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A B S T R A C T

Knowledge of irrigation is essential for ensuring food and water security, and to cope with the scarcity of water
resources, which is expected to exacerbate under the pressure of climate change and population increase. Even
though irrigation is likely the most important direct human intervention in the hydrological cycle, we have only
partial knowledge on the areas of our planet in which irrigation takes place, and almost no information on the
amount of water that is applied for irrigation.

In this study, we developed a new approach exploiting satellite soil moisture observations for quantifying the
amount of water applied for irrigation. Through the inversion of the soil water balance equation, and by using
satellite soil moisture products as input, the amount of water entering into the soil, and hence irrigation, is
determined. Through synthetic experiments, we first assessed the impact of soil moisture measurement un-
certainty and temporal resolution, also as a function of climate, on the accuracy of the method. Second, we
applied the proposed approach to currently available coarse resolution satellite soil moisture products retrieved
from the Soil Moisture Active and Passive mission (SMAP), the Soil Moisture and Ocean Salinity (SMOS) mission,
the Advanced SCATterometer (ASCAT), and the Advanced Microwave Scanning Radiometer 2 (AMSR-2). Nine
pilot sites in Europe, USA, Australia and Africa were used as case study to test the method in a real-world
application.

The synthetic experiment showed that the method is able to quantify irrigation, with satisfactory performance
from satellite data with retrieval errors lower than ∼0.04 m³/m³ and revisit times shorter than 3 days. In the
case studies based on real satellite data, qualitative assessments (due to missing in situ irrigation observations)
showed that over regions in which satellite soil moisture products perform well, and which are characterized by
prolonged periods without rainfall, the method shows good results in quantifying irrigation. However, at sites in
which rainfall is sustained throughout the year, the proposed method fails in obtaining reliable performances.
Similarly, low performances are obtained in areas where satellite products uncertainties are too large, or their
spatial resolution is too coarse with respect to the size of the irrigated fields.

1. Introduction

It is estimated that over 70% of global freshwater is consumed by
irrigation (FAO, 2006; Foley et al., 2011). Irrigated land comprises 1/5
of the world’s cultivated area and supplies 2/5 of the world’s food
(Droogers et al., 2010). Climate change and population growth are
expected to further increase the irrigation demand pushing more
pressure on available freshwater for food production, and many areas
which already experience water scarcity (Vörösmarty et al., 2000;

Rockström et al., 2012; Kummu et al., 2016). Therefore, quantitative
knowledge on resources used for irrigation is essential for stakeholders
and companies involved in the management of agricultural services and
food production that need accurate and timely information for ensuring
food and water security (Deines et al., 2017). Additionally, information
on irrigation is needed in many research applications e.g., for the as-
sessment of the anthropogenic impact on the water and energy cycle
(Bonfils and Lobell, 2007; Wada et al., 2014), to study the water budget
closure in large scale hydrological and climate modelling (Döll and
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Siebert, 2002), and for the evaluation of the impact of irrigation on
precipitation and evapotranspiration dynamics (Alter et al., 2015).

Notwithstanding the important role of irrigation, its knowledge over
large areas and over long periods is nearly absent. Most of the existing
irrigation datasets are based on statistical surveys or simply identify
areas equipped for irrigation (Salmon et al., 2015; Siebert et al., 2015),
and usually are only valid for a specific year or a multi-year period).
These datasets are potentially affected by large errors and subjective
evaluations thus not being able to capture the spatial-temporal dynamic
of irrigated areas (Deines et al., 2017). Alternatively, visible and optical
remote sensing has been largely used for estimating irrigated areas
(Ozdogan et al., 2010). Recent studies have shown the potential of
remote sensing in mapping annual irrigation with high spatial resolu-
tion by using Moderate Resolution Imaging Spectroradiometer (MODIS)
250 (Ozdogan and Gutman, 2008; Pervez et al., 2014; Ambika et al.,
2016; Teluguntla et al., 2017), Landsat 30 (Deines et al., 2017; Ozdogan
et al., 2006; Pun et al., 2017), and geostationary (Romaguera et al.,
2012) satellite imagery. Very recently, Sentinel-2 images, characterized
by higher spatial resolution (10m), have also been used for this purpose
(Calera et al., 2017; Ferrant et al., 2017) and in the near future con-
stellations of small satellites, e.g., cubesats, are expected to be very
valuable for this purpose (McCabe et al., 2017).

While detecting irrigated areas has been widely investigated, the
quantification of the water amount actually used for irrigation is much
more problematic. Ground-based observations are essentially non-ex-
istent, except for very limited areas (< 1–10 km²) and/or time periods
(< 2–3 years). Technical constraints, i.e., deployment of monitoring
systems, and economic limitations, i.e., the cost of water and non-legal
consumptions, impede an accurate determination of the actual water
volume used for irrigation (see e.g., http://www.fao.org/nr/water/
aquastat/irrigationmap/index40.stm), even on very local scales. Many
existing studies focused on modelling irrigation water requirements but
not on the actual water used for irrigation (Wada et al., 2014; Döll and
Siebert, 2002). As most croplands are often over- or under-irrigated
(Foley et al., 2011), the estimated irrigation water requirement is not
necessarily equivalent to the actual irrigated water amount.

Also for the irrigation quantification, remote sensing can offer some
solutions for monitoring the irrigation water use. Several studies
exploited actual evapotranspiration (ETa), estimates from remote sen-
sing (e.g., MODIS and Landsat) and waterenergy balance modelling
approaches to assess irrigation water amounts (Droogers et al., 2010;
Romaguera et al., 2010; Wu et al., 2015; van Dijk et al., 2018). For
instance, van Eekelen et al. (2015) employed the surface energy balance
algorithm for land, SEBAL (Bastiaanssen et al., 1998) for mapping total
ETa that is split in ETa induced by precipitation (for rainfed agro-eco-
systems) and that by water withdrawals. The latter term is then used for
indirectly estimating the water withdrawals for irrigation. The method
was applied to the Incomati basin in Southern Africa obtaining annual
values of irrigation withdrawals. The main problem of this study, as
well as other similar ones, is the absence of in situ irrigation water
observations, which makes it extremely difficult to evaluate the relia-
bility and accuracy of the obtained estimates.

In addition to optical and thermal sensors, microwave sensors,
which are able to provide estimates of soil moisture, can be used for
detecting and quantifying irrigation due to the obvious increase in soil
moisture after irrigation (Brocca et al., 2017; Jalilvand et al., under
review; Kumar et al., 2015; Malbéteau et al., 2018; Singh et al., 2017;
Zaussinger et al., 2018). The first study investigating this approach was
carried out by Kumar et al. (2015) who used satellite soil moisture
observations from ASCAT (Advanced SCATterometer), AMSR-E (Ad-
vanced Microwave Scanning Radiometer - Earth Observing System),
SMOS (Soil Moisture and Ocean Salinity), ESA CCI SM (European Space
Agency Climate Change Initiative Soil Moisture) and Windsat for the
detection of irrigation over the Contiguous United States. By comparing
modelled (by the Noah land surface model) and satellite soil moisture
data, irrigated areas are inferred from (positive) biases between satellite

and modelled data, as the latter does not include irrigation. The con-
founding effects of topography, vegetation, frozen soils and Radio
Frequency Interference (RFI) prevented a clear identification of the ir-
rigated areas even though some potential by using the ASCAT soil
moisture product was observed over the plains of Nebraska. Qiu et al.
(2016) evaluated soil moisture (from the ESA CCI SM product) and
rainfall trend in China and found that satellite data can be used to
detect irrigated areas as over those areas trends in satellite soil moisture
and rainfall were significantly different. These differences were parti-
cularly significant over eastern China, where irrigation is quite ex-
tensive. Escorihuela and Quintana-Segui (2016) compared satellite soil
moisture (from ASCAT, AMSR-E, SMOS and SMOScat – a MODIS-
downscaled version of the official SMOS product) and modelled (by the
SURFEX - Surface Externalisée - land surface model) data in the
Northeast of the Iberian Peninsula. For the high resolution SMOScat
product (1 km), a clear decrease in correlation between modelled and
satellite data was observed at a small heavily irrigated region. Indeed,
the land surface model does not take irrigation into account, and the
low correlation was considered as an indication that SMOScat is able to
detect the information of irrigation. Very recently, Lawston et al.
(2017) used the new version of the Soil Moisture Active and Passive
(SMAP) product at 9 km sampling for detecting the irrigation signal at
three locations in the Western United States. As also shown in a mod-
elling study by He et al. (2017), SMAP seems to be able to detect the
irrigation signal, particularly in the Sacramento valley (California),
while in the other two locations the results are less accurate.

In this study, we exploit satellite soil moisture information for
quantifying the amount of water applied for irrigation. Specifically, we
have developed an adapted version of the SM2RAIN algorithm (Brocca
et al., 2014a) to estimate the total amount of water entering into the
soil. Over irrigated areas, the SM2RAIN-derived water flux is composed
of rainfall plus irrigation. Therefore, by removing the rainfall signal
(e.g., obtained from rain gauge observations), we could be able to
quantify irrigation. In two preliminary studies, Brocca et al. (2017) and
Jalilvand et al. (under review) have demonstrated the feasibility of the
proposed approach for two single locations in Nebraska and Iran
(Urmia lake) and advocated the need to extend the analysis over mul-
tiple sites worldwide.

Two research questions are addressed here: 1) are we able to extract
irrigation water information from coarse resolution satellite soil
moisture observations? 2) which climatic and irrigation conditions are
most favourable for estimating irrigation through coarse resolution
satellite soil moisture observations?

Firstly, we perform a synthetic study with varying climatic, soil, and
irrigation conditions in order to assess the potential of the proposed
approach in a controlled environment. We also test different config-
urations for soil moisture observations with varying temporal resolu-
tion and uncertainty. Secondly, we apply the method at 9 pilot sites in
Europe, USA, Australia and Africa by using all the current available
coarse resolution satellite soil moisture products obtained by: 1) the
SMAP mission; 2) the SMOS mission; 3) the ASCAT sensor on-board the
Metop satellites; and 4) the Advanced Microwave Scanning Radiometer
2, AMSR2, sensor on-board the Global Change Observation Mission –
Water, GCOM-W1.

The paper is organized as follows. The pilot sites and datasets are
described in Sections 2 and 3. The adapted SM2RAIN method is de-
scribed in Section 4 including details concerning the implementation of
the synthetic and real-world experiments. Results are shown and dis-
cussed in Section 5. Finally, conclusions are drawn in Section 6.

2. Pilot sites

For the real-world analysis, we select 9 pilot sites located in the
United States (US), Europe, Africa and Australia (see Fig. 1). The main
driver for the selection of the sites is the presence of large scale irri-
gation over areas comparable to the spatial resolution of the used
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satellite soil moisture products. Moreover, various climatic conditions
and agricultural practices are considered.

The three sites in the US (California’s Central Valley, plain of
Nebraska and lower Mississippi Basin) are characterized by large scale
irrigated areas as can be inferred from the map of the areas equipped

for irrigation (Salmon et al., 2015) and, indeed, have been the object of
previous studies (Kumar et al., 2015; Lawston et al., 2017). The three
US sites are characterized by different climates. The Sacramento Valley,
which is part of the California Central Valley has a semi-arid climate
and is mainly dedicated to the production of rice. Therefore, the fields

Fig. 1. Location of the pilot sites in the United States of America (a), south-western Europe and north-wester Africa (b), and south-eastern Australia (c). Green (red)
flags show the central pixel of irrigated (non-irrigated) areas. The underlying map shows the areas equipped for irrigation (Salmon et al., 2015) with reddish colours
for higher density of irrigation equipment. The four bottom figures show examples of irrigated and non-irrigated pixels in USA, Spain, Morocco and Australia. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

L. Brocca et al. Int J Appl  Earth Obs Geoinformation 73 (2018) 752–766

754



are first flooded in late April, early May, and sustained until August.
The plain of Nebraska is characterized by abundant sprinkler irrigation
with cold and snowy winters. The lower Mississippi Basin is one of the
most productive agricultural regions in the United States, and the basin
is second only to California in total groundwater pumped for irrigation.
The basin lies within the humid subtropical climatic zone and, similarly
to the Nebraska plain, irrigation is used to ensure a high level of yield.
In Europe we selected four sites, three in Spain and one in Italy. In
Spain, we selected the Andalusia, Murcia and Castilla y León (close to
the REMEDHUS network, Martinez-Fernandez and Ceballos, 2005) re-
gions; in Italy we considered one site in the Pianura Padana (Romagna).
All the sites in Europe are characterized by Mediterranean climate with
dry summers (low rainfall amounts), particularly in the Andalusia and
Murcia regions. Irrigation is widespread in these regions. However,
differently from US sites, small fields with different cultivations are
usually present, thus characterized by different time periods in which
irrigation takes place, and by different methods used for this purpose
(sprinkler, drip, gravity irrigation). In Morocco we selected one site
around the city of Marrakech with semi-arid climate and low annual
precipitation (∼250mm/year, Malbéteau et al., 2018). In Australia we
selected a site around the Yanco area (Murrumbidgee catchment) which
is a region intensively monitored with ground based soil moisture sta-
tions (Smith et al., 2012). The climate is semi-arid and extensive irri-
gation is applied in the whole region (Malbéteau et al., 2018).

The major limitation of this study is the unavailability of in situ
irrigation observations to be used for assessing the performances of the
proposed approach. However, though a large effort was made in trying
to obtain such data at the pilot sites, they were simply not available.
The only exception is for the Spanish sites in which annual values of
irrigation at regional level were available through the Instituto
Nacional de Estadística. These data represent the average amount of
water used for irrigation (mm/year) in the period 2007–2014, although
it is not clear how reliable this information is. Moreover, for all pilot
sites except those in Australia, we are aware of the months in which
irrigation typically occurs and this criterion is considered for a quali-
tative assessment of the performances of the proposed method.

For each site, we selected two neighbouring pixels (25×25 km²) in
irrigated areas (according to the map of the areas equipped for irriga-
tion, Salmon et al., 2015) and two neighbouring pixels in non-irrigated
areas. Two 0.25-degree pixels are selected as a compromise between the
actual spatial resolution of satellite soil moisture products (∼40 km)
and to keep the investigated area as small as possible. Therefore, we are
able to test the differences in the irrigation signal detected from satellite
soil moisture data for irrigated and non-irrigated areas.

3. Satellite and ground-based datasets

3.1. Satellite soil moisture datasets

Currently, coarse resolution satellite soil moisture products are
available from different microwave sensors operating at X-, C-, and L-
band. For this study, we considered four different satellite sensors/
missions and different retrieval algorithms.

The SMAP mission, launched on January 2015, was dedicated to the
retrieval of soil moisture from the combined use of active and passive L-
band microwave sensors (Entekhabi et al., 2010). Due to the early
failure of the active sensor, currently SMAP provides satellite surface
soil moisture data (soil layer depth∼5 cm) from the passive microwave
radiometer at a nominal spatial resolution of 36 km and a revisit time of
3 days. For this study, we considered the official SMAP level 3 (version
4) surface soil moisture product that includes ascending and descending
orbits and has a spatial sampling of 36 km.

The SMOS mission was launched on November 2009 and it was the
first L-band microwave radiometer launched in orbit (Kerr et al., 2001).
The surface soil moisture product (depth∼5 cm) obtained by SMOS has
a nominal spatial resolution of ∼40 km and 3 days of revisit time. We

used the official SMOS level 3 surface soil moisture product distributed
by Centre Aval de Traitement des Données SMOS (CATDS) which in-
cludes ascending and descending orbits and has a spatial sampling of
∼0.25° (∼25 km).

ASCAT is a C-band scatterometer currently on board the Metop-A
and Metop-B satellites which were launched on October 2006 and
September 2012, respectively. The TU Wien retrieval algorithm
(Wagner et al., 2013) is used for obtaining surface soil moisture data
(depth ∼2.5 cm) from ASCAT backscattering observations with a spa-
tial resolution of 25 km and a nearly daily revisit time. The H SAF
(EUMETSAT Satellite Application Facility on Support to Operational
Hydrology and Water Management) H111 soil moisture product is used
here. The product includes ascending and descending orbits and has a
spatial sampling of 12.5 km. We also used a modified version of H111,
which includes a dynamical correction of vegetation backscatter
(Vreugdenhil et al., 2016); in H111 the (seasonally varying) correction
of vegetation is constant for all years.

AMSR2 is a multi-frequency radiometer launched on board the
GCOM-W1 satellite on May 2012. Two retrieval algorithms for AMSR2
brightness temperature observations are considered: the Land
Parameter Retrieval Model (LPRM, Owe et al., 2008) and the JAXA
(Japan Aerospace Exploration Agency) algorithm (Kim et al., 2015).
Specifically, three different products are released from the application
of LPRM to AMSR2 data based on the main wavelength used for soil
moisture retrieval, i.e., band C (2 wavelengths, c1= 6.925 GHz and
c2=7.3 GHz) and band X. Therefore, four surface soil moisture (depth
∼2.5 cm) products from AMSR2 are analysed, all of them including
both ascending and descending orbits, and with a spatial sampling of
0.25° (∼25 km).

3.2. Satellite and ground-based meteorological datasets

For each pilot site, and specifically for each pixel considered in the
analysis, we collected ground- and satellite-based rainfall and air tem-
perature data to be used as input observations in the SM2RAIN algo-
rithm. Daily rainfall observations are taken from different data sources
including: the gauge-based Climate Prediction Center (CPC) product for
the US sites, the European high-resolution gridded data sets (E-OBS,
Haylock et al., 2008) for the Spanish sites, the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) version 2.0 (Beck et al., 2017a,
2017b) for the Morocco site, the Australian Water Availability Project
(AWAP) dataset (Jones et al., 2009) for the Australian site and the
Italian Civil Protection Department gauge-based dataset (Ciabatta et al.,
2017) for the Italian site. The selection of the rainfall datasets was
carried out through a preliminary analysis in which we checked the
quality of each dataset at each site. Daily air temperature observations
are extracted from the NCEP-NCAR reanalysis project (Kalnay et al.,
1996) and are available on a global scale at 2.5-degree resolution.

4. Method

4.1. Theoretical background of the SM2RAIN algorithm

The SM2RAIN algorithm is based on the inversion of the soil water
balance equation and allows to estimate the amount of water entering
into the soil by using as input soil moisture information. SM2RAIN was
initially developed to retrieve rainfall from in situ and satellite soil
moisture data (Brocca et al., 2015, 2016, 2017; Koster et al., 2016;
Ciabatta et al., 2017; Massari et al., 2017a). In this study, we adapted
the SM2RAIN algorithm for quantifying irrigation over agricultural
regions. Specifically, the soil water balance equation can be described
by the following equation:

= + − − −nZ dS t
dt

r t i t g t sr t e t( ) ( ) ( ) ( ) ( ) ( )
(1)

where n [-] is the soil porosity, Z [mm] is the soil layer depth, S(t) [-] is
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the relative saturation of the soil or relative soil moisture, t [days] is the
time, r(t) [mm/days] is the rainfall rate, i(t) [mm/days] is the irrigation
rate, g(t) [mm/days] is the drainage (deep percolation plus subsurface
runoff) rate, sr(t) [mm/days] is the surface runoff and e(t) [mm/days]
is the actual evapotranspiration.

The drainage rate is related to the relative soil moisture through a
power law equation (Brocca et al., 2014b):

=
+g t K S t( ) ( )s λ3 2

(2)

where Ks [mm/days] is the saturated hydraulic conductivity and λ [-] is
the pore size distribution index.

The actual evapotranspiration rate is assumed to be linearly related
to potential evapotranspiration, ETpot(t) [mm/days]:

=e t ET t S t( ) ( ) ( )pot (3)

The potential evapotranspiration is computed through the empirical
relation of Blaney and Criddle as modified by Doorenbos and Pruitt
(1977):

= − + +ET t K T t( ) { 2 1.26[(0.46 ( ) 8.13)]}pot c a (4)

where Ta(t) [°C] is the air temperature, ξ [-] is the percentage of total
daytime hours for the period used (daily or monthly) out of total day-
time hours of the year (365×12), and Kc [-] is a correction factor for
taking into account the empirical nature of Eq. (4).

By assuming that the rate of surface runoff is negligible, sr(t)=0
(Brocca et al., 2015), Eq. (1) is rewritten as:

= + + −
+i t Z dS t

dt
K S t ET t S t r t( ) ( ) ( ) ( ) ( ) ( )s λ pot

* 3 2

(5)

where Z* = Zn [mm] represents the water capacity of the soil layer.
Therefore, Eq. (5) is used for estimating irrigation rate from soil

moisture, S(t), air temperature, Ta(t), and rainfall, r(t), data. Indeed,
irrigation is estimated as the difference between the total amount of
water entering into the soil (measured through soil moisture data) and
rainfall (last term of Eq. (5)). Four parameters (Z*, Ks, λ, Kc) need to be
estimated as described in the next section.

4.2. Implementation of SM2RAIN algorithm for irrigation estimation

In this section, the technical implementation of the adapted
SM2RAIN algorithm is described for the synthetic and real-world ex-
periments. The two experiments shared some common features related

to the calibration of the parameter values of the algorithm (Eq. (5)). In
both cases, the SM2RAIN algorithm is calibrated against reference
rainfall data. However, as we suppose that the irrigation water amount
is unknown (not true in the synthetic experiment), the calibration of
SM2RAIN by considering the days in which rainfall is zero, and irri-
gation might be greater than zero, implies a possible significant un-
derestimation of the water flux by SM2RAIN. In these days, an increase
in soil moisture is observed due to irrigation, but with the rainfall being
equal to zero, the calibration will produce wrong parameter values.
Therefore, the SM2RAIN calibration was carried out only for those days
in which reference rainfall is greater than zero thus assuming that at
those dates no irrigation is applied. Therefore, Eq. (5) is simplified to
(valid when i(t)=0):

= + +
+r t Z dS t

dt
K S t ET t S t( ) ( ) ( ) ( ) ( )s λ pot

* 3 2

(6)

and the reference rainfall can be used for obtaining the four parameters:
Z*, Ks, λ, Kc.

As objective function, in accordance with previous studies (Brocca
et al., 2017), the minimization of the root mean square difference be-
tween reference and SM2RAIN-estimated rainfall is considered. For this
study, the calibration is carried out by considering 30-day rainfall ac-
cumulation as we are interested in obtaining monthly-scale irrigation
water estimates. Specifically, Eq. (5) is applied at daily time scale and
used for obtaining SM2RAIN-derived rainfall plus daily irrigation rates.
Rainfall plus irrigation data are then aggregated to a monthly time scale
and the final irrigation estimates are obtained by subtracting the
monthly reference rainfall. To account for random errors in the pro-
posed algorithm, we masked out irrigation estimates which are below a
specific threshold. We assume that in this case irrigation is not sig-
nificant, i.e., lower than the structural rainfall error of the SM2RAIN
algorithm. Since rainfall errors are commonly assumed to be multi-
plicative (Tian et al., 2013), the used threshold depends on the absolute
estimated rainfall in the corresponding month. Specifically, irrigation is
assumed to be not significant if the ratio between monthly irrigation
and the reference monthly rainfall is lower than 1.5 (obtained through a
preliminary sensitivity analysis). Negative irrigation estimates are set to
zero. We also masked out the winter period in which no irrigation is
expected. As a final output, monthly irrigation is obtained. In Fig. 2 a
flow chart illustrating the overall approach for the calibration and the
simulation steps is given.

Fig. 2. Flow chart of the method used for estimating irrigation from satellite soil moisture products plus meteorological observations (air temperature and rainfall).
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4.2.1. Synthetic experiments
In the synthetic experiment, we used the soil water balance model

developed in Brocca et al. (2008, 2014b) for simulating surface soil
moisture by using meteorological and irrigation data as input. The
model was found to be accurate in simulating both the temporal evo-
lution of infiltration, with respect to the exact solution given by the
Richard’s equation and laboratory data (Morbidelli et al., 2011), and
soil moisture, with respect to in situ observations throughout Europe
(Brocca et al., 2014b). The soil water balance model is found to cor-
rectly represent the physical processes involved in the simulation of soil
moisture through rainfall and air temperature data. Therefore, it is an
appropriate tool to investigate the reliability of the proposed method
(Eq. (5)) for estimating irrigation water amounts.

The synthetic experiments are built as follows. Rainfall and air
temperature data from two sites characterized by two different cli-
mates, semi-arid in southern Spain (mean annual rainfall 490mm/year)
and semi-humid in northern Italy (mean annual rainfall 880mm/year),
are considered. These data are used as input into the soil water balance
model for simulating the hourly soil moisture temporal evolution for a
layer depth of 10 cm (if not explicitly stated differently). The parameter
values of the soil water balance model used in the simulations are ob-
tained from a previous application at the same sites (Brocca et al.,
2015). The obtained soil moisture observations are aggregated at daily
time scale and represent the simulated soil moisture without irrigation.
Additionally, we considered two different irrigation configurations: 1)
low irrigation rate corresponding to 300mm/year in the period July-
September, and 2) high irrigation rate corresponding to 600mm/year
in the period July-September (see Fig. 3). Irrigation is applied every
week (i.e., one day per week) at a constant rate of ∼23mm/week
(∼46mm/week) to obtain 300mm/year (600mm/year). By using the
same parameter values, soil moisture is simulated at an hourly time
scale and then aggregated to a daily time scale.

The daily simulated soil moisture data (without and with irrigation)
are used as input into the SM2RAIN algorithm (Eq. (5)) which is cali-
brated by using the reference rainfall as benchmark (only non-zero
rainfall values) as explained before. Once calibrated, Eq. (5) is applied
to the simulated soil moisture with irrigation for estimating monthly
irrigation that is compared with the synthetic irrigation observations to
assess the performance of the method under idealized conditions.

To obtain a more realistic representation of real-world conditions
we perturbed our soil moisture simulations with additive zero-mean
Gaussian noise with a standard deviation varying between 0.01 m³/m³
and 0.08 m³/m³. For assessing the influence of the revisit time of sa-
tellite observations, we also varied revisit times between one day (e.g.,
ASCAT and AMSR2) and six days (e.g., Sentinel-1). Additionally, we
performed a sensitivity analysis also varying the depth of the soil layer
between 4 and 16 cm and the amount of potential evapotranspiration
by using a multiplicative factor between 0.5 and 1.5. Results for the
above described synthetic scenarios are provided in Section 5.1.

4.2.2. Real-world experiments
In the real-world experiment, reference rainfall data are obtained

from raingauge or merged satellite-gauge products as mentioned before
(see Table 1 for details). Specifically, all the products are gridded onto a
regular grid with a 0.25-degree spacing, and the average rainfall and air
temperature for the two irrigated and non-irrigated pixels are com-
puted. Air temperature is used for computing potential evapo-
transpiration (Eq. (4)) while reference rainfall is used for the calibration
of the SM2RAIN parameters, which is performed separately at each site
(only non-zero rainfall values, Eq. (6)). To mitigate the impact of
random noise in the satellite soil moisture retrievals, we apply the ex-
ponential filter of Wagner et al. (1999) which essentially acts as a low
pass filter that preserves the lower-frequency irrigation signal while
removing high-frequency random errors (Brocca et al., 2016). The ca-
librated SM2RAIN algorithm is used for computing monthly irrigation
rates as in the synthetic experiments. The analysis period is 3-year

between 2014 and 2016.

5. Results and discussions

5.1. Synthetic experiments

Fig. 3 shows the results obtained for the two climates (semi-arid and
semi-humid) and for two predefined error levels in soil moisture data:
0.00 m³/m³, i.e., perfect observations, and 0.04 m³/m³, which is the
target uncertainty of the SMOS and SMAP missions. The configuration
with high irrigation rate equal to 600mm/year is considered. In the
simulations considering no error in soil moisture retrievals (Fig. 3a and
c), the capability of the method in reproducing (synthetically gener-
ated) true irrigation levels is very good, with a perfect agreement in the
semi-humid climate and slightly lower performances in the semi-arid
climate. The main problem in the semi-arid climate is observed at the
end of the irrigation period in the first year. Indeed, we applied irri-
gation in the month of September in which a large rainfall amount is
observed (100mm/month). In conditions in which irrigation is applied
during months with large rainfall, the method fails in correctly separ-
ating irrigation from precipitation. If we assume a random error of 0.04
m³/m³ the capability of estimating irrigation is reduced (see upper
panels of Fig. 3b and d). Indeed, particularly in the semi-arid climate,
spurious irrigation signals are obtained in the last year due to noise in
the soil moisture data. As before, the irrigation simulated in the semi-
humid climate shows a better agreement with observations with a slight
overestimation due to noise. The better results for the semi-humid cli-
mate are mainly due to the higher frequency (and magnitude) of
rainfall events that provide a better calibration of the adapted
SM2RAIN algorithm with respect to the semi-arid climate.

A more comprehensive analysis of the effect of irrigation intensity,
climate, soil moisture error, revisit time, potential evapotranspiration
and soil layer depth is shown in Fig. 4. The two top plots (Fig. 4a and b)
show the influence of soil moisture error and irrigation intensity on the
Pearson’s correlation coefficient, r, between true and estimated
monthly irrigation. 50 realizations are carried out in each configuration
to account for stochastic noise. The median r-values are shown in Fig. 4.
As before, the performances are better in the semi-humid climate nearly
independent from the irrigation rate. In the semi-arid climate, perfor-
mances are worse for the lower irrigation rate (300mm/year) and de-
crease quickly passing from an error of 0.01 m³/m³ to 0.03 m³/m³. For
larger errors, the performance converges to an r-value of 0.7. In the
semi-humid case, r-values are much larger (r>0.9) and a decrease in
the performance is visible only for errors larger than 0.06 m³/m³.
Fig. 4c and d show the influence of revisit time which is found to have a
larger impact on the results. Indeed, a larger deterioration in the per-
formance is observed, in this case with similar reductions for both the
semi-arid and semi-humid climate. If we assume perfect observations
(continuous lines in Fig. 4c and d), for a revisit time larger than three
days the r-values show a significant deterioration. When considering an
error of 0.04 m³/m³ the performances are lower, particularly for the
semi-arid climate. Interestingly, the r-values in the semi-arid climate for
a low irrigation rate (300mm/year) and an error of 0.04 m³/m³ are
quite low and not varying with revisit time. The influence of potential
evapotranspiration is shown in Fig. 4e and f in which a multiplicative
factor is considered for increasing or decreasing the “observed” value of
potential evapotranspiration. In this case, the method shows null to low
sensitivity due to the capability of SM2RAIN to adapt the parameter
values to arrange the different magnitude of evapotranspiration. Simi-
larly, the method shows very low sensitivity to the soil layer depth
(Fig. 4g and h). For the semi-humid climate, better performances are
obtained for a shallower layer depth due to its higher sensitivity to the
rainfall and irrigation input from the atmosphere. Therefore, the
shallow soil layer depth seen from satellite sensors is suitable for irri-
gation quantification.

The results of the synthetic experiment indicate that the adapted
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SM2RAIN approach is able to provide an estimation of monthly irri-
gation with better performances in semi-humid climate and for larger
irrigation rates. Revisit time is found to have a larger influence on the
performance than random errors. Potential evapotranspiration and soil
layer depth have a null to low impact on the method performances. In
summary, uncertainties larger than 0.03 m³/m³ (0.06 m³/m³) and re-
visit times larger than three days can be considered as threshold values
in semi-arid (semi-humid) climate beyond which we can expect a low
reliability of irrigation estimates.

5.2. Real-world experiments

As preliminary analysis, we assessed the capability of the different
satellite soil moisture products to reproduce observed rainfall estimates
through SM2RAIN. A total number of eight satellite soil moisture pro-
ducts is analysed: SMAP, SMOS, two algorithms for ASCAT, three bands
for AMSR2-LPRM, and AMSR2-JAXA. For each pilot site, we selected 16
pixels neighbouring the irrigated pixels shown in Fig. 1, and for each
pixel we computed daily rainfall through SM2RAIN corresponding to
non-zero values of reference rainfall. By analysing these results, we

Fig. 3. Synthetic experiments: in each plot, the top panel shows the synthetic soil moisture time series obtained with and without the application of irrigation
(600mm/year in the period July-September). The middle panel shows the observed rainfall and the SM2RAIN-derived rainfall plus irrigation estimates. The bottom
panel shows the estimated irrigation as compared with the “observed” one (synthetic irrigation). The four plots represent two different climates (top: semi-arid,
bottom: semi-humid) and two different errors on soil moisture data (left: 0.00 m³/m³, i.e., perfect observations, right: 0.04 m³/m³).

Table 1
Main characteristics of the selected pilot sites (ET: evapotranspiration; Long.: longitude, Lat.: latitude).

Pilot site Climate Annual precipitation (mm) Annual potential ET (mm) Long./Lat.

Irrigated Non-irrigated

California Central Valley (US) semi-arid 320 (CPC) 1170 −122.0/39.3 −119.1/35.4
Nebraska Plain (US) semi-humid 660 (CPC) 970 −96.9/41.9 −101.8/41.9
Lower Mississippi Basin (US) humid 1250 (CPC) 1320 −90.9/33.5 −89.9/33.8
Marrakech (Morocco) semi-arid 350 (MSWEP) 1400 −7.6/31.5 −8.2/31.4
Andalusia (Spain) semi-arid 550 (EOBS) 1340 −5.3/37.8 −5.3/37.4
Murcia (Spain) semi-arid 320 (EOBS) 1380 −2.2/38.1 −1.4/38.1
Castilla y León (Spain) semi-arid 430 (EOBS) 1080 −5.1/41.1 −6.6/40.9
Romagna (Italy) semi-humid 690 (DPC) 970 11.8/44.6 11.0/44.3
Yanco (Australia) semi-arid 530 (AWAP) 1210 146.7/-35.7 144.9/-34.0
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selected the best performing product for ASCAT, i.e., the one con-
sidering the dynamical correction of vegetation (Hahn et al., 2017), and
for AMSR2-LPRM, i.e., band C2 (7.3 GHz). Therefore, we finally se-
lected the 5 soil moisture products to be used for estimating irrigation.
The performance in terms of monthly rainfall estimation at each pilot
sites is shown in Fig. 5. Overall, the best performing product is SMAP,
with median r-values greater than 0.9 except for the Lower Mississippi
Basin. We should also underline that SMAP data are only available for a

period of 20 months (March 2015 – December 2016) while the other
products are available for the full 3-year period. The SMOS product is
performing satisfactorily at US sites and in Australia, ASCAT shows
good results at all sites except the Lower Mississippi Basin, and the two
AMSR2 products perform similarly with slightly better performance for
AMSR2-LPRM than for AMSR2-JAXA. The overall ranking of the pro-
ducts in terms of monthly rainfall estimation is: SMAP (median
r=0.95), ASCAT (0.87), AMSR2-LPRM (0.82), AMSR2-JAXA (0.77),

Fig. 4. Synthetic experiments: median correlation between observed and estimated irrigation as a function of error on soil moisture observations (a,b), revisit time
(c,d), potential evapotranspiration, ETPOT, (e,f), and soil layer depth (g,h) for the semi-arid (a,c,e,g) and semi-humid (b,d,f,h) climates. Two irrigation intensities are
considered: 300mm/year and 600mm/year (IRR: annual irrigation rate; err: soil moisture error in m³/ m³). Note that y-axis range is between 0.5 and 1 for improving
the visualization of the differences between the simulations.
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and SMOS (0.66). It should be underlined that RFI significantly affects
SMOS accuracy at the Romagna (Italy) site and in Spain. Moreover, the
lower revisit time of SMOS (three days as opposed to one day for ASCAT
and AMSR2) is another limitation for using such a product alone for
rainfall estimation through SM2RAIN.

Figs. 6 and 7 summarize our real-world results for all considered
products and pilot sites. As mentioned before, the major limitation of
this analysis is the lack of reliable reference irrigation information that
should be used for validating the method. Therefore, we adopted a
qualitative approach for assessing the reliability of the irrigation esti-
mation method. First, we know the periods (months) in which irrigation
typically occurs, and the method is assumed to be reliable if it correctly
identifies irrigation in these periods. Second, if there is consistency
between estimates from the different satellite soil moisture products,
this provides a certain level of confidence that the derived signals are
indeed resulting from irrigation. Third, we expect that the soil moisture
products which performs better in terms of rainfall retrieval (Fig. 4) can
be considered as “reference” also for estimating irrigation (i.e., SMAP).

Based on the criteria selected above, from Figs. 6 and 7 we assume
that the irrigation estimates for the sites in California, Morocco and
Spain can be considered reliable. Indeed, for these sites the irrigation
estimates between the satellite soil moisture products are consistent
with each other (remember though that SMAP is available only from
2015), occur in the expected time period (summer season), and show
realistically larger values in California where irrigation is known to be
abundant. In California, we observe soil moisture increases in periods
without rainfall, clearly showing a signal of irrigation in satellite soil
moisture data (particularly evident in SMAP and SMOS). SMAP and
SMOS based results are very consistent with each other, while the C-
band ASCAT and AMSR2-LPRM results show an irrigation signal 1–2
months later than the L-band products, AMSR2-JAXA shows a beha-
viour close to SMAP and SMOS. As ASCAT is an active sensor, it might
be due to specular reflection of the signal in flooded rice fields. More-
over, these differences could be attributed to the way in which vege-
tation is modelled in the retrieval algorithms. Clearly, an in-depth in-
vestigation is needed to disentangle the different components affecting
the active/passive microwave signals in irrigated areas.

At the other sites (Nebraska, Mississippi, Italy, and Australia), at
least one of the above criteria is not met. For instance, in Nebraska
irrigation takes place in the months July-September, and it seems to be
correctly identified by the ASCAT product (see the higher soil moisture
values of ASCAT in the top panel of Fig. 5). However, due to the oc-
currence of significant rainfall in the irrigation period, the proposed
method is not able to estimate the irrigation amount at this site and,
likely, a different configuration of the method (e.g., different threshold
for non-significant irrigation, weekly aggregation of the data) would be
required. In the Mississippi region, ASCAT and AMSR2 products show a
strong irrigation signal in the months August-September, which is not
captured by SMOS and SMAP, although the latter two showed better
performances in terms of rainfall retrieval (Fig. 5). Therefore, we
cannot be sure that the detected irrigation signal is real or an artefact.
In Italy, the products are consistent with each other in the years 2015
and 2016 (note that SMOS data are not available due to RFI), but no
irrigation is found in 2014. This might be due to the large rainfall that
occurred in summer 2014 (230mm, compared to ∼90mm in 2015 and
2016) which reduced the need of irrigation. Finally, in Australia,
ASCAT and AMSR2 products show a good consistency, partly also with
SMOS in 2015 and 2016, but SMAP irrigation is equal to zero
throughout the whole period.

A more stringent test of the results is carried out by applying the
method at non-irrigated and partially irrigated pixels. Fig. 8 shows the
comparison of irrigation estimates at three pilot sites in which the
difference between irrigation estimates in irrigated and non-irrigated
pixels is more significant. As shown before, in California the irrigation
signal detected from satellite soil moisture products is evident (see also
Lawston et al., 2017), and for non-irrigated pixels the irrigation is close
to zero (top panels of Fig. 8). Similar differences are also observed at
Castilla y León site and at Marrakech. For the other Spanish sites (not
shown), at which irrigation signals are clearly detected (see Figs. 6 and
7), the differences between irrigated and non-irrigated pixels are lower
(non-irrigated pixels show 30–40% less irrigation than irrigated pixels).
This can be attributed to the spatial resolution of satellite observations.
Indeed, even though the data are gridded at 0.25-degree sampling, the
spatial resolution of SMOS, SMAP and AMSR2 are coarser (around

Fig. 5. Real-world experiments: box plot of Pearson’s correlation values between observed and SM2RAIN-derived rainfall at monthly scale. Results are shown for the
9 different pilot sites and with the five satellite soil moisture products showing the better performances. Correlations are computed only when the reference rainfall is
greater than zero (SMA: SMAP; SMO: SMOS; ASCc: ASCAT with dynamic vegetation correction; AMSc2: AMSR2-LPRM c2-band; AMSj: AMSR2-JAXA).
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Fig. 6. Real-world experiments: results in terms of irrigation quantification for four pilot sites. Each panel shows on the top the satellite soil moisture time series (10-
day smoothed) and observed normalized rainfall (weekly), the bottom panel shows the estimated irrigation water (thick lines) from each satellite soil moisture
product. Thin lines are estimated irrigation signals that are not significant, i.e., lower than the error of the method. Yellow areas are the periods in which irrigation
typically occur, dark grey areas are the masked winter periods (SMA: SMAP; SMO: SMOS; ASCc: ASCAT with dynamic vegetation correction; AMSc2: AMSR2-LPRM
c2-band; AMSj: AMSR2-JAXA; IRR: irrigation; SM: relative soil moisture). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article).
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40 km). Also the ASCAT product is sampled to about 36 km resolution
using a Hamming window in order to reduce noise. Therefore, the se-
lected non-irrigated pixels are likely affected by the close irrigated ones
and the assumption that no irrigation takes place is not correct. For the
sites shown in Fig. 8 the non-irrigated pixels are sufficiently far from

the irrigated ones to be considered as not affected by irrigation.
Finally, for the Spanish sites, an analysis at the annual scale is

performed. Specifically, for each pilot site and for each soil moisture
product (except SMOS in Andalusia and Murcia as it is not available),
we applied our approach to irrigated and non-irrigated pixels and we

Fig. 7. As in Fig. 6 for the remaining five sites.
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computed the average annual amount of irrigation for the period 2014-
2016. Then, we computed the average annual value among all the soil
moisture products that is compared with the estimates provided by the
Instituto Nacional de Estadística. Results are presented in Fig. 9 and
show that the two estimates have the same order of magnitude, which is
between 20 and 60mm/year. The proposed approach overestimates
irrigation at Castilla y León region, but correctly identifies the Murcia
region as the area in which the more abundant amount of irrigation is
applied.

By critically analysing the obtained results, several limitations af-
fecting the feasibility of using satellite soil moisture products for
quantifying irrigation are identified. We attempt here to classify these
limitations in order of relevance to underline the main points that need

to be improved and further investigated. The major issue we found is
related to the coarse spatial resolution of the satellite soil moisture
product with respect to the size of the irrigated fields, which is con-
sistent with earlier findings (Kumar et al., 2015; Escorihuela and
Quintana-Segui, 2016). Indeed, apart from the California and the Mis-
sissippi sites, in the other sites the irrigated areas are much smaller than
the actual resolution (∼40 km) of satellite soil moisture products. This
makes it difficult to detect irrigation signals and, more importantly, to
quantify actual irrigation amounts. The second issue is related to noise
which is misinterpreted as irrigation signal by the SM2RAIN algorithm.
In this study, we applied an exponential filter to reduce such effects but
we believe that more tailored filtering approaches (e.g., Wavelets,
Massari et al., 2017b) would have to be applied. The third issue is

Fig. 8. Real-world experiments: comparison between monthly irrigation estimates for irrigated and non-irrigated pixels for the three sites in which the proposed
method is expected to perform satisfactorily: California Central Valley, Castilla y Leòn, and Marrakech. The grey area represents the average irrigation obtained with
the different products (SMA: SMAP; SMO: SMOS; ASCc: ASCAT with dynamic vegetation correction; AMSc2: AMSR2-LPRM c2-band; AMSj: AMSR2-JAXA; IRR:
irrigation).
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represented by the confounding effect of vegetation that should be
disentangled from the soil moisture contribution in the retrieval algo-
rithms of satellite soil moisture products. As evident at the California
site, there is a need to clearly understand the contribution of vegetation
and soil moisture over irrigated areas in which the two components are
strictly linked. Finally, we found that the quality of the reference
rainfall data used in Eq. (5) is a less relevant issue; we tried different
rainfall products obtaining similar performances (not shown). Indeed,
most irrigated areas (except rice) will operate when rainfall is at a
minimum as energy at the surface (and potential evaporation) is the
largest. Thus rainfall will come in spatially isolated and spurious events
which replace irrigation for the farmers, and hence its impact is ex-
pected to be low.

6. Conclusions

In this study, we attempted to understand if coarse resolution sa-
tellite soil moisture products can be used to identify areas where irri-
gation is applied and, if so, to estimate the amount of water that is
applied for this purpose. We therefore adopted a modified version of the
SM2RAIN algorithm, which was specifically designed for this purpose.
Based on the results shown above, the following conclusions can be
drawn:

1) Through the synthetic experiments we assessed the reliability of the
proposed approach for irrigation water quantification. Better per-
formances are found in semi-humid climate, and the revisit time is
found to be more important than the retrieval error for obtaining
good accuracy. Potential evapotranspiration and soil layer depth
have a null to low impact on the method performances.

2) At pilot sites, the SM2RAIN algorithm is found to perform well in
reproducing monthly rainfall from satellite soil moisture observa-
tions, particularly from SMAP but also from ASCAT and AMSR2-
LPRM soil moisture products. The low revisit time of SMOS, and
mainly RFIs at some sites, significantly hampers its use except in
USA and Australia.

3) The quantification of irrigation in the real-world experiment is ex-
pected to be feasible if satellite soil moisture data have a sufficiently
low uncertainty and at sites in which prolonged periods of low
rainfall amounts are observed. Under these conditions, the satellite
soil moisture products show good consistency with each other and
might be able to reproduce the expected irrigation signal. However,
it should be acknowledged that only a qualitative assessment has
been carried out in this study.

4) At sites affected by snow/frozen soil conditions (Nebraska), or in
which rainfall is sustained throughout the year (e.g., Mississippi and
Australia), the estimation of irrigation is more difficult, if feasible at
all.

As mentioned above, the main issue we found is related to the
spatial resolution of the employed satellite soil moisture products.
Therefore, next research activities will be addressed to the use of high
resolution products, e.g., by using Sentinel-1, downscaled products
(e.g., Piles et al., 2011; Zhao and Li, 2013; Peng et al., 2015;
Escorihuela and Quintana-Segui, 2016) and/or new technologies (e.g.,
cubesats, McCabe et al., 2017, and/or Global Navigation Satellite
System (GNSS) bi-static radar receivers, Chew and Small, 2018). The
second major limitation of this study is the absence of comprehensive
and reliable in situ irrigation observations for developing and vali-
dating more accurate approaches. We believe that an effort in this di-
rection should be carried out by international agencies and institutions
involved in the management of water resources, particularly in the
agricultural sector.

The recent availability of satellite soil moisture products with in-
creasing spatial-temporal resolution and accuracy might be an im-
portant data source for better managing water irrigation at limited
costs. This study has been addressed to assess the potential of coarse
resolution products, but research and project activities using high re-
solution and newer products are ongoing. For instance, the integration
of multiple satellite soil moisture products for improving the temporal
resolution of the observations is expected to improve irrigation esti-
mates (see Tarpanelli et al. (2017) for a first example in which
SM2RAIN has been applied for rainfall estimation through the in-
tegration of multiple satellite soil moisture products).
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