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It is claimed that, with the exception of Musa balbisiana, all banana varieties are susceptible to bacterial wilt caused

by Xanthomonas campestris pv. musacearum (Xcm). Despite being resistant to Xcm infection, M. balbisiana is not pre-

ferred for breeding because it belongs to the BB genome subgroup, while most edible bananas are of the A genome. To

identify potential sources of resistance to Xcm, 72 banana accessions representing the Musa genetic diversity were eval-

uated in an outdoor confined potted trial. The midribs of the youngest leaf of 3-month-old banana plants were inocu-

lated with 108 CFU mL�1 of Xcm isolate USY13P, and symptom development assessed weekly for 4 months. Results

confirmed that M. balbisiana genotypes are indeed resistant to Xcm. Varieties within the Musa acuminata subsp. zeb-

rina (AA) set were further identified as potentially useful sources of Xcm resistance. These findings reveal the potential

to develop banana and plantain varieties with tolerance to Xcm.
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Introduction

Bananas are an important staple and income-generating
crop for many farmers in tropical and subtropical climates
(Padam et al., 2014). Bananas belong to the genus Musa,
which together with Ensete and Musella, belong to the
family Musaceae. Previously, the genus Musa was divided
into the section Ingentimusa with chromosome number
2n = 14; Callimusa and Australimusa with chromosome
number 2n = 20 (Musa beccarii, which is part of Cal-
limusa section, has 18 chromosomes); and Eumusa and
Rhodochlamys with chromosome number 2n = 22 (Chris-
telov�a et al., 2011a). Information on the ploidy level of
the germplasm is essential in breeding programmes
because it influences fertility (Suman et al., 2012).
Research has shown that banana is highly vulnerable to

diseases due to the genetic uniformity (Tripathi et al.,
2008). Banana bacterial wilt, also known as xanthomonas
wilt, caused by Xanthomonas campestris pv. musacearum
(Xcm), is regarded as the most devastating disease of
banana in East and Central Africa (Nakato et al., 2018).

Xcm transmission is by insect vectors, contaminated gar-
den tools and infected planting material (Nakato et al.,
2018). Insect infection through the inflorescence occurs
for cultivars that shed their bracts; however, all cultivars
are susceptible to infection by tools that are used for
deleafing and desuckering or weeding of the annual crops
that are mixed in banana plantations (Nakato et al.,
2018). In addition to reducing yield, xanthomonas wilt
can kill banana plants (Nakato et al., 2018).
Xcm is a rod-shaped, aerobic, Gram-negative bac-

terium that is motile by a single flagellum (Bradbury,
1986; Smith et al., 2008). Biochemical characteristics,
including urease production, hydrolysis of aesculin, pro-
duction of hydrogen sulphide from peptone, catalase pro-
duction and utilization of sorbitol, dulcitol and salicin
revealed that Xcm belongs to X. campestris (Bradbury,
1986). Further characterization using fatty acid methyl
ester (FAMEs) analysis, gyrB gene sequence and rep-PCR
revealed that Xcm was closely related to Xanthomonas
vasicola pv. vasculorum (Xvv) and Xanthomonas vasi-
cola pv. holcicola (Xvh) (Aritua et al., 2008) and renam-
ing of Xcm to Xanthomonas vasicola pv. musacearum
was proposed. Due to lack of adequate pathogenicity
studies on X. vasicola species and the annulment of the*E-mail: G.Mahuku@cgiar.org
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proposed naming of X. vasicola pathovars, and despite
suggestions gained from comparative genomics
(Wasukira et al., 2012, 2014), renaming of Xcm has not
been done (Aritua et al., 2008; Karamura et al., 2015).
However, results from whole genome sequencing clearly
show that Xanthomonas causing wilt of banana is not
close to X. campestris (Studholme et al., 2010).
Initial population genetic studies separated Xcm into

two sublineages (Wasukira et al., 2012). However, in a
recent study, using polymorphic multilocus number of
tandem repeat analysis (MLVA) markers on a larger
Xcm collection, 12 clusters were identified (Nakato,
2018). Although most of the clusters were consistent
with the sublineage classification suggested by Wasukira
et al. (2012), an unexpected diversity was observed in
the clusters that were not assigned to any sublineage
(Nakato, 2018). Further analyses are underway to deter-
mine if the isolates within the different clusters differ in
virulence.
Xcm can survive in plant residues for up to 3 months

(Ssekiwoko et al., 2006). Cultural practices such as single
diseased stem removal (Nakato et al., 2018), breaking off
the male bud with a forked stick and sterilization of gar-
den tools with sodium hypochlorite (Ssekiwoko et al.,
2006; Nakato et al., 2018) have been recommended to
control xanthomonas wilt. Although effective, the adop-
tion of these practices has been low and variable, probably
because of the high demand of labour and resource
requirements from smallholder farmers (Nakato et al.,
2018). Resistant or tolerant accessions may be the most
promising option. However, previous reports revealed that
all banana accessions exceptMusa balbisiana were suscep-
tible to Xcm (Ssekiwoko et al., 2006; Tripathi et al.,
2008; Kebede & Gemmeda, 2017). Despite being resistant
to Xcm, M. balbisiana is not preferred for breeding
because it belongs to the BB genome subgroup, while most
edible bananas are of the A genome. Therefore, genetic
engineering has been proposed as the only method for
developing Xcm resistant varieties.
Genetically modified bananas with resistance to Xcm

have been developed using non-banana genes and field
tested in Uganda (Namukwaya et al., 2012). Most coun-
tries do not have biosafety regulations for the adoption
and use of genetically modified plants, which hinders the
adoption and use of transformed banana accessions.
Therefore, there is a need to find sources of resistance to
Xcm within the available banana germplasm.
A previous study to identify banana accessions resis-

tant to Xcm was conducted on 43 accessions: mainly the
East African Highland banana (EAHB, AAA) and a few
diploid, triploid and tetraploid varieties (Ssekiwoko
et al., 2006; Tripathi et al., 2008). Of these, only the
wild banana M. balbisiana was resistant to Xcm. In this
study, the number of banana accessions was expanded to
include the entire genetic diversity found in Musa,
including diploid AA accessions that were not screened
in previous studies (Tripathi et al., 2008). Such germ-
plasm constitutes a valuable genetic resource for banana
breeding programmes aimed at producing resistant

varieties. This study was designed to provide answers to
the following questions: (i) is there resistance to Xcm
within the banana germplasm? (ii) Can this resistance be
used in a breeding programme? (iii) Is the resistance
coming from a specific set of germplasm, so that targeted
screening can be conducted to expand the sources of
resistance? To answer these questions, a set of 72 banana
accessions comprising representatives of the entire Musa
diversity were screened under controlled conditions for
response to Xcm following artificial inoculation.

Materials and methods

Plant materials

This study was conducted at the International Institute of Tropi-

cal Agricultural (IITA) Sendusu station (0°31030″N; 32°36054″E)
and at the National Agricultural Research Laboratories,

Kawanda, Uganda (0°24025″N; 32°32007″E). A total of 72

banana accessions from the IITA germplasm collection with dif-

ferent ploidy levels were screened in an outdoor confined pot
trial for response to Xcm in the period October 2015 to January

2016 and March 2016 to June 2016 (Table 1). For each acces-

sion, 12 plants were raised from disease-free corms. Corms from

healthy suckers were pared and treated with dursban (chlorpyri-
fos, belonging to phosphorothioate group of organophosphorus

pesticides) for 20 min to eliminate nematodes and weevils prior

to planting. The pots were filled to 3/4 full with a mixture of
sterilized top forest soil and sand (3:1) and arranged in a com-

pletely randomized design. Plants were watered every other day,

three days a week.

Xcm isolation, maintenance and inoculum preparation

Xcm was isolated from the pseudostem of a Kayinja (ABB
subgroup) banana plant with symptoms, harvested from Kifu

National Forest Reserve in Mukono District, Uganda in

December 2014. Sections (3 g) of inner parts of the pseu-
dostems were aseptically macerated in 3 mL sterile distilled

water using a sterile mortar and pestle. One millilitre of the

resulting suspension was serial diluted in sterile distilled

water. Twenty microlitres from the 10�2 dilution was spread
on a plate of semiselective yeast peptone glucose agar (YPGA)

growth medium (Mwangi et al., 2007), the plate sealed with

Parafilm and incubated at 24 � 1 °C for 72 h. Single colonies

with a yellow, convex, mucoid morphology typical of Xcm
were harvested and further purified by streaking onto fresh

YPGA plates. Xcm colonies were confirmed using Xcm-

specific primers (Adriko et al., 2012) and further characterized
as sublineage II by PCR (Wasukira et al., 2012), before stor-

age at �80 °C under the code USY13P, at NARO, Kawanda,

Uganda. To prepare inoculum, Xcm culture USY13P was

revived and multiplied in YPG broth and incubated at 28 °C
for 48 h. The inoculum was adjusted with sterile distilled

water to 108 colony-forming units per mL (approximately 0.5

OD600) using a spectrophotometer (Thermo Fisher Scientific)

before inoculation.

Screening procedure and disease assessment

Nine of the 12 plants for each accession were inoculated with

Xcm 3 months post-planting. A 100 lL solution of freshly
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Table 1 Banana accessions from the IITA germplasm collection evaluated for response to Xanthomonas campestris pv. musacearum (Xcm)

inoculation and grouped into disease reaction typesa based on disease indexb. The accessions were further genetically characterized using SSR

markers and grouped into clustersc based on morphological descriptors.

Accession Cultivar name Genotype

Expected

ploidy

Observed

ploidy Set Clusterc

1st evaluation 2nd evaluation

Disease

indexb
Reaction

typea
Disease

index

Reaction

type

MMC 192 Musa balbisiana BB 29 29 M. balbisiana cluster VII 18 a R 8 a R

ITC1179 Monyet AA 29 M. acuminata subsp.

zebrina cluster

X 117 a T 265 ab T

ITC1177 M. acuminata

subsp. zebrina

AA 29 29 M. acuminata subsp.

zebrina cluster

X 139 a T 333 bc MS

ITC0116 Saba ABB 39 39 ABB Bluggoe/Monthan

cluster

XII 144 a T 207 ab T

ITC1178 Buitenzorgd AA 29 AA cv. ISEA 2 cluster IX 161 a T 146 ab T

ITC1120 Tani BB 29 M. balbisiana cluster VII 163 a T 146 ab T

ITC0019 IC2 AAAA 49 49 Related to AA cv.

African cluster

IX 176 a T

ITC0396 Pelipita ABB 39 39 M. balbisiana cluster VII 201 a T 159 ab T

ITC1224 Kikundi AAA 39 AAA/Lujugira/Mutika X 201 a T

ITC0246 Cameroun BB 29 29 M. balbisiana cluster VII 228 a T 212 ab T

Not known M. acuminata

subsp. zebrina

AA 29 M. acuminata subsp.

zebrina cluster

X 233 a T

ITC0243 Pisang Rajah AAB 39 AAB/Pome IX 238 a T

ITC0728 Maia Oa AA 29 29 M. acuminata subsp.

zebrina cluster

X 255 a T

ITC0837 Yalim AA 29 AA cv. banksii s.l. cluster XI 289 a MS

ITC1345 Pisang Kra AA 29 M. acuminata subsp.

malaccensis cluster

III 295 a MS

ITC0084 Mbwazirume AAA 39 AAA/Lujugira/Mutika X 312 ab MS

ITC1468 Kahuti AA 29 29 AA cv. African IX 328 ab MS

ITC1454 Makyugu 1 AA 29 AA cv. African IX 328 ab MS

ITC1462 Suu AAA 39 39 AAA/Lujugira/Mutika X 333 ab MS

ITC0654 Petite Naine AAA 39 39 AAA/Cavendish IX 334 ab MS

ITC1139 M. acuminata

subsp. zebrina

AA 29 M. acuminata subsp.

zebrina cluster

X 343 ab MS

ITC1467 Kisanga Machi AA 29 AA cv. ISEA 2 cluster IX 345 ab MS

ITC1459 Mlema AAA 39 39 AAA/Lujugira/Mutika X 362 ab MS

ITC0058 Cacambou ABB 39 ABB Bluggoe/Monthan

cluster

XII 366 ab MS

ITC0966 Zebrina (G.F.) AA 29 29 Does not cluster with

other subsp. zebrina

368 ab MS

ITC0364 Silver Bluggoe ABB 39 39 ABB Bluggoe/Monthan

cluster

XII 407 ab MS

ITC1457 Haa Haa AAA 39 AAA/Lujugira/Mutika X 410 ab MS

ITC1594 Mshare AA 29 29 AA cv. African IX 415 ab MS

ITC0078 Who-gu AAA 39 AA cv. IndonTriNG IX 430 ab MS

ITC0944 Wambode AA 29 39 AAB plantain + plantain-

like cluster

XIII 433 ab MS

ITC1319 FHIA-18 AAAB 49 49 AAB/Pome IX 438 ab MS

ITC1458 Ilayi Red AAA 39 AAA/Lujugira/Mutika X 439 ab MS

ITC0393 Truncata AA 29 M. acuminata subsp.

burmannicoides/

burmannica/siamea/

truncata

I 460 ab MS

ITC1461 Ntebwa AAA 39 39 AAA/Lujugira/Mutika X 462 ab MS

ITC0574 Robusta AAA 39 39 AAA/Cavendish IX 467 ab MS

ITC1452 Huti (Shumba

Nyeelu)

AA 29 29 AA cv. African IX 469 ab MS

ITC1451 Kitarasa AAA 39 39 AAA/Lujugira/Mutika X 471 ab MS

ITC0768 Lacatan AAA 39 AAA/Cavendish IX 473 ab MS

(continued)
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Table 1 (continued)

Accession Cultivar name Genotype

Expected

ploidy

Observed

ploidy Set Clusterc

1st evaluation 2nd evaluation

Disease

indexb
Reaction

typea
Disease

index

Reaction

type

ITC1464 Ntindii I AAA 39 39 AAA/Lujugira/Mutika X 477 ab MS

ITC1544 Mlelembo AA 29 29 AA cv. African IX 478 ab MS

ITC1349 Pisang Serun 400 AA 29 29 M. acuminata subsp.

malaccensis cluster

III 481 ab MS 270 ab T

MMC 016 Tereza AAA 39 39 AAA/Lujugira/Mutika X 484 ab MS

ITC1466 Nshonowa AA 29 29 AA cv. African IX 490 ab MS

ITC0609 Pahang AA 29 29 Closest accession

ITC0610

I 495 ab MS

ITC1465 Ibwi AAA 39 AA cv. African IX 496 ab MS

ITC0947 Duningi AAB 39 39 AA cv. IndonTriPh X 500 abc MS

ITC1456 Huti RB AA 29 AA cv. African IX 511 abc HS

ITC0868 Porapora AA 29 AA cv. banksii s.l. cluster XI 512 abc HS

ITC0814 Bagul AA 29 AA cv. banksii s.l. cluster XI 518 abc HS

MMC 167 Sukari Ndiizi AAB 39 39 AAB Silk cluster VIII 520 abc HS

ITC0526 Kluai Namwa

Khom

ABB 39 ABB Pisang Awak cluster VIII 528 abc HS

ITC1305 Paji AA 29 AAA/Lujugira/Mutika X 528 abc HS

ITC0897 M. acuminata

subsp. banksii

AA 29 AA subsp. banksii s.l.

cluster

XI 538 abc HS

MMC 020 Kibuzi AAA 39 39 AAA/Lujugira/Mutika X 548 abc HS

ITC0595 Pagatau AAA 39 AA cv. IndonTriNG IX 549 abc HS

ITC0840 Kuspaka AA 29 AA cv. banksii s.l. cluster XI 554 abc HS

ITC0164 Rugondo AAA 39 AAA/Lujugira/Mutika X 556 abc HS

ITC1143 Gia Hui ABB 39 M. acuminata subsp.

burmannicoides/

burmannica/siamea/

truncata

I 560 abc HS

ITC0087 Kayinja ABB 39 39 ABB Pisang Awak cluster VIII 566 abc HS

ITC1243 Kokopo AA 29 IX 573 abc HS

ITC1348 Pisang Serun 404 AA 29 29 M. acuminata subsp.

malaccensis cluster

III 578 abc HS 571 d HS

ITC0310 Morong Princesa AA 29 AA cv. ISEA 2 cluster IX 589 abc HS

ITC0074 M. acuminata

subsp.

malaccensis

AA 29 M. acuminata subsp.

malaccensis cluster

III 595 bc HS

ITC0946 Merik AAA 39 39 AA cv. IndonTriPh X 596 bc HS

ITC1318 SH-3436-9 AAAA 49 49 Related to AA cv.

African cluster

IX 600 bc HS

ITC0629 Selangor 2e AA 29 49 Related to AA cv.

African cluster

IX 606 bc HS

ITC0259 Galeo AA 29 AA cv African IX 626 cd HS

ITC0312 Pisang Jari

Buaya

AA 29 AA cv. Pisang Jari Buaya I 677 cd HS

TARS

18062

Pitu AA 29 AA cv. African IX 678 cd HS

ITC1000 Gunih AA 29 678 cd HS

ITC0610 Tuu Gia AA 29 I 687 cd HS 306 ab MS

ITC0250 M. acuminata

subsp.

malaccensis

AA 29 M. acuminata subsp.

malaccensis cluster

III 745 cd HS 371 bc MS

LSD 278*** 171***

Means in the columns followed by the same letter are not significantly different (P ≤ 0.05) by LSD.
aDisease rating scale based on wilt incidence to evaluate relative resistance of banana accessions to Xcm infection. Resistant (R), no plants wilted;

tolerant (T), <30% plants wilted; moderately susceptible (MS), >30% and <50% plants wilted; and highly susceptible (HS), >50% plants wilted.
bDisease index based on percentage of plant area that is diseased during a given period of time.
cAccessions grouped together based on the morphological traits-based classification.
dAccessions that grouped into sets different from the expected.
eAccessions with ploidy level different from the expected.
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diluted Xcm inoculum was injected into the midrib of the

youngest leaf with a syringe fitted with 28-gauge needle
(Ssekiwoko et al., 2006). The remaining three plants served as

controls and were inoculated with sterile distilled water. The

midrib inoculation imitates tool infection that is common during

deleafing and detrashing, which are farmer practices conducted
routinely to maintain the banana field.

The plants were observed weekly for four months and banana

xanthomonas wilt (BXW) symptom expression and severity
recorded. Parameters recorded included time to symptom

expression, BXW symptom characteristics such as leaf wilting,

and whole plant death. Disease severity was scored using a scale

of 0–3, adopted from Winstead & Kelman (1952), and modified
as follows: 0, no disease symptoms; 1, necrosis of inoculated

leaf; 2, wilting of uninoculated leaves; and 3, death of entire

plant. The severity score was used to compute the disease index

using Equation 1:

Disease indexðDIÞ
¼ ððð1 � AÞ þ ð2 � BÞ þ ð3 � CÞÞ=No. of plantsÞ � 100 (1)

where A = number of plants with inoculated leaf showing symp-

toms, B = number of plants with uninoculated leaves showing

symptoms, and C = number of wilted plants.
The time interval between inoculation and appearance of dis-

ease symptoms, and complete wilting (days post-inoculation,

DPI) was computed by counting the number of days from inocu-
lation to symptom development. Classification of plants into

resistant and susceptible categories was based on a scale devel-

oped by Tripathi et al. (2008) and modified as follows: resistant

(R), no plants wilted; tolerant (T), <30% plants wilted; moder-
ately susceptible (MS), >30% and <50% plants wilted; and

highly susceptible (HS), >50% plants wilted.

The inoculation was repeated on a subset comprising 12

accessions that had a resistant or tolerant response from the first
screening and a few that were highly susceptible. Similarly, these

plants were inoculated with Xcm at 3 months post-planting and

data collected as above.

Area under disease progress curve (AUDPC)

The AUDPC is a useful quantitative summary of disease inten-

sity over time and for comparative analyses among genotypes,

varieties or treatments. The average data of each score at weekly

intervals was used to compute the AUDPC according to the for-
mula reported by Forbes et al. (1993). The AUDPC was calcu-

lated using Equation 2:

AUDPC ¼
XNi�1

i¼1

�
Yi þ Yiþ1

2

�
ðtiþ1 � tiÞ (2)

where t = time in weeks of each reading, Y = percentage of

affected plants at each reading, N = number of readings, and
i = reading.

Genetic characterization of the banana accessions

Two methods were used to confirm identity of accessions used:

(i) estimation of ploidy level, and (ii) genotyping using simple

sequence repeat (SSR) markers. Ploidy level of each accession
was estimated by flow cytometry as described by Dole�zel et al.
(2007). A small piece of young banana cigar leaf midrib was

chopped into a glass Petri dish containing 500 lL of ice cold
Otto I buffer. The homogenate was filtered through a 50 lm

nylon filter into a sample tube and incubated for 1–5 min on

ice. Otto II buffer (1 mL) containing the fluorescent dye 4-6-dia-
midino phenyl indole (DAPI) was added before ploidy measure-

ment using Sysmex CyFlow flow cytometer equipped with UV

excitation and detectors for DAPI fluorescence (Christelov�a

et al., 2017). Molecular characterization using SSR markers
targeting 19 loci was conducted as described by Christelov�a

et al. (2011b, 2017). The SSR markers are motifs of 1–6 bp

repeats tandemly arranged in the genomes of eukaryotic and
prokaryotic organisms (Christelov�a et al., 2011b). The SSR loci

were amplified using specific primers (Hippolyte et al., 2010)

that were adjusted by 50-M13 tails to enable the use of a univer-

sal fluorescently labelled primer according to Schuelke (2000).
Four different fluorophores were used for the primer labelling

(6-carboxyfluorescein (6-FAM), VIC, NED and PET; Applied

Biosystems), allowing for subsequent multiplexing of the

reactions.

Data analysis

Principal component analysis
Principal component analysis (PCA) was performed to evaluate
the relative contribution of disease incubation, incidence and

severity to the observed variability among the different acces-

sions, and to identify the variables that contributed most to the
data structure. The analysis was performed using the correlation

matrix function in GENSTAT v. 17 (VSN International Ltd 2014).

Disease assessment
To assess variation among accessions for time (DPI) to symp-
tom expression, DPI to complete wilting, disease index and

AUDPC, a one-way analysis of variance (ANOVA, no block-

ing) was performed using GENSTAT v. 17. Means were sepa-
rated using least significant difference at 95% confidence

level.

Mean values from ANOVA results were used to perform clus-

ter analysis with FACTOMINER package in R that permits multi-
variate exploratory data analysis (Husson et al., 2008). Based

on Euclidean distances, hierarchical clustering using the

WARD.D2 method in R was used to group banana accessions into

relatively homogenous units or disease reaction types using dis-
ease incubation, incidence and severity data (time to symptom

expression, time to complete wilting and AUDPC).

Genetic characterization and ploidy confirmation
The PCR-amplified fragments from the 19 SSR loci were scored

for presence or absence and the genetic diversity among individ-

ual accessions was evaluated using Nei’s genetic distance coeffi-

cient (Nei, 1973). Subsequently, the genetic distance matrix was
used for hierarchical clustering using unweighted pair group

method with arithmetic mean (UPGMA; Michener & Sokal,

1957). A dendrogram was constructed based on the results of
UPGMA analysis and visualized in FIGTREE v. 1.4.0 (http://tree.b

io.ed.ac.uk/software/figtree/). The dissimilarity index threshold

of 0.25 was used to assign accessions into groups.

Results

Symptom expression

Thirty-eight accessions had localized necrosis (tissue
necrosis around the point of inoculation) and this was
observed starting 7 DPI to 77 DPI (Fig. 1). Thirty-four
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of the accessions did not show localized necrosis around
the point of inoculation (Fig. 1). However, this localized
necrosis was not related to the final disease resistance
scoring. The inoculated leaf in M. balbisiana did not
develop necrosis at the point of inoculation and no dis-
ease symptoms were observed on the inoculated leaf and
beyond (Fig. 1d).

Banana accession response to Xcm inoculation

Principal component analysis revealed that DPI to com-
plete wilting was the most reliable factor for differentiat-
ing response of banana accessions to Xcm infection
(Table 2). DPI to complete wilting accounted for 66 %
of the variability among banana accessions and disease
index (DI) accounted for 30 %. Therefore, DPI to com-
plete wilting and DI were used in subsequent analyses.
Significant differences (P < 0.05) were observed in reac-
tion of accessions to Xcm infection (Table 1). The lowest
DI value was reported for M. balbisiana while the high-
est was reported for M. acuminata subsp. malaccensis
(Table 1). Fifty-nine accessions were susceptible (MS and
HS) to Xcm infection, 12 had a tolerant reaction, and
one was resistant (Table 1). All accessions screened,
except M. balbisiana, had some or all plants that wilted
completely (Table 1). None of the accessions was

immune. Accessions with a susceptible reaction clustered
separately from those with a tolerant reaction, with
M. balbisiana as an out-group (Fig. 2). Figure 3 shows
symptom development in representative accessions per
disease reaction type.
Rescreening results did not change much from that

observed in the initial screening (Table 1). Significant dif-
ferences (P < 0.05) were observed in accessions’ response
to Xcm (Table 1). As previously observed in the initial
analysis, M. balbisiana presented the lowest DI while
Pisang Serun 404 displayed the highest DI (Table 1). Of
the 12 accessions, seven accessions had a tolerant
response, four accessions were susceptible and only one
was resistant (Table 1). Using the disease reaction types,
some accessions had the same response as observed dur-
ing the initial screening, while others had a different
response (Table 1). For example, M. balbisiana was
resistant in both analyses; similarly, Buitenzorg, Saba,
Tani, Pelipita, Cameroun and Monyet were tolerant and
Pisang Serun 404 was highly susceptible in both analyses
(Table 1). However, Pisang Serun 400, Tuu Gia, M. acu-
minata subsp. zebrina and M. acuminata subsp. malac-
censis differently (Table 1). Tuu Gia and M. acuminata
subsp. malaccensis changed from highly susceptible to
moderately susceptible, Pisang Serun 400 changed from
moderately susceptible to tolerant, and M. acuminata
subsp. zebrina from tolerant to moderately susceptible.

Genetic variation among the accession

Ploidy analysis revealed that 32 of the 34 accessions for
which ploidy level was determined had the same values
for both the expected and observed ploidy levels
(Table 1). However, accessions Wambo and Selangor,
both with an expected ploidy level of 29 were confirmed
to be 39 and 49, respectively (Table 1).
A dendogram generated using SSR marker data sepa-

rated the 72 banana accessions into 22 clusters at 0.25
Nei’s dissimilarity index with relatively significant boot-
strap support (>35%) (Table 1; Fig. 4). The susceptible
accessions were present in 20 out of the known 22 sets

Figure 1 Banana leaves showing the point of inoculation for Xanthomonas campestris pv. musacearum inoculum at 14 days post-inoculation for

representative accessions. Leaves a–c indicate the different levels of necrosis around the point of inoculation observed in treated plants for 53 % of

the accessions. Leaf d is indicative of accessions that did not show any necrosis around the point of inoculation.

Table 2 Principal component scores from correlation matrix of disease

progression variables in banana accessions inoculated with

Xanthomonas campestris pv musacearum to evaluate relative

contribution of disease parameters to the overall disease assessment

Variable

Principal component

scores

PC1 PC2

Disease index 0.473 0.773

DPI to complete wilting 0.552 �0.634

DPI to symptom expression �0.687 0.022

Percentage variation 65.8 29.9

Cumulative percentage variation 65.8 95.7
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Figure 2 Dendogram of hierarchical cluster analysis using WARD. D2 method for banana accessions based on Euclidean distances for time to

symptom development, time to complete wilting and disease index.
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but the resistant and tolerant accessions clustered in the
sets of M. balbisiana and M. acuminata subsp. zebrina
only (Table 1). Three accessions, i.e. Buitenzorg, Ibwi
and Wambo, grouped into different sets from the
expected. For example, although Buitenzorg should
group within the M. acuminata subsp. zebrina set, it
grouped as AA cv. ISEA 2; similarly Ibwi, which is
within the Lujugira/Mutika set, grouped into the AA cv.
African set, and Wambo, which is AA cv. African,
grouped into the plantain set. This could be a case of
mislabelling or misclassification.
The accessions were further grouped into clusters as

presented by Christelov�a et al. (2017) (Table 1). The
putative tolerant accessions clustered into VII, IX, X, XI
and XII, while the susceptible accessions clustered into I,
III, VIII, IX, X, XI, XII and XIII (Table 1; Fig. 5). Clus-
ters IX, X, XI and XII contained accessions with both
susceptible and tolerant reactions while cluster VII only
contained tolerant accessions, and clusters I, III and VIII
only contained susceptible accessions (Table 1; Fig. 5).
These results confirm resistance in cluster VII with geno-
types with BB and ABB background, and suggest cluster
X with only genotypes with pure A genomic configura-
tions needs to be targeted for screening. The cluster X
comprised the following genotypes: AA, AAA and AAB
(Christelov�a et al., 2017).

Discussion

Breeding for host plant resistance to pathogens is an
important aspect for sustainable crop production. It is
commonly believed and supported with data from this
study that M. balbisiana with the BB genome configura-
tion is the only source of BXW resistance (Ssekiwoko
et al., 2006; Tripathi et al., 2008), thus providing limited
options for banana breeding for BXW resistance. The
observed tolerance to BXW in some genotypes with AAB
and ABB background is, therefore, presumed to have
originated from the B genome.
Necrosis around the point of inoculation indicates an

intense reaction of the plant to infection, stimulated by
specific elicitors of the pathogen, which evoke a

hypersensitive-like reaction (HR-like). However, this
lethal necrosis did not prevent further spread of the
pathogen and thus is not a resistance attribute to Xcm.
The inoculated leaf in M. balbisiana developed such
symptoms, but the bacteria were not able to spread and
colonize other parts of the plant, implying that M. bal-
bisiana may have some degree of vertical resistance for
possible exploration in breeding programmes.
Tripathi et al. (2008) and Ssekiwoko et al. (2006,

2015) documented the ability of M. balbisiana to resist
Xcm infection. For example, Ssekiwoko et al. (2015)
explored the mechanisms of resistance in M. balbisiana
and concluded that neither quorum sensing nor the HR
played a part in M. balbisiana reaction to Xcm infection.
However, the authors noted that PR3 genes played a role
in delaying symptom expression. Pathogens are only able
to cause disease symptoms in a plant after reaching a
population threshold that permits symptom expression.
Ssekiwoko et al. (2015) further noted that Xcm disables
the plant’s defence system (explaining why most banana
accessions succumb to Xcm infection), but M. balbisiana
was able to re-express its defence genes after 72 h.
Thirteen other sources of resistance apart from vari-

eties with the BB genotype were found tolerant. Their
genomic configurations and ploidy levels were AA, AAA,
AAB, ABB and AAAA. Tolerance in some genotypes
with AA shows that tolerance is derived from some A
genome accessions, while the AAB and ABB resistance
could be from the B genome. This opens new possibilities
in banana breeding as several important banana sub-
groups such as the EAHB belong to the AAA subgroup.
Moreover, this is useful for AAB and ABB breeding as
well, as the B genome contains the endogenous banana
streak virus (eBSV), which is activated when plants are
stressed, although some efforts are being made to gener-
ate eBSV-free B genotypes by breeding (Noumbissi�e
et al., 2016). Interestingly, accessions with the A genome
with tolerance to Xcm were also identified.
Based on the molecular characterization of the banana

accessions, it was observed that genotypes belonging to
the M. balbisiana set were resistant and those belonging
to the M. acuminata subsp. zebrina, and Yalim

Figure 3 Symptom development for representative accessions for different reaction types at 35 days post-inoculation. The varieties are Musa

balbisiana (resistant), Pelipita (tolerant), Ilayi Red (moderately susceptible) and Pitu (highly susceptible).
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belonging to the subspecies banksii, were tolerant. The
M. balbisiana set is known to harbour traits for biotic
stress tolerance (Robinson & Sauco, 2010). This is
important as the subspecies zebrina and banksii con-
tributed to the formation of the triploid AAA/Lujugira/
Mutika set of the EAHB (Christelov�a et al., 2017). It
was also observed that the accession Kikundi of the
EAHB was tolerant, while the other 12 accessions tested
were susceptible. IC2 (AAAA), Saba (ABB), Pelipita
(ABB) and Pisang Raja (AAB) were also tolerant. The
AA cv. African set contains cultivars found in East Africa
and islands of the Indian Ocean and is the proposed

progenitor of the subgroup AAA/Cavendish and AAA Gros
Michel (Christelov�a et al., 2017). The AAB/ Bluggoe-
Monthan set is still under investigation. According to
Christelov�a et al. (2017), there is limited intraspecific
diversity within M. balbisiana unlike in M. acuminata.
Several authors agree that on average, the constitution of
the A genome of M. acuminata and clones with AA gen-
ome is approximately 12 % larger than the B genome of
M. balbisiana, with small intraspecific variation in
nuclear DNA found in a number of wild M. acuminata
diploid and parthenocarpic bananas and large variation
exhibited among triploid cultivars (Kamat�e et al., 2001).
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Figure 4 Diversity tree of known genetic pool of banana accessions. The figure shows the position of screened accessions (with a red dot and
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Although intraspecific genetic diversity is an important
attribute deemed critical for additive and dominance
effects (Tilman et al., 2001), there is limited understand-
ing of the impact on population performance (Moore
et al., 2014). However, it could be assumed that it influ-
ences the apparent variation within the A genome to
phytopathogens.
The present study has shed light on avenues to explore

the genetic diversity in Musa Xcm resistance and toler-
ance. It has confirmed resistance of some genotypes with
the B genome to Xcm, but most importantly highlights
that the A genome also contains resistance genes in two
subspecies of M. acuminata which can be used in breed-
ing of bananas and plantains. The A genome is preferred
for breeding because most edible bananas are of the A
genome. Buitenzorg and Monyet, both belonging to dif-
ferent sets and clusters, were tolerant, hence useful in
future breeding programmes as sources of resistance to
Xcm.
Currently, a mapping population comprising 180 lines,

resulting from the crossing of Monyet (AA) (tolerant)
and Kokopo (AA) (highly susceptible) is available to fur-
ther explore the genetics of Xcm resistance. This

population will be evaluated for response to Xcm and
used to identify quantitative trait loci associated with
Xcm resistance. In addition, it would be worthwhile to
study the variability in tolerant genotypes, through mea-
surements of pathogen load, proliferation and/or analyses
of gene expression profiles to explore mechanisms of tol-
erance. A selection of representative accessions from each
cluster should be screened using Xcm isolates represent-
ing the two Xcm sublineages observed through genetic
analysis using single nucleotide polymorphism (SNP) and
MLVA markers.
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