o

AN INTERPRETER FOR PREDICATE LOGIC PROGRAMS

PART I : Basic Principles

by M. BRUYNOOGHE

Report CW 10, October 1976

Applied Mathematics and Programming Division
KATHOLIEKE UNIVERSITEIT LEUVEN (BELGIUM)

A9F6



AN INTERPRETER FOR PREDICATE LOGIC

PROGRAMS

Part I : Basic Principles

by

Maurice BRUYNOOGHE
aspirant NFWO

Katholieke Universiteit Leuven

Afdeling Toegepaste Wiskunde en Programmatie
Celestijnenlaan 200B

3030 Heverlee

Belgium



TABLE OF CONTENTS

1. Introduction
2. Some features of PROLOG
2.a, The control tree
2.b. Variables
2.c. The glash
2,4, Summary of the features
3. A space-saving implementation
L., Representation of the control tree
L,a. Deterministic programs
4.b. Nondeterministic programs and backtracking
5. The heap
Acknowledgements

Bibliography



1. Introduction

The interpretation of predicate logic as a programming

B if A1 and ,.. and An ag procedure declarationg where

~ B is the procedure name

A1, s 583 An is the set of procedure calls Ai constituting

the procedure body.

For a procedure or clause we shall use the notation

B-o-A1, oo Anﬁ If it contains the variables Xis ooy Xy
then it means : for all Xy wees Xy B is implied by A,

and ... and An' We call B, Aj, Rl An the literals of the
clause. We restrict ourself to Horn clauses, clauses with

at most one literal as consequence.

Begides the usual form we have three special cases

- an assertion of fact : B-~ : a procedure with an empty
body.

- a goal statement : ‘PAT’ S An : it asserts the goal of
successfully executing gll the procedure calls Aj, D o o An'
It is a procedure without a name.

- the null clause : [ : a halt statement or satisfied goal

statement, a nameless procedure with an empty body.

The reader can find a more elaborate description of the
use of predicate logic as programming language in the work

of Kowalski : [3], [4].

The goal of this paper is to describe the principles of
an interpreter for this language, which intends to be an

improvement of the existing PROLOG interpreter implemented

at Marseille [1], [5].



2. Some features of PROLOG [1], [5]

2.a, The control tree

= o — — o ——

The execution of a PROLOG program can be control-
led by a tree. We introduce this control tree by a simple

example

The program

(1) -—P,Q (5) Q=8
(2) p=aR,S (6) R -
(3) Q=R (7) Setm
(4) Q= E
/N /\
P Q P Q
Fig. 1.a. g/\\s

We start with the goal

statement (1). The root Fig., 1.b.

et leohtedl e Hals The leftmost call i1is exe-
a son for each literal cuted first.

in the goal statement,

Zs /\

AN 7
1?» 5 R S
||
¥ * %X
Fig. l.c. Fig. 1.d.
Procedure R (6) has an PROLOG uses a depth first,
empty body, we get a left to right search stra-
terminal node indicated tegy, procedure S 1s selected

by a and also has an empty body.



/ /\

/P\ cig (4,5) /P\ Q (4,5)

T T R T T %

* 2 ¥ * 3§t
Fig. 1.e. . Fig. 1.1,
For executing Q, there All goals are succegsfully
are three possible pro- executed, a solution is
cedures, PROLOG takes found, now the system back-
the first (3) and notes tracks to find other solu-
the others. This is a tions.
non-deterministic point,

/P\ \Q (4,5) /P\ Q] (5)

I v

% % E I
Fig., 1.g. Fig. 1.h.
The control tree is un- The system tries another
wond until the last non- procedure (4) to solve Q.

deterministic point,

N

/\Q (5) i
/\ /\

Q

¢

R S R S S

| | [ ]

= * e ] % *
Fig, 1.1. Fig. 1.5,

The system fails to solve Using (5) and (7) the system

E and backtracks again finds a second sclution,
There are no more non—-deter-—
ministic points, the execu-

tion is terminated.



Remarks

1. PROLOG uses a depth first, left to right search
strategy, this means that :

a. The order of the literals in the clauses is
important, it defines the order inm which the
different calls are executed.

b. The order of the clauses is important, it de-
fines the order in which the different methods
to execute a call are tried,

2., The different methods to execute a call are handled

by a backtracking mechanism.,

2.b. Variables

Clauses are stored as skeletons in a dictionary.
In the control tree, the nodes are pointing to the
skeleton of the literal. These literals can contain
variables. To represent their value, we can associate
with each node an environment describing the variables
of the procedure used to execute that call. PROLOG

uses a kind of structure sharing [2]: the value of a

variable is represented by two pointers, one to a ske-
leton (a term) in the dictionary and the other to an
environment giving the values of the variables occurring

in that skeleton.

We give an example
Program

(1) Append (nil, z, z)-a
(2) Append (cons(x,y),z,cons(x,u))=a—Append (y,z,u)

(3) == Append (cons(a,nil),cons(b,nil),x)

For clarity we write the whole skeleton in place of
a pointer, we alsoc give the heading of the procedures

used. The control tree is given in Fig. 2.



Append (eons(a,nil),cons(b,nil),x)

Fig. 2.a., The goal statement has one variable. The va=-
lue is given in the environment E1 of the root node.

The variable has no value, it is a free variable.

E, :+ X—3=cons(x,u),E

1 2
Append (cons(a,nil),cons(b,nil),x) x—wa,E,
Append (conms(x,y),z,cons(x,u)) . - E, Qy—»nil,E]

z—»cons(b;nilLE1

u
Append (y,2z,u)

Fig. 2.b. Procedure invocation is controlled by a pattern
matching mechanmism (unification)

(1) does not mateh, (2) does matech with the call. The
matching process binds the variables X, ¥ and z of E2

and also x of the environment E1. The variable u in E2

is free.
E, : x—----cons(x,u),E2
X---'--a,E1
Append (cons(a,nil),cons(b,nil),x) y-----nil,E1
Append (cons(x,y),z,cons(x,u)) E, : z—---con.s(b,nil),E1

1 —=CcOons (b.n.il),ET

Append (y,z,u) E

z-—»cons(b,nil),E1
Append (nil,z,z)

3

Xk
Fig. 2.e. Matching is only possible with (1). The final

value of x in E, is cons(a,cons(b,nil)),



Note that now backtracking is not as simple as
unwinding the control tree, Suppose we want to back-
track from the situation in fig. 2.c. into the situa-
tion in fig. 2.a. then we have not only to unwind the
tree but also to undo the binding of x in the environ-
ment E1‘

The main drawback of the PROLOG-interpreter of [1]
is that it can only free memory by backtracking. Even
if a call is successfully executed in a deterministic
way then the interpreter cannot free the memory occu-
pied by that part of the control tree because it is
possible that variables are pointing to that part of

the control tree. An example is given in fig.3.

Program )
E x—f(x),E
1 Liae}
-P(x),a(x) F 4
P(z(x))=R(x) P p xame(a),py, 00
R(f(a)).- P(f‘“c))
R(x) E3
R(f(a))
|

Fig. 3. We cannot free the space occupied by the left
subtree of the root because the variable x in E1 is

pointing to the environment E, in this left subtree

2
of the control tree.

The basic goal of our interpreter is to free the
memory occupied by the parts of the control tree which
describe calls completely executed in a deterministiec
way. For example the left part of the control tree in

fig. 3.



2.¢., The slash

This is a control feature that distinguishes
PROLOG from pure predicate logic. It allows the user
to delete all nondeterministic points in a subtree of

the control tree,.

In our implementation, it will also free the space

occupied by that subtree. The interpreter handles

the slash as a built-in predicate : the interpreter
considers the predicaté as defined by an assertion
but it also performs some actions (side effects)
which cannot be undone by backtracking.

We illustrate its effect on the control tree by an

example in fig. k4,

The program

(1) =-Pp,qQ (7T) Q ~— R,S,/,U
(2) p==R,S (8) Q =& U,V
(3) ReamT (9) T wtie

(4) Rem-g (10) T —~= v

(5) 8 == (11) U =e

(6) S~ T

PN —

()

1‘% ?(6) IT(M) 8(6) / U
?(10) # TI(1o)aL
* *

Fig. bL.a. The next call to execute is the slash.
Its effect is to delete all nondeterministic points

in the subtree with the parent of the slash as root.



/P\ //7Q\\
(4) ‘8(6) S /

|
T(10)
|

*— 13—
*._—

*
Fig. 4.b. The control tree after the execution of

the slash. The next call to execute is U.

2.d. Summary of the features

—— e e e Y e e e e o — — ———

- Procedure invocation controlled by a pattern
matching process (unification).

~ Recursivity,.

-~ Backtracking,

- Control features which distinguish PROLOG from
pure predicate logic:
. order of the literals.
. order of the clauses,

. the slash,



3. A space-saving implementation

As stated in the previous section, our goal is to free
the storage in the control tree occupied by the description
of a deterministically executed procedure call. This is not
possible when variables are pointing to other environments
in the control tree as in fig. 3. We solve the problem by
creating the value of the variables in a heap. We demon-

strate this by the following program

—
~—

Append (nil,z,z)-—-

) Append (cons(x,y),z,cons(x,u) )= Append (y,z,u)

A~
w M
~—

~— Append (cons(a,nil),cons(b,nil),x)

The consecutive control trees are given in fig. 5.

control tree heap

B, : x | ——= 0
| |

Append (cons(a,nil),cons(b,nil),x)l

Fig. 5.a. The free variable x is pointing to an empty cell

in the heap.

control tree

tE1 : X

Append (cons(a,nil),cons(b,nil),x) By o
2 - P

Append (cons(x,y),z,cons{x,u)) % e cons(b,nil)
L 1]

udt——n

Append (y,z,u) !

Fig. 5.b. Unifying the first two arguments causes the creation
of a,nil,cons(b,nil) in the heap. Unifying the last arguments
causes the empty cell representing x in E1 to be bound to a
created structure cons(x,u) where x and u are replaced by their

values 1in E2.



control tree heap

E

{8 X ‘hq"drcons( sufl )

a

nil
—==]

| )
APPend (y,z,u) E s 7 /

b

Append (cons(a,nil),cons(b,nil),x)

Append (cons(x,y),z,cons(x,u) Ep

L]
e

-

Z

Append (nil,z,z) 3
e
Fig. 5.c¢c. The variables z 1in E3 and u in E2 are both bound

to the value of z in E,. The final value of x in E1 is
cons(a,cons(b,nil)). We can delete all except the root node

of the control tree and still have access to this value,

We demonstrate the recuperation of a deterministically

terminated subtree in fig. 6.
Program

--P(x),q(x)
P(f(x))=s—R(x)

R(f(a))=e—
control tree | heap
. i
/E1\.,x , ,_D\/f( )
(x) Q(x) :
(f(x)) E2 T X ' -_—_D—bf(a)
|
SER
|
i

Fig. 6.a. The left subtree is terminated, there are no non-

deterministic points in it.



11,

control tree | heap
. J
E{\' X = -QL/J'f( )
Q(x) : O—srf(a)
Fig. 6.b. The left subtree is deleted .
control tree heap

|

|
E1 T X : a—fé:T )
\Q(X) : it (a)

Fig, 6.c. A garbage collector can recuperate parts of the

heap and can simplify the access to the structures.

Deleting some parts in the control tree causes some
structures in the heap to become inaccessible, they can be
recuperated by a garbage collector. The garbage collector
can also simplify the access to the structures in the heap.

This is shown in fig. 6.c.

Backtracking consists of unwinding the control tree and
the assignments in the heap. By assignment we mean the bin-
ding of a free variable, represented by an empty cell, to a
value. Unwinding the control tree causes some parts of
the heap to become inaccessible. When we also unwind all
creations in the heap (empty cells and structures) then we
easily recuperate these unaccessible parts of the heap and

we need the garbage collector less frequently.

Note»that at this level of description, we can select
any unsolved call in the control tree. It is only in the
next section, when we will choose a particular representa-
tion of the control tree that we definitely select the
depth first, left-to-right search strategy.



2

I, Representation of the control tree

k,a, Deterministic progranms

When we use a depth first, left-to-right search stra-
tegy, then we can lock at the body of a procedure as a
sequence of statements, every statement being a procedure

call., When we restrict ourselves to deterministic pro-

grams then we get a simple Algol-like language. The con-
trol tree can easily be implemented as a stack. Every en-
vironment on the stack has, in addition to the variables
of the procedure, a pointer to the environment of the cal-
ling procedure (E) and a pointer to the skeleton of the
next call in the calling procedure (SK). The state of the
execution is determined by a current environment CE and

a current skeleton CSK, As an example, we take the fol-

lowing program

- A
A-—B,C
B g

C -

The different control trees and stacks for the execution

of this program are given in fig. T.

control tree control stack
E. : ¢ ni
|E1 ] E nil
A SK : nil
CE : E1
CSK : A

Fig. T.a, Initial state,



control tree

control stack

13,

f] E1 : E : nil
A\ SK nil
/’ S E E
E, 1
. ¢ 2 SK nil
CE E2
CsK B
Fig. T7.b. We enter the body of procedure A. SK in E, is
nil because A is the last ecall in E1.
F1 ET B nil E1 E nil
SK nil SK nil
A E2
—p
B/;: \\\c By - £ By : 1
‘ 3 SK nil SK : nil
E E B CE
* 37 sx ;e 8
= CSK : C
CE E3
CSK nil
Fig. T.c. CSK is nil thus in the stack we return to the cal-

ling environment E,.

Ted.

stack,

Fig.

E, E n%l E1 E n?l_» E1 E nil

SK & nil SK nil SK nil
S !

CSK nil
oy :K : iil - CE : nil
: CSK nil )

o Eh CSK nil
CskK nil

We have a CSK

nil and we terminate with an empty




14

In fig., 7.d. we see, we do not need the environments

E1 and E2 because all calls in these environments are
executed. We do not need an environment any more when
the last call is activated. This gives us & more com-
ract stack where every environment is pointing to the
call (and the corresponding environment) we will exe-
cute after terminating the current call. The different

states of this more compact stack are given in fig. 8.

E1 E : nil E2 : E : nil
SK : nil ~ SK : nil
CE 3 E1 CE 3 E2
CSK : A CSK : B
Fig. 8.a. Initial Fig. 8.b. The environment E, is
state, deleted because A is the last call.
Eg , E g nll-hE2 . N $ nill Eh . E : nll-*-CE : nil
SK : nil SK : nil SK : nil CSK : nil
E3 E : E2 CE g E2 CE . Eh
SK : C CSK : C CSK : nil
CE : E3
CSK : nil
Fig. 8.c. We return in the Fig., 8.4d. C was the last
stack when CSK is nil. call in E2 thus E3 is dele-

ted, CSK i1s nil and we ter-

minate with the empty stack.

The stack combined with the definitions of the pro-
cedures 1in the dictionary gives us a list of all calls
we still have to execute together with the binding of
the variables in these calls, The very simple structure
of the stack is due to the fact that we always select
the first element of that list (and replace it by its
body); thus due to the depth first, left-to-right search
strategy.



15

A more elaborate search strategy would be able to select
any call in that list. This would ask for a much more

complex control structure,

For the control stack we can notice that
- the curreént environment is always the top-element of
the stack.
~ each element is pointing (E-pointer) to the previous
element of the stack,
This is no longer the case when we extend to nondeter-

ministiec programs.

“-b. Nomdeterministic programs and backtracking

Backtracking is returning to a past state in the con-
trol stacky it means wé have to memorize all environments
of that state. We reach this goal by not deleting them
when the execution of the last call of a procedure is star-
ted. 1:_
When we héve different procedures to match the current
call (a nondeterministic point) then we create a backtrac-
kingelement on the top of the stack. In that element we
put information about the nondeterministic call : th;.i
skeleton, the environment, the next procedure to try?‘#hen
we start the execution of the call with the condition that
we must not delete any environment of the current stack.
This condition can be stated as a very simple rule : do
not delete an environment if it is not the top element of

the stack.



16

We 1llustrate this by an example in fig. 9.
Program : (1) ==A
(2) A=e=B,C
(3) A=-C
(4) B wse
(5) B=a=
(6) C~=D
(7) Com—

f1 . E : nil
A SK : nil

CE : E
CSK : A

1

Fig, 9.a. Initial state,

F1 E1 E nil
A Eg SK : nil
/\ E E,
©
B1 : 8K : A
PR : (3)
Eg E : nil
SK : nil
CE E2
CSK : B

Fig. 9.b. There are different procedures to execute the
call A, thus we first create a backtrackelement pointing
to environment E1, skeleton A and procedure (3). Then we
execute A using (2). Although A is the last call, we do
not delete E1 because it 1s not on the top of the stack,



E, g . £ : nil . . B : nil
l 1 SK o 1 .-.‘t‘_ " e
A E2 : nidi s e nil
E
B/;é \\\C B E, E :: E, _
I A BN L By ¢ 8K : A 3
-* PR : (3) PR (3) | | iy
E2 . = HRSER ST [ g . B ¢ nil 3
SK :A nil 2 SK nil
E SR ‘?
p BSK : B B, : SK : B @
R L PR : (5) \
2 , - E @k ox " b
L . A
3 SK : C 2 t«
CSK : ¢ L
CE ]
s
C8K : nil

Fig. 9.c. A second backtrackelement is created, E3 is
deleted. Note that the current environment is not on

the top of the stack,

f1 E1 E 3 nil
A E2 SK nil K
/\CE E : E,
i TEB ‘ L B, : SK : A
D PR : (3)
# .
E2 E nil
8K : nil *
E E2 4
B2 SK : B
PR (5)
E E2
B3 : SK C
PR (7)
Eh . E nil
SK : nil
CE 8 Eh
CSK : D

Fig. 9.d. Also the call on C is nondeterministic. Now
¢ _ fail to execute D and we backtrack.: we unwind the tr
?J to the last backtrackelement, This element tells us t

execute C in B, using (7).



18

f1 E1 . E : nil
2 E2 SK : nil
/// \\\\ E E,
1 E3 . B1 ¢+ 8K : A
’ PR : (3)
* g . E : nil
o
SK : nil
E E2
B2 SK : B
PR : (5)
CE E2
CSK : C

Fig. 9.e. The current call is C in E we have to exe~

29
cute it using (7). Note that we have the same situation

as in fig- 9'.(:-

F1 E1 : B : nil E1 . E : nil
SK : nil SK : nil
A E2
///’ \\\\ E : E, E : E1
r E3 T E5 B1 : SK : A B1 : SXK : A
PR : PR :
H I (?) (?)
E2 E ¢ nil —— E2 E : nil
SK : nil SK : nil
E g E2 E 3 E2
B2 : SK : B B2 : SK : B
PR : (5) PR : (5)
-E5 ERC S CE : nil
CEScen T CSK : nil
CE s
Es
CSK : nil

Fig. 9.f. CE = nil indicates that a solution is found,
the stack 1s not empty and we can backtrack to find other

solutions.



19

As in the deterministic case, the chain of environ-
ment elements, starting with the current environment,
describes the list of calls we still have to execute.

The elements of this chain are the active environments.
Contrary to the deterministic case we now also have ele-
ments which are not in this chain. We call them passive
environments. Their deletion is prevented by the back-
trackingelements. Starting from each backtrackingelement
we can also find a list of calls. It is the list of calls
we had to execute when we arrived at the corresponding
nondeterministic point. Backtracking is just reactivating

such a chain.

Remember that the environmentelements also include
information about the variables of the procedures and
the backtrackelements also include information about

the unwinding of the heap.



20

5. The heap

As we can see in fig. 5 and 6, we can distinguish three

sorts of elements in the heap

1. constants and function symbols : a, b, nil, coas. We
can put them in a dictionary, together with other in-
formation (for instance their number of arguments, ...).

2. structures : cons(a,nil). These will be elements of the
heap. We can, for example, choose elements‘with two fields.

A possible representation is given in fig. 10.

dictionary heap

=7 LD

mil == -~

Fig. 10. Representation of cons(a,nil)

3. variables who are initially free, indicated by g in
fig. 5 and 6. They will be elements with one field :

a pointer to their future value.

The variable elements have two important dates in their

lives :
- the creation date : when the empty element is created.
- the assignment date : when the variable takes a value.

For the structure elements the assignment happens at the

same time as the creation.

This assignment date is very fﬁportant for the back-
tracking. Backtracking is returning to a past state, this
means that all assignments made since that moment must be
deleted. This can be done by putting all assigned variable

elements on a list.



21

During backtracking we unwind this assignmentlist to a point

noticed in the backtracking element.

By unwinding the stack we lost for garbage (thus delete)
alle created variable and structure elements during the back-
tracking. By putting them also on a list, we can easily re-
cuperate this memory and we need the garbage collector less

frequently.



22

Acknowledgements

Thanks are due to Philip Roussel and Alain Colmerauer
for their help in studying the original PROLOG interpreter;
to Yves Willems and Marc Gobin for reading and discussing
the paper.

This work was done during my mandate as "aspirant bij
het Nationaal Fonds voor Wetenschappelijk Onderzoek". A
grant from the French "Centre National de la Recherche Scien-
tifique" in coordination with the Belgian "Ministerie van
Nationale Opvoeding en Nederlandse Cultuur, Bestuur voor In-
ternationale Culturele Betrekkingen" allowed me to visit for

three months the University of Aix-Marseille.



23

Bibliography

1. BATTANI, G. and MELONI, H., Interpreteur du langage de
programmation PROLOG. Groupe d'Intelligence Artificielle,
U.E.R. de Luminy, Université d'Aix-Marseille, 1973.

2, BOYER, R.S. and MOORE, J.S., The sharing of structure in
theorem-proving programs, In Machine Intelligence T,
B. Meltzer and D. Michie, Eds., Edinburgh, U, Press,
Edinburgh, Scotland, 1972, pp. 101-116.

3. KOWALSXT, R., Predicate logic as programming language. In
Information Processing T4, North-Holland Publishing Company,
1974, pp. 569-5T7k.

L. KOWALSKI, R., Logic for problem solving. Memo No Tk, De-
partment of Computational Logie¢, School of Artificial In-

telligence, University of Edinburgh, March 197k,

>. ROUSSEL, P., PROLOG Manuel d'utilisation. Groupe d'Intel-
ligence Artificielle, U.E.R., de Luminy, Université d'Aix-

Marseille, septembre 1975,



