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1 Introduction

In 1883 the Cambridge mathematician A.R. Forsyth derived the following
formula for 1

π using Legendre polynomials [5]:

∞∑
n=0

(
2n
n

)2
(2n− 1)224n

=
4

π
. (1)

J.W.L. Glaisher [6] used elliptic functions to prove in 1905 a number of
similar formulas including the following one:

∞∑
n=0

(
2n
n

)2
(n+ 1)24n

=
4

π
. (2)
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And there is also this series:

−
∞∑
n=0

(
2n
n

)2
(2n− 1)24n

=
2

π
. (3)

Both (2) and (3) are equivalent with Euler’s version of Wallis’s famous product
formula for π derivable from the infinite product expansion of the sine function
[14]:

∞∑
n=0

(
2n
n

)2
(n+ 1)24n

= 1 +
1

2·22
+

1232

2·426
+

123252

2·42628
+

12325272

2·42628210
+ · · ·

=
3·3
2·4

+
1232

2·426
+

123252

2·42628
+

12325272

2·42628210
+ · · ·

=
3·3
2·4
· 5·5
4·6

+
123252

2·42628
+

12325272

2·42628210
+ · · ·

=
3·3
2·4
· 5·5
4·6
· 7·7
6·8

+
12325272

2·42628210
+ · · ·

=
3·3
2·4
· 5·5
4·6
· 7·7
6·8
· · · = 4

π

and

−
∞∑
n=0

(
2n
n

)2
(2n− 1)24n

= 1− 1

22
− 123

2242
− 12325

224262
− 1232527

22426282
− · · ·

=
1·3
2·2
− 123

2242
− 12325

224262
− 1232527

22426282
− · · ·

=
1·3
2·2
· 3·5
4·4
− 12325

224262
− 1232527

22426282
− · · ·

=
1·3
2·2
· 3·5
4·4
· 5·7
6·6
− 1232527

22426282
− · · ·

=
1·3
2·2
· 3·5
4·4
· 5·7
6·6
· · · = 2

π
.

The following series is due to G. Bauer (1859) [10]:

∞∑
n=0

(−1)n
(4n+ 1)

(
2n
n

)3
26n

=
2

π
. (4)

All the previous series converge very slowly. The last one can be found in
S. Ramanujan’s first letter to G. Hardy, dated January 31, 1913. In a paper
published in 1914 [16] Ramanujan lists some more rapidly converging series
for 1/π which he found using modular equations. These are two of them:

∞∑
n=0

(6n+ 1)
(
2n
n

)3
28n

=
4

π
, (5)
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∞∑
n=0

(42n+ 5)
(
2n
n

)3
212n

=
16

π
. (6)

In this paper we show how Ramanujan’s series (5) and a number of other
series for 1

π can be derived from Forsyth’s in a straightforward way. The same
method can also be applied to Glaisher’s series (2) and to (3), leading to a
proof of (4) and (6).

Series for 1
π have received much attention lately, see for instance the survey

paper by Baruah, Berndt and Chan [2] and the work of Guillera [7,8] who uses
the Wilf-Zeilberger method to find series of this form. Chu [3] and Liu [11,
12] have obtained similar results by manipulating hypergeometric series using
Dougall’s and Gauss’s summation formulae.

2 A first recurrence

Note that all the series in the introduction contain the central binomial coef-
ficients which can be rewritten using the Pochhammer symbol:(

2n

n

)
= 22n

(
1
2

)
n

n!
= 22n

(
1
2

)
n

(1)n
.

Using this in the general term of (1) we find that:(
2n
n

)2
(2n− 1)224n

=
1

(2n− 1)2

(
1
2

)2
n

(1)2n
=

1

4

(
1
2

)2
n−1

(1)2n
=

1

4

(
1
2

)2
n−1

(2)2n−1
.

Hence Forsyth’s series can be written in the following form:

4

π
= 1 +

1

4

∞∑
n=0

(
1
2

)2
n

(2)2n
. (7)

This last series is a special case of the more general series

∞∑
n=0

(a)2n
(a+ b)2n

= 3F2

[
a a 1

a+ b a+ b
; 1

]
with a = 1

2 and b = 3
2 . In the rest of the paper we will use the abbreviation:

s(a, b) =

∞∑
n=0

(a)2n
(a+ b)2n

. (8)

This expression satisfies the following recurrence relation:

Theorem 1 (+0,+1–scheme)

s(a, b) =
2a+ 3b− 2

2(2b− 1)
+

b3

2(2b− 1)(a+ b)2
· s(a, b+ 1). (9)
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Proof Manipulation of the general term in the series s(a, b + 1) leads to the
required result. We start by writing:

∞∑
n=0

(a)2n
(a+ b+ 1)2n

=
1

b2

∞∑
n=0

(a)2n(a+ b+ n− (a+ n))2

(a+ b+ 1)2n
.

If we work out the numerator, we get the following 3 series:

∞∑
n=0

(a)2n(a+ b+ n)2

(a+ b+ 1)2n
= (a+ b)2

∞∑
n=0

(a)2n
(a+ b)2n

= (a+ b)2s(a, b)

∞∑
n=0

(a)2n(a+ n)2

(a+ b+ 1)2n
= (a+ b)2

∞∑
n=0

(a)2n+1

(a+ b)2n+1

= (a+ b)2(s(a, b)− 1)

∞∑
n=0

(a)2n(a+ b+ n)(a+ n)

(a+ b+ 1)2n
= (a+ b)2

∞∑
n=0

(a)2n(a+ n)

(a+ b)2n(a+ b+ n)
.

We now deal with this last series. Using a similar trick as before, we get:

∞∑
n=0

(a)2n(a+ n)

(a+ b)2n(a+ b+ n)
=

1

b

∞∑
n=0

(a)2n(a+ n)(a+ b+ n− (a+ n))

(a+ b)2n(a+ b+ n)

=
1

b

( ∞∑
n=0

(a)2n(a+ n)

(a+ b)2n
−
∞∑
n=0

(a)2n+1

(a+ b)2n(a+ b+ n)

)

=
1

b

(
a+

∞∑
n=1

(a)2n(a+ n)

(a+ b)2n
−
∞∑
n=0

(a)2n+1

(a+ b)2n(a+ b+ n)

)

=
1

b

(
a+

∞∑
n=0

(a)2n+1(a+ n+ 1)

(a+ b)2n+1

−
∞∑
n=0

(a)2n+1

(a+ b)2n(a+ b+ n)

)

=
a

b
+

1

b

∞∑
n=0

(a)2n+1(a+ n+ 1− (a+ b+ n))

(a+ b)2n+1

=
a

b
+

1− b
b

∞∑
n=0

(a)2n+1

(a+ b)2n+1

=
a

b
+

1− b
b

(s(a, b)− 1).

We bring everything together:

s(a, b+ 1) =
(a+ b)2

b2

(
s(a, b) + s(a, b)− 1− 2

(
a

b
+

1− b
b

(s(a, b)− 1)

))
.

Rearranging leads to (9).

Note that this theorem can be found in a slightly less general form in Knopp
[9, p. 261-262]. It is a special case of Kummer’s transformation of series.

Using Theorem 1 we are now able to rewrite s(a, b):
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Theorem 2

s(a, b) =

∞∑
n=0

2a+ 3(b+ n)− 2

2(2(b+ n)− 1)
· (b)3n

22n(b− 1
2 )n(a+ b)2n

. (10)

Proof From (9) it follows that:

s(a, b+ n) =
2a+ 3(b+ n)− 2

2(2(b+ n)− 1)
+

(b+ n)3

22(b+ n− 1
2 )(a+ b+ n)2

· s(a, b+ n+ 1).

Iterating this formula starting from n = 0 proves the result.

Ramanujan’s formula (5) is an immediate consequence of Theorem 2:

Corollary 1
∞∑
n=0

(6n+ 1)
(
2n
n

)3
28n

=
4

π
.

Proof Forsyth’s formula is equivalent with (7):

16

π
− 4 = s( 1

2 ,
3
2 ).

We rewrite the right-hand side using Theorem 2:

s( 1
2 ,

3
2 ) =

∞∑
n=0

2 + 3(3 + 2n)− 4

2(2(3 + 2n)− 2)
·

( 3
2 )3n

22n(1)n(2)2n

=

∞∑
n=0

6n+ 7

8
·

8( 1
2 )3n+1

22n(1)3n+1

= 4

∞∑
n=1

(6n+ 1)
(
2n
n

)3
28n

.

This leads to:

16

π
= 4 + 4

∞∑
n=1

(6n+ 1)
(
2n
n

)3
28n

⇒ 4

π
=

∞∑
n=0

(6n+ 1)
(
2n
n

)3
28n

.

3 Other recurrences

Note that the following recurrence relation:

s(a, b) = 1 +
a2

(a+ b)2
s(a+ 1, b) (11)

is related to the series (8) in the same way that (9) is related to (10). By
combining (9) and (11) we get new recurrences.
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Theorem 3 (+1,+1–scheme)

s(a, b) =
(2a+ 3b− 2)(a+ b)2 + b3

2(2b− 1)(a+ b)2
+

a2b3

2(2b− 1)(a+ b)2(a+ b+ 1)2
s(a+1, b+1).

The corresponding series is:

s(a, b) =

∞∑
n=0

(5n+ 2a+ 3b− 2)(a+ b+ 2n)2 + (b+ n)3

2(2(b+ n)− 1)(a+ b+ 2n)2
· (a)2n(b)3n
22n(b− 1

2 )n(a+ b)22n
.

Proof We replace s(a, b+ 1) in the right-hand side of (9) by the corresponding
formula from (11):

s(a, b) =
2a+ 3b− 2

2(2b− 1)
+

b3

2(2b− 1)(a+ b)2
· s(a, b+ 1)

=
2a+ 3b− 2

2(2b− 1)
+

b3

2(2b− 1)(a+ b)2
·
(

1 +
a2

(a+ b+ 1)2
s(a+ 1, b+ 1)

)
.

The series follows immediately from this recurrence.

If we take a = 1
2 , b = 3

2 , we get the following series:

4

π
=

∞∑
n=0

168n3 − 36n2 + 6n+ 1

(2n− 1)2

(
2n
n

)3
212n

. (12)

By combining the two recurrences (9) and (11) we can derive other series. For
instance, if we use (11) again in the recurrence of Theorem 3, we get this series
(+2,+1–scheme):

4

π
=

∞∑
n=0

18560n5 − 20736n4 + 8160n3 − 992n2 + 30n+ 9

(4n− 1)2(4n− 3)2

(
2n
n

)(
4n
n

)2
216n

.

And this is the series we obtain if we use (9) again in the recurrence of Theorem
3 (+1,+2–scheme):

4

π
=

∞∑
n=0

186368n5 − 128000n4 + 22304n3 − 152n2 + 2n+ 1

(2n− 1)(4n− 1)3

(
4n
2n

)(
4n
n

)2
220n

.

4 Recurrences related to Glaisher’s and Wallis’s series

Glaisher’s series (2) can be written in the following form:

4

π
= 1 +

1

4

∞∑
n=0

(
3
2

)2
n

(2)n(2)n+1
.
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The series on the right-hand side is the special case a = 3
2 , b = 1

2 of this series:

t(a, b) =

∞∑
n=0

(a)2n
(a+ b)n(a+ b)n+1

.

In a similar way as in the previous sections we can prove the two recurrences
equivalent with (9) and (11) for t:

t(a, b) =
1

a+ b
+

a2

(a+ b)2
t(a+ 1, b),

t(a, b) =
a+ 2ab+ b+ 3b2

2(2b+ 1)b(a+ b)
+

b(b+ 1)2

2(2b+ 1)(a+ b)2
t(a, b+ 1).

Using only the last recurrence (+0,+1–scheme) with a = 3
2 and b = 1

2 we get
the following new series:

4

π
=

∞∑
n=0

12n2 + 4n+ 1

(2n− 1)2(n+ 1)

(
2n
n

)3
28n

.

With the +1,+1-scheme we again obtain the series (12).
The series (3) can be rewritten like this:

2

π
= 1− 1

8

∞∑
n=0

(
3
2

)
n−1

(
3
2

)
n

(2)2n
.

where the series on the right is a special case of

u(a, b) =

∞∑
n=0

(a)n−1(a)n
(a+ b)2n

with corresponding recurrences:

u(a, b) =
1

a− 1
+

a2

(a+ b)2
u(a+ 1, b),

u(a, b) =
a+ 2ab+ 3b2 − 1

2(2b+ 1)b(a− 1)
+

b(b+ 1)2

2(2b+ 1)(a+ b)2
u(a, b+ 1).

The +0,+1–scheme leads in this case to the series:

2

π
= −

∞∑
n=0

12n2 − 1

(2n− 1)2

(
2n
n

)3
28n

.

With the +1,+1 –scheme we find this series:

2

π
= −

∞∑
n=0

168n3 + 20n2 − 2n− 1

(2n− 1)2

(
2n
n

)3
212n

. (13)

With these series we can prove (6):
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Corollary 2
∞∑
n=0

(42n+ 5)
(
2n
n

)3
212n

=
16

π
.

Proof If we add (12) and (13), we get a new series:

3

π
=

∞∑
n=0

−28n2 + 4n+ 1

(2n− 1)2

(
2n
n

)3
212n

.

If we substract (13) from 6 times the previous series, the sum of the new series
is 16

π , and the polynomial in the numerator is given by:

6(−28n2 + 4n+ 1) + 168n3 + 20n2 − 2n− 1 = (42n+ 5)(2n− 1)2.

Hence the resulting series is Ramanujan’s series (6).

Note that (3) can also be written in this form:

2

π
= 1− 1

4

∞∑
n=0

(
1
2

)
n

(
3
2

)
n

(2)2n
(14)

and hence is a special case (a = 1
2 , b = 3

2 ) of this series:

v(a, b) =

∞∑
n=0

(a)n(b)n
(a+ b)2n

= 3F2

[
a b 1

a+ b a+ b
; 1

]
.

The corresponding recurrences are:

Theorem 4

v(a, b) =
a+ 2b− 1

a+ b− 1
− b3

(a+ b)2(a+ b− 1)
· v(a, b+ 1),

v(a, b) =
2a+ b− 1

a+ b− 1
− a3

(a+ b)2(a+ b− 1)
· v(a+ 1, b).

Proof We prove the first one. The second one follows by symmetry. Note that
the identity we want to prove can be rewritten like this:

v(a, b+ 1) =
(a+ b)2

b2

(
1− a+ b− 1

b
(v(a, b)− 1)

)
or

∞∑
n=0

(a)n(b+ 1)n
(a+ b+ 1)2n

=
(a+ b)2

b2

(
1− a+ b− 1

b
(v(a, b)− 1)

)
.

We use the definition of the pochhammer symbol to rewrite the left-hand side
and at the same time we add a factor:

∞∑
n=0

(a)n(b+ 1)n
(a+ b+ 1)2n

=
(a+ b)2

b2

∞∑
n=0

(a)n(b)n+1

(a+ b)2n+1

(a+ b+ n− (a+ n)).
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After simplifying and using the definition of v, what we have to prove becomes:

∞∑
n=0

(a)n(b)n+1

(a+ b)2n+1

(a+b+n)−
∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

= 1− a+ b− 1

b

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

.

Note that two sums cancel out, and we are left with:

∞∑
n=0

(a)n(b)n+1

(a+ b)2n+1

(a+ b+ n) = 1− a− 1

b

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

.

We multiply by b and rewrite the left-hand side:

∞∑
n=0

(a)n(b)n+1

(a+ b)2n+1

(a+ b+ n)(a+ b+ n− (a+ n)) = b− (a− 1)

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

⇔
∞∑
n=0

(a)n(b)n+1

(a+ b)2n
−
∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

(a+ b+ n)

= b− (a− 1)

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

⇔
∞∑
n=0

(a)n(b)n+1

(a+ b)2n
−
∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

(b+ n) = b+

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

.

If we change the index of summation in the first term on the left, the b at the
right cancels out:

∞∑
n=0

(a)n+1(b)n+1(b+ n+ 1)

(a+ b)2n+1

−
∞∑
n=0

(a)n+1(b)n+1(b+ n)

(a+ b)2n+1

=

∞∑
n=0

(a)n+1(b)n+1

(a+ b)2n+1

.

It is now easy to see that both sides are equal.

Using the first recurrence in the same way as in Theorem 2, we get the following
result:

Theorem 5

v(a, b) =

∞∑
n=0

(−1)n
a+ 2(b+ n)− 1

a+ b+ n− 1

(b)3n
(a+ b)2n(a+ b− 1)n

. (15)

An immediate consequence is (4):

Corollary 3

∞∑
n=0

(−1)n
(4n+ 1)

(
2n
n

)3
26n

=
2

π
.
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Proof We rewrite the right-hand side of (14) using Theorem 5:

v( 1
2 ,

3
2 ) =

∞∑
n=0

(−1)n
1 + 2(3 + 2n)− 2

2n+ 2
·

( 3
2 )3n

(1)n(2)2n

=

∞∑
n=0

(−1)n
4n+ 5

2
·

8( 1
2 )3n+1

(1)3n+1

= 4

∞∑
n=1

(−1)n−1
(4n+ 1)

(
2n
n

)3
26n

.

This leads to:

2

π
= 1−

∞∑
n=1

(−1)n−1
(4n+ 1)

(
2n
n

)3
26n

=

∞∑
n=0

(−1)n
(4n+ 1)

(
2n
n

)3
26n

.

Other consequences of Theorem 5 are:

Corollary 4

3
√

3

2π
=

∞∑
n=0

(−1)n(6n+ 1)
( 1
3 )3n
n!3

3

π
=

∞∑
n=0

(−1)n(12n+ 1)
( 1
6 )3n
n!3

2
√

2

π
=

∞∑
n=0

(−1)n(8n+ 1)
( 1
4 )3n
n!3

4
√

2−
√

2

π
=

∞∑
n=0

(−1)n(16n+ 1)
( 1
8 )3n
n!3

5
√

5−
√

5

2
√

2π
=

∞∑
n=0

(−1)n(10n+ 1)
( 1
5 )3n
n!3

5(
√

5− 1)

2π
=

∞∑
n=0

(−1)n(20n+ 1)
( 1
10 )3n
n!3

Proof These series follow from the Wallis-type products for π which can be
found in [1] (see also [13], formulas (10), (11) and (19)):

sin(πm/k)

πm/k
=

∞∏
n=0

nk + k −m
nk + k

nk + k +m

nk + k

for m, k positive integers with m < k. The choice m = 1, k = 2 leads to Wallis’s
product. If we take m = 1, k = 3, the product takes this form:

3
√

3

2π
=

2 · 4
3 · 3

· 5 · 7
6 · 6

· 8 · 10

9 · 9
· · · .

As we did in the introduction with Wallis’s product, we can rewrite this prod-
uct as a series:

3
√

3

2π
= 1− 1

32
− 2 · 4

32 · 62
− 2 · 4 · 5 · 7

32 · 62 · 92
− · · ·

= 1− 1

32

∞∑
n=0

( 2
3 )n( 4

3 )n

(n+ 1)!2

= 1− 1

32
v( 2

3 ,
4
3 ).
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Using Theorem 5, we get the first formula. The second formula is found by
taking m = 1, k = 4, the third one by taking m = 1, k = 5, and so on.

Concluding remarks.

1. The method used above to convert a product to a series can be applied
directly to Euler’s product formula for the sine-function:

sinπx = πx

∞∏
m=1

(
1− x2

m2

)
.

The result is the following series:

sinπx

πx
=

∞∑
n=0

(−x)n(x)n
n!2

. (16)

which converges (by Raabe’s test) for all x 6= 0.
2. Applying Theorem 5 to (16) results in this series:

sinπx

πx
=

∞∑
n=0

(−1)n
2n+ x

x

(x)3n
n!3

.

It can be found in Dougall’s paper [4, p. 124 formula (16)]. All series in
Corollary 4 are special cases of this general formula.
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