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FORTRAN and C software packages are often used in generic C++ software. Calling non-generic

functions in generic code is not straightforward. The bindings in this paper help the C++ pro-

grammer using external software with a small effort. The bindings provide a mechanism to keep
external software interfaces and specific vector and matrix containers orthogonal. We show ex-

amples using BLAS, LAPACK, UMFPACK, and MUMPS functions and subroutines.
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1. INTRODUCTION

Scientific software is more and more frequently written in C++. Improvements in
the compiler have led to fairly efficient software. See for example Blitz++ [Veld-
huizen 2001] and the Matrix Template Library [MTL4 2007] [Gottschling et al.
2007]. Some packages are a user friendly interface to the BLAS, see e.g. FLENS
[Lehn 2008].

Generic programming has improved the reusability of software; see for example
the Standard Template Library (STL) [Meyers 2001], the Boost project [Boost b]
and the related Boost.Sandbox project [Boost c]. Improvements in the compiler
have made generic programming a useful tool for numerical software. From the
point of view of the user, generic programming can be seen as a form of overloading.

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control,
and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the

Belgian State, Science Policy Office. The scientific responsibility rests with its author(s).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–22.



2 · Karl Meerbergen et al.

The difference with overloading is that function arguments are abstract types that
satisfy some constraints, called concepts. We will discuss this later. An overloaded
function is for example

void foo( float e ) { ... }
void foo( double e ) { ... }
void foo( std::complex<float> e ) { ... }
void foo( std::complex<double> e ) { ... }

while a generic function is

template <typename T>
void bar( T e ) {...}

where T is a generic type. The conditions on which types can be used are called
concepts. For example, we could impose that T must satisfy the Float concept, i.e.
a concept for floating point numbers having addition, subtraction, etc. Note that
C++ does not require the definition of concepts, but it is considered good practice
to do so.

Scientific programmers using C++ also want to use FORTRAN and C codes that
have been available for a long time or are still under development. Such packages
are LAPACK [Anderson et al. 1995], sparse direct linear system solvers, including
SuperLU [Demmel et al. 1999] and UMFPACK [Davis 1995], both written in C,
or MUMPS [Agullo et al. 2006] [Amestoy et al. 2006], written in Fortran 90/95.
The programming effort for rewriting these codes in C++ is so high that it makes
more sense to link them into C++ code. Another argument for linking with external
software is performance: it is hard to beat the performance of hand-tuned software,
such as the BLAS3 [Dongarra et al. 1990b], see e.g. ATLAS [ATLAS ], the GOTO
BLAS [Goto and van de Geijn 2008a] [Goto and van de Geijn 2008b], GEMM
BLAS [K̊agström et al. 1995], and the vendor tuned BLAS implementations, by
compiled high-level languages, although significant steps are taken in developing
efficient software using generic programming [Veldhuizen 2001] [Gottschling et al.
2007].

Scientific software written in C++ use one of the many packages available for vec-
tor and matrix operations, e.g. MTL[MTL4 2007], uBLAS[Boost a], Blitz[Veldhuizen
2001], FLENS [Lehn 2008], GLAS[GLAS 2005] to cite a few. The package FLENS
is an interface to BLAS and LAPACK, whereas the other packages mainly use
C++ code to implement the evaluation of mathematical expressions. Unfortu-
nately, there is no standard vector and matrix package for C++ as there is the
BLAS for FORTRAN, or the vector and matrix functionality in Fortran 90. Com-
plex scientific codes make use of existing software such as LAPACK, BLAS, UMF-
PACK, MUMPS, and Metis. None of the mentioned C++ packages contains user
friendly interfaces to all of these software packages. Linking generic C++ software
with external packages can be tedious: C and FORTRAN software do not overload
function names for different types of arguments; an overloaded function must be
added in the C++ interface for the different argument types. Often, the number of
arguments of FORTRAN routines is quite high. The arguments should be correctly
computed, including the vector stride, the matrix leading dimensions and storage
pointers. Also, FORTRAN names may require the addition of an underscore de-
pending on the FORTRAN and C++ compilers used. These ‘details’ distract the
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 1. Traditional interfaces between software
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Fig. 2. Concept of bindings as a generic layer between linear algebra algorithms and vector and
matrix software

programmer from his ultimate goal and may introduce programming errors. An im-
portant advantage of bindings software are additional tests on the input arguments,
which makes the code more robust. These aspects will be illustrated in §§3.2–3.5.

In the traditional approach, an interface is developed for each C++ linear algebra
package and for each external linear algebra package, which leads to a multiplicity
of code interfaces. This is illustrated by Figure 1. In this paper, we adopt the
approach of orthogonality between algorithms and data. In the Standard Template
Library [Musser and Saini 1996], orthogonality is created by the introduction of
iterators. We define a collection of traits classes [Myers 1995], that create a similar
orthogonality. The traits classes provide all the necessary data to the external soft-
ware. For example, the vector traits provide a pointer (or address), size and stride,
which are used by e.g. the BLAS function ddot. Each traits class is specialized
for C++ vector and matrix packages, i.e. the specialization is a specific implemen-
tation of obtaining size, stride and pointer for example. Figure 2 illustrates this
philosophy. Note the difference with Figure 1.

The novelty of the bindings mainly lies in the orthogonality principle. The con-
cept of bindings and traits classes is similar to the orthogonality between contain-
ers and algorithms. We therefore call packages such as MTL, uBLAS, FLENS,
Blitz++ and GLAS container packages and we call BLAS, LAPACK, MUMPS,
and UMFPACK algorithm packages. In addition, the traits classes are minimal in
that they just contain the minimum information to interface software packages. A
minimum effort to use the traits consists of specializing traits classes for the con-
tainer packages and writing bindings for the algorithm packages. In other words,
with a bindings layer for MUMPS we can use MUMPS for uBLAS, and GLAS, e.g.
without having to write any code based on these container packages. Similarly,
specializing the traits for MTL allows us to use LAPACK, BLAS, etc. without any
additional effort. The design of the traits classes is kept minimal in order to reduce
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the implementation effort.
An alternative approach would be to only provide interfaces between a reference

container package, e.g. MTL, with all algorithm packages and then write a layer
between the other container packages and the reference. Usually, container pack-
ages have too many functionalities, just for binding algorithms. More importantly,
many container packages are still under development, which makes bindings poten-
tially unstable. The uBLAS traits specializations, for example, have been modified
a couple of times since the creation of the traits a couple of years ago, but the
traits interface remained stable. The concepts of one of the more stable and better
designed packages, MTL4, could be used as a basis to develop bindings. However,
MTL4 was still under development when the Boost.Bindings were developed. In
addition, there is no guarantee that concepts will not change in MTL, which could
lead to potentially unstable bindings.

In this way, one could e.g. write a generic function

template <typename T, typename X, typename Y>
void axpy(T alpha, const X& x, Y& y) ;

which computes y = y+αx where x and y are vectors and α is a scalar using a BLAS
function. This is a generic function, where we impose conceptual conditions on the
arguments. (In this case, we require X and Y to satisfy the concept BindableVector,
which will be defined below.) In order to implement the generic axpy function,
an overloaded function axpy will be defined for the different flavours of the BLAS
routines, e.g. one function for float, double, complex<float> and complex<double>

respectively. We will give more detailed examples below.
The storage of (sparse) matrices is not unique. Algorithm packages requires

matrices to be available in a specific format. Transformation from the one to the
other format are not provided by the bindings themselves. Many container packages
provide such tools. We would also like to stress that we cannot use bindings or
even specialize the traits if the container’s data structure does not match the data
structure that linear algebra routines expect — e.g. row major vs. column major
matrix layout with bindings to FORTRAN 77 packages, or restrictions to sparse
matrix formats.

Here is the plan of the paper. In §2, we introduce the traits classes and we give
examples for std::vector and ublas::matrix. We give examples of bindings for
some BLAS, LAPACK, MUMPS, and UMFPACK subprograms and functions in
§3.2, §3.3, §3.4, and §3.5 respectively. The traits and BLAS, LAPACK, UMFPACK,
and MUMPS bindings are part of the Boost.Sandbox repository [Boost c]. They
reside in the namespace boost::numeric::bindings. For the remainder of the paper, we
will use the namespace alias bindings for boost::numeric::bindings.

2. CONTAINER TRAITS CLASSES

The bindings traits classes are the link between the interface of algorithm pack-
ages with container packages. In this section, we give a detailed overview of the
functionalities of the traits classes and their implementations.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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2.1 Dense vector traits

The vector traits class is defined in boost/numeric/bindings/traits/vector traits.hpp. It
provides a common interface for extracting the following information from a vector
container:

—the data pointer (or address),
—the vector size (i.e. the number of elements in the vector),
—the vector stride (i.e. the distance of the pointers of two consecutive elements),
—the value type of the data and
—the pointer type of the data (which is normally, value type∗ or const value type∗).

The traits class itself is valid when it has the following signature:

template <typename V>
struct vector traits {

typedef ... value type ;
typedef ... pointer ;
static std::ptrdiff t size( V& v ) { ... }
static std::ptrdiff t stride( V& v ) { ... }
static pointer storage( V& v ) { ... }
} ;

where V is the vector container type. Strictly speaking, value type is not required,
since it can be derived from pointer. However, it is a useful type for selecting the
appropriate function in bindings of FORTRAN subprograms and C functions where
value type overloading is not possible. We now define the concept BindableVector:
a type V that has a valid specialization of vector traits, is a model of the concept
BindableVector.

Sometimes code is cleaner when free functions are used that return the value
with the appropriate type. The following free functions are provided:

—bindings::traits::vector size(v) is a short cut for bindings::traits::vector traits<V>::size(v),
—bindings::traits::vector stride(v) is a short cut for bindings::traits::vector traits<V>::stride(v),
—bindings::traits::vector storage(v) is a short cut for bindings::traits::vector traits<V>::storage(v),

For the data types (value type and pointer), we have to use the traits class. For each
type of vector V, a specialization of vector traits is required, except, when the default
implementation applies.

It is important to note that the result type of the functions vector size and
vector stride is std::ptrdiff t. We could have provided a size type, stride type, etc. for
all functions, but this would only increase the number of types in the traits classes.
The type std::ptrdiff t is an integral type that may be compiler and platform depen-
dent. The integral type std::ptrdiff t covers the entire address space of the machine,
and thus sizes of any container type are covered. FORTRAN based vector and
matrix algorithms always use int as size type in contrast to STL and other C++
packages where unsigned int or std::size t is used. These days, long int is also used
for supporting large containers on 64-bit machines. As a result, integral casts are
unavoidable, but they should never pose a problem in practice: suppose that we
call the LAPACK routine DGESV using the bindings. LAPACK assumes int as size
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type. If the range of int would be too small for the container, the corresponding
LAPACK routine cannot be used anyway.

The following listing shows the default traits implementation. The meta-function
[Abrahams and Gurtovoy 2004] generate const copies the keyword const from V to
pointer. The idea is that if V is a const type, the pointer is const V::value type∗
instead of V::value type∗.

template <typename V, typename T = typename V::value type >
struct default vector traits {

typedef T value type;
typedef typename detail::generate const<V,value type>::type∗ pointer;

static pointer storage (V& v) { return &v[0]; }
static std::ptrdiff t size (V& v) { return static cast<std::ptrdiff t>(v.size()); }
static std::ptrdiff t stride (V&) { return 1; }
};

The traits class has to be specialized for any V and const V. Usually, the imple-
mentation for both cases is the same, and therefore, we have provided a mechanism
to do the specialization at once. Instead of specializing vector traits, we can specialize
the following class:

template <typename VR, typename V>
struct vector detail traits
: default vector traits< V >
{} ;

where V is the vector container and VR is an identifier: V is VR or const VR. The
class vector detail traits is specialized for VR only. The vector traits class is defined as
follows:

template <typename V>
struct vector traits
: vector detail traits< typename boost::remove const<V>::type, V >
{};

As an illustration, we give the specialization for std::vector:

template <typename T, typename Alloc, typename V>
struct vector detail traits<std::vector<T, Alloc>, V>
: default vector traits< V, T >
{

typedef V vector type;
typedef typename default vector traits< V, T >::pointer pointer;

static pointer storage (vector type& v) { return &v.front(); }
};

The repository also has specializations for uBLAS [Boost b] vector expressions.
The package GLAS [GLAS 2005], which is still under development, contains the
vector traits specializations for its vector expressions.

Note that the introduction of the concept BindableVector is strictly speaking not
required by the C++ compiler. The container packages themselves do not have
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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to support concepts. The only condition is that the traits classes are correctly
specialized.

2.2 Dense and banded matrix traits

Whereas the storage of vectors is very natural in most languages since they are
just arrays, this is not so for matrices. In many software packages, matrices are
also stored in an array, column by column (column major) or row by row (row major).
Usually, FORTRAN codes assume column-wise storage where C codes often adopt
a row-wise storage.

Banded matrices are matrices that only have nonzero elements in a band along
the main diagonal. The lower half bandwidth l is the number of diagonals below
the main diagonal and the upper half bandwidth u is the number of diagonals above
the main diagonal. Hence, a diagonal matrix has u = l = 0. Banded matrices only
store the nonzero bands, i.e. store (l+ u+ 1)m elements where m is the minimum
of the number of rows and the number of columns. This packed format reduces the
storage cost.

Symmetric and Hermitian matrices store their data only in the upper or lower
triangular parts. The symmetry permits us to compute the other part. If only the
lower part is filled, the upper part is usually untouched and not used by the code.
This is a waste of memory. The packed format compresses rows or columns so that
the unused part is not allocated. Therefore, we distinguish between symmetric and
symmetric packed matrices.

The matrix bindings are organized in a similar way as the vector bindings.

template <typename M>
struct matrix traits : matrix detail traits< typename boost::remove const<M>::type, M>

The following information can be retrieved from valid matrix traits:

—matrix structure: this is a type that can take the instances general t, symmetric t,
symmetric packed t, hermitian t, hermitian packed t, banded t, and unknown structure t.

—ordering type: the orientation of the storage, i.e. row major t (typically for C-codes),
column major t (typically for FORTRAN codes).

—the value type and pointer types.
—the uplo type is only used for Hermitian or symmetric matrices to indicate whether

the upper or lower triangular part of the matrix is stored; the following values
can be used: upper t and lower t;

When matrix traits is valid, we also have free functions for computing the following
data:

—matrix storage( m ) is a short cut for matrix traits<M>::storage( m ) with return type
matrix traits<M>::pointer; the function returns the storage pointer (or address) to
the matrix values;

—matrix num rows( m ) is a short cut for matrix traits<M>::num rows( m ) with return
type std::ptrdiff t; the function returns the number of rows of m;

—matrix num columns( m ) is a short cut for matrix traits<M>::num columns( m ) with
return type std::ptrdiff t; the function returns the number of columns of m;

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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—leading dimension( m ) is a short cut for matrix traits<M>::leading dimension( m ) with
return type std::ptrdiff t; the function returns the leading row dimension (column
major) or column dimension (row major);

For banded matrices, we also have the following functions:

—matrix upper bandwidth( m ) is a short cut for matrix traits<M>::upper bandwidth( m )

with return type std::ptrdiff t; the function computes the upper bandwidth without
the main diagonal.

—matrix lower bandwidth( m ) is a short cut for matrix traits<M>::lower bandwidth( m )

with return type std::ptrdiff t; the function computes the lower bandwidth without
the main diagonal.

The matrix traits class is defined in boost/numeric/bindings/traits/matrix traits.hpp.
Similar to the vector case, we introduce the concept BindableMatrix: we say that
M is a model of BindableMatrix if and only if the corresponding matrix traits<M>

is valid.
The repository also has specializations for uBLAS [Boost b] matrix expressions.

The package GLAS [GLAS 2005], which is still under development, contains the
matrix traits specializations for its matrix expressions.

2.3 Sparse matrix traits

Sparse matrices often take a sparse format, i.e. only the structurally non-zero
elements are stored. This implies that next to the values, also the associated row
and column indices need to be stored. We consider two storage formats. The
coordinate format stores for each non-zero entry, the row index, the column index
and the associated numerical value. This data is stored in three separate arrays.
The first index array contains the row indices, and the second array the column
indices.

The compressed sparse column (row) storage stores a sparse matrix column by
column (row by row). For a column major matrix, the first index array contains
the start of the columns, while the second index array contains the row indices.
For a row major matrix, the first index array contains the start of the rows, while
the second index array contains the column indices. The third array contains the
numerical values. The advantage of the compressed storage is a reduction of the
storage cost of the indices. In addition, it is easy to identify the beginning and the
end of each column (row).

For example, the sparse matrix
1. 3.

2. 4.
1. 7. 5.
1. 3. 4.

2.


has the following row major coordinate data:

row (index 1) : 0 0 1 1 2 2 2 3 3 3 4
column (index 2) : 0 1 1 3 0 1 4 0 1 3 2
values : 1. 3. 2. 4. 1. 7. 5. 1. 3. 4. 2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



C++ bindings for external software libraries · 9

The column major compressed data are as follows:

column pointers (index 1) : 0 3 7 8 10 11
row (index 2) : 0 2 3 0 1 2 3 4 1 3 2
values : 1. 1. 1. 3. 2. 7. 3. 2. 4. 4. 5.

Note that the first index array contains 6 elements, while the second array contains
11 elements. The elements i and i+1 in the first index array point to the beginning
and end of the ith column.

Sparse storage is often experienced as being complicated. The fact that different
formats are used creates confusion and makes programming hard. The bindings do
not contain algorithms that transform one data format to another. It is assumed
that the user of external software packages uses the containers that provide the
right storage format.

The sparse matrix traits class is defined in boost/numeric/bindings/traits/sparse traits.hpp.
It is organized in a similar way as the dense matrix traits. The following types are
defined in a valid sparse matrix traits:

—matrix structure: this can take the values general t, symmetric t, symmetric packed t,
hermitian t, hermitian packed t, banded t, and unknown structure t as for the dense
case.

—storage format: this can take the values compressed t for matrices in Compressed
Sparse Storage format, and coordinate t for matrices in Coordinate format.

—value type,

—value pointer: this is usually, value type∗ or const value type∗.

—index pointer: this is usually int∗ or const int∗.

—ordering type: this can take the values row major t and column major t.

The traits class also has the static constant index base that indicates whether the
indices are stored in base 0 or 1. In FORTRAN codes, we typically have base 1,
since indices start counting from 1. In C-codes, the index base usually is 0.

When sparse matrix traits is valid, the following free functions extract the data for
sparse matrix routines:

—spmatrix index1 storage(m) returns the pointer to the first index array;

—spmatrix index2 storage(m) returns the pointer to the second index array;

—spmatrix value storage(m) returns the pointer to the numerical values array;

—spmatrix num rows(m) returns the number of rows of m,

—spmatrix num columns(m) returns the number of columns of m,

—spmatrix num nonzeros(m) returns the number of nonzero elements.

Similar to the vector case, the concept BindableSparseMatrix is satisfied when the
type’s specialization of the sparse matrix traits is valid.

The repository also has specializations for uBLAS [Boost b] sparse matrix expres-
sions. The package GLAS [GLAS 2005], which is still under development, contains
the sparse matrix traits specializations for its sparse matrix expressions.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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3. ALGORITHM BINDINGS

In this section, we explain how the bindings can be used to interface external
software. First, we describe a number of tools to implement bindings. Then we give
two dense matrix/vector examples (BLAS and LAPACK) and two sparse matrix
examples (UMFPACK and MUMPS).

3.1 Tools

The file boost/numeric/bindings/traits/matrix traits.hpp contains meta-functions that
map the types from the matrix traits to characters that are used by BLAS and
LAPACK subprograms. For example, the function

template <typename SymmM>
inline char matrix uplo tag (SymmM&) {

return ’U’ or ’L’ ;
}

returns a character that indicates whether a symmetric matrix is stored in the
upper or lower triangular part. The choice of ’U’ and ’L’ is based on the matrix
uplo type.

Complex numbers are a built-in type in FORTRAN. We have defined equiv-
alent types fcomplex t for the FORTRAN type COMPLEX and dcomplex t for the
(non standard) type DOUBLE COMPLEX. The definitions can be found in the file
boost/numeric/bindings/traits/type.h. We provide the function complex ptr that trans-
forms a pointer of type complex<float>∗ to fcomplex t∗ and from complex<double>∗
to dcomplex t∗ without error or warning messages. It is a clean way to map the
C++ complex types to FORTRAN complex types. It is assumed, however, that
complex numbers have the same layout in FORTRAN and C/C++, more precisely
as follows:

typedef
union {

float cmplx[2] ;
double align struct ;
} fcomplex t ;

typedef
struct {

double cmplx[2] ;
} dcomplex t ;

If this is not the case, FORTRAN subprograms cannot be used in C++ code using
complex<float> and complex<double>. To our knowledge, all FORTRAN and C++
compilers have compatible complex number representations.

Symbol names are made in a different way by the FORTRAN and C (C++)
compilers. The naming convention is platform dependent, so we must map C/C++
names to FORTRAN symbol names using a platform dependent mechanism. The
file boost/numeric/bindings/traits/fortran.h contains the macro FORTRAN ID which trans-
forms a FORTRAN subprogram name to the symbol name in the object file.
Typically, the names are lowercase and sometimes an underscore is added to the
end. This macro decides whether the underscore is added or not. Note that
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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this does not work when the FORTRAN symbol contains an underscore. In this
case, it is possible two underscores have to be added. This usually does not
pose any problems for FORTRAN 77 software since underscores are not used in
names of subprograms. For Fortran 90 software, underscores are often used, which
might pose a problem in this case. The user can define the preprocessor symbol
BIND FORTRAN LOWERCASE UNDERSCORE to indicate that an underscore should
be added or BIND FORTRAN LOWERCASE to indicate the underscore should not be
added. If the user does not define any of those, default settings based on the com-
piler are used. Older Windows compilers mapped FORTRAN symbols to upper
case, but the more recent Visual Studio compilers no longer do this.

3.2 BLAS bindings

The BLAS are the Basic Linear Algebra Subroutines [Lawson et al. 1979] [Dongarra
et al. 1988b] [Dongarra et al. 1988a] [Dongarra et al. 1990b] [Dongarra et al. 1990a],
whose reference implementation is available through Netlib1. The BLAS are subdi-
vided in three levels: level one contains vector operations, level two matrix-vector
operations and level three, matrix-matrix operations. Platform specific optimized
BLAS libraries are available, see e.g. the ATLAS library [ATLAS ], the GOTO
BLAS [Goto and van de Geijn 2008a] [Goto and van de Geijn 2008b], GEMM
BLAS [K̊agström et al. 1995].

The BLAS bindings in Boost.Sandbox contain interfaces to some BLAS functions.
The community still contributes to the bindings. The interfaces check the sizes of
the input arguments using the assert command, which is only compiled when the
NDEBUG compile flag is not set. If the sizes do not match, there is a bug in
the function call. Note that exceptions could be used instead of assert, but this
decreases performance of codes. As such, assert is the more accepted way to detect
interface violations in scientific C++ codes. The interfaces are contained in three
files: blas1.hpp, blas2.hpp, and blas3.hpp in the directory boost/numeric/bindings/blas.
The BLAS bindings reside in the namespace boost::numeric::bindings::blas.

The BLAS provide functions for vectors and matrices with value type float, double,
complex<float>, and complex<double>. All matrix containers must have ordering type

column major t, since the (FORTRAN) BLAS assume column major matrices.
The bindings are illustrated in Figure 3 for the BLAS subprograms DCOPY,

DSCAL, and DAXPY for objects of type std::vector<double>. Note the inclusion of
the header files for the bindings of the BLAS-1 subprograms and specialization of
vector traits for std::vector.

We now discuss the implementation of the binding for axpy. First, we define the
FORTRAN symbol depending on whether an underscore is required or not. For
axpy, these are the following lines from the file blas names.h

#define BLAS SAXPY FORTRAN ID( saxpy )
#define BLAS DAXPY FORTRAN ID( daxpy )
#define BLAS CAXPY FORTRAN ID( caxpy )
#define BLAS ZAXPY FORTRAN ID( zaxpy )

Next, we define generic function names in the file blas1 overloads.hpp by overloading.

1http://www.netlib.org
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#include <boost/numeric/bindings/traits/std vector.hpp>
#include <boost/numeric/bindings/blas/blas1.hpp>

int main() {
std::vector< double > x( 10 ), y( 10 ) ;

// Fill the vector x
...

bindings::blas::copy( x, y ) ;
bindings::blas::scal( 2.0, y ) ;
bindings::blas::axpy( −3.0, x, y ) ;

return 0 ;
}

Fig. 3. Example for BLAS-1 bindings and std::vector bindings traits

These functions are contained in the namespace boost::numeric::bindings::blas::detail.

inline void axpy( const int& n, const float& alpha, const float∗ x
, const int& incx, float∗ y, const int& incy)

{
BLAS SAXPY( &n, &alpha, x, &incx, y, &incy ) ;
}
inline void axpy( const int& n, const double& alpha, const double∗ x

, const int& incx, double∗ y, const int& incy)
{

BLAS DAXPY( &n, &alpha, x, &incx, y, &incy ) ;
}
inline void axpy( const int& n, const complex f& alpha, const complex f∗ x

, const int& incx, complex f∗ y, const int& incy)
{

BLAS CAXPY( &n, complex ptr( &alpha ), complex ptr( x ), &incx
, complex ptr( y ), &incy ) ;

}
inline void axpy(const int& n, const complex d& alpha, const complex d∗ x

, const int& incx, complex d∗ y, const int& incy)
{

BLAS ZAXPY( &n, complex ptr( &alpha ), complex ptr( x ), &incx
, complex ptr( y ), &incy ) ;

}

It is important to note that the overloaded function axpy only exists in the four
flavours (or value types) for which BLAS routines are developed. For other value
types, BLAS calls cannot be used. Finally, the vector traits in blas1.hpp are used for
a nicer interface:

template < typename value type, typename vector type x, typename vector type y >
void axpy(const value type& alpha, const vector type x &x, vector type y &y )
{

BOOST STATIC ASSERT( ( is same< value type,
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typename traits::vector traits< vector type x >::value type >::value ) ) ;
BOOST STATIC ASSERT( ( is same< value type,

typename traits::vector traits< vector type y >::value type >::value ) ) ;

assert( traits::vector size( x ) == traits::vector size( y ) ) ;

const int n = traits::vector size( x ) ;
const int stride x = traits::vector stride( x ) ;
const int stride y = traits::vector stride( y ) ;
const value type ∗x ptr = traits::vector storage( x ) ;
value type ∗y ptr = traits::vector storage( y ) ;

detail::axpy( n, alpha, x ptr, stride x, y ptr, stride y ) ;
}

3.3 LAPACK bindings

Software for dense and banded matrices is collected in LAPACK [Anderson et al.
1995]. It is a collection of FORTRAN routines mainly for solving linear systems,
linear least squares problems, and eigenvalue problems, including the singular value
decomposition. As for the BLAS, the Boost.Sandbox does currently not contain a
full set of interfaces to LAPACK routines, but only very commonly used subpro-
grams. Functions are constantly being added to the library. The LAPACK bindings
reside in the namespace boost::numeric::bindings::lapack.

The goal of this section is not to repeat the LAPACK manual: it is assumed that
users are familiar with LAPACK. This section only illustrates the philosophy of the
interfaces.

Many LAPACK subroutines require auxiliary arrays, which a non-expert user
may not wish to allocate for reasons of familiarity. The interface gives the user
the possibility to allocate auxiliary vectors using the templated class array that can
be found in boost/numeric/bindings/traits/detail/array impl.hpp, see Figure 4. The class
array<T> is a BindableVector. The corresponding vector traits specialization is in
boost/numeric/bindings/traits/detail/array.hpp.

The workspace in many LAPACK functions is pretty clearly defined. In some
functions, the user can specify how much workspace is available, allowing for LA-
PACK to optimize the computations by using blocking. Here is an example to
illustrate the different possibilities to handle auxiliary space. We illustrate this
using the function gees for computing the Schur decomposition of a matrix. In the
following, the variable a contains the matrix, e is the complex vector of eigenvalues
and vs the complex matrix of Schur vectors.

—gees( a, e, vs, optimal workspace() ) creates its own workspace whose size is deter-
mined by the allocation of dense buffers that can use BLAS3 kernels;

—gees ( a, e, vs, minimal workspace() ) creates its own workspace with the minimal
size, not taking advantage of the possibility to use BLAS3 kernels;

—gees ( a, e, vs, workspace(my real workspace) ) uses the user created array my real workspace

as workarray. my real workspace should be a BindableVector.
—gees ( a, e, vs, workspace(my real workspace,my complex workspace) ) uses the user cre-

ated real array my real workspace and the complex array my complex workspace as
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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template <typename T>
class array : private noncopyable {
public:

array (std::ptrdiff t n) {
stg = new (std::nothrow) T[n];
sz = (stg != 0) ? n : 0;
}

˜array() { delete[] stg; }

std::ptrdiff t size() const { return sz; }

bool valid() const { return stg != 0; }

void resize (std::ptrdiff t n) {
delete[] stg;
stg = new (std::nothrow) T[n];
sz = (stg != 0) ? n : 0;
}

T∗ storage() { return stg; }
T const∗ storage() const { return stg; }

T& operator[] (std::ptrdiff t i) { return stg[i]; }
T const& operator[] (std::ptrdiff t i) const { return stg[i]; }

private:
std::ptrdiff t sz;
T∗ stg;
};

Fig. 4. Auxiliary array for LAPACK subroutines

workarrays. Both arrays should be BindableVector.

The LAPACK bindings consult matrix structure to see whether the routine is the
right choice. It is also checked whether the matrix arguments are column major.
All functions return type is int. The return value is the return value of the INFO

argument of the corresponding LAPACK subprogram.
Very often, we pass a vector argument to a LAPACK function that is supposed to

be a matrix with only one column. This is the case for the solution of linear systems,
where the right-hand side of the LAPACK subprogram is a matrix. This suggests
that vector containers should also have a specialization of the matrix traits. For
example, the include file ublas vector2.hpp specializes the matrix traits for a uBLAS
vector.

Figure 5 shows an example of a LAPACK bindings using boost::numeric::ublas::matrix.
It is code for the solution of a dense linear system using the LAPACK subprogram
DGESV. The matrix a is overwritten. Figure 6 shows another example using GLAS.
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#include <boost/numeric/bindings/lapack/gesv.hpp>
#include <boost/numeric/bindings/traits/ublas matrix.hpp>
#include <boost/numeric/bindings/traits/std vector.hpp>

namespace ublas = boost::numeric::ublas;
namespace lapack = boost::numeric::bindings::lapack;

int main() {
// system matrix A:
ublas::matrix<double, ublas::column major> A(3,3);
A(0,0) = 1.; A(0,1) = 1.; A(0,2) = 1.;
A(1,0) = 2.; A(1,1) = 3.; A(1,2) = 1.;
A(2,0) = 1.; A(2,1) = −1.; A(2,2) = −1.;

// right−hand side matrix B:
ublas::matrix<double, ublas::column major> B(3,1);
B(0,0) = 4.; B(1,0) = 9.; B(2,0) = −2.;

// Pivot array
std::vector<int> pivots( 3 ) ;

// solve system:
lapack::gesv (A, pivots, B); // B now contains solution:
}

Fig. 5. Example for LAPACK bindings and matrix bindings traits

#include <glas/toolbox/bindings/dense matrix bindings.hpp>
#include <glas/toolbox/bindings/dense vector bindings.hpp>
#include <glas/glas.hpp>
#include <boost/numeric/bindings/lapack/gees.hpp>

int main () {
int n=100;

// Define a real n x n matrix
glas::dense matrix< double > matrix( n, n ) ;

// Define a complex n vector
glas::dense vector< std::complex<double> > eigval( n ) ;

// Fill the matrix
...

// Call LAPACK routine DGEES for computing the eigenvalue Schur form.
// We create workspace for best performance.
bindings::lapack::gees( matrix, eigval, bindings::lapack::optimal workspace() ) ;
}

Fig. 6. Example for LAPACK bindings and matrix bindings traits
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As an illustration of the mechanism of the bindings, we add the bindings for the
function gesv for the solution of a linear system. We first define the FORTRAN
names and interfaces:

#define LAPACK SGESV FORTRAN ID( sgesv )
#define LAPACK DGESV FORTRAN ID( dgesv )
#define LAPACK CGESV FORTRAN ID( cgesv )
#define LAPACK ZGESV FORTRAN ID( zgesv )

void LAPACK SGESV( int const∗ n, int const∗ nrhs, float∗ a, int const∗ lda
, int∗ ipiv, float∗ b, int const∗ ldb, int∗ info);

void LAPACK DGESV( int const∗ n, int const∗ nrhs, double∗ a, int const∗ lda
, int∗ ipiv, double∗ b, int const∗ ldb, int∗ info);

void LAPACK CGESV( int const∗ n, int const∗ nrhs, fcomplex t∗ a, int const∗ lda
, int∗ ipiv, fcomplex t∗ b, int const∗ ldb, int∗ info);

void LAPACK ZGESV( int const∗ n, int const∗ nrhs, dcomplex t∗ a, int const∗ lda
, int∗ ipiv, dcomplex t∗ b, int const∗ ldb, int∗ info);

Then we write a generic layer independent of the value type but restricted to float,
double, complex<float> and complex<double>:

inline void gesv( int const n, int const nrhs, float∗ a, int const lda
, int∗ ipiv, float∗ b, int const ldb, int∗ info) {

LAPACK SGESV (&n, &nrhs, a, &lda, ipiv, b, &ldb, info);
}

inline void gesv( int const n, int const nrhs, double∗ a, int const lda
, int∗ ipiv, double∗ b, int const ldb, int∗ info) {

LAPACK DGESV (&n, &nrhs, a, &lda, ipiv, b, &ldb, info);
}

inline void gesv( int const n, int const nrhs, traits::complex f∗ a, int const lda
, int∗ ipiv, traits::complex f∗ b, int const ldb, int∗ info) {

LAPACK CGESV (&n, &nrhs, traits::complex ptr (a), &lda, ipiv,
traits::complex ptr (b), &ldb, info);

}

inline void gesv( int const n, int const nrhs, traits::complex d∗ a, int const lda
, int∗ ipiv, traits::complex d∗ b, int const ldb, int∗ info) {

LAPACK ZGESV (&n, &nrhs, traits::complex ptr (a), &lda, ipiv,
traits::complex ptr (b), &ldb, info);

}

Finally, we write function that take matrix arguments:

template <typename MatrA, typename MatrB, typename IVec>
inline int gesv (MatrA& a, IVec& ipiv, MatrB& b) {

BOOST STATIC ASSERT((boost::is same<
typename traits::matrix traits<MatrA>::matrix structure,
traits::general t

>::value));
BOOST STATIC ASSERT((boost::is same<

typename traits::matrix traits<MatrB>::matrix structure,
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traits::general t
>::value));

int const n = traits::matrix num rows (a);
assert (n == traits::matrix num colums (a));
assert (n == traits::matrix num rows (b));
assert (n == traits::vector size (ipiv));

int info;
gesv (n, traits::matrix num colums (b),

traits::matrix storage (a), traits::leading dimension (a),
traits::vector storage (ipiv), traits::matrix storage (b),
traits::leading dimension (b), &info);

return info;
}

3.4 MUMPS bindings

MUMPS stands for Multifrontal Massively Parallel Solver. The first version was
a result from the EU project PARASOL [Amestoy P.R. et al. 2001; Amestoy
et al. 2006; Agullo et al. 2006]. The software is developed in Fortran 90 and
contains a C interface. The input matrices should be given in coordinate format,
i.e. storage format=coordinate t and the index numbering should start from one, i.e.
sparse matrix traits<M>::index base==1. We refer to the MUMPS Users Guide, dis-
tributed with the software [MUMPS 2001].

The C++ bindings contain a generic interface to the respective C structs for the
different value types that are available from the MUMPS distribution: float, double,
complex<float>, and complex<double>. The bindings also contain functions to set
the pointers and sizes of the parameters in the C struct using the bindings traits
classes. The binding mechanism is similar to BLAS and LAPACK. The templated
class mumps<BindableSparseMatrix> inherits from the MUMPS C-struct associated
with the value type of the matrix, i.e;

template <typename M>
struct mumps
: detail::mumps type< typename traits::sparse matrix traits<M>::value type >::type
{} ;

where the appropriate C-struct is selected by mumps type, e.g.

template <>
struct mumps type< float > {

typedef SMUMPS STRUC C type ;
} ;

An example is given in Figure 7. The functions mumps::matrix integer data,
mumps::matrix value data, and mumps::rhs sol value data pass the pointers for the in-
teger, value data, and right-hand side and solution vectors respectively before
calling the MUMPS driver using mumps::driver. The sparse matrix is the uBLAS
coordinate matrix, which is a sparse matrix in coordinate format. The matrix is
stored column-wise. The template argument 1 indicates that row and column num-
bers start from one, which is required for the Fortran 90 code MUMPS. Finally,
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the last argument indicates that the row and column indices are stored in type
int, which is also a requirement for the Fortran 90 interface. The solve consists of
three phases: (1) the analysis phase, which only needs the matrix’s integer data, (2)
the factorization phase, where also the numerical values are required and (3) the
solution phase (or backtransformation), where the right-hand side vector is passed
on. The included files contain the specializations of the dense matrix and sparse
matrix traits for uBLAS and the MUMPS bindings.

3.5 UMFPACK bindings

UMFPACK is a C implementation of the unsymmetric–pattern multifrontal method
for direct solution of systems of linear equations with sparse unsymmetric coefficient
matrices. Figure 8 shows an example of use based on the introductory example from
[Davis 1995].

Include files contain the traits specialization for uBLAS sparse matrices and
dense vectors, and the bindings for UMFPACK. UMFPACK requires that the input
matrices are given in compressed sparse column format (CSC). Besides, it assumes
that the indices have type int, so we must make sure that the sparse matrix container
also uses this type. This is the reason why we use ublas::unbounded array<int> as
template argument for ublas::compressed matrix. The template argument 0 indicates
that row and column indices begin from zero, as is usual in C. Note that there also
is a long int version of UMFPACK, but currently bindings provide only int interface.

Solution of a linear system in UMFPACK consists of three steps: symbolic anal-
ysis of the coefficient matrix, numerical factorization and backward substitution.
In more details, function symbolic() pre-orders matrix columns to reduce fill-in,
finds the so-called supernodal column elimination tree and post-orders the tree.
Symbolic analysis details are returned in object Symbolic of type symbolic type<>

which is passed by reference. In the second step, the function numeric() performs
the numerical LU factorization of the coefficient matrix using the symbolic analy-
sis previously computed by symbolic(). The numerical factorization is returned in
the object Numeric of type numeric type<> which is again passed by reference. Fi-
nally, the function solve() solves a linear system using the numerical factorization
stored in Numeric. In this last step only square systems are handled (if the sys-
tem matrix is singular, a division by zero will occur and the solution will contain
Infs and/or NaNs), but it should be noted that first two steps—symbolic analy-
sis and numerical factorization—can also be performed on rectangular matrices.
As short hands, the bindings provide two additional functions: factor() combines
symbolic analysis and numerical factorization (that is, the symbolic type<> object
is used only internally), while umf solve() combines all three solution steps (i.e.,
both the symbolic type<> and numeric type<> objects are used internally). The
symbolic type<> and numeric type<>’s wrap void pointers which UMFPACK uses to
pass around symbolic analysis and numerical factorisation information.

Bindings also provide classes control type<> and info type<> which wrap UMF-
PACK’s control and info arrays. Constructor of control type<> sets UMFPACK’s
default control parameters, but individual entries can be accessed and changed
using operator[].
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#include <boost/numeric/bindings/traits/ublas sparse.hpp>
#include <boost/numeric/bindings/traits/ublas vector2.hpp>
#include <boost/numeric/bindings/mumps/mumps driver.hpp>

int main() {
namespace ublas = boost::numeric::ublas ;
namespace mumps = boost::numeric::bindings::mumps ;

typedef ublas::coordinate matrix< double, ublas::column major
, 1, ublas::unbounded array<int>
> sparse matrix type ;

int n = 5; nnz = 10 ;
sparse matrix type matrix( n, n, nnz ) ;

// Fill the sparse matrix
...

mumps::mumps< sparse matrix type > mumps solver ;

// Analysis (Set the pointer and sizes of the integer data of the matrix)
matrix integer data( mumps solver, matrix ) ;
mumps solver.job = 1 ;
mumps::driver( mumps solver ) ;

// Factorization (Set the pointer for the values of the matrix)
mumps::matrix value data( mumps solver, matrix ) ;
mumps solver.job = 2 ;
mumps::driver( mumps solver ) ;

// Set the right−hand side
ublas::vector<double> v( 10 ) ;

// Solve (set pointer and size for the right−hand side vector)
rhs mumps::sol value data( mumps solver, v ) ;
mumps solver.job = 3 ;
mumps::driver( mumps solver ) ;

return 0 ;
}

Fig. 7. Example of the use of the MUMPS bindings

4. ORGANIZATION OF THE SOFTWARE

The software is part of the Boost.Sandbox [Boost c]. The software resides in the
subdirectory boost/numeric/bindings with the subdirectory traits for the vector, and
matrix traits classes, the directory lapack for LAPACK bindings, blas for BLAS
bindings, umfpack for UMFPACK bindings, and mumps for MUMPS bindings.
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#include <boost/numeric/bindings/traits/ublas vector.hpp>
#include <boost/numeric/bindings/traits/ublas sparse.hpp>
#include <boost/numeric/bindings/umfpack/umfpack.hpp>

namespace ublas = boost::numeric::ublas;
namespace umf = boost::numeric::bindings::umfpack;

int main() {
ublas::compressed matrix<double, ublas::column major, 0,

ublas::unbounded array<int>, ublas::unbounded array<double> > A (5,5,12);
ublas::vector<double> B (5), X (5);

A(0,0) = 2.; A(0,1) = 3;
A(1,0) = 3.; A(1,2) = 4.; A(1,4) = 6;
A(2,1) = −1.; A(2,2) = −3.; A(2,3) = 2.;
A(3,2) = 1.;
A(4,1) = 4.; A(4,2) = 2.; A(4,4) = 1.;

B(0) = 8.; B(1) = 45.; B(2) = −3.; B(3) = 3.; B(4) = 19.;

umf::symbolic type<double> Symbolic;
umf::numeric type<double> Numeric;

umf::symbolic (A, Symbolic);
umf::numeric (A, Symbolic, Numeric);
umf::solve (A, X, B, Numeric);
}

Fig. 8. Example for UMFPACK bindings and matrix bindings traits

5. CONCLUSIONS

We presented the traits software from Boost.Sandbox as a generic minimum layer
between C++ vector and matrix container libraries and external linear algebra
algorithms. The layer is minimal in that it only contains those types and functions
that are needed to bind existing FORTRAN and C software. We have shown the
orthogonality between C++ vector and matrix libraries and external linear algebra
software with examples. This orthogonality supports independent developments of
algorithm bindings and container traits classes. In addition, the traits classes have
proven to be stable for many years, helping scientists to link essentially LAPACK
and sparse direct solvers in scientific codes.

The new Concept C++ compiler [Gregor et al. 2006] would provide a much
cleaner interface to external programs where concepts and concept maps instead of
traits and traits specializations are used. This is future work.
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