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Abstract

The Traveling Umpire Problem (TUP) is a combinatorial optimization problem concerning the as-
signment of umpires to the games of a fixed double round-robin tournament. The TUP draws inspiration
from the real world multi-objective Major League Baseball (MLB) scheduling problem, but is, however,
restricted to the single objective of minimizing total travel distance of the umpires. Several hard con-
straints are employed to enforce fairness when assigning umpires, making it a challenging optimization
problem. The present work concerns a constructive matheuristic approach which focuses primarily on
large benchmark instances. A decomposition-based approach is employed which sequentially solves In-
teger Programming (IP) formulations of the subproblems to arrive at a feasible solution for the entire
problem. This constructive matheuristic efficiently generates feasible solutions and improves the best
known solutions of large benchmark instances of 26, 28, 30 and 32 teams well within the benchmark time
limit. In addition, the algorithm is capable of producing feasible solutions to various small and medium
benchmark instances competitive with those produced by other heuristic algorithms. The paper also
outlines experiments conducted to evaluate various algorithmic design parameters such as subproblem
size, overlap and objective functions.
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1 Introduction

The Traveling Umpire Problem (TUP) is a sports scheduling problem introduced by Trick and Yildiz (2007)
for modeling umpire scheduling in the American Major League Baseball (MLB). Much like any other opti-
mization problem concerning game-scheduling, the practical importance of studying the TUP lies in the huge
financial investments associated with satisfying the multiple objectives and logistic factors when scheduling
games. A typical MLB tournament consists of 30 teams playing 2430 games over a period of 180 days. A
total of 15 umpires officiate these games and each umpire requires traveling from one city to the other offici-
ating about 130 games. Therefore it is highly desirable to optimize the travel distance in order to minimize
the travel time and the costs involved. While umpire scheduling is a multi-objective problem, the TUP only
concerns the primary objective of minimizing the total travel distance of the umpires. The TUP continues
to represent a challenging optimization problem due to various hard constraints involved.

Problem definition

The MLB is scheduled as a double round-robin tournament of n umpires and 2n teams. Each team is
associated with a home venue and any given pair of teams A and B play against each other exactly twice,
once at team A’s home venue and again at B’s home venue. At each round every team plays exactly once,
resulting in a total of 4n − 2 tournament rounds. Given the schedule of such a round-robin tournament
of 2n teams, the goal of the TUP is to assign n umpires to the tournament’s games such that the total
travel distance of the umpires is minimized. In addition, various constraints are enforced to ensure fairness
concerning the assignment of umpires to consecutive teams or their venues as follows:

(a) Every game in the tournament is officiated by exactly one umpire

(b) Each umpire officiates exactly one game per round
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(c) Each umpire must visit the home location of each team at least once

(d) An umpire cannot visit the same venue more than once in any q1 consecutive rounds

(e) An umpire cannot officiate the games of the same team more than once in any q2 consecutive rounds.

Parameters q1 and q2 are called tightness parameters and they range from 1 to n and 1 to bn2 c respectively.
Exceptions to this bounds are the instances (12,7,2), (14,8,3) and (14,8,2) presented as tuple (2n, q1, q2).

Existing literature and current research

Trick and Yildiz (2007) utilized IP and CP formulations on TUP instances of 8 to 32 teams in their foun-
dational research concerning the problem. These exact methods solved small instances of 8 to 10 teams to
optimality. In the same paper, Trick and Yildiz present a constructive Greedy Matching Heuristic (GMH)
which assigns umpires round by round to produce feasible solutions. The GMH produced optimal solutions
for most small sized instances of 8 to 10 teams and feasible solutions for several medium sized instances of 12
to 16 teams. Since then various heuristic algorithms have been developed producing near-optimal solutions
on various benchmark instances of 8 to 32 teams.

Trick et al. (2012) proposed a Simulated Annealing (SA) algorithm which improved the solutions produced
by GMH. This method produced a feasible solution for the benchmark instance of 30 teams for the first time.
In the same year, Trick and Yildiz (2012) introduced a Genetic Algorithm (GA) which produced optimal
solutions for all instances of 8 to 10 teams and improved existing solutions for various instances of 12 to
30 teams. De Oliveira et al. (2014) proposed a Relax and Fix Heuristic (RFH) which solves a relaxed IP
formulation of the full schedule where a window of variables are fixed progressively after each round until the
last round is fixed. RFH improved best known solutions for various medium-sized (14-24 teams) instances,
improved existing lower bounds and provided lower bounds for instances of more than 16 teams for the first
time. Two heuristic algorithms, Enhanced iterative Deepening search with Leaf node Improvements (IDLI)
and Iterated Local Search (ILS) algorithms were developed by Wauters et al. (2014) which improved the
best solutions for small and medium-sized instances and utilized a new decomposition method to improve
lower bounds for all benchmark instances. In addition, ILS was also able to produce high quality solutions
for the large instances of 26 to 32 teams.

Aside these heuristic algorithms, there have been few exact algorithms which have proven useful in
establishing the optimality or infeasibility of various instances. Toffolo et al. (2014) presents a branch and
price algorithm which improved the solutions of five instances of 16-teams and proved the infeasibility of
some others for the first time. Xue et al. (2015) introduced two other exact algorithms which were capable
of solving two 14 teams-instances to optimality for the first time. Recently, Toffolo et al. (2016b) presented
a branch and bound algorithm coupled with a decomposition method that produces strong lower bounds.
This powerful algorithm is capable of producing optimal solutions for most instances of 8 to 16 teams with
a runtime of few minutes.

Though TUP is considered a computationally hard optimization problem, the problem’s complexity
remains unknown for sure. de Oliveira et al. (2015) proved that the TUP is NP complete for certain parameter
combinations. While various algorithms are capable of solving most small and medium sized instances to
optimality, no efficient algorithm has been able to produce optimal solutions to the large benchmark instances
comprising of 26, 28, 30 and 32 teams. The literature suggests that decomposition-based methods coupled
with hybrid heuristic approaches produce better solutions for these instances. Various decomposition-based
methods have been implemented where subproblems were solved by exact or heuristic methods. This paper
employs a decomposition scheme based on constructive matheuristics (CMH) that improves the current best
known solutions for the large instances within the benchmark time limit. This work draws motivation from
and builds upon the decomposition strategies for the TUP presented in Toffolo (2017).

CMH and matheuristics more generally represent algorithmic hybrids of metaheuristic and mathematical
programming algorithms. The exact and heuristic components may operate either hierarchically or in parallel
exchanging information appropriately. Some of the first attempts in this direction are covered in the survey
by Puchinger and Raidl (2005) while Doerner and Schmid (2010) and Archetti and Speranza (2014) surveys
matheuristic methods for vehicle routing problems. Aside vehicle routing problems, matheuristic algorithms
have been successfully applied in other problems such as the nurse rostering problem (Della Croce and
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Salassa, 2014), permutation flow shop scheduling (Della Croce et al., 2011) and multidimensional knapsack
problem (Hanafi et al., 2010). CMH in particular has been applied in problems such as shift minimization
task scheduling problem (Smet et al., 2014), resource constrained project scheduling (Toffolo et al., 2016a)
and nurse rostering problems (Santos, 2016).

CMH follows a constructive strategy where rounds of the game are grouped together to form subproblems
which are solved using exact techniques. The optimal solutions of these subproblems are subsequently
utilized to construct a solution for the entire problem. The construction strategy and challenges associated
are explained in detail in the following section and section 3. Like other constructive heuristic techniques,
CMH also requires tuning its parameters such that the solution so constructed using the optimal solutions
from the subproblems results in a feasible solution for the entire problem. Constructive techniques in the
literature for TUP adapt different techniques to navigate constructive heuristic to produce feasible solutions
such as penalty functions and backtracking strategies. Algorithm design parameters of CMH and their effect
on the navigation of CMH is also covered in section 3. The SA algorithm presented in Trick et al. (2012)
was the first method capable of producing a feasible solution to a large instance was tested for 5 hours and
since then, the benchmark time limit for a large TUP instance has been considered to be 5 hours. The
computational experiments testing these parameters and the corresponding analysis is discussed in section 4
while conclusions are summarized in section 5.

2 The IP formulation

This paper utilizes the flow formulation of the TUP proposed by Toffolo et al. (2016b). Games are represented
as nodes in a graph G = (V,E) and directed edges connect games of round r to those of round r+ 1. Nodes
contain information regarding the game, home team and away team. The distance of a directed edge is the
distance between the home venues of the two games. An example is illustrated in Figure 1. Before being
utilized by the CMH, this graph is first processed by removing infeasible edges. Edges between nodes which
contain same teams are deleted as they contradict constraint (iv) and (v) for q1 > 1 and q2 > 1. Moreover,
umpires are fixed to the games of the first round to break the inherent symmetry (Yildiz, 2008) concerning
the assignment of umpires.

AxE FxB GxC DxHRound 1

Round 2 AxF BxH ExC DxG

Source  Node

…
Round 4n-2 ExA DxB HxC FxG

Sink Node

Fig. 1. G = (V,E)
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The formulation requires the following input:

de : distance of directed edge e

I : set of teams {1, ..., 2n}
Hi : set of nodes where team i plays at home

R : set of rounds {1, ..., 4n− 2}

Q
′

ir : set of nodes of team i playing at home in rounds R ∩ {r, ..., r + q1 − 1}

Q
′′

ir : set of nodes of team i playing at home in rounds R ∩ {r, ..., r + q2 − 1}
U : set of umpires {1, ..., n}

The set of edges that enter node I is given by δ(I) and the set of nodes that exit node I is denoted by
ω(I). The decision variables are:

Xeu =

{
1 if edge e is selected for umpire u

0 otherwise

The problem’s formulation is given below:

minimize:
∑
e∈E

∑
u∈U

deXeu (1)

subject to:
∑
e∈δ(j)

∑
u∈U

Xeu = 1 ∀j ∈ V \{source, sink} (2)

∑
e∈δ(j)

Xeu −
∑
e∈ω(j)

Xeu =


−1 if j is the source

+1 if j is the sink

0 ∀j ∈ V \{source, sink}
, ∀u ∈ U (3)

∑
e∈δ(Hi)

Xeu ≥ 1 ∀i ∈ I, ∀u ∈ U (4)

∑
e∈δ(Q′

ir)

Xeu ≤ 1 ∀i ∈ I, ∀r ∈ R,∀u ∈ U (5)

∑
e∈δ(Q′′

ir)

Xeu ≤ 1 ∀i ∈ I, ∀r ∈ R,∀u ∈ U (6)

Xeu ∈ {0, 1} ∀e ∈ E,∀u ∈ U (7)

Eq. (1) denotes the objective function which minimizes the total travel distance of the umpires. Con-
straint (2) restricts the assignment of multiple umpires to a single game while Constraint (3) denotes the
flow preservation constraints concerning the proposed flow formulation. These constraints enforce that an
umpire officiates a game in round r and that the umpire proceeds to the round r+ 1. Constraint (4) ensures
that every umpire visits each home location at least once. Eq. (5) and Eq. (6) represents the tightness
constraints while Eq. (7) states that the decision variables assumes binary values.

3 Constructive Matheuristic

The constructive matheuristic (CMH) follows a decomposition-based approach by which the entire problem
is divided into subproblems called blocks. The goal of CMH is to solve these subproblems to optimality and
utilize these optimal blocks to construct a solution for the entire problem. This requires fine tuning the CMH
design parameters such that solutions of previously solved blocks do not prevent the feasibility of the blocks
yet to be solved and that merging subproblem-solutions remains feasible in terms of the entire problem. In
addition, the problem may comprise of constraints which may only be evaluated on the full problem. Thus,
the CMH strategy must also ensure the feasibility of constraints if any which may not be evaluated locally
on individual subproblems.
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In this particular problem, consecutive rounds are grouped to form subproblems or blocks. Each block is
identified by the first round of the block, denoted by b. The CMH solves an IP formulation of the problem
restricted to each block. However, only a relaxed IP formulation obtained by removing constraint (4) is
solved on the blocks as constraint (4) may only be evaluated on a complete schedule. The CMH starts
execution from the first block containing the source node, solves each block to optimality and continues
solving until either the final block is reached or when a block proves infeasible. As CMH proceeds to the
next block, variables in the previous block are fixed. The number of unvisited home locations for each
umpire must return to zero in the final round to ensure that the solution produced by CMH is feasible.
Design parameters such as block size (η), weight (w), overlap (θ) and the number of relaxed future rows (ρ)
are utilized to navigate CMH to produce feasible solutions for the TUP. This is accomplished by the block
objective function, Z(b, f, w) defined in the following section.

Block objective function (Z(b, f, w))

The primary aim of the block objective function Z(b, f, w) is to minimize the total distance traveled by
umpires while traveling within the rounds of the concerned block. Z(b, f, w) aims at navigating the CMH to
produce solutions which do not violate constraint (4) as well. This is accomplished by employing an incentive
term in F . Whenever an umpire is assigned to a venue it has not visited before, an incentive is assigned to
the block objective subject to a weight in terms of the block.
The block objective function is defined as follows:

Z(b, f, w) =
∑
u∈U

∑
e∈Eb

(Xuede − f(b)wXueyue)

where,

Eb : Edges in block b (8)

yue =

{
1 if edge e starts at a node which has not been visited by umpire u

0 otherwise
(9)

(10)

After solving block b, the CMH counts the number of home venues each umpire is left to visit and stores
their sum in the variable kb. The goal is to navigate CMH to produce solutions for which the value of kb
at the last block, in other words, the violations to constraint (4) is zero. Function f(b) is problem specific
and must be selected such that kb goes to zero in the last round. In this problem, f(b) is defined to be an
increasing function of the blocks so that the incentive increases as CMH proceeds to the last block and that
the incentive’s rate of increase is just enough to let any violations to constraint (4) disappear when CMH
finishes executing the final block. Not only that f(b) significantly affects the trend in the values attained
by kb as CMH proceeds through the blocks, the choice of f(b) also affect the actual values attained by the
travel distance of the umpires within the block. Various preliminary experiments were conducted and the
conclusions are summarized in Section 4. For this problem, f(b) =

√
b.

Weight (w)

Once function f(b) is selected for the problem, fine-tuning of the incentive term is performed by introducing
an additional design parameter weight (w). The value of w determines the exact weight of the incentive
term in the objective function. Once multiple design parameters are employed, the value of weight (w) helps
in fine-tuning CMH to produce feasible solutions for the TUP such that the objective function continues
to focus on minimizing the distance traveled by umpires. The CMH also enables the flexibility of having
different weights for different blocks based on the design parameters explained throughout the following
sections.

Block size (η)

Block size η corresponds to the subproblem-size. While a smaller block size offers less flexibility while
assigning umpires to blocks, a larger block size may help prevent future blocks being infeasible and may
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also improve the final solution-quality. However, a large value of η also implies that CMH must solve more
difficult subproblems, resulting in longer runtimes. Therefore choosing an appropriate value of η is central
to producing high quality solutions within the benchmark time limits.

Overlap (θ)

Due to algorithm’s constructive nature, solution of each block significantly affects the feasibility of future
blocks and in turn the feasibility of solution for the entire problem. Overlap is possible between consecutive
blocks and overlap between blocks allow the CMH to accommodate the quality and feasibility of the next
block while solving the current block. Thus the objective function is not anymore a function only of the
current block (b), but also of the rounds of the next block overlapped with those of the current block.
Parameter overlap (θ) denotes the number of last rows of a block which overlap with the rows of the next
block. Increasing the value of θ increases the number of subproblems CMH solves thereby resulting in a
larger computation time. Overlap between subproblems is also expected to result in better continuity in
properties and effect of design parameters between successive blocks. Thus implementing overlap between
rows is expected to improve the predictability of CMH’s behavior.

Relaxed future rows (ρ)

In order to solve larger block size without incurring increased computational times, few succeeding rows are
attached to blocks where within these rows, the integrality constraints of the variables is relaxed. Relaxed
future rows refers to rows so added and the number of such relaxed future rows added to the blocks is denoted
by ρ. The influence of the value of ρ on the solution-quality and runtime are tested. The relaxed future
rows is expected to produce better solutions without increasing the runtime as much as when the bock size
is increased from η to η + ρ. The impact of adding relaxed rows is compared and contrasted with the effect
of increasing block size.

Figure 2 illustrates propagation of CMH blocks on a given schedule. The rectangular window represents the
current block and nodes with dashed borders correspond to relaxed future rounds. For this example, η = 4,
θ = 1 and ρ = 2.

!
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2.5.1 Constructive procedure

The constructive approach begins by decomposing the problem into subproblems
containing ÷ consecutive rounds each. Clearly, ÷ is an important parameter: it
must be large enough to produce non-trivial subproblems and small enough so
that subproblems are quickly solved. Figure 2.9 presents an example of such
a decomposition, with ÷ = 4 and disjoint subproblems being produced. Note,
however, that an intersection between subproblems may actually be beneficial.
The amount of intersection between two subproblems is given by the parameter
step, with step Æ ÷.

Remake Figure 2.9 to indicate multiple subproblems and match font, etc.

Figure 2.9: Example of heuristic decomposition

Once the problem is decomposed, the solution process begins. Initially, the
first subproblem – the one containing the first round – is solved to optimality.
Next, the second subproblem is solved taking into account the solution of the
first subproblem. The allocations made in previous subproblems are fixed
when solving each subsequent subproblem. Figure ?? shows an example. The
procedure repeats until all subproblems are solved. If a feasible solution is
obtained for all subproblems, then a feasible initial solution is produced for
the whole problem. However, fixations enforced by subproblems previously
solved often result in an infeasible subproblem. In such situation, the algorithm

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
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8 
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GxF 
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HxG 
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"

Fig. 2. CMH blocks for TUP
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4 Computational Experiments

Extensive experiments were performed and the CMH algorithm was tested on the TUP benchmark instances
of 8-32 teams for a range of parameter combinations. All these instances and their existing best known
solutions are available at http://benchmark.gent.cs.kuleuven.be/tup. Experiments to further study the effect
of design parameters such as block objective function, weight, block size, overlap and relaxed future rows
were conducted focusing on the large benchmark instances of 26 to 32 teams for q1 = q2 = 5. The goal is to
produce high quality solutions within the benchmark time limit of 5 hours. The CMH algorithm is coded in
Python and it uses Gurobi Version 7.0.1 to solve the blocks. Experiments were performed on four threads
of an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz computer running Ubuntu 16.04.2 LTS.

4.1 Design parameters

This section summarizes experiments conducted to test the effect of the design parameters block objective
function, weight, block size, overlap and relaxed future rounds.

Block objective function (Z(b, f, w))

Preliminary experiments were conducted to arrive at an appropriate objective function for the block and its
component f(b) in particular. f(b) is chosen to be an increasing function of the blocks such that there is a
higher incentive to prevent violations to constraint (iii) when CMH executes last blocks. Various objective
functions were tested and those candidates utilized in this section to summarize the conclusions efficiently
are listed below:

Zdist =
∑
u∈U

∑
e∈Eb

Xuede

Zinc = −
∑
u∈U

∑
e∈Eb

wXueyue

Zlin =
∑
u∈U

∑
e∈Eb

(Xuede − bwXueyue)

Zsqrt =
∑
u∈U

∑
e∈Eb

(Xuede −
√
bwXueyue)

Zcbrt =
∑
u∈U

∑
e∈Eb

(Xuede −
3
√
bwXueyue)

Figures 3, 4 and 5 present graphs those explain the conclusions using a sample instance of 30 teams
where the parameters η = 5, w = 50, θ = 4 and ρ = 0. Similar conclusions were obtained for other instances
as well. Figure 5 show how different objective functions influence the total objective and incentive terms and
Figures 3 and 4 demonstrate how these factors eventually manifest in terms of the total distance traveled
by the umpires and violations to constraint (4), denoted by k.

Figure 3 plots kb, the number of home locations yet to be visited by umpires, against the blocks repre-
sented by its first round b. The graph demonstrates the effect of objective function in determining the trend
in violations to constraint (4). From the values of kb attained by different graphs at the last round, otherwise
called k, it is clear that an incentive term is necessary in the objective function in order to obtain feasible
solutions. These graphs not only imply that an incentive term is necessary, but also that the value of the
incentive term at each block influences the rate at which kb decrease. For Zcbrt, k 6= 0 while for Zsqrt, k goes
to 0. Zinc corresponds to the case when the objective function only minimizes the violations to constraint
(4) and does not have a term for minimizing the distance. This graph serves as a good estimate to study
how fast kb may vanish.

The total distance traveled by umpires on each block is plotted in Figure 4. It is evident from these
graphs that lower incentive values leads to shorter travel distance. This observation is supported by
the the total travel distance obtained by CMH for the full schedule using different objective functions
Zdist, Zcbrt, Zsqrt, Zlin and Zinc which amount to be 435580, 439473, 446004, 467713 and 805008 miles re-
spectively. This observation can be explained utilizing Figure 5.
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Fig. 5. Trend in block objective and block incentive values for different block objective functions

Figure 5 compares the objective and incentive values attained by different objective functions at each
block. These graphs indicate that the value of objective is lower for a choice of f(b) that leads to a larger
incentive. But the trend in the incentive values imply that the lowering of objective does not occur due to
the effective minimization of distance, but from the large contribution of the incentive term. As Figure 3
indicates, a higher value of incentive makes the violations fall faster, but however, note that CMH only
requires that the violations go to zero when it executes the last block. Therefore, an exceedingly high value
of incentive prevents CMH from minimizing the actual travel distance of the umpires. So, the goal of the
preliminary experiments is to choose an appropriate objective function such that the choice of f(b) leads to
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an incentive contribution which is small enough to let CMH minimize the total travel distance of the umpires
effectively and just big enough to bring the violations to zero after the last block is solved.

Different functions were tested to arrive at the best choice of f(b). Out of the five functions included
in the discussion Zsqrt produces the feasible solution with smallest total travel distance by the umpires.
Zcbrt leads to even smaller total distance traveled by the umpires, but leads to k = 5. Various functions
such as eb and log(b) which leads to larger incentives than that contributed by Zsqrt or lower than that
contributed by Zcbrt are not included in the discussion as they either do not lead to feasible solutions or
are not as efficient as Zsqrt in optimizing the distance. Choices of f(b) such as bx, 1

2 < x < 1
3 and other

linear combinations of b
1
2 and b

1
3 which leads to incentives larger than that contributed by Zcbrt and smaller

than that contributed by Zsqrt were also tested. Some of them gave better solutions than those produced
by Zsqrt for some parameter combinations. However, for simplicity the objective function was chosen to be
Zsqrt which produced high quality solutions consistently over a wide range of parameter combinations. For
the rest of the paper, objective function refers to Zsqrt.

Weight (w)
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20 40 60 80 100
0
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η = 3

η = 4

η = 5

η = 6

Fig. 6. Trend in violations (k) with weight (w)

Figure 6 plots violations (k) against weight (w) for various block sizes (η) on the four large instances for
θ = 0 and ρ = 0. The parameter w which is introduced to fine tune the incentive term is allowed to take
values in {10, 20, . . . , 100}. As expected, the figure indicates that increasing w decreases the violations to
constraint (4), denoted by k. But higher values of w shifts the focus of optimization to the minimization of
violations and leads to higher values of total distance traveled by umpires. This is illustrated by Figure 7
which plots the value of the total travel distance of umpires against w for the large instances, again for θ = 0
and ρ = 0. Therefore for given values of ρ, θ and η the smallest w for which k = 0 is expected to produce
the best feasible solution.
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Fig. 7. Total travel distance for different block size

Block size (η)

Graphs presented in figure 7 illustrates also that larger block sizes lead to better solutions. Figure 8 plots
the solve time for block sizes for the large instances and these graphs demonstrate that larger block sizes
require longer solve time. Therefore, the the parameter η is allowed to take values in in {3, 4, 5, 6} so that
the the run time lies within the bounds of benchmark time limits. Experiments for η = 6 is not conducted
for 32-teams as runtime exceeds the benchmark time limit.

Overlap (θ)

Experiments were conducted to test the effect of overlap on the quality of the solutions. The contrast in
terms of the final solution quality with zero and maximum overlap are illustrated in Figure 9. Distances
with and without overlap are plotted against weight(w) and the graphs indicate that in general, overlap
leads to considerable improvement in the final solution quality. Figure 9 also plots the trend in violations
with respect to increasing values of w. The figure illustrates that if k = 0 for a given value of weight w′,
the value of k continues to be 0 for any value of weight w > w′. This is a property that emerges when the
blocks are overlapped for high values of η and was absent in experiments without overlap (see Figure 6 for
comparison). This property enables predicting the feasibility of the solution produced by CMH for a given
value of w when blocks are overlapped.

Relaxed future rows (ρ)

Adding relaxed future rows is generally seen to improve the solution quality for almost all instances. In
addition, it is observed that on adding ρ′ future rows to blocks of size η′, CMH generates solutions which
are comparable to those produced for block size η′ + ρ′ without significantly increasing the solve time. This
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Fig. 8. Solve time for different block sizes

is illustrated by an example in Figure 10. Figure 10(a) compares the total travel distance for the 30-teams
instance without overlap for block size 5 and 6 against that generated when a relaxed future row is added
to block size 5. The total run time of the corresponding cases are compared in Figure 10(b). This property
has proven useful especially for improving the solution quality of the 32-teams instance. While CMH fails
to generate feasible solutions for η = 6 within benchmark time limits, relaxed rows were added to smaller
block sizes to produce better results in shorter solve time.

The best feasible solution obtained for a parameter combination of ρ, η and θ for w in {10, . . . , 100} is
summarized in Table 1. Only those solutions which are produced within the benchmark time limits are
presented.

4.2 Improving the CMH strategy

Information from the trend in violations when the functions Zdist and Zinc are utilized by CMH is employed
to improve the CMH strategy. Figure 3 demonstrates that till the block starting with round b0, the graphs of
Zdist and Zinc remains overlapped, suggesting that for these blocks, the incentive term does not significantly
impact the trend in the violations. This information is utilized to remove the incentive term in these blocks
to improve the solutions produced by CMH. For all blocks starting at a row smaller than b0, w is set to
0. Experiments conducted suggest that the effect is the most significant when the blocks are maximum
overlapped. This strategy improves the solutions of three out of the four large instances.

Table 2 lists the best feasible solutions produced by CMH for each large instance within the benchmark
time limits. These solutions are compared with the solutions produced by ILS (Wauters et al., 2014) and
with the current best known solutions. The corresponding parameter configurations and the percentage gap
between the current best known lower bounds are also presented. ∗ indicates that the solution was obtained
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using the improved strategy.

4.3 Parameter tuning

Since the CMH algorithm has various parameters, the package irace 2.3 was utilized to train the parameters.
The best parameter configuration obtained by irace is given by (η, w, θ, ρ) = (6, 60, 3, 2). The solutions
corresponding to this configuration for all large instances are presented in Table 3. The percentage gap (%
Gap) between these solutions found by irace and those produced by CMH also presented.
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Table 1: Summary of results obtained by CMH for large instances

26 28 30 32

ρ η θ Dist. Time(s) Dist. Time(s) Dist. Time(s) Dist. Time(s)

0 3 2 365,060 12.74 400,684 18.30 453,811 23.61 511,680 41.05
1 367,235 8.19 402,251 6.83 460,291 10.75 514,968 18.09
0 402,495 6.11 482,228 10.78

4 3 350,962 92.65 405,101 210.81 451,806 217.41 500,794 414.17
2 400,628 74.62 453,860 107.65 509,265 179.25
1 356,227 25.34 392,226 81.16 453,974 78.85 509,224 154.99
0 409,095 33.92 465,031 115.71

5 4 346,687 1,282.51 386,528 2,112.46 443,632 3,460.04 494,806 5,886.88
3 350,245 619.74 390,317 1,109.28 443,772 1,550.46 499,305 3,067.33
2 347,884 476.87 392,679 816.53 455,969 1,247.06 495,338 2,052.81
1 352,405 542.40 397,170 688.72 452,347 936.36 506,774 1,608.71
0 351,087 417.90 392,822 512.96 450,734 877.72 509,021 1,644.47

6 5 346,285 13,431.05 392,520 21,894.63 444,635 32,104.04
4 345,340 7,264.73 390,933 14,173.14 441,931 13,335.99
3 350,468 6,887.34 390,887 8,891.55 444,471 12,728.84
2 350,992 3,238.62 389,837 9,121.47 444,974 8,227.36
1 349,659 2,365.69 394,584 10,246.09 445,562 7,423.22
0 350,948 3,620.97 391,631 11,017.39 451,221 9,522.13

1 2 1 365,060 16.40 400,684 22.74 463,096 29.78 519,169 40.82
0 369,112 9.62 407,126 10.52 466,944 16.57 514,433 22.20

Table 2: Best results obtained by CMH for the large instances

2n (η, w, θ, ρ) CMH Time(s) ILS Best known Gap (%)

26 (4, 50, 3, 2)* 344,110 3,405.52 354,134 351,932 5.96
28 (4, 50, 3, 2)* 388,129 6,258.46 398,101 390,635 6.76
30 (4, 40, 0, 2) 440,696 2,660.46 451,917 443,739 6
32 (4, 40, 3, 2)* 490,380 17,168.5 502,890 491,075 7.38

Table 3: irace-results for the large instances

2n irace CMHbest % Gap

26 350,468 345,340 1.46
28 390,919 389,077 0.47
30 448,055 440,696 1.64
32 497,030 491,091 1.19

4.4 Performance of CMH on small and medium sized instances

Though the CMH was aimed at generating feasible solutions to the large instances, it is worth mentioning
that the proposed algorithm have been able to produce feasible solutions comparable to those produced by
other heuristic algorithms and are close to optimality in almost all instances of 8 to 22 teams. Table 4
reports best results and the solve time of the experiments on these small and medium sized instances. The
existing best known solution and percentage gap of the solutions produced by CMH with respect to that
of the existing best known solutions are also reported. Note that the CMH has also been able to improve
solutions for two of the medium sized instances 16-8-3 and 18-7-4 as indicated by the negative values of gap.
The optimal solutions and the solutions those improve the existing best known solutions are highlighted in
the table.
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Table 4: Result for small and medium sized instances

2n q1 q2 CMH Time(s) Best known % Gap

12 7 2 86,889 4.4 86,889 0
12 5 3 93,679 2.28 93,679 0
12 4 3 90,148 0.62 89,826 0.36
14 8 3 181,232 12.79 172,177 5.26
14 8 2 149,017 7.31 147,824 0.81
14 7 3 164,440 94.36 164,440 0
14 7 2 146,980 18.55 146,656 0.22
14 6 3 159,507 312.18 158,875 0.4
14 6 2 145,280 6.32 145,124 0.11
14 5 3 155,346 75.38 154,962 0.25
14 5 2 143,548 6.98 143,357 0.13

14A 8 3 170,026 34.28 166,184 2.31
14A 8 2 144,165 27.47 143,043 0.78
14A 7 3 160,830 137.76 158,760 1.3
14A 7 2 141,673 19.55 140,562 0.79
14A 6 3 154,402 13.05 152,981 0.93
14A 6 2 139,775 2.82 138,927 0.61
14A 5 3 149,751 59.26 149,331 0.28
14A 5 2 137,853 5.7 137,853 0
14B 8 3 168,107 6.14 165,026 1.87
14B 8 2 141,628 72.47 141,312 0.22
14B 7 3 157,884 152.31 157,884 0
14B 7 2 139,208 2.28 138,998 0.15
14B 6 3 154,275 28.65 152,740 1
14B 6 2 138,297 18.61 138,241 0.04
14B 5 3 151,015 30.14 149,455 1.04
14B 5 2 136,245 18 136,069 0.13
14C 8 3 178,310 26.04 161,262 10.57
14C 8 2 141,998 14.53 141,015 0.7
14C 7 3 159,812 85.21 154,913 3.16
14C 7 2 138,928 1.64 138,832 0.07
14C 6 3 153,541 9.41 150,858 1.78
14C 6 2 136,913 2.13 136,394 0.38
14C 5 3 148,977 24.81 148,349 0.42
14C 5 2 135,302 2.39 134,916 0.29
16 8 2 166,939 161.84 161,999 3.05
16 7 3 165,765 324.85 165,765 0
16 7 2 152,495 186.83 150,433 1.37

16A 8 2 174,044 184.36 171,882 1.26
16A 7 3 180,641 311.65 178,511 1.19
16A 7 2 165,254 202.52 163,709 0.94
16B 7 3 184,636 6,003.46 180,204 2.46
16B 7 2 169,075 1,324.8 167,190 1.13
16C 8 2 186,437 4.32 179,939 3.61
16C 7 3 183,429 3,523.82 180,483 1.63
16C 7 2 169,466 145.68 166,479 1.79
18 8 3 202,662 1,607.16 248,302 −18.38
18 7 4 215,129 212.71 217,502 −1.09
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5 Conclusion

This paper introduces a constructive matheuristic algorithm (CMH) for solving the Traveling Umpire Prob-
lem which concerns the assignment of umpires to the games of a tournament subject to multiple hard
constraints. The proposed algorithm focuses on finding solutions for the large benchmark instances. Various
algorithmic design parameters such as objective function, subproblem size, subproblem overlap and relaxed
subproblems were considered and extensive experiments were conducted. The CMH algorithm improves
existing solutions for these large instances.

Experiments conducted to test subproblems size demonstrate that larger subproblems result in better
solutions. With regard to the effect of overlapping subproblems, experiments indicate that it not only
increases the possibility of a feasible solution, but also adds predictability in CMH’s behavior. Adding
relaxed future rows enable larger subproblems to be solved in a shorter time, improving the quality of the
solutions within the benchmark time limit. Therefore, design parameters not only affect the feasibility but
also the solution quality and algorithm runtime.

The proposed algorithm also improved the solutions of two medium sized instances of 18 teams and
produced feasible solutions to almost all other instances in short run times. Moreover, the constructive
matheuristic solutions improve solutions of other heuristic algorithms in almost all instances and this indicates
the possibility of matheuristics constituting the state of the art of various other optimization problems.

Parameter tuning experiments were conducted to arrive at the best combination of design parameters
for each instance. An interesting future research topic would be to further study the inter-operation of
design parameters and design a quick start algorithm which outputs the best configuration for a given
instance. Furthermore, the algorithm can utilize other formulations of the same problem to investigate
possible improvements. A more general ambition constitutes the development of a constructive matheuristic
framework which may be applied to a wider range of optimization problems.
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