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Abstract—Blind system identification (BSI) is an important
problem in signal processing, arising in applications such as
wireless telecommunications, biomedical signal processing and
seismic signal processing. In the past decades, tensors have proven
to be useful tools for these blind identification and separation
problems. Most often, tensor-based methods based on fourth-
order statistics are used, which have been studied extensively for
independent component analysis and its convolutive extensions.
However, these tensor-based methods have two main drawbacks:
the accuracy is often limited by the estimation error of the
statistics and the computation of these fourth-order statistics
is time-intensive. In this paper, we propose to counter these
drawbacks for BSI by coupling the fourth-order statistics with
second-order statistics and by using incomplete tensors. By doing
so, we can obtain more accurate results or obtain results in a
much faster way.

Index Terms—tensors, blind system identification, convolutive,
cumulant, incomplete, coupling

I. INTRODUCTION

Traditional system identification uses input and output infor-
mation to compose a system description. In some applications,
however, the input signals are expensive or even impossible
to measure. For instance, the inputs of a transmission system
in telecommunications are the signals of interest and are not
known a priori. However, we still wish to have a system
description to counter possible inter symbol interference [1].
This system description is often estimated using known pilot
sequences, which take up valuable bandwidth. Alternatively,
the system can be estimated in a blind way, which is more
challenging to do accurately but requires less bandwidth.
Other examples of blind system identification can be found in
biomedical signal processing, speech separation and seismic
signal processing [1], [2], [3], [4]. In these applications, one
can resort to blind system identification (BSI), which estimates
a system using solely the output signals. To make the BSI
problem feasible, some additional assumptions on the input
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signals or mixing coefficients are needed. Popular assumptions
include statistically independent inputs [4], [5], low-rank mix-
ing vectors [6], finite alphabet [7], constant modulus [8] and
sparse inputs [9].

In this paper, we consider linear time-invariant finite im-
pulse response (FIR) systems with independent and identically
distributed (i.i.d.) inputs. This model can for instance be used
in telecommunications, where the time delays of the FIR
system model path length differences. Note that this problem
statement is similar to convolutive independent component
analysis (ICA), with the conceptual difference that ICA fo-
cuses on retrieving the inputs, whereas BSI aims to find a
system description [4]. We will use both terms throughout this
text, but will focus on retrieving the system description rather
than the inputs.

Tensors are higher-order generalizations of vectors and ma-
trices. One key strength of tensors is that their decompositions
are unique under mild conditions, which is not the case for ma-
trices [10], [11], [12], [13]. Moreover, many decompositions
can be computed algebraically, which leads to fast algorithms
for reasonably small tensors when compared to optimization-
based approaches [14], [15]. Because of these properties,
tensors are well-established for the identification of instan-
taneous mixtures of independent components [4], [13], [16],
[17] and are increasingly surfacing for convolutive ICA, see
e.g. [18], [19], [20]. Independent components and tensors are
naturally linked through higher-order moments and cumulants.
For instance, a fourth-order cumulant of a stochastic vector
immediately yields a fourth-order tensor. If the elements of
the stochastic vector are statistically independent, the resulting
tensor is diagonal.

The existing tensor-based methods for BSI with independent
inputs follow various approaches. One common approach is to
reduce the convolutive mixture to an instantaneous one, which
can then be identified using existing (tensor-based) techniques.
The deconvolution can be done by transforming the data
to the frequency domain (see [3] and references therein) or
by deconvolution techniques in the time domain (e.g., [7],
[21], [22], [23], [24], [25]). Another approach immediately
tensorizes the data and subsequently decomposes the resulting
tensor [18], [19], [20], [26], [27].

In this paper, we focus on tensor-based methods in the
time domain that use fourth-order statistics to identify the
system. These methods typically have two downsides. First,
the accuracy of the estimated statistics may be low if the
signals are short. This drawback can be alleviated by com-
bining both second- and fourth-order statistics. Traditionally,
this is often done through prewhitening, but this does not
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allow the user to weigh the importance of the fourth-order
statistics and neglects possible noise influences on the second-
order statistics [28], [29]. As a first contribution, we will
counter these disadvantages for BSI by combining second- and
fourth-order statistics using coupled tensor decompositions
[15], [30], [31], [32], [33]. Another drawback of tensor-based
methods using fourth-order statistics is the computation time
of constructing the cumulant tensor. Even though fourth-order
cumulants are cheaper than, e.g., negentropy [34], computing
a fourth-order cumulant can be expensive for long signals and
systems with many outputs.

As a second contribution, we propose to improve the time
complexity by constructing just a subset of the statistics, which
yields an incomplete tensor. This incomplete tensor can then
be decomposed using existing techniques [32], [35], [36], [37],
[38], [39], [40]. This approach allows us to exchange a slight
loss in accuracy for a drastically improved time complexity.

The rest of this section introduces the notations used
throughout this text. Next, tensors and their decompositions
are presented, after which the problem at hand is introduced in
Section III. Coupled and incomplete statistics are subsequently
treated in Sections IV and V. Finally, the results are illustrated
in Section VI using numerical experiments.

Notations: Scalars are denoted by lowercase letters (e.g.,
a), vectors by bold lowercase letters (e.g., a), matrices by
bold uppercase letters (e.g., A), and tensors by uppercase
calligraphic letters (e.g., A). The outer product is denoted by
◦. The Kronecker product is denoted by ⊗ and the Khatri–Rao
product is given by �. The complex conjugate is denoted by ·∗
and the conjugate transpose (Hermitian transpose) by ·H. The
(cross)cumulant of signals a(n), b(n), c(n), d(n) is denoted by
Cum[a(n), b(n), c(n), d(n)]. The Frobenius norm is given by
||·||F. Tensor-matrix products in the nth mode are denoted by
·n [16]. Estimates are denoted by a hat atop, e.g., â.

II. CANONICAL POLYADIC DECOMPOSITION

We say that an N th-order tensor has rank 1 if and only if it
equals the outer product of N nonzero vectors. By extension,
the rank of a tensor A is defined as the minimal number of
rank-1 tensors yielding A in a linear combination.

The polyadic decomposition (PD) writes a tensor A as a
linear combination of rank-1 terms:

A =

R∑
r=1

λru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r (1)

=
r
λ;U(1),U(2), . . . ,U(N)

z
,

in which λ = [λ1, · · · , λR] and the factor matrices U(n) are
defined as U(n) =

[
u
(n)
1 , · · · ,u(n)

R

]
for n ∈ {1, . . . , N}. If λ

is a vector containing only ones, it can be omitted from the
notations. Another notation for this PD is

A = L ·1 U(1) ·2 · · · ·N U(N),

in which L is a core tensor of size R×R×· · ·×R consisting
of all zero entries except for the diagonal, which contains
the values λ1 to λR. If R in (1) is minimal, A has rank R
and we call the decomposition canonical (canonical polyadic

decomposition, abbreviated as CPD). For historical purposes
we mention that CANDECOMP and PARAFAC are other terms
sometimes used for this decomposition [13], [16], [17].

Contrary to a decomposition of a matrix in rank-1 terms, the
CPD of higher-order tensors is essentially unique under fairly
mild conditions [11], [41], [42], [13]. Essential uniqueness
means that the decomposition is unique up to trivial indeter-
minacies. More specifically, the different rank-1 terms can be
permuted arbitrarily and the vectors within each rank-1 term
may be scaled and counterscaled as long as the rank-1 term
remains unchanged.

III. PROBLEM STATEMENT

A. Blind system identification

Consider an FIR system with R inputs, M outputs and filter
length L+ 1 per input-output channel. The mth output at the
nth sample period can then be written as

ym(n) =

R∑
r=1

L∑
l=0

hmr(l)sr(n− l) + v(n), (2)

in which sr(n) are the unknown input signals, hmr(n) are
the unknown channel coefficients and v(n) represents additive
noise.

The goal of BSI is to retrieve the channel coefficients hmr(l)
using solely the output signals. To do this, we make following
assumptions:

1) The input signals sr(n) are zero-mean, non-Gaussian
i.i.d. processes. The input signals are mutually statisti-
cally independent.

2) The additive Gaussian i.i.d. noise vm(n) has zero mean,
is independent of the input signals and has the same
variance for each output.

The input signals, mixing coefficients and the additive noise
can be either real or complex-valued. Below, we derive the
methods using complex signals.

Many tensor-based time-domain approaches to BSI use
fourth-order spatio-temporal cumulants, which depend on four
“spatial” parameters mx ∈ {1, . . . ,M} and three temporal
parameters τx ∈ {−L, . . . , L}. Mathematically, an entry of
the spatio-temporal cumulant is given by

cm1,m2,m3,m4
(τ1, τ2, τ3)

= Cum[y∗m1
(n), ym2

(n+ τ1), y
∗
m3

(n+ τ2), ym4
(n+ τ3)].(3)

As explained in [19], [26], these statistics can be rearranged in
a fourth-order tensor T ∈ CM×M(2L+1)×M(2L+1)×M(2L+1)

admitting a rank-R(L + 1) CPD under our two assumptions.
More specifically, T can be written as

T =

R∑
r=1

γr

L∑
l=0

p(l)∗
r ◦ h(l)

r ◦ h(l)∗
r ◦ h(l)

r , (4)

in which γr is the kurtosis of the rth input signal sr(n) and
p
(l)
r is the rth column of P(l), defined as

P(l) =

 h11(l) · · · h1R(l)
...

. . .
...

hM1(l) · · · hMR(l)

 ∈ CM×R,
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ML
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Figure 1. Block-Hankel structure of the factor matrix H. This figure is
adopted from [26] and slightly altered.

for l ∈ {0, . . . , L}. The vector h
(l)
r denotes the rth column of

H(l), which is given by

H(l) =

0M(L−l),R
P

0Ml,R

 ∈ CM(2L+1)×R,

with l ∈ {0, . . . , L}. The matrix P is defined by

P =

P(0)

...
P(L)

 ∈ CM(L+1)×R, (5)

and contains all system parameters. More precisely, the rth
column of P contains the parameters related to the rth system
input. A graphical representation of the factor matrix H =[
H(0), . . . ,H(L)

]
is given in Figure 1. Note that this matrix is

highly structured. When decomposing T , taking the structure
of H into account may yield better results, but is more complex
as well.

Since the goal of blind system identification is to find all
system coefficients, we wish to retrieve the matrix P.

Note: throughout the paper we assume the number of inputs
R is known. In practice, this is not always the case. Computing
the rank of a tensor is an NP-hard problem [43], [44], but in
some situations it is possible to get an idea of the number of
inputs. If the system is strictly overdetermined, we can rewrite
finding R as a matrix rank estimation problem as outlined in
[7]. If extra information on the input signals is available, for
instance if a finite alphabet is used, one could try several values
for R in the algorithms and check whether the inputs behave
as expected.

B. Challenges

Though constructing T and computing its (structured) de-
composition in (4) is possible, there are a few challenges which
we shall address here. First, fourth-order statistics are hard to
estimate accurately. Second, computing these statistics may
be computationally expensive. Below, we elaborate on these
issues and give an overview of ways to counter them. In later
sections, the possible solutions are treated more thoroughly.

1) Accuracy: Most tensor-based methods in literature use
fourth-order statistics for BSI and signal separation. This
choice is motivated by practical considerations. First, accu-
rately estimating statistics is harder with increasing order [45],
which implies that we prefer statistics of lower orders. Second,
statistics of odd orders are zero if the probability density
function of the data is even, which is often the case in practice.
This leaves us with two good candidates: second- and fourth-
order statistics. Because second-order statistics only yield a
matrix for i.i.d. inputs, using just the second-order information
does not allow us to uniquely identify a mixing system.
Consequently, most methods turn to fourth-order statistics,
possible combined with second-order statistics to improve
the estimation accuracy. For instantaneous mixtures, several
approaches to combine these statistics have been followed.
We briefly review their strengths and weaknesses:
• Methods using prewhitening [4], [46]. These methods first

use second-order statistics to prewhiten the data by prin-
cipal component analysis. In a subsequent step, fourth-
order statistics are used for the actual separation of the
data, which then involves estimating an orthogonal mix-
ing matrix. This traditional prewhitening approach has the
disadvantage that errors introduced in the prewhitening
step, for instance by additive Gaussian noise, cannot be
fully compensated for in the separation step [29], [28].

• Methods using only fourth-order statistics [47], [48].
This approach avoids the possible noise influence on the
prewhitening step by not using second-order statistics
altogether. In cases where the noise influence on the
second-order statistics is significant, this will yield more
accurate results.

• Methods using soft prewhitening [49], [50], [51]. Soft
prewhitening tries to find a middle ground between the
two other approaches by exploiting second- and fourth-
order information simultaneously in a weighted fashion.
The system can be identified by optimizing the function

argmin ω2 ||Rel. error on 2nd-order statistics||2F +
ω4 ||Rel. error on 4th-order statistics||2F .

In this respect, traditional prewhitening uses an large
ratio ω2/ω4 whereas fourth-order methods set ω2 = 0.
As mentioned in the introduction, tensor-based methods
can combine the second- and fourth-order information
using coupled decompositions. More elaborate weighting
strategies, including statistically optimal weighting, have
been studied in for instance [52], [53], [54], [55], [56].

With these approaches for instantaneous mixtures in mind,
we consider which are suitable for convolutive mixtures. Most
tensor-based methods for BSI in the literature use only fourth-
order statistics [19], [26]. To improve the accuracy of these
methods, one has to turn to prewhitening or coupled decom-
positions. The prewhitening approach has been considered in
[57], [58], [59], among others. In convolutive mixtures, the
prewhitening step reduces the problem to the blind estimation
of paraunitary channels. Approaches that couple both second-
and fourth-order information in a weighted fashion in the
time domain are scarce in the literature. Apart from a similar
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approach in the frequency domain in [60], we have not found
any real results for convolutive mixtures. This approach is in-
teresting though, since it combines the advantages of coupling
statistics without resorting to the more complex statistically
optimal weighting. Because of this, we will focus on methods
that couple both second- and fourth-order information in a
weighted fashion in the time domain. Mathematical derivations
and further details will be provided in Section IV.

2) Expensive statistics computation: The spatio-temporal
cumulant tensor from (4) contains O(M4L3) entries. For long
signals or systems with many outputs, constructing this tensor
is computationally expensive. For instance, computing one
entry of a fourth-order cumulant tensor for signals of length N
takes roughly 12N floating point operations. Constructing the
full spatio-temporal cumulant tensor thus takes O(M4L3N)
flops.

To reduce the number of computations, several strategies
can be used. First, one can deconvolve the convolutive mixture
to obtain an instantaneous mixture of independent components,
see [25] and references therein. This is only possible when the
system is strictly overdetermined, i.e., has strictly more outputs
M than inputs R, but reduces the cumulant computation to
O(R4N) flops. The downside of this approach is that possible
errors in the deconvolution step may perpetuate [25]. Second,
one could compute just a subset of the statistics. This leads to
an incomplete tensor, which can still be decomposed. We will
elaborate on this in Section V.

IV. COUPLED DECOMPOSITIONS

To combine second- and fourth-order information, we turn
to coupled tensor decompositions. For convolutive mixtures
of independent components, there are several possible ap-
proaches. First, we discuss the approach that starts by de-
convolving the output signals, which yields an instantaneous
mixture. We can then rely on existing methods for coupling
statistics. Next, an alternative is presented that immediately
couples the statistics without a deconvolution step. This
approach allows coupling of statistics of underdetermined
systems as well.

A. Instantaneous mixture after deconvolution

One approach starts by deconvolving the convolutive mix-
ture, which yields an instantaneous mixture of independent
components [23], [7]. Note that this deconvolution step is
only possible when there are strictly more system outputs
than inputs. Once the instantaneous mixture is obtained, we
can simply use existing techniques for coupling second- and
fourth-order statistics as described in [50]. We briefly explain
how this coupling is done for instantaneous mixtures for future
reference.

Let x(t) ∈ CM be an instantaneous mixture of R statis-
tically independent components stored in s(t) ∈ CR at time
instance t. The mixing system can be described by a matrix
M ∈ CM×R. We have

x(t) = Ms(t).

The covariance matrix C
(2)
x and fourth-order cumulant tensor

C(4)x of the mixture x(t) then both admit a rank-R decompo-
sition:

C(2)
x = C(2)

s ·1 M ·2 M∗,

C(4)x = C(4)s ·1 M ·2 M∗ ·3 M ·4 M∗,

in which C
(2)
s and C(4)s are diagonal because of the statistical

independence of the components. We can thus write

C(2)
x = J∇s;M,M∗K

C(4)x = Jγs;M,M∗,M,M∗K ,

in which∇s contains the source variances and γs the kurtosis
values of the different sources. The mixture can then be
identified by coupling both decompositions in one (weighted)
objective function

(
M̂, ∇̂s, γ̂s

)
= argminω2

∣∣∣∣∣∣C(2)
x −

r
∇̂s; M̂, M̂∗

z∣∣∣∣∣∣2
F∣∣∣∣∣∣C(2)

x

∣∣∣∣∣∣2
F

+ω4

∣∣∣∣∣∣C(4)x −
r
γ̂s; M̂, M̂∗, M̂, M̂∗

z∣∣∣∣∣∣2
F∣∣∣∣∣∣C(4)x

∣∣∣∣∣∣2
F

.

The coupling stems from the shared factor M̂ in both decom-
positions. Optimizing this objective function in the variables
M̂, ∇̂s and γ̂s yields an estimate for the mixing matrix
M̂. Various algorithms for coupled decompositions have been
developed in literature [15], [30], [31], [32], [33], [61]. The
choice of ω2 and ω4 will be discussed in Section IV-C.

B. Convolutive mixtures

We now wish to port the idea of combining second- and
fourth-order statistics to the convolutive case. To do this,
we first need tensor expressions for both that can be easily
coupled. We will also briefly discuss the possible initialization
procedures.

1) Fourth-order statistics: The fourth-order information has
been derived in Section III and is contained in a fourth-
order tensor admitting a structured CPD. This structured de-
composition can be perfectly solved using optimization-based
techniques [19], [62], though the implementation of the full
structure may be cumbersome and finding a good initialization
may be challenging. We first exploit the structure available in
the spatio-temporal fourth-order statistics as in [26], which has
proven to be a time-efficient and reasonably accurate method.
Exploiting the structure by applying the algorithm from [26]
results in a third-order tensorQ ∈ CM(L+1)×M(L+1)×R which
can be written as

Q = JP∗,P,AK , (6)

in which P is the same system matrix as in (5) and A ∈ CR×R

is a nonsingular matrix. Both P and A are found by computing
the CPD of Q, though we only need the former. The details
on how to obtain this decomposition can be found in [26].
For now, it suffices to note that this tensor decomposition is
unstructured and still attains a high accuracy.
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2) Second-order statistics: To compute the second-order
statistics, we first write (2) in matrix form as

Y = PhorS + V, (7)

in which the rows of Y ∈ CM×N contain the output signals,
N contains the additive noise, Phor contains the system coeffi-
cients and S ∈ CR(L+1)×N contains the lagged input signals.
Note that S is block-Toeplitz structured. More specifically, its
nth column s(n) is given by

s(n) = [s1(n), s2(n), . . . , sR(n),

s1(n− 1), s2(n− 1), . . . , sR(n− 1), . . .

s1(n− L), s2(n− L) . . . , sR(n− L)]T .

The matrix Phor is strongly related to P from (5) since it
consists of the same submatrices, but stacked horizontally
rather than vertically:

Phor =
[
P(0),P(1), . . . ,P(L)

]
∈ CM×R(L+1).

The covariance of the output signal Y can now be written as

C(2)
y = PhorC

(2)
s PH

hor + C(2)
v , (8)

in which C
(2)
s and C

(2)
v are diagonal matrices because the

inputs and additive noise signals are i.i.d.
Note that (8) represents the standard second-order statistics

rather than the spatio-temporal variant, which we used for the
fourth-order statistics. The reason for this lies in simplicity
of the factorization, which would be highly structured in the
spatio-temporal case. However, even though we do not need
the spatio-temporal second-order statistics, they can still be
useful to get a noise level estimate when the system has
more outputs than inputs. Consider for instance the augmented
output vector yaug(n) ∈ CML′

, noise vector vaug(n) ∈ CML′

and input vector saug(n) ∈ CRLtot defined as

yaug(n) = [y1(n), . . . , yM (n), y1(n− 1), . . . ,

yM (n− 1), . . . , yM (n− L′ + 1)]
T
,

saug(n) = [s1(n), . . . , sR(n), s1(n− 1), . . . , sR(n− 1),

s1(n− Ltot + 1), . . . , sR(n− Ltot + 1)]
T
,

vaug(t) = [v1(t), . . . , vM (t), v1(t− 1), . . . ,

vM (t− 1), . . . , vM (t− L′ + 1)]
T
,

In these expressions, Ltot = L+L′ and L′ is an integer chosen
such that ML′ > RLtot. The augmented vectors are related
by

yaug(n) = Hsaug(n) + vaug(t),

with H ∈ CML′×RLtot a tall structured matrix containing the
system coefficients. The exact structure of H can be easily
derived from (7), as was done in [63], but is not important for
our purposes. Computing the covariance matrix of yaug(n),
which is equivalent to the spatio-temporal covariance of y(n),
yields

C(2)
yaug

= HC(2)
saug

HH + C(2)
vaug
. (9)

Just as before, the matrices C
(2)
saug and C

(2)
vaug are diagonal

since both inputs and additive noise signals are i.i.d. A key

observation here is that the rank of HC
(2)
saugH

H equals RLtot,
which is strictly smaller than ML′. Assuming the additive
noise levels are the same for all output signals, this implies that
the ML′ − RLtot smallest singular values of C

(2)
yaug are solely

determined by the noise variance σ2
v . We can thus estimate

the noise level by computing a singular value decomposition
of C

(2)
yaug and considering the smallest ML′ − RLtot singular

values. This noise variance can then be used improve the
estimate of the output covariance in (8) by subtracting a
diagonal matrix containing the noise variances C

(2)
v = σ2

vI:

C̃(2)
y = C(2)

y −C(2)
v = PhorC

(2)
s PH

hor. (10)

As a sidenote, we mention that equation (9) was used for
prewhitening in [63], in the context of the blind identification
of non-i.i.d. system inputs.

3) Coupled decomposition: We can now combine second-
and fourth-order information in the following coupled decom-
position:

P̂ = argmin ω2

∣∣∣∣∣∣C̃(2)
y − P̂horP̂

H
hor

∣∣∣∣∣∣2
F∣∣∣∣∣∣C̃(2)

y

∣∣∣∣∣∣2
F

+ω4

∣∣∣∣∣∣Q− r
P̂∗, P̂, Â

z∣∣∣∣∣∣2
F

||Q||2F
. (11)

Note that we assumed that the diagonal matrix C̃
(2)
s from (8)

has all ones on the diagonal. This can be done without loss of
generality since the column scaling effects introduced by this
can be captured in the factor A. If the noise variance cannot
be estimated properly, which is the case if the system is not
strictly overdetermined, we use C

(2)
y instead of C̃

(2)
y . Though

the second-order statistics are less accurate in this case, it
may still be beneficial to combine both second- and fourth-
order statistics since the former could still add information.
The coupled optimization problem can be initialized using
the algebraic method from [26], which uses only fourth-order
statistics to find a solution. It has been shown in [26] that this
approach is both fast and reasonably accurate. We illustrate
this in Section VI as well.

C. Setting the weights

The weights ω2 and ω4 in (11) have to be chosen by the
user. Since the fourth-order information ensures uniqueness of
the coupled decomposition, the only limitation is that ω4 must
be larger than zero. Choosing a large ratio ω4/ω2 indicates
that one has more confidence in the fourth-order statistics.
This can be the case when many samples are available and
the additive noise is Gaussian. A small ratio ω4/ω2 implies a
strong reliance on the second-order statistics, which is useful
when few samples are available or when the noise influence
on the second-order statistics was corrected.

There is an optimal choice of weights which can be derived
from Fisher information theory. However, because this opti-
mum depends on the a priori unknown mixing coefficients,
source statistics, estimator statistics and noise statistics, the
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Algorithm 1: High-level overview of the procedure
to combine fourth- and second-order information for
blind system identification.

Data: M output data sequences ym(n).
Result: Estimate of the mixing channels P̂.
1) Compute the full fourth-order spatio-temporal cumulant

tensor T as in (3) and (4).
2) Exploit the block-Hankel structure of the factor matrices

of T to obtain the smaller tensor Q in (6) as explained
in [26].

3) Compute the CPD of Q to obtain an initial estimate
P̂init from (6).

4) Compute the covariance of the output signal in (8).
5) If the system is overdetermined, compute the noise vari-

ance C
(2)
v . Compensate for the noise in the covariance

matrix as shown in (10).
6) Couple the fourth-order information Q and the second-

order information as in (11). The optimization can be
initialized using P̂init.

optimal value is hard to determine in practice. A full mathe-
matical derivation is out of the scope of this paper, but we
illustrate the effect of different weights through numerical
experiments in Section VI.

V. INCOMPLETE TENSORS

In Section III-B2, we suggested that incomplete tensors
may be a solution to the expensive statistics computation.
The underlying idea is that only a subset of the fourth-order
cumulant entries is computed, yielding an incomplete tensor.
One interesting property is that these incomplete tensors
can still be decomposed if there are enough known entries.
Algorithms for this are available in the literature [32], [35],
[36], [37], [38], [39], [40].

Choosing the number of entries to compute is a trade-off
between computation time and accuracy of the solution. This
balance is more intricate than one would expect at first sight,
since the computational load is not only influenced by the
number of statistics that have to be computed, but is affected
by the initialization procedure and algorithm as well. This
trade-off between computation time and solution accuracy will
be illustrated by a numerical experiment in Section VI.

Since the available algorithms for decomposing incomplete
tensors are optimization-based, a good initialization is key
to avoid getting stuck in local minima. In the case of full
tensors, algebraic techniques can be used to obtain a proper
initial value. For instance, an algebraic method for BSI using a
tensor of fourth-order statistics is presented in [26]. One of the
main issues with incomplete tensors is that this straightforward
algebraic technique can no longer be used, though we mention
for completeness that sampling techniques exist that do allow
algebraic computations [40]. We propose a two-step procedure
that uses an algebraic initialization and subsequently refines
the result using an incomplete tensor, capitalizing on the fact
that fourth-order statistics are computationally expensive for
long signals. Suppose we have M system outputs of length

N . Instead of computing the full spatio-temporal cumulant
tensor as in Section III, we use just a part of the available
output data. More specifically, we do not consider the full-
length output signals, but select just the first fragment of each
output signal. The goal is to get a reasonable first estimate
for the spatio-temporal cumulant tensor without using the full
signals. Depending on the original length N of the signals,
the first 1% or even 0.1% of the signal samples may suffice
to get a reasonable estimate. Note that it does not matter from
which part of the output data a subset is selected because the
input signals are i.i.d. Once we have the full spatio-temporal
cumulant tensor based on these signal segments, existing
algebraic methods can be used to obtain a first estimate of
the system parameters [26]. In a next step, we construct a
subset of the expensive cumulant tensor entries using the full-
length signals, yielding an incomplete tensor. Optimization-
based algorithms can use this incomplete tensor to refine the
initialization obtained in the first step.

The overall objective of this two-step strategy is to obtain
a solution in a much faster way than using the full spatio-
temporal cumulant tensor, while only having a limited loss in
accuracy. Note that both steps in this strategy rely on partial
information, but in a different way. To summarize, a high-level
overview of the approach is given in Algorithm-2.

Algorithm 2: High-level overview of the procedure us-
ing incomplete tensors for blind system identification.
Data: M output data sequences ym(n).
Result: Estimate of the mixing channels P̂.
1) Construct the full fourth-order spatio-temporal cumulant

tensor T as in (3) and (4) using only part of the available
observations of ym(n).

2) Exploit the block-Hankel structure of the factor matrices
of T to obtain the smaller tensor Q in (6) as explained
in [26].

3) Compute the CPD of Q to obtain an initial estimate
P̂init from (6).

4) Construct a subset of the entries of the fourth-order
cumulant tensor T as in (4) using all available obser-
vations of ym(n). Store these values in Tincomplete.

5) Compute the structured CPD of Tincomplete using the
initialization P̂init.

In constructing the incomplete tensor, one has to choose
which cumulant entries to compute and which to consider
missing. This choice may have an influence on the accuracy
of the result. A full derivation is out of the scope of this paper,
but we will perform a numerical experiment illustrating some
effects in Section VI.

VI. NUMERICAL EXPERIMENTS

In this section, the performance of the presented methods is
shown and compared to other approaches. First, we show how
the choice of weights in a coupled decomposition affects the
accuracy. Next, we compare coupled decompositions with pure
fourth-order methods. Finally, we illustrate the effectiveness of
incomplete cumulant tensors for BSI.
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Figure 2. The effect of different a relative weight ω2 depends on the system
and signal parameters. The graphs show the median over 1000 experiments
at an SNR of 20 dB of a system with L = 1.

To measure the estimation accuracy, we use the relative error
of the system coefficients, which we define as

Relative error(P) = 20 log10


∣∣∣∣∣∣P− P̂∆optΠopt

∣∣∣∣∣∣
F

||P||F

 (dB),

in which ∆opt and Πopt represent optimal column scaling
and permutation, which can be determined using the cpderr
command in TENSORLAB [62]. All other tensor-related de-
compositions and operations are implemented using TENSOR-
LAB as well.

A. Choosing the weights for coupling

In Section IV-C we discussed the choice of the relative
weights ω2 and ω4 for the second-order and fourth-order
statistics, respectively. In Figure 2, we illustrate the effect of
the choice of weights for two systems. Both of these FIR
systems have a maximum filter delay L = 1 and their outputs
are perturbed by additive Gaussian noise such that the signal-
to-noise ratio (SNR) equals 20 dB. The input signals are
sampled randomly from a uniform distribution on [− 1

2 ,
1
2 ]

and the system coefficients are sampled randomly from a
standard normal distribution. The weight ω2 is varied and ω4

is computed as ω4 = 1 − ω2. The figure shows the median
accuracy over 1000 experiments.

The top graph of Figure 2 shows a system with 4 outputs
and 4 inputs with signals consisting of 105 samples. Since
there are many samples available and the additive noise is
Gaussian, we expect that the fourth-order statistics will be
approximated well. On another note, the system is not strictly
overdetermined, which implies that we cannot subtract the
noise variance from the covariance matrix. Combining these
insights and using our knowledge from Section IV-C, we
expect that a small weight for the second-order statistics will

be better for this system. Indeed, the top of Figure 2 shows
that the best result is obtained when we only use fourth-order
statistics. The accuracy gradually deteriorates when increasing
the weight of the second-order statistics. For ω2 = 1, the
system estimation fails completely since the covariance matrix
alone does not suffice to uniquely identify a system.

The bottom of Figure 2 shows a system with 5 outputs
and 2 inputs with signals consisting of 5000 samples. Due
to the limited number of samples, the fourth-order statistics
will not be estimated very accurately. However, the noise
influence on the covariance matrix can be estimated since
the system is strictly overdetermined. This implies that the
second-order information will be estimated quite accurately.
The figure confirms that a higher weight for the second-order
statistics improves the accuracy of the system identification.
Again, this holds up to ω2 = 1, which does no longer allow
to uniquely identify the system.

Both experiments were conducted at a fixed SNR of 20 dB.
However, we can make a similar reasoning as before to
determine what happens if the SNR changes. For instance, a
lower SNR will have little influence on the fourth-order statis-
tics, which are theoretically blind to additive Gaussian noise,
though there will be a small impact because we are dealing
with finite signals. By contrast, the second-order statistics may
be strongly affected if the noise variance cannot be estimated
(i.e., if the system is not strictly overdetermined) since the
noise directly perturbs the diagonal of the output covariance
matrix. Because of this, the fourth-order statistics would get a
higher weight in the optimal coupled decomposition. For the
sample size, an analogous reasoning can be used. Second-order
statistics can be estimated more accurately than fourth-order
statistics for a fixed number of samples [45]. Consequently,
the second-order statistics will be favored more by the optimal
weights if the sample size is very small.

B. Comparison of methods

In this section, we show how the methods that combine
second- and fourth-order information perform when compared
to other methods. For the numerical experiment, we consider a
system with 5 outputs, 2 inputs and a filter length of 2, which
implies that the maximum filter delay is L = 1. The input
and output signals consist of 5000 observations. The inputs
are randomly sampled from a uniform distribution on [− 1

2 ,
1
2 ].

Additive noise is added to the outputs to obtain various SNRs.
In Figure 3, four methods are compared in terms of accuracy

and computation time. All results are the median over 300
experiments. The first method is a pure fourth-order method
from [26], which immediately tensorizes the data and subse-
quently identifies the system by computing a structured tensor
decomposition. The second method couples the method from
[26] with second-order information, as explained in IV-B. The
relative weights were chosen as ω2 = 0.8 and ω4 = 0.2.
This choice is based on the results of the previous experiment,
which showed that for a similar system, a large weight for the
second-order information is appropriate. The third and fourth
method start by deconvolving the convolutive mixture to obtain
an instantaneous mixture. For the deconvolution, we used the
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Figure 3. Coupling second- and fourth-order information leads to better
accuracies for methods starting with both deconvolution and tensorization.
This improved accuracy comes at the price of a slower method.

fast approach from [25] that uses only 100 data samples
for the deconvolution. It has been shown in [25] that this
approach greatly reduces the computation time and has little
impact on the accuracy of the deconvolution. The third method
then identifies the remaining instantaneous mixture using only
the fourth-order cumulant. The fourth method again couples
second- and fourth-order information of this instantaneous
mixture as explained in Section IV-A. Just as for the other
algorithm, the relative weights were chosen to be ω2 = 0.8
and ω4 = 0.2.

The top of Figure 3 shows that the accuracy of all methods
improves when the SNR increases, as expected. For low SNR,
the methods that immediately tensorize perform better than
the methods that start with deconvolution. This is because
the fourth-order statistics of the additive Gaussian noise is
zero, which implies that immediately computing the (fourth-
order) statistics has a denoising effect. Methods that start by
deconvolving the outputs do not have this advantage and tend
to introduce errors that cannot be fully undone in the second
step of the algorithm. When the SNR is sufficiently high, the
estimation accuracy of the fourth-order statistics is the limiting
factor. In this case, it is better to start with deconvolving
the data. The next goal of this experiment is to show that
coupling second- and fourth-order information improves the
results. The top of Figure 3 clearly shows that this is the case.
Note that the coupled method that immediately tensorizes the
data improves upon the pure fourth-order method by about
the same factor for all SNRs, whereas the coupled method
after deconvolution keeps improving for higher SNRs when
compared to its fourth-order counterpart. The reason for this
lies in the noise variance estimation. For the method that starts
by tensorizing, the noise influence on the covariance matrix
was removed. For the methods that start with deconvolving,
this is not possible since the resulting instantaneous mixture

5 20 40
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−20

−40

Tens.
Tens. – coupled

Deconv.
Deconv. – coupled

Relative
error (dB)

5 20 40

102

1

10−2

Tens.

Tens. – coupled

Deconv.
Deconv. – coupled

SNR

Time (s)

Figure 4. Accuracy and time complexity comparison of methods using either
only fourth-order information and methods combining fourth- and second-
order information, this time for slightly longer filters (L = 3).

is not strictly overdetermined.
The same qualitative behavior can be seen if the filter length

is increased to 4, which implies that L = 3, as shown at the
top of Figure 4. For this experiment with longer filters, all
parameters have been kept the same as before, apart from the
number of outputs, which has increased to M = 7.

The bottom of Figure 3 shows the time complexity of the
methods implemented in Matlab version R2015b on a laptop
containing an Intel Core i7-4810MQ CPU and 16 GB of
RAM. It shows that the downside of coupling is the higher
computational complexity. For the methods starting with de-
convolution, the effect is limited since efficient algorithms
exist for shared factors in coupled matrix-tensor factorizations
[15], [32]. In the coupled method that starts by tensorizing
the data, the factors consists of the same building blocks, but
they are ordered differently as explained in Section IV-B. This
implies that we have to turn to more general optimization
frameworks or write dedicated optimization routines tailored
to this problem. In this experiment, the structured data fusion
framework of TENSORLAB was used with sdf_nls, which
allows very flexible modeling but is slower than dedicated
algorithms [32]. For larger filters and bigger output vectors,
the time complexity increases significantly for the methods
that start by tensorizing as illustrated for L = 3 at the bottom
of Figure 4. For high values of L, methods that deconvolve
first are more suited in terms of time complexity.

C. Incompleteness

In this section, we compare the method based on incomplete
tensors with the full method using all statistics.

Consider a system having eight outputs, maximum filter
delay of L = 2 and 3 inputs. The signals have length N = 106

samples and Gaussian noise is added to the output signals
such that the SNR is 20 dB. For the incomplete approach, an
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Table I
CLASSIFICATION OF CUMULANT ENTRIES BASED ON THE REPEATED

INDICES OF THE SPATIAL PARAMETERS.

Entry class Selection procedure 2 Selection procedure 3
(equal preference) (unequal preference)

ciiii 1 5
ciiij 2 4
ciijj 3 3
ciijk 4 2
cijkl 5 1

initialization is computed by decomposing the full cumulant
tensor constructed using the first 104 samples of the output
signals. The experiment is run 100 times and the median
results are shown in Figure 5. In the figure, three selection
procedures are shown. These procedures decide which entries
of the incomplete cumulant tensor are computed. The first one
randomly selects entries to compute. The second and third
selection procedures are slightly more involved. Recall the
fourth-order spatio-temporal cumulant expression (3). If we
ignore the time-shifts, the combinations of the four spatial
parameters m1,m2,m3 and m4 can be classified according
to repeated indices as shown in Table I. For instance, the
notation ciiii is used to denote cumulant entries of which the
spatial parameters are all the same. Similarly, ciiij denotes
entries of which three spatial parameters are the same and the
remaining one is different. The table then shows in which order
the second and third selection procedure choose the entries to
compute. They each start by randomly selecting entries from
the class labeled “1” until no entries remain and then move
on to the other classes until the desired number of entries is
reached. Note that there are many different options to choose
entries and these procedures only show a few extremes to give
a general idea of the effects of different choices.

The top graph in Figure 5 shows that the random entry
selection outperforms the other approaches in this example.
This may be because the random approach allows entries
from all classes given in Table I. However, further research
is needed to thoroughly explain this behavior. Overall, all
approaches show that using incomplete statistics leads to less
accurate results than the full method, which was expected since
less information is available. The advantage of the incomplete
methods lies in the computation time, as shown in the bottom
part of Figure 5. Note that in this figure, the dashed black line
denotes the cumulant tensor construction time, which clearly
takes up most of the time for the full method. By circumvent-
ing this full construction in our incomplete approach, results
can be obtained much more quickly. In this experiment, a
reasonable trade-off between accuracy and speed lies around
a retained fraction of 10−2. At this level of incompleteness,
there is just a small loss in accuracy while there is a speedup
of an order of magnitude.

VII. CONCLUSION

In this paper, we described the current state of tensor-based
methods for BSI with statistically independent inputs and what
the drawbacks are in terms of accuracy and time complexity.

10−4 10−3 10−2 10−1 100

−15

−30

−45
Random

Equal pref.
Unequal pref.

Full
tensor

Relative
error (dB)

10−4 10−3 10−2 10−1 100

10−1

100

101

102

Tensor
construction

Retained fraction of tensor entries

Time (s)

Figure 5. Using incomplete statistics leads to faster methods at the cost of
a lower accuracy. The selection procedure of which entries to compute also
impacts accuracy. The dashed black line denotes the time needed to construct
the (incomplete) cumulant tensor.

We subsequently proposed strategies to deal with these disad-
vantages. More specifically, coupled decompositions allow the
user to combine both second- and higher-order information in
convolutive mixtures of independent components, which leads
to more accurate results. To deal with the time complexity,
incomplete tensors can be used. By computing just a subset
of the statistics needed, the execution time can be strongly
reduced with only limited loss of accuracy. The results have
been illustrated in various numerical experiments. Apart from
the main results, experiments were performed to illustrate the
effect of some parameters such as the relative weights in
coupled decomposition and the choice of entries to compute
in incomplete tensors.
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