filter
(A-DEKF) to generate a general formalism for online coupledstate/input estimation for
mechanical systems. The use of the SS-GMP approach allows generating real-time capa-
ble models from high fidelity multibody models of a mechanical system. Special attention
is paid to the derivation of the nonlinear Jacobians of the equations of motion which are
required for an accurate evaluation of the Kalman filter.

In many mechanical applications it is essential to provide an estimation of the external
input forces since these might be very difficult if not impossible to determine in advance.
In order to allow simultaneous state and input estimation, an augmented Kalman approach
is adopted in which the unknown forces are added as additional states to be estimated. A
discrete version of the filter is employed because this allows for a more efficient imple-
mentation. An additional novelty is the use of an exponential discretization scheme for the
nonlinear SS-GMP equations of motion in order to match the model to the filter. Through
a numerical validation the accuracy of the proposed A-DEKF filter with SS-GMP model is
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Fig. 5 Average covariance of error on measured variables.

shown and the Fortran implementation of this formalism is able to run faster than real-time
on a standard PC.

It has to be remarked that the proposed approach is not robustwith respect to wrong
initial conditions because this state cannot be observed with the current sensor setup. This
non-observability will also eventually lead to divergenceof the Kalman-filter. In order to
remedy these issues position level measurements, such as a GPS signal for the body, have to
be added. Future research will focus on these observabilityissues and the effects of different
(biased) noise sources such as engine noise and aerodynamiceffects.
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