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SUMMARY

Real-life data often exhibit some structure and/or sparsity, allowing one to use parsimonious models for
compact representation and approximation. When considering matrix and tensor data, low-rank models such
as the (multilinear) singular value decomposition (SVD), canonical polyadic decomposition (CPD), tensor
train (TT), and Hierachical Tucker (HT) model are very common. The solution of (large-scale) linear systems
is often structured in a similar way, allowing one to use compact matrix and tensor models as well. In this
paper we focus on linear systems with a CPD constrained solution (LS-CPD). Our main contribution is the
development of optimization-based and algebraic methods to solve LS-CPDs. Furthermore, we propose
a condition that guarantees generic uniqueness of the obtained solution. We also show that LS-CPDs
provide a broad framework for the analysis of multilinear systems of equations. The latter are a higher-
order generalization of linear systems, similar to tensor decompositions being a generalization of matrix
decompositions. The wide applicability of LS-CPDs in domains such as classification, multilinear algebra,
and signal processing is illustrated. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Real-life data can often be modeled using compact representations because of some intrinsic
structure and/or sparsity [1]. Well-known representations are low-rank matrix and tensor models
such as nonnegative matrix factorization (NMF), the (multilinear) singular value decomposition
(SVD), canonical polyadic decomposition (CPD), tensor train (TT), and hierarchical Tucker (HT)
models [2, 3, 4, 5, 6, 7, 8]. Examples of data that can be represented or well approximated by such
models are exponential polynomials, rational functions (and in a broader sense smooth signals), as
well as periodic functions [9, 10, 11, 12]. When dealing with vector/matrix data, one often reshapes
the data into higher-order tensors which are then modeled using low-rank approximations, enabling
efficient processing in the compressed format. This strategy has been used in tensor-based scientific
computing and signal processing to handle various large-scale problems [9, 10, 11, 13].

Similarly, the solution of a (large-scale) linear system can often be expressed by a low-rank tensor.
Such problems are well-known in tensor-based scientific computing, see [11]. They arise, e.g., after
discretizing high-dimensional partial differential equations. The low-rank model ensures efficient
computations and a compact representation of the solution. In such large-scale problems, one often
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assumes that the coefficient matrix and/or right-hand side have some additional structure or can
also be expressed using a tensor model. Several methods have been developed for linear systems
with a Kronecker structured coefficient matrix and a CPD structured solution such as the projection
method [14], alternating least squares (ALS) [15], and a gradient method [16]. TTs or HT models are
also often used because they combine large compression rates and good numerical properties [7, 8].

In this paper, we present a new framework for linear systems of equations with a CPD constrained
solution, abbreviated as LS-CPD. In other words, we want to solve linear systems of the form:

Ax = b with x = vec (CPD) ,

in which vec(·) is a vectorization. A simple second-order rank-1 example is x = vec(u ⊗ v)
with ⊗ the outer product. In particular we develop algebraic as well as optimization-based
algorithms that properly address the CPD structure. A naive method to solve LS-CPDs could
be to first solve Ax = b without structure and subsequently decompose a tensorized version
ten(x) of the obtained solution. This approach works well if the linear system is overdetermined,
but, in contrast to our algebraic and optimization-based methods, fails in the underdetermined
case. The proposed optimization-based method computes a solution of the LS-CPD problem
by minimizing a least-squares objective function. We have derived expressions for the gradient,
Jacobian, and approximation of the Hessian which are the ingredients for standard quasi-Newton
(QN) and nonlinear least squares (NLS) techniques. We use the complex optimization framework in
Tensorlab, a toolbox for tensor computations in MATLAB, as numerical optimization solver [17, 18,
19, 20]. The optimization-based methods allow us to work much more efficiently and avoid error
accumulation in contrast to the naive or algebraic methods. The latter two methods can be used
to obtain a good initialization for the optimization-based methods when considering perturbed LS-
CPD problems. Our framework can be extended to other tensor decompositions such as the block
term decomposition (BTD), multilinear singular value decomposition (MLSVD), low-multilinear
rank approximation (LMLRA), TT or HT models [5, 6, 11, 21].

Furthermore, LS-CPDs can be interpreted as multilinear systems of equations which are a
generalization of linear systems of equations. The latter can be expressed by a matrix-vector product
between the coefficient matrix and the solution vector, e.g., Ax = b, or, equivalently, A ·2 xT, using
the mode-n product [3]. The generalization to a multilinear system is then straightforward because
it can be expressed by tensor-vector products between the coefficient tensor and multiple solution
vectors: A ·2 xT ·3 yT = b. This is very similar to tensor decompositions which are higher-order
generalizations of matrix decompositions [3, 4, 5]. However, in contrast to tensor decompositions,
the domain of multilinear systems is relatively unexplored. To the best of the authors’ knowledge,
only a few cases have been studied in a disparate manner such as the fully symmetric rank-1
tensor case with a particular coefficient structure [22], sets of bilinear equations [23, 24, 25], and
a particular type of multilinear systems that can be solved via so-called tensor inversion [26]. LS-
CPDs provide a general framework to solve multilinear systems, see Figure 1.

The CPD structure in LS-CPDs strongly reduces the number of parameters needed to represent the
solution. For example, a cubic third-order tensor of size I × I × I contains I3 entries but its CPD
needs only O(3RI) parameters with R the number of terms in the decomposition. The possibly
very compact representation of the solution enables one to solve the LS-CPD problem for the
underdetermined case in a compressed-sensing (CS) style [1, 27]. A similar idea has been studied for
the low-rank matrix case [28]. In contrast to well-known CS reconstruction conditions, we derive a
uniqueness condition for LS-CPDs that holds with probability one. In particular, we derive a generic
uniqueness condition for the solution x of the LS-CPD problems given a coefficient matrix A of
which the entries are drawn from absolutely continuous probability density functions.

LS-CPDs appear in a wide range of applications, see, e.g., [29, 30, 31], but the CPD structure
is often not recognized or not fully exploited. In this paper, the applicability of LS-CPDs is
illustrated in three different domains: classification, multilinear algebra, and signal processing.
In the first case, we show that tensor-based classification can be formulated as the computation
of a LS-CPD. Although we illustrate the technique with face recognition [32], one can consider
other classification tasks such as irregular heartbeat classification and various computer vision
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Figure 1. Tensor decompositions are a higher-order generalization of matrix decompositions and are well-
known tools in many applications within various domains. Although multilinear systems are a generalization
of linear systems in a similar way, this domain is relatively unexplored. LS-CPDs can be interpreted as
multilinear systems of equations, providing a broad framework for the analysis of these types of problems.

problems [29, 33, 34]. Next, the construction of real-valued tensor that has particular multilinear
singular values is formulated as a LS-CPD. By properly exploiting the symmetry in the resulting
problem, our method is faster than literature methods. We conclude with the blind deconvolution of
constant modulus such as 4-QAM or BPSK signals using LS-CPDs.

In the remainder of this introduction we give an overview of the notation, basic definitions, and
multilinear algebra prerequisites. In Section 2 we define LS-CPDs and briefly discuss structure and
generic uniqueness. Next, we develop an algebraic algorithm and an optimization-based algorithm to
compute LS-CPDs in Section 3. Numerical experiments and applications are presented in Sections 4
and 5, respectively. We conclude the paper and discuss possible future work in Section 6.

1.1. Notation and definitions

A tensor is a higher-order generalization of a vector (first-order) and a matrix (second-order). We
denote tensors by calligraphic letters, e.g., A. Vectors and matrices are denoted by bold lower and
bold uppercase letters, respectively, e.g., a and A. A mode-n vector of a tensor A ∈ KI1×I2×···×IN

(with K meaning R or C) is defined by fixing every index except the nth, e.g., ai1...in−1:in+1...iN ,
and is a natural extension of a row or a column of a matrix. The mode-n unfolding ofA is the matrix
A(n) with the mode-n vectors as its columns (following the ordering convention in [3]). An M th-
order slice of A is obtained by fixing all but M indices. The vectorization of A, denoted as vec(A),
maps each element ai1i2...iN onto vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im (with∏k−1

m (·) = 1 if m > k − 1). The unvec(·) operation is defined as the inverse of vec(·).
The nth element in a sequence is indicated by a superscript between parentheses, e.g., {A(n)}Nn=1.

The complex conjugate, transpose, conjugated transpose, inverse, and pseudoinverse are denoted as
·, ·T, ·H, ·−1 and ·†, respectively. A vector of length K with all entries equal to one is denoted as
1K . The identity matrix of size K ×K is denoted as IK . The binomial coefficient is denoted by
Ck

n = n!
(n−k)!k! . A = diag(a) is a diagonal matrix with the elements of a on the main diagonal.

The outer and Kronecker product are denoted by ⊗ and ⊗, respectively, and are related through
a vectorization: vec (a ⊗ b) = b⊗ a. The mode-n product of a tensor A ∈ KI1×I2×···×IN and a
matrix B ∈ KJn×In , denoted by A ·n B ∈ KI1×···×In−1×Jn×In+1×···IN , is defined element-wise as
(A ·n B)i1...in−1jnin+1...iN =

∑In
in=1 ai1i2...iN bjnin . Hence, each mode-n vector of the tensor A is

multiplied with the matrix B, i.e., (A ·n B)(n) = BA(n). The inner product of two tensors A,B ∈
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KI1×I2×···×IN is denoted by 〈A,B〉 and defined as 〈A,B〉 =
∑I1

i1

∑I2
i2
· · ·
∑IN

iN
ai1i2...iN bi1i2...iN .

The Khatri–Rao and Hadamard product are denoted by � and ∗, respectively.
An N th-order tensor has rank one if it can be written as the outer product of N nonzero vectors.

The rank of a tensor is defined as the minimal number of rank-1 terms that generate the tensor
as their sum. The mode-n rank of a tensor is defined as the rank of the mode-n unfolding. The
multilinear rank of an N th-order tensor is equal to the tuple of mode-n ranks.

1.2. Multilinear algebraic prerequisites

The CPD is a powerful model for various applications within signal processing, biomedical sciences,
computer vision, data mining and machine learning [3, 4, 5].
Definition 1. A polyadic decomposition (PD) writes an N th-order tensor T ∈ KI1×I2×···×IN as a
sum of R rank-1 terms:

T =

R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r =

r
U(1),U(2), . . . ,U(N)

z
,

in which the columns of the factor matrices U(n) ∈ KIn×R are equal to the factor vectors u
(n)
r for

1 ≤ r ≤ R. The PD is called canonical (CPD) if R is equal to the rank of T , i.e., R is minimal.
The decomposition is essentially unique if it is unique up to trivial permutation of the rank-1 terms

and scaling and counterscaling of the factors in the same rank-1 term. In the matrix case (N = 2)
the CPD is not unique without additional assumptions for R > 1. Uniqueness is typically expected
under rather mild conditions when N > 2, see, e.g., [35, 36, 37, 38, 39] and references therein.

The multilinear singular value decomposition (MLSVD) of a higher-order tensor is a multilinear
generalization of the singular value decomposition (SVD) of a matrix [4, 5, 6].
Definition 2. A multilinear singular value decomposition (MLSVD) writes a tensor T ∈
KI1×I2×···×IN as the product

T = S ·1 U(1) ·2 U(2) · · · ·N U(N) =
r
S; U(1),U(2), . . . ,U(N)

z
. (1)

The factor matrices U(n) ∈ KIn×In , for 1 ≤ n ≤ N , are unitary matrices and the core tensor
S ∈ KI1×I2×···×IN is ordered and all-orthogonal [6].

The (truncated) MLSVD is a powerful tool in various applications such as compression,
dimensionality reduction, and face recognition [3, 29, 40]. The decomposition is related to the low-
multilinear rank approximation (LMLRA) and the Tucker decomposition (TD), see [6, 41] and
references therein. The mode-n unfolding of (1) is given by:

T(n) = U(n)S(n)

(
U(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1)

)T

.

2. LINEAR SYSTEMS WITH A CPD CONSTRAINED SOLUTION

First, we define linear systems with a CPD constrained solution in Subsection 2.1. Next, we discuss
structure of the coefficient matrix and generic uniqueness in Subsection 2.2 and 2.3, respectively.

2.1. Definition

In this paper, linear systems of equations of which the solution can be represented by a tensor
decomposition are considered. We limit ourselves to linear systems with a CPD structured solution,
abbreviated as LS-CPD, but one can also use other decompositions such as the MLSVD, TT or
HT [6, 7, 11]. Concretely, consider a linear system Ax = b with coefficient matrix A ∈ KM×K ,
solution vector x ∈ KK , and right-hand side b ∈ KM . As such, we define LS-CPD as

Ax = b with x = vec
(r

U(1),U(2), . . . ,U(N)
z)

(2)
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with U(n) ∈ KIn×R, for 1 ≤ n ≤ N , and K =
∏N

n=1 In. Equation (2) can be interpreted as a
decomposition of a tensor X = unvec(x) that is only implicitly known via the solution x of a
linear system. Rather than K variables, the CPD structure allows the vector x of length K to be
represented by only R(I ′ −N + 1) variables with I ′ =

∑N
n=1 In. This allows one to solve the

structured linear system in (2) in the underdetermined case (M < K), enabling a compressed-
sensing-style approach [1, 27].

We show that LS-CPDs are multilinear systems of equations. Let A be a tensor of order N + 1
and size M × I1 × I2 × · · · × IN such that its mode-1 unfolding A(1) equals the coefficient matrix
A, i.e., we have A(1) = A. We can then rewrite (2) as a set of inner products:〈

Am,
r
U(1),U(2), . . . ,U(N)

z〉
= bm, for 1 ≤ m ≤M, (3)

in which Am is the N th-order “horizontal slice” of A, i.e., Am = A(m, :, :, . . . , :). If N = R = 1,
we obtain a linear system of equations and (3) reduces to:

〈am,x〉 = bm, for 1 ≤ m ≤M,

with am the mth row of A. Clearly, (3) is a set of M multilinear equations. For example, consider
the following simple LS-CPD with N = 2 and R = 1:

Avec(u ⊗ v) = b, or equivalently, A(v ⊗ u) = b (4)

with A ∈ KM×K , u ∈ KI , and v ∈ KJ such that K = IJ . Equation (4) is clearly a compact form
of the following set of multilinear equations (with I = J = 2 and M = 4):

a111v1u1 + a121v1u2 + a112v2u1 + a122v2u2 = b1,

a211v1u1 + a221v1u2 + a212v2u1 + a222v2u2 = b2,

a311v1u1 + a321v1u2 + a312v2u1 + a322v2u2 = b3,

a411v1u1 + a421v1u2 + a412v2u1 + a422v2u2 = b4.

2.2. LS-CPD as CPD by exploiting structure of A

For particular types of structure on the coefficient matrix A in (2), the LS-CPD problem can be
reformulated as a (constrained) tensor decomposition. Two examples are investigated here. First,
if the coefficient matrix in (2) is a diagonal matrix D = diag(d), the LS-CPD model reduces to a
weighted CPD of a tensor B = unvec(b) [42, 43], i.e., we have:

B = D ∗
r
U(1),U(2), . . . ,U(N)

z

with D a tensor defined such that D = unvec(d). This model can also be used to handle missing
entries by setting the corresponding weights to zero [41, 44]. It is clear that a LS-CPD reduces to a
CPD if D is the identity matrix.

Next, we consider a coefficient matrix A ∈ KM×K that has a Kronecker product structure: A =

A(N) ⊗A(N−1) ⊗ · · · ⊗A(1) with A(n) ∈ KJn×In such that M =
∏N

n=1 Jn and K =
∏N

n=1 In.
Note that vec(

q
U(1),U(2), . . . ,U(N)

y
) =

(
U(N) �U(N−1) � · · · �U(1)

)
1R. One can then show

that (2) can be written as:(
A(N) ⊗A(N−1) ⊗ · · · ⊗A(1)

)(
U(N) �U(N−1) � · · · �U(1)

)
1R = b,(

A(N)U(N) �A(N−1)U(N−1) � · · · �A(1)U(1)
)

1R = b,

vec
(r

A(1)U(1),A(2)U(2), . . . ,A(N)U(N)
z)

= b,

which is equivalent to:
r
A(1)U(1),A(2)U(2), . . . ,A(N)U(N)

z
= B. (5)
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Expression (5) is a CPD with linear constraints on the factor matrices and is also known as the
CANDELINC model [3, 45]; note that compatibility of the dimensions of U(n) and A(n) is essential
to reformulate the LS-CPD as (5). Expression (5) can be computed using projection or by using a
specific algorithm if the tensor B has missing entries [46].

2.3. Generic uniqueness

We show that generic uniqueness is possible when more equations than variables plus one are
available. More specifically, we present a bound on M guaranteeing uniqueness of x in (2) for
a generic M ×K coefficient matrix A. Generic uniqueness means that we have uniqueness with
probability one when the entries of A are drawn from absolutely continuous probability density
functions. We refer the reader to [35, 36, 37, 38, 39] and references therein regarding (generic)
uniqueness conditions for the factor matrices in the CPD of X . Our main result states that in
order to have a generically unique solution, we need at least as many equations as free variables
(compensated for scaling).
Lemma 1. Let A be a generic M ×K matrix with K = I1 · · · IN . Define b = Avec(X0) with X0 a
I1 × · · · × IN tensor with rank less than or equal to R. In that case, the solution vector x in (2) is
unique if M ≥ (I1 + · · ·+ IN −N + 1)R+ 1.

Proof
Consider an irreducible algebraic variety V ∈ KK of dimension dV . It is known that a generic plane
of dimension less than or equal to K − dV − 1 does not intersect with V [47]. It is clear that a
generic plane of dimension K −M can be interpreted as the null space of a generic M ×K matrix.
Hence, if A is a generic M ×K matrix, v0 ∈ V and b := Av0, then the problem

Ax = b, with x ∈ V (6)

has a unique solution whenever K −M ≤ K − dV − 1 or M ≥ dV + 1. We interpret (2) as (6) in
which V is the Zariskii closure of the set of I1 × · · · × IN tensors whose rank does not exceed
R. Since a generic tensor in V can be parameterized with at most (I1 + · · ·+ IN −N + 1)R
parameters, it follows that dV ≥ (I1 + · · ·+ IN −N + 1)R. Hence, a solution vector x in (2) is
unique if M ≥ dV + 1 ≥ (I1 + · · ·+ IN −N + 1)R+ 1.

3. ALGORITHMS

First, we derive an algebraic method to solve a LS-CPD with R = 1 in Subsection 3.1. Next, we
develop an optimization-based algorithm for general LS-CPDs in Subsection 3.2.

3.1. Algebraic computation

We present an algebraic method to solve (8) in Subsections 3.1.1 and 3.1.2. The derivation is closely
related to [48]. Importantly, all steps can be performed by means of conventional linear algebra. The
overall algebraic procedure is summarized in Algorithm 1. This method finds the exact solution in
the case of exact problems but can also be used to obtain a good initialization for optimization-based
methods in the case of perturbed problems.

It is well-known that a tensor X of order N has rank one if and only if all its matrix unfoldings
have rank one, i.e., we have:

rank
(
X(n)

)
= R = 1, for 1 ≤ n ≤ N. (7)

In this particular case a solution x to (2) is also a solution of

Ax = b with x = vec (X ) , where X satisfies (7) (8)

and a solution to (8) is also a solution to (2). The case R > 1 relates to linear systems with a
MLSVD constrained solution, see [49]. We can compute a solution of (2) algebraically in two steps
as follows. First, we use (8) to recover X . Next, we compute the (exact) rank-1 CPD of X .
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3.1.1. Trivial case. Assume that the solution of the unstructured linear system Ax = b is unique,
i.e., the null space of the extended matrix

[
A b

]
is one-dimensional. In that case, we can compute

the solution to (8) by ignoring the multilinear structure (7), i.e., we solve for x and subsequently
compute a CPD of X = unvec(x). Clearly, the tensor X is unique if b 6= 0 or is unique up to a
scaling factor if b = 0. This approach is the naive method that we have mentioned in Section 1.

3.1.2. Reduction of the general case to the trivial case. We explain how to find a solution of (8)
when the dimension of the null space of

[
A b

]
is larger than one, e.g., when A is a fat matrix or

rank-deficient. We limit ourselves to the case where b 6= 0, which implies that the dimension of the
null space of A is at least one. It can be shown that the case where b = 0 follows in a similar way.

Let f (0) be a particular solution of Ax = b and let the vectors f (l), for 1 ≤ l ≤ L, form a
basis of the L-dimensional null space of A. Consider the tensorized versions of f (l) denoted by
F (l) ∈ KI1×I2×···×IN , for 0 ≤ l ≤ L. In order to solve (8), we have to find values cl, for 1 ≤ l ≤ L,
such that X = F (0) + c1F (1) + · · ·+ cLF (L) satisfies (7), i.e., we have that:

rank
(
X(n)

)
= rank

(
F

(0)
(n) + c1F

(1)
(n) + · · ·+ cLF

(L)
(n)

)
= 1, 1 ≤ n ≤ N. (9)

We can reformulate (9) as the following LS-CPD problem:

Ã(c⊗ c) = 0 with c = [1 c1 · · · cL]T (10)

with, as explained below, Ã constructed from the tensorsF (l) such that each row of Ã is a vectorized
L+ 1× L+ 1 symmetric matrix. We make the assumption that the intersection of the null space
of Ã with the subspace of vectorized symmetric matrices is one-dimensional. In practice this
assumption is satisfied when the difference between the number of rows and columns of Ã is
sufficiently large. In that case, the solution c⊗ c is unique and can be computed as explained in
Subsection 3.1.1 from which c can be easily recovered.

We explain the construction of Ã in more detail. First, partition Ã as follows:

Ã =
[
Ã(1)T

Ã(2)T · · · Ã(N)T]T
, (11)

where the matrices Ã(n) correspond to the constraints in (9). Consider the following definition.
Definition 3. The second compound matrix C2(F) of an I × J matrix F, with 2 ≤ min(I, J), is a
C2

I × C2
j matrix containing all 2× 2 minors of F ordered lexicographically [50].

It is well-known that the following algebraic identity holds for any 2× 2 matrices F(0), . . . ,F(L)

and values c0, . . . , cL:

det(c0F
(0) + c1F

(1) + · · ·+ cLF(L)) =

1

2

L+1∑
j1,j2=1

cj1cj2

[
det(F(j1) + F(j2))− det(F(j1))− det(F(j2))

]
.

(12)

By applying (12) to each 2× 2 submatrix of c0F
(0)
(n) + c1F

(1)
(n) + · · ·+ cLF

(L)
(n) , we obtain:

C2
(
c0F

(0)
(n) + c1F

(1)
(n) + · · ·+ cLF

(L)
(n)

)
=

1

2

L+1∑
j1,j2=1

cj1cj2

[
C2
(
F

(j1)
(n) + F

(j2)
(n)

)
− C2

(
F

(j1)
(n)

)
− C2

(
F

(j2)
(n)

)]
.

(13)

Condition (9) states that all 2× 2 minors of the matrix X(n) = F
(0)
(n) + c1F

(1)
(n) + · · ·+ cLF

(L)
(n) are

zero, or, in other words, we have that C2
(
X(n)

)
= 0. Hence, according to (13), we have:

L+1∑
j1,...,jR+1=1

cj1cj2

[
C2
(
F

(j1)
(n) + F

(j2)
(n)

)
− C2

(
F

(j1)
(n)

)
− C2

(
F

(j2)
(n)

)]
, with c0 = 1,
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which is equivalent to

Ã(n)(c⊗ c) = 0, with c = [1 c1 . . . cL]T , 1 ≤ n ≤ N,

in which Ã(n) has size C2
In
C2

KI−1
n
× (L+ 1)2 and is defined column-wise as follows:

ã
(n)
j2+(L+1)(j1−1) = vec

(
C2
(
F

(j1)
(n) + F

(j2)
(n)

)
− C2

(
F

(j1)
(n)

)
− C2

(
F

(j2)
(n)

))
. (14)

In Algorithm 1, the number of rows of Ã should be at least the dimension of the subspace of
the symmetric L+ 1× L+ 1 matrices minus one. Hence, a necessary condition for the algebraic
computation is that

∑N
n=1 C

2
In
C2

KI−1
n
≥ (L+ 1)(L+ 2)/2− 1 ≥ (K −M + 1)(K −M + 2)− 1.

The computational complexity of Algorithm 1 is dominated by the construction of Ã.

Algorithm 1: Algebraic algorithm to solve Ax = b in which x has a rank-1 CPD structure
Input: A and non-zero b
Output: {u(n)}Nn=1

1 Find f (0) ∈ KK such that Af (0) = b;
2 Find f (l) ∈ KK , for 1 ≤ l ≤ L, that form a basis for null(A) ∈ KK×L;
3 Reshape f (l) into I1 × I2 × · · · × IN tensors F (l), for 0 ≤ l ≤ L;
4 Construct Ã(1), . . . , Ã(N) as in (14) and construct Ã as in (11);
5 Find a non-zero solution of Ãc̃ = 0 (if null(Ã) is one-dimensional);
6 Find the vector c = [1 c1 . . . cL]T such that c⊗ c is proportional to c̃;
7 Construct X = F (0) + c1F (1) + · · ·+ cLF (L);
8 Compute the rank-1 CPD of X =

q
u(1),u(2), . . . ,u(N)

y
;

3.2. Optimization-based methods

In this subsection, we solve the LS-CPD problem in (2) via a least-squares approach, leading to the
following optimization problem:

min
z
f =

1

2
||r(z)||2F (15)

in which the residual r(z) ∈ KM is defined as

r(z) = Avec
(r

U(1),U(2), . . . ,U(N)
z)
− b

where we have concatenated the optimization variables in a vector z ∈ KRI′ with I ′ =
∑N

n=1 In as
follows: z =

[
vec
(
U(1)

)
; vec

(
U(2)

)
; · · · ; vec

(
U(N)

)]
. To solve the NLS problem (15), we use

the Gauss–Newton (GN) method which is a particular nonlinear least squares (NLS) algorithm [51].
The latter requires expressions for the objective function, gradient, Gramian, and Gramian-vector
product. Although we focus on the GN method, the expressions can be used to implement other
NLS algorithms as well as quasi-Newton (qN) algorithms. In order to implement the methods we
use the complex optimization framework from [17, 19] which provides implementations for qN and
NLS algorithms as well as line search, plane search, and trust region methods.

The GN method solves (15) by linearizing the residual vector r(z) and solving a least-squares
problem in each iteration k:

min
pk

1

2
||r(zk) + Jkpk||2F s.t. ||pk|| ≤ ∆k

with step pk = zk+1 − zk and trust-region radius ∆k [51]. The Jacobian J = ∂r(z)/∂z ∈ KM×RI′

is evaluated at zk. The exact solution to the linearized problem is given by the normal equations:

JH
kJkpk = −JH

kr(zk)

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
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Hkpk = −gk. (16)

In the NLS formulation H ∈ KRI′×RI′ is the Gramian of the Jacobian which is an approximation
to the Hessian of f [51]. The conjugated gradient g ∈ KRI′ is defined as g = (∂f/∂z)

H. The
normal equations are solved inexactly using several preconditioned conjugated gradient (CG)
iterations to reduce the computational complexity. After solving (16), the variables can be updated
as zk+1 = zk + pk. While a dogleg trust-region method is used here, other updating methods such
as line and plane search can be used as well, see [51] for details. In the remainder of this subsection
we derive the required expressions for the GN method summarized in Algorithm 2.

Algorithm 2: LS-CPD using Gauss–Newton with dogleg trust region

Input: A, b, and {U(n)}Nn=1

Output: {U(n)}Nn=1

1 while not converged do
2 Compute gradient g using (17).
3 Use PCG to solve Hp = −g for p using Gramian-vector products as in (20) using a

(block)-Jacobi preconditioner, see Section 3.2.3.
4 Update U(n), for 1 ≤ n ≤ N , using dogleg trust region from p, g, and function

evaluation (15).
5 end

3.2.1. Objective function We evaluate the objective function f by taking the sum of squared entries
of the residual r(z). The latter can be computed by using contractions as follows:

r(z) =

R∑
r=1

A ·2 u(1)
r

T
·3 u(2)

r

T
· · · ·N+1 u(N)

r

T
− b.

3.2.2. Gradient We partition the gradient as g =
[
g(1,1); g(1,2); . . . ; g(1,R); g(2,1); . . . ; g(N,R)

]
in which the subgradients g(n,r) ∈ KIn are defined as

g(n,r) =
(
J(n,r)

)T

r(z) (17)

in which J(n,r) is defined as

J(n,r) =
∂r(z)

u
(n)
r

=
(
A ·2 u(1)

r

T
· · · ·n u(n−1)

r

T
·n+2 u(n+1)

r

T
· · · ·N+1 u(N)

r

T
)
(1)
. (18)

Expression (18) equals the (n, r)th sub-Jacobian, using a similar partitioning for J. The sub-
Jacobians require a contraction in all but the first and nth mode and are precomputed.

3.2.3. Gramian of the Jacobian We partition the Gramian H into a grid of NR×NR blocks
H(n,r,m,l) with 1 ≤ n,m ≤ N and 1 ≤ r, l ≤ R. Each block H(n,r,m,l) is defined by:

H(n,m,r,l) =
(
J(n,r)

)H

J(n,r), (19)

using the sub-Jacobians in (18). Expression (19) approximates the second-order derivative of f with
respect to the variables u

(n)
r and u

(m)
l .

As preconditioned CG (PCG) is used, only matrix vector-products are needed. The full Gramian
is never constructed because one can exploit the block structure to compute fast matrix-vector
products. Hence, in each iteration we compute Gramian-vector products of the form z = JHJy as
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Table I. The per-iteration computational complexity of the NLS algorithm for LS-CPD is dominated by the
computation of the Jacobian. The algorithm uses a trust region approach to determine the update, which

requires itTR additional evaluations of the objective function.

Calls per iteration Complexity

Objective function 1 + itTR O(MRIN )
Jacobian 1 O(MRNIN )
Gradient 1 O(MRNI)
Gramian 1 O(MRNI2)
Gramian-vector itCG O(MRNI)

follows:

z(n,r) =
(
J(n,r)

)H
(

N∑
n=1

R∑
r=1

J(n,r)y(n,r)

)
, for 1 ≤ n ≤ N, and 1 ≤ r ≤ R, (20)

in which we partitioned z and y in a similar way as before.
In this paper, we use either a block-Jacobi or Jacobi preconditioner to improve convergence

or reduce the number of CG iterations. In the former case, we compute the (In × In) Gramians
H(n,n,r,r), for 1 ≤ n ≤ N and 1 ≤ r ≤ R, and their inverses in each iteration. Combining both
operations leads to a per-iteration computational complexity of O(MI2n + I3n) which is relatively
expensive, especially for large problems. One can instead use a Jacobi preconditioner which uses
a diagonal approximation of the Gramian and, consequently, an inexpensive computation of the
inverse. The diagonal elements are computed as the inner product J

(n,r)
in

H
J
(n,r)
in

, for 1 ≤ in ≤ In,
leading to an overall computational complexity of O(MIn + In) which is relatively inexpensive.
We compare the effectiveness of the Jacobi and block-Jacobi preconditioner in Section 4.

3.2.4. Complexity We report the per-iteration complexity of the NLS algorithm for LS-CPD in
Table I. For simplicity, we assume that I1 = I2 = · · · = IN = I in (2). Clearly the computational
complexity is dominated by the computation of the sub-Jacobians in (18). The computational
complexity can be reduced by computing the contractions in (18) as efficiently as possible. Note
that the evaluation of the objective function is a factor N less expensive.

3.2.5. Efficient contractions The per-iteration complexity of the NLS algorithm is relatively high,
however, only a few iterations are often necessary in order to obtain convergence. One can reduce
the overall computation time of the algorithm by reducing the computational cost per iteration or the
number of iterations. We have shown that the computation of the Jacobians is relatively expensive,
see Table I. Computing the sub-Jacobians requires the sequential computation ofN − 1 contractions
of the form A ·n x(n)T ∈ KI1×···×In−1×In+1×···×IN which are defined as

(A ·n x(n)T
)i1...in−1in+1...iN =

In∑
in=1

ai1...iNx
(n)
in

(21)

with A ∈ KI1×···×IN and a vector x(n) ∈ KIn . Clearly, it is important to perform the contractions
as efficiently as possible to reduce the per-iteration complexity of the algorithm. Note that
the computation of the contractions can be done in a memory-efficient way by computing the
contractions sequentially via the matrix unfoldings and permuting the first mode ofA to the middle.
This approach guarantees that A is permuted in memory at most once.

One way to compute contractions efficiently is by exploiting all possible structure of the
coefficient tensor A in (21). For example, if A is the identity matrix, the LS-CPD problem reduces
to a CPD. In that case, the Gramians and their inverses can be computed efficiently by storing the
Gramians of the factor matrices, see [18]. If A has a Kronecker product structure, the LS-CPD
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Original Algebraic method
Optimization with

random initialization

Figure 2. Our algebraic method and optimization-based method (with random initialization) can perfectly
reconstruct an exponential solution vector in the noiseless case.

problem reduces to a CANDELINC model, as shown in Subsection 2.2, which can be computed
efficiently in both the dense and sparse case, see [3, 46].

Let us illustrate how we can compute efficient contractions in the case of a sparse A. Assume we
have a vector a ∈ KM containing the M non-zero values of A and corresponding index sets Sm =

{i(m)
1 , i

(m)
2 , . . . , i

(m)
N }, for 1 ≤ m ≤M . We can then compute (21) efficiently as w = v ∗ u

(n)
S′n

with S′n = {i(1)n , i
(2)
n , . . . , i

(M)
n }, for 1 ≤ n ≤ N . As such, we obtain a new index-value pair with

w ∈ KM and Rm = Sm\i(m)
n for 1 ≤ m ≤M .

4. NUMERICAL EXPERIMENTS

First, two proof-of-concept experiments are conducted to illustrate the algebraic and optimization-
based methods in Subsection 4.1. Next, we compare accuracy and time complexity of the naive,
algebraic, and NLS method in Subsection 4.2. We also compare algebraic and random initialization
methods for the NLS algorithm in Subsection 4.3. In Subsection 4.4, we compare the Jacobi and
block-Jacobi preconditioner for the NLS algorithm. All computations are done with Tensorlab [20].
We define the relative error εx as the relative difference in Frobenius norm ‖x− x̂‖F/‖x‖F with
x̂ an estimate for x. We use factor matrices in which the elements are drawn from the standard
normal distribution, unless stated otherwise, to generate tensors. In that case the factor matrices are
well-conditioned because the expected angle between the factor vectors is 90◦ for large matrices.
The coefficient matrices A are constructed in a similar way, unless stated otherwise. We use i.i.d.
Gaussian noise to perturb the entries of a tensor. The noise is scaled to obtain a given signal-to-
noise ratio (SNR) (with the signal equal to the noiseless tensor). If we consider a perturbed LS-CPD
problem, we perturb the right-hand side in (2), unless stated otherwise.

4.1. Proof-of-concept

We give two simple proof-of-concept experiments, illustrating our algorithms for linear systems
with a solution that can represented or well approximated by a low-rank model. First, consider a
LS-CPD with a solution x ∈ KK that is constrained to be an exponential, i.e., xk = e−2k evaluated
in K equidistant samples in [0, 1]. It is known that sums of exponentials can be exactly represented
by low-rank tensors [9, 10, 52]. In this case, the corresponding tensor X = unvec(x) has rank one
(R = 1) [52]. We choose N = 3, I1 = I2 = I3 = I = 4, K = I3 = 64, and M = 34. We compute
a solution using the algebraic method and the NLS algorithm with random initialization. Perfect
reconstruction of the exponential is obtained with both methods as shown in Figure 2.

In the previous experiment the solution vector could be exactly represented by a low-rank tensor.
Many signals, such as as Gaussians, rational functions, and periodic signals, can also be well
approximated by a low-rank model [9, 10]. In this experiment, we consider a LS-CPD of which
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12 M. BOUSSÉ, N. VERVLIET, I. DOMANOV, O. DEBALS, AND L. DE LATHAUWER

original function rank-1 model rank-2 model rank-3 model

Figure 3. Our optimization-based method, initialized with the naive approach, can reconstruct the rational
solution vector in the noiseless case. Increasing the rank of the CPD model improves the accuracy of the

solution. For example, the rank-3 model is almost indistinguishable from the original function.

8 27
10−16

101

Algebraic method
Naive method
NLS method

Number of equations M

Relative error
on the solution

8 27
10−2.3

10−0.7

Number of equations M

Time
(seconds)

Figure 4. The naive method fails for an underdetermined LS-CPD while the NLS and algebraic method both
perform well. The computational complexity of the algebraic method is much higher than the other two

methods, especially for the highly underdetermined case (i.e., M close to the number of free variables).

the solution vector is a rational function:

xk =
1

(k − 0.3)2 + 0.042
+

1

(k − 0.8)2 + 0.062
,

evaluated at K equidistant samples in [0, 1]. We take N = 2, I1 = 10, I2 = 25, K = I1I2 = 250,
and M = 350. The NLS algorithm with random initialization is used for R = {1, 2, 3} to compute
a solution. In Figure 3, one can see that the accuracy of the approximation increases when using
higher rank values.

4.2. Comparison of methods

We compare the algebraic method in Algorithm 1, the NLS method in Algorithm 2, and the naive
method, i.e., the trivial case of the algebraic method, see Section 3.1. Remember that the latter can be
computed by first solving the unstructured system and afterwards fitting the CPD structure on the
obtained solution. Consider a LS-CPD with N = 3, I1 = I2 = I3 = I = 3, R = 1, K = I3 = 27.
We choose M (min) ≤M ≤ K with M (min) = 8 which equals the minimal value of M to obtain a
(generically) unique solution according to Lemma 1. We report the median relative error on the
solution εx and the time across 100 experiments in Figure 4. The naive method fails when M < K
because we solve an underdetermined linear system, resulting in a non-unique solution due to the
non-emptiness of the null space of A. The algebraic method works well, but fails ifM ≤ 10 because
then the dimension of the null space of Ã in (10) is larger than one, see Subsection 3.1. ForM = K,
the algebraic method coincides with the naive method. The NLS method performs well for all M
using five random initializations. Note that NLS typically needs many random initializations when
M is close to M (min). The accuracy is slightly higher than the algebraic method. The computational
cost of the algebraic methods increases when M decreases because Ã in (10) depends quadratically
on L which is the dimension of the null space A.
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1 9 15
10−20

100
random initialization

algebraic initialization

Iterations

Relative
function value

10 30
8

19

Signal-to-noise ratio (dB)
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Figure 5. By initializing the NLS algorithm with the algebraic solution instead of using a random
initialization, fewer iterations are needed to achieve convergence.

4.3. Initialization methods

The algebraic method in Algorithm 1 finds the exact solution in the case of exact problems. In
the case of perturbed problems, however, the solution can be used to obtain a good initialization
for optimization-based methods such as the NLS algorithm from Subsection 3.2. Often the
algebraic solution provides a better starting value for optimization-based algorithms than a random
initialization. We illustrate this for an underdetermined LS-CPD of the form (2) with N = 3,R = 2,
I1 = I2 = I3 = I = 4,K = I3 = 64, andM = 60. We compute a solution using the NLS algorithm
with random and algebraic initialization. In Figure 5, we report the median number of iterations
across 20 experiments for several values of the SNR; we also show the convergence plot for 20 dB
SNR on the left. By starting the NLS algorithm from the algebraic solution instead of using a
random initialization, we need fewer iterations to achieve convergence. Importantly, the algebraic
method can still find a solution in the noisy case but the accuracy is typically low. Optimization-
based methods such as the NLS algorithm can use this solution as an initialization and improve the
accuracy.

4.4. Preconditioner

The overall computation time of the NLS algorithm can be reduced by reducing the computational
cost per iteration or the number of iterations. Remember that we solve the normal equations in
the NLS algorithm inexactly via a number of PCG iterations. Good preconditioning is essential to
lower the number of CG iterations and, consequently, reduce the per-iteration complexity of the
NLS algorithm. Here, we compare the Jacobi and block-Jacobi preconditioner (PC), see Section 3.

Consider a LS-CPD problem with N = 2, R = 3, I1 = 250, I2 = 10, K = I1I2 = 2500. We
consider three different scenarios: the highly underdetermined case (M = R(I1 + I2) + 5 = 785),
the underdetermined case (M = 1.5R(I1 + I2) = 1170), and the square case M = K = 2500. We
simulate a typical iteration of the NLS algorithm as follows. We compute the Gramian H and the
gradient g for random factor matrices U(n) and solve the normal equations in (16) using PCG
until convergence (i.e., up to a tolerance of 10−6). In Table II we report the average number of CG
iterations across 50 experiments when using no PC, the Jacobi PC, and the block-Jacobi PC for the
three different scenarios. In this experiment, the block-Jacobi preconditioner reduces the number of
CG iterations more than the Jacobi preconditioner, especially for the highly underdetermined case.
In the square case, both PCs have only slightly different performance, but the Jacobi PC is preferred
because of its lower computational complexity.

5. APPLICATIONS

LS-CPDs provide a generic framework that can be used in a wide range of applications. In this paper,
we illustrate with three applications in classification, multilinear algebra, and signal processing,
respectively. First, LS-CPDs are used for tensor-based face recognition in Subsection 5.1. The
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Table II. Both PCs reduce the number of CG iterations in the underdetermined and square case. In the
strongly underdetermined case only the block-Jacobi PC can reduce the number of CG iterations. We

reported the average (and standard deviation of the) number of CG iterations across 50 experiments

Scenario No PC Jacobi PC block-Jacobi PC

highly underdetermined 780 (0) 743 (56) 599 (97)
underdetermined 141 (24) 65 (10) 53 (9)
square 66 (14) 30 (6) 27 (6)

technique is very generic and can be used for other classification tasks as well. For example, a similar
method was used in [34] for irregular heartbeat classification in the analysis of electrocardiogram
data. Next, it is shown in Subsection 5.2 that tensors that have particular multilinear singular values
can be constructed using LS-CPDs. Finally, in Subsection 5.3, LS-CPDs are used for the blind
deconvolution of constant modulus signals.

5.1. Tensor-based face recognition using LS-CPDs

LS-CPDs can be used for generic classification tasks which is illustrated here using tensor-based
face recognition [29, 32]. Consider a set of matrices of size Mx ×My representing the facial
images of J persons, taken under I different illumination conditions. All vectorized images of
length M = MxMy are stacked in a third-order tensor D ∈ KM×I×J with modes pixels (px) ×
illumination (i) × persons (p). Next, we perform a multilinear analysis by computing a (truncated)
MLSVD of the tensor D, i.e., we have:

D ≈ S ·1 Upx ·2 Ui ·3 Up.

with Upx, Ui, and Up forming an orthonormal basis for the pixel, illumination, and person mode,
respectively. The core tensor S explains the interaction between the different modes. The vectorized
image d ∈ KM for a particular illumination i and person p satisfies:

d = (S ·1 Upx) ·2 cT
i ·3 cT

p (22)

with cT
i and cT

p rows of Ui and Up and Up acting as a database. The mode-1 unfolding of (22) is a
LS-CPD of the form (4):

d = UpxS(1)(cp ⊗ ci).

Consider a previously unknown image d(new) of a person that is included in the database.
Classification or recognition of this person corresponds to finding the coefficient vector cp, i.e.,
we solve a LS-CPD of the form:

d(new) = UpxS(1)

(
c(new)

p ⊗ c(new)
i

)
,

resulting into estimates c̃
(new)
p and c̃

(new)
i . The coefficient vector for the person dimension c̃

(new)
p is

compared with the rows of Up using the Frobenius norm of the difference (after fixing scaling and
sign invariance). We then classify the person in the image according to the label of the closest match.

Let us illustrate the above strategy for the extended YaleB dataset†. This real-life dataset consists
of cropped facial images of 39 persons in 64 illumination conditions. We remove illumination
conditions for which some of the images are missing and retain one of the conditions as test data,
resulting into I = 56 conditions. We vectorize each image of 51 × 58 pixels into a vector of length
M = 2958 for J = 37 persons. The resulting data tensor D has size 2958× 56× 37. We compute
the MLSVD of D using a randomized algorithm called mlsvd rsi, which is faster than non-
randomized algorithms but achieves similar accuracy [53]. We compress the pixel mode to reduce

†Available from http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html.
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ReconstructedGiven Match

Figure 6. Correct classification of an image of a person under a new illumination condition. We can identify
the person even though the picture is mostly dark.

noise influences. As such, we obtain a core tensor S ∈ K500×56×37 and matrices Upx ∈ K2958×500,
Ui ∈ K56×56, and Up ∈ K37×37. We use the NLS algorithm to compute a solution, starting from a
random initialization. We project the new image d(new) onto the column space of the pixel matrix
Upx in order to decrease computation time, i.e., b = Upx

Td. We compare the estimated coefficient
vector with U = Up. To accommodate for scaling and sign invariance, we normalize the rows of
U and c̃

(new)
p as follows: a vector c is normalized as sign(c1) c

||c|| . On the left in Figure 6, we see
the facial image of a person that is known to our model but for a new illumination condition. In
the middle one can see the reconstruction of the image using the estimated coefficient vectors.
Moreover, we correctly classified the person as the person on the right in Figure 6.

5.2. Constructing a tensor that has particular multilinear singular values

Constructing a matrix with particular singular values is trivial. One can simply use the SVD:
A = UΣVT in which Σ is a diagonal matrix containing the given singular values and U and V are
random orthogonal matrices. For tensors, this is not straightforward. It is of fundamental importance
to understand the behavior of multilinear singular values [54, 55, 56]. In this section, we show how
one can construct an all-orthogonal tensor T ∈ RI×J×K with particular multilinear singular values
using a LS-CPD. Consider the following expressions:

T(1)T
T
(1) = Σ(1),

T(2)T
T
(2) = Σ(2),

T(3)T
T
(3) = Σ(3), (23)

in which Σ(n) = diag(σ(n)2) is a diagonal matrix containing the squared multilinear singular values
σ(n), n = 1, 2, 3. Expression (23) states that T is all-orthogonal and has multilinear singular values
σ(n). In order to reformulate (23) as a LS-CPD, we only take the upper triangular parts into account
because of symmetry in the left- and right-hand side in (23), leading to the following equations for
the first expression in (23): ∑

j,k

tijktijk =
(
σ
(1)
i

)2
, for 1 ≤ i ≤ I,

∑
j,k

ti1jkti2jk = 0, for 1 ≤ i1 < i2 ≤ I,

and similarly for the second and third expression. We can write this more compactly as a LS-CPD:

A(u⊗ u) = b with u = vec(T ).

A is a binary and sparse matrix of size I × J2 with I =
∑N

n=1
In(In+1)

2 and J =
∏N

n=1 In. The
right-hand side b ∈ KI is defined as b =

[
triu
(
Σ(1); Σ(2); · · · ; Σ(N)

)]
in which each entry is either

zero or a squared multilinear singular value. One can show that the Jacobian for this particular
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Table III. The LS-CPD method for constructing a tensor with particular multilinear singular values is faster
than APM. This is illustrated by comparing the median computation time (in seconds) across 20 experiments

for an I1 × I2 × I3 tensor with I1 = I2 = 10α and I3 = 5α in which α = {1, 5, 10}.

α = 1 α = 5 α = 10

Alternating projection method (APM) [55] 0.100 34.4 1747

Construction of A 0.004 1.4 23
Initialization (i.e., one iteration of APM) 0.002 0.4 12
LS-CPD 0.023 15.4 444

Total computation time of LS-CPD 0.029 17.2 479

problem is also a sparse matrix of size I × J with
∑N

n=1 In non-zeros in each column. More
specifically, the Jacobian has the form: J = J(1) + J(2) with J(1) and J(2) the derivative to the first
and second u, respectively. Computing the sub-Jacobians J(n) is reduced to filling in elements of
T at the correct position in J(n) for the orthogonality constraints. For the multilinear singular value
constraints, one has to multiply by two. By exploiting the structure, no additional operations are
required. We implemented this using a C/mex function that replaces entries to avoid the overhead
of constructing sparse matrices in MATLAB. The Gramian of the Jacobian is computed using sparse
matrix-vector products.

We compare the optimized NLS algorithm with the alternating projection method (APM) [55] in
terms of computation time needed to construct an I1 × I2 × I3 tensor with given multilinear singular
values. We take I1 = I2 = 10α and I3 = 5α in which α = {1, 5, 10}. The multilinear singular values
are chosen by constructing a tensor that can be written as a sum of a multilinear rank-(L1, 1, L1)
term and a multilinear rank-(1, L2, L2) term with L1 = I3 − 1 and L2 = I3 + 1. The elements of
the factor matrices are drawn from the standard normal distribution. We normalize the multilinear
singular values such that the tensor has unit Frobenius norm. We initialize the NLS algorithm with
the solution obtained after one iteration of APM. In Table III, we report the median computation
time across 20 experiments. The time to construct A is reported separately because it depends only
on the size of the tensor and its construction has to be performed only once. Clearly, the computation
time of LS-CPD is much lower than APM, even if we include the time needed to construct A.

5.3. Blind deconvolution of constant modulus signals

LS-CPDs can also be used in signal processing applications. We illustrate this by reformulating the
blind deconvolution of a constant modulus (CM) signal [57] as the computation of a LS-CPD. In
this paper, we investigate the single-input-single-output (SISO) case using an autoregressive (AR)
model [58], i.e., we have:

L∑
l=0

wl · y[k − l] = s[k] + n[k], for 1 ≤ k ≤ K, (24)

with y[k], s[k], and n[k] the measured output, the input, and the additive noise at the kth time
instance, respectively. The lth filter coefficient is denoted as wl. Assume we have K + L− 1
samples y[−L+ 1], . . . , y[K] and let Y ∈ KL×K be a Toeplitz matrix defined as ylk = y[k − l].
Also, the filter coefficients are collected in w ∈ KL and the source vector s ∈ KK is defined as
sk = s[k]. We ignore the noise in the derivation of our method for simplicity. Equation (24) can
then be expressed in matrix form as:

YTw = s. (25)

The goal of blind deconvolution is to find the vector w using only the measured output values [59].
In order to make this problem identifiable, additional prior knowledge has to be exploited. Here, we
assume that the input signal has constant modulus (CM), i.e., each sample sk satisfies the following
property [60]:

|sk|2 = sk · sk = c, for 1 ≤ k ≤ K (26)
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Figure 7. The LS-CPD approach obtains more accurate results than the relaxation-based method and
achieves similar accuracy as the dedicated OSACM method.

with c the squared constant modulus which is known a priori. By using (25) in (26), we obtain:

(yT
kw)

(
yT
kw
)

= c, or equivalently, (yk ⊗ yk)
T

(w ⊗w) = c, (27)

in which yk is the kth row of Y, for 1 ≤ k ≤ K. Taking into account all equations, (27) reduces to
the following LS-CPD: (

Y �Y
)T

(w ⊗w) = c · 1K . (28)

We illustrate the approach by means of the following straightforward example. Consider an AR
model of degree L = 5 with uniformly distributed coefficients between zero and one, sample length
K = 100, and c = 1. We perturb the measurements with additive Gaussian noise which is scaled to
obtain a particular signal-to-noise ratio (SNR). We solve (28) by relaxing w to v:(

Y �Y
)T

(w ⊗ v) = c · 1K (29)

using the NLS algorithm starting from the algebraic solution. In Figure 7, we report the median
relative error on w across 50 experiments for several values of the signal-to-noise ratio (SNR). We
compare our approach to the naive method, i.e., the method that relaxes the Kronecker structure
in (29), solves the system, and subsequently fits the Kronecker structure to the least-squares
solution. These are the core elements of the well-known analytical constant modulus algorithm
(ACMA) [57, 61]. We also compare with a state-of-the-art SISO CM algorithm (CMA) called
optimal step-size CMA (OSCMA) [62, 63]. It is clear that our method obtains more accurate results
than the relaxation-based technique and achieves similar accuracy as the dedicated OSCMA method.

6. CONCLUSION AND FUTURE RESEARCH

In this paper we presented a new framework for linear systems with a CPD constrained solution
(LS-CPD). We defined the LS-CPD problem, discussed links between particular types of structured
coefficient matrices and the CPD problem, and derived a condition guaranteeing generic uniqueness
of the solution. In contrast to the naive method, the proposed algebraic and optimization-based
methods allow one to solve the LS-CPD problem in the underdetermined case. Although we focused
on the Gauss–Newton (GN) method, the derivations of the expressions for the objective function,
gradient, Gramian, and Gramian-vector product can also be used to implement various nonlinear
least squares and quasi-Newton algorithms. Numerical experiments show that the algebraic method
is a good starting point for optimization-based methods. We also compared the effectiveness of two
preconditioners for the GN method. The wide applicability of LS-CPDs is illustrated with three
applications from classification, multilinear algebra, and signal processing. Importantly, we have
explained that many classification tasks can be formulated as the computation of a LS-CPD. In order
to reduce the per-iteration computational complexity of the NLS algorithm, application-dependent
structure can be exploited, as we have shown with the construction of tensors that have particular
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singular values. The focus of this paper was on CPD constrained solutions, however, our framework
can be extended to other tensor decompositions such as the MLSVD, TT or HT models.
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