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Abstract. The partial Schur factorization can be used to represent several eigenpairs of a matrix
in a numerically robust way. Different adaptions of the Arnoldi method are often used to compute
partial Schur factorizations. We propose here a technique to compute a partial Schur factorization
of a nonlinear eigenvalue problem (NEP). The technique is an extension of our algorithm from
[E. Jarlebring, W. Michiels, and K. Meerbergen, Numer. Math., 122 (2012), pp. 169-195], now called
the infinite Arnoldi method. The infinite Arnoldi method is a method designed for NEPs, and can be
interpreted as Arnoldi’s method applied to a linear infinite-dimensional operator, whose reciprocal
eigenvalues are the solutions to the NEP. As a first result we show that the invariant pairs of the
operator are equivalent to invariant pairs of the NEP. We characterize the structure of the invariant
pairs of the operator and show how one can carry out a modification of the infinite Arnoldi method
by respecting the structure. This also allows us to naturally add the feature known as locking. We
nest this algorithm with an outer iteration, where the infinite Arnoldi method for a particular type of
structured functions is appropriately restarted. The restarting exploits the structure and is inspired
by the well-known implicitly restarted Arnoldi method for standard eigenvalue problems. The final
algorithm is applied to examples from a benchmark collection, showing that both processing time
and memory consumption can be considerably reduced with the restarting technique.

Key words. Arnoldi’s method, nonlinear eigenvalue problems, invariant pairs, restarting
AMS subject classifications. 65F15, 65H17, 65F60, 35P30, 15A18

DOI. 10.1137/110858148

1. Introduction. The nonlinear eigenvalue problem (NEP) will be used in this
paper to refer to the problem of finding A € 2 C C and v € C"\{0} such that

(1.1) M(\)v =0,

where M : Q0 — C™*™ is analytic in 2, which is an open disc centered at the origin.
This problem class has received a considerable amount of attention in the liter-
ature. See, e.g., the survey papers [22, 25] and the monographs [14, 8]. The results
for (1.1) are often (but not always) presented with some restriction of the generality
of M, such as the theory and algorithms for polynomial eigenvalue problems (PEPs)
in [14, 15, 19, 7] and [1, Chapter 9], in particular the algorithms for quadratic eigen-
value problems (QEPs) [29, 2, 20], but also recent approaches for rational eigenvalue
problems (REPs) [28, 31]. There are also general approaches based on modifications
of the Arnoldi method [32] and the Jacobi-Davidson method [5]. In [11], we present
an iterative algorithm equivalent to the Arnoldi method which we call the infinite
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Arnoldi method and [30] contains comparisons with Newton-like methods, which are
closely related to the Jacobi-Davison method. The results we will now present are
directly related to the infinite Arnoldi method. An important aspect of the algorithm
in this paper, and the infinite Arnoldi method, is generality. Although the algorithm
and results of this paper are applicable to PEPs, QEPs, and REPs, the primary goal
of the paper is not to solve problems for the most common structures, but rather
to construct an algorithm which can be applied to other, less common NEPs in a
somewhat automatic fashion. Some less common NEPs are given in the problem col-
lection [4]; there exist NEPs with exponential terms [10] and implicitly stated NEPs
such as [24].

In this paper we will present a procedure to compute a partial Schur factorization
in the sense of the concepts of partial Schur factorizations and invariant pairs for NEPs
introduced in [13]. These concepts can be summarized as follows. First note that the
function M is assumed in this work to be analytic and can always be decomposed as
a sum of products of constant matrices and scalar nonlinearities,

(1.2) M(A) = Myfr(A) + -+ M fn (D),
where f; : Q — C,i=1,...,m, are analytic in 2. We define
M(Y,A) := MY fi(A) + -+ -+ M, Y fi (M),

where Y € C*"*P, A € CP*P  and f;(A), ¢ = 1,...,m, are the matrix functions
corresponding to f;, which are well defined if o(A) C Q. An invariant pair (Y,A) €
C™*P x CP*P (in the sense of [13, Definition 1]) satisfies

(1.3) M(Y,A) = 0.

Additional appropriate orthogonality conditions for Y and A yield a consistent defi-
nition of invariant pairs. In particular, if (Y, A) is an invariant pair and (w, A) is an
eigenpair of A, then X is a solution to the NEP (1.1) with eigenvector v = Yw. In this
setting, a partial Schur factorization corresponds to a particular invariant pair where
A is an upper triangular matrix.

The results of this paper are based on a reformulation of the problem of finding
an invariant pair of the NEP as a corresponding problem formulated with a (linear)
infinite-dimensional operator denoted B, also used in the infinite Arnoldi method
[11]. In [11], we presented an algorithm which can be interpreted as Arnoldi’s method
applied to the operator B. Although the operator B maps functions to functions,
it turns out that the algorithm can be implemented with finite-dimensional linear
algebra operations if the Arnoldi method (for B) is started with a constant function.
This results in a Krylov subspace consisting of polynomials. Unlike the polynomial
setting in [11], in this work we will consider linear combinations of exponentials and
polynomials allowing us to carry out an efficient restarting process. We will show
that similar to the polynomial setting [11], the Arnoldi method for B applied to
linear combinations of polynomials and exponentials can be carried out with finite-
dimensional linear algebra operations.

The reformulation with the operator B allows us to adapt a procedure based on
the Arnoldi method designed for the computation of a partial Schur factorization for
standard eigenvalue problems. We will use a construction inspired by the implicitly
restarted Arnoldi method (IRAM) [26, 23, 16, 17]. The construction is first outlined
in section 3 and consists of two steps respectively given in sections 4 and 5. They
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correspond to carrying out the Arnoldi method for the operator B with a locked
invariant pair and a procedure to restart it.

We finally wish to mention that there exist restarting schemes for algorithms for
special cases of (1.1), in particular for QEPs [33, 12].

2. Reformulation as infinite-dimensional operator problem. In order to
characterize the invariant pairs of (1.1) for our setting we first need to introduce some
notation. For notational convenience, we will introduce (analogous to the notation in
[11]) the function B : Q — C™*", defined by

(2.1) B(\) := M(0)™*

for A € Q\{0}. We define it as the analytic continuation at A = 0. Note that B is also
analytic in 2, under the condition that A = 0 is not a solution to (1.1). We will assume
that the NEP is such that A = 0 is not an eigenvalue. If A = 0 is an eigenvalue, the
problem can be shifted with a change of variables, transforming the zero eigenvalue
to a nonzero value. From the definition (2.1) we reach a transformed NEP,

(2.2) AB(A)v = v.

We will also use a decomposition of B similar to the decomposition (1.2) of M.
That is, we let

(2.3) B(A) = Bibi(A) + - - - + Bb(N),

where b; : Q@ — C, ¢ = 1,...,m, are analytic in . Moreover, we will use the
straightforward coupling of the decomposition of M by setting

_ £i0) = £i(N)
A
We will use the following notation in order to have a concise notation. Let the
differentiation operator B(d%) be defined by the Taylor expansion in a consistent
way, i.e.,

(2.4) Bi = M(0)"'M;, bi())

(5(35) %) © = BOIRO) + 1B O60) + B O )+

where ¢ : C — C" is a smooth function. We are now ready to introduce the operator
which serves as the basis for the algorithm.

DEFINITION 2.1 (the operator B). Let B denote the map defined by the domain
D(B) := {p € Cx(C,C") : 32, BD(0)p®)(0)/(i!) < 0o} and the action

0 ~ ~
(2.5) (Bo)(6) = / o(8)db + C (),
0
where
RS I PR P a
(26) 0o =380 = (5 (g5) ) ©

Several properties of the operator B are characterized in [11]. Most importantly,
the set consisting of the reciprocal eigenvalues of B is equal to the set of A\ such that
(v, A) is a solution to (2.2) and hence also to (1.1) if A # 0. In this work we will need
a more general result, characterizing the invariant pairs of B.
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To this end we first define the application of the operator B to block functions
and say that if ¥ : C — C™*P with columns given by

(0) = (¢(0),-- -, ¥p(0)),

then BV is interpreted in a column fashion, i.e.,

(BY)(0) := (By1(0), ..., Byy(8)).

With this notation, we can now consistently define an invariant pair as a pair (¥, R)
of the operator B, where ¥ : C — C"*P and R € CP*P such that

(2.7) (BU)(0) = T(O)R for all € C.

The following theorem explicitly shows the structure of the function ¥ and relates
invariant pairs of the operator with invariant pairs (1.3), i.e., invariant pairs in the
setting in [13].

THEOREM 2.2 (invariant pairs of B). Suppose A € CP*P is invertible and suppose
(U, A~1Y) is an invariant pair of B. Then, ¥ can be expressed as

(2.8) T(0) = Y exp(6A)

for some matrix Y € C"*P. Moreover, given A € CP*P and Y € C"*P  where A is
invertible, the following statements are equivalent:
(i) The pair (U,A1), where ¥(0) := Y exp(0A), is an invariant pair of the
operator B, i.e.,

(BW)(6) = U (0)A~.

(ii) The pair (Y,A) is an invariant pair of the NEP (1.1) in the sense of [13,
Definition 1], i.e.,

(2.9) M(Y, A) = 0.

Proof. Suppose (¥, A™1) is an invariant pair of B. By differentiating the function
equality (2.7) with respect to 6, and using that the action of B is integration, we find
that W satisfies the matrix differential equation,

U(0) = U (O)R,

with A=! = R. All solutions to this differential equation are of the form Y exp(fA),
i.e., U can be expressed as (2.8). The equivalence between statements (i) and (ii)
follows directly from the fact that M (0) is invertible (since A is invertible and A = 0
is not an eigenvalue) and the application of Lemma A.1. d

3. Outline of the algorithm. We now know (from Theorem 2.2) that an in-
variant pair of the NEP (1.1) is equivalent to an invariant pair of the linear operator
B. The general idea of the procedure we will present in later sections is inspired by
the procedures used to compute partial Schur factorizations for standard eigenvalue
problems with the Arnoldi method [17, 26, 27]. We will carry out a variant of the cor-
responding algorithm for the operator B. More precisely, we will repeat the following
two steps.

In the first step (described in section 4) we compute, in a particular way, an
orthogonal projection of the operator B onto a Krylov subspace. The projection is
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constructed such that it possesses the feature known as locking. This means that
given a partial Schur factorization (or an approximation of the partial Schur factor-
ization) the projection respects the invariant subspace and returns an approximation
containing the invariant pair (without modification) and also approximations of fur-
ther eigenvalues. This prevents repeated convergence to the eigenvalues in the locked
partial Schur factorization in a robust way.

In the literature (for standard eigenvalue problems) this projection is often com-
puted with a variation of the Arnoldi method. More precisely, we will start the Arnoldi
algorithm with a state containing the (locked) partial Schur factorization. The re-
sult of the infinite Arnoldi method can be expressed as what is commonly called an
Arnoldi factorization,

(3.1) (BFy)(8) = Fr41(0)H,y,,

where H, € CH*+Dxk js a Hessenberg matrix, Fy11 : C — C™** is an orthogonal
basis of the Krylov subspace, and Fj, is the first k columns of Fy 1. In this paper we
use a common notation for Hessenberg matrices; the first k£ rows of the matrix H,
will be denoted Hy, € C***. A property of the locking feature is that the Hessenberg
matrix H, has the structure

H, - ((ﬂk)m (ﬂk)m) ’

where R = (H;)1,1 € CP¢*P¢ is an upper triangular matrix. The upper left block of
the H, is called the locked part, since the first p, columns of (3.1) are the equation
for an invariant pair (2.7).

In the first step we show how the Arnoldi method with locking can be carried
out if we represent the functions in the algorithm (and in the factorization (3.1)) in a
structured way. Unlike the infinite Arnoldi method in [11] we will need to work with
functions which are linear combinations of exponentials and polynomials. It turns out
that, similar to [11], the action of the operator as well as the entire Arnoldi algorithm
can be carried out with finite-dimensional arithmetic, while the use of exponentials is
benificial also for the second step.

In the second step (described in section 5), i.e., after computing the Arnoldi
factorization (3.1), we process the factorization such that two types of information
can be extracted:

e We extract converged eigenvalues from the Arnoldi factorization (3.1) and
store those in a partial Schur factorization. Due to the locking feature, the
updated partial Schur factorization will be of the same size as the locked part
of (3.1) or larger.

e We extract a function with favorable approximation properties for those eigen-
values of interest, which have not yet converged.

This information is extracted in a fashion similar to the implicitly restarted Arnoldi
method (IRAM) [23, 16, 17, 27]. However, several modifications are necessary in order
to restart with the structured functions.

The two steps are subsequently iterated by starting the (locked version) of Arnoldi’s
method with the extracted function and with (the possibly larger) partial Schur fac-
torization. Thus, we nest the infinite Arnoldi method with a restarting scheme which
is expected to eventually converge to a partial Schur factorization.
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4. The infinite Arnoldi method with locked invariant pair. In the first
step of the conceptual algorithm described in section 3, we need to carry out an Arnoldi
algorithm for B with the preservation feature that the given partial Schur factorization
is not modified. In an infinite-dimensional setting, the adaption to achieve this feature
with the Arnoldi method is straightforward by initiating the state of the Arnoldi
method with the invariant pair. The procedure is given in Algorithm 1, where the basis
of the invariant subspace associated with the partial Schur factorization is assumed
to be orthogonal with respect to a given inner product (-,-) defined on the space of
n-vector valued analytical functions.

4.1. Representation of structured functions. In later sections we will pro-
vide a specialization of all the steps in the abstract algorithm (Algorithm 1) such that
we can implement it in finite-dimensional arithmetic. The first step in the conversion
of Algorithm 1 into a finite-dimensional algorithm is to select an appropriate starting
function and an appropriate finite-dimensional representation of the functions.

In this work, we will consider functions which are sums of exponentials and poly-
nomials with the structure

(4.1) 2(0) = YeSPe + g(0),

where Y € C"*P § € CP*P ¢ € CP, and q : C — C" is a vector of polynomials. We
will see that these functions allow us to represent approximations of invariant pairs
with an exploitable structure suitable to be used in a restarting. Moreover, we let S
be a block triangular matrix

S S
(4.2) g_ 11 912
0 Sa
and set S;1 = R™! € CP¢*P¢, where py < p, where R will later be chosen such that

it is an approximation of the matrix in the Schur factorization. This structure has a
number of favorable properties important for our situation:

ALGORITHM 1. Arnoldi’s method for 55 with locking.

Input: A partial Schur factorization of B represented by (¥, R) and an analytical
vector-valued function f : C — C™ such that (f, f) = 1 and such that f is
orthogonal to the columns of ¥ with respect to (,-).

Output: An Arnoldi factorization of B represented by (¢1,...,¢k...) and

Hkmax +1 k) kmax

1: Set HPMD@ =R

2: Set (¢1,...,0p,) =T

3: Set wp,41 = f

4: for k=ps+1,...,knax do
5 Y =DBppand P =

6: fori=1,...,kdo

7: hik = (¥, i)

8: Y1 =11 — hirps

9: end for

10:  Repeat Gram-Schmidt process (Steps 6-9) if necessary
110 hige =/ (WL, ¥1)

12 @py1 =V hps1k

13: end for
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e The action of B applied to functions of the type (4.1) can be carried out in
an efficient way using only finite-dimensional operations. This stems from
the property that the action of B corresponds to integration and the set of
polynomials and exponentials under consideration is closed under integration.
Algorithmic details will be given in section 4.2.

e This particular structure allows the storing and orthogonalization against
an invariant subspace, which, according to Theorem 2.2, has exponential
structure.

e The structure provides freedom to choose the blocks S12 and Sa2. This allows
us to appropriately restart the algorithm. Due to the exponential structure
illustrated in Theorem 2.2, it will turn out to be natural to impose an expo-
nential structure on the Ritz functions in order to construct a function f to
be used in the restart. The precise choice of Si2, S22, and Y will be further
explained in section 5.

In practice we also need to store the structured functions in some fashion, prefer-
ably with matrices and vectors. It is tempting to store the exponential part and poly-
nomial part of (4.1) separately, i.e., to store the exponential part with the variables
Y, S, and ¢ and the polynomial part by coefficients in some polynomial basis, e.g.,
the coefficients yo, ..., yny_1 in the monomial basis ¢(6) = yo +y10+- - +yn_10V 1.
Although such an approach is natural from a theoretical perspective, it is not ade-
quate from a numerical perspective. This can be seen as follows. Note that the Taylor
expansion of the structured function (4.1) is

(4.3)
— 1 1 N-1 N-1
w(0) = (Ye+yo) + <ﬂY5’c+y1) 0+ + <7(N— 1)!YS c+yN1> 0
1 N N 1 N+1 N+1 .
+ (_N!YS c) 0" + <7(N+ 1)!YS clo + .

A potential source of cancellation is apparent for the first N terms in (4.3) if the poly-
nomial ¢(6) approximates —Y exp(6S)c. This turns out to be a situation appearing
in practice in this algorithm, making the storing of the structured functions in this
separated form inadequate.

We will instead use a function representation where the coefficients in the Taylor
expansion are not formed by sums. This can be achieved by replacing the first N
terms in (4.3) by new coefficients zg,...,xn_1, i.€.,

(4.4)

o0)=z0+x10+ - +an_10V 1+ %(YSNc)eN + (Y SNHLe)pN+! 4. ..

(N+1)

The structured functions (4.1) will be represented with the four variables Y € C"*P,
S € CP*P ¢ € CP, x € CN" where 2T = (2f,...,2%_,). Note that this repre-
sentation does not suffer from the potential cancellation effects present in the naive
representation (4.3).

Throughout this work we will need to carry out many manipulations of functions
represented in the form (4.4) and we need a concise notation. Let expy denote the
remainder of the truncated Taylor expansion of the exponential, i.e.,
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1
(4.5) expy (0S) = exp(0S) — I — ﬁHS TN

This can equivalently be expressed as

1

N+2 gN+2
Wyt ot

(4.6) expy (0S) = ————gNHILGNHL

(N+1)
with
exp_4(6S) := exp(0S5).

With this notation, we can now concisely express (4.4) with exp, and Kronecker
products,

(4.7) 9(0) =Y expy_1(0S)c+ ((1,6,6%,...,0" Y@ 1,) =

Remark 4.1 (other representations of functions). Note that we here propose to
use a representation of functions consisting of sums of polynomials and exponentials
with monomials and the remainder term in the Taylor expansion of the exponential
as in (4.7). We have decided to use this representation as it simplifies the Gram—
Schmidt orthogonalization (presented in section 4.4) and it has better numerical sta-
bility properties in comparison to (4.3) in general. Depending on application and the
inner product used in the Arnoldi method, different choices of the function represen-
tations might be suitable, e.g., by using coefficients of Chebyshev polynomials (as we
have presented in [11]) instead of monomial coefficients or using function values at a
Chebyshev grid, as is the representation in the software package chebfun [3].

4.2. Action for structured functions. We have now (in section 4.1) intro-
duced the function structure and shown how we can represent these functions with
matrices and vectors. An important component in Algorithm 1 is the action of B. We
will now show how we can compute the action of B applied to a function given with
the representation (4.7).

It will be convenient to introduce notation for the remainder of the NEP M after
a Taylor expansion to order NN, analogous to the definition of exp,,. We define

(4.8) My (Y, S) = M(Y, §) — M(0)Y — %M’(O)YS
- %M”(O)YSQ — - %M(N) ()Y sV

or, equivalently,

1

1
mM(N+1)(O)YSN+1 + 7M(N+2) (0)YSN+2 + e

(4.9) My (Y,S) = N 12
Note that with this definition
M_,(Y,S) = M(Y, S).
We are now ready to express the action of B applied to functions with the structure

(4.7). Note that the construction of the new function ¢ = By in the following result
involves only standard linear algebra operations of matrices and vectors.
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THEOREM 4.2 (action for structured functions). Let S € CP*P and ¢ € CP be
given constants, where S is invertible. Suppose

(4.10) p(0) =Y expy_1(0S)c+ ((1,6,6%,...,0N Y ®1,) .
Then,
(411) o (0) = (Be)(0) = Y expy(0S)es + ((1,6,6%,...,0Y) & L)z,
where
(4.12) cy =S e,
1
1
2
(4.13) (41, yxy N) = (z0,-. ., &N-1) ) ,
L
N
and
N
(4.14) zy0=—-M(0)" <MN(Y, S)ey + Z M® (O)a:+7i> .
i=1

Proof. We show that ¢, constructed by (4.12), (4.13), and (4.14) satisfies

(4.15) Be = ¢4

by first showing that the derivative of the left-hand side and the derivative of the
right-hand side of (4.15) are equal and then showing that they are also equal in one
point = 0. From the property (4.6), we have

d 1 1
(4.16) = expy(05) = m(9NSN+1 + WHN“SN” 4 =expy_1(0S)S.
Moreover, the relation (4.13) implies that

(4.17) d% ((1,0,0%,....0M) @ L) x4 = ((1,0,0%,...,0N )@ L,) .

Note that B corresponds to integration and the left-hand side of (4.15) is . The right-
hand side can be differentiated using (4.16) and (4.17). We reach that the right-hand
side of (4.15) is ¢ by using (4.12).

We have shown that the derivative of the left-hand side and the derivative of the
right-hand side of (4.15) are equal.

We now evaluate (4.15) at @ = 0. From the definition of B we have that (By)(0) =
(B(£)¢) (0), i.e., we wish to show that

d
(4.15) B0 = (5 () ) 0 =0 =20
when N > 0. (The relation obviously holds for N = 0.) Note that by construction

@4 is a primitive function of . From the relations between f;, b;, M;, B;, in (2.4) it
follows that (4.18) is equivalent to

w10 0= (a5 () + - 3t () ) ) 0= (30 () ) 01
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We now consider the terms of ¢, in (4.11) separately. Note that for any analytic
function g : Q@ — C, we have

(5 (45) ex0x®9) © = an(s).

where g is the remainder term in the truncated Taylor expansion, analogous to exp .
It follows that

(4.20) ((lel <d%> bt Mo (%)) YexpN(GS)c+) (0) = M (Y, S)cs.

For the polynomial part of ¢ we have

(4.21) (M (%) ((1,0,6%,....6M) & I,) a:+) (0) = éM<i>(0)x+,i.

Note that (M(-%)p4)(0) is the sum of (4.20). Hence, we have shown (4.19) (and
hence also (4.18)) by using (4.20), (4.21), and the definition of z ¢ in (4.14). O

4.3. Inner product and finite-dimensional specialization of Algorithm 1.
Since the goal is to completely specify all operations in Algorithm 1 in a finite-
dimensional setting, we also need to provide an inner product. In [11] we worked
with polynomials and we defined the inner product via the Euclidean inner product
on monomial or Chebyshev coefficients. The structured functions described in sec-
tion 4.1 are not polynomials. We can, however, still define the inner product consistent
with [11]. In this work we restrict the presentation to the consistent extension of the
definition of the inner products via the monomial coefficients. Given two functions

p(0) = 07z, v(O) =) 07z,
§=0 j=0
we define
(4.22) (o 0) =zl
1=0

It is straightforward to show that (4.22) satisfies the properties of an inner product
and that the sum in (4.22) is always finite for functions of the considered structure.
The computational details for the inner product and the orthogonalization process
are postponed until the next section (section 4.4).

The combination of the above results, i.e., the choice of the representation of
the function structure (section 4.1), the operator action (section 4.2), and the inner
product (4.22), forms a complete specialization of all the operations in Algorithm 1.
For reasons of numerical efficiency, we will slightly modify the direct implementation
of the operations.

Instead of representing the individual functions 1, . . ., ¢ of the basis (¢1, . . ., k)
we will use a block representation and denote

Fr(0) = (o1, ¢1)-

Now note that variables Y and S in the function structure (4.7) are not modified in
Theorem 4.2 and obviously not modified when forming linear combinations. Hence,
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the variables Y and S can be kept constant throughout the algorithm. This allows
us to also use the structured representation (4.7) directly for the block function Fj
instead of individually for ¢1,...,pk. In every point in the algorithm, there exist
matrices C), and V}, such that

(4.23) Fi.(0) =Y expy ,(65)Cy + ((1,6,...,0N " H @ DV,

with an appropriate choice of N.

The variable N defining the length of the polynomial part of the structure needs
to be adapted during the iteration. This stems from the fact that functions ¢ and ¢
in Theorem 4.2 are represented with polynomial parts of different length (N — 1 and
N). Hence, we need to increase N by one after each application of B. Fortunately, the
corresponding increase of N can be easily achieved by treating the leading element
of the exponential part as an element of the polynomial part. Here, this means using
the fact that

(4.24) Fi(0) =Y expy_1(0S)Cx + ((1,0,..., 0N " @ D)V,

Vi
N!

In this work, the starting function f will be an exponential function, and after the first
application of B, we need to expand the polynomial part with one block consisting of
%N!Ck with N = 0. Since k = py + 1 at the first application of B, for an iteration
corresponding to a given k, we need to expand the polynomial part of Fj with one
block row consisting of YS]\I,V!C’“ with N =k —py — 1.

With the block structure representation (4.23) we can now specialize Algorithm 1
for the structured functions. The finite-dimensional implementation of Algorithm 1
is given in Algorithm 2 and visually illustrated in Figure 1.

Step 11

Step 12-13

Fi1c. 1. Visualization of the infinite Arnoldi method with structured functions (Algorithm 2).
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ALGORITHM 2. Infinite Arnoldi method with structured functions and locked pair

visualized in Figure 1 and equivalent to Algorithm 1.

[Vi, C, Hi] = infarn exp(c, S, Y, pr, kmax)-

Input: Number of iterations k.., coefficients Y € C"*P, S € CP*P, ¢ € CP, rep-
resenting the normalized function f given by (4.25) and the locked part of the
factorization corresponding to the invariant pair (¥, R) with ¥ given by (4.26) and
R € CPexPe given from the structure of S in (4.27). The functions corresponding
to the columns of ¥ as well as the function f must be orthogonal.

Output: Vi, 1 € Clhmectbnxlhoot) gy ) e CP*RmactD),
C(Fmax+1)xkmax yepresenting the factorization (4.28)

Set Hy,p, = R
Set Cp,41=(e1 ... ep, <)
Set Vp,+1 =empty matrix of size 0 x (pg + 1)
for k=ps+1,..., knax do
Compute ¢y according to (4.12) where ¢ = ¢, i.e., kth column of Cj
Let z € Ck=P¢=I be the kth column of V;
Compute T4 1,...,%4 k—p,—1 € C™ according to (4.13)
Compute x4 o according to (4.14) with N =k —p, — 1
Expand Vj, with one block row:

Vi
Vi=| ystre-loy
(k—pe—1)!

10:  [en,x, hk, 8] =gram_schmidt(cy, 24, Ck, V)
1:  Let H; = ngl ig e Ck+1)xk

12: Expand Cy by setting Ciy1 = (Ok, Cl)

13:  Expand Vi by setting Viy1 = (V,z))

14: end for

S

“Ekmax

The input and output of the algorithm should be interpreted as follows. The
variables Y, S, ¢ specify the starting function f as well as the locked part of the
factorization. The starting function is given by

(4.25) f(0) =Y exp(6S)c

and the locked part of the factorization (in Algorithm 1 denoted (¥, R)) corresponds to
Ip,

(4.26) U(6) =Y exp(6S) N

where R € CP¢*Pt ig defined as the inverse of the leading block of S. Recall that S is
assumed to have the block triangular structure (4.2), i.e.,

R S12
4.27 S = .
(a2 (%)

The output is a finite-dimensional representation of the factorization

(4.28) (BEkya ) (0) = Fropas+1(0)Hy,,.»

max
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where the block function Fy, . 11 is given by
(4.29) kaax+1(9) = }/expkmax (HS)Ckmax+l + ((1, 0, L. ,Hkm‘“‘) ® In)Vkmax+lv

and F}, is the first kpax columns of Fy__ 1.

max

4.4. Gram—Schmidt orthogonalization.

4.4.1. Computing the inner product for structured functions. For struc-
tured functions, i.e., functions of the form (4.4), the consistent extension of the defi-
nition (4.22) is the following. Let

(4.30) ©(0) =Y expy(09)c+ ((1,0,...,0N) @ I,)z
and
(4.31) PY(0) = Yexpy(0S)d+ ((1,0,...,0Y) @ 1,)2

Then, (4.22) reduces to

N 0o . .
(4.32) (p, ) = Z%Hﬂ% n Z dH(SHHYHY Sic

12
i=0 i=N+1 (&)

In practice, we can compute the inner product by truncating the infinite sum and
exploiting the structure of the sum.

LEMMA 4.3 (computation of inner product). Suppose the two functions ¢ : C —
C™ and ¢ : C — C™ are given by (4.30) and (4.31). Then

N
(4.33) (o) = 2z + A" Wi 41 N € + ENpran
i=0
with
M . .
(S)HYHY g
4.34 w = —_—
(4.34) N,M ;v 2

provides an approximation to accuracy

62HSH2 HSH%(Nlnax"Fl)

435 < dllz Y™y
(4.35) €8sl < NllolY Y lzllelle =7 =232

Proof. By comparing the infinite sum (4.32) with (4.33), we can solve for ey,
and bound the modulus,

max

s . - \ 2
[EIES (B

e N < 2l Y Y (2l D (Z.,)i <l llY*Y fafiella | TZ :
i=Nmax+1 i=Nmax+1

The sum in the right-hand side can be interpreted as the remainder term in the
Taylor approximation of exp(||S]|2). The bound (4.35) follows by applying Taylor’s
theorem. 0

The lemma above has some properties important from a computational perspec-
tive:
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e The sum in (4.34) involves only matrices of size p X p, i.e., it does not involve
very large matrices, under the condition that Y'Y is precomputed.

e The matrix Wy as defined by (4.34) is constant if S and Y are constant.
Hence, in combination with Algorithm 2 it only needs to be computed once
in order to construct the Arnoldi factorization.

e An appropriate value of Ny such that ex_,  is smaller than or comparable

to machine precision can be computed from ||S|| by increasing Nyax until the

right-hand side of (4.35) is sufficiently small.

4.4.2. Computing the Gram—Schmidt orthogonalization for structured
functions. One step of the Gram—Schmidt orthogonalization process can be seen as
a way of computing the orthogonal complement, followed by normalizing the result.
When working with matrices, the process is compactly expressed as follows. Consider
an orthogonal matrix X € C"**. The orthogonal complement of a vector u € C with
respect to the space spanned by the columns of X and the Euclidean inner product
is given by

(4.36) up =u—Xh,
where
(4.37) h=X"u.

In the setting of Arnoldi’s method, the orthogonalization coefficients i and the norm
of the orthogonal complement 8 needs to be returned to the Arnoldi algorithm.

Due to the fact that the considered inner product (4.32) is the Euclidean inner
product on the Taylor coefficients, we can, similar to (4.36) and (4.37), compute the
orthogonal complement using matrices. The corresponding operations for our setting
are presented in the following theorem.

THEOREM 4.4 (orthogonal complement). Let Y € C"*P, S € CP*P, C € CP*F,
V e C*WHDXE be the matrices representing the block function F : C — C***,

F(0) =Yexpy(0S)C + ((1,0,...,0N) ® I,)V,

where the columns are orthonormal with respect to (-,-) defined by (4.32). Consider
the function o, represented by cq € CP and x4 € C*"W+D and defined by

©(0) =Y expy(0S)cy + ((1,0,...,0N) @ L)z,
and let h € CF,
h:=VHz, +CH ( i wyéﬂ) Cq.
i=N+1 Z')

Then, the function @, , represented by the vectors

i =cy —CheCF, 2, =z, —VheCrWV+D,
and defined by

01 (0) ==Y expy(0S)eL + ((1,0,...,0M) &I,z

is the orthogonal complement of ¢ with respect to the space spanned by the columns
of F' and the inner product (-,-) defined by (4.32).
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ALGORITHM 3. Gram—Schmidt orthogonalization for the inner product (4.32).
[cL,z1,h, 5] =gram schmidt(c,z,C, V).

Input: Vectors ¢ € C*, x € CIN+D” representing the function
©(0) ==Y expy (0S)c+ (1,0, ,0N) @ L)z
and C € C"*F, vV e CIN+nxk representing the block function, F : C — C"*k,
F(0) =Y expy(09)C + (1,0, ,0Y) @ I,,)V,

whose columns are orthogonal with respect to (-, -) defined by (4.32).
Output: Orthogonalization coefficients h € C*, 8 € C and vectors ¢, € CP" and
x, € CFHDn pepresenting the normalized orthogonal complement of ¢,

¢1(0) ==Y expy(0S)er + ((1,6,---,0%) @ L)

h=VHy+ CH(WN+1,NmaxC), where W41 Ny
cy =c—Ch
z, =x—Vh
g=VTz, +CT(Wyii Nyucl)
if |lg|| > REORTH_TOL then
cp =cy —Cyg
r, =x1 —Vg
h=h+g
end if
8= a:fo + CE(WN_H’NH‘&XCL)
cL=c1/B
T = a:L/B

is given by (4.34)

== =
M B

Proof. The construction is such that ¢, is a linear combination of ¢ and the
columns of F' (due to linearity in coefficients ¢ and ). It remains to check that ¢, is
orthogonal to columns of F'. O

The Gram—-Schmidt process with reorthogonalization hence can be efficiently im-
plemented with operations on matrices and vectors. This is presented in Algorithm 3,
where we used iterative reorthogonalization [6] with (as usual) at most two steps. In
the numerical simulations we used REORTH_TOL= ,/ejach. In the description of
the algorithm we have for simplicity ignored the breakdown that can occur if 5 ~ 0.
Similar to Arnoldi’s method for standard eigenvalue problems, such a situation implies
that the Krylov subspace is an invariant subspace.

5. Extracting and restarting. Recall the general outline described in section 3
and recall that we have (in the section 4) described the first step in detail. In what
follows we discuss the second step. We propose a procedure to carry out some op-
erations of the result of the first step, i.e., Algorithm 2, and restart it such that we
expect that the outer iteration eventually converges to a partial Schur factorization.

5.1. Manipulations of the Arnoldi factorization. First recall that Algo-
rithm 2 is an Arnoldi method in a function setting and the output corresponds to an
Arnoldi factorization,
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(5.1) (BFy)(8) = Fr41(0)H,y,,

where the block function F 1 is given by the output of Algorithm 2 with the definition
(5.2) Fii1(0) = Y expy(0S)Cry1 + ((1,0,...,0%) @ L,)Vig1,

and F}, is the first k£ columns of Fj11. To ease the notation, we have denoted k = kpax.
Although the Arnoldi factorization (5.1) is a function relation, we will now see
that several parts of the steps for implicit restarting (cf. [23, 16, 17, 27]) for Arnoldi’s
method (for linear matrix eigenvalue problems) can be carried out in a similar way
by working with functions.
We will start by computing an ordered Schur factorization of Hy,

Riy1 Ri2 R
(5.3) Q"HrQ = (Q1,Q2,Q3)" Hp(Q1,Q2,Q3) = Ry Raz |,
R33

where Ry, € CPeXPe Ryy € CWP—P)x(0=Pe) and Rgg € CH—P)X(—P) are upper trian-
gular matrices. The ordering is such that the eigenvalues of Ry; are very accurate
(and from now on called the locked Ritz values), the eigenvalues of Ray are wanted
eigenvalues (selected according to some criteria) which have not converged, and the
eigenvalues of R33 are unwanted.

Hence,
Ry R Ris
Q* Roo  Ros
(54) ﬂk(Q17Q27Q3) =
1 Ra3

T
ay az as

Note that a1 is a measure of the (unstructured) backward error of the corresponding
eigenvalues of R and ||aq]| is often used as stopping criteria. Hence, ||a1]| will be zero
if the eigenvalues of R;; are exact and will in general be small (or very small) relative to
H,, since the eigenvalues of R;; are very accurate solutions. By successive application
of Householder reflections (see, e.g., [21]) we can now construct an orthogonal matrix
P, such that

Ipe Ri1 Rio I Ri1 M
(5.5) P; Ros ( pe P) -1 o H |,
2
1 al'" o al egfmﬁ

where

H ' < H )
—_ = T
€p—p.
is a Hessenberg matrix.

By considering the leading two blocks and columns of (5.4) and the result of the
Householder reflection transformation (5.5) we find that
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(5.6)

Ri1 Z
((leszz)*

)m(c;l,wz) —[o @ =<0 ﬁ>+0<|a1|>.
al el B

P—Dpe

1

These operations yield a transformation of the Arnoldi factorization where the first
block is triangular (to order O(||a1]])). We reach the following result, which is an
Arnoldi factorization similar to (5.1) but only of length p. Moreover, the Hessenberg
matrix does not contain the unwanted eigenvalues and has a leading block which is
almost triangular.

THEOREM 5.1. Consider an Arnoldi factorization given by (5.1) and let F11(6) =
(Fr(0), f(0)). Let Q1 and Q2 represent the leading blocks in the ordered Schur decom-
position (5.3) and let Py, Ry1, and E be the result of the Householder reflections in
(5.6). Moreover, let

(5.7) Gp(0) := Fir(0)(Qr, Q22), Gpia(8) = (Gp(0), £(9))-

Then, Gpy1 approzimately satisfies the length p < k Arnoldi factorization

Ry

z
(5-8) (BGp)(0) = Gpi1(6) ( 0 H) + O(llaal]).

5.2. Extraction and imposing structure. Restarting in standard IRAM for
matrices essentially consists of assigning the algorithmic state of the Arnoldi method
to that corresponding to the factorization in Theorem 5.1. The direct adaption of
this procedure is not suitable in our setting due to a growth of the polynomial part of
the structured functions. This can be seen as follows. Suppose we start Algorithm 1
with a constant function (as done in [11]) and carry out the construction of G, as in
Theorem 5.1. Then, Gpy1 will be a matrix with polynomials of degree k. We hence
need to start with a state consisting of polynomials of degree k. The degree of the
polynomial will grow with each restart and after M restarts, the polynomials will
be of degree M k. The representation of this polynomial will hence quickly limit the
efficiency of the restarting scheme.

Instead of restarting with polynomials we will perform an explicit restart using
Algorithm 2 with a particular choice of the input which we here denote Y, S , ¢. This
choice is inspired by the factorization in Theorem 5.1.

We will first impose exponential structure on G, in the sense that we consider a
function Gp, with the property

and defined by
(5.9) G, (6) = G (0) exp(30),

where

. (R, z\ '
(5.10) S:<O H) .
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Note that we can express G,(0) explicitly from (5.7) as

(511) Gp(O) - (Vk+1,lQ17 V]@Jrl)ngPg) = Y

where Vj41,1 is the upper n x (k + 1)-block of V.

Assume for the moment that ||a1] = 0. Then, the first p, columns of (5.8)
correspond to the definition of an invariant pair (¥, R), where ¥(0) = G,,(0) and
R = Ry;. From Theorem 2.2 we know that ¥ is of exponential structure, and imposing
the structure as in (5.9) does not modify the function, i.e., if |a1|| = 0, then G, (#) =
Gp,(9). Hence, the first p, columns of (5.8) are preserved also if we replace G, (#) with
Gp(#). Due to the fact that ||ay || is small (or very small) we expect that imposing the
structure as in (5.9) gives an approximation of the p, columns of (5.8), i.e.,

(5.12) (BGy,)(0) ~ Cip41(6) <R0“> :

if [|a1]| is small and equality is achieved if ||a1|| = 0.

ALGORITHM 4. Structured explicit restarting with locking.
[S,Y] =infarn restart (Zo, Ao, Kmax,P)-

Input: zo € C", )y representing the function
f(0) = exp(Aof)zo,

maximum size of subspace kyax, number of wanted eigenvalues p
Output: S,Y such that (Y, S) represents an invariant pair

1: Normalize f by setting z¢ = mxo, where Wy n,,... is given by (4.34)

with S = Ao
Set Yy = (x0,0,...,0) € C"*P
Set S = diag(\o, 1,...,1) € CP*P
Set c=e; €CP, py=0
while p; < p do
[V,C,H,, . |=infarn_exp(c,S;, Y}, pe, kmax)
For every eigenvalue of Hy,__ classify it as, lock, wanted or unwanted, and let
p¢ denote the number of locked eigenvalues
8:  Compute ordered Schur factorization of Hy
9:  Compute the ay vector in (5.4)
10:  Compute the orthogonal matrix P» according to (5.5)
11:  Compute Z and H from (5.6)
12: Set Yj4; =Y and S;,; = S according to (5.11) and (5.10)
13:  Reorthogonalize the function F(0) = Yj11 exp(6S;4+1)(e1, ..., ep,)
14:  [e,-,-, -] =gram_schmidt(ep, 41, Cjt1,-)
15: Setj=j+1
16: end while

partitioned according to (5.3)

max
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With the above reasoning we have a justification to use the first py columns of

(5.9), i.e.,
A 5 < l>
( ) 0 Y

in the initial state for the restart. In the approximation of the p — py last columns of
Gp by the p—py last columns of (5.9), the Arnoldi relation in the function setting is in
general lost, because Ritz functions only have exponential structure upon convergence.
Therefore, we will only use the (pg+1)st column in the restart, from which the Krylov
space will be extended again in the next inner iteration. This leads us to a restart
with the function

. N 1
Y exp(50) < plgl) ,

which corresponds to setting ¢ = ep,+1 and the initial function

F(0) =Y exp(S0)ep, 1.

By these modifications of the factorization (5.8) we have now reached a choice of
Y given by (5.11), S given by (5.10), and ¢ = e,, ;1. This choice of variables satisfies
all the properties necessary for the input of Algorithm 2, except the orthogonality con-
dition. The first columns of G, are automatically orthogonal (at least if ||a;|| = 0).
The (p¢ + 1)st column, however, in general will not be orthogonal to G,,, which is an
assumption needed for Algorithm 2. It is fortunately easily remedied by orthogonal-
izing the function corresponding to ¢ = ep, 1 using the function gram_schmidt, i.e.,
Algorithm 3.

The details of this selection as well as the manipulations in section 5.1 are sum-
marized in the outer iteration Algorithm 4.

Remark 5.2 (explicit restart without locking). Note that a restart which is the-
oretically very similar to what we have proposed here can be achieved by starting
the infinite Arnoldi method with the function of the first column of (5.9), without
taking the “locked part” of the factorization directly into account. Such an explicit
restarting technique (without locking) unfortunately does have unfavorable numerical
properties and will not be persued here. From reasoning similar to [23] we know that
the first column of (5.9) is an approximation of an element of an invariant subspace
and the first p,; steps of Arnoldi’s method started with this vector are expected to
recompute the p; converged Ritz vectors after py iterations. In the (p,+ 1)st iteration,
the Arnoldi vector is corrupted due to cancellation.

6. Examples.
6.1. A small example of Hadeler. The NEP presented in [9], which is avail-
able as hadeler in the problem collection [4], is given by

M) = —Ag+ A+ p)2A; + (eMH — 1) Ay,

where A; € R™*™ ¢ =0,...,2, with n = 8 and p is a shift which we will use to select
a point close to which we will find the eigenvalues.

In order to apply Algorithm 2 we need to derive a formula for z o in (4.14). The
derivatives for M are straightforward to compute and we compute My, using (4.8)
and (4.9). More precisely, we use the following computational expressions:
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TABLE 1
The indicator value and number of locked Ritz values for the two runs of the example of Hadeler
in section 6.1. Run 1 corresponds to Figure 2 and Run 2 corresponds to Figure 3. The outer iteration
count represents the number of loops carried out in Algorithm 4.

Run 1 Run 2
Outer iteration | py y Py il
1 0 0 0
2 1 | 1.0x10°1° 0 0
3 2 | 5.7x 10714 3 | 6.4x1014
4 2 | 5.7x10714 3 | 6.4x10" 14
5 3 | 5.8x 10714 3 | 1.4x10° 14
6 3 | 5.8x 1014 4 | 14x10"14
7 4 | 7.3x10713 5 | 1.4x 1014
8 10 | 2.3x 10713

M_1(Y,S)cy = —AgYey + A1Y (S + pl)?cy + AsY (exp(S + pl) — I)ey,
My (Y, S)cy = A1V (S? 4 2uS)cy + et AyY (exp(S) — I ey,
M, (Y, S)ey = A1Y (S%cy) + et AsY (exp(S) — I — S)cy,

Tmax Sl
My (Y, S)ey ~ el AyY ( > C*) , N>1.

7!
i=N+1

In the last formula, i.,,x is chosen such that the expression has converged to machine
precision. Since this is not computationally expensive, we can roughly overestimate
imax- In this example it was sufficient to take iy, = 40.

In the outer algorithm (Algorithm 4) we classified a Ritz value as converged
(locked) when the absolute residual was smaller than 1000 X epach. We selected the
largest eigenvalues of Hy as the wanted eigenvalues.

The convergence is illustrated for two runs in Figures 2 and 3. In order to illustrate
the similarity with implicit restarting in [26], we also carried out the infinite Arnoldi
method with true implicit restarting by restarting only with polynomials, instead of
using Algorithm 4. We clearly see that at least in the beginning of the iteration, the
convergence of Algorithm 4 is similar to the convergence of IRAM. Note that IRAM
in this setting exhibits a growth of the basis matrix and it is hence considerably
slower. We show the number of locked Ritz values in Table 1. Moreover, we quantify
the impact of the procedure to impose the structure in the restart by inspecting the
approximation in (5.12). We define 7 as the norm of the difference of the left-hand side
and right-hand side of (5.12). Lemma A.l shows that this difference is independent
of 6 and provides a computable expression. More precisely,

(6.1) =

(BG,)(0) ~ Gy (6) <R0“>

= [|(BGp,)(0) — Gy, (0)Rur ||, = | M(0)""M(Y, $)S ™2,

where we used that G, has the structure G, () = Y exp(fR;;!). The values of 7
are also given in Table 1. They are, as expected, of the same order of magnitude as
the locking tolerance. The solution and the computed approximations are given in
Figure 4.
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Fic. 2. Convergence of Algorithm 4 (thick) and IRAM [26] (thin) for the Hadeler example in
section 6.1 (kmax = 20, p=10, p = —1).

0 L\
100 ¢ IRAM A
infarn_restart
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Eigenvalue error
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inner iteration

Fic. 3. Convergence of Algorithm 4 (thick) and IRAM [26] (thin) for the Hadeler example in
section 6.1 (kmax =12, p=5, p =3+ 5¢).

6.2. A large-scale square root example. We considered the same example
as in [11, section 7.2], which is the problem called gun in the problem collection [4]
and stems from [18]. It is currently the largest example, among those examples in the
collection [4], which are neither PEPs nor REPs. In [18] the problem was solved using
Newton-like methods with carefully selected starting values close to the solutions. In
our approach we will only select a shift, which specifies a general region of interest
and is not necessarily an accurate approximation of an eigenvalue. We introduce (as
n [11]) a shift 4 and a scaling v, for which the NEP is
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Fic. 4. Computed eigenvalues and shifts for the Hadeler example. The shifts are marked with
bullets e.

M) =A)— (YA + )AL+ i\ /YA + u— 03 As + 1\ /YA + u — 03 As,

where o1 = 0 and 09 = 108.8774 and > = —1. We selected v = 3002 — 200% and
i = 2502 since this transforms the region of interest to being essentially within the
unit circle.

In order to compute a formula for x4 ¢ in (4.14), we need in particular

+1AsY \[vS + (1 — 03I, + LA3Y \ /7S + (1 — 03) I,

where v/Z denotes the matrix square root (principal branch).

We will partially base the formulas on the Taylor coefficients of the square root
in order to compute My (needed in the computation of xo 1 in (4.14)). We will use

VA = 0F = ao +ar A+ ag A+

where
(6.2&) Qo5 = /U — UJ2‘7

) (-

(6.2b) Qg = (

]2
]2

) (-2) - (253 oyt ks
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TABLE 2

Consumption of memory resources and profiling times for some choices of the restart parameter
kmax and p = 10. Memory in megabytes (MB) and CPU time in seconds.

| kmax =50 | kmax = 30 | kmax =25

No. of restarts 0 1 3
Total CPU 35.7s 21.0s 23.7s
LU decomp. 2.1s 2.1s 2.1s
gram_schmidt 23.7s 12.9s 15.1s
Computing x4+ 6.8s 6.9s 3.4s
Memory usage | ~ 200 MB ~ 78 MB ~ 58 MB
This can be used to compute My, as follows:
(6.3a) Mo (Y, S)cy = M(Y, S)eyr — M(0)Y ey,
(6.3b) M, (Y, S)ey = Mo(Y, S)ey — M'(0)Y (Sey),
<1 . .
My (Y, S)cy = <MD (0)YSicy
i=Nt1 "
(6.3¢) ~ 1A <Y Z ai715’ic+>
i=N+1
+LA3 <Y Z ai725ic+> , N > 1.
i=N+1

Note that the sums in (6.3c) are operations with vectors of relatively small dimension
and can be computed efficiently. We selected the number of terms i, adaptively
such that || Saxcy|||a,.. k| < Emach-

This results in the next formulas, which we used for the computation of x o,

2y0=—M(0)""(Mo(Y,S)cy) for N =0,
~M(0)"H (M (Y, S)cy + M'(0)xy 1) for N =1,

4,0

and for N > 1,

N N
2y0=—M@O)"" [ My(Y,S)eq + 142 Yy (01 (3) + 1Az Y ap (e 2()
j=1 j=1

The matrix M (0) was factorized (with an LU-factorization) before starting the iter-
ation, such that M (0)~1b could be computed efficiently.

We first wish to illustrate that the restarting and structure exploitation can con-
siderably reduce both memory and CPU usage. In Table 2 we compare runs for the
standard version of the infinite Arnoldi method [11] (first column) with the restart-
ing algorithm (Algorithm 4) for two choices of the parameter kya.x. The iteration
was terminated when p = 10 eigenvalues were found. We clearly see that for the
choices of knax there is a considerable reduction in memory and some reduction in
computation time.

In Figures 5 and 6 we illustrate that the algorithm scales reasonably well with
p, i.e., the number of wanted eigenvalues. When we increase p, we need more outer
iterations, but eventually the algorithm usually converges for reasonably large p.
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F1a. 5. Convergence history for Algorithm 4 with the example involving a square root in sec-
tion 6.2 (p=9).
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F1a. 6. Convergence history for Algorithm 4 with the example involving a square root in sec-
tion 6.2 (p = 14).

7. Concluding remarks. We have in this work shown how the partial Schur
factorization of an operator B can be computed using a variation of the procedures
to compute partial Schur factorization for matrices. Several variations of the results
for matrices appear to be possible to adapt. Concepts like thick restarting, purging,
and other selection strategies appear to carry over but deserve further attention.
In this paper we used an inner product based on the Euclidean inner product for
the monomial coefficients, which could essentially be replaced by any suitable inner
product.

Appendix A. A technical lemma.
LEMMA A.1. Consider Y € C*"*P and S € CP*P, where S is invertible. Let
F(0) ==Y exp(0S). Then,

(A1) (BF)(0) — F(0)S™ = —M(0)"'M(Y, S)S~ .
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Proof. We prove the theorem by showing that the derivative of the function
relation (A.1) holds for any € and that the relation holds in one point § = 0. Note
that the right-hand side of (A.1) is constant (with respect to 6) and the derivative of
the left-hand side reduces to

FO)—F'(0)S™ = F(0) — Yexp(#S)SS™ =0
by definition of B and differentiation of exp(6.5).

From the definition of B and evaluation of the left-hand side of (A.1) at § = 0
we have

(A.2) (BF)(0) — F(0)S™! = (B (%) Yexp(05)> (0)—Ys—L

Note that for an analytic scalar function b: C — C,

(b (d%) exp(es)) (0) = b(S).
(B (%) Yexp(eS)) (0)

_BY <b1 <d%> exp(oS)) (0) 4+ BnY <bm (%) exp(oS)) )
=B1Yb1(S)+ - + BpnYbp(9).

Hence,

Moreover, by using the relation between b; and f; and M; and B, given by (2.4)
we have

(A3) BiYDbi(S)+ -+ BnYbn,(S)
=M(0) " MY (f1(0)] = fu(S)ST 4+ + MY (fm(0)] — fin(S5))S™]
=M(0)" ' [M(Y,0)S™" = M(Y,9)S™'] = Y5~ — M(0)"'M(Y, S)S .

The proof is completed by canceling the term Y S~! when inserting (A.3) into
(A.2). O
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