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Unconstrained Estimation of HRV Indices after

Removing Respiratory Influences from Heart Rate
Carolina Varon, Member, IEEE, Jesús Lázaro, Member, IEEE, Juan Bolea, Alberto Hernando, Member, IEEE,

Jordi Aguiló, Eduardo Gil, Sabine Van Huffel, Fellow, IEEE, and Raquel Bailón

Abstract—Objective: This paper proposes an approach to better
estimate the sympathovagal balance (SB) and the respiratory
sinus arrhythmia (RSA) after separating respiratory influences
from the heart rate (HR). Methods: The separation is performed
using orthogonal subspace projections and the approach is first
tested using simulated HR and respiratory signals with different
spectral properties. Then, RSA and SB are estimated during
autonomic blockade and stress using the proposed approach and
the classical heart rate variability (HRV) analysis. Both real
and ECG-derived respiration (EDR) are used and the reliability
of the EDR is evaluated. Results: Mean absolute percentage
errors lower than 1% were obtained after removing previously
known respiratory signals from simulated HR. The proposed
indices were able to improve the quantification of SB during
autonomic withdrawal. In the stress data, differences (p < 0.003)
among relaxed and stressful phases were found with the proposed
approach, using both the real respiration and the EDR, but
they disappeared when using the classical HRV. Conclusion: A
better assessment of the autonomic nervous system’ response
to pharmacological blockade and stress can be achieved after
removing respiratory influences from HR, and this can be done
using either the real respiration or the EDR. Significance: This
work can be used to better identify vagal withdrawal and
increased sympathetic activation when the classical HRV analysis
fails due to the respiratory influences on HR. Furthermore, it can
be computed using only the ECG, which is an advantage when
developing wearable systems with limited number of sensors.

Index Terms—Respiratory Sinus Arrhythmia, Sympathovagal
Balance, Stress.
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I. INTRODUCTION

IT is widely accepted that the classical heart rate variability

(HRV) analysis allows to quantify the vagal and sympa-

thetic modulations of the autonomic nervous system (ANS)

[1]. This quantification can be done using the power spectrum

of the HRV, where the power in the low frequency (LF)

band defined between 0.04 Hz and 0.15 Hz is believed to

quantify both sympathetic and parasympathetic activity. The

high frequency (HF) band, on the other hand, defined in the

range between 0.15 Hz and 0.4 Hz, is assumed to purely

describe vagal activity. The latter has been shown to quantify

the modulations of heart rate driven by the respiration, or the

so-called respiratory sinus arrhythmia (RSA) [2]. Even though

this division of the power spectrum is well-standardized, it is

restricted to cases when the respiratory rate falls within the HF

band. Instead, if the respiratory rate is higher than the upper

limit of the HF band, an underestimation of the vagal control

can be achieved. This can be overcome after centering the HF

band at the respiratory frequency, as done in [3]. Conversely,

when the respiratory rate falls below the upper limit of the LF,

the interpretation of the frequency parameters as sympathetic

and/or parasympathetic activity is no longer possible [3]–[5].

In fact, if the respiratory frequency is within the LF band, the

sympathetic activity is overestimated and the parasympathetic

activity underestimated.

Typical approaches to quantify RSA are based on computing

the spectral power around the respiratory frequency, or on

RR interval values at inspiratory and expiratory phases [6],

[7]. However, the estimation of respiratory frequency and

of inspiratory and expiratory phases in highly nonstationary

and broad-band respiration (e.g. while speaking) challenge the

assessment of both sympathetic and vagal activities [8].

A consequence of the aforementioned limitations is the

misinterpretation of the ratio LF/HF, which has been proposed

as an index of sympathovagal balance (SB) [9]. Even though

the quantification of the modulation of the ANS using a single

number is challenging and often controversial [10], [11], the

SB has been widely used in literature despite its limited

interpretability. For instance, it has been shown that during

tilt test, stress, exercise, apnea, and epilepsy, an increased SB

can be identified using this ratio [12]–[16].

Taking into account these limitations of the classical HRV

analysis, it is clear that an approach to better estimate the

RSA and the SB under different respiratory patterns must be

developed [4], [17]–[20]. In this context, this study proposes to

use the heart rate decomposition based on orthogonal subspace
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projections (OSP) formulated in [21], [22] and adapted for

cardiorespiratory analysis in [4], [18]. This methodology sep-

arates the respiratory influences from the heart rate, providing

a novel approach to better estimate the RSA and the SB.

Moreover, this approach will be first tested in a simulated

dataset in order to verify that the heart rate decomposition is

able to separate respiratory influences at different frequencies

and with different spectral characteristics. Then, the approach

will be tested on a pharmacological dataset where autonomic

blockade was induced [23], and on the stress dataset used

in [3]. These datasets will be used in order to evaluate if

the improved quantification can indeed identify the increased

sympathetic activation and vagal withdrawal expected during

autonomic blockade (i.e. using atropine) and stress, even

during phases where the subjects were speaking.

The proposed estimation of the RSA and the SB will also be

performed using the ECG-derived respiration (EDR). Here, a

state-of-the-art algorithm will be used to evaluate whether the

approach could be used when only the ECG is available. As a

result, the applicability of the proposed approach on wearable

systems, which could be developed for the assessment and

management of stress, will be identified.

The remainder of this paper is organized as follows. Sec-

tion II describes the heart rate decomposition, the simulation

studies, the real datasets, and the EDR algorithm. In Section

II-B, the novel approach to calculate the RSA and the SB is

proposed. Section III describes the results, which are discussed

in Section IV. Conclusions are presented in Section V.

II. METHODOLOGY

A. Heart Rate Decomposition

The HRV signal can be decomposed into two different com-

ponents, one respiratory component, describing all variations

related to respiration, and one residual component, describing

all dynamics modulated by other mechanisms different from

respiration. In fact, the residual component describes dynamics

modulated by the sympathetic nervous system, and other

(possible) vagal modulators unrelated to respiration. The heart

rate decomposition can be achieved by means of OSP as in

[4], [18], and its formulation is described as follows.

Given are two physiological signals X = {xi}Ni=1 and Y =
{yi}Ni=1, where X corresponds to the respiratory signal, Y

corresponds to the HRV signal, and N is the length of the

signals. In this study, it is assumed that the respiratory signal

drives changes in the HRV signal, which is then seen as the

target signal. In order to extract all dynamics of the heart rate

that are linearly related to respiration, Y can be projected onto

a subspace V defined by all variations in X. This subspace

is constructed using the respiratory signal X and its delayed

versions, going from 1 to m samples [18]. In other words,

a matrix V spanning the subspace V is constructed as V =
[X0,X1, . . . ,Xm], with Xd = [xd+1, xd+2, . . . , xN−m+d]

T

and d = 0, . . . ,m. In this study, the value of m (i.e., model

order) is defined as the minimum amount of delays obtained

using both the minimum description length (MDL) principle

and the Akaike Information Criterion (AIC), with a maximum

delay of 10 s, which corresponds to a respiratory frequency

of 0.1 Hz. Nevertheless, it is important to keep in mind that

respiratory information could be contained below this limit,

therefore, the maximum model order should be defined for

each case, based on this information.

After creating the matrix V, the HRV signal Y can be

projected onto the respiratory subspace V by means of

YX = PY, (1)

with P a projection matrix defined as

P = V(VT
V)−1

V
T . (2)

As a result, all dynamics of Y linearly related to X are de-

scribed in the respiratory component denoted by YX. Further-

more, an orthogonal component Y⊥, which is related to other

heart rate modulators can be computed as Y⊥ = Y −YX.

This heart rate decomposition can be seen as a generaliza-

tion of the cardiorespiratory model proposed in [17], which

is based on an autoregressive moving average model with

exogenous inputs (ARMAX) and solved using least-squares.

The full heart rate decomposition is summarized in Algorithm

1.

Algorithm 1. Heart rate decomposition using OSP

Input: HRV signal Y, and respiratory signal X.

Output: Respiratory component of the heart rate YX, and

residual component Y⊥.

1. Calculate the model order m, as the minimum value between
MDL and AIC.

2. Create the matrix V = [X0,X1, . . . ,Xm].
3. Compute the projection matrix P using (2).
4. Calculate the respiratory component YX using (1), and the

residual component as Y⊥ = Y −YX.

The two different components of the heart rate can be char-

acterized using the classical frequency domain HRV features.

At this point, the LF is quantified from 0.04 Hz to 0.15 Hz,

and the HF can be either defined from 0.15 Hz to 0.4 Hz,

or using the extended band from 0.15 Hz to half the mean

heart rate as in [5]. In addition, the relative power of each

component with respect to the original HRV signal can be

calculated as

PX =
Y

′
X
YX

Y′Y
and P⊥ =

Y
′
⊥
Y⊥

Y′Y
. (3)

These relative powers can be used to get an indication of how

much information is shared between respiration and heart rate.

For instance, when PX > P⊥, most of the variations in the

heart rate can be described by changes in the respiration.

B. Unconstrained estimation of the RSA and HRV indices

The main result of the heart rate decomposition described

before is the separation of the linear respiratory influences

from the heart rate. As a result, a better quantification of the

LF power of HRV unrelated to respiration can be achieved,

which on its turn can improve the assessment of both the RSA

and the SB as recognized in [1]. In fact, the relative power of

the respiratory component of the HR, namely, PX, gives an

indication of strength of cardiorespiratory interactions, while

the total power of the respiratory component YX, can be
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used as an unconstrained index for RSA assessment. This

index is unconstrained because no assumption is made on the

respiratory frequency nor on the morphology of the respiration,

which are assumptions often made when quantifying the RSA.

For instance, all the methods evaluated in [7] require either

the definition of the inspiratory and expiratory phases or that

the respiratory rate falls within a defined frequency band. The

latter is also assumed in methods based on transfer function

[6].

Since the respiratory influences are removed from the heart

rate, it is assumed that the residual heart rate component,

namely Y⊥, contains information (linearly) unrelated to respi-

ration. This means that the LF band of this component might

quantify the sympathetic activity in a better way. Therefore, a

better assessment of the ANS can be achieved.

It is well-known that the SB is defined as the ratio between

the power of LF modulators of HRV and the component of

the HRV. The LF modulators are mainly associated with the

sympathetic activation of the ANS, while the HF component

mainly represents respiratory modulation [9]. To guarantee

that this index indeed quantifies the ratio between sympathetic

modulation and the respiratory modulation, this study proposes

to compute an unconstrained version of the SB as

SBu =
LF⊥

LFX + HFX

, (4)

with LFX and HFX estimated from the PSD of YX. As a

result, all linear respiratory influences are removed from the

quantification of the sympathetic activation (i.e. numerator).

In order to quantify the added value of SBu with respect to

the classical calculation of the sympathovagal balance, namely

SB= LF/HF (where LF and HF are computed from the PSD of

Y), both indices will be computed for different stress phases

and during autonomic blockade. The datasets used for this

purpose will be described in Section II-D.

C. Simulation Studies

The heart rate decomposition used in this study is based

on the assumption that all respiratory information is described

in the respiratory subspace V. In order to determine if this is

indeed the case, two different simulations are designed, where

an artificial HRV signal Y is decomposed using respiratory

signals with different properties.

The signal Y is generated as indicated in Figure 1. First,

two random signals are generated as Z1 = {z1i}
m
i=1 and Z2 =

{z2i}
m
i=1, with m the length of the signals, Z1 ∼ N(0, 1), and

Z2 ∼ N(0, 1). Five minutes segments are generated with a

sampling frequency of 5 Hz. Then, Z1 and Z2 are band-pass

filtered using the limits of the LF band and the LF+HF bands,

respectively. This is done to simulate the sympathetic modu-

lations in Ys, and the possible parasympathetic modulations

unrelated to respiration in Yp. Although the latter might be

expected to disappear when no respiratory influence (i.e. RSA)

is present, it is still a matter of debate whether the vagal tone,

quantified by the HF band of HRV, is exclusively related to

changes in respiration [24]. For this reason, Yp still contains

information at the HF band.

Z1 H
Ys

LF

Z2 G
Yp

+
YANS

LF+HF

X

+
Y

OSP

YX

Y

Fig. 1. Procedure to generate the simulated data and to perform the heart
rate decomposition using OSP.

At this point, Ys and Yp are added to obtain the auto-

nomic nervous activity excluding any respiratory component,

as YANS = Ys + Yp. Note that YANS only represents ANS

activity which is assumed to be unrelated to respiration, hence,

it does not describe possible respiratory modulations of the

sympathetic outflow, as reported in [25]. Moreover, since the

two ANS components are known to work in tandem, the

ratio between the LF and HF powers is modified between

0.8 and 5 to simulate either vagal or sympathetic dominance,

respectively.

Once the ANS signal unrelated to respiration is simulated,

all respiratory influences, described by X, are added to YANS

in order to obtain the HRV signal Y. Both YANS and X are

normalized to zero mean and unit variance before they are

added to generate Y. Furthermore, two different types of

respiratory patterns are considered and they will be described

next.

1) Monocomponent Respiratory Signal: For the first sim-

ulation, the respiratory signal is defined as X = {xi}Ni=1

with xi = A sin(2πf i
fs
) + ei, fs the sampling frequency,

0.1 Hz≤ f ≤ 0.4 Hz, and the error E = {ei}Ni=1 with

E ∼ N (0, 1). The respiratory frequency f remains constant

for each realization, see Figure 2(a). Figure 2(b) depicts the

power spectral density (PSD) of the simulated HRV and

respiratory signals. The PSDs are calculated using the Welch’s

algorithm with a Hamming window of 60 s, an overlap of 40

s, and 1024 points. Note that in the LF band, both YANS and

X have a peak at 0.1 Hz. Therefore, the main question here

is whether the decomposition approach is able to separate the

respiratory influences from the pure sympathetic modulations,

contained in Ys, when they completely overlap. If this is the

case, then a better assessment of the ANS can be achieved.

In order to evaluate the performance of the decomposition

throughout the whole frequency range of interest, namely

LF and HF, YANS will be linearly influenced by different

respiratory frequencies that will range between 0.1 Hz and

0.4 Hz. This will be done 31 times for 1000 different YANS

signals. The reason to use 31 values is to obtain frequencies

from 0.1 Hz to 0.4 Hz in steps of 0.01 Hz. The step size was

selected arbitrarily in order to evaluate an integer number of

frequency values within the band.
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Fig. 2. Example of the simulated signals and their corresponding PSDs. (a) simulated signals with the first approach, where both the respiratory signal X
and the ANS signal YANS have components at 0.1 Hz. Hence, the spectrum in (b) of the respiration completely overlaps with the simulated sympathetic
activation in the HRV signal Y, simulating a strong linear coupling. (c) Simulated signals using the second approach, and their corresponding PSDs (d). The
respiratory signal X has a broadband spectrum that overlaps with the one of YANS.

2) Broadband Respiration: The second simulation consists

of influencing the ANS signal, YANS, with real respiratory

signals with a broader frequency spectrum. The respiratory

signals of the Fantasia dataset [26], publicly available in

Physionet, will be used as X and they will be added to YANS.

This dataset includes respiratory effort that was recorded using

a respiratory belt around the thorax of 40 volunteers while

watching the movie Fantasia (Disney, 1940). The signals were

recorded for about 120 minutes with a sampling frequency

of 250 Hz. For the simulation study, all signals were first

bandpass-filtered using cutoff frequencies of 0.03 Hz and 0.9
Hz. After that, they were downsampled at 5 Hz and seg-

mented into epochs of 5 minutes. In total, 932 segments were

extracted, which means that the simulation was performed

932 times with 1000 different YANS signals each time. An

example YANS signal is shown in Figure 2(c) together with

one segment extracted from the Fantasia dataset. Both the

signals in time and the PSDs (see Figure 2(d)) are shown. At

this point, the question is whether the ANS signal YANS can

be reconstructed when subjects are breathing naturally, and

when the spectrum of the respiration is broader as it occurs

while the subject speaks. In these cases it is not possible to

assess the RSA using the traditional algorithms since neither

the respiratory frequency nor the inspiratory/expiratory phases

can be determined.

The goal of the aforementioned simulations is to determine

if the algorithm is capable of reconstructing the ANS signal

YANS after removing all (possibly overlapping) respiratory

influences (X) from the heart rate (Y). Each signal Y will

be decomposed into YX and Y⊥ and the performance of the

algorithm will be measured in three ways. First, the mean

absolute percentage error (MAPE) between Y⊥ and YANS will

be calculated. Second, the LF and HF powers of both the Y⊥

and the YANS signals will be compared. In order to do so, the

percentage errors defined as

eLF =
| LFANS − LF⊥ |

LFANS

× 100 and

eHF =
| HFANS − HF⊥ |

HFANS

× 100

(5)

will be computed for each decomposition, with LFANS and

HFANS the frequency parameters of YANS, and LF⊥ and HF⊥

the frequency parameters of Y⊥. Finally, the error in the

normalized LF power will be computed as

en =
| LFnANS − LFn⊥ |

LFnANS

× 100, (6)

with

LFnANS =
LFANS

LFANS + HFANS

and LFn⊥ =
LF⊥

LF⊥ + HF⊥

. (7)

The values of LF and HF for all signals will be computed after

integrating their PSDs in the corresponding bands, namely,

0.04−0.15 Hz for LF and 0.15−0.4 Hz for HF. At this point,

the upper limit of the HF band is set to 0.4 Hz since YANS is

simulated in such way that it does not contain information

above that frequency. All PSDs will be calculated using the

Welch’s algorithm with a Hamming window of 60 s, an overlap

of 40 s, and 1024 points.

D. Real datasets

Two datasets will be used to test the quantification of the

RSA and sympathovagal balance after decomposing the heart

rate.

1) Pharmacological autonomic blockade dataset: This

dataset was recorded at the Massachusetts Institute of Tech-

nology and the experimental protocol is described in detail in

[23] and it includes single pharmacological blockade of the

sympathetic and parasympathetic branches of the ANS. The

dataset consists of ECG and respiratory effort signals sampled

at 360 Hz and recorded from 13 male volunteers (ages 19-38

years, 21±4.4 years) with no history of cardiopulmonary dis-

ease. Subjects were first in a supine position and both signals

were recorded during 7 minutes. Then, subjects were moved

to a standing position, and after 5 minutes of adaptation the

signals were recorded for 7 more minutes. These two phases

will be called supine control (SUC) and standing control

(STC) since no drug was administered. After these control

phases, subjects were divided into two groups. One group

of 7 subjects received atropine (0.03 mg/kg) for complete
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parasympathetic blockade, and the other group of 6 subjects

received propranolol (0.2 mg/kg) for complete reduction of

sympathetic activity. After 10 minutes for equilibration, the

protocol of supine and standing positions described above

was repeated. These new phases will be called SUA and

STA or SUP and STP, where A and P refer to atropine and

propranolol, respectively. In total, 4 segments of 7 minutes

were analyzed per subject: 2 control segments and 2 with

single blockade. During these phases, subjects were asked to

initiate a breathing cycle after hearing a tone. These tones

were irregular with a minimum and maximum intervals of

1 and 15 s, respectively. Despite this imposed respiratory

pattern, subjects were allowed to vary the depth and shape

of each breath in order to guarantee normal ventilation. With

this in mind, the maximum model order for the heart rate

decomposition will be 15 s. Furthermore, since the breathing

protocol was imposed in such a way that the power spectrum

of the respiratory drive was nearly flat [23], the model order

was selected as the maximum value between AIC and MDL,

instead of the minimum. As a result, a more complex model

can be built to better characterize the random effect in the

respiratory signals present in many phases.

This dataset will allow to test the proposed quantification

of RSA and SB when there is complete parasympathetic

withdrawal during STA (i.e. pure sympathetic modulation),

and when there is pure parasympathetic modulation during

SUP.
2) Stress dataset: This dataset was collected at the Uni-

versity of Zaragoza (UZ) and the Autonomous University of

Barcelona (UAB) and was approved by both Ethics Com-

mittees. The dataset consists of ECG and respiratory effort

recorded from 46 volunteers. The mean age of the volunteers

was 21.76±4.48 years (range 18-32 years), and 18 were

men and 28 female. The ECG was sampled at 1 kHz and

the respiration at 250 Hz. All volunteers underwent a stress

session, where emotional stress was induced by means of a

modified Trier Social Stress Test [3]. The tests include the

following phases:

• Baseline (BL). For about 10 minutes, the subject listens

to a relaxing audio

• Story telling (ST). 3 stories are told to the subject and

he/she is asked to remember as many details as possible.

• Memory task (MT). The subject is asked to tell in front

of a camera, all details that he/she remembered from the

ST phase.

• Stress anticipation (SA). The subject is asked to wait for

about 10 minutes for the results of the evaluation of the

MT phase.

• Video exposition (VE). The video recorded during the

MT phase is shown to the subject together with another

video, where an actor repeats the stories in a perfect

way. The idea is to make a comparison between the

“poor” performance of the subject and a much better

performance of the actor.

• Arithmetic task (AT): The subject is asked to count down

out loud from 1022 in steps of 13. Whenever the subject

made a mistake, he/she was asked to start again from

1022. A constraint of 5 minutes was imposed in order

to induce stress in the subject. No subject succeeded to

finalize the countdown.

Of the 46 volunteers, 11 were excluded from the study because

some of their phases were corrupted by technical artefacts.

Therefore, 35 subjects were included in the study, and the

average duration of the phases is 11.53±1.4 minutes for

BL, 1.68±0.5 minutes for ST, 1.96±0.18 minutes for MT,

11.18±1.2 minutes for SA, 3.20±0.48 minutes for VE, and

5.49±0.5 minutes for AT.

Stress induction was confirmed by means of multiple psy-

chometric scores, such as the Perceived Stress Scale, Visual

Analogue Scale, and the State-Trait Anxiety Inventory [3].

E. Application on real data

In this application, the relative powers described in (3) and

the HRV parameters, including the sympathovagal balance, for

each heart rate component will be computed for the different

phases of the two datasets described before. This will be done

using the real respiratory effort and the EDR signal.

1) Pre-processing: The respiratory signals were first band-

pass filtered using a Butterworth filter with cutoff frequencies

of 0.03 Hz and 0.9 Hz. Then, they were downsampled at 4 Hz,

and normalized with zero mean and unit variance. The ECG

signals, on the other hand, were used to find the location of

the R-peaks by means of the algorithm described in [18]. After

that, ectopic, missed and false peaks were corrected by means

of the integral pulse frequency modulation (IPFM) model [27].

Then, the time series were corrected for variations in the mean

heart rate, and the HRV signals were computed as described

in [3]. Finally, the HRV signals were resampled at 4 Hz and

band-pass filtered as it was done for the respiratory signals.

For the stress dataset, the transient behavior between phases

was removed by using only the middle segments of each

phase. In other words, the first and last seconds of each phase

were removed, namely, 1 minute for BL and SA, 5 seconds

for ST and MT, and 10 seconds for VE and AT. For the

pharmacological dataset all phases were recorded after minutes

of equilibration, hence, all 7 minutes of recordings per phase

were used for the analysis.

2) Frequency parameters: Each phase was decomposed

using the proposed approach, and each component was char-

acterized by the relative powers defined in (3), where the RSA

was estimated using the total power in YX in the extended HF

band (from 0.15 Hz to half the mean heart rate). Furthermore,

the powers of each component in the classical LF (0.04−0.15
Hz) and in the extended HF band were computed together

with their normalized versions. These values were then used

to calculate the sympathovagal balance using both the classical

and the unconstrained approach.

3) The ECG-Derived Respiration: The heart rate decom-

position used in this study requires the definition of the respi-

ratory subspace V, which is constructed using the respiratory

signal. Often, the recording of the respiration is associated with

invasive and intrusive sensors such as belts, thermocouples,

and thermistors. Although these sensors are regularly used

in multiple medical tests, they are very much avoided in

ambulatory settings. Reasons for this include the discomfort
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and the high costs associated with their use. With this in mind,

different authors have shown that an approximated respiratory

signal can be derived from the ECG in order to reduce the

amount of sensors needed to assess the cardiorespiratory sys-

tem [28]–[31]. This approximated signal, the so-called ECG-

derived respiration (EDR), is the result of the morphology

changes of the ECG caused by the mechanical influence of

the respiration. In other words, the movement of the chest

during each breathing cycle changes the relative position of

the electrodes with respect to the cardiac vector. On the other

hand, the constant filling and emptying of the lungs causes

variations in the electrical impedance of the chest. Both effects

result in amplitude modulations of the ECG that are strongly

associated with the breathing cycle.

In this study, the EDR algorithm based on kernel principal

component analysis (kPCA) proposed in [30] will be used.

kPCA allows to extract linear and nonlinear influences of

respiration on the morphology of the ECG, which has been

shown to be an advantage in the reconstruction of the respi-

ratory signal from the ECG [30]. This algorithm takes into

account variations in amplitudes of all the points of the QRS

complexes, by first segmenting the QRSs using a symmetric

window of 120ms around the R-peaks. Then, all QRSs are

organized in a matrix, and the mean variation of all the points

is then calculated using kPCA. This is done by mapping the

QRS matrix into a higher dimensional space by means of a

kernel function. After that, the classical PCA is performed

on the transformed dataset, and the first principal component

is mapped back to the input space and then taken as the

EDR. This signal will be denoted by Rk and details on this

computation can be found in [30].

The EDR will be used to decompose the heart rate and esti-

mate the sympathovagal balance using the proposed approach.

This will be done in order to assess whether the EDR poses

any limitation in the construction of the respiratory subspace

V. Consequently, the applicability of the proposed approach

using only the ECG will be analyzed.

4) Statistical Analysis: Two different statistical tests will be

used to evaluate the results in this study. First, a comparison

between the parameters during the different phases will be

performed using the Friedman test for repeated measures. A

multicomparison test will be made between the 6 different

stress phases with Bonferroni correction equal to α/15 =
0.003 and α = 0.05. A similar comparison will be performed

on the 4 different blockade phases. In addition, a post hoc

power analysis will be used to determine the level of statistical

power (i.e. Power= 1− β) achieved for the sample size used

in the study. This analysis will be based on a one-tailed non-

parametric test and α = 0.05, and the effect size will be

computed using minimum dispersion in the means and the

asymptotic relative efficiency factor.

The second comparison will be performed between the

parameters obtained using the real respiratory signals and the

EDR. At this point, the Kruskal-Wallis test will be used with

α = 0.05.

III. RESULTS

A. Simulation studies

The MAPE and the percentage errors of the LF, HF, and

LFn, calculated using (5), and (6), for both simulations are

indicated in Figure 3. The results for the simulation using

monocomponent respiratory frequencies (a to d) are indicated

as the median, 25th, and 75th percentiles, while for the

respiratory signals of the Fantasia dataset (e), the results are

indicated for all 1000 YANS signals together. At this point,

the goal was to recover the ANS signal after removing all

liner interactions of respiration, hence, the error between the

recovered signal, namely, Y⊥, and YANS should be minimal.

1) Monocomponent Respiratory Frequency: The subplots

(a) to (d) of Figure 3 depict the median and the 25th and

75th percentiles of the different performance measures for each

frequency. Note that the MAPE (a) and the percent error of

the normalized LF component ((d):en) are lower than 3%,

while the percentage errors in the LF (b) and HF (c) bands

are lower than 5% for all frequencies. These low errors suggest

that the heart rate decomposition is able to separate respiratory

influences when these overlap with either frequency band, LF

or HF. In other words, there is no frequency dependency in the

decomposition. For these simulations, the delays computed as

the minimum between AIC and MDL ranged from 0.5 s to

3.6 s, with a median value of 1 s.

2) Broadband Respiration: The occupied bandwidth of the

real respiratory signals in this simulation study range between

0.2 Hz and 0.55 Hz with mean value of 0.43 Hz and standard

deviation of 0.03 Hz. These values correspond to the range

of frequencies where the integrated power is 0.5% and 99.5%
of the total power. In contrast, for the first simulation, the

occupied bandwidth was 0.04 Hz.

The same 1000 YANS signals used in the previous simulation

were influenced by the respiratory signals of the Fantasia

dataset. The different percent errors are depicted in subplot

(e) of Figure 3, and they are indicated for all the respiratory

signals together. Note that the MAPE and the error of the

normalized LF (en) are again the lowest, while the errors in

the absolute values of the LF and HF are higher in percentage.

At this point, it is clear that the normalized value of LF is kept

with a median error of 1.4% with respect to the LFn of YANS.

The delays used for the decomposition ranged from 0.6 s to

5.3 s, with a median value of 1.4 s.

From these simulations, it is noticeable that the heart

rate decomposition is not affected by either the respiratory

frequency or the spectral properties (e.g. broadband spectrum),

and it is able to reconstruct the original YANS signal with a

median error of 0.7%. In addition, the normalized power of

the LF band is retained with an error lower than 2%.

B. Pharmacological autonomic blockade dataset

Time domain parameters for each protocol and each phase

were calculated and they are shown in Figure 4. The root mean

square of successive differences between normal heartbeats

(RMSSD) is indicated in the top-middle panel. It is clear that

during the atropine protocol, these values are significantly

lower than during control, which result from an attenuated
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parasympathetic activity. This can also be observed from the

increased mean HR and from the quantification of vagal

activity using the traditional HF power and the total power

of the respiratory component YX (see Figure 5). Moreover,

the HF tends to underestimate the vagal activity in almost

all phases. This can be explained by the fact that more than

50% of the power of the respiratory signal is contained in

the LF band (see Figure 4 top-right), which is caused by the

randomized breathing protocol described in Section II-D. This

overlap between respiration and the LF band is considered by

the Power (YX), which allows to account for all the linear

influences of respiration, including those in the LF band.

The underestimation of the vagal activity obtained using the

classical HRV analysis is clearly affecting the quantification

of the sympathovagal balance, which tends to be higher for

SB than for SBu during SUC for both protocols (see Figure

5). In these two control supine phases, SBu is significantly
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lower than SB, with a statistical power equal to 1−β = 0.99.

As a result, a higher estimate of the sympathovagal balance

can be achieved by the classical approach only because of an

apparent lower vagal activation and not because of an increase

in sympathetic activation (see Figure 5, bottom-right). This

suggest that an improved quantification of the sympathovagal

balance can be obtained by means of SBu after removing the

respiratory influences in the LF.

When looking at the differences between positions for

the parasympathetic (atropine) and sympathetic (propranolol)

blockade, the sympathovagal balance always tends to increase

when going from supine to standing. This reflects the sym-

pathetic activation expected during this orthostatic challenge,

which is captured by both indices, namely, the classical SB and

SBu for all phases. During SUA and STA, pure sympathetic

activation is expected and although a tendency to estimate

higher sympathetic activity is observed in both indices, when
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going to STA, a significant difference is only detected by SBu.

During pure parasympathetic activity (i.e. SUP), the tendency

of the classical SB of estimating higher sympathetic activity

when compared to SBu could be also caused by the respiratory

influences in LF. However, no significant differences were

observed between both indices during this phase.

The model order used for the decomposition of this dataset

varied between 1 and 15 s, with a mean value of 2.1 s.

The wide variation of model orders was due to the fact that

some subjects followed more closely than others the irregular

breathing protocol, hence producing a nearly flat respiratory

spectrum. As a result, a larger model order was needed to

characterize better the respiratory subspace.

C. Stress Data

The mean heart rate and the RMSSD were calculated from

the tachogram of each subject during each stress phase, and

the values are shown in Figure 4 (bottom). It can be seen

that no differentiation between BL and stress phases can be

done by the RMSSD, despite the increased vagal activity

expected during BL and better captured by PX (see Figure

6). Figure 4 (bottom) also shows the normalized power of the

respiratory signal in the LF band, calculated as LF/(LF+HF),

which is significantly larger during MT and AT, phases where

the subjects were asked to speak. During these phases, the

mean heart rates are also significantly larger as well as during

the story telling (ST) phase, which could be associated with

an increase in the stress level. It is clear that during MT

and AT the heart rate is higher and the respiratory signal

contains information in the LF band, which might interfere

with the quantification of the sympathetic activity. This on its

turn could potentially reduce the discriminatory power of the

classical HRV indices for stress detection, as will be shown

later. Furthermore, any methodology to estimate the RSA,

based on the frequency content of the respiration, will be

affected by sympathetic influences.

After decomposing the HRV signals, the relative powers

defined in (3) were compared. Figure 6 shows the results

for the relative power of the respiratory component, namely,

PX. Note that all stress phases are significantly lower than

baseline (BL), as a vagal withdrawal is expected during stress,

which results in a lower RSA. Hence, it is possible to use the

PX as a way to quantify cardiorespiratory interactions when

subjects are breathing naturally and even speaking (i.e. during

MT and AT). During these tasks no current RSA algorithm

based on the inspiration:expiration ratio nor on the respiratory

frequency could be used since the respiratory signal is highly

nonstationary. The figure also indicates the normalized LF

values for each heart rate component and for the original

heart rate variability signal. No differences can be found

when performing the classical HRV analysis. This is also

the case when looking at LFn⊥, however, it appears that for

two stress phases, namely, ST and VE, LFnX is significantly

lower than during BL. These results suggest that during BL,

the higher LFn content is mainly the result of the overlap

between the respiratory content and the LF band of HRV, as

can be observed in Figure 4. The model order for the heart

rate decomposition ranged between 1 and 3 s with a mean of

1.7 s.

Table I shows all the frequency parameters for the original

HRV signal Y, the respiratory component YX, and the

residual component Y⊥. The total power of YX, which could

be used to quantify RSA, is also indicated for each stress

phase. These values are significantly reduced during stress as

shown in Table I and Figure 7. The sympathovagal balance

values calculated using the classical (SB) and the proposed

approach (SBu) are also indicated. Note that the latter and

the power of YX allow to differentiate between stress phases

and baseline, since the respiratory influences are removed

from the LF band of HRV. This is clear from Figure 6,

where both SB and SBu are indicated. None of the phases is

different from baseline when using the traditional SB, while

the unconstrained approach clearly shows differences when an

increased sympathetic activity is expected.

The statistical power of the different evaluations was esti-

mated and for a sample size of 35, an effect size of 0.5 and

α = 0.05, the statistical power was equal to 1−β = 0.91. This

means that there was a 9% chance of making a type II error.

In other words there was only a 9% of chance of obtaining

the same parameter values for BL and all stress phases.

In order to determine whether the proposed estimation of

the RSA and the sympathovagal balance could also be derived

using the ECG-derived respiration (EDR), the algorithm based

on kPCA was used to extract the EDR that was then used to

decompose the heart rate. The results obtained for the EDR

signal on the stress dataset are depicted in Figure 7 together

with those obtained with the real respiration. No significant

differences were found between the values obtained using the

EDR and the real respiration. Furthermore, all differences

between BL and all the stress phases were reproduced by

the EDR, which indicates that under these conditions the

respiratory subspace V can also be constructed using this

derived signal. Other algorithms for EDR calculation, such as

the R-peak amplitude [28], PCA [29], and slopes and angles

of the QRS [31], were also tested. The best results, in terms

of differences between phases and resemblance with the real

respiration, were obtained with the kPCA algorithm. These

results are not presented here since an EDR comparison is out

of the scope of this work.

IV. DISCUSSION

This study proposed a new methodology to better estimate

the RSA and the sympathovagal balance after separating

respiratory influences from the HRV. This was achieved after

decomposing the heart rate into two components. One of these

components describes the linear influences of respiration in

heart rate and this was proven using three different exper-

iments. First, the simulation study showed that the decom-

position can indeed remove all linear respiratory information

from the heart rate while keeping the residual dynamics even

when they are contained in the same frequency band as

the respiratory signal. This is important since it allows to

quantify the LF component of HRV without the influence

of respiration. This was tested for different frequencies and
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TABLE I
MEDIAN±MAD OF THE FREQUENCY PARAMETERS FOR EACH STRESS PHASE, AND DERIVED FROM EACH HEART RATE COMPONENT, NAMELY, THE

RESPIRATORY COMPONENT YX AND THE RESIDUAL COMPONENT Y⊥ .

Component HRV index BL ST MT SA VE AT

Y

LF 142.48±39.10 106.15±49.88 159.10±41.21 147.46±34.28 115.15±34.52∗ 143.09±31.52
HF 90.88±39.99 67.12±38.33 76.31±25.32 76.24±31.46 112.88±37.89 80.43±25.99
LFn 0.62±0.16 0.64±0.18 0.68±0.12 0.64±0.13 0.51±0.15 0.64±0.10
SB 1.69±2 1.87±2.13 2.18±1.25 1.79±1.24 1.04±0.96 1.78±1.12

YX

LFX 33.26±37.71 4.98±9.42∗ 26.88±19.89 9.73±10.03∗ 4.58±6.09∗ 20.36±11.42
HFX 62.14±34.14 36.82±31.16 41.94±18.85 34.05±17.66∗ 53.60±27.14 31.13±14.85∗

LFnX 0.31±0.23 0.13±0.14∗ 0.39±0.13 0.26±0.16 0.08±0.10∗ 0.39±0.09
SBX 0.46±4.07 0.15±0.93∗ 0.66±0.55 0.36±0.40 0.09±0.18∗ 0.64±0.34

Total Power 117.35±47.72 57.33±40.86∗ 75.35±40.55∗ 51.75±28.21∗ 56.96±36.98∗ 55.57±30.80∗

Y⊥

LF⊥ 82.64±34.02 98.52±49.39 83.17±48.18 122.82±35.22∗ 101.60±39.03 115.65±33.39
HF⊥ 23.44±14.48 30.59±13.67 39.92±16.01∗ 39.11±19.06∗ 47.10±21.25∗ 38.90±14.43∗

LFn⊥ 0.78±0.13 0.76±0.13 0.71±0.12 0.77±0.12 0.68±0.15 0.75±0.10
SB⊥ 3.63±1.78 3.34±2.46 2.50±1.81 3.39±1.84 2.14±1.93 3.09±1.58

YX, Y⊥ SBu 0.65±1.24 1.87±4.13∗ 1.20±4.7 2.47±5.51∗ 1.85±2.67∗ 2.15±4.33∗

∗ Significant difference with respect to baseline (BL) with a p-value< 0.003.

different characteristics of the respiratory signal and the errors

between the simulated ANS signal and the residual heart rate

Y⊥ were on average lower than 1% and the LF and HF

powers could be recovered with an error lower than 5%. These

results indicate that the heart rate decomposition does not have

any frequency dependence. In other words, the decomposition

works when the respiration has a single fundamental frequency

(i.e. peaked spectrum) and when it has a broadband spectrum.

At this point it is clear that when performing HRV analysis,

no constraints on the spectrum of the respiration need to be

imposed. Furthermore, the fact that the decomposition works

for broadband respiratory spectra is an important advantage of

the proposed methodology for real-life applications, such as

during spontaneous breathing or even speaking.

The second study was performed on a pharmacological

protocol and the results showed that the proposed indices

can quantify both the RSA and the sympathovagal balance

under sympathetic and parasympathetic withdrawal. These

results were compared against the classical HRV indices (e.g.

RMSSD and LFn) and it was demonstrated that the proposed

approach corrects for respiratory influences in the LF band

and it allows to identify increases in sympathetic activity.

This was also tested while subjects changed from supine

to standing positions. At this point, the proposed indices

can capture changes in the sympathetic activity due to an

orthostatic challenge. This was demonstrated since SBu iden-

tified increases in sympathetic activity during parasympathetic

blockade while the classical SB tend to fail. As a result, the

proposed quantification of the sympathovagal balance is less

affected by reductions in the denominator (i.e. vagal activity),

which can lead to apparent increases in sympathetic activity

when using the classical HRV.

The third study was performed on data collected during a

stress test and the results showed again that the sympathetic

activations during stress can be identified even when they are

masked by the respiratory dynamics. The overlap between
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respiration and heart rate in the LF band was confirmed

for both datasets and it was shown that in phases where

subjects were speaking this overlap was largest. In fact, this

is an important disadvantage of state-of-the-art approaches

for RSA quantification [8], since at this point, neither an

inspiratory:expiratory ratio nor a clear respiratory frequency

could be defined [3]. In contrast, this study demonstrated that

this overlap could be tackled using the proposed approach.

Figures 5 and 6 and Table I showed that during control phases

in the pharmacological dataset and during BL in the stress

dataset, a higher content of respiratory information is present

in the heart rate. This is observed in the higher power of the

respiratory component during these phases, which could be

associated with a stronger cardiorespiratory coupling, hence,

a larger RSA. If the classical HRV analysis is performed in

the stress set, it is clear that no difference can be observed

between any of the stress phases and BL, except for the LF

power during VE. This is again a result of the aforementioned

overlap. Instead, after removing all respiratory influences

from the heart rate, the sympathovagal balance during BL is

significantly lower than during ST, SA, VE, and AT. These

findings confirm the results reported in [3], where a difference

in the LFn was found between BL and ST and SA after

correcting the HF band and after removing segments where the

respiratory rate overlapped with the LF band. The HF band

correction was applied in order to better quantify the vagal

modulation of HRV, and the segments where respiratory rate

overlapped with the LF band were removed from the analysis

in order not to mix sympathetic and parasympathetic activities.

Apart from these corrections, a constraint of peaked respiratory

spectra was imposed in [3], which resulted in the removal

of additional segments. In this study, these constraints and

adaptation were no longer needed, hence, all segments were

included in the analysis and all results were still consistent

with those reported in [3]. Therefore, the expected vagal

withdrawal and the increased sympathetic activation during

stress [1] were quantified by the reduced linear respiratory

influences (LFX, and HFX), the estimated RSA (i.e. the

total power of YX), and the improved calculation of the

sympathovagal balance. All these results are in agreement

with [3] in that considering respiratory information for ANS

analysis during stress is highly relevant. These results were

also confirmed by the pharmacological data, where autonomic

blockade was imposed and the proposed indices could indeed

capture changes of the sympathetic activation unrelated to

parasympathetic activity during the blockade and during an

orthostatic challenge.

The improved quantification of the RSA can be clearly

observed during BL in the stress dataset (see Figures 4 and

6). Traditional parameters such as the RMSSD and HF cannot

capture differences between this phase and the stress phases,

while PX can. During BL, subjects were listening to a guided

relaxation audio, which could be compared to sessions of

mindfulness, biofeedback or meditation exercises. Therefore,

an increased vagal activation was expected but it was only

quantified by the proposed indices. These results suggest that

PX could potentially be used in biofeedback exercises since

it estimates vagal activity better than the classical parameters.
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As mentioned before, an advantage of the proposed ap-

proach is that it can be computed even when the subjects

are speaking (e.g. during MT and AT). At this point, it is

important to remember that speaking produces changes in

heart rate and blood pressure that seem to be unrelated to

the stress task, in particular to mental stress [8]. Furthermore,

speaking interferes with the natural breathing since a reduced

airflow and changes in the lung volume have been observed

during natural breathing [32] and in high respiratory drive

conditions [33]. This interference can be seen in the respiratory

effort, which on its turn will affect the construction of the

respiratory subspace. Since the proposed approach considers

solely the linear interactions between respiration and heart

rate, it is possible to think that during speaking, not all

effects of respiration are taken into account by the heart rate

decomposition. Even though the broadband spectrum can be

modeled by this approach, it is important to keep in mind

that Y⊥ does not only describe mechanisms different from

respiration, but also the possible nonlinear cardiorespiratory

interactions. This could explain the improved sympathovagal

results obtained during MT. Whereas these interactions play

an important role in the cardiac control, this work only

focuses on the linear interactions between respiration and heart

rate. Another important point to consider is that the current

approach does not consider time-variant properties typical in

long-term recordings. To tackle this, other algorithms such

as Kalman filter or adaptive filters (e.g. least mean squares

(LMS), recursive least squares) could be used. In fact, a classi-

cal LMS was tested and after parameter tuning, similar results

were obtained. In other words, LMS models with different step

sizes were capable to identify differences between BL and ST,

MT, VE, and AT, as the OSP model used in this study does.

However, for the LMS, the step size has a strong influence in

the estimation of the proposed index and even though different

techniques to better assess this parameter could be used, the

selected methodology is enough for this estimation due to its

simplicity and the lack of tuning parameters [4]. Even though



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

adaptive algorithms require parameter tuning and are often

associated with high computational costs, they might lead to

similar or better results in the estimation of the sympathovagal

balance for long-term nonstationary signals.

The improved calculation of the RSA and the sympatho-

vagal balance was also evaluated using the EDR signal and

all differences between baseline and stress were successfully

reproduced. Also, similar parameters were obtained using

the EDR in the pharmacological dataset, except during a

supine control phase. kPCA takes into account morphology

changes of the whole QRS complex, while other state-of-the-

art algorithms, tested for this purposes, rely on fewer points

such as the R-peak, S-wave, Q-wave, or a combination of

those. Even though kPCA typically outperforms other EDR

techniques, it is known that PCA-based algorithms are the

least robust to artefacts [34], which can be seen as a disad-

vantage when detecting stress in ambulatory settings. In fact,

despite obtaining slightly poorer performance than kPCA, the

algorithms based on the R-peak amplitude, slopes and angles

of the QRS could be more robust in noisy or nonstationary

ECG signals [31]. In this study, the results suggest that kPCA

could be used to detect the higher sympathovagal balance and

lower RSA during stress. However, this is constrained by the

fact that the signals in the stress dataset were collected in

a controlled environment. In the pharmacological dataset, on

the other hand, the breathing protocol was randomized and

variable depths and shapes were included in the study. This

challenged the construction of the respiratory subspace using

the EDR and the algorithm was not able to fully describe

respiratory variations in this unnatural and imposed breathing

protocol. Therefore, future work will focus on using this novel

approach on different long-term datasets with different quality

and where a vagal withdrawal and an increased sympathetic

activity are expected during natural breathing. Examples of

such datasets include sleep apnea events and epileptic seizures.

V. CONCLUSION

A methodology to estimate both the RSA and the sympatho-

vagal balance after removing all linear respiratory information

from the heart rate was proposed. First, the heart rate was

decomposed into a respiratory component and a residual com-

ponent that describes sympathetic modulations and other, pos-

sibly nonlinear, respiratory interactions. This decomposition

was performed using orthogonal subspace projections. From

the two heart rate components, the powers in the classical

LF and in the extended HF bands were computed and then

used to estimate the RSA and the sympathovagal balance in

an unconstrained way. Results on simulated and real life data

proved that, on the one hand, the decomposition is able to keep

the LF dynamics of heart rate that are unrelated to respiration.

This can be achieved independently of the properties of the

respiratory signal, namely the frequency and its spectrum. On

the other hand, the estimated RSA and sympathovagal balance

identified the vagal withdrawal and sympathetic activation

during autonomic blockade and during emotional and mental

stress. This is an advantage of the proposed approach over

the classical HRV analysis, which has been proven to be

inaccurate in situations when the respiratory information falls

within the LF band. Another advantage is that this approach

allows to quantify the RSA when the respiratory frequency and

the inspiratory and expiratory phases cannot be determined.

The estimation of the RSA and the sympathovagal balance

was also tested using the EDR, and the results were similar

to those obtained with the real respiration. This is important

in the development of wearable systems for stress monitoring

because this approach can be used to assess both, cardiac and

respiratory information using solely the ECG.
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