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Lućıa, Katja and Michiel thank you for enriching my Leuven these four years.

To all of those above and the ones I have forgotten to mention my greatest of
thank you’s!

João Pedrosa

ii



Abstract

Left Ventricular Segmentation of the Heart in Real-
Time 3D Echocardiography

Cardiovascular diseases account for more deaths than any other cause [1] and
are projected to remain the single leading cause of death [2]. Echocardiography
plays a crucial role in clinical cardiology with diagnostic, prognostic and interven-
tional value. This is potentiated by its excellent temporal resolution, safety, good
spatial resolution and low cost, making it the cardiac imaging exam of reference in
daily practice. Though 2D echocardiography remains the predominant modality for
cardiac assessment, 3D echocardiography has the advantage of allowing for a 3D
rendering of the anatomical structures thus discarding the need for the geometri-
cal assumptions inherent to 2D echocardiography. Nevertheless, the analysis of 3D
images is challenging and time consuming, fueling the need for software tools that
enable a fast, accurate analysis that reduces the burden on the clinician while at
the same time reducing the inter- and intra observer variability of the clinical in-
dices extracted. This thesis aims to address these issues with a number of technical
contributions from which a fast and robust framework for automatic full cycle 3D
left ventricular myocardial segmentation emerges. This was possible based on the
B-spline Explicit Active Surfaces framework [3], a formulation of Active Geometric
Functions [4] exploring the link between explicit and implicit formulations for image
segmentation. The starting point for this thesis was a previous implementation of
this framework for left ventricular segmentation and tracking which proved very
promising, outperforming other state-of-the-art methods. In this thesis, a hybrid
energy for segmentation and tracking is introduced, allowing for more accurate full
cycle segmentation; robust left ventricular myocardial segmentation is made possi-
ble by an efficient coupling between the endo- and epicardial surfaces; automatic
short axis orientation of the left ventricle is proposed, allowing for additional in-
formation to be extracted; a Statistical Shape Model built from cardiac magnetic
resonance imaging is used to improve the robustness of the segmentation by provid-
ing information on the expected shapes of the left ventricle when image information
is low or unreliable. At each step of the development thorough validation of the
methods was performed, leading to the final framework for fast, automatic and
robust full heart cycle 3D left ventricular myocardial segmentation. This frame-
work was then implemented in a user-friendly distributable software application to
potentiate its application in future studies. The added value of 3D echocardiogra-
phy is further highlighted through a method for myocardial performance mapping
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ABSTRACT

through the study of the stress-strain relationships validated against nuclear imag-
ing. Finally, the application of the developed framework in real-time is considered
by implementing it in an experimental system for 2D left ventricular segmentation
for anatomical imaging, as to obtain high frame rate imaging and study short lived
myocardial dynamics.

Segmentatie van de Linker Hartkamer in Real-Time
3D Echocardiografie

Hart- en vaatziekten zijn verantwoordelijk voor meer sterfgevallen dan enige
andere oorzaak [1] en zullen naar verwachting ook de belangrijkste doodsoorzaak
blijven [2]. Echocardiografie speelt een cruciale rol in klinische cardiologie met dia-
gnostische, prognostische en interventionele waarde. Dit wordt versterkt door zijn
uitstekende temporele resolutie, veiligheid, goede ruimtelijke resolutie en lage kost,
waardoor het het cardiale beeldvormingsonderzoek bij uitstek is in de dagelijkse
praktijk. Hoewel 2D echocardiografie de meest gebruikte modaliteit blijft voor car-
diale beoordeling, heeft 3D echocardiografie het voordeel dat een 3D weergave van
de anatomische structuren mogelijk is, waardoor de noodzaak voor de geometrische
aannames inherent aan 2D-echocardiografie wordt weggenomen. Desalniettemin is
de analyse van 3D beelden moeilijk en tijdrovend, wat de behoefte aan software
tools aanwakkert die een snelle, nauwkeurige analyse mogelijk maken. Dit zou de
werk belasting voor de clinicus verminderen, terwijl tegelijkertijd de inter- en intra-
waarnemervariabiliteit van de klinische indices verminderen. Dit proefschrift beoogt
deze problemen aan te pakken met een aantal technische bijdragen waaruit een snel
en robuust raamwerk voor automatische 3D linkerventrikelmyocardiale segmentatie
naar voren komt voor de volledige hartcyclus. Dit was mogelijk op basis van het
B-spline Explicit Active Surfaces raamwerk [3], een formulering van Active Geo-
metric Functions [4] met behulp van de koppeling tussen expliciete en impliciete
formuleringen voor beeldsegmentatie. Het uitgangspunt voor dit proefschrift was
een eerdere implementatie van dit raamwerk voor linkerventrikel segmentatie en
tracking, dat veelbelovend bleek te zijn en beter presteerde dan andere state-of-the-
art methoden. In dit proefschrift wordt er een hybride energie voor segmentatie en
tracking gëıntroduceerd, waardoor een meer nauwkeurige volledige hartcyclus seg-
mentatie mogelijk wordt; robuuste linkerventrikel myocardiale segmentatie wordt
mogelijk gemaakt door een efficiënte koppeling tussen de endo- en epicardiale op-
pervlakken; er wordt een automatische korte as oriëntatie van de linkerventrikel
voorgesteld, waardoor aanvullende informatie kan worden geëxtraheerd; een Statis-
tical Shape Model gebouwd met behulp van cardiale magnetische resonantie beeld-
vorming wordt gebruikt om de robuustheid van de segmentatie te verbeteren door
informatie te verschaffen over de verwachte vormen van het linkerventrikel wan-
neer de beeldinformatie onbetrouwbaar is. Bij elke stap van de ontwikkeling werd
er een grondige validatie van de methoden uitgevoerd, leidend tot het definitieve
raamwerk voor snelle, automatische en robuuste volledige hartcyclus 3D linkerven-
trikelmyocardiale segmentatie. Dit raamwerk werd vervolgens gëımplementeerd in
een gebruiksvriendelijke, distribueerbare softwareapplicatie om de toepassing er-
van in toekomstige studies te vergemakkelijken. De toegevoegde waarde van 3D

iv



ABSTRACT

echocardiografie wordt verder benadrukt door de ontwikkeling van een methode om
myocardiale performantie te verkrijgen door de studie van de stress-strain relaties
die gevalideerd is tegen nucleaire beeldvorming. Ten slotte wordt het ontwikkelde
raamwerk gëımplementeerd in een experimenteel systeem voor 2D linkerventrikel
segmentatie in real-time voor anatomische beeldvorming, om beeldvorming met een
hoge beeldsnelheid te verkrijgen en kortstondige myocarddynamiek te bestuderen.
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Chapter 1

Motivation, Objectives and
Outline

Motivation

Analysis of cardiac function, and specifically of left ventricle (LV) function, is
an important part of clinical cardiology for patient management, diagnosis, risk
stratification and therapy selection [5–7]. Among the different cardiac imaging
modalities, ultrasound stands out due to its safety, portability, low cost, compet-
itive spatiotemporal resolution and real-time capability. While 2D echocardiog-
raphy (2DE) remains the predominant modality for cardiac assessment, real-time
3D echocardiography (RT3DE) has inherent advantages, namely the imaging of
the 3D geometry and motion of the heart, which cannot be directly assessed in
2DE. Numerous validation studies support the claim that valuable clinical informa-
tion can be extracted through RT3DE, based on comparison with the current gold
standard for volumetric assessment, cardiac magnetic resonance imaging (cMRI).
Nevertheless, manual 3D image analysis is challenging and time consuming and, to
answer this problem, extensive research towards more automated solutions for LV
segmentation and tracking in RT3DE have been conducted with a similar trend in
commercial solutions. In spite of this, at the beginning of this project, there was no
satisfactory software package available that provided fast and fully automatic LV
volume/function assessment in a robust way.

Thesis objectives

The overall goal of this thesis was to investigate and develop novel techniques for
LV segmentation in 3D echocardiographic images. The optimal LV segmentation
framework should fulfill the following requirements:

1
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� The framework should work in real-time or close to real-time. The computa-
tional burden should be compatible with a realistic application of the method,
thereby enhancing the bedside real-time nature of echocardiography.

� The framework should require minimal or no user input. This not only max-
imizes its applicability to large databases but also removes the inter- and
intra-observer variability inherent to user interaction.

� The framework should perform full-cycle segmentation. In order to assess the
dynamics of a moving object such as the heart, a full 4D segmentation must be
possible and must be performed in a way as to preserve temporal coherence.

� The framework should perform full myocardial segmentation. Besides endo-
cardial segmentation, epicardial segmentation is also extremely important to
obtain further clinical information but also as a first step in further analysis
of the cardiac tissue.

� The framework should be robust and widely applicable. RT3DE often presents
challenging image quality with acoustic shadowing and local dropouts and, as
such, the optimal framework must be able to cope with these conditions.
Furthermore, it should be applicable to virtually any 3D echocardiographic
image, independent of the vendor or imaging system.

Moreover, the direct application of the methods developed in this thesis was
considered and the following additional goals were defined:

1. Implement the methods developed in this thesis in a software application so as
to allow its application in future studies. The software application should be
user-friendly and interactive, allowing for easy extraction of 4D LV geometry.

2. Develop a method for myocardial performance mapping based on 4D LV seg-
mentation by using the local LV geometry and strain to assess local LV stress-
strain relationships.

3. Study the feasibility of real-time anatomical imaging by applying 2D real-time
LV segmentation to limit the field of view (FOV) to the anatomically relevant
regions of the image, achieving a higher frame rate (FR).

Thesis outline

The thesis is divided into two main parts, the first part addressing the segmen-
tation methodologies developed (Chapters 3-7) and the second part addressing the
application of those methodologies to clinical and/or technical challenges (Chapters
8-10). A brief summary of the 11 chapters which compose this thesis is given below:

Chapter 2 presents an introduction to the cardiovascular system and the impor-
tance of LV morphology/function assessment. This is followed by an introduction
to ultrasonic imaging as the imaging method of choice and a literature review of
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state-of-the-art methods for LV segmentation and tracking, both in research and
in commercial software. Finally, the key rationale of the thesis is presented and
a detailed description of B-spline Explicit Active Surfaces (BEAS), the segmen-
tation framework used throughout this thesis, is given. Chapter 2 is based on a
peer-reviewed publication (item 1 of the journal publications on the List of Publi-
cations).

Chapter 3 presents a method for hybrid LV segmentation and tracking using
BEAS and anatomical affine optical flow. This method allows for robust full-cycle
segmentation by combining both segmentation and tracking clues in an efficient
manner. Though this framework was initially proposed in the PhD work of Daniel
Barbosa, the author of this thesis played a determinant role in the finalization and
publication of the validation results obtained. Chapter 3 is based on a peer-reviewed
publication (item 3 of the journal publications on the List of Publications).

Chapter 4 presents a method for short-axis (SAx) orientation of the LV based on
the detection of the right ventricular (RV) insertion point. This orientation allows
for a point-to-point correspondence between the mesh and the cardiac anatomy,
thereby providing information on the orientation of the LV. Chapter 4 is based
on conference proceedings (item 3 of the proceedings publications on the List of
Publications).

Chapter 5 presents a method for LV segmentation and tracking with increased
robustness by combining BEAS with a statistical shape model (SSM) and the hybrid
segmentation/tracking approach used in Chapter 3. The SSM provides LV shape
clues, thus acting as a regularization of BEAS. It is shown that this method outper-
forms all currently available state-of-the-art methods on LV endocardial segmenta-
tion. Chapter 5 is based on a peer-reviewed publication (item 5 of the international
journals listed on the List of Publications).

Chapter 6 addresses one of the fundamental issues in myocardial segmentation
- the definition of the two surfaces, i.e. endo- and epicardium, as well as to which
degree they are connected. For this purpose, different coupling models are tested
and an ideal coupling model for myocardial segmentation is proposed. Chapter 6
is based on a peer-reviewed publication (item 4 of the journal publications on the
List of Publications).

Chapter 7 extends the framework from Chapter 5 to perform LV myocardial
segmentation by taking advantage of the coupling models studied in Chapter 6
and applying them with a myocardial SSM. Chapter 7 is based on a peer-reviewed
publication (item 7 of the journal publications on the List of Publications).

Chapter 8 brings the tools developed in the aforementioned chapters together in
a user-friendly distributable software application. This allows users to easily apply
the developed methods in future studies.

Chapter 9 focusses on the application of the method developed in Chapter 7 to
obtain myocardial performance maps. By performing 3D myocardial segmentation
and tracking, local geometry and strain are obtained which are used to assess local
LV stress-strain relationships, a measure of myocardial work. This method is vali-
dated against 18F-fluorodeoxyglucose positron emission tomography (FDG-PET),
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the reference method to assess local metabolism clinically. Chapter 7 is based on a
peer-reviewed publication (item 7 of the journal publications on the List of Publi-
cations).

Chapter 10 investigates the feasibility of in-vivo anatomical scanning in 2DE. A
2D version of the framework developed in Chapter 7 is implemented on an exper-
imental scanner to perform real-time segmentation. By obtaining information on
the position of the myocardium in the image, the scanning sequence is modified to
focus on the myocardial region only, thus increasing FR. It is shown that a mini-
mum FR gain of 1.5 can be obtained without degrading image quality, which could
be further increased through the use of advanced beamforming techniques. Chapter
10 is based on conference proceedings (item 4 of the proceedings publications on
the List of Publications).

Finally, Chapter 11 discusses the contributions of this thesis, including future
developments for the methodologies proposed in this thesis and its future applica-
tions.

Appendix A proposes a method for mitral valve (MV) segmentation in transtho-
racic echocardiography (TTE). It takes advantage of the LV segmentation frame-
work proposed in Chapter 5 to localize the MV in the image and uses BEAS to
perform MV segmentation, further refined by the use of an atlas of segmented MV
shapes. Appendix A is based on conference proceedings (item 8 of the proceedings
publications on the List of Publications).



Chapter 2

Introduction

Sections of this chapter are based on a paper published in Current Pharmaceutical Design:
Pedrosa J., Barbosa D., Almeida N., Bernard O., Bosch J., D’hooge J.. Cardiac Chamber
Volumetric Assessment Using 3D Ultrasound - A Review. Curr Pham Des, 2016;22(1):105-21.
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Abstract

This chapter provides a global overview of the main topics covered in this thesis.
First, the basic concepts of the cardiovascular system are reviewed, with special em-
phasis on the left ventricle (LV). The value of cardiac morphology and function are
then explained, as well as the available imaging modalities. Given the topic of this
thesis, a chapter is dedicated to ultrasonic imaging, starting from its fundamental
concepts and going into further detail in emerging techniques, namely high frame
rate (FR) imaging and real-time 3D echocardiography (RT3DE) and their potential
applications. Finally, the analysis of echocardiographic images is considered in a
state-of-the-art review of LV segmentation/tracking methods, both in the research
setting and the commercial tools available. The validation of these tools and of 3D
LV assessment in general is also considered at this point. The final section of this
chapter draws on the contextualization from the previous sections to give a final
overview on the remaining challenges that this thesis addresses.

2.1 The Heart

2.1.1 Cardiovascular Anatomy and Function

The cardiovascular system is an organ system that enables the circulation of
blood and transports nutrients, hormones and cells within the body, providing
nourishment but also playing a role in other tasks such as fighting disease and
maintaining homeostasis. It is composed of the heart, blood vessels, blood and the
lymphatic system, which circulates lymph [8].

The heart is the organ responsible for pumping the blood throughout the body,
thus playing a crucial role. The human heart is located between the lungs, near
the center of the thoracic cavity, where it is suspended by its attachment to the
great vessels within the pericardium, a fibrous sac that protects the heart from
infection and provides lubrication. The heart is a muscular organ with four main
chambers - LV, left atrium (LA), right ventricle (RV) and right atrium (RA) (Figure
2.1). These four chambers, divided into left and right side, work as two separate
pumping systems, where the blood flows from the veins into the atria where the
blood is pumped into the ventricles and from there into the arteries. The right side
receives deoxygenated blood through the vena cava from the systemic circulation
and pumps it through the pulmonary artery into the lungs where it is oxygenated.
The left side then receives the oxygenated blood through the pulmonary veins and
forwards it through the aorta into the systemic circulation where the blood provides
oxygen to the cells and becomes deoxygenated thus completing the cycle. In order
to maintain a unidirectional blood flow, four valves separate the atria and the
ventricles and the main arteries, opening and closing in close coordination with the
pumping of the chambers.

This complex pumping motion is achieved by the contraction and expansion of
the chambers, which occurs in a cyclic coordinated manner. This coordination is
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Figure 2.1: The heart and its main anatomical constituents.

assured by the conduction system, making the heart an efficient pump. The sinoa-
trial node creates and sustains the cardiac rhythm, generating an action potential
that is carried radially via Bachmann’s bundle causing the contraction of the LA
and RA. From the atrioventricular node the signal is then propagated throughout
the His-Purkinje network to the ventricles, causing them to contract. The contrac-
tion itself is performed by the cardiac muscular tissue, the myocardium, composed
of cardiac myocytes arranged into fibers with a complex orientation distribution
across the wall.

The cardiac cycle is divided into systole and diastole, the active contraction
and relaxation phases respectively (Figure 2.2). Systole begins with the active
contraction of the ventricular myocardium. The rise of the ventricular pressure
above the atrial pressure causes the rapid closure of the mitral valve (MV) and
tricuspid valve, leading to a quick buildup of pressure in the ventricles. This phase
is known as the isovolumic contraction. As soon as the ventricular pressure surpasses
the arterial pressure, the aortic (AV) and pulmonary valves open, leading the blood
into the systemic and pulmonary circulations. This is known as the ejection phase.
As the ventricular contraction decreases and pressure drops, the AV and pulmonary
valves close, ending the systole. Diastole begins with the isovolumic relaxation,
when the myocardium relaxes and pressure falls rapidly given that all valves are
closed. This phase ends as the ventricular pressure falls below the atrial pressure
and the MV and tricuspid valves open, letting the blood flow into the ventricles.
Due to the difference of pressures, a passive filling of the ventricles occurs, followed
by an active filling as the sinoatrial node is triggered, leading to the contraction of
the atria. The signal from the sinoatrial node is then propagated to the ventricles,
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Figure 2.2: Wiggers diagram showing the key events of the cardiac cycle. IVC - Isovolumic
contraction; IVR - Isovolumic relaxation. Adapted under CC BY-SA 4.0. [9]

leading to their contraction and thus restarting the systolic phase.

2.1.2 The Left Ventricle

The LV is one of the chambers of the heart and, perhaps for symbolic reasons as
the driver of the systemic circulation, is by far the most studied both in anatomy,
function and pathology. It sits below the LA, separated by the MV at the mitral
annulus (MA), and shares the septal wall with the RV (Figure 2.1). Together with
the RV, they form the apex of the heart. The LV connects with the systemic circu-
lation through the aorta, separated by the AV. Inside the LV itself, one can identify
the main chamber, as well as the LV outflow tract (LVOT) on the anteroseptal side,
which leads to the AV. Due to its role driving the systemic circulation, the LV has
thicker myocardial walls than the remaining chambers to pump blood throughout
the body. The inner and outer surfaces of the myocardial walls are designated as the
endo- and epicardium respectively. Rather than a smooth surface, the endocardium
is covered in rounded irregular muscular columns, the trabeculae, which are thought
to play a role in hemodynamics. One can also identify the papillary muscles, on
the anterior and posterior walls, which attach to each of the MV’s leaflets through
chordae tendineae and prevent the inversion or prolapse of the MV when pressure
in the LV builds up during systole.
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Figure 2.3: 17 segment division of the LV and long axis and short axis views of the LV
showing the location of the different segments.

The LV is commonly divided into 17 different segments (Figure 2.3): longitu-
dinally these are divided into the basal, mid-cavity and apical segments and the
apical cap and circumferentially into the anterior, anteroseptal, inferoseptal, infe-
rior, inferolateral and anterolateral segments [10].

2.2 Left Ventricular Assessment

The current global status of cardiovascular diseases, accounting for more deaths
than any other cause [1] and projected to remain the leading global cause of
death [2], makes the assessment of cardiac volume and function a topic of extreme
importance not only in the clinical field for patient diagnosis and follow-up but also
in research as new therapies are developed and tested.

Besides linear measurements of the LV dimensions such as the LV diameter, the
most common indices extracted to characterize both cardiac morphology and global
function are those from the volume traces at end diastole (ED) and end systole
(ES), namely the ED and ES volumes (EDV and ESV). Furthermore, other cardiac
global functional indices can be extracted from the volume traces. Stroke volume
(SV=EDV-ESV) is the effective amount of blood ejected by a cavity. The LV SV,
when multiplied by the heart rate, gives the total cardiac output. As a measure of
pumping efficiency, one can estimate the ejection fraction (EF=(SV/EDV)x100%),
as proposed originally by Pombo et al. [11], which is still probably the most widely
used parameter to assess the global status of cardiac function in LV [12].
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2.2.1 Prognostic Value in Clinical Practice

Extensive research has been directed at determining the prognostic value of
volumetric indices for different illnesses and conditions. A brief review of some of
these studies is presented here to illustrate the importance of cardiac volume and
function assessment. Patient survival after myocardial infarction and its relation
to LV function has been thoroughly described in literature. It was first associated
with LV ESV by White et al. [13] and Norris et al. [14]. In a study by Burns et
al., it was shown that LV EF had even a superior prognostic value than LV ESV
for survival after myocardial infarction [15]. Numerous other studies have given
further evidence on the prognostic value of LV EF on both short- and long-term
survival after myocardial infarction [16–20]. Furthermore, LV EF has been linked
to cardiac arrest events [19], heart failure [21], and arrhythmia suppression and
cardiac events [22] in survivors of myocardial infarction. More generally, mortality
in patients with coronary artery disease has also been associated with LV EF by
Buxton et al. [23].

The prognostic value of LV EF for the mortality in patients with heart failure
has also been a subject of much research as well as controversy with different studies
reaching different conclusions as to which population, preserved or reduced LV EF,
represents a higher mortality risk [24,25]. More recently, two meta-analysis studies,
one by Somaratne et al. and a second by a large-scale project (MAGGIC), analyzed
data from 17 and 31 studies respectively demonstrating that a higher risk of death
is present in patients with heart failure and reduced LV EF [26,27].

LV function has also been used as a predictor of survival in dilated cardiomy-
opathy [28, 29]. Furthermore, LV EF has been associated to mortality in patients
with LV dysfunction [30] and to mortality in end-stage renal disease patients on
starting hemodialysis [31]. Some works have also been dedicated to the study of
stress and post-stress LV volumes. In Sharir et al. post-exercise LV EF and ESV
were associated to cardiac death [32] and in Coletta et al. dobutamine stress testing
was used to link stress LV EDV to cardiac events in patients with coronary heart
disease [33].

2.2.2 Available Imaging Modalities

It is thus clear that the assessment of cardiac volumes throughout the cardiac
cycle and its associated indices is a fundamental task in diagnostic cardiology rou-
tine. Furthermore, these indices can be of paramount importance in the design of
studies to show the efficacy of new therapies. To this end, there is a large array of
imaging modalities that provide insight to cardiac chamber size and function, with
some examples shown in Figure 2.4.

Magnetic resonance imaging, and more specifically cardiac magnetic resonance
imaging (cMRI), is long considered the gold standard for assessment of cardiac
anatomy and analysis of global cardiac function and shape [34]. The key limita-
tions of cMRI are the high cost of the imaging system and the long acquisition times.
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Figure 2.4: Examples of different cardiac imaging modalities: cMRI (a), CT (b), 2DE (c)
and RT3DE (d). CT image courtesy of Walter Coudyzer, Department of Radiology, UZ
Leuven, Belgium.

This last problem is particularly relevant for cardiac imaging, given the fast dynam-
ics of a beating heart. Computed tomography (CT) is one of the fastest evolving
imaging modalities. Cardiac CT, which requires the use of contrast agents, offers
superb definition of the boundary between the myocardium and the blood pool,
excellent spatial resolution (<1mm) and good temporal resolution. However, it
involves exposure to ionizing radiation and is expensive. Other imaging modali-
ties used include cardiac single photon emission computed tomography (SPECT)
and multiple gated imaging strategies, also known as radionuclide ventriculogra-
phy [35, 36], positron emission tomography (PET) [37] and other nuclear imaging
techniques [38]. However, these techniques require the injection of radioactive trac-
ers, thus involving exposure to ionizing radiation, and the imaging systems are very
expensive.

With the exception of standard X-ray exams, ultrasound is the leading imaging
modality worldwide [39]. As key imaging advantages, the excellent temporal res-
olution clearly sets echocardiography apart from the remaining modalities. Other
important advantages, such as its safety, good spatial resolution and low cost, also
contribute to the widespread use of echocardiography as the cardiac imaging diag-
nostic exam of reference in daily practice.

2.3 Ultrasonic Imaging

The history of medical ultrasound first started during World War I, when mil-
itary investment fast-tracked the technology, first as a means for detection of sub-
marines and later for nondestructive testing of metals [40]. In the medical field,
ultrasound was first applied as a theurapeutic tool in physiotherapy and cancer
treatment. It was only in 1942 that ultrasound was first used as a diagnostic tool for
brain tumour localization. Diagnostic ultrasound was then further developed lead-
ing to the first 2D grayscale images in the 1950s and the first cardiac examination in
1953 by Inge Edler and Carl H. Hertz [41]. Since then, diagnostic ultrasound kept
evolving, with the introduction of real time imaging in 1965 and electronic beam
steering in 1968, as well as overall improvements in image quality and acquisition
and processing techniques in the following decades [40].

The use of echocardiography to assess cardiac chamber size and function dates
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to the advent of this technology. Popp et al. investigated the variation of cardiac
dimensions during the cardiac cycle using M-mode echocardiography [42]. Feigen-
baum et al. used these changes to assess LV function and correlated it to angiogra-
phy [43]. Wyatt et al. showed that volumetric indices extracted from 2D B-mode
images were superior to their M-mode counterparts, especially in asymmetrical
hearts [44, 45]. Currently, biplane area assessment using 2DE is the standard tool
for assessment of LV volumetric indices but recent developments in RT3DE have
allowed to entirely visualize the morphology of the cardiac chambers.

2.3.1 Fundamental Physical Concepts

The term ultrasonic refers to sound waves with frequencies above those audible
by humans. This ranges from 20kHz onwards but, typically, medical (non-invasive)
ultrasound operates within the 1-20MHz range depending on the application. Ul-
trasonic waves are progressive compression waves, which means that the particles
are displaced in a direction parallel to the direction of wave motion. This forms
regions of high and low particle density which in turn propagate the wave forward
as the elasticity and inertia of the medium counteract to return the medium’s parti-
cles to their original positions [40]. Ultrasonic imaging depends on the interactions
between the tissue and the propagating ultrasonic wave.

As the ultrasonic wave travels through the tissue, it meets a multitude of different
structures which lead to different phenomena. When a wave meets the boundary
between two media of different density and/or sound velocity, part of the energy of
the wave is reflected and the remaining is refracted through the boundary into the
second media. The reflection/transmission ratio depend on the acoustic impedances
of the two media, where mismatched acoustic impedances lead to a high reflection of
the ultrasonic wave. While a perfectly smooth boundary will cause a pure specular
reflection, where the reflected wave has a single direction, this is usually not the
case and irregularities at the boundary will lead to a diffuse reflection in a wide
range of directions. Furthermore, tissue inhomogeneities due to local variations of
density and/or compressibility cause similar diffuse reflections - scattering. It is
this property that gives ultrasound its particular grainy appearance, called speckle,
which reflects the inhomogeneous nature of each of the tissues in the image.

However, as the ultrasonic wave travels through the tissue, there is a loss of
acoustic energy mainly due to the conversion of acoustic energy into heat. This
attenuation causes the wave amplitude to decay exponentially as it travels, thus
limiting the depth to which imaging is possible. Finally, nonlinear distortion may
occur for high amplitude ultrasonic waves due to the nonlinear mechanic charac-
teristics of the medium, changing the original shape of the transmitted ultrasonic
pulse as it travels through the tissue.

2.3.2 Acquisition System and Image Formation

Typically, ultrasonic waves are generated by means of a piezoelectric crystal,
which, when excited with an oscillating electric field, expand and contract at the
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same frequency as the electrical field creating a compression wave. This very same
phenomenon is used to receive the signal, where compression waves that hit the
piezoelectric crystal are converted into an electrical field. The concept of pulse-echo
is thus typically used in medical ultrasound where the same transducer, composed
of an array of piezoelectric crystals, is used to first transmit the ultrasonic pulse
and then receive its reflections as it travels through the tissue.

The electrical field generated by the piezoelectric crystal can then be amplified,
filtered and converted to a digital signal. Envelope detection is then performed to
the raw data obtained to remove the high frequency oscillations and the amplitude
is corrected for the attenuation effects, a process known as time gain compensation.
Usually, the signal is then log-compressed to decrease the differences in amplitude
between the specular and scatter reflections, which gives additional information
on the tissue texture. Such a pipeline provides the simplest ultrasound imaging
mode, the A-mode (for amplitude), where the magnitude along a single direction is
acquired and plotted as a function of depth, and subsequently overwritten. If the
transducer is static and multiple A-lines are acquired at subsequent time points,
the signals obtained can then be plotted in 2D, with depth and time as dimensions,
providing an insight into the motion of tissue in time. This is known as M-mode
(for motion).

To obtain a 2D ultrasound image, multiple A-lines have to be acquired succes-
sively from different directions, forming the B-mode. This can be done by trans-
lating or tilting the transducer mechanically but is usually performed by changing
the transmit profile along the different piezoelectric crystals in the transducer. In
echocardiography applications, where the imaging window is relatively narrow due
to the position of the ribs, this is typically done by introducing delays to the trans-
mits of each piezoelectric crystal such that the beams are steered from one side to
the other. Because this process provides A-lines in a polar grid, a final interpolation
is needed to obtain the 2D cartesian image. An example of an A-, M- and B-mode
are shown in Figure 2.5.

2.3.3 High Frame Rate Imaging

Given that conventional B-mode acquisition relies on single line acquisition,
where each beam direction is acquired at a time, there is an intrinsic trade-off
between temporal resolution and the number of lines acquired (and thus spatial
resolution). As such, improving the temporal resolution through advanced beam-
forming techniques has long been an active topic of research in the field. Multiple
techniques have thus been proposed which enable an increase in temporal resolution
with more or less impact on spatial resolution and image contrast.

A straightforward method to improve temporal resolution is to perform a multi-
beat acquisition. This strategy consists in dividing the whole image into different
sections and acquiring each of those sections in a consecutive number of beats [46].
This technique depends however on the patient having a stable heartbeat and keep-
ing a breathhold during the whole acquisition which might not be straightforward
for some patients.
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Figure 2.5: A-, M- and B-mode examples. (a) Acquired ultrasound signal (blue) and
corresponding A-mode (red). (b) Parasternal long axis M-mode of the heart for assessment
of cardiac wall motion during contraction. The dark regions are blood, the bright reflection
is the pericardium and the gray region is between is the heart muscle itself. (c) Parasternal
long axis B-mode of the heart showing the different cardiac chambers. Yellow line shows
acquisition line used to produce the M-mode in (b).

Shattuck and Weinshenker first introduced the concept of parallel receive beam-
forming, now know as multi-line acquisition (MLA) [47]. This allows to reconstruct
multiple lines from the same transmit beam, given the fact that the transmit beam
is sufficiently broad to enclose multiple receive beams. This allows to double the
FR in 2D and quadruple it in 3D without loss in image quality, but further gains
can be increasing by broadening the transmit beam. MLA preserves a good spatial
resolution, signal-to-noise ratio (SNR) and penetration and together with multi-
beat acquisition for 3D ultrasound is a technique commonly implemented in clinical
ultrasound systems to improve temporal resolution.

While MLA increases the FR by receive parallelization, multi-line transmit
(MLT) allows transmit parallelization, thus transmitting multiple beams simulta-
neously in different directions [48, 49]. This allows to increase the FR a number of
times equal to the number of beams per transmit event. As the individual beams are
virtually unchanged, the resolution and penetration properties are preserved. There
is a possibility of crosstalk between the different beams but it has been shown that
these effects can be minimized through appropriate strategies thus giving an image
quality comparable to that of single line acquisition [50]. Further FR gains can
be obtained by combining MLT and MLA. An example could be a 16MLT/4MLA
setup for RT3DE which would give a FR 64 times higher than single line acquisition
with comparable image quality [51].

As an alternative to the methods discussed above, the use of unfocused transmis-
sions has also been proposed [52]. For linear scanning, the use of plane waves [53]is
especially appealing, while diverging waves (DW) [54–56] are more often used in
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cardiac applications to match the sector scan geometry. DWs use the full trans-
ducer array to create a wave that insonifies the whole volume at once, thus allowing
to reconstruct a full volume in a single transmission. This comes, however, at the
expense of lateral resolution, SNR and penetration, as well as possible side lobe
issues. For these reasons, coherent compounding of DWs is usually performed by
combining insonifications with different orientations [57]. Motion of the probe or
the tissue being imaged can however be problematic if a high number of transmis-
sions are compounded and motion correction has been proposed to compensate this
effect [58].

Besides offsetting the trade-off between spatial and temporal resolution, thus
improving the imaging of dynamic structures such as the heart, increasing the tem-
poral resolution would undoubtedly find multiple applications in clinical cardiology
of both diagnostic and prognostic value and an extensive review on this topic can
be found in [59] and [60]. Motion and deformation imaging in 3D and with high
temporal resolution can be especially interesting to get a full 3D contextual infor-
mation of cardiac events, especially short lived ones [61]. Electromechanical wave
imaging is such an example where following local myocardial motion/deformation
as the myocardium depolarizes and begins to contract, would provide information
about the cardiac activation sequence and allow to build electroanatomical maps
non-invasively [62,63].

2.3.4 Three-Dimensional Echocardiography

While 2D B-mode remains the predominant modality for cardiac assessment,
the fact that it is a 2D slice of a 3D anatomical structure makes it an inherently
flawed diagnostic tool [64]. First, because the fact that only a 2D slice is obtained
at a time means that to make any statement about the 3D anatomy, strong geomet-
rical assumptions must be made which inevitably lead to innacuracies. Moreover,
attempts at mentally transforming a series of 2D slices to get a 3D impression of a
structure are extremely subjective and innefficient. Secondly, the fact that a par-
ticular 2D slice for analysis must be chosen from a 3D structure is problematic in
itself. Finding the correct anatomical slice can be difficult and foreshortening - slic-
ing the heart obliquely so that not the whole length of the LV is represented - leads
to wrong geometrical assumptions. Even with a definition of standard anatomical
views, it is challenging, at best, to obtain the same image plane at different points
in time, thus making it difficult to make exact statements on the evolution of a
given structure over time. In comparison, the acquisition of 3D ultrasonic imaging
would give access to the full geometry of the heart thus solving the aforementioned
limitations.

Dekker et al. [65] were the first to scan the human heart in 3D by using a
robotic arm to move a transducer with five degrees of freedom. Later attempts
relied on 1D transducer arrays moved mechanically to obtain multiple 2D image
planes which could then be rendered into a single 3D volume [66–71]. However it
was with the development of 2D matrix transducers, enabling 3D electronic steering
in the seminal work of S. Smith, H. Pavy, and O. von Ramm [72, 73], that the
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technology was able to mature. Further advances in design and engineering led to
the commercialization of RT3DE technology [74].

Nevertheless, due to the intrinsic trade-off between temporal and spatial reso-
lution in ultrasound, RT3DE acquisition is often challenging. In fact, to acquire a
volume encompassing the whole heart a volume of 75°x75°with a 15cm range is typ-
ically required. For adequate lateral resolution, approximately 85x85 lines would
be required and for each line the sound must travel twice the 15cm range. This
then means that a single volume would take 1.4 seconds, giving a FR of 0.7Hz.
While this value is clearly insufficient to assess a dynamic organ such as the heart,
different strategies can be implemented to improve FR. First of all, the field of view
(FOV) can be decreased to encompass only the structure of interest. However, that
might not be possible, especially in the case of dilated hearts. Secondly, the line
density can be decreased, which however degrades the overall image quality. Third,
a multi-beat acquisition can be performed, a strategy implemented in most clini-
cal scanners. Finally, any of the advanced beamforming techniques mentioned for
high frame rate imaging might be used to offset the trade-off between spatial and
temporal resolution, thereby increasing the FR in RT3DE.

Furthermore, the fact that 2D probes present a larger footprint makes the ac-
quisition more challenging as the intercostal space varies between patients and can
obstruct the ultrasound path. The processing of RT3DE data is also a challenge as
manual contouring of 3D data is time consuming and automatization has only re-
cently been made available in commercial solutions. The intrinsic more challenging
acquisition and processing of the data has thus led to a delay of the introduction of
RT3DE to clinical practice.

In spite of the limitations of RT3DE, the fact that the 3D anatomy of the heart
can be assessed without assumptions directly translates into increased agreement of
RT3DE against the current gold-standard method (i.e. cMRI) when compared to
conventional 2DE. Summing this to the intrinsic advantages of ultrasound imaging
against other modalities and the continuous technical advances in both image ac-
quisition and processing, RT3DE will likely become the standard echocardiographic
examination of the future.

2.4 Echocardiographic Image Analysis

Additionally to the imaging acquisition, the extraction of the relevant informa-
tion from the data must be considered. The assessment of volumetric, functional
and morphologic indices poses two main problems. First, a clear identification of
the myocardial anatomy is needed, through the delineation of the endo- and epicar-
dial surfaces at a given time point. Furthermore, the position of these boundaries
throughout the cardiac cycle is needed to recover the underlying motion of the
cardiac chamber and capture the volume changes. However, ultrasound image pro-
cessing poses several challenges [75]. The image quality is strongly affected by the
acquisition conditions which can lead to low SNR and different artifacts such as
dropouts resulting in missing boundaries. Furthermore, the very contrast between
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structures of interest is often low. The inherent speckle pattern of ultrasound image
can also be a confounder. Moreover, the manual delineation of boundaries in 3D
data is a cumbersome and time-consuming task, making the introduction of semi-
or fully automated cardiac image processing methods of great importance.

2.4.1 Left Ventricular Segmentation/Tracking Methods

Several methods have thus been proposed to address these problems and a cate-
gorization of these methods is possible dividing into geometrical models, shape-free
methods, statistical models, classification approaches and tracking [76]. Each of
these categories is briefly described in this section. For a more comprehensive de-
scription of these methods, the interested reader can refer to the extensive review
by Leung and Bosch [76].

Geometrical models are the most common border detection approaches and con-
sist of the representation of a border in terms of a curved surface influenced by
geometrical constraints. This surface is initialized interactively or automatically
and evolves iteratively according to image features such as the local intensity or
edge information. Most geometrical models use energy-based optimization where a
mathematical energy function is defined according to the image features and other
regularization terms and optimized iteratively [3, 77–81]. Given the surface rep-
resentation that is used, the main disadvantage of these models lies in finding a
balance between a surface that is too smooth and one that becomes implausible.

Shape-free methods are, as the name implies, methods with little or no depen-
dency on the shape of the final object. As such, they are heavily dependent on
low-level image information such as pixel intensity, gradients, edges and corners
and motion vectors. The two main families with this category are clustering and
level sets. Clustering is, simply put, a categorization of each pixel of the image into
groups, for example myocardial tissue and blood pool [82–85]. Level sets are similar
to geometrical models with the main difference that the shape of the object is not
restricted, which can often result in multiple disconnected surfaces [86–90]. Due to
the low level of shape restrictions imposed, these techniques are quite susceptible
to image artifacts such as shadowing or dropouts.

Statistical models are population based methods that model the statistical vari-
ations of patient data according to borders manually contoured by experts. This
is done by finding a relatively simple mathematical model with but a few param-
eters that can express the patient variability from an average. By varying these
parameters one can then synthesize a large number of shapes. Different sources
of information can be used to build such a model. Active shape models use the
manually contoured borders [91–93], whereas active appearance models (AAM) use
a combination of the manually contoured borders and the image intensity infor-
mation [94–96]. Given their origin from real examples this method can only find
plausible results. However, this is also its downfall as the accuracy of the model
will always be dependent on the quality of the original database and its extension
throughout both healthy and pathological populations.
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Classification approaches are also dependent on large sets of data contoured by
experts, with however a different approach than statistical models [97–100]. Ac-
cording to the database information, a classifier is trained to distinguish the objects
of interest into classes using appropriate features. In practice, parts of an image
are then classified by selecting regions of different sizes in the image in different
positions and determining its class following a coarse-to-fine scheme. Though the
training procedure is extremely time consuming, the detection can be very fast.
Classification approaches suffer from the same disadvantage as statistical models
due to its dependency on the original database. However, even larger datasets
are typically needed than for statistical models. Recently, classification approaches
have received increasingly more attention following the advent of machine learn-
ing and deep learning techniques. The continuous increase in computational power
and data storage have increased the feasibility of these methods and it should be
expected that, as in other computer vision problems, these methods should in the
future prove very effective given their direct access to a wide range of data.

Finally, tracking approaches are the most different from the other approaches as
they do not aim at the border detection itself but at the estimation of the motion
of an object throughout time. Thus, tracking approaches have a more dynamic
nature. Since tracking approaches are mostly dependent on image information such
as pixel intensity, the results can be especially sensitive to the presence of artifacts.
This makes the introduction of information such as cardiac motion patterns par-
ticularly interesting. The existing tracking approaches are usually based on either
registration or speckle tracking. In registration approaches the spatial correspon-
dence between sequential images is found by measuring and optimizing a measure of
similarity between them [79, 101–104]. Speckle tracking approaches aim at finding
a correspondence between speckle patterns throughout time [105–113].

Given the many different approaches proposed in literature, it can be extremely
overwhelming to draw conclusions over which segmentation tools seem to be the
best and most promising. As such, benchmarking efforts such as the one recently
published in Bernard et al. [114] are extremely important. By providing a thor-
ough and equal validation to all segmentation methods, a just comparison can be
performed and conclusions drawn over the evaluated strategies. In the study by
Bernard et al., B-spline Explicite Active Surfaces (BEAS) [115] was the most accu-
rate automatic segmentation tool both in distance metrics but also in the clinical
indices evaluated. In terms of computational time, it was also one of the fastest
methods, surpassed only by the Kalman filtering method by Smistad et al. [116]. It
is also worth noting that the shape information or modelling provided to the seg-
mentation model seems to play a big role in determining the behaviour of a given
segmentation tool, probably due to the challenging aspects of ultrasound in terms
of shadowing and dropout artifacts.

2.4.2 Available Commercial Technology

From the aforementioned methods, some of them have been adapted or devel-
oped into commercial software packages designed to introduce at least some form
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of automation for 3D LV segmentation and, ultimately, aid the clinician.

Tomtec Imaging Systems (Unterschleissheim, Germany) was the first company
presenting commercial tools for 3D volume quantification, taking advantage of its
expertise on image processing and visualization. Their current product, TomTec
4D LV-Analysis©, performs an automatic orientation of the LV longitudinal axis to
display three apical and three short axis (SAx) views. If necessary, these can be ad-
justed by the user to avoid foreshortening and modify the AV landmark orientation.
The entire 3D endocardial surface of the LV is then contoured by the software in ES
and, using 3D speckle tracking, propagated throughout the heart cycle [117]. This
same tool is also available under TomTec's software solution 4D LV-FunctionTM.

Contrarily to the purely offline approach offered by TomTec, Philips Healthcare
(Best, Netherlands) introduced the possibility of both offline and online analysis
with their QLAB – 3DQ Advance (3DQA) software suit [118, 119]. First, the lon-
gitudinal axes must be aligned in the 4-chamber and 2-chamber views at the ED
phase. Five anatomical landmarks must then be marked, which are used to ini-
tialize a deformable shell model [77]. This model is afterwards deformed towards
the LV boundaries, with the option for manual correction. The same process must
be completed for the ES phase [119]. Philips Healthcare has recently introduced
a new commercial tool, the HeartModelAI, available on their EPIQ7 system. The
HeartModelAI is a fully automatic knowledge-based model which detects ED and ES
instances, performs localization and tracking of the four chambers and also align-
ment of the apical 4-, 3- and 2-chamber views [120]. Refinement of the results is
also possible through manual correction of the contours. The tool returns then the
LV and LA volumes at ED and ES.

More recently, also General Electric (GE Vingmed, Horten, Norway) introduced
a software package, 4D AutoLVQ, which allows both fully or semi-automated seg-
mentation and volume quantification of the LV [117]. In this product, an initial
alignment of the axis is needed so as to avoid foreshortening. This can be per-
formed either automatically or manually by pivoting and translating the planes. In
the semi-automatic version, the user is required to mark the location of the apex
and the MA at ED and ES. After this, the 3D endocardial surface is automati-
cally detected at these instances. In the fully automatic version no initialization
points are required. After the conclusion of the segmentation the user is allowed to
manually edit the contours.

Toshiba Medical Systems (Tokyo, Japan) has entered the RT3DE realm with
its ArtidaTM system, which was complemented with a software tool for chamber
quantification by RT3DE speckle tracking, 3D Wall Motion Tracking (3D-WMT)
[119, 121, 122]. This computational platform performs an automatic selection of
apical 4-chamber and 2-chamber views, as well as 3 SAx views at different LV levels.
The user is then required to place six markers: at the edge of the MV and at the apex
in each of the apical planes. These points are then used to automatically segment the
endocardium. The epicardial contour is defined either by a predetermined thickness
or through manual contouring. The final shape of the LV can then be corrected
manually by the user. A 3D block matching algorithm [123] is then used to track
the wall motion throughout the cardiac cycle in a fully automatic manner.
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The development of a fully automatic image analysis software package has been
one of the main strategic investments of Siemens Medical Solutions (Mountain View,
California) while developing their Acuson SC2000TM RT3DE system, resulting in
the software tool eSie LVATM. This tool is based on a comprehensive database of
manually annotated RT3DE exams (over 4000) covering both healthy and typical
pathological cases in clinical practice. The offline learning process was performed
using a Probabilistic Boosting Tree [124] to obtain the final classifier. Given an
input volume, this classifier sequentially estimates position, position-orientation
and full similarity to locate the object and finally performs both an orientation
according to standard planes [100] and also the contouring of the LV using boundary
detectors [125] and statistical shape models (SSM). The final endocardial contours
can be refined by the user through manual correction.

2.4.3 3D Left Ventricular Volume Assessment Validation

The enthusiasm generated in the medical community by 2D matrix transduc-
ers and RT3DE is well demonstrated by the numerous validation studies for this
imaging modality over the past decade. Although validation on other experimental
setups has been done (e.g. water balloons of known volume [126], intracavity bal-
loon measurement in canine models [127], in vitro porcine heart models [128]), the
primary and more generalized validation route for the existing software suites for
volumetric measurement is to perform direct comparison of the volumetric indices
extracted from RT3DE exams against reference values extracted from cMRI, which
remains the generally accepted gold standard method for volumetric assessment of
cardiac chamber dimensions. Alternatively, some studies report a direct compar-
ison between automated vs. manual contouring of RT3DE data, thus providing
insight on the ability of automating the contouring process. The most relevant
studies are summarized in this sub-section and Table 2.1 provides an overview of
the corresponding main results.

The earlier studies focused on software tools that relied mostly on a computer-
assisted 3D manual contouring paradigm, either requiring manual delineation of
the endocardial boundary in several long axis (LAx) planes or requiring significant
user input in semi-automatic segmentation algorithms. The performance of the pi-
oneer Volumetrics system was analyzed by both Schimdt et. al [129] and Lee et
al. [130]. Both studies found excellent correlation between cMRI-derived volumet-
ric indices and the ones extracted from RT3DE data by manually contouring in
different azimuthally equidistant LAx images. Note that Kühl et al. had already
demonstrated that the truly 3D nature of RT3DE data enabled LAx contouring in
contrast to the SAx, sum-of-disk approaches initially inherited from cMRI [131].
Mannaerts et al. performed a similar study with an ATL® HDI 5000 system and
manually contouring the endocardium using one of the first TomTec tools, Echo-
View. Mannaerts et al. reported good correlation as well as the first evidence of a
negative bias of 3D echocardiographic volumes with respect to cMRI [132]. Kühl
et al. performed the first clinical validation on the second generation of 2D (i.e.
fully sampled) matrix transducers, showing excellent correlation against cMRI, in a
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cohort of 24 good image quality patients [133]. In this study, a manual contouring
paradigm was compared against an early semi-automatic algorithm, showing that
the tested semi-automated approach enabled full 4D delineation but required longer
analysis times and showed larger bias and wider limits of agreement. Jenkins et al.
further validated the same system in a larger study (#=50) using a semi-automatic
approach provided in an earlier version of TomTec's 4D LV-Analysis© [134]. The
tool required the placement of landmarks in 12 azimuthally equidistant LAx views
which were used to fit an ellipse to the endocardial borders. This was then followed
by manual refinement. In addition to low bias and acceptable limits of agreement,
RT3DE showed lower test-retest and intra/inter-observer variability than its 2D
counterpart. The same semi-automatic approach was validated by Sugeng et al.
with excellent correlation against cMRI and low bias though with wider limits of
agreement [135]. Van den Bosch et al. carried out the first clinical validation of
RT3DE-derived LV volumes in congenital heart disease patients, whose challeng-
ing cardiac shapes had been previously reported as a difficulty [136]. Their results
showed excellent correlation/agreement for LV volumetric analysis using a fully
manual contouring approach. However, when applying the same semi-automatic
contouring software tool as used in [134], the results highlighted that this tool re-
lied too much on a purely elliptical shape prior, thus having a poor performance.
Despite the strong resilience of the multi-planar contouring paradigm in the early
clinical validation, a more 3D-oriented vision has been introduced with the algo-
rithm proposed by Corsi et al. [87], which was further validated by Caiani et al. in
a clinical setting [90].

Jacobs et al. were the first to validate the concept of rapid, online measurement
of LV volumes from RT3DE data [118], using the tool provided by Philips, QLAB
– 3DQA. Indeed, online volumetric analysis within the imaging system without the
need to export data to an external computer for tracing and 3D reconstruction
further reduces time load. Very strong correlation and acceptable limits of agree-
ment were found for all volumetric indices, despite the significant bias for EDV and
ESV. Additionally, the comparison between the volumetric indices extracted online
correlated strongly and had good agreement against the offline semi-automatic con-
touring approach proposed in [133]. Nonetheless, in a study by Jenkins et al., the
offline approach by TomTec was compared to Philips’ QLAB – 3DQA showing that
offline approaches remain superior to the online quantification of LV volumetric in-
dices, at the expense of longer analysis times [137]. A similar study was conducted
by Soliman et al. using a newer version of TomTec’s 4D LV-Analysis© in which
only the manual contouring of three orthogonal planes is needed and similar results
as those by Jenkins et al were obtained [138]. In a different study by Soliman et
al., two different versions of TomTec’s 4D LV-Analysis© are compared to volumes
obtained through cMRI showing strong correlation for both methods and a clear
superiority of the newer version dependent on full volume reconstruction [139].

Despite the convincing results of the previous validation studies, a clearer un-
derstanding of possible sources of errors was required for optimal clinical usage. To
this end, Mor-Avi et al. have studied the source of variation between volumetric
indices measured with RT3DE and cMRI, showing that the fundamental difference
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is the inability of RT3DE to resolve the separation between trabeculae and my-
ocardium. Indeed, including the trabecular region outside of the blood pool during
cMRI contouring in the blood pool significantly reduced the RT3DE vs. cMRI bias,
as well as the limits of agreement [126]. This fact sums up with the blurring effect
caused by the point spread function of the acquired ultrasound signal, which pushes
the apparent blood-tissue interface towards the blood pool, as shown by Mor-Avi
et al. in balloon phantoms.

More recently, a shift towards more advanced software suites has enabled more
automated analysis of RT3DE data, allowing a more efficient workflow for the ex-
traction of clinically relevant information from RT3DE data. Indeed, the previously
cited studies have mostly focused on semi-automatic software tools that provide at
most computer-aided manual delineation of the LV cavity. Typical time of analysis
ranged from around 2 [118] to 10 minutes [90,134], although several studies report
analysis times around 5 minutes per dataset [126,138]. Note that Jacobs et al. have
shown that online LV volumetric analysis can provide accurate results in less than 2
minutes per volume [118] but they stress that manual adjustments were required in
42% of the analyzed cases using an online quantification tool, increasing the analysis
time from 2 minutes to up to 5 minutes per volume.

With this in mind, a strong research effort has been directed towards more ef-
ficient software packages, incorporating advanced computer algorithms enabling a
faster, more efficient and more accurate processing of RT3DE volumes. Hanseg̊ard
et al. [140] and Muraru et al. [141] used GE’s AutoLVQ and TomTec’s 4D LV-
Analysis© to show that a more advanced, automated software package can reduce
the average time of analysis when compared with standard semi-automated strate-
gies, while keeping comparable accuracy. Muraru et al. [141] have equally shown
that fully automated (i.e. only manual initialization on ED and ES frames, with
subsequent automatic delineation) is feasible. However, their results show that a no-
ticeable increased agreement can be achieved by manually adjusting the results from
an automated method, at the cost of doubling the total analysis time. Kleijn et al.
have validated another highly automated software tool, Toshiba’s 3D-WMT [142].
Despite only moderately good results for the LV volume assessment, the EF results
showed excellent correlation and remarkably low bias and limits of agreement, in-
dicating that more advanced tracking methods can positively influence the quality
of the extracted surfaces when compared to pure contour-extraction approaches.
Similar results have been reported by Kawamura et al. [122]. To test the poten-
tial of RT3DE in a realistic clinical scenario, Miller et al. analyzed 60 consecutive
patients to determine the effect of image quality in RT3DE volume quantification
performance [143]. Despite reporting lower agreement with cMRI measurements
than previously found, the authors stress that the degree of error is intrinsically
linked with image quality.

Using Siemens’ eSie LVATM tool, Thavendiranathan et al. demonstrated that
fully automatic analysis of RT3DE is possible and presents extremely encouraging
results [144]. Note that Thavendiranathan et al. point out that the patients un-
dergoing RT3DE exams in the analyzed dataset were selected for good acoustical
windows, thus having good imaging quality. The authors have applied the same



2.4. ECHOCARDIOGRAPHIC IMAGE ANALYSIS 23

computational automatic analysis algorithm to the reconstructed cMRI datasets
and have found slightly higher bias and limits of agreement against the manual
delineation on cMRI data than when using the same software on RT3DE data
(−0.8± 4.7% vs. −0.3± 2.5%). This seems to point towards the excellent image
quality of the analyzed RT3DE dataset. Similar results were also found by Zhang
et al. [145]. Using the same tool, Chang et al. [146] reported slightly lower correla-
tions and the Bland-Altman analysis on EF estimates revealed much larger bias and
limits of agreement than reported by Thavendiranathan et al. in [144]. Nonethe-
less, it is important to stress that the dataset corresponded to consecutive patients,
although previously selected based on 2DE image quality and the user was allowed
to manually correct the automatically detected contours. It should also be noticed
that Chang et al. report that automatic results were considered excellent in 11%
of the cases (i.e. not requiring any adjustment), good (i.e. five or fewer manual
corrections required) in 34% of the cases and it failed completely (i.e. required man-
ual delineation) in 10% of the cases. Regarding the influence of manual correction,
Shibayama et al. have evaluated the same system, performing first fully automatic
analysis and then allowing the user to proceed to manual corrections, in a cohort of
44 consecutive patients [147]. Their results reinforce the findings of Muraru et al.
for a different system, thus highlighting that even state-of-the-art software pack-
ages are not yet able to consistently perform fully automated/automatic analysis
of RT3DE data. Indeed, Shibayama et al. show that fully automatic results are
significantly improved through manual interaction. Nonetheless, manual correction
increased the total analysis time by a factor of 10. Using Philips’ HeartModelAI

tool, Tsang et al. analyzed 46 patients achieving similar results to those reported
with other fully automatic approaches without performing manual correction of the
contours [148].

The key summary of the literature on the clinical validation of RT3DE volumet-
ric assessment against cMRI can also be appreciated in the recent meta-analysis
studies of Shimada and Shiota [149] and Dorosz et al. [150]. Shimada and Shiota’s
meta-analysis included 3055 subjects in 95 studies, focusing not only on 2D matrix
transducers but also earlier systems based on mechanical steering. A key evidence is
the significant underestimation bias of LV volumes (both EDV and ESV) by RT3DE
compared with cMRI. On the other hand, no statistically significant bias for estima-
tion of EF was found. Sources of error included gender and presence of congenital
heart disease, which were associated with larger underestimation in the analysis.
Semi-automatic border detection and the use of matrix-array transducers were as-
sociated with a smaller degree of underestimation. As key conclusion, the studied
literature supports the role of RT3DE as both accurate and reproducible in assess-
ing LV volumes and EF, although it is not interchangeable with other radiologic
modalities. On the meta-analysis study by Dorosz et al., an additional perspective
on how RT3DE compares with conventional 2DE is given in parallel to the central
comparison of RT3DE-derived volumetric indices against cMRI. Their main con-
clusion is that RT3DE underestimates volumes and has wide limits of agreement,
but compared with traditional 2D methods, it is more accurate (i.e. smaller bias)
for volumes (EDV and ESV) and more precise (i.e. tighter limits of agreement)
for EDV, ESV and EF measurements. One of the key benefits of RT3DE is the
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reduction in intra/interobserver variability, which is important for clinical practice,
since disease progression in a patient will most likely be assessed serially by differ-
ent readers. Dorosz et al. also highlight the natural influence of image quality on
the estimation of LV volumetric indices. Indeed, an analysis of those studies that
accepted all 3D datasets, instead of selecting patients for image quality, shows that
the 95% limits of agreement against cMRI raise from ±34 to ±38ml for EDV, ±30
to ±34ml for ESV and ±12 to ±15% for EF.

Finally, the first step towards effective clinical integration of RT3DE volume
measurements is the population-based assessment of normal values, as acknowledged
recently by Marwick in the editorial note of a leading cardiovascular imaging journal
[151]. Several studies, including the work of Aune et al. [152], Kaku et al. [153],
Fukuda et al. [154], Chahal et al. [155] and Muraru et al. [156], have been filling
this gap, providing clinicians one of the last pieces of the path towards clinical
integration of RT3DE examination in daily routine. An ongoing large-scale project
(EchoNoRMAL) is aiming to define the echocardiographic normal ranges of the LV,
through a collaborative effort meta-analysis approach [157,158].

2.5 Towards Robust Left Ventricular Segmenta-
tion

In spite of the significant research efforts related to LV segmentation and track-
ing in echocardiography, at the beginning of this project, no satisfactory software
package was available that provided fast and fully automatic LV assessment in a
robust way. While significant advances have been made in terms of increasing ro-
bustness and automatization, commercial software packages at the beginning of this
project relied heavily on user interaction and the findings of Bernard et al. [114]
showed that there is still a gap in accuracy between state of the art methods and in-
terobserver variability. Even today, commercial software packages, such as Siemens
eSie LVATM or Philips HeartModelAI, are proprietary and subject to the inherent
image characteristics and meta-information of those systems. As such, the goal of
the present work was to develop a tool for 3D echocardiographic LV assessment and
to make it available to clinicians by incorporating it in a graphical user interface.
This tool should perform LV assessment along the full heart cycle in a coherent way.
To provide all the necessary clinical parameters the tool should perform myocar-
dial segmentation - besides the endocardial volumes, epicardial segmentation can
be especially interesting to study myocardial mass and as an initial step for further
post-processing applications. Additionally, the ideal tool should be automatic, with
minimal/no user input. Furthermore, the tool should do so in real-time or close to
real-time, as the immediate access to the information is one of the strongest assets
of echocardiography. Finally, the ideal tool should be extremely robust and be able
to cope with images from different imaging systems. In this context, experimental
systems can be especially challenging as the image quality is likely to be worse than
in conventional systems. Yet, it is also in this setting that an automatic tool would
be especially important to streamline applicational research such as that briefly
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described in section 2.3.3.

Given the requirements defined in the previous paragraph, it becomes clear
that the method chosen for segmentation must be flexible and robust, but also
fast. As such, and according to the findings of Bernard et al. [114] as discussed in
section 2.4.1, the tool chosen was BEAS as it showed excellent performance and can
easily be modelled to perform epicardial segmentation as well [159]. Furthermore,
to increase robustness in poor image quality cases, shape/landmark information
should be further included in the framework as this was shown to play a significant
role in determining the behaviour of the segmentation.

2.6 B-spline Explicit Active Surfaces

2.6.1 Framework Fundamentals

The fundamental concept of BEAS is to represent the interface Γ as an explicit
function of its coordinates, i.e. one of the coordinates of the points along Γ is
expressed as a function of the remaining coordinates [3]. As such, a point x ∈ Rn
of coordinates {x1, ..., xn} belonging to surface Γ in an n-dimensional space can be
expressed explicitly as x1 = ψ(x2, ..., xn). In this framework, ψ is defined as a linear
combination of B-spline basis functions [160], i.e.:

x1 = ψ(x2, ..., xn) =
∑

k∈Zn−1

c[k]βd
(

x∗

h
− k

)
, (2.1)

where x∗ ∈ Rn−1 is a point of coordinates {x2, ..., xn} and βd(·) is the uniform
(n−1)-dimensional B-spline of degree d. The knots of the B-splines are located on
a rectangular grid defined on the chosen coordinate system, with a regular spacing
given by h. The coefficients of the B-spline representation are gathered in c[k]. This
allows for a smooth representation of any surface with the limitation that it must
respect the coordinate system in which ψ is expressed. In the case of a spherical
coordinate system for example, the surface represented should be a closed surface
around the origin in which every point must be ’seen’ from the origin, i.e. a straight
line from the origin to any point in the surface does not intersect with the surface
at any other point.

2.6.2 Energy Formulation

Given the formulation of BEAS as a geometrical model, the explicit function ψ is
first initialized and then evolved by the minimization of an energy criterion E. This
energy term can be defined according to any desired criterion and is often a combi-
nation of multiple terms that reflect the properties of the object to be segmented.
The term corresponding to image features typically uses a localized region-based
formulation due to its low sensitivity to noise and suitability for segmentation of
heterogeneous objects [161]. These terms use the specific image characteristics on
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either side of the boundary to drive the segmentation and are localized, meaning
that these carachteristics are only considered in a region around the boundary. Such
a formulation can be written as:

E =

∫
Ω

δφ(x)

∫
Ω

B(x,y) · F (y, Hφ(y)) dydx, (2.2)

where F (y, Hφ(y)) is the image criterion and B(x,y) is the mask function in which
the local parameters that drive the evolution are estimated. δφ(x) is the Dirac
operator applied to the level set function φ(x) = Γ(x∗)− x1, which is defined over
the image domain Ω and Hφj

(y) = H(φj(y)) with H being the Heaviside function.

To maintain low computational costs, the region B is restricted to the normal
direction at x, thus:

B(x,y) =

{
1, if y = x + kN(x), k ∈ [−ρ, ρ]

0, otherwise
(2.3)

where N(x) is the normal to the interface at position x and ρ the radius of the local
neighborhood considered.

Given the BEAS formulation, the minimization of 2.2 can then be done with
respect to each B-spline coefficient c[ki] and can be shown [3] to be:

∂E

∂c[ki]
=

∫
Γ

ḡ(x∗)βd
(

x∗

h
− ki

)
dx∗, (2.4)

where ḡ(x∗) represents the feature functions that drive the minimization of energy
E.

2.6.3 Algorithm Implementation

Because any object to be described by BEAS must be described through the
explicit function in terms of its coordinates, the choice of an appropriate coordinate
system is extremely important as it determines the topology of the final segmented
object. For a 3D closed object such as the LV, the spherical coordinate system would
be appropriate, giving the radius of the surface points in function of the azimuth
and elevation angles (r = ψ(θ, φ)). This implies of course that an appropriate
coordinate system origin and orientation are set before the segmentation is started
so that every surface point can be “seen” from the origin. An example of this
representation through an explicit function is shown on Figure 2.6.

A second consideration must be the discretization of the interface and the B-
spline spacing h. Given that the explicit function φ is defined over an n− 1 dimen-
sional grid, this grid must be discretized in a uniform way. Adjusting these two
parameters allows one to adjust to the complexity of the shape, as the number of
points must be sufficient to represent the level of surface details necessary, but also
to control the smoothing of the surface through the B-spline spacing h.
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Figure 2.6: Illustrative 3D surface representation through an explicit function in the
spherical domain. (a) Correspondence between the cartesian and spherical domains. (b)
Explicit function in the spherical domain. (c) Explicit function converted to the cartesian
space. Reproduced from [3].

In order to minimize the energy criterion, a modified gradient descent with
feedback step adjustment algorithm is applied [162] so that the B-spline coefficients
evolve according to:

c[k]t+1 = c[k]t + λ
∂E

∂c[k]t
, (2.5)

where λ is the step size and t the current iteration of BEAS. A description of the
operating principle of BEAS is shown on Table 2.2.

2.6.4 Application to 3D Left Ventricular Segmentation

BEAS was first applied to 3D LV segmentation in the seminal BEAS publication
by Barbosa et al. [3]. The segmentation was manually initialized at the first tem-
poral frame by using an ellipsoid and the segmentation driven using the Chan-Vese
energy functional [163]:

F (y, Hφ(y)) = (I(y)− uin)2 + (I(y)− uout)2, (2.6)

where I(y) is the image intensity at point y and uin and uout are the localized
means inside and outside the surface defined according to:

uin =

∫
Ω
B(x,y)Hφ(y)I(y)dy∫
Ω
B(x,y)Hφ(y)dy

,

uout =

∫
Ω
B(x,y)(1−Hφ(y))I(y)dy∫
Ω
B(x,y)(1−Hφ(y))dy

.

(2.7)

The minimization of E according to c[k] can then be expressed through 2.4
where

ḡ(x∗) = (Ī(x)− uin)2 − (Ī(x)− uout)2, (2.8)

and Ī(x) corresponds to the image intensity at position x = {ψ(x∗), x2, ..., xn}.
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The segmentation result at each frame was then used to initialize the following
frame, thus segmenting a full 4D echocardiographic dataset. Each frame took in
average 12.5ms to segment thus demonstrating the potential of BEAS for real-time
LV assessment.

Barbosa et al. [164] then validated BEAS against a prereleased commercial soft-
ware package, eSieLVATM, for ED and ES LV segmentation by initializing at each
frame, placing points at the MA and LV apex. It was thus shown by Barbosa
et al. that BEAS achieves similar accuracy and reproducibility as state-of-the-art
commercial tools.

The BEAS framework was later extended and improved in [165] by the addi-
tion of automatic initialization and a novel localized energy term for endocardial
segmentation in ultrasound.

The automatic initialization proposed in [165] was inspired by the work of van
Stralen et al. [166] and relies on the sequential detection of the LV LAx and the
MV base to fit a spheroid to the endocardial boundaries. In brief, the endocardial
boundaries are first detected in several C-planes (i.e. planes parallel to the trans-
ducer surface) using phase-based edge operators. The Hough transform for circles
(HTc) is then used to find the probability of each point being the center of a circle
of radius r, where r∈[15,35]mm. Multi-dimensional dynamic programming is then
used to find the optimal path that maximizes the center probabilities along the
depth direction [167]. This will give a smoothed path corresponding to the set of
positions that have a high probability of being the center of a circle. A straight
line is then fit to this path, thus determining the LAx. Next, a plane is slid along
the LAx retrieving the average gray-level for each position. A merit function sen-
sitive to a dark-to-bright transition and a brighter appearance is then used to find
the MV position. Finally, a spheroid is fit using the radius probability information
from HTc to maximize a sum of probabilities according to the LAx and MV position
determined.

The localized energy term proposed in [165] is a variation of the Yezzi localized
energy which aims to maximize the difference in mean intensity inside and outside
the surface:

F (y, Hφ(y)) = −(uin − uout)2. (2.9)

In [165], this energy was adapted to be sensitive to the expected intensities of
the endocardial surface. Since the blood pool is usually darker than the myocardial
tissue, the energy functional can be expressed as:

F (y, Hφ(y)) = uin − uout. (2.10)

The minimization of E according to c[k] can then be expressed through 2.4
where:

ḡ(x∗) =
Ī(x)− uin

Ain
− Ī(x)− uout

Aout
, (2.11)
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where Aj is the area of region j used to estimate the local mean uj .

A first step towards a motion coherent full cycle LV segmentation framework
was presented in [168]. This was done by first using the result of the segmentation of
frame t−1 to initialize the segmentation of frame t and then regularizing this result
in a contrast dependent manner, thus allowing to improve the LV segmentation in
areas of low contrast. A later approach by the same authors used a global affine
optical flow to estimate cardiac motion from one frame to the subsequent, which is
then locally refined using recursive block matching [115].

A framework for myocardial segmentation using BEAS was also presented by
Barbosa et al. [159], though this work was limited to 2D SAx parasternal views.
Nevertheless, the model showed promising results. Rather than defining the endo-
and epicardium as two separate surfaces, the two surfaces were coupled by defining
them in function of two common explicit functions such that:

Γendo(x
∗) = ψmid-myocardium(x∗)− ψhalf-thickness(x

∗), (2.12)

Γepi(x
∗) = ψmid-myocardium(x∗) + ψhalf-thickness(x

∗). (2.13)

This definition couples the evolution of both surfaces such that the segmentation
of each of the surfaces depends on the other.

2.7 Concluding Remarks

The current status of cardiovascular disease as the leading global cause of death
has established cardiac, and specifically, LV volume and function assessment as an
essential task in clinical practice. While different imaging modalities are available
to image the heart, ultrasound clearly stands out due to its high temporal reso-
lution, safety, low cost and portability. While 2DE is the predominant modality
for cardiac assessment, the full 3D anatomy of the heart can only be imaged us-
ing RT3DE. However, manual LV assessment in RT3DE is a challenging and time
consuming task. As such, numerous methods have been proposed for automatic
or semi-automatic LV segmentation in RT3DE. Nevertheless, a fast and fully auto-
matic robust method for full-cycle myocardial LV segmentation was not available
at the beginning of this project, thus motivating the present work. BEAS, as a
flexible, fast and successful framework for LV segmentation in RT3DE was selected
as the tool of choice.
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Table 2.1: Validation of RT3DE and commercial software tools for LV volumetric assessment (#: number
of exams; Ref: reference measurements taken from cMRI or manual contouring of RT3DE data (3DM); T:
average frame processing time (s); R: correlation coefficient; BA: Bland-Altman analysis; NR: not reported).

Study
Imaging Analysis User

# Ref T
R BA(µ± 2σ)

System System Input EDVESV EF EDV ESV EF

Schimdt et al.
Volumetrics - A(NR) 25 cMRI 120-180 0.88 0.82 NR NR NR NR

1999 [129]
Lee et al.

Volumetrics - A(7) 25 cMRI NR 0.99 0.99 0.92 NR NR NR
2001 [130]

Mannaerts et al. ATL®HDI TomTec
A(9) 28 cMRI 1200-1800 0.79 0.90 0.87 -27.9±45.7 -34.4±45.5 1.2±15.8

2003 [132] 5000+P4 EchoView 4.2
Kühl et al. Sonos

- C(24,2) 24 cMRI 720±300 0.98 0.98 0.98 -13.6±37.8 -12.8±41.0 0.9±8.8
2004 [133] 7500+X4
Kühl et al. Sonos

- C(24,2) 24 3DM 720±300 0.99 0.99 0.98 -1.3±17.2 -0.2±10.8 -0.1±5.4
2004 [133] 7500+X4

Jenkins et al. Sonos TomTec
C(36,2)+R 50 cMRI 630±60 NR NR NR -4±58 -3±36 0±14

2004 [134] 7500+X4 4DLVA
Caiani et al. Sonos

- B(4)+R 44 cMRI ∼300 0.97 0.97 0.93 -4.1±30 -3.5±34 -0.8±14
2004 [90] 7500+X4

Jacobs et al. Sonos QLAB -
C(5,2)+R 50 cMRI 120-420 0.96 0.97 0.93 -14±34 -6.5±32 -1±12.8

2005 [118] 7500+X4 3DQA
Bosch et al. Sonos TomTec

A(8) 29 cMRI 1020±300 0.97 0.98 0.94 -2.9±12 0.9±9.9 -1.4±7.2
2006 [136] 7500+X4 EchoView 5.2

Bosch et al. Sonos TomTec
C(24,2) 29 cMRI 360±120 0.79 0.84 0.54 NR NR NR

2006 [136] 7500+X4 4DLVA 1.2
Jenkins et al. Sonos TomTec

C(36,2)+R110cMRI 630±60 0.86 0.91 0.81 -15±56 -10±44 1±16
2006 [137] 7500+X4 4DLVA

Jenkins et al. Sonos QLAB -
C(5,2)+R 110cMRI 240±20 0.78 0.86 0.64 -44±70 -21±56 -2±20

2006 [137] 7500+X4 3DQA
Sugeng et al. Sonos TomTec

C(18,2)+R 31 cMRI NR 0.97 0.96 0.96 -5±53 -6±53 0.3±8
2006 [135] 7500+X4 4DLVA

Soliman et al. Sonos TomTec
B(3)+R 41 cMRI 360±120 0.99 0.99 0.98 -9.4±8.9 -4.8±10.1 0.3±4.7

2007 [138] 7500+X4 4DLVA 2.0
Soliman et al. Sonos QLAB -

C(5,2)+R 41 cMRI 240±20 0.99 0.98 0.97 -16.4±13.4 -8.5±14.2 0.7±6.3
2007 [138] 7500+X4 3DQA

Soliman et al. Sonos TomTec
C(24,2)+R 53 cMRI 900±300 0.96 0.98 0.95 -24.0±9.4 -11.3±17.2 0.8±6.4

2007 [139] 7500+X4 4DLVA 1.2
Soliman et al. Sonos TomTec

B(3)+R 53 cMRI 360±120 0.99 0.99 0.98 -9.9±8.4 -5.0±9.6 0.6±4.8
2007 [139] 7500+X4 4DLVA 2.0

Mor-Avi et al.
iE33+X3-1

QLAB -
C(5,2)+R 92 cMRI ∼300 0.91 0.92 0.81 -67±92 -41±92 -3±22

2008 [126] 3DQA
Muraru et al.

Vivid7+3V
4D

C(9,2) 23 cMRI 48±24 0.77 0.72 0.64 -32.3±43.6 -13.9±30.7 -1.5±12.8
2010 [141] AutoLVQ

Muraru et al.
Vivid7+3V

4D
C(9,2)+R 23 cMRI 112±30 0.93 0.95 0.85 -11.0±24.2 -9.1±14.2 -2.9±8.4

2010 [141] AutoLVQ
Muraru et al.

Vivid7+3V
TomTec

B(3)+R 23 cMRI 226±84 0.96 0.94 0.85 -8±19 -7±13 -2.8±8.4
2010 [141] 4DLVA 2.0

Chang et al.
SC2000+4Z1c eSie LVATM D+R 91 cMRI NR 0.91 0.94 0.91 -41.38±37.2 -7.91±33.7 -8.26±13.0

2011 [146]
Thavendiranathan

SC2000+4Z1c eSie LVATM D 91 cMRI 30-60 0.90 0.96 0.98 -17.6±53.4 -9.8±35.8 -0.3±5.0
et al. 2012 [144]

Kleijn et al. Artida4D+PST-
3D-WMT C(5,2) 45 cMRI∼300(w/acq) 0.75 0.81 0.91 -34±50 -13±22 -0.6±2.4

2012 [142] 25SX
Miller et al.

iE33+X3-1
QLAB -

C(5,2)+R 42 cMRI 306±60 0.83 0.84 0.77 -45±70 -11±48 -7±18
2012 [143] 3DQA

Shibayama et al.
SC2000+4Z1c eSie LVATM D 41 cMRI 36±8 0.80 0.85 0.54 -22.2±73.0 -18.0±64.2 1.2±23.3

2013 [147]
Shibayama et al.

SC2000+4Z1c eSie LVATM D+R 41 cMRI 371±116 0.96 0.97 0.9 -4.4±34.9 -5.0±27.7 0.9±15.2
2013 [147]

Tsang et al.
X5-1 HeartModelAI D 46 cMRI <5 0.89 0.94 0.93-35.05±90.34-24.95±86.840.55±11.62

2013 [148]
Zhang et al.

SC2000 eSie LVATM D 60 cMRI NR 0.89 0.93 0.71 -3.5±43.5 -0.07±33.2 -2.7±15.7
2013 [145]

Kawamura et al.
ArtidaTM 3D-WMT C(5,2)+R 64 cMRI NR 0.86 0.85 0.74 -19.0±76.5 -10.1±70.4 -0.3±13.1

2013 [122]

User input: A(X): Computer assisted delineation of the 3D surface via manual contouring of X 2D planes; B(X):
Semi-automatic segmentation, with manual initialization by contouring in X 2D planes; C(L,F): Automated segmentation,
with user input of L anatomical landmarks in F time frames; D: Fully automatic segmentation without any user intervention;
R: Manual refinement of segmentation results.
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Table 2.2: BEAS algorithm operating principle description. Adapted from [3].

Initialization

� Choose appropriate coordinate system

� Define the origin and orientation of the coordinate system

� Initialize ψ(x∗) and sample according to discretization grid

� Set the gradient descent parameters λi, ηf and ItT

Segmentation

While It < Itmax and ctr < ItT
� Estimate image feature ḡ(x∗) at the current surface position

� Compute the energy gradient ∂E with respect to c[k]

� Update the B-spline coefficients c[k]

� Update ψ(x∗) to get the new interface points

If the update leads to a decrease in E

◦ ctr = 0

◦ λ = λi
◦ ψfinal(x∗) = ψ(x∗)

Else

◦ ctr = ctr + 1

◦ λ = λ/ηf
� It=It+1

λi is the initial step size, ηf is the step size update factor and ItT the maximum number
of iterations allowed without finding a new energy optimum.
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Chapter 3

heartBEATS: A Hybrid
Energy Approach for
Real-Time B-spline Explicit
Active Tracking of Surfaces

This chapter is based on a paper published in Computerized Medical Imaging and Graph-
ics: Barbosa D., Pedrosa J., Heyde B., Dietenbeck T., Friboulet D., Bernard O., D’hooge J..
heartBEATS: A hybrid energy approach for real-time B-spline explicit active tracking of surfaces.
Computerized Medical Imaging and Graphics. 2017 Dec 1;62:26-33.
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Abstract

In this chapter a novel method is presented for left ventricular (LV) tracking
in real-time 3D echocardiography (RT3DE) data using a hybrid approach combin-
ing segmentation and tracking-based clues. This is accomplished by coupling an
affine motion model to an existing LV segmentation framework and introducing an
energy term that penalizes the deviation to the affine motion estimated using a
global Lucas-Kanade algorithm. The hybrid nature of the proposed solution can
be seen as using the estimated affine motion to enhance the temporal coherence of
the segmented surfaces, by enforcing the tracking of consistent patterns, while the
underlying segmentation algorithm allows to locally refine the estimated global mo-
tion. The proposed method was tested on a dataset composed of 24 4D ultrasound
sequences from both healthy volunteers and diseased patients. The proposed hybrid
tracking platform offers a competitive solution for fast assessment of relevant LV
volumetric indices, by combining the robustness of affine motion tracking with the
low computational burden of the underlying segmentation algorithm.

3.1 Introduction

Despite the existence of several functional indices, ejection fraction (EF) re-
mains the most widely used parameter to assess global cardiac function [12]. While
cardiac magnetic resonance imaging (cMRI) remains the gold standard to assess car-
diac morphology and function, it is still impractical for large patient throughput.
Thanks to the technological maturation of 2D matrix array transducers, 3D ultra-
sonic imaging systems have been gradually introduced into clinical practice over
the past decade. When compared with conventional 2D echocardiography (2DE),
RT3DE offers some important advantages. Indeed, it overcomes several known lim-
itations of conventional 2DE imaging, since it avoids foreshortening, out-of-plane
motion and the need of geometric assumptions for volume estimation. As a result,
it has already been shown that RT3DE offers superior performance in the assess-
ment of global morphology and function than 2DE, when compared against cMRI
measurements [141]. Thus, the ability of combining accurate 3D volumetric assess-
ment of cardiac morphology and function with the intrinsic benefits of ultrasound
imaging makes RT3DE a very useful and promising tool for clinical daily routine.

It should be noted that the added dimensionality of RT3DE data also poses some
challenges in the data analysis pipeline, when compared with conventional 2DE.
The manual analysis of RT3DE data remains cumbersome and time consuming,
which has triggered the development of several software suites in order to reduce
the burden on the operating physician while extracting relevant cardiac diagnostic
information. However, even state-of-the-art commercial solutions still require some
degree of user interaction both at the initialization step and for correction of the
segmentation/tracking results [141].

Nonetheless, several relevant methods have been proposed in order to increase
the automation degree and decrease the total analysis time of RT3DE data. For
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instance, Dikici and Orderud [169] have recently extended the Kalman-based, com-
putationally efficient tracking framework initially introduced in [170], in order to
account for advanced edge detectors to track the position of the LV endocardial
border throughout the cardiac cycle. Leung et al. [171] proposed a fully auto-
matic method for RT3DE data segmentation based on 3D active appearance mod-
els (AAM). The same authors have equally proposed a tracking framework able to
take into account statistical cardiac motion models to improve the performance of
an optical flow based tracking algorithm [172]. Yang et al. [173] have proposed a
computational framework targeted to robust and fast 3D tracking of deformable ob-
jects without any user interaction, by combining the input of multiple collaborative
trackers. Different commercial solutions also exist in the field, typically dependent
on user interaction for single frame segmentation which is then propagated through-
out the heart cycle using different tracking strategies as for example in Tomtec’s
and Toshiba’s commercial tools described in Chapter 2 On the other hand, other
approaches such as the newest available tools from Siemens and Philips, use large
statistical models to perform the segmentation in 4D.

Despite the promising results of B-spline Explicit Active Surfaces (BEAS) on
the segmentation of RT3DE data in both end diastolic (ED) and end systolic (ES)
frames, as described in Section 2.6, the direct application of this algorithm to track
the LV throughout the cardiac cycle has some intrinsic flaws. Indeed, segmentation-
oriented energy functionals are designed to recover objects from a background in
static images. Although they can be used in multi-static scenarios to perform
tracking on subsequent images, there is no guarantee that the temporal coherence
of the patterns being tracked will be captured.

With this in mind, a novel hybrid framework which combines both segmenta-
tion as well as motion-oriented clues is proposed. This is accomplished by coupling
an affine motion model to the segmented LV surface and introducing an energy
term that penalizes the deviation to the affine motion estimated using a global
Lucas-Kanade algorithm. The hybrid nature of the proposed solution can be seen
as using the estimated affine motion to enhance the temporal coherence of the seg-
mented surfaces, by enforcing the tracking of consistent patterns, while the under-
lying segmentation algorithm allows to locally refine the estimated global motion.
The proposed solution offers a competitive approach for fast assessment of relevant
LV volumetric indices, by combining the robustness of affine motion tracking with
the low computational burden of BEAS.

The present chapter is structured as follows. First, the method for LV affine
motion estimation is presented, while also introducing the key novelty of this work, a
hybrid tracking platform relying on both segmentation-based energies and tracking-
oriented clues. It is shown that this coupling can be done via affine transformation of
the coordinate system associated with the segmented LV surface. The key parameter
values chosen in the implementation of the proposed algorithm are then addressed.
In the Results section, an evaluation of the performance of the method using a
dataset composed of 24 4D ultrasound exams is performed. In the Discussion, the
main findings of the experiments are discussed and the performance of the proposed
algorithm is compared against the most relevant prior work in literature. Finally,
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the Conclusions section gives the main conclusions and perspectives of this work.

3.2 Methodology

3.2.1 B-spline Explicit Active Surfaces

In this Chapter, the modified version of the localized means separation energy
is used as introduced in 2.9, which takes advantage of the darker appearance of
blood with respect to the myocardial tissue. Given the volumetric nature of the
object of interest, ψ is defined in the spherical space, i.e. r = ψ(φ, θ). Further
details regarding the fundamental formalism of BEAS and the derivation of the
segmentation energy minimization strategy are described in Section 2.6.

3.2.2 Fast left ventricular affine motion estimation

3D cardiac motion assessment is a very active research field and different algo-
rithms have been proposed. While block-matching is a very popular approach in
current commercial software suites [174], the recent trends in the research commu-
nity show a tendency towards solutions based on elastic registration and optical
flow algorithms, as highlighted in the recent comparative study by De Craene et
al. [175]. In the present manuscript, a global 3D extension of the method pro-
posed by Sühling et al. [176] for the estimation of the local affine motion is used, as
introduced in [177].

As noted in the seminal work of Lucas and Kanade [178], the least squares solu-
tion of the optical flow equation is equivalent to the first order Taylor expansion of
the minimization of the sum of squared differences between two subsequent frames.
Therefore, optical flow motion estimation algorithms build upon the assumption
that the intensity of a particular point in a moving pattern does not change over
time and thus any difference in the local appearance of a region over a sequence
is uniquely defined by the underlying motion. Let I(x1, x2, x3, t) denote the pixel
intensity at location ~x = [x1, x2, x3] and time t in a 4D image dataset. This as-
sumption can then be formulated as [179]:

Ix1
(~x, t)u(~x, t) + Ix2

(~x, t)v(~x, t) + Ix3
(~x, t)w(~x, t) + IT (~x, t) = 0, (3.1)

where ∇I = [Ix1
, Ix2

, Ix3
] is the local image spatial gradient and IT corresponds

to the temporal derivative. u, v and w are the x1-, x2- and x3-components of the
optical flow that are to be estimated.

Taking the affine motion model as defined in [176], the 3D affine motion on
frame t can be estimated by minimizing the following energy term:

EM (t)=

∫
W(x1 − c1, x2 − c2, x3 − c3)(Ix1

u+ Ix2
v + Ix3

w + IT )2d~x, (3.2)
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where W is a local window function centered in the position ~c = [c1, c2, c3] and

u(~x, t)=u0 + u1(x1 − c1) + u2(x2 − c2) + u3(x3 − c3), (3.3)

v(~x, t)=v0 + v1(x1 − c1) + v2(x2 − c2) + v3(x3 − c3), (3.4)

w(~x, t)=w0+w1(x1 − c1)+w2(x2 − c2)+w3(x3 − c3), (3.5)

encode the local motion field along respectively x1, x2 and x3. Parameters u0, v0

and w0 correspond to the motion at the window center and u1, u2, u3, v1, v2, v3,
w1, w2 and w3 are respectively the first order spatial derivatives of u, v and w.
These parameters then define the affine transform for frame t associated with the
local motion field [u, v, w] as expressed by the augmented matrix

~Mt =

1 + u1 u2 u3 u0
v1 1 + v2 v3 v0
w1 w2 1 + w3 w0
0 0 0 1

 . (3.6)

By differentiating equation 3.2 with respect to the affine motion field compo-
nents, it can be shown that the minimization of the weighted least-squares criterion

can be expressed as the solution of ~ATWAd = ATWb, whose components are ex-
panded at the bottom of the page. Note that < a, b > denotes the continuous

analogue of the dot product, expressed as
∫
a(~x)b(~x)d~x and that ~A, ~d and ~ATWb

are functions of (~x, t) though this was ommitted for simplicity.

A global formulation of the algorithm introduced by Sühling et al. could be
employed by considering W(~p) = 1, ∀~p. Such an assumption would yield the global
affine transform between the two subsequent images. Nonetheless, increasing the
span of the window function W intrinsically hampers the underlying assumption
that the affine motion model is constant within this region. This is particularly
problematic in the case of echocardiographic data, since it is known that the mo-
tion patterns of the blood and the surrounding tissues (e.g. pericardium and valves)
are significantly different from the ones within the myocardium, thus violating the
fundamental assumption of constant motion within the region of interest (ROI). In
order to allow estimating the global affine transformation of the LV between subse-
quent frames, the existing segmentation framework will be used and the formalism
introduced in [177] to define a ROI only around the segmented surface from the
convolution expanded so that:

W(~x) = δφ(~x) ∗ N(~x), (3.7)

where δφ(~x) implicitly defines the segmented surface and N(~x) is simply a neigh-
borhood function defined as a 3D cube centered in ~x. An example of the resulting
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Figure 3.1: Anatomical ROI for affine motion estimation.

W(~x) is shown in Figure 3.1.

3.2.3 Hybrid framework for fast left ventricle tracking

The integration of the motion information estimated with the aforementioned
optical flow algorithm within the BEAS segmentation framework will enhance its
tracking performance. This is achieved since the temporal coherence of the patterns
being tracked is the fundamental driver of affine motion estimation, whereas the
existing segmentation framework is mostly relying on the identification of salient
features in static images. By combining the two, a hybrid framework will allow
a synergistic collaboration between tracking-based and segmentation-based clues,
increasing the overall performance and robustness. In the present sub-section the
manner through which the hybrid tracking strategy can be implemented via affine
deformation of the coordinate system associated with the segmented LV surface
is described. A conceptual description of the proposed approach is illustrated in
Figure 3.2.

First, the inherent characteristics of the BEAS segmentation framework should
be recalled: BEAS models the LV object (in 3D) through an explicit function ψt in
the spherical coordinate system, thus a function of azimuthal and elevation angles
θ and ϕ. As such, to translate this explicit function ψt into the LV surface ~St in the
Cartesian coordinate system, not only does the spherical to Cartesian conversion
need to be performed, but the orientation and position of the spherical coordinate
system (in which the BEAS surface is defined) relative to the Cartesian system have
to be taken into account. The LV surface can thus be defined as:

~St = ~S(~Tt, ψt) = ~Tt

ψt(θ, ϕ)cos(θ)sin(ϕ)
ψt(θ, ϕ)sin(θ)sin(ϕ)

ψt(θ, ϕ)cos(ϕ)

 , (3.8)

~A =



Ix1
Ix2
Ix3
x1Ix1
x2Ix1
x3Ix1
x1Ix2
x2Ix2
x3Ix2
x1Ix3
x2Ix3
x3Ix3


, [ ~ATWA]ij =<AiW, Aj>, ~d =



u0
v0
w0
u1
u2
u3
v1
v2
v3
w1
w2
w3


, ~ATWb = −



<W, Ix1IT>
<W, Ix2IT>
<W, Ix3IT>
<x1W, Ix1IT>
<x2W, Ix1IT>
<x3W, Ix1IT>
<x1W, Ix2IT>
<x2W, Ix2IT>
<x3W, Ix2IT>
<x1W, Ix3IT>
<x2W, Ix3IT>
<x3W, Ix3IT>
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Figure 3.2: Conceptual description of the proposed hybrid algorithm. The explicit
function ψt−1 (A) defining the LV surface ~St−1 through ~Tt−1 (B) is used to the esti-

mate the affine transformation ~Mt between two consecutive frames in the anatomical
ROI W(x) (C). This gives ~Tt, the LV global pose for frame t. This affine deforma-

tion is then applied to ~St−1 (shown in greater transparency) giving ~S(~Tt, ψt−1) (D).
Hybrid energy segmentation is then applied to evolve ψt−1 according to equation

3.12 to obtain ψt (E), which, through ~Tt, defines the final LV surface for frame t,
~St (F).

where ~Tt is the augmented matrix comprising the orientation of the LV long axis
(LAx) and its center position on frame t. This relationship is evident in Figure

2-A and B, where the explicit function ψt−1 is transformed into ~St−1 by employing
equation 3.8. In this equation it is clear that, though ψt controls the local shape of
the LV surface, this surface can also be globally deformed through ~Tt.

Given that the estimated motion field can be expressed as an affine transforma-
tion, the estimated affine transformation between subsequent frames, ~Mt, will be
coupled to the underlying spherical to Cartesian transformation, using the recursive
formulation:

~Tt = ~Mt
~Tt−1, (3.9)

where ~T1 is the augmented matrix of orientation and center position of the LV in
the ED frame. By applying the current estimate of ~Tt to the underlying spherical to
Cartesian transformation, the entire surface can be intrinsically deformed according
to the estimated affine transformation through translation, rotation and scaling.
This is in fact the equivalent of deforming the original coordinate frame of the LV
object according to the global affine motion estimated with the anatomical optical
flow algorithm detailed previously, as illustrated in Figure 3.3. In the proposed
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Figure 3.3: Affine deformation of the LV surface along time. For clarity sake, the
coordinate system associated with the LV object was translated to the corner of the
bounding box to facilitate its visualization.

hybrid framework, the LV surface ~St−1 (Figure 3.2-B) is used to determine W(~x)

which in turn is used to estimate the affine transformation ~Mt and obtain the new
LV surface pose ~Tt (Figure 3.2-C). This augmented matrix ~Tt is then applied to
ψt−1 to deform the LV surface according to the affine motion estimated as shown
in Figure 3.2-D.

In order to balance the contribution between tracking and segmentation-based
clues, a hybrid segmentation is then performed to this deformed surface. For that
purpose, an energy term that penalizes the deviation between the current surface
position, ~S(~Tt, ψt), and the one initialized by applying the affine transformation to

the previous segmentation result, i.e. ~S(~Tt, ψt−1), is proposed:

EA(t) =

∫
Γ

(
~S(~Tt, ψt(θ, ϕ))− ~S( ~MtTt−1, ψt−1(θ, ϕ))

)2

dx∗, (3.10)

which, because the global pose ~Tt = MtTt−1 is shared between the two LV surfaces,
can be simplified to:

EA(t) =

∫
Γ

(ψt(θ, ϕ)− ψt−1(θ, ϕ))
2
dx∗. (3.11)

The global energy term for optimization can then be defined as:

E(t) = Ed(t) + λEA(t), (3.12)

where λ is a hyperparameter controlling the balance between the data attachment
term Ed and the tracking-based energy EA. The energy criterion E can be mini-
mized directly wrt. the B-spline coefficients controlling the shape of ψt:

∂E(t)

∂c[ki]
=
∂Ed(t)

∂c[ki]
+ λ

∂EA(t)

∂c[ki]
, (3.13)
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where ∂Ed(t)/∂c[ki] is defined according to equation 2.11 and ∂Ed(t)/∂c[ki] can be
expressed through equation 2.4 where

ḡ(x∗) = ψt(θ, ϕ)−ψt−1(θ, ϕ). (3.14)

Note that even though the affine transform parameters are not explicitly stated
through E(t), these are present in the term EA(t) as shown in equation 3.10. This
term penalizes the deviation from the LV surface position after the affine deforma-
tion, guaranteeing that the data attachment term from the segmentation energy
functional only modifies the segmented LV surface in regions where strong image
content is available. Thus, LV regions with reduced image content are preferably
tracked with the global affine deformations via optical flow estimation, while re-
gions with rich image content rely mostly on the image data. Therefore, there is an
intrinsic trade-off between global, robust tracking and localized, accurate surface
positioning.

By performing this hybrid segmentation, the explicit function ψt is then obtained
(Figure 3.2-E), which, through ~Tt, defines the final LV surface for frame t, ~St (Figure
3.2-F) and thus enabling to restart the process for the next frame.

3.2.4 Implementation Details

In order to speed-up the estimation ofW(~x), the convolution expressed in equa-
tion 3.7 defining the anatomical ROI where EM is evaluated was simplified by
assuming that δφ(~x) is different from zero only in the positions of the discretized
BEAS surface. N was defined as a 11x11x11 cube centered in the target point. The
image gradient ∇I was estimated using a Gaussian derivative kernel with σ = 1,
implemented as a separable convolution operation. Since differential optical flow ap-
proaches are best suited to estimate small displacements, the optimization of EM (t)
was performed using an iterative displacement refinement scheme to improve the
accuracy and robustness of the affine motion ~Mt estimation [180]. Five iterations
were used in all experiments.

The hyperparameter λ controlling the balance between the segmentation and
tracking-based terms in equation 3.12 was empirically set to 0.25. As in previous
BEAS implementations for the LV [165], the angular discretization of the boundary
φ was set to 24 × 16 and the B-spline scale h to 21. The mask function B(~x, ~y)
was restricted to the points along the normal direction of the surface at a distance
smaller than 16mm as in [165]. The optimization of the global segmentation energy
E(t) was implemented in a modified gradient descent with feedback step adjustment
as in previous BEAS implementations [165].

3.3 Experiments and Results

Twenty-four RT3DE exams were acquired using a Siemens Acuson SC2000 rev.
1.5 (Siemens Ultrasound, Mountain View, CA) using a 4Z1c matrix transducer.
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Figure 3.4: Tracking of the LV in a RT3DE dataset using the proposed hybrid
approach (top: apical 4 chambers view, bottom: apical 2 chamber view).

Volume sequences were acquired during apical scanning and the sonographer aimed
at the inclusion of the entire LV within the pyramidal field of view (FOV). Volume
rates ranged from 20 to 40 volumes per second. Each sequence was analyzed by
three experts using eSie LVA pre-release software (Siemens, Mountain View), who
provided manual delineation of the LV chamber at both ED and ES frames. From
these, the corresponding ED and ES volumes were calculated. The stroke volume
(SV) and EF were posteriorly computed from the ED volume (EDV) and ES volume
(ESV). The mean value of the three experts was taken as the reference for the
aforementioned LV volumetric indices. The described protocol was approved by the
institutional review board and patients signed an informed consent.

The proposed tracking framework was automatically initialized in the ED frame
with the algorithm introduced in [165]. In order to demonstrate the synergistic
interaction of the segmentation and tracking-based clues, the proposed solution was
compared with the pure segmentation-based approach, by setting λ to zero in (3.12),

and also with a pure global tracking approach, by keeping ψ fixed and adjusting ~Tt
over time.

The summary of the results for the LV volumetric indices extracted using the
proposed hybrid framework against the manual references can be found in Table
3.1. In the same table, the performances for both the pure affine tracking-based
solution and the pure segmentation solution are also reported. An example of a
RT3DE exam segmented using the proposed hybrid tracking algorithm is given in
Figure 3.4, for 2 consecutive cardiac cycles. The segmentation of the first frame,
which included the automatic initialization step, took approximately 1s , while the
tracking between subsequent frames was done in 30ms, in a C++ implementation
running on an Intel i7 laptop.

The key parameter to be tuned in the proposed algorithm is the hyperparam-
eter λ controlling the balance between the contribution of the segmentation-based
and tracking-based terms in equation 3.13. In order to test the sensitivity of the
empirically chosen value, i.e. λ = 0.25, the value of λ was varied between 0 and 0.5,
in steps of 0.05 and its corresponding LV tracking results observed. This allowed to
assess the influence of removing the tracking-based term from equation 3.13 on the
bottom side of the variation range, while the upper variation range corresponded
to doubling the influence of the tracking-based clues. Additionally, the pure global
tracking approach, where the influence of the tracking-based clues tend to infinity,
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Figure 3.5: Influence of the balance between the segmentation and tracking-based
terms in the overall performance of the proposed hybrid tracking algorithm (left to
right: Pearson correlation coefficient, Bland-Altman bias (µ) and limits of agree-
ment (1.96σ); EDV: blue; ESV: red; SV: green; EF: purple). The chosen value of λ
is marked as a vertical gray line, while the range corresponding to a ±50% variation
of its numeric value is shaded in light gray. Note that the leftmost data points in
each plot correspond to a pure segmentation-based approach, while the rightmost
ones correspond to a pure tracking approach.

Table 3.1: LV volumetric indices extracted using the proposed hybrid approach
versus the pure segmentation-based (PS) tracking and the pure global affine optical
flow algorithm (LOA: limits of agreement; ∗, p<0.05, paired t-test against zero).

Correlation Bland-Altman Analysis

Coefficient (R) LOA ( ~bias± 1.96σ)
PS Affine Hybrid PS Affine Hybrid

EDV (ml) 0.964 0.966 0.971 -5.76∗±25.9 -3.68±26.2 -2.58±23.4
ESV (ml) 0.929 0.930 0.950 -8.40∗±26.6 2.43±26.0 -0.60±23.4
SV (ml) 0.904 0.906 0.934 2.64±25.6 -6.11±30.8 -1.99±24.8
EF (%) 0.734 0.776 0.833 5.35∗±16.3 -1.65±16.1 1.20±13.3

was also tested. The results of this sensitivity analysis are given in Figure 3.5.

3.4 Discussion

The proposed hybrid tracking framework offers competitive performance for the
fully automatic quantification of relevant volumetric cardiac indices used in daily
practice for assessment of LV morphology and global function. This is supported by
the strong correlation for all the estimated volumetric indices. Furthermore, low,
non-statistically significant bias and tight limits of agreement were observed by
Bland-Altman analysis. Comparing the results from the proposed hybrid approach
to the pure segmentation and pure tracking strategies shown on Table 3.1 it becomes
clear that the proposed hybrid approach outperforms both the pure segmentation
and the pure tracking approach. There is thus a significant advantage on bringing
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together the segmentation- and tracking-based clues within the same approach.

Furthermore, the proposed approach compares positively against the pure affine
motion estimation algorithm used to estimate the global LV deformation previously
introduced in [177]. This clearly indicates the advantages of the refinement stage
using a hybrid combination of both segmentation and tracking-based clues. Indeed,
despite the small inter-frame differences between the pure affine tracking and the
proposed hybrid approach, a cumulative effect over the entire cardiac cycle leads to
a significant improvement in tracking performance. Such observation is supported
by the appreciable reduction in both bias and limits of agreement of SV estimation,
to which sums up the strong increase in the EF correlation against the reference
measurements. Therefore, even if visually the added value of the proposed hy-
brid strategy is not strikingly evident between two frames, the accumulation over
the entire cycle improves the tracking performance significantly. Furthermore, the
comparison against the previously proposed strategy based on sequential segmenta-
tion [168], whose results are included in the performance comparison in the following
section, clearly highlights the synergistic effect between the tracking-oriented clues
and segmentation-based energy terms.

Interestingly, the proposed affine coupling allows to deform the spherical dis-
cretization grid used to represent the segmented surface according to the estimated
LV deformation. This enables capturing valuable information regarding both lon-
gitudinal and circumferential global motion of the heart which could not be prop-
erly evaluated with the previous segmentation framework. This opens the path
towards the extraction of other cardiac global functional indices, such as global
longitudinal and circumferential strain. Furthermore, the inclusion of the longitu-
dinal/circumferential deformation via affine transformation of the coordinate system
associated with the segmented LV surface provides a seamless integration on the
previous formal framework, therefore not requiring any special modification to the
underlying mathematical foundations.

The results of the sensitivity analysis demonstrate its robustness towards the
chosen value for the hyperparameter λ controlling the balance between the tracking-
based and segmentation-based terms in equation 3.13. Indeed, a modification of
±50% of its nominal value does not lead to appreaciable modifications in the cor-
relation values for any of the LV volumetric indices considered in the present work.
A similar trend is observed for the width of the limits of agreement for the EDV,
SV and EF estimates. Nonetheless, the influence of λ is particularly visible in the
performance of the ESV estimation. Such observation is explained by the opposite
bias of the pure tracking-based and segmentation-based approaches. Indeed, while
the pure segmentation-based approach overestimates the true ESV volume, the pure
tracking-based affine optical flow method underestimates it.

3.4.1 Performance comparison

Although the proposed hybrid tracking approach offers promising results, a care-
ful comparison with the values reported in the literature has been done in order to
evaluate its competitiveness against currently available solutions. This comparison
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does not aim to be extensive, but rather informative to the reader on how the pro-
posed fully automatic framework for LV volume analysis compares with existing
relevant methods. An overview of the results of the proposed algorithm and its
comparison with other methods reported in the literature is shown in Table 3.2.
Nonetheless, it should be noted that a fair and quantitative comparison is not triv-
ial, due to differences in patient population and image quality and due to different
acquisition conditions and equipment. We have selected relevant algorithms rang-
ing from pure segmentation-based approaches to more oriented tracking strategies.
However, methods with a similar validation approach (i.e. where the segmentation
results were compared with manual segmentation of RT3DE data) were selected.

Table 3.2 also shows that the proposed algorithm presents a competitive perfor-
mance when compared with the most relevant algorithms presented in the literature,
both in terms of accuracy and overall computational load. Indeed, performance-
wise only the algorithm of [172] and [173] provide clearly more accurate results than
the ones provided by the developed algorithm. Nonetheless, both these algorithms
are not able to run in real-time and rely on statical shape models (SSM) and mo-
tion models. While prior knowledge is a very powerful tool to deal with missing
information scenarios, which is often the case in RT3DE data where some of the
boundaries are missing, care should be taken to not infer wrong estimations due
to excessive influence of the priors. Furthermore, the ability to deal with unseen
data is typically related with the amount of different patterns included in the initial
learning phase, which implies very tedious and labor-intensive stages towards build-
ing such statistical databases. It should also be noted that the algorithm in [172] is
tracking-oriented and, thus, requires LV delineation at ED. While the same authors
also propose an automatic ED segmentation algorithm in [171], the validation of
their complete segmentation/tracking framework remains to be done.

In terms of overall running time, only the works of Orderud and Hanseg̊ard et
al. [93, 170, 181] and the framework of Duan et al. [4] are able to compete with
the proposed algorithm, which yields an average computing time of 30 ms per pro-
cessed frame. On the other hand, level-set based algorithms, such as the ones in [86]
and [182], require a significantly larger computational power due to the implicit rep-
resentation of the evolving interface, with a direct trade-off between shape topology
freedom and computational burden. Furthermore, in the current implementation
of heartBEATS there are redundant computations introduced within the anatomi-
cal ROI in equation 3.7, since there are overlapping regions. This sums up to the
high degree of parallelism in the key algorithmic blocks of the proposed method,
which opens the path to further implementation optimizations which would allow
to further reduce overall computational time. Therefore, there is still a consid-
erable margin to improve the processing speed of heartBEATS, which will allow
the method to be prepared to deal with higher frame rate (FR) 3D acquisitions,
currently a hot topic in the ultrasound community [55,183].

The comparison against the recent work of Zhang et al. [184] also supports
the competitive performance of the proposed algorithm. Despite validating their
algorithm in a dataset composed of patients selected for cardiac resynchronization
therapy (CRT), relative volume errors of 4.2± 17.4% and −1.3± 16.8% (µ± σ) are
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reported for the segmented LV surfaces considering the input of two different users.
In the current study, the proposed algorithm yielded −4.7±14.1% considering both
EDV and ESV values. Thus, heartBEATS presents a competitive performance when
compared to the active shape model-based method of Zhang et al. [184], while doing
so without any kind of user input.

Table 3.2: Proposed vs. state-of-the-art algorithms (#: number of exams; ∆Tf:
average frame processing time (s); R: correlation coefficient; BA: Bland-Altman
analysis; FC: full cycle, NR: not reported).

Study
Algorithm/Frames

# ∆Tf
R BA(µ± 2σ)

/User Input EDV ESV EF EDV ESV EF

Prior work

Angelini et al.
PS/ED+ES/I 10 NR 0.63 0.62 0.45 16.1±50 6.6±34 0.5±22

2005 [86]
Hanseg̊ard et al.

MSS/FC/0 21 0.008 0.91 0.91 0.74 -5.9±21 6.2±19 -7.7±12
2007 [93]

Leung et al.
PS/ED/0 99 NR 0.95 NR NR -1.47±40 NR NR

2010 [171]
Leung et al.

PT/FC/II 35 6 0.982 NR 1.9±14 NR
2011 [172]
Yang et al.

HST/FC/0 67 1.5 NR NR NR 1.32±12 1.0±10
2011 [173]

Rajpoot et al.
PS/ED+ES/I 34 NR NR NR NR -5.0±49 1.2±26 -0.7±14

2011 [182]
Rajpoot et al.

PT/FC/II 34 NR NR NR NR NR 4.0±40 -3.3±25
2011 [182]

Barbosa et al.
MSS/FC/0 24 0.05 0.98 0.92 0.78 -3.9±22 -5.0±27 3.4±15

2012 [168]
Zhang et al.

MSS/FC/II 34 10 0.84 NR NR NR NR
2013 [184]

Proposed

heartBEATS HST/FC/0 24 0.03 0.97 0.95 0.83 -2.6±23 -0.6±23 1.2±13

Note that PS, MSS, PT and HST stand for the algorithm class, namely pure segmentation,
multi-static segmentation, pure tracking and hybrid segmentation and tracking. Regarding user
input, 0 stands for a fully automatic method, I for minor user input (such as few anatomical
landmarks) and II for significant user input, such as manual contouring at the ED frame.

3.5 Conclusions

The proposed hybrid segmentation/tracking framework (heartBEATS) combines
both segmentation-oriented image information with global tracking clues, for en-
hanced performance on the tracking of the LV surface throughout the cardiac cycle.
Furthermore, it allows assessing the motion components tangential to the LV bound-
aries, which was a limitation of the existing segmentation algorithm. Lastly, the
computational burden is low, pointing towards the feasibility of accurate real-time
online tracking.
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Abstract

The recent advent of real-time 3D echocardiography (RT3DE) has led to an
increased interest from the scientific community in left ventricle (LV) segmentation
frameworks for cardiac volume and function assessment. An automatic orientation
of the segmented LV mesh is an important step to obtain a point-to-point corre-
spondence between the mesh and the cardiac anatomy. Furthermore, this would
allow for an automatic division of the LV into the standard 17 segments and, thus,
fully automatic per-segment analysis, e.g. regional strain assessment. In this work,
a method for fully automatic short axis (SAx) orientation of the segmented LV is
presented. The proposed framework aims at detecting the inferior right ventricu-
lar (RV) insertion point. 211 RT3DE images were used to validate this framework
by comparison to manual annotation of the inferior RV insertion point. A mean
unsigned error of 8.05◦± 18.50◦ was found, whereas the mean signed error was
1.09◦. Large deviations between the manual and automatic annotations (> 30◦)
only occurred in 3.79% of cases. The average computation time was 666ms in a
non-optimized MATLAB environment, which allows for real-time application. In
conclusion, a successful automatic real-time method for orientation of the segmented
LV is proposed.

4.1 Introduction

LV segmentation has become an essential task in cardiovascular medicine for
cardiac volume and function assessment. The recent advent of RT3DE has made
this modality especially promising for clinical practice and attracted the attention
of the scientific community for the development of segmentation frameworks [76].
Nevertheless, to take full advantage of the information obtained from LV segmen-
tation, an orientation of the segmented mesh is an essential step. This allows for
a point-to-point correspondence between the mesh and the cardiac anatomy and,
as such, makes an automatic division of the LV into its 17 segments possible. This
is especially significant for the application of post-processing techniques such as
regional strain assessment [185] or shape feature based statistical models [186].

While several approaches for LV long axis (LAx) orientation have been proposed
in literature, little attention has been given to SAx orientation of the LV and ap-
proaches looking beyond LAx orientation tend to focus only on the detection of the
standard view planes (i.e. 2-, 3- and 4-chamber views). [100, 187–189] Though this
is a similar problem, these methods do not give a precise SAx orientation as the
standard view planes are quite loosely defined within an interval.

As such, a method for fully automatic real-time SAx orientation of the LV is
proposed in the present work. The proposed method relies on a prior LV seg-
mentation, which is performed using the B-spline Explicit Active Surfaces (BEAS)
framework [3]. The SAx orientation itself depends on the detection of the inferior
RV insertion using both image intensity and structural information.



4.2. METHODOLOGY 51

4.2 Methodology

The automatic LAx orientation and LV initialization and segmentation were
performed according to the method of Barbosa et al. [165] as detailed in Section
2.6.

4.2.1 Short Axis Orientation

Due to the near cylindrical symmetry of the LV, SAx orientation cannot rely
on the LV shape but must rely on the detection of particular landmarks such as the
RV and its insertion points, the aortic valve (AV) or the papillary muscles. From
these, the inferior RV insertion point is especially promising as it can be seen even
in lower quality images and can be found throughout the longitudinal extension
of the LV, making its detection less susceptible to artifacts. As such, the inferior
RV insertion point was selected as the preferred landmark for the SAx orientation
framework proposed.

The proposed framework can be divided into two modules. The first consists of
the extraction of the image intensity information around the LV to detect candidates
for the insertion point. The second uses the Hough transform for circles (HTc) as in
the initialization to locate the RV and right atrium (RA) around the LV. The results
from the two modules are then joined to choose a final candidate. A schematic
diagram of this SAx orientation framework is shown in Figure 4.1.

Figure 4.1: Schematic diagram of the SAx orientation framework. (a) Image intensity
profile extraction: The region of interest (ROI) from the segmented LV mesh is selected
(shown in red) and the intensity outside the LV is extracted in several C-planes along the
individually colored curves shown. The intensities are then averaged to obtain a single
circumferential intensity profile (red) and its associated Laplacian (black). (b) Structure
information extraction using HTc: Equally spaced C-planes along the LAx are selected
and edge detection is performed in each plane, followed by HTc. Alignment according to
the LAx gives an averaged HTc from which the intensity is extracted (red points) to then
obtain a circumferential HTc profile.

The extraction of the image intensity takes advantage of the BEAS structure
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from the segmentation, namely the spherical domain distribution of points along
the surface and the surface normals at each point. As such, the intensity outside
the surface is extracted. However, as shown in the C-planes in Figure 4.1, the RV
is naturally curved towards the septal side, resembling a sail. As such, instead of
extracting the intensity along the normals, the intensity is extracted along a curve
as shown in Figure 4.1. This allows to adapt to the curvature of the RV “sail” thus
allowing to pinpoint the RV insertion point more precisely and avoid a bias towards
the septal side. The intensity information extracted was limited to a radial distance
of 10-40mm from the endocardium and to the region at one third of the distance
from the base to the apex. This allows to focus on the LV region where the RV
insertion is most visible and avoid the complexity of the basal region. The extracted
intensity values are then averaged in the radial and azimuthal directions to obtain
a circumferential profile of the intensities outside the LV. Finally, a Laplacian filter
is used to highlight the intensity peaks from the background.

The structural information module is inspired on the LV initialization framework
proposed by Barbosa et al. [165] and detailed in Section 2.6. Similarly to the LAx
alignment framework, the HTc is used to retrieve information from pre-processed
C-planes. However, the HTc radius interval is now set to [8,25]mm to limit the
response to other anatomical structures, namely the RV and RA. Since in most
images only part of the RV is visible, the lower radius in the interval will allow
to get a response even from the RV “sail”. This module operates thus from the
LV mid-cavity to 35mm below the base to be able to retrieve information from
both the RV and RA. The LAx is then used to align the different C-planes and, as
for the intensity information, the HTc probabilities are averaged in the radial and
azimuthal direction to obtain a circumferential profile.

Finally, the information from both circumferential profiles is used to select the
RV insertion point. From the normalized HTc profile, the peaks above a threshold
of 0.6 are considered as candidates for the RV/RA cavities. For each HTc peak, the
maximum intensity peak within an interval of 10◦ to 55◦ towards the inferior side
is considered as an RV insertion point candidate. The pair of HTc and intensity
peaks with the maximum summed value is then selected as the RV insertion point.
Figure 4.2 shows an example of HTc and intensity profiles and the respective RV
insertion candidates.

4.3 Experiments

With the purpose of validating the proposed methodology, 211 real-time
RT3DE exams were randomly selected from a large multi-center clinical study,
DOPPLER-CIP [190], which was aimed at patients whose profile corresponds to
suspected chronic ischemic heart disease. The datasets used in this study were col-
lected in five centers across Europe. From the 211 datasets, 129 were acquired using
a GE Vivid E9 scanner and the remaining 82 were acquired with a Philips iE33 or
EPIQ 7C scanner. In each image, an expert annotated the inferior RV insertion
point at one third of the distance from the base to the apex after BEAS segmenta-
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Figure 4.2: Laplacian of intensity (black) and HTc (cyan) profile example. Candidate
peaks are marked by circles and the chosen peak is indicated by the arrow. X-axis repre-
sents angle in degrees relative to image x-axis.

tion using an in-house developed software package (Speqle3D, KU Leuven).

The angle between the manual and automatic annotations of the RV insertion
point was measured to validate the proposed framework. A positive angle represents
a deviation towards the inferior side from the manual annotation. One sample t-test
was used to find the statistical significance of the results.

4.4 Results

Figure 4.3 shows the comparison between manual and automatic annotation
of the inferior RV insertion for SAx orientation. The mean unsigned error was
8.05◦ ± 18.50◦ and deviations from the manual annotation larger than 30◦ only
occurred in 3.79% (8) of the cases. Figure 4.4 shows the best and worst results
comparing the manual and automatic orientation. The average computation time
was of 666ms.

4.5 Discussion

Analyzing the results shown in Figure 4.3, it is clear that the proposed
algorithm is successful at finding the RV insertion point without significant bias.
Furthermore, the mean unsigned error is small in comparison to the 60◦ width of
the segments in the 17-segment model and deviations larger than half the segments’
width only occur on a small percentage of the data.

The image quality of the datasets in the DOPPLER-CIP database is evident in
Figure 4.4. Because this database is acquired using a protocol as close as possible
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Figure 4.3: Bland-Altman plot comparing manual and automatic annotation of SAx
orientation (green: bias (*, p < 0.05), red: limits of agreement (µ ± 1.96σ). Absolute
manual angles were computed in comparison to the image x-axis.

to clinical practice and with multiple vendors, operators and in different centers,
the datasets found are very close to clinical reality. This makes the results shown in
Figure 4.3 even more significant as they reflect what is expected in clinical practice.

Looking at each of the cases in Figure 4.4, it becomes clear that even within
the four best cases there are images of low quality and even significant artifacts
as in the third case. When looking at the four worst cases, it is clear that, in
the first case, the RV insertion point is outside the image sector, thus making
any detection impossible. For the remaining cases, it seems that other artifacts
caused the large deviations observed. Nevertheless, these large deviations only
occurred in 3.79% (8) of the cases, in spite of the challenging database presented
here. Furthermore, this low image quality is challenging not only for the orientation
but also for the automatic segmentation done previously, which will negatively
influence the orientation framework.

The strength of this method lies in its simplicity, as it relies on a single reliable
landmark. This becomes, however, the very limitation of the method, as it depends
too much on one landmark. The knowledge of additional landmarks such as the
LV outflow tract (LVOT) could help when the information from the RV insertion
point is not clear. Nevertheless, the extraction of reliable information of additional
landmarks is challenging, especially when image quality is lower. One possible
approach would then be to use a machine learning approach and extract all possible
shape and landmark cues to find the SAx orientation.

Regarding the computation time, it can be observed that this approach would
allow for a real-time application as an optimized version in a dedicated system
would reduce the computation time and, furthermore, part of the structural infor-
mation module overlaps the initialization needed for BEAS and would not need to
be recomputed.
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Figure 4.4: Four best (top row) and worst (bottom row) results obtained with automatic
SAx orientation (red) compared to manual annotation by expert (green). The planes
shown are orthogonal to the LAx and at one third of the distance from the base to the
apex.
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4.6 Conclusions

In conclusion, the proposed approach is able to perform automatic real-time
orientation of a segmented LV mesh by accurately detecting the inferior RV insertion
point. The proposed method is applicable to images even with low image quality
acquired in a clinical setting. This is due to the simple approach depending on a
reliable landmark, the inferior RV insertion point.
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Abstract

Cardiac volume/function assessment remains a critical step in daily cardiology
and 3D ultrasound plays an increasingly important role. Fully automatic left ven-
tricle (LV) segmentation is, however, a challenging task due to the artifacts and
low contrast-to-noise ratio of ultrasound imaging. In this chapter, a fast and fully
automatic framework for full cycle endocardial LV segmentation is proposed. This
approach couples the advantages of the B-spline Explicit Active Surface (BEAS)
framework, a purely image information approach, to those of statistical shape mod-
els (SSM) to give prior information about the expected shape for an accurate seg-
mentation. The segmentation is propagated throughout the heart cycle using a
localized anatomical affine optical flow (lAAOF). It is shown that this approach
not only outperforms other state-of-the-art methods in terms of distance metrics
with mean absolute distance (MAD) of 1.81± 0.59 mm and 1.98± 0.66 mm at end
diastole (ED) and end systole (ES) respectively but is computationally efficient (in
average 11 seconds per 4D image) and fully automatic.

5.1 Introduction

Analysis of cardiac function, and specifically of LV function, is an important part
of clinical cardiology for patient management, disease diagnosis, risk stratification or
therapy selection [5–7]. Among the different cardiac imaging modalities, real-time
3D echocardiography (RT3DE) stands out as a low-cost, portable, risk-free and non-
invasive technique with good space and time resolution. However, RT3DE poses
several challenges due to its low contrast-to-noise ratio, the presence of artifacts
and the dependence on the acquisition conditions [76].

In spite of the challenges presented, numerous approaches have been proposed
for automatic or semi-automatic chamber assessment in RT3DE, both in the re-
search community and in the form of commercial solutions as can be appreciated
in Chapter 2. LV endocardial segmentation has been particularly well studied and
a number of approaches have been proposed as can be appreciated in the review of
Leung and Bosch [76]. This is especially true when compared to other chambers
such as the right ventricle (RV) and left atrium (LA) which have received signif-
icantly less attention though some methods have been proposed [191, 192]. Given
the different frameworks proposed for the same problem of LV segmentation, ini-
tiatives such as the CETUS challenge [114] play an extremely important role in
allowing the benchmarking of different frameworks [115, 116, 193–195] on the same
datasets using the same evaluation tools. Though the highest ranked solution of the
challenge was a purely image information approach by Barbosa et al. [115] using
the BEAS framework, later approaches using shape and/or appearance clues proved
to be more successful. Such approaches by Oktay et al. [196] and van Stralen et
al. [197] came to prove the pre-existing idea that RT3DE is inherently challenging
to segment due to its many artifacts and that prior information is key to an accu-
rate segmentation. Nevertheless, the gap between state-of-the-art technologies and
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interobserver variability is still present and, as such, new approaches joining the
advantages of successful basic segmentation frameworks such as BEAS with tools
that provide prior information about the LV are of much interest.

In the present work, a framework for fast and fully automatic segmentation
and tracking of the LV in RT3DE is proposed. A shape-based deformable model
based on the BEAS framework [3] using a SSM as in Queirós et al. [198] is used
for segmentation at ED. This assures that both image information and shape-based
clues are used, thus increasing the robustness of this approach when compared to
BEAS or other methods based solely on image information. This segmentation is
then propagated to the rest of the cardiac cycle using lAAOF [199]. To further
refine the results from the lAAOF, the shape-based BEAS framework is applied at
ES, again allowing for the combination of both image information and shape-based
clues for the final segmentation result.

The main novelty of the presented study lies in the algorithmic design and val-
idation of the proposed method. Joining different and independent algorithmic
tools, the authors were able to build a single efficient framework capable of per-
forming fast, fully automatic and robust full-cycle segmentation and validate it in a
representative dataset that allows direct comparison to other state-of-the-art meth-
ods. Furthermore, the shape-based regularization introduced in [198] was extended
in this study, from the original formulation based on a 1D SSM of Queirós et al.
which would not be applicable to the LV to a full 2D oriented SSM.

5.2 Methodology

5.2.1 B-spline Explicit Active Surfaces

Given the volumetric nature of the object of interest, the B-spline representation
was created on a spherical coordinate system thus defining the active geometric
functions as r = ψ(φ, θ). As in previous implementations of BEAS for LV seg-
mentation [165], the angular discretization of the boundary representation was set
empirically at 24 × 16 (elevation×azimuth) and the B-spline scale to 21 for both
angular coordinates.

The evolution of the model is defined by the minimization of an energy criterion
E. This energy is expressed by the sum of the data attachment term Ed and a
regularization term Er:

E = Ed + Er. (5.1)

The data attachment energy function Ed follows a variation of the localized
Yezzi energy adapted for endocardial segmentation [165] detailed in Section 2.6.
The neighborhood region limit ρ was set to 16 mm as in Barbosa et al. [115].
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5.2.2 Statistical Shape Model

5.2.2.1 Data Preprocessing

In order to provide accurate shape information to the proposed shape-based
approach, a sufficiently broad and numerous dataset of 3D LV shapes is needed.
For that purpose, a broad dataset of cardiac magnetic resonance imaging (cMRI)
was gathered. cMRI has excellent spatial and temporal resolution but has the
drawback of artifacts (in particular slice misalignment) due to unequal breath holds.
Though this does not pose a problem for a typical cMRI analysis that uses a sum-
of-disks approach to measure volumes, it does raise concerns when building 3D
shapes. The correction of slice misalignment in cMRI has been previously studied by
different authors [200–204]. Though using different methodologies, these methods
are based on the use of image information on the points of intersection between the
different slices to guide the alignment. This is however a relatively complex approach
and it can be problematic as the comparison of image intensities between long
axis (LAx) and short axis (SAx) slices often shows marked differences. Moreover,
implementations of these methods were not freely available. As such, the method
used is based on the 3D alignment of the contours using an iterative closest point
(ICP) strategy [205].

The dataset used to collect 3D LV shapes is composed of 318 cMRI datasets from
a large multi-center clinical study, DOPPLER-CIP [190]. This study was aimed at
patients whose profile corresponds to suspected chronic ischemic disease and thus
encompasses patients of a broad clinical spectrum. For each case, the endo- and
epicardial borders on both SAx and LAx slices were contoured by experts at ED
and ES. The mitral annulus (MA) points were annotated on the LAx slices at ED
and ES in order to obtain the basal plane. An example of the LV contours at ED
on SAx and LAx slices and their misalignment is shown in Figure 5.1 (a) and (b).

Due to the fact that in the acquisition protocol used, the LAx sequences were
taken subsequently in the beginning of the acquisition, the misalignments between
them were limited and were thus assumed to be negligible. In this way, the SAx

(a) (b) (c)

Figure 5.1: Example of endo- and epicardial contours for cMRI dataset. (a) SAx contours;
(b) LAx contours (red) and intersection of the original SAx contours (blue); (c) LAx
contours (red) and intersection of the aligned SAx contours (blue).
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(a) (b)

Figure 5.2: Example of aligned endo- and epicardial contours in 3D (a) and corresponding
mesh (b).

slices could be aligned with respect to the LAx contours. Each SAx slice was allowed
to move independently in-plane but out-of-plane movement was restricted so that
it would be applied to all slices equally. In this way, overfitting of the contours was
avoided. Figure 5.1 (c) shows an example of the intersection of the SAx contours
with an LAx slice after ICP alignment. After alignment of all cases, a total of 29
cases were excluded, either because there were insufficient LAx slices (less than two)
or because the available LAx slices were found to be misaligned and could thus not
be used as a reference for the SAx.

After correction of the misalignment between slices, the 2D contours were used
to create a 3D mesh of the endo- and epicardial surfaces. This mesh was created
using the BEAS framework [3] by considering the contour points as attractors to
guide the surface [206]. The angular discretization of the surface representation
was set empirically at 24 × 24 and the B-spline scale to 22 as this was found to
give the best balance between a smooth surface and an accurate representation of
the contours being meshed. Figure 5.2 shows an example of the aligned endo- and
epicardial contours in 3D and the mesh obtained from these contours.

5.2.2.2 Statistical Shape Model Construction

As in the work of Queirós et al. [198], the SSM was built in the BEAS coordinate
system; in this case in spherical coordinates. The SSM shapes are then represented
by their B-spline representation coefficients c[k]. Because such a representation
assumes that the position and orientation of the coordinate system is identical for
every shape, the position and orientation of the training shapes have to be aligned,
which can be done according to the centroid and direction of largest variance of
each shape.

Starting from the aligned 3D LV shapes in BEAS space, the first step to build
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the SSM is to scale all shapes so that equivalent points from different shapes can be
compared without the influence of the LV size. Considering cs[k] the sth shape of all

N shapes, this is done by: calculating the mean of all shapes c̄[k] = 1
N

∑N
s=1 cs[k],

scaling each shape to the current mean c̄[k] and then repeating these steps until the
process converges [207]. The scaling step is done according to:

cscaled[k] = c[k]

∑
i

w[ki]c̄[ki]c[ki]∑
i

w[ki]c[ki]c[ki]
, (5.2)

where w[k] is a set of weights chosen to give more significance to the points that
tend to be most stable:

w[ki] =

(
N∑
s=1

V ariance(cs[ki])

)−1

. (5.3)

Principal component analysis can then be applied to extract the shape variability
of the LV B-spline coefficients [207]. Through singular value decomposition [208],
it is then possible to obtain the eigenvectors pi and the corresponding eigenvalues
λi of the covariance matrix:

S =
1

N

N∑
s

(cs[ki]− c̄[ki]) (cs[ki]− c̄[ki])T . (5.4)

Since most of the variation can be explained by a small number of eigenvectors,
only a portion of the original set is kept, corresponding to the number of eigenvectors
t whose sum represents 90% of the total variance of all variables. In this way, any
shape from the dataset can be approximated by:

c[k] ≈ c̄[k] + Pb, (5.5)

where P is the matrix of the first t eigenvectors and b is a vector of t weights which
for any given shape corresponds to b = PT (c[k]− c̄[k]).

To be able to model both ED and ES separately, two different SSMs were created
according to the methodology described above. The mean shapes for each of these
models are shown in Figure 5.3. Note that since these models are scaled according
to equation 5.2 only shape variations can be observed in this figure. Additional
description of each of the SSMs, namely the shape variations described by each
component, are provided in the link given in the footnote.

5.2.3 SSM-Based Regularization

To then use the SSM with BEAS for the segmentation of new images, two differ-
ent regularization energies were defined so that the segmented shapes are regularized
according to those observed in the training set. These two regularizations, a hard

https://kuleuven.box.com/s/bii3yf4o5v4rz3295ua6ctyijjokzy1k
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(a) (b)

Figure 5.3: SSM mean models at ED (a) and ES (b).

and a soft SSM-based regularization, were first proposed by Queirós et al. [198].
In the present study, those regularization energies were adapted to regularize the
B-spline coefficients c[k] of a 3D shape.

The hard SSM-based regularization restricts the segmented shape to the shape
variability observed in the training set. At each iteration, the weights b are com-
puted and each is restricted to ±m

√
λi, where m defines the limits to the variability

from the mean [207]. m is typically set between 2 and 3 since most of the popula-
tion lies within three standard deviations and was set at 2.5 in this study. Through
equation 5.5, a new regularized shape creg[k] is then obtained [198]. To include this
hard SSM-based term in the BEAS framework, the energy functional can be defined
as:

Ehard =

∫
Γ

1

2
(c[k]− creg[k])2dx∗. (5.6)

The minimization of this energy according to the B-spline coefficients gives:

∂Ehard
∂c[k]

=

∫
Γ

(c[k]− creg[k])dx∗. (5.7)

The soft SSM-based regularization follows the rationale that it is much more
probable to find an average shape than a shape which is close to the variability
limits. In that way, the soft SSM-based regularization penalizes high values of bi
and is defined as the squared Mahalanobis distance to the training shapes [207],
thus:

Esoft =

t∑
i=1

b2i
λi

=

∫
Γ

(c[k]− c̄[k])
T
S−1(c[k]− c̄[k]) dx∗. (5.8)

Following the derivation shown in Queirós et al. [198], the minimization of Esoft
gives:

∂Esoft
∂c[k]

=

∫
Γ

2PD−1b dx∗, (5.9)



64 CHAPTER 5. SHAPE-BASED ENDOCARDIAL SEGMENTATION

Figure 5.4: Conceptual description of the proposed segmentation and tracking
framework. First, automatic initialization is applied to the ED frame (A). The
first stage of segmentation is then performed using BEAS (B). The result from this
segmentation is used to detect the SAx orientation (C) and this information is then
used to perform the second stage of segmentation using BEAS and the ED SSM
(D). The final ED segmentation is then propagated frame to frame using the lAAOF
(E) and a final refinement to the ES frame is performed using BEAS and the ES
SSM (F).

where D is the diagonal matrix of t eigenvalues λ.

To incorporate these two energies into BEAS, the regularization term Er is
defined as:

Er = αEhard + βEsoft, (5.10)

where α and β are hyperparameters controlling the relative weight between the two
terms.

5.2.4 Framework Description

A conceptual description of the proposed framework is shown in Figure 5.4.
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5.2.4.1 Automatic Initialization

The automatic initialization algorithm used was first introduced in Barbosa et
al. [165] and is detailed in Chapter 2. This initialization will provide the initial
estimation of the LAx and center for BEAS and the SSM.

5.2.4.2 Automatic SAx Orientation

The SAx orientation method is detailed on Chapter 4.

The SAx orientation is crucial to correctly position the SSM, given that differ-
ent sides of the LV have different shape characteristics. However, this orientation
algorithm depends on a previous estimate of the LV surface and the result from
the initialization is too rough as it relies on the fitting of an ellipsoid. As such,
the automatic SAx orientation is only applied after an initial stage of segmentation
with BEAS.

5.2.4.3 Segmentation at ED

The segmentation at ED is composed of two stages. Initially, BEAS is used
without the SSM, so that the energy criterion E is equal to Ed, the data attachment
term. This provides an initial segmentation of the LV, which is used for the SAx
orientation estimation but also to refine the initial estimates of LAx orientation and
center according to the centroid and direction of largest variance of the segmented
mesh. With the center position and both the LAx and SAx orientation well defined,
it is then possible to use BEAS with the SSM regularization according to equation
5.10 to further refine the segmentation.

5.2.4.4 Localized Anatomical Affine Optical Flow (lAAOF)

lAAOF is then used to propagate the result from ED to the remaining frames.
The lAAOF method was proposed in [199] and relies on an affine optical flow ap-
proach which independently estimates the motion at each point in the surface based
on an anatomically constrained neighborhood. A detailed description of this method
can be found in the original paper by Queirós et al. [199]. The parameters used to
tune the lAAOF were replicated from [199].

5.2.4.5 Segmentation at ES

Segmentation at ES is used to further refine the result from the lAAOF, thus
bringing together intensity and shape-based clues. In order to balance the con-
tribution between tracking and segmentation clues, an energy term was added to
penalize the deviation between the result of the lAAOF and the segmentation. Such
an approach is equivalent to that detailed in Chapter 3. The regularization energy
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criterion is then expressed as:

Er = αEhard + βEsoft + γEA, (5.11)

where EA is defined according to 3.11 and γ is a hyperparameter used to define the
balance between tracking and intensity/shape-based information.

5.3 Experiments

5.3.1 Data Description

The proposed framework was tested on the CETUS challenge data [114]. This
challenge comprises 45 sequences of RT3DE volumes of one cardiac cycle from 45
patients acquired in three different hospitals and ultrasound machines from three
different vendors. On each dataset, the LV endocardium was contoured by three
experts at ED and ES until consensus was achieved between the three. Fifteen
datasets are available as training with the corresponding reference meshes at ED
and ES, while the remaining 30 datasets correspond to the testing set and only the
RT3DE images are available.

5.3.2 Segmentation Performance

First, the 15 training datasets were used to tune the hyperparameters β and
γ needed respectively for the SSM regularization and for the balance between the
segmentation and tracking information. This tuning was performed empirically
by visual inspection of the results. The hyperparameters α, β and γ were set
respectively to 1, 0.0005 and 0.25. Note that the value of β is directly related to
the absolute value of eigenvalues λ as defined in (5.8), thus justifying its relative
small value.

Using these settings, the framework was then tested on the 30 testing datasets.
The evaluation of the results was conducted using the online MIDAS platform of
the CETUS challenge, thus assuring that the proposed method can be directly
compared to other state-of-the-art methods. The accuracy of the segmentation was
evaluated at ED and ES through different distance metrics: MAD [209], which
measures the average distance at any point between the segmented and reference
meshes; Hausdorff distance (HD) [210], which measures the maximum distance
between the segmented and reference meshes; and Dice [211], which is a measure
of the overlap between the segmented and reference meshes. Because the meshes
obtained from BEAS are sampled in the spherical coordinate system, causing the
point density to be different along the surface, which could bias the error metrics to
specific regions, the segmented meshes were remeshed to assure greater smoothness
and more uniform mesh point density. Clinical indices were also studied, namely
the Pearson correlation coefficient and limits of agreement of ED volume (EDV),
ES volume (ESV) and ejection fraction (EF).
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Mean computational times of the proposed framework were also obtained using
MATLAB code running on an Intel® Xeon® E5-1650v2@3.5GHz with 32GB
RAM.

5.3.3 Position/Orientation Performance and Sensitivity

Because the characteristics of the SSM are closely related to the position and
orientation (LAx and SAx) of the BEAS coordinate system, it is important to
determine the error in the estimation of these parameters. For that purpose, the
position, LAx orientation and SAx orientation of the CETUS training set reference
meshes were compared to those obtained with the proposed method.

Furthermore, the sensitivity of the segmentation results to variations of these
parameters was studied. This was performed by introducing variations from the
reference position or orientation on each of these parameters and evaluating the
segmentation performance. In this way, to evaluate, for example, the sensitivity
to the position, BEAS was initialized at a random position at a distance D from
the reference mesh position and with the reference SAx and LAx orientation. The
segmentation result was then evaluated on MAD, HD and Dice. To prevent sporadic
results from this random positioning, each image was started from three different
random positions each time and the results averaged.

5.3.4 Parameter Sensitivity Assessment

To study the robustness and stability of the proposed framework with respect to
the multiple parameters involved, a parameter sensitivity assessment was conducted.
As such, the balance of the different energies, namely α, β and γ, was studied. Each
parameter was varied from their empirically determined preset by 50% of its value
and its impact studied in terms of MAD, HD and Dice. To further analyse the
contribution of each component of the framework, the segmentation performance
was analysed when each of these energy parameters was set to zero. To highlight the
importance of the lAAOF, the segmentation performance of the framework without
the lAAOF was also studied by using the ED segmentation result for initialization
of the ES segmentation.

5.3.5 Statistical Analysis

Paired t-tests were used to analyse the significance of differences between the
proposed method and other methods in literature and to analyse the parameter
sensitivity of the proposed method. Results are denoted as mean ± standard devi-
ation.
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Figure 5.5: Bullseye plots of average MAD and HD at every region for ED and ES for
the training datasets. Measures in mm.

5.4 Results

5.4.1 Segmentation Performance

Tables 5.1 and 5.2 show the segmentation and tracking results for the proposed
approach, as well as the performance obtained with other state-of-the-art methods
and inter-observer variability from manual contouring. Those obtained by Queirós
et al. [199] and Barbosa et al. [115] also use BEAS as the segmentation tool but
neither use shape-based information. Queirós et al. used the same lAAOF tracking
whereas Barbosa et al. used a global anatomically constrained optical flow approach
followed by block matching refinement instead of the lAAOF. The other approaches
presented were chosen as they are, to the author’s knowledge, the ones presenting
the best segmentation results on the CETUS dataset.

A regionwise analysis of error was also conducted by dividing the LV into the
17-segment model [10], using the LAx as reference and dividing the LV into basal
(35%), mid-cavity (35%) and apical (30%) regions. The average MAD and HD at
ED and ES for the training datasets is shown in Figure 5.5. It can be observed that
the greatest errors occur on the apical region and on the anterior side of the LV.
Figure 5.6 shows examples of the fully automatic segmentation results compared to
the consensus manual contours by experts.

Regarding computational time, the proposed framework took on average 0.9 s
for the initialization, 0.6 s for the SAx orientation and a combined time of 1.1 s
for the two stages of ED segmentation. The tracking took on average 0.8 s/frame
and the final ES segmentation 0.4 s. The total time for a fully automatic ED/ES
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segmentation was on average 11 s. All data was processed in a non-optimized
MATLAB implementation.

5.4.2 Position/Orientation Performance and Sensitivity

At initialization, the position and LAx orientation errors were respectively 3.7±
2.1 mm and 5.0±2.8◦. After refinement at the first stage of ED BEAS segmentation,
the position and LAx orientation errors were reduced to respectively 2.4± 1.0 mm
and 4.4 ± 2.4◦. Automatic SAx orientation failed in one of the cases due to low
image quality giving an error of 120.2◦ compared to manual annotation of the RV
insertion point. On the remaining datasets the SAx orientation error was 6.9±4.4◦.

Figure 5.7 shows the influence on the segmentation performance of the position
and orientation of the automatically defined BEAS coordinate system with respect
to the position and orientation of the reference meshes. It can be observed that the
position and LAx orientation have the most influence on the segmentation results,
where a distance above 2mm from the reference mesh centroid or an LAx angle
deviation greater than 8◦ give an error larger than what was obtained with the
fully automatic method used in this study.

5.4.3 Parameter Sensitivity Assessment

Figure 5.8 shows the influence of the parameters α, β and γ on the segmentation
results at ED and ES. For the interval considered from 50% to 150% of the preset
value, none of the observed changes were statistically significant at a p < 0.01
level and only the MAD at ES showed several statistically significant changes at
a p < 0.05 level when changing β. When parameters β and γ are set to 0, the
difference is statistically significant at a p<0.001 level whereas for α the difference
is not statistically significant. When removing the lAAOF, the ES segmentation
presents an MAD, HD and Dice of 2.91±1.08mm, 9.81±2.92mm and 0.861±0.054
respectively (all statistically significant at a p<0.001 level).

5.5 Discussion

A fully automatic LV segmentation and tracking framework is proposed, com-
bining the strengths of image information from BEAS and shape-based clues from
an SSM for segmentation and lAAOF to perform tracking. The way in which the
SSM is represented on the BEAS space, through the corresponding B-spline rep-
resentation coefficients c[k], brings BEAS and the SSM closer together, avoiding
steps such as conversion between the spherical and Cartesian coordinate systems
and scaling/translation operations. It also avoids one of the fundamental problems
with SSM, the point correspondence between different training shapes and with
testing shapes. This approach assumes however that the position and orientation
of the coordinate system is identical for every shape. For the training shapes, it is
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trivial to match the position and orientation of every shape, making the previous
assumption valid. When trying to fit the SSM to a new image, the center and both
the LAx and SAx orientations have to be guessed from image features.

5.5.1 Segmentation Performance

From Table 5.1 it is clear that the proposed automatic method shows excellent
segmentation and tracking performance and outperforms any other of the state-of-
the-art approaches applied to the same database. Compared to other approaches
using BEAS [115,199], the impact of the SSM regularization on ED segmentation is
statistically significant. With a better starting point at ED for the lAAOF, together
with the SSM regularization at ES, the ES segmentation results are also improved,
thereby outperforming other state-of-the-art methods. While a hybrid segmentation
and tracking framework as that proposed in Chapter 3 would be possible, the fact
that a local rather than global deformation is used in this Chapter means that the
complex deformation of the LV can be captured by the tracking alone and it was
observed that no significant improvement in terms of segmentation accuracy was
obtained from adding a hybrid segmentation and tracking method.

In comparison to other state-of-the-art approaches, it is difficult to say with cer-
tainty what is the reason behind the differences in performance given the different
strategies used in each framework but the following possible reasons can be con-
sidered: regarding the semi-automatic method of Bernier et al. [193] using graph
cuts, this method lacks a source of prior information needed to give an accurate
segmentation when image information is low or incongruous. For both van Stralen
et al. [166] and Oktay et al. [196] that information is provided, respectively, by an
active appearance model (AAM) and a multi-atlas approach. However, both these
approaches use ultrasound data as a prior which can be more variable than cMRI,
especially for reduced datasets. Moreover, both these methods intend to model the
appearance of the image, which can be particularly difficult due to the differences
between vendors, bad acquisition window or the presence of artifacts. Regarding
the clinical indices on Table 5.2, the proposed method has a performance similar to
the remaining state-of-the-art methods.

Regarding the regionwise analysis shown in Figure 5.5, there could be two pos-
sible explanations for the regions with larger error: either there are inherent image
characteristics that make segmentation more difficult or there are framework specific
characteristics that cause these errors, such as a systematic error on the LAx de-
tection. However, regionwise error analysis in different frameworks and on manual
contouring by experts replicate this trend of larger errors at the apical and antero-
lateral regions [114], which points to inherent image characteristics that make the
segmentation more difficult. Indeed, at the apex, image information is low due to
noise in the near field, whereas for the anterolateral region, dropout in this region
is common due to its position and proximity to lung tissue.

As for the computational speed, the proposed framework continues to be com-
putationally efficient, especially if compared to other state-of-the-art approaches.
Oktay et al. [196] reported an average time of 16min per image and Van Stralen et



5.5. DISCUSSION 71

al. [166] reported an average segmentation time of 15s in a C++ environment [213]
to which the tracking time must be added (not reported). Furthermore, one can
consider ways of decreasing the computational burden of the proposed method by
changing to a more efficient implementation in C++, where it has been shown that
3D endocardial segmentation can be done using BEAS in approximately 12.5 ms [3].

5.5.2 Position/Orientation Performance and Sensitivity

As predicted, moving the position and orientation away from the reference has a
strong impact on the performance. The fact that SAx orientation has a smaller effect
than center position and LAx orientation can be explained by the fact that, though
the LV is far from being symmetric, the shape differences between the different sides
are much less pronounced than the shape difference between the apex and base of
the LV or those resulting from representing the LV shape from a wrong position. As
such, a compromise between the image information and the SSM can more easily
be found for an incorrect SAx orientation than from an incorrect center position or
LAx orientation.

Figure 5.7 also shows that one of the bottlenecks of this method is the positioning
and orientation of the LV. It can be seen that when the reference position and
orientation is used, the error decreases considerably (MAD: 1.38 mm; HD: 4.86 mm;
Dice: 0.959). As such, it would be important, in future work, to focus on better
automatic initialization methods that, ideally, would provide the true center of the
LV and the LAx and SAx orientation. This would imply however to move away
from the current initialization, which roughly delineates the LV using the Hough
transform for circles (HTc), to more complex methodologies, possibly involving
machine learning or other more abstract approaches.

5.5.3 Parameter Sensitivity Assessment

Overall, the parameter sensitivity assessment showed that the performance of the
proposed method is not significantly impaired within a wide range of the parameter
settings. The parameters related to the SSM regularization seem to have a higher
impact as they control the balance between the image information and the SSM.
The parameter related to the balance between segmentation and tracking has, as
expected, no impact on ED segmentation since γ is not used at ED, and little impact
on ES segmentation performance. When each of the parameters is set to zero, thus
turning off the corresponding energy contribution, the performance contribution of
each energy becomes clear and both β and γ are crucial for the results obtained.
The contribution of α is, however, less pronounced. This is due to the fact that
the soft energy term already penalizes shapes away from the mean shape, making
it less likely for the segmented shape to deviate to the hard set limits at m=2.5.
Nevertheless, it can be argued that the hard energy term is important to effectively
limit the maximum deviation from the mean shape (if α=1) and in more challenging
images where image artifacts could make it easier for the segmented shape to deviate
from the mean.
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Regarding the lAAOF, it is shown that it also plays an important role in fol-
lowing the endocardial surface from ED to ES to initialize the segmentation at
ES, as the results without the lAAOF are significantly worse than the proposed
method. Nevertheless, in spite of the fact that in this study the lAAOF was chosen
to track the endocardial surface, other tracking methods could equally be applied
in a straightforward manner and, if proven to be more effective in tracking the LV,
could potentially improve the ES segmentation results further.

Though in this study only the parameters related to the balance of the different
energies were studied, the performance of BEAS and the lAAOF also depend on
different parameters. Nonetheless, these have been studied before [165,199] and the
optimal settings found were used in this study.

5.5.4 Limitations and Future Work

In spite of the promising results shown in this paper, there are limitations which
must be addressed in the future. First, as mentioned in Section 5.5.2, the position-
ing and orientation of the LV is a limiting factor of the accuracy of the proposed
framework and its improvement would directly lead to better segmentation results.
Secondly, the parameter tuning performed in this study was quite limited. While
in this study only parameters β and γ were subject to parameter tuning, there
are other parameters that could be further tuned and which were not directly ad-
dressed. Even though some of these have been tuned before on the same dataset
such as the BEAS [115] and lAAOF [199] parameters, a tuning of all parameters
together could prove beneficial, especially for the framework elements identified as
crucial such as the initialization. Thirdly, in this study only the endocardial border
was considered. Nevertheless, the epicardial border is also of importance to study
clinical indices, such as LV mass, and is an essential step for automatic cardiac
strain measurements through the definition of a region of interest (ROI). As such,
it would be interesting to build an SSM that would describe both the endo- and
epicardial borders so that the current framework could be applied for full myocar-
dial segmentation. However, the validation of such a framework cannot be done
with the CETUS challenge dataset, as no epicardial contours are provided and, to
the author’s knowledge, there are no other freely available and reliable datasets of
RT3DE data with both endo- and epicardial manual contours.

The dataset used for the SSM must also be considered. First, it could be argued
that the cMRI shapes used are not ideal as they are derived from 2D slices rather
than from true 3D data. However, that would imply that replacing the current
SSM by one built from true 3D data would only further improve the results as more
accurate data would be embedded into the SSM. Secondly, the very population
targeted by the study from where the shapes were obtained is not ideal. Given
that DOPPLER-CIP targeted patients suspected of chronic ischemic disease, one
cannot consider that the dataset used represents a normal population. However, as
before, that would imply that replacing this population with a more representative
one would only improve results as the SSM is more well suited for the purpose for
which it is intended.
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5.6 Conclusion

In this work, a novel fast and fully automatic LV segmentation and tracking
framework based on shape-based BEAS and lAAOF is proposed. The proposed
approach outperforms all other state-of-the-art methods for LV segmentation eval-
uated on the MICCAI CETUS challenge. Moreover, it outperforms other methods
in terms of computational speed, being able to perform ED/ES segmentation and
tracking in a few seconds in a non-optimized implementation. The main strengths
of the proposed framework result from the combination of image and shape infor-
mation through the balance of the image information from BEAS and the SSM
regularization and the combination of tracking and segmentation clues for an effi-
cient ES segmentation.
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(a)

(b)

(c)

(d)

Figure 5.6: Best (a,b) and worst (c,d) automatic segmentation results (red) compared to
manual contours by experts (green) at ED (a,c) and ES (b,d) from the CETUS training
set. The three orthogonal planes shown for each 3D image were chosen according to the
automatically defined LAx/SAx orientation.
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Figure 5.7: Influence of the distance and angle error from the reference position and
orientation on the distance metrics (MAD, HD and Dice) at ED. Horizontal dotted line
indicates the performance obtained with the proposed automatic framework on the CETUS
training set.

Figure 5.8: Influence of the variation of each of the considered parameters α, β and γ
on the distance metrics (MAD, HD and Dice) at ED (blue) and ES (red dotted). Vertical
dotted line indicates the preset parameter value. ?, † and ‡ indicate respectively that the
difference to the result with the preset values was statistically significant at a p < 0.05,
p<0.01 and p<0.001 level.
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Chapter 6

Left Ventricular Myocardial
Segmentation in 3D
Ultrasound Recordings:
Effect of Different
Endocardial and Epicardial
Coupling Strategies

This chapter is based on a paper published in IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control: Pedrosa J., Barbosa D., Heyde B., Schnell F., Rösner A.,
Claus P., D’hooge J.. Left ventricular myocardial segmentation in 3-D ultrasound recordings: ef-
fect of different endocardial and epicardial coupling strategies. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 2017 Mar; 64(3):525-36.
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Abstract

Cardiac volume/function assessment remains a critical step in daily cardiology
and real-time 3D echocardiography (RT3DE) plays an increasingly important role.
Though development of automatic endocardial segmentation methods has received
much attention, the same cannot be said about epicardial segmentation, in spite
of the importance of full myocardial segmentation. In this chapter, different ways
of coupling the endo- and epicardial segmentation are contrasted and compared to
uncoupled segmentation. For this purpose, the B-spline Explicit Active Surfaces
(BEAS) framework was used. Twenty-seven RT3DE images were used to validate
the different coupling strategies which were compared to manual contouring of the
endo- and epicardial borders performed by an expert. It is shown that an inde-
pendent segmentation of the endocardium followed by an epicardial segmentation
coupled to the endocardium is the most advantageous. In this way, a framework
for fully automatic 3D myocardial segmentation is proposed using a novel coupling
strategy.

6.1 Introduction

Cardiovascular diseases are a group of disorders of the heart and blood vessels
that together account for more deaths than any other cause [1] and are projected to
remain the single leading cause of death [2]. Analysis of cardiac function, and more
specifically, left ventricular (LV) function is an important factor in terms of patient
management, outcome and long-term survival of cardiovascular disease patients [13].
Besides global cardiac function, regional cardiac morphology also contains impor-
tant information for the detection of regional dysfunction. Among the different
cardiac imaging modalities, ultrasonic imaging stands out as a low-cost, portable,
risk-free and non-invasive technique with good space and time resolution. With the
recent advent of RT3DE, several limitations of conventional 2D echocardiography
(2DE) were overcome, opening a path for more accurate volumetric analysis of car-
diac function and regional morphology. Nevertheless, the intrinsic increase of the
amount of data makes manual delineation much more time consuming and thus the
importance of automatic LV segmentation frameworks is increasing.

Ultrasound image processing poses however several challenges. The image qual-
ity is strongly affected by the acquisition conditions and speckle and a number
of artefacts complicate the segmentation task [75]. In spite of this, numerous ap-
proaches have been presented aiming at automated or semi-automated border de-
tection in RT3DE as can be appreciated in the review of Leung and Bosch [214].
Most of these approaches focus, however, on the segmentation of the LV endocar-
dial border and full myocardial segmentation (i.e. segmentation of both endo- and
epicardium) has received much less attention [75]. The same trend can be found in
the available commercial solutions for LV segmentation, which focus mostly on the
endocardium and define the epicardium by rudimentary methods such as setting a
fixed thickness from the endocardium [215]. This trend is not only a consequence of
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Table 6.1: State-of-the-art algorithms for full myocardial segmentation (∆Tf : av-
erage frame processing time (s); #: number of datasets; NA: not applicable; NR:
not reported).

Study
Imaging Algorithm / Surface

# ∆TfModality User Input Interaction

Feng et al. [220] 2D SAx PS/0 None 2 NR

Chalana et al. [209] 2D SAx PS/II Constraints 44 0.6

Dias and Leitão [221] 2D SAx PS/I Constraints 1 2.4

Caiani et al. [222] 3D PS/II None 19 190

Walimbe et al. [216] 3D MSS/0 Constraints 5 30

Garson et al. [223] 2D SAx MSS/II Constraints 3 36-72

Orderud et al. [217] 3D MSS/0 Coupling 5 0.0095

Lempitsy et al. [219] 3D PS/0 NA 14 2.1

Barbosa et al. [159] 2D SAx PS/I Coupling 10 1

Zhu et al. [224] 3D MSS/II Constraints 11 NR

Verhoek et al. [218] 3D PT/0 NA 25 120

Dietenbeck et al. [225] 2D PS/I Constraints 80 30-60

Butakoff et al. [226] 3D PS/I Coupling 19 NR

Note that PS, MSS and PT stand for the algorithm class, namely pure segmentation,
multi-static segmentation and pure tracking. Regarding user input, 0 stands for a fully
automatic method, I for minor user input (such as few anatomical landmarks) and II for
significant user input (such as manual contouring in one frame or extensive landmarking).
Surface interaction regards the interactions, if any, between the endo- and epicardial surfaces.

the relatively higher importance of endocardial segmentation, but also due to the
intrinsic challenge of epicardial segmentation, especially in apical views where con-
trast tends to be low [75]. Epicardial segmentation is, nevertheless, extremely useful
to study clinical indices such as LV mass. It is also an essential step in automatic
cardiac strain measurements through the definition of a region-of-interest and to
perform transmural differentiation of strain. This has motivated the development
of a small number of epicardial segmentation methods.

An overview of the full myocardial segmentation methods available in literature
is given in Table 6.1. Although earlier approaches focused on short axis (SAx)
2DE, more recent approaches have tackled 3D apical echocardiography as well, with
promising results. Most methods rely on single-frame (i.e. static) segmentation,
thus without using any temporal information. A few of these have been adapted
to perform multi-static segmentation: performing segmentation on one frame and
transporting it to the following in order to obtain a full cycle segmentation. Among
these, the studies from Walimbe et al. [216] and Orderud et al. [217] stand out for
being fully automatic and both report good accuracy. The latter has the additional
advantage of real-time processing. A tracking approach was proposed by Verhoek
et al. [218], where optical flow is used to propagate the results of the single-frame
random forest segmentation from Lempitsky et al. [219].

In terms of the interaction between the endo- and epicardial surfaces, most meth-
ods use constraints to control the two surfaces and improve segmentation. These
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constraints can be, for example, setting limits to the thickness of the myocardium
to keep it in a plausible interval as in Chalana et al. [209] and Dias and Leitão [221].
Additionally, one can consider shape constraints as in Dietenbeck et al. [225]. Other
constraints can only be considered in multi-static segmentation methods, such as
conservation of myocardial volume or thickness [224]. Besides these methods, in-
trinsic coupling of the two surfaces can be considered so that a joint evolution of the
two surfaces is obtained without the need to join them through constraints. This
is the case with the method of Butakoff et al. [226] in which the two surfaces are
coupled, as they are part of the same statistical shape model (SSM). Coupling can,
however, also be applied to geometrical model approaches. In Orderud et al. [217],
the global pose between the two surfaces is coupled such that the two surfaces evolve
together. Barbosa et al. [159] takes this concept further by coupling not only the
pose but also the shape of the two surfaces by defining the endo- and epicardium
through two geometric functions - the myocardial wall position and the myocardial
thickness. However, it remains unclear in what way the coupling strategy chosen
influences the segmentation accuracy. Indeed, although it has been pointed out that
epicardial segmentation is more difficult in 3D apical ultrasound imaging, it could
be the case that epicardial information can help endocardial segmentation when
there is little to no information from the endocardium.

For that purpose, in the present work, the effect of coupling is investigated and
different methods of coupling are proposed and contrasted in the setting of an active
contour approach for single-frame full myocardial segmentation of RT3DE images.
From the methods described above, the BEAS framework used in Barbosa et al.
[159] was chosen as it is a fully automatic and potentially real-time method with
flexibility to encompass several coupling approaches. Additionally, a new energy
better suited for a coupled endo- and epicardial segmentation is proposed. Based
on the results of these comparisons, the paper concludes by proposing a method for
fully automatic real-time myocardial segmentation in RT3DE recordings.

6.2 Methodology

Four different coupling strategies were tested and compared. First, a fully un-
coupled (UN) model can be considered that allows the two surfaces to evolve inde-
pendently from each other. Secondly, the mid-myocardial (MM) model, as proposed
in [159], enables full coupling with equal contributions from endo- and epicardial
information. Third, an endocardial based (EB) model (q.v. Section 6.2.3) that
ensures full coupling of the two surfaces but puts more emphasis on the endocar-
dial information. Finally, a two-step (2S) model in which the endocardial surface
is segmented first, followed by a coupled epicardial segmentation while keeping the
endocardial segmentation fixed, to ensure preservation of shape and pose.
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6.2.1 Automatic Initialization

The endocardial borders were initialized according to the method of Barbosa
et al. [165] presented in Chapter 2. The epicardial boundaries were initialized at a
15mm distance in the normal direction from the endocardial boundaries. Given that
the endocardial initialization usually underestimates the border of the endocardium,
the 15mm distance to the epicardium ensures that the epicardial surface is not
attracted to the endocardium.

6.2.2 B-Spline Explicit Active Surfaces

6.2.2.1 Region-Based Energy Formulations

The evolution of the model is defined by the minimization of an energy criterion
E. This energy is expressed by the sum of the data attachment term Ed and a
regularization term Er:

E = Ed + Er. (6.1)

The region-based representation of the segmentation problem is shown in Figure
6.1. The endo- and epicardial surfaces, respectively Γendo and Γepi, act as interfaces
between the blood pool (in), the myocardium (myo) and the surrounding structures
(out). Given this topology of the segmentation problem, the data attachment energy
functional can be defined as:

Ed =

∫
Ω

δφendo
(x)

∫
Ω

B(x,y) · Fendo(y) dydx+∫
Ω

δφepi(x)

∫
Ω

B(x,y) · Fepi(y) dydx,

(6.2)

where Fj(y) is the image criterion for surface j and B(x,y) is the mask function
in which the local parameters that drive the evolution are estimated. δφj

(x) is
the Dirac operator applied to the level set function φj(x) = Γj(x

∗) − x1, which is
defined over the image domain Ω.

In this study, two different localized region-based energies were used, according
to the characteristics of the endo- and epicardium. These region-based energies will
be given through the localized means according to B(x,y) in each of the regions,
thus: 

uin =

∫
Ω
B(x,y)Hφendo

(y)I(y)dy∫
Ω
B(x,y)Hφendo

(y)dy
,

umyo =

∫
Ω
B(x,y)(Hφepi(y)−Hφendo

(y))I(y)dy∫
Ω
B(x,y)(Hφepi(y)−Hφendo

(y))dy
,

uout =

∫
Ω
B(x,y)(1−Hφepi(y))I(y)dy∫
Ω
B(x,y)(1−Hφepi

(y))dy
,

(6.3)
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Figure 6.1: Conceptual diagram of the region-based representation of the blood pool,
myocardium and pericardium (in, myo and out). The active geometric functions for the
MM model are shown in black while the EB model is shown in blue.

where I(y) is the image intensity at point y and Hφj
(y) = H(φj(y)) with H being

the Heaviside function.

Because the epicardial interface will separate the myocardium from the external
structures, which are quite heterogeneous in intensity, an energy functional flexible
enough to accomodate these different situations must be used. The localized Yezzi
energy (equation 2.9) was therefore used.

The endocardium is however a much more predictable interface as the blood
pool is usually darker than the myocardial tissue. The variation of the localized
Yezzi energy adapted for endocardial segmentation introduced in 2.10 takes into
account the expected intensities of the blood pool and the endocardium but, given
the coupled framework between endo- and epicardium, cannot be used as is. While
the localized Yezzi formulation evolves in a quadratic fashion according to the mean
difference, the Barbosa formulation evolves linearly. If these two different formu-
lations were combined for the energy minimization, the epicardial surface energy
would have a larger influence on the overall energy than the endocardial surface. In
order to solve this problem, a novel energy formulation is proposed:

Fendo(y) =
(uin − umyo)3

|uin − umyo|
. (6.4)

Note that this formulation maintains both the specificity of the Barbosa formu-
lation for endocardial segmentation converging for a solution where the mean from
the myocardial region (umyo) will be larger than the mean from the blood pool
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(uin) but also has the same quadratic evolution as the Yezzi formulation used for
the endocardium.

The minimization of the data attachment energy term in equation 6.2 can then
be performed through optimization of the B-spline coefficient c[ki], thus:

∂Ed
∂c[ki]

=

∫
Γendo

ḡendo(x
∗)βd

(
x∗

h
− ki

)
dx∗+∫

Γepi

ḡepi(x
∗)βd

(
x∗

h
− ki

)
dx∗,

(6.5)

where ḡendo(x
∗) and ḡepi(x

∗) are the feature functions that drive the minimization
of the energy Ed:

ḡepi(x
∗)=−2(umyo−uout)

(
Ī(x∗)−umyo

Amyo
+wout

Ī(x∗)−uout
Aout

)
, (6.6)

ḡendo(x
∗)=2 |uin−umyo|

(
win

Ī(x∗)−uin
Ain

+
Ī(x∗)−umyo

Amyo

)
, (6.7)

where Aj is the area of region j used to estimate the local mean uj . Ī(x∗) cor-
responds to the image value at the position x = {Γj(x∗), x2, ..., xn} and j is the
interface being considered.

Note that additionally to the differentiation, and according to what was proposed
in [227], the energy functionals were modified by adding weights to the inner and
outer regions of the endocardial and epicardial interfaces, win and wout respectively.
These weights can be used to control the balance between the forces exerted by the
inner and outer regions of each surface. A weight win larger than 1 will increase
the influence of the inner region attracting the endocardial contour inwards while a
weight wout larger than 1 will increase the influence of the outer region attracting the
epicardial contour outwards and away from the myocardium. This can be especially
important to mimic the physicians’ behaviour in the drawing of the contours.

6.2.2.2 Mask Region Definition

In equation 6.2, B(x,y) was defined as the mask function in which the local
parameters that drive the evolution are estimated. This was set according to equa-
tion 2.3, where the neighborhood region limit ρ was set at 16mm as in Barbosa et
al. [115].

6.2.2.3 Regularization Terms

Although the coupling strategies will help the sharing of information from one
surface to the other, additional constraints as those proposed in other studies should
further guide the surfaces. To ensure that the segmentation will be limited to
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plausible solutions in terms of thickness and curvature, the regularization term Er
is given by:

Er = wtEt + wκ(Eκ + EκB
), (6.8)

where Et, Eκ and EκB
are the three energy terms dedicated to constraining the

local thickness, local curvature and local curvature at the base respectively and wt
and wκ are weights given to each of the regularization terms to balance with the
data attachment term.

A local thickness term has been proposed before but in other application de-
pendent formulations [209,216,221]. Dietenbeck et al. [225] proposed a local energy
term to penalize thickness values under a certain minimum and Queirós et al. [227]
followed this approach and implemented it to the BEAS framework using a gradual
penalization. The same approach was used here to constrain both the minimum tm
and maximum thickness tM giving:

∂Et
∂cWT

[ki]
=

∫
Γ

((ψT − tm)H(tm − ψT )+

(ψT − tM )H(ψT − tM ))βd
(

x∗

h
− ki

)
dx∗,

(6.9)

where ψT corresponds to the thickness of the myocardium. The parameters tm and
tM were set at 1px and 15mm respectively. This ensures that the two surfaces do not
merge and prevents the surface from drifting away without being too constrictive.

A similar gradual configuration was used for Eκ to constrain the local mean
curvature κ(x∗) (the usual symbol H was not used to avoid confusion with the
Heaviside function). This constraint aims at penalizing the negative local mean
curvature since the heart cavity is, at least for a large part, of positive curvature
as it closes on itself. The analytic computation of the local mean curvature is
straightforward within the BEAS framework using the first and second fundamental
forms [228], making this an efficient method of regularization.

The evolution equation, inspired by mean curvature motion is given by:

∂Eκ
∂cWP

[ki]
=

∫
Γ

κ(x∗)H(−κ(x∗))βd
(

x∗

h
− ki

)
dx∗. (6.10)

Finally, the term EκB
is added to prevent leakage through the base by penalizing

curvatures different from zero in the basal region. The region will then tend to be
flat. Given that in Eκ the curvature is already constrained to be positive, only a
term for negative curvature is needed, giving:

∂EκB

∂cWP
[ki]

=

∫
Γ

RB(x∗)κ(x∗)H(κ(x∗))βd
(

x∗

h
−ki

)
dx∗, (6.11)

where RB(x∗) is a mask region defining the surface points closest to the base. This
region was defined taking advantage of the long axis (LAx) definition given by the
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automatic initialization [165] and the consequent B-spline grid projection using this
reference. The points closest to the base were thus defined as the ones with polar
angle φ ≥ 5π/12 according to the LAx definition. RB(x∗) is then one for these
points and zero otherwise.

The regularization term weights wt and wκ were set empirically at 2 and 30
respectively by visually evaluating their impact on the contour evolution.

6.2.3 Coupling Strategies

6.2.3.1 Uncoupled Model

As seen earlier, the most common way to define the endo- and epicardial bound-
aries, especially in active contour formulations, is by defining them separately and
controlling their evolution through additional penalties or constraints. To achieve
this fully UN model, a simple definition of the two surfaces as separate explicit
functions ψUendo

and ψUepi is required:

Γendo(x
∗) = ψUendo

(x∗), (6.12)

Γepi(x
∗) = ψUepi(x

∗). (6.13)

Such an approach might however not be the best, as limited information is
shared between two surfaces that, anatomically, are connected.

6.2.3.2 Mid-Myocardial Model

In [159], a different approach for LV segmentation has been proposed where the
two boundaries are defined as a combination of two explicit functions represent-
ing the MM wall position (ψMP

(x∗)) and half the wall thickness (ψMT
(x∗)) thus

coupling the two surfaces in its pose and shape:

Γendo(x
∗) = ψMP

(x∗)− ψMT
(x∗), (6.14)

Γepi(x
∗) = ψMP

(x∗) + ψMT
(x∗). (6.15)

This MM model, has also been used for LV segmentation in cardiac magnetic
resonance imaging (cMRI) [227]. The evolution equations for the minimization of
the data attachment term can be obtained as shown in [227], thus giving:

∂Ed
∂ψMP

=
∂Ed
∂Γendo

+
∂Ed
∂Γepi

, (6.16)

∂Ed
∂ψMT

= − ∂Ed
∂Γendo

+
∂Ed
∂Γepi

. (6.17)

The evolution of the explicit functions, given the B-spline formulation of BEAS,
is then given by replacing the endo- and epicardial terms above by those from
equation 6.5. The same is true for the remaining coupling strategies.
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Analysing equations 6.14-6.17, it becomes clear that both surfaces give equal
contributions to the evolution of each other. However, and due to the fact that
epicardial border detection is much more challenging in apical views, it may be more
advantageous to have a coupling strategy in which the endocardial information has
a greater influence than the epicardial.

6.2.3.3 Endocardial Based Model

A change to the MM model is proposed in this chapter in order to form the EB
model. Hereto, the two explicit functions are defined as the endocardial boundary
position (ψEP

(x∗)) and the full myocardial wall thickness (ψET
(x∗)) thus giving:

Γendo(x
∗) = ψEP

(x∗), (6.18)

Γepi(x
∗) = ψEP

(x∗) + ψET
(x∗). (6.19)

Again, following the derivation shown in Queirós et al. [227], the evolution equa-
tions for the minimization of the data attachment term can be obtained:

∂Ed
∂ψEP

=
∂Ed
∂Γendo

, (6.20)

∂Ed
∂ψET

= − ∂Ed
∂Γendo

+
∂Ed
∂Γepi

. (6.21)

A schematic representation of both the EB and MM models is shown in Figure
6.1. This EB model maintains the key advantages of the MM model, namely the
joint evolution of both contours and also the control over the myocardial wall prop-
erties. It has however a greater independence of the endocardial surface as can be
seen in equation 6.20.

6.2.3.4 2-Step Model

Nevertheless, in the EB model, there is still an influence of the epicardial in-
formation to the endocardial evolution, as the thickness of the myocardium will
influence the region of interest (ROI) that is used to evolve the endocardium ac-
cording to equation 6.3.

As such, a fourth strategy is proposed in which the EB model is used but in a 2S
approach to guarantee full endocardial independence from the epicardium. First,
the endocardium segmentation is performed in an uncoupled manner until a final
endocardial solution is obtained. Secondly, the EB model is initialized and coupled
segmentation of the epicardial surface is performed without, however, evolving the
endocardium any further. This can also be seen as first running the EB model
with a fixed thickness until endocardial convergence, and only then performing
the epicardial segmentation per se. In any case, this 2S model will allow for an
endocardial segmentation which is completely independent but which will guide the
epicardial segmentation in both pose and shape.
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6.2.4 Implementation Details

Given the volumetric nature of the object of interest, the B-spline representa-
tion was created on a spherical coordinate system. The active geometric functions
will thus be defined as r = ψ(φ, θ). The angular discretization of the boundary
representation was set empirically at 24× 16. This was found to be a good balance
between a dense enough representation of the interface and a low computational
cost. The B-spline scale h was set at 21 for the position functions (UN, endocardial
and MM positions) and at 23 for the thickness functions. This spacing controls
the smoothness of the surfaces and allows overcoming problems such as the pres-
ence of the papillary muscles or low contrast. The larger scale for the thickness
functions allows a greater uniformity of the thickness along the myocardium. As in
previous BEAS implementations, the energy criterion minimization was performed
through a modified version of the gradient descent with feedback step adjustment
algorithm [162].

Finally, to accomodate the characteristics inherent to the basal region and to
match the usual definition of the endo- and epicardium in segmentation, a base
plane was fit to the mesh after the segmentation evolution so that a perfectly flat
base was obtained. Though a regularization term (EκB

) to prevent leakage to the
atrium was already introduced earlier, and this relies on setting the curvature to
zero, this final step was necessary to obtain a fully flat base.

6.3 Experiments

6.3.1 Data acquisition

Twenty-seven RT3DE exams were used in the present study. The data was
acquired using a GE E9 scanner (GE Vingmed, Horten, Norway) equipped with a
4V transducer using harmonic imaging (i.e. transmit frequency of 1.67MHz). The
datasets used are part of a large multi-center clinical study, DOPPLER-CIP, aimed
at patients whose profile corresponds to suspected chronic ischemic disease [190].
The twenty-seven datasets were selected randomly from the database. For twenty-
five of these patients cMRI and late gadolinium enhancement data was also available
for comparison. Table 6.2 shows the demographics of the population and Table 6.3
the image properties of the 3D ultrasound data used. This study was performed
according to the ethical principles for medical research involving human subjects of
the World Medical Association’s declaration of Helsinki.

6.3.2 Data analysis

The images were categorised by the authors between poor, fair and good quality
according to the percentage of myocardium clearly visible (<60%, 60%-75% and
>75% respectively), the contrast between blood pool and myocardium and between
myocardium and surrounding tissues, and the presence of severe image artifacts.
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Table 6.2: Population characteristics.

Age (years)a 63.6± 8.9

Maleb 20 (74)

Heart Rate (bpm)a 52.9± 7.1

Body Mass Index (kg/m2)a 27.7± 4.1

Hypertensionb 20 (74)

Myocardial Infarctionb 14 (52)

Scar (%)a,† 3.5± 4.9

ED Volume (EDV) (ml)a,† 166.8± 35.7

Ejection Fraction (EF) (%)a,† 59.9± 9.7

aData are mean±standard deviation;bData are
count (%); †As given by cMRI.

Table 6.3: Description of the recordings.

Frame Rate (FR) (fps)a 30.9± 9.8

Depth (cm)b 14 [11; 19]

Opening Angles (◦)b 60 [50; 75]

Stitching mode

1-beatc 2 (7)

4-beatc 11 (41)

6-beatc 14 (52)

aData are mean±standard deviation;bData
are median [minimum;maximum];cData are

count (%).

Table 6.4: Optimal hyper-parameters for each cou-
pling strategy using the entire dataset.

Model win wout

UN 0.9 0.8

2S 0.8 0.6

EB 0.7 0.8

MM 0.7 0.8

The percentage of poor, fair and good images was respectively 29.63%, 29.63% and
40.74%.

Each sequence was analyzed by a clinical expert, providing manual contouring of
the endocardium and epicardium at end diastole (ED). The ED frame was defined
based on the electrocardiogram (ECG) as well as the largest volume of the LV
through visual assessment. The expert was previously provided with initial training
in the software and guidance in a written protocol. The manual contouring was
performed using an in-house developed software package - Speqle3D, KU Leuven.
The first step in contouring was the LV LAx alignment, followed by annotation of
the base and apex. These positions were used to compute five SAx and four LAx
views in which the expert then performed manual contouring. The software then
uses a least-squares surface fitting procedure with a fifth-order spherical harmonics
expansion to get the final LV surface [229].

6.3.3 Similarity Metrics

To perform a quantitative comparison between different surfaces, three different
distance measures were used: Mean absolute distance (MAD) [209], which measures
the average distance at any point between the segmented and the reference mesh;
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Hausdorff distance (HD) [210], which measures the maximum distance between the
segmented and reference mesh; and modified Dice (Dice*= 1-Dice) [211], which is a
measure of the overlap between the segmented and reference mesh. In addition to
the quantitative measures described, clinical indices were also considered, namely
the endocardial and myocardial volumes. One-sample or paired t-tests using a p-
value of 0.05 were used to analyse the significance of differences and, when multiple
comparisons were performed, this value was corrected using the Bonferroni method
[230].

6.3.4 Cross-Validation

To estimate the performance of the different coupling strategies and select the
optimal settings for parameters win and wout, leave-one-out cross-validation was
applied. Both parameters were varied between 0 and 2 in increments of 0.1 and
the optimal combination of parameters was chosen according to a global ranking
metric:

Rank =
1

6
(M̂ADendo + ĤDendo + D̂ice∗endo

+ M̂ADepi + ĤDepi + D̂ice∗epi),

(6.22)

where the ̂ above each distance metric symbolizes that this value was normalized
according to the results obtained with parameters win = 1 and wout = 1. For a
given distance metric d this normalization is done according to:

d̂ =
d

dwin=1∧wout=1
. (6.23)

In practice, each of the twenty-seven images was tested using the remaining
twenty-six as the training set. At each time, the optimal set of parameters for the
training set was selected and used to segment the test image. By not splitting the
data into a final training and test set, a biased estimate of the error due to an
unfortunate split of the data is avoided. The optimal parameters for future use of
each model are selected by finding the optimal set for all twenty-seven cases and
these are shown in Table 6.4.

6.3.5 Parameter Sensitivity Analysis

Because active contour-based segmentation frameworks often involve a fair amount
of fine tuning of the diverse parameters involved, it is crucial to study the robustness
and stability of the framework with respect to these parameters. The parameters
studied were the local neighborhood radius ρ, the matrix size for the angular dis-
cretization of the boundary representation and the regularization term weights wt
and wκ. Each parameter was varied from their preset optimal value by 50% of its
value and its impact was studied in terms of MAD, HD and Dice*. For the matrix
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Figure 6.2: Distance metrics (MAD, HD and Dice*) results comparing BEAS for endo-
and epicardial contours after cross-validation. Legends under the lower whiskers represent
the coupling strategy (UN, 2S, EB or MM) and the first, labeled IN, corresponds to the
initialization shapes. The ends of the whiskers represent the lowest and highest data point
within 1.5 times the inter-quartile range of the lower and upper quartile respectively. Top
black brackets denote that the difference between the two indicated coupling strategies
was found significant (corrected for multiple comparisons). This t-test was performed
exclusively between the different coupling strategies and not with the initialization.

size, this 50% variation was not feasible given that due to the multiscale operation
involved in BEAS, the matrix sizes must be multiples of the largest scale h used,
23, and only possible variations were considered.

6.4 Results

6.4.1 Comparison of Coupling Strategies

Figure 6.2 shows the distance metrics obtained by comparing the automatic con-
tours from all four coupling strategies to the manual contours. The distance metrics
obtained from the initialization contours are also shown. It can be observed that the
epicardial segmentation presents a larger error than the endocardial segmentation,
as expected given the added difficulty of contouring the epicardium. Comparing
the performance of the different coupling strategies, it becomes clear that, for the
endocardium, the coupling strategies with the best results are the UN and 2S, with
very similar performances, and also the EB model. For the epicardium however,
both the UN and EB models behave worse than the 2S. The MM model has the
worst performance, especially for the endocardium.

A regionwise comparison of the all models with the manual contours is shown
in Figure 6.3.
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UN

2S

EB

MM

Figure 6.3: Bullseye plots of MAD and HD at every region for endo- and epicardial
contours obtained with BEAS. All measures in mm.
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(a)

(b)

Figure 6.4: Best (a) and worst (b) automatic segmentation results with the 2S model
(red) compared to manual contours by expert (green). The three orthogonal planes shown
for each 3D image were chosen automatically according to the LAx defined upon BEAS
initialization.

6.4.2 Performance of Proposed Coupling Strategy

Given the results shown on Section 6.4.1 the focus will, hereinafter, be set on
the 2S model. Figure 6.4 shows the best and worst segmentation result for the 2S
model compared to the manual contours. It can be observed that the greatest errors
seem to occur near the apex and base and this can be confirmed in Figure 6.3 for
the 2S model.

The clinical indices of endo- and myocardial volumes were also computed for the
automatic segmentation results and compared to those obtained from the manual
contours as shown in Figure 6.5. It can be observed that BEAS overestimates the
endocardial volume when compared to the manual contouring. The cardiac volumes
obtained with the 2S model were also compared with those from cMRI as shown in
Figure 6.6. It can be seen that, compared to cMRI, the 2S model underestimates
the endocardial volume and overestimates the myocardial volume.

The average time required for the myocardial segmentation was 1.58±0.31s. For
the automatic initialization the average time required was 0.93 ± 0.11s. All data
was processed in a non-optimized MATLAB implementation.
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Figure 6.5: Bland-Altman plots of the cardiac volumes computed for the manual contours
and the automatic contours obtained with the 2S model (green: bias (*, p < 0.05), red:
limits of agreement (µ± 1.96σ)).

Figure 6.6: Correlation between the cardiac volumes computed for the manual contours
in cMRI and the automatic contours obtained with the 2S model.

6.4.3 Parameter Sensitivity Analysis

Figure 6.7 shows the influence of each of the considered parameters on the seg-
mentation results using the 2S coupling strategy. It can be observed that the neigh-
borhood radius variation has an effect on the segmentation result, especially when
considering smaller radius values. The variation of the matrix size determining the
angular discretization strongly compromises the evolution for lower matrix sizes.
Variations of the thickness regularization term weight wt had no influence on the
endocardial segmentation and little influence on the epicardial segmentation follow-
ing no particular pattern. The variation of the curvature regularization term weight
wκ showed that lower values compromised the evolution (see HD), whereas higher
values slightly improved performance.
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Figure 6.7: Influence of the variation of each of the considered parameters (neighborhood
radius, matrix size, wt and wκ) in the distance metrics (MAD, HD and Dice*) for endo-
and epicardial segmentation using the 2S coupling. Blue: endocardium; red: epicardium.
Vertical dotted line indicates the preset parameter value. ? indicates that the difference
was found significant (p < 0.05) when compared to the results obtained with the preset
parameters.
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6.5 Discussion

6.5.1 Comparison of Coupling Strategies

Comparing the performance of the different coupling strategies for endocardial
segmentation, it appears that the more independent the endocardial segmentation
is, the better the performance. This reinforces the idea that the epicardial seg-
mentation cannot give aid to the endocardial segmentation as its segmentation is
more challenging. The fully independent endocardial strategies, UN and 2S, have
thus the best results for endocardial segmentation. While both coupling strategies
have the same underlying endocardial segmentation, the small resulting differences
can be attributed to the cross validation. For the UN model, the cross validation
is done separately for each surface as they are fully independent from each other.
This assures the best result for each surface. For the 2S model, however, the best
combination of weights for both surfaces is selected. As such, a compromise is made
between endo- and epicardial results, thus justifying the slight difference in distance
metrics observed and the differences in win for the UN and 2S models in Table 6.4.

In regard to the epicardial performance, it becomes clear that both coupling
models 2S and EB perform much better compared to the UN strategy, therefore
justifying a coupling strategy. The propagation of information from the endo- to-
wards the epicardial surface helps the epicardial segmentation as this segmentation
is more challenging. As such, it becomes clear that the 2S model joins both advan-
tages - endocardial independence and coupled epicardium - thus appearing to be
the best solution from those presented here.

6.5.2 Performance of Proposed Coupling Strategy

As for the specific results for the 2S model, namely the regionwise comparison,
the apical region error can be explained by the near field noise inherent to the region
close to the probe. Without any real information, the position of the apex has to
be “guessed”, thus leading to variability. The deviations at the base are most likely
caused by differences in the base plane chosen. A different position and especially
a different angle will give rise to a large HD and this is the case in Figure 6.4(b).

Turning to the Bland-Altman plots shown in Figure 6.5, both the endo- and
myocardial volumes have small biases. While the observed limits of agreement may
at first be considered large, one must take into account the number of factors that
contribute to these final volumes, namely the segmentation of two complex objects
in RT3DE which has its inherent noise characteristics and semi-objective methods
such as the definition of the base plane. Furthermore, the current database has
quite some challenging images as was seen in Section 6.3.2 and most with surfaces
partially outside the image sector as can be observed in Figure 6.4.

In terms of the comparison between the volumes from cMRI and the volumes
obtained with BEAS, an underestimation of the endocardial volume by RT3DE was
expected as this has been reported multiple times in the past [231]. For myocardial
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volume, there is only a limited number of small studies comparing cMRI and RT3DE
but because the myocardial volume is dependent on the endocardial volume, the
observed bias and correlation values are, to a big extent, a consequence of the
endocardial error.

Finally, it should be noted that the results presented in this manuscript were
obtained in a fully automatic manner, i.e. without any user interaction. For clinical
use, it would be important however to enable correction of the contours in case the
operator would not agree with the solution proposed by the algorithm. Such an
interactive extension has been proposed in Barbosa et al. [206] for the original
(endocardial) BEAS framework and could easily be adapted to the coupled BEAS
framework proposed in this manuscript.

In terms of the computation time, the current application in MATLAB cannot
perform real-time segmentation. However, it has been shown previously that in a
C++ implementation of BEAS there is a significant speed-up being able to per-
form 3D endocardial segmentation in approximately 12.5ms which can already be
considered real-time in a normal RT3DE acquisition [3].

6.5.3 Parameter Sensitivity Analysis

Overall, the parameter sensitivity analysis was able to show that the proposed
framework is robust enough to support variation in its parameters. Furthermore, the
observed variations can be justified by reasons related to the framework’s inherent
characteristics.

With respect to the neighborhood radius ρ, its influence had already been an-
alyzed in [165] with the BEAS framework for endocardial segmentation. In [165],
it was noted that a small ρ would limit the field of view (FOV) of the interface
during its evolution whereas a large ρ would retrieve information beyond the ROI,
thus compromising the segmentation. This is in agreement with the findings of the
current study. The epicardial segmentation, however, seems not to be as affected
by smaller ρ values. This is likely due to the dependence on the endocardial seg-
mentation. Because the epicardial initialization will be closer to the final surface, a
smaller radius, and thus a smaller basin of convergence will not negatively impact
the results. Though in this study an equal value of ρ was considered for endo- and
epicardium, the results point to a possible advantage of different ρ values for each
surface.

The results of the variation of the matrix size determining the angular discretiza-
tion show the balance between a smooth interface and a proper representation that
needs to be achieved as had been shown in [165,227]. A small matrix size will result
in a mesh which cannot capture the LV shape. Increasing the matrix size will make
the B-spline support more local, compromising the smoothness of the mesh.

As for the variations in performance when varying wt, these were expected given
the framework characteristics. As the endocardial segmentation is independent from
the epicardial no influence whatsoever was expected. For the epicardial segmenta-
tion, though an effect is present, this was not expected to have a large magnitude
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or specific trend. Due to the fact that a change to the thickness regularization
term will only have an impact on the strength of the force pulling the contours to
plausible values of thickness, changing this value will not have a significant impact
on the final result.

Finally, the results observed for the impact of wκ can be caused by either Eκ,
EκB

or both since both regularization terms are controlled by wκ. However, given
that this impact is much more significant for the HD and for the epicardium, it
can be inferred that the base curvature is the main origin of these results as it has
been shown that this is the region with the highest HD. According to the results on
Figure 6.7, it seems that increasing the value of wκ could improve the segmentation
accuracy, especially for the epicardial segmentation.

6.5.4 Limitations and Future Work

In spite of the results shown in this study, there are some limitations that must
be addressed in the future. In this study, only the ED frame was segmented. Seg-
mentation of the end systolic (ES) frame would be extremely important not only to
obtain important clinical values, such as EF, but also to further validate the pro-
posed framework. Though the 2S endocardial segmentation is fully independent,
and an approach for endocardial ES segmentation has been validated first in [165]
and later in Chapters 3 and 5, the performance of the epicardial segmentation has
not yet been tested and should be addressed in the future.

While the 2S model was the most successful for this population, one must take
into account that under other populations another model might be more successful.
This could be the case for example in hypertrabeculated hearts where the endo-
cardial segmentation can be especially challenging. Similarly, some of the cases
have parts of the epicardial surface outside the FOV which has an influence on the
results. Nevertheless, the population considered in this study is representative of
the greater part of the patients referred for echocardiography which strenghtens the
conclusions of this study.

Furthermore, one might consider ways to improve the robustness of this segmen-
tation approach. Given the very way that clinicians manually contour the LV, the
definition of a base plane is required and differences between base planes give rise
to large errors in both distance metrics and volume measurements. A method for
automatic detection of specific landmarks such as the mitral annulus (MA) and/or
the LV outflow tract (LVOT) could be of paramount importance to minimize the
error in this region. The introduction of prior shape information through a myocar-
dial SSM as was done in Chapter 5 for the endocardium could also help in making
the segmentation more exact, especially near the base but also in the apex and low
contrast regions where BEAS sometimes fails to segment correctly.
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6.6 Conclusions

In conclusion, a framework to perform fully automatic segmentation of endo-
and epicardium was proposed. It was shown that the use of a coupling strategy
can be advantageous. In the case of apical RT3DE, the optimal coupling strategy
was the 2S model, where an independent endocardial segmentation is performed
followed by a coupled epicardial segmentation. In this way, information from the
endocardial shape is propagated to the epicardium but not vice-versa. This result
is a consequence of the inherent characteristics of 3D apical ultrasound images.
Similarly to the original BEAS for endocardial segmentation, this approach would
allow for the implementation of an optimized version of this algorithm in an online
analysis tool to provide real-time functional measurements.
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Abstract

Cardiac assessment is a critical step in cardiology and real-time 3D echocardio-
graphy (RT3DE) plays an increasingly important role. While numerous approaches
have been presented for left ventricle (LV) endocardial segmentation, myocardial
segmentation (i.e. segmenting both endo- and epicardial surfaces) has received less
attention. However, myocardial segmentation provides clinical information and is
often essential in post-processing such as strain and classification approaches. In this
chapter, a method for shape-based full-cycle myocardial segmentation is proposed
fusing the advantages of B-spline Explicit Active Surfaces (BEAS) and statistical
shape models (SSM) for a robust segmentation. The segmentation is propagated
throughout the heart cycle using localized anatomical affine optical flow (lAAOF).
The framework was validated on the CETUS challenge data, a publicly available
multi-center multi-vendor dataset with manual endocardial contouring performed by
3 experts at end diastole (ED) and end systole (ES). One expert segmented the epi-
cardium using the same protocol and image planes as those used for the endocardium
to assure uniformity. It is shown that the proposed method achieves a mean absolute
distance (MAD), Hausdorff distance (HD) and Dice of 2.49±0.60mm, 9.91±2.96mm
and 0.908±0.029 at ED and 2.90±0.68mm, 12.02±3.28mm and 0.881±0.037 at ES
for epicardial segmentation. The epicardial reference contours developed in this
study were made available on the CETUS website thus allowing for future compar-
ison studies on epicardial segmentation.

7.1 Introduction

LV volume and function assessment is an essential step in clinical cardiology
where echocardiography plays a major role due to its low-cost, portability, non-
invasiveness and good spatiotemporal resolution. While 2D echocardiography (2DE)
is still the standard imaging mode used, RT3DE has several advantages as it allows
to visualize the whole 3D LV geometry and avoids geometrical assumptions usually
used in 2DE. Nevertheless, manual analysis of 3D imaging is challenging and time
consuming making the development of automatic tools to help clinicians extremely
important.

In spite of the challenges of RT3DE, numerous approaches have been proposed
for automatic and semi-automatic LV segmentation, most of these focused on the
endocardial surface [75, 214]. However, epicardial segmentation is also extremely
useful to study clinical indices such as LV mass and thickness and is also an essen-
tial step in advanced post processing techniques such as strain and machine learning
approaches through the definition of a region of interest (ROI). Nevertheless, 3D
epicardial segmentation methods have received little attention, especially if consid-
ering automatic methods. Walimbe et al. [216] combined a deformable model with
a generalized gradient vector field to perform 3D endo- and epicardial segmenta-
tion with promising results. Orderud et al. [217] proposed a Kalman filter tracking
framework which linked endo- and epicardial segmentation by sharing position, size
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and orientation between both surfaces, but this approach was only validated on
simulated images. A semiautomated extension of this approach for biventricular
segmentation has been validated in clinical images with promising results [232]. A
tracking approach was proposed by Verhoek et al. [218], where optical flow is used
to propagate the results of the single-frame random forest segmentation from Lem-
pitsky et al. [219]. However, none of these approaches perform a full coupling of
both endo- and epicardial surfaces to share both position and orientation but also
shape. It was shown in Chapter 6 that a two-step (2S) coupling, where the endo-
cardial segmentation provided information to the epicardial segmentation but not
vice-versa, was the most advantageous.

In Chapter 5, a segmentation and tracking framework was proposed for full-
cycle endocardial LV segmentation which was based on a combination of BEAS
with an SSM to provide LV shape clues which was propagated throughout the
cycle with lAAOF. This framework was shown to outperform all other proposed LV
endocardial segmentation frameworks. In this work, this framework is extended for
LV myocardial segmentation using the 2S model and a myocardial SSM to provide
shape information on the LV myocardium.

7.2 Methodology

7.2.1 B-spline Explicit Active Surfaces

It was shown in Chapter 6 that the most efficient way to represent the my-
ocardium using the BEAS framework was to perform a 2S approach where the
endocardial segmentation was performed independently, followed by the epicardial
segmentation represented as the thickness of the myocardium. This allowed the
epicardium to take advantage of the information from the endocardial segmenta-
tion without the need for extensive and complicated constraints between the two
surfaces. This same representation was chosen for the current study.

As in previous implementations for LV and myocardial segmentation, the angular
discretization was set to 24× 16 (elevation×azimuth) and the B-spline scale to 21.

The evolution of the model is defined by the minimization of an energy criterion
E. This energy is expressed by the sum of the data attachment term Ed and a
regularization term Er:

E = Ed + Er. (7.1)

The data attachment energy function Ed follows a variation of the localized
Yezzi energy adapted for endocardial segmentation [165] detailed in Section 2.6.
The neighborhood region limit ρ was set at 16 mm as in Barbosa et al. [115].

7.2.2 Statistical Shape Model

To give information on the shape variations of the myocardium, 289 cardiac
magnetic resonance imaging (cMRI) datasets from the DOPPLER-CIP study were
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(a) (b)

Figure 7.1: SSM mean models at ED (a) and ES (b).

used [190]. The endo- and epicardium were contoured at ED and ES on both
long axis (LAx) and short axis (SAx) slices and an iterative closest point (ICP)
algorithm [205] was used to correct for misalignment between the slices. A 3D
mesh was then interpolated from the aligned 2D contours at both time points. A
more detailed description of this methodology can be found on Chapter 5.

As in Chapter 5, the SSM was built in the BEAS coordinate system. The SSM
shapes will then be represented through their B-spline representation coefficients
c[k]. Following the method described in Chapter 5, singular value decomposition
[208] was used to obtain the eigenvectors pi through which any shape from the
dataset can be approximated according to:

c[k] ≈ c̄[k] + Pb, (7.2)

where P is the matrix of the first t eigenvectors and b is a vector of t weights which
for any given shape corresponds to b = PT (c[k]− c̄[k]).

Given the 2S approach chosen for the myocardial segmentation, two different
SSMs are needed at ED and ES, one representing the endocardium for the first seg-
mentation step and a second representing both the endocardium and the myocardial
thickness for the second segmentation step. In this way, the first segmentation step
remains fully independent of the epicardium, while the second segmentation step
derives information from the endocardial shape to obtain clues about the expected
epicardial surface. As such, the endocardial SSM was built from the endocardial B-
spline coefficients c[k], while the myocardial SSM was built by concatenating both
the endocardial and the myocardial thickness B-spline coefficients so that the shape
variations regarding both surfaces are modelled together. The mean shapes for each
of these models are shown in Figure 7.1. Note that since these models are scaled
only shape variations can be observed in this figure.

The SSM-based regularization of BEAS was performed according to two regu-
larization energies, hard and soft, as proposed by Queirós et al. [198]. The hard
term restricts the segmented shape to the shape variability observed in the training
set penalizes high values of bi, following the rationale that it is much more probable
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to find an average shape than a shape which is close to the variability limits. The
regularization term Er is thus defined as

Er = αEhard + βEsoft, (7.3)

where α and β are hyperparameters controlling the relative weight between the two
terms.

7.2.3 Framework Description

A conceptual description of the proposed framework is shown in Figure 7.2 and
is an adaptation of the framework for endocardial LV segmentation detailed in
Chapter 5.

7.2.3.1 Automatic Initialization

The automatic initialization algorithm used was introduced in Barbosa et al.
[165] and is detailed in Chapter 2. This initialization will provide the initial esti-
mation of the LAx and center for BEAS and the SSM.

7.2.3.2 Automatic SAx Orientation

The SAx orientation method is detailed in Chapter 4 and is crucial to correctly
position the SSM, given that different sides of the LV have different shape char-
acteristics. However, this orientation algorithm depends on a previous estimate of
the LV surface and the result from the initialization is too rough as it relies on the
fitting of an ellipsoid. As such, the automatic SAx orientation is only applied after
the initial stage of endocardial segmentation.

7.2.3.3 Segmentation at ED

The segmentation at ED is composed of three stages. Initially, an endocardial
segmentation is performed without the SSM, so that the energy criterion E is equal
to Ed, the data attachment term. This provides an initial segmentation of the
LV, which is used for the SAx orientation estimation but also to refine the initial
estimates of LAx orientation and center according to the centroid and direction of
largest variance of the segmented mesh. With the center position and both the
LAx and SAx orientation well defined, it is then possible to use BEAS with the
endocardial SSM regularization according to equation 5.10 to further refine the
segmentation. In a third stage, the epicardial surface is initialized and segmented
using the myocardial SSM. As in the original 2S approach, the endocardial surface
is not refined further at this point, being only a reference for the explicit function
of myocardial thickness and the myocardial SSM.
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Figure 7.2: Conceptual description of the proposed segmentation and tracking
framework. First, automatic initialization is applied to the ED frame (A). The
first stage of segmentation is then performed using BEAS (B). The result from this
segmentation is used to detect the SAx orientation (C) and this information is used
to perform the second stage of segmentation using BEAS and the ED SSM (D). The
epicardial surface is then initialized and the ED myocardial SSM is used to perform
the myocardial segmentation (E). The final ED segmentation is then propagated
frame to frame using the lAAOF (F) and a final refinement of the ES segmentation
is performed using first the ES endocardial SSM (G) and then the ES myocardial
SSM (H).

7.2.3.4 Localized Anatomical Affine Optical Flow

lAAOF is then used to propagate the result from ED to the remaining frames.
The lAAOF method was proposed in Queirós et al. [199] and relies on an affine
optical flow approach which independently estimates the motion at each point in the
surface based on an anatomically constrained neighborhood. A detailed description
of this method can be found in the original paper by Queirós et al. [199]. The
parameters used to tune the lAAOF were replicated from [199].
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7.2.3.5 Segmentation at ES

Segmentation at ES is used to further refine the result from the lAAOF, thus
bringing together intensity and shape-based clues. In order to balance the contribu-
tion between tracking and segmentation clues, an energy term was added to penalize
the deviation between the result of the lAAOF and the segmentation. Such an ap-
proach is similar to that detailed in Chapter 3. The regularization energy criterion
is then expressed as:

Er = αEhard + βEsoft + γEA, (7.4)

where EA is defined according to 3.11 and γ is a hyperparameter used to define
the balance between tracking and intensity/shape-based information. As at ED,
the 2S approach is used, so that the endocardium is refined first, followed by the
epicardium using both the refined endocardial surface and the epicardial tracking
result.

7.3 Experiments

Given the lack of a robust and validated database for epicardial segmentation in
RT3DE, manual contouring of the epicardium was performed by an expert on the
CETUS challenge database. The CETUS challenge database is a publicly available
multi-center multi-vendor dataset with manual endocardial contouring performed
by 3 experts at ED and ES until consensus was achieved between the three. It
comprises 45 RT3DE datasets, divided into 15 training and 30 testing datasets.

To ensure uniformity between the endo- and epicardial contours, the same proto-
col that was used for the endocardial contours was followed for the epicardium [212].
In brief, the expert contoured the epicardium in pre-defined slices where the endo-
cardial contours were also visible. The epicardial countours were defined as to
observe the following requirements: a) located outside the endocardial contours;
b) excluding the pericardium; c) keeping tissue consistency between ED and ES;
d) contour up to the basal plane defined by the endocardial reference. This was
performed at ED and ES and the contours at each time point were used to define
a 3D reference mesh using a spherical harmonics interpolation [103]. The basal
plane defined on the endocardial reference was used to define the basal plane of the
epicardial reference.

The automatic segmentation was evaluated against the epicardial manual con-
touring with MAD, HD and Dice. Myocardial volumes at ED and ES were also
compared. The results of the proposed framework were also compared to the same
framework without the use of the SSM regularization to study the impact of this reg-
ularization on the segmentation accuracy. Results are presented in mean±standard
deviation.
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Figure 7.3: Bullseye plots of average MAD and HD at every region for ED and ES
epicardial segmentation. Measures in mm.

7.4 Results

Table 7.1 shows the segmentation and tracking results for the proposed ap-
proach for the epicardium. Note that the endocardial segmentation performance
is unaltered by the addition of the epicardial surface due to the nature of the 2S
model. The endocardial segmentation results are thus the same as those described
in Chapter 5. As in Chapter 5 the introduction of the SSM regularization has a
strong positive effect on the segmentation leading to more accurate segmentation
of the endo- and epicardial surfaces.

Figure 7.3 shows a regionwise analysis of error performed by analysing MAD
and HD in each of the 17 segments of the LV according to [10]. It can be observed
that the greatest errors are found for the basal segments, especially in HD. There
seems to be a trend towards worst segmentation on the anterolateral side of the LV.

Figure 7.4 shows the best and worst epicardial segmentation results at ED and
ES on the training dataset compared to the manual references by the expert.

A comparison between the manual and automatic myocardial volumes is shown
in Figure 7.5. The myocardial volume bias was −18.6 ± 33.6ml at ED and 11.2 ±
25.6ml at ES, where the bias at ED was statistically significantly different from zero
at p < 0.05.
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(a)

(b)

(c)

(d)

Figure 7.4: Best (a,b) and worst (c,d) endo- and epicardial automatic segmentation
results (red) compared to manual contouring (green) at ED (a,c) and ES (b,d). The three
orthogonal planes shown for each 3D image were chosen according to the automatically
defined LAx/SAx orientation.
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Figure 7.5: Correlation plots of myocardial volumes computed for the manual contours
and the automatic contours at ED and ES.

7.5 Discussion

From Table 7.1 it is clear that the proposed framework presents an excellent
segmentation and tracking performance for the epicardium. Given the inherent
characteristics of the 2S model used for the epicardial segmentation, it can be
concluded that the obtained segmentation performance for the epicardium takes
advantage of the excellent performance for the endocardial segmentation shown in
Chapter 5. The comparison with the same framework without the SSM also clearly
demonstrates the importance of this regularization for both the endo- and epicardial
segmentation. It remains true, however, that the epicardial segmentation performs
worse than the endocardial segmentation and this is a direct consequence of the
fact that the epicardial contour is more challenging to contour, especially in apical
views [75].

Comparing with the state-of-the-art it appears that the current framework out-
performs previously proposed 3D epicardial segmentation frameworks. In Chapter
5, the 2S ED epicardial segmentation with BEAS was proposed, achieving an MAD,
HD and Dice of 2.70 ± 0.65mm, 12.2 ± 3.66mm and 0.112 ± 0.026. The semiau-
tomated biventricular segmentation approach by Bersvendsen et al. [232] obtained
an MAD of 3.1± 0.5mm for the LV epicardium. Nevertheless, a direct comparison
between these studies is not straightforward as the datasets used for validation were
not the same.

Regarding the regionwise analysis in Figure 7.3, the worst performance on
the anterolateral side can be explained by inherent image characteristics, namely
dropout which is common in this region due to the proximity to lung tissue. This has
been verified both in comparison among manual endocardial contouring by different
experts and in numerous 3D segmentation frameworks for the endocardium [114],
including the BEAS framework presented in Chapter 5. It has also been observed
in the original 2S ED epicardial segmentation framework using BEAS presented in
Chapter 6. Regarding the basal segments, it seems that this is brought on mostly
by the definition of a base plane in the manual reference as was reported in Chapter
6. Because in the manual references a base plane is defined and used to crop the
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epicardium mesh, the same must be done for the automatic segmentation but even
small errors in the position and angle of that plane can result in large HDs. This
effect can be seen on Figure 7.4, especially for the worst case.

Regarding the myocardial volume, although a significant bias was obtained at ES
the correlation values obtained are high, especially taking into account the number
of factors that contribute to this final value of myocardial volume.

7.6 Conclusion

In this work, a fully automatic full-cycle LV myocardial segmentation and track-
ing framework is proposed. This framework is an extension of a previous work on
LV endocardial segmentation and takes advantage of its excellent endocardial seg-
mentation performance to obtain a promising epicardial segmentation performance
through the 2S model coupling the endo- and epicardial surfaces and the use of a
myocardial SSM to provide additional shape information. Furthermore, the current
work is validated on a publicly available and robust database on which the epicardial
contours were drawn by an expert in this study. The publication of these epicardial
references on the same platform as the database will allow future studies direct
comparisons to other state-of-the-art methods, accelerating meaningful research in
the field.
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Abstract

In this chapter, the integration of the tools developed and validated in the
first part of this thesis is discussed. While previous chapters presented the tools
developed and their validation, the availability of these tools in a distributable
user-friendly software is of great importance to allow their application in the future.
Speqle3D, an in-house developed software package, was thus chosen for this purpose.
The tools presented in this thesis were implemented in a user-friendly way in this
software environment.

8.1 Introduction

While the development and validation of novel segmentation and tracking tools
is of value per se, it is equally important to make them available so that they can
be applied in other studies. In the case of myocardial segmentation, these stud-
ies could be direct applicational studies, for example to obtain further insight on
4D myocardial geometry in a specific population, or studies where the myocardial
segmentation acts as an initial step in a post processing chain such as strain or ma-
chine learning applications, where segmentation could be used to define the region
of interest (ROI). Furthermore, the direct use of this technology in a clinical setting
could be of much use by providing additional clinical information through an auto-
mated workflow. No matter the application, it thus becomes of great importance
to make the tools developed available in a distributable software package that can
be easily used by clinicians and/or researchers from different backgrounds.

8.2 Speqle3D

Speqle3D is an in-house developed software package to visualize and process 2D
echocardiography (2DE) and real-time 3D echocardiography (RT3DE) datasets.
Among other characteristics, Speqle3D allows for the slicing and orientation of 3D
images in arbitrary planes and manual contouring of structures. Speqle3D relies
on a graphical interface compiled in MATLAB, thus making it extremely simple
from both the user point of view as it appears like a usual graphical interface but
also from the programming point of view as changes can be easily incorporated in
a MATLAB environment. Speqle3D is freely available for research purposes with
a computer-based license so that it is possible to distribute it to researchers that
want to use it. Figure 8.1 shows the basic interface of Speqle3D and an example of
an RT3DE image as seen in the interface.

Three different tools were implemented in Speqle3D: the left ventricular (LV)
myocardial segmentation described in Chapter 7, an adapted version of the LV
myocardial segmentation for 2DE and the 3D mitral valve (MV) segmentation de-
scribed in Appendix A. These tools complement those already implemented in
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Figure 8.1: Speqle3D interface and example RT3DE dataset.

Speqle, namely 2D registration for myocardial deformation imaging [233], auto-
matic aortic valve (AV) segmentation for aortic annular sizing [234] and left atrial
(LA) appendix segmentation.

8.2.1 3D Myocardial Segmentation

The 3D myocardial segmentation framework described in Chapter 7 was imple-
mented in Speqle3D so that a full cycle segmentation can be obtained in a fully
automatic way. The workflow is as follows:

1. The user annotates end diastole (ED) and end systole (ES) by scrolling through
time and selecting the correct frames. If ED and ES are not annotated, seg-
mentation is performed only on the current frame.

2. Endocardial segmentation is performed by opening the B-spline Explicit Ac-
tive Surfaces (BEAS) toolbox and clicking on ’Endocardium’. Initialization
of the surface at ED is performed using the method proposed by Barbosa et
al. in [165] and the LV is segmented according to the framework proposed in
Chapter 5. Alternatively, a semi-automatic segmentation can be performed
by first aligning the long axis (LAx) and short axis (SAx) manually. This can
be helpful in images of low image quality or when the field of view (FOV) is
not conventional, leading to a failure of the initialization algorithm. The seg-
mentation is propagated from ED to ES using the localized anatomical affine
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optical flow (lAAOF) proposed in [199] and the segmentation result is refined
at ES using shape-based regularization.

3. Manual correction of the endocardial surface is then possible at any frame.
This is possible in a separate window where the user is presented with a set of
predefined LAx slices and their orientation in the 17 segment model [10]. The
correction is performed by placing points in each of the slices. The point is
then used to obtain a new contour on that slice through spline interpolation.
To control the influence of each of the points placed, a sphere of influence is
presented to the user for each point which determines the section of the original
contour which is discarded before spline interpolation. In that manner, the
user can control how local the influence of the point is. The manual correction
interface is shown in Figure 8.2, showing the image slice being corrected and
the 17-segment model for 3D orientation. When the user is satisfied with the
corrected contours, the 3D mesh is interpolated leading to a new segmentation
result for that frame. The corrected mesh is then propagated automatically
throughout the heart cycle.

4. By clicking ’Epicardium’ on the BEAS toolbox, myocardial segmentation is
performed. The endocardial segmentation at ED is used to initialize the
epicardial surface which is segmented according to the method described in
Chapter 7. This segmentation is propagated from ED to ES using the lAAOF
proposed in [199] and the segmentation result is refined at ES using shape-
based regularization.

5. Epicardial manual correction is possible through the placing of user points
within the same manual correction environment and methodology described
for the endocardium and the corrected mesh is propagated automatically
throughout the heart cycle.

An example of a segmented LV myocardium in Speqle3D is shown in Figure 8.3 and
the complete workflow can be appreciated in the link given in the footnote.

8.2.2 2D Myocardial Segmentation

Although this thesis focused on RT3DE as potentially the standard echocar-
diographic examination of the future, 2DE is currently still the most used imaging
technique both in clinical practice and research. As such, it was important to adapt
the framework developed in this thesis to analyse 2DE LV images. This can eas-
ily be done in the BEAS framework by adapting the explicit function to a polar
rather than a spherical domain and tuning the parameters. Given the much larger
variability of views in 2DE than 3D, an adaptation of the automatic LAx initial-
ization would not be able to have a satisfactory feasibility and, as such, manual
initialization was implemented. The workflow is as follows:

https://kuleuven.box.com/s/bii3yf4o5v4rz3295ua6ctyijjokzy1k
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Figure 8.2: Speqle3D manual correction interface. User point shown in red with blue
sphere of influence. Magenta points indicate intersections with LV contours from other
LAx slices.

Figure 8.3: Automatic LV myocardial segmentation on RT3DE on Speqle3D environment.
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1. The user annotates ED and ES by scrolling through time and selecting the
correct frames. If ED and ES are not annotated, segmentation is performed
only on the current frame.

2. The user places three points on the ED frame, at the mitral annulus (MA)
and apex.

3. Endocardial segmentation is performed by opening the BEAS toolbox and
clicking on ’Endocardium’. The three user points are used to initialize the en-
docardial surface through spline interpolation. LAx orientation is determined
as the direction from the mid-basal point to the apex. Endocardial segmen-
tation is performed in two stages as proposed in Chapter 5 for RT3DE. A
first segmentation stage is performed using the modified Yezzi energy pro-
posed in [165] and a second stage using the same data attachment term with
a shape model regularization. This segmentation is propagated from ED to
ES using the lAAOF proposed in [199] and the segmentation result is refined
at ES using shape-based regularization.

4. Endocardial manual correction is possible through the placing of user points
within the same manual correction environment and methodology described
for 3D myocardial segmentation. The corrected mesh is then propagated
automatically throughout the heart cycle.

5. By clicking ’Epicardium’ on the BEAS toolbox, myocardial segmentation is
performed. The endocardial segmentation at ED is used to initialize the epi-
cardial surface which is segmented using a myocardial shape model according
to the method described in Chapter 7. This segmentation is propagated from
ED to ES using the lAAOF proposed in [199] and the segmentation result is
refined at ES using shape-based regularization.

6. Epicardial manual correction is possible through the placing of user points
within the same manual correction environment and methodology described
for 3D myocardial segmentation and the corrected mesh is propagated auto-
matically throughout the heart cycle.

The angular discretization of the boundary representation was set empirically
at 48 points and the B-spline scale h at 21 for both endo- and epicardial surfaces.
The neighborhood region limit ρ was set at 15mm. The endo- and myocardial
shape models were built from a set of 2DE images from 500 patients collected in a
clinical setting. This dataset emcompasses both 2- and 4-chamber images manually
contoured at ED and ES. Following the methodology described in Chapter 5 and
7, the contours were scaled and aligned and principal component analysis is used
to obtain a statistical shape model (SSM) representing the shape variability of
the LV. As such, four different SSMs were obtained, at ED and ES for 2- and 4-
chamber images. The 2- or 4-chamber set of SSMs is then selected based on the
image metadata (if absent no SSM regularization is applied). The hard and soft
regularization terms α and β were set empirically at 1 and 0.0002 for the endocardial
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Figure 8.4: Semi-automatic LV myocardial segmentation of 4-chamber 2DE on Speqle3D
environment.

SSM and at 1 and 0.002 for the myocardial SSM. The hyperparameter for ES shape-
based regularization γ was set at 0.25 for both endo- and epicardial segmentation.
An example of a segmented 2DE LV myocardium in Speqle3D is shown in Figure
8.4 and the complete workflow can be appreciated in the link given in the footnote.

8.2.3 3D Mitral Valve Segmentation

The 3D MV segmentation framework described in Appendix A was implemented
in Speqle3D so that 4D MV geometry can be obtained. As the MV initialization
depends on a previous LV segmentation at ED, 3D endocardial segmentation must
first be performed. The workflow is as follows:

1. The user annotates ED and ES by scrolling through time and selecting the
correct frames. If ED and ES are not annotated, segmentation is performed
only on the current frame.

2. Endocardial segmentation is performed by opening the BEAS toolbox and
clicking on ’Endocardium’ as detailed in Section 8.2.1.

3. MV segmentation is performed by clicking on ’Mitral Valve’ on the BEAS
toolbox. MV initialization is performed according to the method described in
Appendix A. Alternatively, a semi-automatic initialization can be performed

https://kuleuven.box.com/s/bii3yf4o5v4rz3295ua6ctyijjokzy1k
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Figure 8.5: Automatic MV segmentation on RT3DE image on Speqle3D environment.

by orienting the LAx and SAx manually to the MV and LV outflow tract
(LVOT). For this semi-automatic initialization the LV segmentation from step
2 is no longer needed and the MV is initialized as a half-sphere of radius equal
to the length of the LAx defined by the user. Segmentation is performed at
ED according to the method described in Appendix A and this segmentation
is propagated from ED to ES using the lAAOF proposed in [199].

4. MV manual correction is possible through the placing of user points within
the same manual correction environment and methodology described for 3D
myocardial segmentation. Instead of the 17-segment model presented on the
3D myocardial segmentation tool, a schematic of the MV and LVOT is shown
to aid the user in the 3D orientation of the 2D slices shown. The corrected
mesh is propagated automatically throughout the heart cycle.

An example of a segmented MV in Speqle3D is shown in Figure 8.5 and the
complete workflow can be appreciated in the link given in the footnote.

8.3 Conclusion

In conclusion, the tools developed in this thesis were implemented in a software
application, Speqle3D, in an user-friendly way, enabling manual input and allowing
for the extraction of 4D geometry of different anatomical structures. This then

https://kuleuven.box.com/s/bii3yf4o5v4rz3295ua6ctyijjokzy1k
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facilitates the application of the tools developed in this thesis in a clinical setting.
Furthermore, it enables the use of the tools developed in future studies, such as
using the segmentation as an initial step in other postprocessing methods such as
strain applications or machine learning tools or more clinical oriented studies trying
to obtain more information regarding 4D geometry of the LV myocardium and the
MV.
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Chapter 9

Non-invasive Myocardial
Performance Mapping Using
3D Echocardiographic
Stress-Strain Loops

This chapter is based on a paper submitted for publication in a peer-reviewed journal: Pe-
drosa J., Duchenne J., Queirós S., Degtiarova G., Gheysens O., Claus P., Voigt J., D’hooge
J.. Non-invasive myocardial performance mapping using 3D echocardiographic stress-strain loops:
validation against PET.
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Abstract

Regional contribution to left ventricular (LV) ejection is of much clinical impor-
tance but its assessment is notably challenging. While deformation imaging is often
used, this does not take into account loading conditions. Recently, a method for
intraventricular pressure estimation was proposed, thus allowing for loading condi-
tions to be taken into account in a non-invasive way. In this work, a method for
3D automatic myocardial performance mapping in echocardiography is proposed by
performing 3D myocardial segmentation and tracking, thus giving access to local
geometry and strain. This is then used to assess local LV stress-strain relationships
which can be seen as a measure of local myocardial work. The proposed method
was validated against 18F-fluorodeoxyglucose positron emission tomography (FDG-
PET), the reference method to assess local metabolism clinically. Averaged over all
patients, the mean correlation between FDG-PET and the proposed method was
0.67 ± 0.18. In conclusion, the proposed method shows promising results for fully
automatic non-invasive estimation of regional myocardial performance.

9.1 Introduction

The assessment of the regional contribution to LV ejection has long been an
object of interest in clinical cardiology and is clinically most often assessed through
visual wall motion readings. However, such readings are subject to high intra-
and inter-observer variability. More objective measurements of shortening indices
through regional deformation imaging have thus been introduced to tackle this
problem [102, 235, 236]. However, local deformation is highly dependent on load-
ing conditions and to truly estimate myocardial performance, the relation between
deformation and loading conditions must be taken into account [237]. Neverthe-
less, it is challenging to estimate loading conditions non-invasively and most studies
thus resort to invasive intraventricular pressure measurements. Suga [238] first pro-
posed such an approach by successfully correlating LV pressure-volume loop area
to global myocardial oxygen consumption in a canine model and this approach was
later validated in a clinical setting [239]. Following the same rationale, regional my-
ocardial work was estimated by relating local myocardial deformation to pressure
in several studies [240–244]. While these techniques have been proposed already
decades ago, they have seen limited clinical application due to their complexity and
the need for an invasive intraventricular pressure measurement. Recently, Russel
et al. [245] have proposed a method for non-invasive estimation of intraventricular
pressure, thus allowing for non-invasive estimation of myocardial work. Neverthe-
less, pressure remains a global loading parameter as local loading, expressed as
myocardial stress, depends on LV geometry. Such an approach was followed in
a recent study [246], where the authors used Laplace’s law to estimate local stress
from non-invasive pressure measurements and local geometry, which, related to local
strain was equated to local myocardial work.

In spite of these recent advances, the methodology remains complex as obtaining



9.2. METHODOLOGY 127

the full myocardial performance map requires 3 different long axis (LAx) views to
be acquired and in each of the views the LV must be segmented and local strains
computed. As such, the use of real-time 3D echocardiography (RT3DE) can play
a role in decreasing the complexity of this method by decreasing the number of
acquisitions needed. Although manual analysis of 3D images is more challenging
than 2D, automatic methods can be used to obtain 3D local LV geometry and
strains, further decreasing the complexity of the method. Moreover, the acquisition
of RT3DE rather than 2D echocardiography (2DE) allows the analysis of the full 3D
myocardial motion rather than being limited to in-plane motion as in [243,245,246]
where only longitudinal strain-stress loop area was considered.

As such, in this study, a method for non-invasive myocardial performance map-
ping on RT3DE is proposed. A validated fully automatic method for myocardial
segmentation and tracking presented in Chapter 7 was used to obtain 3D local
LV geometry and strain. Intraventricular pressure was estimated according to the
method by Russel et al. [245], which is used together with local geometry to esti-
mate local LV stress. The proposed LV stress-strain loop areas were then validated
against FDG-PET, the reference method to clinically assess local metabolism.

9.2 Methodology

9.2.1 3D Left Ventricular Myocardial Segmentation

3D LV myocardial segmentation was performed using B-spline Explicit Active
Surfaces (BEAS) according to the framework proposed in Chapter 7. To extract lo-
cal geometry and strain, the LV segmentation obtained was divided into 17 segments
according to [10] and the extracted parameters averaged within each segment. At
each frame, the local wall thickness h was computed, defined as the distance from
the endo- to the epicardial surface along the endocardial surface normal. Longitudi-
nal and circumferential curvatures, kl and kc, were also extracted taking advantage
of the spherical domain on which the BEAS segmentation is defined:

kl = k̄ −
√
k̄2 −K, (9.1)

kc = k̄ +
√
k̄2 −K, (9.2)

where k̄ and K are respectively the mean and gaussian curvatures obtained accord-
ing to

k̄ =
eG+ gE

2EG
, (9.3)

K =
eg − f2

EG
, (9.4)

where E and G are coefficients of the first fundamental form and e, f and g are
coefficients of the second fundamental form [228]. Segmental strain was computed
throughout the heart cycle for all three components - longitudinal (εl), circumfer-
ential (εc) and radial (εr).
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9.2.2 Left Ventricular Stress Estimation

In order to estimate LV stress, the equations proposed by Mirsky et al. [247]
were used, thus:

σl =
P.rl

h(2 + h
rl

)
, (9.5)

σc =
P

h( 1
rc

+ 1
rc

+ h
rlrc

)
, (9.6)

where σl and σc are, respectively, the longitudinal and circumferential components
of LV stress, P is the intraventricular pressure and ri = 1/ki is the radius of
curvature along direction i. For a more extensive reasoning of the assumptions
behind the equations chosen, the reader is referred to the original paper by Mirsky
et al. [247].

Intraventricular pressure was estimated according to the method by Russel et
al. [245], which essentially scales a typical LV pressure trace based on valve open-
ing/closing and measured systolic arterial cuff pressure. The valve events were
manually annotated by visual inspection of the RT3DE images.

To estimate the radial LV stress σr, the generalized 3D Hooke’s law was used,
assuming that the myocardium is an elastic, isotropic and incompressible medium:

εr =
1

E
(σr − µ(σl + σc)), (9.7)

where E and µ are, respectively, the Young’s modulus and Poisson coefficient of the
medium. Given that the myocardium is assumed to be incompressible, µ = 0.5.

9.2.3 Myocardial Performance Mapping

To obtain a map of myocardial performance, a stress-strain loop was calculated
for each of the components (i.e. radial, longitudinal and circumferential). The sum
of the area of each of these loops, hereinafter referred to as L+C+R loop area, was
then taken as an estimate of the total local myocardial work.

It can be shown that the radial stress-strain loop area is independent of the
Young’s modulus E chosen given that:

A{εr, σr} =
1

2

∫
σrεr

′ − εrσr ′dt

=
1

2

∫
(Eεr + µ(σl + σc))εr

′ − εr(Eεr + µ(σl + σc))
′dt

=
µ

2

∫
σlεr

′ − εrσl′dt+
µ

2

∫
σcεr

′ − εrσc′dt

= µA{εr, σl}+ µA{εr, σc},

(9.8)

where A{εi, σj} is the area of the loop formed by stress component i and strain
component j. For simplicity sake, the prime symbol was used to represent the
derivative in t.
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9.3 Experiments

12 non-ischemic and 7 ischemic patients were selected from the WORK-CRT
study, which followed heart failure patients undergoing cardiac resynchronization
therapy (CRT) at the University Hospitals Leuven (ClinicalTrials.gov Identifier:
NCT02537782). The patients were selected based on showing acceptable RT3DE
spatiotemporal resolution and image quality and FDG-PET analysis one week prior
to CRT.

3D LV myocardial segmentation was performed for each patient and the myocar-
dial performance maps estimated based on the method described above. A com-
parison to FDG-PET was performed by using the normalized tracer uptake (%).
The LV segment with the highest tracer uptake was used as a reference (100%), and
segmental values reported as percentages of this value.

For comparison to the proposed myocardial performance maps, pressure-strain
loop areas as proposed in [245] were also computed.

9.4 Results

An example of the myocardial performance map and FDG-PET tracer uptake
map obtained for one patient as well as the correlation between the two measure-
ments is shown in Figure 9.1. Qualitatively, it can be observed that there is a good
correspondence between the L+C+R stress-strain loop area in Figure 9.1(a) and
the FDG-PET map in Figure 9.1(b). By plotting the segmental L+C+R stress-
strain loop area values against the FDG-PET tracer uptake as in Figure 9.1(c), a
correlation value can be obtained showing the agreement between both measures.
Among all patients, the Pearson correlation coefficient was 0.67± 0.14.

A comparison of the performance of each of the components individually to
the L+C+R stress-strain loop area is shown in Fig. 9.2. It can be seen that
the contribution of all three spatial components outperforms any of the other in-
dividually considered components. The difference between the correlations using
L+C+R stress-strain and pressure-strain loop areas was also statistically signifi-
cant at p < 0.05.

9.5 Discussion

It is clear that the proposed methodology can successfully estimate LV myocar-
dial work in a non-invasive way. Both local deformation and loading conditions are
taken into account, thus using additional information in comparison to myocardial
deformation imaging, which is essential for the estimation of myocardial perfor-
mance. The proposed method is also of low complexity, as only one image needs
to be acquired. Moreover, the LV myocardial segmentation is fully automatic and
only the valve events need to be annotated manually.
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(a) (b)

(c)

Figure 9.1: Myocardial performance map (a) and FDG-PET tracer uptake (b) for a given
patient and correlation between the two (c).
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Figure 9.2: Correlation between FDG-PET tracer uptake and each stress-strain/pressure-
strain loop area across all patients. Brackets indicate statistically significant differences at
p < 0.05; only differences to L+C+R loop area within each group are shown.

Analysing Fig. 9.2, it becomes clear that the contribution of all three compo-
nents of stress and strain is necessary in the final myocardial performance map, as
the L+C+R loop area was statistically significantly better than any of the three
components independently. Specifically, the longitudinal stress-strain and pressure-
strain loop areas are equivalent to the approaches in [246] and [245] as in those
studies LAx 2DE was used and thus only longitudinal components were assessed.
In spite of the promising results of those studies, it is shown that RT3DE can pro-
vide additional information, thereby resulting in better correlation to FDG-PET
tracer uptake.

Furthermore, it was shown that the correlation between the L+C+R stress-
strain and FDG-PET tracer uptake was statistically significantly different and
greater than using L+C+R pressure-strain. This highlights the importance of con-
sidering local, rather than global loading, through myocardial geometry for an ac-
curate myocardial performance map.

Nevertheless, there are limitations to this study which must be considered. First,
the number of patients is relatively small and a larger dataset would certainly
strenghten the conclusions drawn in this study. Secondly, RT3DE is, in spite of
the improvements in recent years, a more challenging technique than 2DE in terms
of acquisition window and image quality in some patients, which might have an
impact in the applicability of this method to the general population. However, the
improvements to RT3DE’s spatiotemporal resolution are expected to continue as
more advanced beamforming techniques migrate to commercial systems, improving
the quality of information that can be obtained with RT3DE and simultaneously
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increasing the applicability of RT3DE based methods such as the one proposed in
this study. Thirdly, given the fact that normalized FDG-PET tracer uptake was
used as ground truth, a direct comparison between patients is not possible. This
might have an effect on the final results as correlations are only possible within each
patient. An alternative approach could be to use the FDG-PET standard uptake
ratio as proposed in [248], which would allow for a more robust measurement of
myocardial oxygen consumption and a comparison across all patients. However,
this method could not be applied to this population in the scope of this study. Fi-
nally, the equations 9.5, 9.6 and 9.7 used to estimate LV stress present numerous
assumptions which are known to be violated in the LV myocardium. While numer-
ous forms of these equations exist, the most known being perhaps Laplace’s law,
these were chosen as they predict different longitudinal and circumferentail stress.
Nevertheless, due to the assumption involved, it would be important to consider
more complex analysis tools adapted to complex geometries as the LV myocardium,
such as finite element methods. However, good correlation with FDG-PET, the
reference method to clinically assess local metabolism, was obtained validating the
proposed method.

In terms of future work, the automation of the annotation of the valve events
would be of interest as it is currently the only step that requires user interaction.
This would further simplify the method, rendering it fully automatic.

9.6 Conclusion

In conclusion, a novel non-invasive method for myocardial performance mapping
in RT3DE is proposed. The fact that the proposed method relies on RT3DE not
only simplifies the protocol, as only one image must be acquired and processed,
but gives access to the full 3D information, leading to more accurate results than
previous similar implementations in 2DE. Furthermore, the proposed method relies
on an automatic segmentation framework, where only the valve events must be
manually annotated making it simple to apply.
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Real-Time Anatomical
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System

This chapter is based on a paper published in the proceedings of the 2017 IEEE International
Ultrasonics Symposium (IUS): Pedrosa J., Komini V., Duchenne J., D’hooge J.. Real-time
anatomical imaging of the heart on an experimental ultrasound system. In 2017 IEEE Interna-
tional Ultrasonics Symposium (IUS) proceedings Sep 6 (pp. 1-4).
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Abstract

Fast echocardiography imaging requires a reduction of the number of trans-
mit events. This can be achieved through advanced beamforming techniques but
restricting the field of view (FOV) to the anatomically relevant domain, e.g. the my-
ocardium, can increase frame rate (FR) further. In the present work, an anatomical
scan sequence was implemented and tested experimentally by performing real-time
segmentation of the myocardium on conventional B-mode and feeding this infor-
mation back to the scanner in order to define a fast myocardial scan sequence.
Ultrasound imaging was performed using HD-PULSE, an experimental fully pro-
grammable 256 channel ultrasound system equipped with a 3.5MHz phased array
transducer. A univentricular polyvinyl alcohol (PVA) phantom was connected to a
pump to simulate the cardiac cycle to perform in vitro validation of this approach.
In addition, three volunteers were also imaged from an apical 4-chamber view to
demonstrate the feasibility of this method in vivo. It is shown that this method is
feasible to be applied in real-time and in vivo giving a minimum gain in FR of 1.5.

10.1 Introduction

Echocardiography is the modality of choice for routine diagnosis and assessment
of cardiac function due to its low cost, wide availability and lack of ionizing radi-
ation. Nevertheless, in spite of having good spatiotemporal resolution, traditional
ultrasound cannot resolve the totality of cardiac mechanical events, especially when
considering some very short lived events such as the mechanical activation of the
left ventricle (LV) pre-ejection. As such, potentially important clinical information
might be lost.

Recently, very high temporal resolution ultrasound imaging has been made pos-
sible through the development of more complex scan sequences such as multi-line
acquisition (MLA), retrospective gating, diverging wave (DW) imaging and multi-
line transmit (MLT) [59]. In MLA, multiple neighboring lines are reconstructed
simultaneously for each transmit beam [47]. This technique is already implemented
in most commercial scanners. Retrospective gating divides the sector into smaller
subsectors and each of these subsectors is imaged at high FR using electrocardio-
gram (ECG) as a timing reference [46]. It is then possible to combine the different
subsectors into a single high FR sector. Retrospective gating is also a standard tech-
nique for 3D imaging. However, this fusion process may fail if the cardiac cycles
between the subsectors are markedly different or when the subject’s heartbeat is
irregular leading to stitching artifacts. DW imaging relies on the transmission of a
single or a small number of DW to reconstruct the whole sector [55]. However, this
technique significantly compromises spatial resolution and contrast-to-noise ratio,
thus requiring coherent spatial compounding which in turn compromises the gain
in FR [249]. Alternatively, MLT imaging relies on the simultaneous transmission of
multiple focused beams [49]. In spite of the possibility of cross-talk between differ-
ent beams, it has been shown that this effect is very limited when MLT is carefully
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setup [183]. Furthermore, MLT maintains similar spatial resolution to traditional
ultrasound as it uses focused beams. A more extensive review of the problematic of
high FR imaging and potential solutions and applications can be found in subsection
2.3.3.

In spite of the substantial gain in FR provided by these fast imaging approaches,
a significant portion of the image lines reconstructed using these techniques is of
limited or no interest in the study of myocardial dynamics, as they cross the blood
pool or are located outside the epicardium. A straightforward way to reduce the
number of transmits and/or the number of image lines to be reconstructed would
then be to limit the FOV to the anatomically relevant space only.

Lervik et al. have proposed a method for anatomical imaging by manually
adjusting two wide transmit beams to cover the ventricular walls from the apical
view [250]. In this way, the data from the blood pool is not acquired allowing for
high FR imaging to be acquired and these authors showed that such a method can
produce valuable clinical information. Nevertheless, the method proposed by Lervik
et al. requires the user to select the myocardial walls which might not be practical
in a clinical setting. Ortega et al. [251] have thus proposed to perform real-time
segmentation of the myocardium on conventional B-scan mode images and feeding
that information back to the scanner to define a fast myocardial scan sequence.
In their work, real-time 3D echocardiography (RT3DE) images were obtained and
the myocardium was segmented automatically using the B-spline Explicit Active
Surfaces (BEAS) framework. This information was then used to obtain a cover-
age function, defining the percentage of myocardium covered by each line to be
reconstructed, which was then used to set up an MLT sequence which could cover
the associated FOV as fast as possible. It was shown by computer simulation that
using such a technique would yield an FR gain around 2. By applying it with a
10MLT-4MLA configuration, a total FR gain of 80 was obtained.

As such, the aim of this study was to implement and validate the method pro-
posed by Ortega et al. in an experimental ultrasound system. An in vitro setup
using a univentricular phantom was first used to test the method. Subsequently,
in vivo experiments were conducted to assess the feasibility of this method and the
associated FR gain.

10.2 Methodology

10.2.1 Echocardiographic Acquisition

2D echocardiography (2DE) data was acquired using HD-PULSE, an experi-
mental ultrasound system [252]. HD-PULSE is a fully programmable 256 channel
experimental ultrasound system which allows controlling and reading-out of up to
1024 elements through 1:4 transmit and 4:1 receive multiplexing. It is a modu-
lar platform built on two National Instruments reconfigurable PXI systems, each
containing 4 blocks of PCI Express cards controlling 32 channels. Each block is
composed of a tri-level pulser with arbitrary pulse capability, a receiver card with
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a low-noise pre-amplifier up to 32dB and two NI5752 analog-to-digital converters
with 12-bit resolution and up to 50MS/s, allowing for real-time data processing
and streaming on a field-programmable gate array (FPGA). All electronics can be
controlled in a LabVIEW environment. A phased Samsung Medison P2-5AC probe
with a center frequency of 3.5MHz was used for all acquisitions. Simultaneous
ECG acquisition was performed on an external NI USB-7845R and real-time QRS
detection performed on FPGA using the Pan-Tompkins algorithm [253].

10.2.2 Real-time Automatic Segmentation

Real-time segmentation of the myocardium was performed using the BEAS
framework [3]. The method for shape-based myocardial segmentation detailed in
Chapter 7 was adapted for 2D segmentation as detailed in Chapter 8. The en-
docardial surface was initialized automatically according to an adaptation of the
method of LV long axis (LAx) detection proposed in [165] for 2DE. In brief, the
intensity profile along equidistant lines parallel to the probe surface is extracted. It
is assumed that the LV LAx is in the middle of the image and the LV wall on either
side of the image is detected by finding the highest dark-to-bright gradient (from
blood pool to LV wall). The estimated wall positions are used to define the LV
LAx and the initial surface is defined through spline interpolation on the estimated
wall positions. Additionally, a user point could be placed at the LV base to provide
an anchor point for the LV LAx increasing the robustness of the method on lower
quality images.

All methods were implemented in a LabVIEW environment thus allowing for
real-time initialization and segmentation and user interaction.

10.2.3 Anatomical Imaging

Following the method proposed by Ortega et al. [251], the relevant FOV for
functional cardiac imaging was defined as follows: first, real-time automatic my-
ocardial segmentation is performed at end diastole (ED) through ECG triggering.
This assures that the ventricle is captured at its larger dimension so that the outer
wall is not excluded from the anatomical FOV. Secondly, a coverage function is
built by calculating the percentage of each scan line that crosses the myocardium.
Finally, the fast anatomical scan sequence is computed by excluding the scan lines
of smaller myocardial coverage as given by the coverage function until a limit of
total myocardial coverage T is achieved. This threshold T is defined prospectively
by the user. Note that the resulting FOV is corrected to be spatially continuous in
both walls, so that two small sectors are obtained covering each of the walls. The
resulting anatomical scan sequence, computed in real-time, is then used to obtain
high FR images of the LV.
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10.2.4 Non-rigid Image Registration

In order to demonstrate the feasibility of anatomical imaging for functional
myocardial imaging, a non-rigid image registration (NRIR) framework [233] was
used to estimate the motion of the tissue in the image. In brief, the basic concept
of NRIR is to deform a moving image IM to align with a fixed image IF . The
displacement field Tξ = (Tx, Ty) is computed at every pixel (x, y) and modeled as
a tensor product of 2D cubic B-splines β3

ξ [ξ ∈ (x, y)] [254] such that

Tξ(x, y) =
∑
i∈Ni

∑
i∈Nj

µijβ
3
x

(
x− κijx
σx

)
β3
y

(
y − κijy
σy

)
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where Nξ denotes the set of control grid points within the compact support of B-
splines of intergrid position κξ and spacing σξ. The B-spline coefficients µij are
then optimized in an iterative multiscale optimization process according to the sum
of squared differences and a bending energy [254]. A detailed description of this
method can be consulted in [233].

10.3 Experiments

In vitro

A univentricular homogeneous PVA phantom with realistic LV dimensions was
manufactured and connected to a CardioFlow 5000MR pump (Shelley Medical
Imaging Technologies, Ontario, Canada) as described in [255]. In brief, the phantom
was submerged in a water tank and fixed so that apical scanning was possible. The
pump was connected to the PVA phantom in a closed circulation so that the pump
flow deforms the phantom through the increase/decrease of pressure. A sinusoidal
flow waveform was used to cyclically (60bpm) inflate/deflate the phantom in order
to simulate cardiac motion/contraction. To have an independent measure of tissue
deformation, a digital ultrasonic measurement system (Sonometrics Corporation,
London, Ontario, Canada) was used. Two ultrasonic microcrystals were attached
to the wall in the same longitudinal direction to obtain reference longitudinal dis-
placement. These microcrystals emit and detect ultrasonic pulses and thus the time
of flight between the two microcrystals can be used to estimate the distance between
them along time.

A 2MLT-2MLA approach was used to create a conventional B-scan of the phan-
tom (FR 155Hz). BEAS was then used to perform segmentation in real-time at the
moment of largest volume of the phantom. A total myocardial coverage value T of
85% was used to create an anatomical scan sequence from the obtained coverage
function. A minimum of two seconds were captured for both conventional images
and anatomical imaging and these were processed offline using NRIR to estimate
the tissue motion. The longitudinal strain obtained with the ultrasonic microcrys-
tals was then used as a reference by comparing it to the longitudinal strain obtained
from NRIR at in the same wall region on both imaging modes.
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(a) (b) (c)

Figure 10.1: (a) Conventional B-mode obtained for the univentricular phantom at the
moment of largest volume with BEAS segmentation imposed; (b) Normalized coverage
function for phantom at the moment of largest volume (c) Anatomical B-mode obtained
for the univentricular phantom.

In vivo

Three volunteers were imaged in an apical 4-chamber view using a single-line
transmit 2MLA approach (FR 79Hz). BEAS was then used to perform segmentation
in real-time at ED by using ECG gating to trigger the segmentation. A total
myocardial coverage value T of 85% was used to create an anatomical scan sequence
from the obtained coverage function.

To evaluate how much information is lost as the heart deforms, the myocardial
coverage along the heart cycle was analysed. The LV was segmented at ED and end
systole (ES) on the anatomical scan images by using the conventional B-mode as
a reference. The segmented myocardium was then divided into segments according
to the 17-segment model [10] so that the regional impact of this technique can be
determined.

10.4 Results

In vitro

Figure 10.1(a) shows an example of a conventional B-scan of the PVA phantom
with the real-time segmentation result obtained with BEAS. The corresponding
coverage function is shown in Figure 10.1(b). The resulting anatomical imaging
resulted in a FR gain of 1.64 thus giving an FR of 255Hz. An example of an
anatomical image is shown on Figure 10.1(c).

Figure 10.2 shows the comparison between the reference longitudinal strain ob-
tained with the ultrasonic microcrystals and the strain obtained through NRIR in
the conventional and anatomical imaging. It can be observed that both conventional
and anatomical imaging present excellent correlations to the reference longitunidal
strain. In Figure 10.2(c) it can be seen that anatomical imaging presents peak lon-
gitudinal strain values closer to the reference in comparison to conventional imaging
which overestimates strain by approximately 4%.
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(a) (b)

(c)

Figure 10.2: (a) Correlation between estimated strain on conventional imaging against
reference method; (b) Correlation between estimated strain on anatomical imaging against
reference method (c) Example strain curves for reference method and NRIR estimation on
conventional and anatomical imaging.

In vivo

Figure 10.3(a) shows an example of a conventional B-scan of one of the volunteers
with the real-time segmentation result obtained with BEAS. An example of the
resulting anatomical imaging for this volunteer is shown in Figure 10.3(b). The FR
gain for each of the volunteers was respecticely 1.54, 1.54 and 1.77, giving a final
FR of 122, 122 and 140Hz. The global and segmental myocardial coverage obtained
on the anatomical images at ED and ES are shown in Figure 10.4. It is shown that
both at ED and ES the global myocardial coverage is over 85%, the value defined
for T . Looking at the segmental analysis of myocardial coverage, it is clear that
the most affected segment is the apical cap, with a coverage between 10% and 30%.
The remaining segments, however, remain almost unaffected, except for the basal
septal segment which was moderately affected in two of the volunteers at ES.
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(a) (b) (c)

Figure 10.3: (a) Conventional B-mode obtained for one of the volunteers at ED with
BEAS segmentation imposed; (b-c) Anatomical B-mode obtained for the same volunteer
at ED and ES respectively.

10.5 Discussion

It is clear that the proposed approach is able to give a significant FR gain. For
both the in vitro and in vivo setups a FR gain between 1.54 and 1.77 was obtained.
These results are comparable to what had been obtained in silico in [251], where a
FR gain of 2 was obtained using the same methodology but in RT3DE. Of course,
the actual FR gain is dependent on patient physiology such as the size of the
ventricular cavity, thickness of the walls, etc. as well as the positioning of the
probe and distance to the apex, thus explaining the different results obtained in
vitro and in vivo. When comparing to the in silico experiments, a higher gain was
expected as a greater percentage of the volume is discarded when compared to a
2DE acquisition. Nevertheless, the results show that a minimum FR gain of 1.5 is
realistic in an in vivo setup in 2DE. Compared to other techniques such as DW,
this method has the advantage that it is able to maintain the spatial resolution and
signal-to-noise ratio (SNR) and contrast-to-noise ratios of conventional ultrasound.
Furthermore, this technique can be combined with an MLT-MLA sequence as done
in the in vitro setup in this study, allowing for a further increase in FR enabling
sequences with several hundred frames per second.

Figure 10.2 shows that, for the purpose of myocardial deformation imaging, the
relevant motion information is preserved and state-of-the-art motion estimators such
as NRIR can cope with the missing information in the center of the image to provide
accurate strain data with excellent correlation to the reference data. Furthermore,
given the higher FR, it can be expected that the information obtained through
anatomical imaging is more representative of the true tissue motion, thus giving
access to more accurate clinical information.

Of course, the approach used is intrisically limited, as sections of the myocardium
are effectively discarded to obtain the observed FR gain. Nevertheless, as shown in
Figure 10.4, this technique affects mainly the apical cap, which, even in conventional
ultrasound contains little usable clinical information due to significant near field
clutter. Furthermore, the global myocardial coverage can easily be controlled by
changing the parameter T . This parameter is however, a compromise between FR
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Figure 10.4: Percentage of myocardial coverage for all volunteers at ED (black) and ES
(red). Global corresponds to the total myocardial coverage. BS, MS, AS correspond to
basal, mid and apical septal segments, AC corresponds to apical cap and AL, ML and BL
to apical, mid and basal lateral segments

gain and myocardial coverage and, from the authors’ experience, a good compromise
is obtained with the 85% value used in this work.

A limitation of this method is the fact that only a segmentation at ED is per-
formed to obtain the anatomical scan sequence. This could lead to sections of the
myocardium being lost in the remaining heart cycle, as the movement of the heart
is not considered. However, in the experiments performed, the myocardial coverage
at ED and ES are comparable, except for the basal septal segment in two of the
volunteers. In non healthy cases however, the movement of the heart may be more
unpredictable and as such, a dynamic anatomical imaging could be considered for
future work by performing full cycle segmentation and dynamically adapting the
scan sequence along the heart cycle.

10.6 Conclusion

Anatomical scanning in combination with MLT-MLA beamforming techniques
can increase FR significantly while keeping information of the relevant structures for
functional myocardial imaging. In the present work, it was shown that anatomical
scanning is a feasible approach in vivo allowing for a minimum FR gain of 1.5.
Furthermore, when combined with MLT/MLA techniques, the FR can be further
increased without a compromise in spatial resolution and acceptable cross-talk.
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11.1 Main Contributions

In this thesis, the topic of real-time 3D echocardiography (RT3DE) left ventric-
ular (LV) assessment was addressed. This topic was approached both in a technical
context in Part I of this thesis, developing novel image processing frameworks to
extract valuable information from the image, and also in an applicational/clinical
context in Part II, by applying the techniques developed to solve clinical problems.

In Chapter 2, a review of the most relevants topics for the contextualization
of this work was given. Starting with anatomical and functional considerations
on the cardiovascular system and particularly the LV, a review on the prognostic
value of LV assessment in clinical practice was presented, highlighting the clinical
importance of the LV and the maturity of this clinical field. The different cardiac
imaging modalities were then explored as means to assess the LV and the focus was
set on echocardiography due to its inherent advantages. Moreover, the importance
of RT3DE was highlighted as it gives access to the true 3D geometry of the cardiac
structures. The relevance of high frame rate (FR) imaging was also briefly described
as an additional way of obtaining further information on the cardiac dynamics.

In Section 2.4, a review of the state-of-the-art of LV segmentation and tracking
methodologies was presented, which showed the advanced maturity of the research
field. Also the commercial solutions available were described as those are the ones
commonly available to clinicians. Finally, a review on the validation of RT3DE LV
volume assessment was presented, showing the validity of this modality as a clinical
tool.

11.1.1 Technical Contributions

Given the topic of this thesis, the technical contributions were of course around
the topic of 3D myocardial LV segmentation in RT3DE. The starting point of
this thesis was, as described in Section 2.5, the B-spline Explicite Active Surfaces
(BEAS) framework for 3D LV segmentation which had proven to be potentially
real-time, fully automatic and accurate. The work developed during this thesis
aimed then at improving this framework both in terms of its robustness and the
clinical information it provides.

The first technical contribution of this thesis was heartBEATS, a hybrid energy
framework for tracking of the LV from end diastole (ED) to end systole (ES) pre-
sented on Chapter 3. Though this framework was initially proposed in the PhD
work of Daniel Barbosa, the author of this thesis played a determinant role in the
finalization and publication of the validation results obtained. The heartBEATS
framework allows the tracking of the LV segmentation throughout the heart cycle,
balancing segmentation and tracking clues for an improved tracking result without
compromising the feasibility of real-time.

The second technical contribution was an automatic method for short axis (SAx)
orientation of the LV proposed in Chapter 4. This method is based on the detection
of the inferior right ventricular (RV) insertion using image intensity and structural
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information. SAx orientation allows to extract regional information from an LV
segmentation and divide it into a 17 segment model for example.

The third technical contribution was a framework for full-cycle LV segmentation
using a statistical shape model (SSM) obtained from cardiac magnetic resonance
imaging (cMRI) images (Chapter 5). This approach couples the advantages of the
BEAS framework, a purely image information approach, to those of SSMs to give
prior information about the expected shape for an accurate segmentation. The
segmentation is propagated throughout the heart cycle using localized anatomical
affine optical flow (lAAOF). This framework was enabled by the contributions from
previous chapters, namely the SAx orientation proposed in Chapter 4 to align the
image to the LV SSM and the hybrid energy approach from Chapter 3 to refine
the segmentation at ES. The proposed framework outperformed any other state-
of-the-art method for ED/ES LV segmentation evaluated on the MICCAI CETUS
challenge. Moreover, it outperforms other methods in terms of computational speed,
being able to perform ED/ES segmentation and tracking in a few seconds in a non-
optimized implementation and could thus be implemented to run real-time.

The fourth technical contribution focused on the way to couple endo- and epi-
cardial segmentation for an optimal myocardial segmentation (Chapter 6). While
these two surfaces are bound anatomically to the same structure, the myocardium,
their mathematical definition can be done in a number of ways and plays a role in
the final result. It was shown that the best approach was a two-step (2S) approach
where the endocardial surface is segmented first and then used as a base for the
epicardial segmentation by defining the epicardial surface as the thickness of the
myocardium. This corroborates the idea that epicardial segmentation is more chal-
lenging, and can thus benefit from the additional shape and position information
provided by the endocardial segmentation. In this way, a framework for LV my-
ocardial segmentation was proposed, allowing for more information to be extracted,
namely LV mass and myocardial thickness. Furthermore, myocardial segmentation
is essential as a first step in post processing approaches such as strain analysis or
definition of the region of interest (ROI) in machine learning approaches.

The fifth contribution was presented in Chapter 7 and was the adaptation of
the framework from Chapter 5 for LV myocardial segmentation. This was possible
by combining this framework to the coupling validated in Chapter 6 and through
the creation of a myocardial SSM. Because epicardial segmentation datasets are
not publicly available, an expert contoured the epicardium in the MICCAI CETUS
challenge database and this data was made public on the challenge website, thus al-
lowing the validation and direct comparison with other methods in the future. This
framework for automatic and robust full-cycle LV myocardial segmentation/tracking
allows for the extraction of LV volumes and local geometry throughout the heart
cycle, thus giving important clinical information. 3D strains can also be extracted
in the myocardium given the local characteristics of the lAAOF, enabling more
advanced clinical analysis.
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11.1.2 Applicational/Clinical Contributions

A first study, dedicated to facilitating the future application of the proposed
technical contributions, was described in Chapter 8. The framework developed
in Chapter 7 for 3D myocardial segmentation was implemented in a user-friendly
distributable software application where echocardiographic images can be loaded,
automatically segmented and manually corrected. An adapted version of this frame-
work for 2D echocardiography (2DE) was also implemented. The framework for 3D
mitral valve (MV) segmentation described in Appendix A was also implemented.
The implementation of the frameworks developed in this thesis in a distributable
software application enables their application in future studies, technical or clinical,
and accessible to any user without the need for programming skills.

The second contribution was the introduction of a method for myocardial perfor-
mance mapping in RT3DE in Chapter 9. By using the 3D LV myocardial segmen-
tation framework in Chapter 7, 3D local myocardial deformation and geometry can
be obtained. Intraventricular pressure can then be estimated based on the valve
events and by using equations that link pressure and geometry to LV stress, LV
stress-strain loops can be built. The area of these loops is shown to be a measure
for myocardial work as validated by 18F-fluorodeoxyglucose positron emission to-
mography (FDG-PET), the reference method to assess local metabolism clinically.

The third contribution was the validation of a high FR imaging method, anatom-
ical imaging, in an in vivo setting (Chapter 10). In this method, real-time myocar-
dial segmentation is performed in 2DE on the ultrasound system and the resulting
segmentation is used to define a fast myocardial scan sequence. This method was
tested on HD-PULSE, an experimental ultrasound scanner. It was shown that a
minimum FR gain of 1.5 was possible without a significant impact on spatial reso-
lution, thus giving access to more information on wall motion dynamics. Moreover,
the potential applications of real-time LV segmentation were highlighted, showing
that they far outreach the direct extraction of clinical parameters.

11.2 Discussion

The literature review presented in this thesis has made it evident that echocar-
diographic image analysis is a mature field, especially when it comes to solutions
for the LV. Analysis of RT3DE has particularly received attention in recent years as
the perceived imaging technique of the future for LV analysis. Numerous solutions,
both semi- and fully automated, have been proposed in the research community
and are now gaining importance in commercial solutions. Nevertheless, there are
still challenges to be solved that could be tackled in future work.

In spite of the extensive research conducted towards the development of auto-
matic frameworks for LV segmentation in RT3DE image, there still seems to be no
software platform providing a robust set of tools for LV assessment in RT3DE. The
technical contributions made in this thesis aimed at providing fast, automatic and
robust solutions for this problematic, going further than the endocardial surface at
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a single time frame to obtain a full LV myocardial segmentation throughout the
heart cycle, thus providing additional clinical information. Establishing links with
emerging image processing techniques, as is lAAOF, and fusing these with BEAS in
an elegant framework was extremely important for this objective, contributing to
the promising results obtained. The inclusion of prior information through an SSM
was also shown to be a major factor in increasing the robustness of the framework
and directly contributing to the promising results obtained. Ultrasound is a chal-
lenging imaging modality and RT3DE especially so making the shape information
provided by the SSM extremely useful, driving the segmentation when the image
information is low or unreliable.

While it is not always straightforward to balance image and prior information
on the final segmentation, it is expected that data driven solutions (thus powered
by shape and/or appearance prior information) become the standard in RT3DE
solutions, following the direction already observed in other computer vision fields.
This trend can already be seen for the commercial players (as access to data is
usually less of a constraint than in a research setting) in products such as Siemens’
eSie LVATM or Philips’ HeartModelAI. It can be expected that data driven and
specifically deep learning approaches will take the same path that mechanistic ap-
proaches treaded in the past years, starting with 2DE and then moving to 3D LV
and eventually coming to 3D LV myocardial segmentation.

In the context of the framework for 3D LV myocardial segmentation developed
in this thesis, data driven solutions can also come to play a major role further
improving the results obtained and creating a more robust framework. The LV
initialization proposed in [165] and used throughout this thesis is dependent on
edge detection followed by Hough transform for circles (HTc) for long axis (LAx)
detection and surface initialization and could therefore be replaced by a data driven
approach. The influence of the initialization error was explored in Chapter 5 and it
was shown that improving the initialization could increase the performance of the
framework (mean absolute distance (MAD): 1.38 mm; Hausdorff distance (HD):
4.86 mm; Dice: 0.959 for the LV endocardial segmentation at ED). It would there-
fore be interesting to replace this initialization for an approach that would take
into account shape, appearance and contextual information for a more accurate de-
cision regarding LV pose and shape. Several machine learning algorithms already
implemented for LV assessment in echocardiography [256, 257] could provide such
an initialization through the creation of an edgemap for LV initialization. Moreover,
such an edgemap could also be used to strenghten the segmentation by including an
energy term designed for and driven by this map, either replacing or complementing
the modified Yezzi energy term [165] currently used to extract image information.

The potential clinical application of the techniques developed in this work was a
major concern throughout the thesis. The focus was set on the clinical indices that
can be extracted and improved by the proposed framework and its improvements
and clinicians were, naturally, an important source of input. Nevertheless, a major
gap still exists preventing the widespread use of this, or other similar frameworks,
in the clinic. In spite of the inherent advantages of RT3DE and its recent develop-
ments, providing better image quality and temporal resolution, clinical cardiology
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still relies heavily on 2DE and RT3DE is reserved almost entirely to clinical research.
This can be attributed, on one hand, to the gap between clinical and research im-
age processing tools, a gap that now starts to be closed by the major commercial
players. On the other hand, the average clinician must be focused on providing
the best care to his/her patients and, consequently, follows the recommendations
of higher entities such as the European Association of Cardiovascular Imaging. As
such, research efforts towards validation of RT3DE and its associated processing
frameworks are of utmost importance as they bring more evidence to strengthen
what is still an emerging clinical tool.

Besides more accurate assessment of the clinical indices already in use today
such as ED and ES volumes (EDV and ESV) and ejection fraction (EF), RT3DE LV
assessment opens up new clinical possibilities by giving access to a greater amount
of information in a more reliable way. The introduction of a novel framework
for myocardial performance mapping in Chapter 9 has highlighted the wealth of
information that can be retrieved from a single RT3DE acquisition in a totally
automatic and non-invasive way. Myocardial performance mapping has long been
a holy grail of clinical cardiology which has recently received new strenght with
the method for non-invasive intraventricular pressure measurement by Russel et
al. [245]. While the ideas applied in Chapter 9 have long been proposed, such a
study using RT3DE and correlating it to a ground truth from FDG-PET had not
yet been reported. Nevertheless, the number of patients in this study is limited and
should be extended.

The application of the myocardial segmentation in a real-time application in
Chapter 10 for anatomical imaging has shown the potential applications of this
technology, straightening the gap between image processing and acquisition. While
in this chapter an important step was given showing the feasibility of this technol-
ogy in vivo, further efforts are needed to validate the clinical information obtained
through this high FR imaging approach. Specifically, strain and/or strain rates
could be extracted from such an approach and compared to those from other high
FR imaging approaches such as diverging wave (DW) imaging within the same sub-
ject. This could validate the idea that anatomical imaging provides a better spatial
resolution and signal-to-noise ratio (SNR) and consequently more reliable clinical
information. However, this study was not possible within the scope of this thesis.
An additional problematic could be that the current implementation of the method
might prove challenging in more complex anatomies and heart motion due to the
fact that only the position of the LV at ED is taken into account for the coverage
function. This could lead to the LV moving out of the anatomical field of view
(FOV) during the heart cycle. A straighforward improvement would then be to use
lAAOF to track the LV along the heart cycle, thus creating a dynamic anatomical
imaging, perfectly adapted to the LV along the whole heart cycle. Looking further
into the future, an implementation of 3D anatomical imaging (thus implying real-
time 3D LV myocardial segmentation) would lead to an even larger FR gain. An
in silico implementation of this technique has yielded a FR gain of 80 times in a 10
multi-line transmit (MLT) - 4 multi-line acquisition (MLA) configuration without
significant loss of image quality [251]. However, this was not possible within the
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scope of this thesis due to hardware limitations on HD-PULSE which prevented the
acquisition of RT3DE imaging.

Finally, the LV myocardial segmentation framework implemented in a distributable
software application - Speqle3D (Chapter 8) allows for its application in future stud-
ies on further validation and extraction of clinical information. One important point
of this implementation was the possibility of manual correction, in case the user
disagreed with the segmentation result. This is especially important when image
quality is lower or the view is not standard, to get the optimal segmentation result.
However, a thorough validation of this manual correction would have been impor-
tant to clearly assess how much and in what cases this type of input is perceived
by the users as important.

11.3 Conclusion and Future Perspectives

Echocardiography is an indispensable tool for cardiac assessment and LV vol-
ume/function assessment has undeniable prognostic and diagnostic value as revealed
by the existing extensive literature on the topic. Though currently still an emerg-
ing technology in the clinic, RT3DE gives access to the full 3D geometry of cardiac
structures, thus presenting significant advantages over 2DE. However, the analysis
of 3D images is particularly challenging and time consuming, making the develop-
ment of automatic tools extremely important. Such tools would allow for easier
analysis of RT3DE images, ultimately providing more information about the LV in
a more robust and less user dependent way than current 2DE solutions.

In this thesis, several technical contributions were made with this goal in mind:
a method for hybrid segmentation and tracking for more robust full-cycle segmen-
tation; a method for SAx orientation of the LV giving additional local information;
the addition of an SSM to the BEAS framework for a more robust segmentation; the
coupling of endo- and epicardial surfaces for an efficient myocardial segmentation;
and the framework for full-cycle 3D LV myocardial segmentation. It was shown that
the proposed framework outperformed any other state-of-the-art framework on LV
segmentation on the MICCAI CETUS challenge dataset. The application of the
technical contributions made in this thesis was also considered, by implementing
the proposed framework in a user-friendly distributable software application. The
clinical value of the information that can be retrieved from RT3DE was further
highlighted by proposing a method for myocardial performance mapping through
the study of the stress-strain relationships in the LV, showing good correlation with
FDG-PET. Finally, other applications were also considered by applying real-time
segmentation in 2DE for anatomical imaging, as to obtain high FR imaging and
study short lived myocardial dynamics.

The main challenge for the future remains the validation and acceptance of
RT3DE LV assessment in a clinical setting. The research community plays an im-
portant role in the validation and benchmarking of new algorithms and it should
be expected that more data driven methods and deep learning approaches are pro-
posed. As large sets of data have become more accessible in recent years these tech-
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niques have been implemented in a wide range of applications with very promising
results. Though biomedical imaging is a particularly challenging field due to the
difficulty of obtaining a reliable ground truth, it should be expected that deep learn-
ing approaches become the dominant framework in the future. A trend for more
contextual information is also expected, e.g. multi-chamber segmentation frame-
works, leading to more information to be extracted from a single image while at the
same time making that information more reliable. This will likely have clinical im-
plications as a wealth of information that was earlier infeasible or difficult to assess
becomes available as was shown for the myocardial performance mapping in this
thesis. The link between acquisition and processing will likely also be straightened
in the future as real-time processing is made possible through faster processing and
graphics processing unit implementations. An example of this is the anatomical
imaging proposed in this thesis, linking acquisition and segmentation for high FR
imaging. Besides high FR imaging, the optimization of the imaging settings based
on the information being captured in real-time and the guidance of the clinician in
positioning the probe would be extremely interesting to maximize image quality,
thereby improving the quality of information that can be extracted. In conclusion,
these technologies would have the potential for robust, unbiased and fast assessment
of cardiac function, ultimately leading to better clinical care.



Appendix A

Fully Automatic Assessment
of Mitral Valve Morphology
from 3D Transthoracic
Echocardiography

This chapter is based on a paper published in the proceedings of the 2018 IEEE International
Ultrasonics Symposium (IUS): Pedrosa J., Queirós S., Vilaça J., Badano L., D’hooge J.. Fully
automatic assessment of mitral valve morphology from 3D transthoracic echocardiography. In 2018
IEEE International Ultrasonics Symposium (IUS) proceedings Oct 22 (accepted for publication).
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Abstract

Quantitative assessment of mitral valve (MV) morphology is important for di-
agnosing MV pathology and for planning of reparative procedures. Although this is
typically done using 3D transesophageal echocardiography (TEE), recent advances
in the spatiotemporal resolution of 3D transthoracic echocardiography (TTE) have
enabled the use of this more patient friendly modality. However, manual data anal-
ysis is time consuming and operator dependent. In this study, a fully automatic
method for MV segmentation and tracking in 3D TTE is proposed and validated.
The proposed framework takes advantage of the left ventricle (LV) segmentation
framework presented in Chapter 5 to localize the MV and performs segmentation
based on the B-spline Explicit Active Surfaces (BEAS) framework. The orientation
of the MV is obtained according to the automatically detected right ventricular
(RV) insertion point and the LV outflow tract (LVOT). Following the segmen-
tation, the MV surface is cropped to the mitral annulus (MA) and divided into
posterior and anterior leaflets using a dynamic programming technique refined by
consulting an atlas of manually contoured MVs. The segmented MV at end diastole
(ED) is then propagated to end systole (ES) using localized anatomical affine op-
tical flow (lAAOF). Because the orientation and leaflet division is known, relevant
clinical parameters can then be extracted from the mesh at any time point. The
proposed framework shows excellent segmentation results with a mean absolute dis-
tance (MAD) and Hausdorff distance (HD) of 1.19 ± 0.25mm and 5.79 ± 1.25mm
at ED and 1.39 ± 0.32mm and 6.70 ± 1.97mm at ES against manual analysis. In
conclusion, an automatic method for MV segmentation is proposed which could
provide valuable clinical information in a more patient-friendly manner.

A.1 Introduction

The MV is a crucial structure of the left heart, playing a significant role in LV
and left atrial (LA) function [258], and thus of great clinical importance. While the
standard clinical tools for MV function assessment are mostly based on Doppler
techniques [259, 260], quantitative assessment of the MV geometry plays an in-
creasingly important role, allowing a better understanding of MV physiology and
pathophysiology in mitral regurgitation [261–263] and mitral stenosis [264,265], di-
agnosis of MV pathology [266,267] and planning of reparative procedures [268,269].
However, the fact that the MV is a 3D dynamic structure makes any quantitative
assessment in standard 2D echocardiography (2DE) or cardiac magnetic resonance
imaging (cMRI) challenging due to the need to define a correct imaging plane and
to make geometric assumptions regarding the 3D structure of the MV [270]. Real-
time 3D echocardiography (RT3DE), in specific RT3DE TEE (due to its better
spatiotemporal resolution and optimal imaging window to the MV), has thus been
proposed as an alternative to other 2D modalities. Furthermore, it has been shown
that MV assessment by 3D TEE is not only in accordance to surgical measurements
but also superior to 2D TEE [271]. Manual analysis of a 3D structure such as the
MV throughout time is, however, quite challenging and time consuming, which has
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motivated various studies on the automation of MV analysis through segmentation
and/or tracking.

Schneider et al. [272] proposed a semiautomatic method for MV segmentation
using a thin tissue detector and active contours based on a single point initial-
ization. This approach was later extended to 4D MV assessment using optical
flow and validated against manual contouring [273]. Burlina et al. [274] proposed
a method using a combination of a thin tissue detector and a dynamic contour
method, which is then refined by the user to obtain the final segmentation. Ionasec
et al. [275] presented a comprehensive method based on probabilistic boosting trees
and a model-based approach to perform both aortic valve (AV) and MV segmenta-
tion in computed tomography (CT) and TEE images. Pouch et al. [276] proposed
a fully automatic segmentation method using a multi-atlas approach, the result of
which is used to create a 3D geometric model of the MV. Sotaquira et al. [277]
proposed a model-free graph-based approach, however this method required strong
user interaction for initialization and coaptation line detection. Finally, De Veene
et al. [278] proposed a method based on non-rigid registration to track the MV in
4D after manual segmentation of the MV on the first frame.

Nevertheless, TEE remains impractical as a routine or follow-up imaging modal-
ity due to the associated discomfort for the patient, added acquisition time and
increased cost. TTE is therefore an attractive alternative. Recently, advances in
the spatiotemporal resolution of RT3DE TTE have enabled the use of this more
patient friendly technology for MV quantitative assessment. In a recent study by
Mihăilă et al. [279] it was shown that manual analysis of MV geometry in RT3DE
TTE was feasible and comparable to measurements from RT3DE TEE. In spite
of the advances seen in TTE, it remains a challenging imaging modality for MV
assessment due to the more difficult imaging window and overall lower image qual-
ity and higher variability in MV position in the image, all of which might render
previously proposed automated MV assessment methodologies for TEE unusable
in TTE. While manual or semiautomated methodologies such as TomTec’s 4D-MV
Assessment are still applicable, they can be quite time consuming due to the need
for manual contouring or extensive landmarking of structures.

In this study, a novel fully automatic method for MV segmentation and track-
ing in RT3DE TTE is proposed. The proposed method is based on a previously
validated method for 3D LV segmentation in TTE to localize the region of interest
(ROI) in the image and the MV orientation. Segmentation of the MV is then per-
formed using BEAS, which is propagated along time using lAAOF, allowing for 4D
quantitative assessment of the MV.

A.2 Methodology

A.2.1 B-spline Explicit Active Surfaces

Given the nature of the object of interest, the B-spline representation of the MV
was created on a half-spherical coordinate system thus defining the active geometric
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Figure A.1: Conceptual description of the proposed segmentation and tracking
framework. After endocardial segmentation at ED, automatic initialization and
segmentation of the MV is performed (A). LVOT detection is then performed to
orient the MV (B). The lower frame shows the LV orientation according to the
RV insertion point (red arrow) and MV orientation according to the LVOT (green
arrow) as well as LVOT and right heart cavity (RH). After MV orientation the
MV is outlined by detecting the MA (C). The coaptation line is then detected (D),
separating the anterior and posterior leaflets (red and green). This segmentation is
then propagated to ES (E).

functions as r = ψ(φ, θ) for φ < 0. The angular discretization of the boundary
representation was empirically set to 24× 16 (elevation×azimuth) and the B-spline
scale to 22 for both angular coordinates.

A.2.2 Framework Description

A conceptual description of the proposed framework is shown in Figure A.1.

A.2.2.1 Mitral Valve Initialization

Due to the variability of the position and orientation of the MV in RT3DE TTE,
its localization in an automatic way is often challenging. As such, the initialization
used is based on the automatic LV segmentation framework presented in Chapter
5.

Taking advantage of the inherent BEAS structure of the segmented LV mesh,
the localized image intensity outside the LV surface can be analyzed at any mesh
point. This can be used to distinguish between LV mesh points that are close to the
myocardium (and thus with relatively high image intensity) and those that separate
the LV and LA blood pool (and thus with relatively low image intensity). An
image intensity map in the spherical domain according to the LV BEAS coordinate
system is shown in Figure A.2. Dynamic programming can then be used to find
the separation between points adjacent to the myocardium and those adjacent to
the blood pool according to the gradient of the image intensity map along the
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(a) (b) (c)

Figure A.2: MV initialization: (a) Map of mean intensity outside the LV mesh in spherical
domain (b) Longitudinal gradient map and path obtained with dynamic programming. (c)
Selected LV mesh section.

longitudinal direction. The base of the LV, as defined by dynamic programming, is
then used as the initial surface of the MV. The origin of the MV BEAS coordinate
system is defined 1cm below the LV base and oriented towards the LA roof (away
from the LV).

A.2.2.2 Mitral Valve Segmentation

The MV segmentation is performed in two stages. First, a threshold-based
evolution is performed given the fact that the MV initialization is based on the LV
base and not the MV leaflets themselves. As in other BEAS implementations, the
surface is evolved radially through equation 2.4 for

ḡ(x∗) =

{
1, if (uin>uout ∧ uin>T ) ∨ uin>1−T
0, otherwise

(A-1)

where uin and uout are the localized means inside and outside the MV surface and T
is a fixed threshold. Since no energy equation is defined, the evolution stops when a
maximum number of iterations Nit is reached or no further evolution of the surface
is found. It is expected that by the end of this segmentation step the surface is on
the LA side of the MV leaflets, preventing the surface from becoming trapped in
local minima on the LV side of the MV during the second segmentation stage.

In the second stage the Yezzi localized energy adapted in [165] (equation 2.11)
for endocardial segmentation is used to segment the MV leaflets since the blood pool
is expected to be darker than the MV leaflets. An example of MV segmentation
using BEAS is shown in Figure A.1 (second panel).
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(a) (b) (c)

Figure A.3: LVOT detection: (a) RT3DE slice at MA level; (b) Frangi vesselness filter
result at MA level; (c) Normalized average circumferential intensity profiles extracted
from image (blue) and Frangi vesselness filter (red) and point chosen as LVOT (black
cross). Angle θ is given from LV orientation at RV insertion point towards the right heart
(clockwise in slices (a) and (b)). Vertical colored lines in (c) indicate the angular positions
marked in slices (a) and (b).

A.2.2.3 Left Ventricle Outflow Tract Detection

To be able to extract clinical information from the segmented mesh, it is impor-
tant to orient the mesh according to the surrounding anatomical structures. While
an approximate orientation is obtained from the LV segmentation as the RV inser-
tion point position is known (Chapter 4), the MV is more easily oriented according
to the LVOT. Although typically the RV insertion point and LVOT are π/2 radians
apart, patient variability is significant.

LVOT detection is therefore performed according to: i) the mean intensity out-
side uout given that the blood pool in the LVOT is naturally dark; ii) a vesselness
filter as introduced by Frangi et al. [280] suited for the average LVOT size, em-
pirically set between 6 and 9mm. The circumferential direction between π/3 and
π with maximum vesselness− uout (where f stands for the maximum-normalized
value of f) is then selected as the LVOT direction as shown in Figure A.3.

A.2.2.4 Mitral Annulus Detection

Given the definition of BEAS in a half-spherical coordinate system it follows that
the surface obtained will be defined for any φ< 0. However, the MV is delineated
by the MA, which is saddle shaped. It can be observed in Figure A.1 that the lower
sections of the segmentation encompass the LA walls and the ascending aorta. These
sections thus need to be discarded by finding the MA, where the MV leaflets are
attached. Once again, the BEAS structure is used to retrieve uout. It is expected
that above the MA, where the uout is extracted across the MV leaflets into the
LV blood pool, the mean intensity will be low, whereas below the MA the uout is
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(a) (b) (c)

Figure A.4: MA detection example: (a) RT3DE slice at MA level; (b,c) Orthogonal long
axis slices after MA cropping of the MV mesh; (d) uout gradient map and path chosen
after dynamic programming. Angle θ is given from the MV orientation at LVOT away
from the right heart (clockwise in slice (a)). Colors of vertical lines in (b) and upper left
triangles in (c) indicate the angular positions marked in slice (a).

extracted from the LA walls and thus of high intensity. Based on this assumption,
dynamic programming can be used to separate these two regions based on the
gradient along the longitudinal direction.

However, uout is not a sufficiently reliable measure to delineate the MA, espe-
cially in the LVOT where the ascending aorta will also have low mean intensities
and the MA is defined at the AV. Furthermore, artifacts might change the intensity
profiles locally making this problem more challenging. As such, an intensive atlas
based approach is used based on a set of reference meshes (excluding the reference
from the patient being tested). The MV mesh is thus aligned to each of the refer-
ence meshes through an iterative closest point (ICP) algorithm taking into account
the LVOT orientation. Mean square distance is used to score the alignment to each
reference mesh and those with lower distance are selected. The reference MA path
of each of these meshes is then projected into the MV BEAS space, thus creating
a new map showing the reference MA paths. Summing this map to the uout gra-
dient map creates a single map representing both image intensity and shape-based
information, penalizing paths away from the reference MA paths. The highest prob-
ability path is selected using dynamic programming and used to crop the segmented
BEAS mesh and obtain the MV mesh as shown in Figure A.4.

A.2.2.5 Coaptation Line Detection

To extract further information on the MV anatomy it is important to separate
the two leaflets by detecting the coaptation line, where the two leaflets meet. As
proposed by Sotaquira et al. in [277], the distance of the mesh point to the MA
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(a) (b)

Figure A.5: Coaptation line detection example: (a) Coaptation line feature map and path
chosen after dynamic programming (b) Long axis slice after division into aortic (red) and
posterior (green) leaflets.

plane (i.e. the tenting height) was used as the coaptation line usually shows high
tenting values. Additionally, the mean intensity uout up to 4mm from the mesh was
found to be a good indicator of the coaptation as a slightly lower intensity region
is formed where the two leaflets meet. Finally, the position of the coaptation line
in the selected atlas meshes were also used by projection into the MV BEAS space
and penalizing the distance from the reference coaptation lines. A feature map was
created by multiplying normalized tenting height, normalized mean intensity and
the reference coaptation line map and this was used to estimate the coaptation line
using dynamic programming as shown in Figure A.5.

A.2.2.6 Mitral Valve Tracking

Finally, lAAOF is used to propagate the segmented MV across the systole al-
lowing for dynamic MV assessment.

A.3 Experiments

The proposed framework was validated on a subset of the CETUS challenge
data using manual MV references created in this study. Given that the CETUS
data was not optimized for MV assessment, 15 datasets were selected based on ad-
equate MV visualization. An expert contoured the MV in 8 longitudinal slices at
ED and ES in Speqle3D and spline interpolation in a spherical coordinate system
was used to generate a reference mesh. The automatic segmentation was evaluated
with MAD and HD. Clinical indices were extracted from the manual references and
automatic segmentation results for comparison, namely anterior-posterior (A-P)
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Table A.1: Performance (MAD and HD) of the MV segmentation. Values in mean
± standard deviation.

Time frame MAD (mm) HD (mm)

ED 1.19± 0.25 5.79± 1.25
ES 1.39± 0.32 6.70± 1.97

(a) (b)

Figure A.6: Regionwise plots of absolute distance for ED (a) and ES (b) MV segmentation.
Ao indicates the aortic valve; PMC and ALC indicate the posteromedial and anterolateral
commissures respectively; A1-3 and P1-3 indicate the anterior and posterior leaflet scallops.
Measures in mm.

diameter, anterolateral-posteromedial diameter (AL-PM) diameter, MA circumfer-
ence and MA area.

A.4 Results

Table A.1 shows the segmentation and tracking results for the proposed ap-
proach. Figure A.6 shows a regionwise analysis of error calculated as the absolute
distance at each mesh point to the reference mesh and plotted according to the
division of the MV into its two leaflets and the lateral, central and medial scallops.
A trend for worse performance can be observed around the annulus, accentuated
on the anterolateral side. Figure A.7 shows the best and worst MV segmentation
results at ED and ES compared to the manual references by the expert. Finally,
Figure A.8 shows the correlation between the clinical indices extracted from the
automatic and manual MV meshes.
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(a) (b)

(c) (d)

Figure A.7: Best (a,b) and worst (c,d) MV segmentation results compared to manual
contouring at ED (a,c) and ES (b,d). Manual contours shown in red and green for the
anterior and posterior leaflets respectively. Automatic segmentation results shown in blue
and yellow for the anterior and posterior leaflets respectively. The two orthogonal planes
shown for each RT3DE image were chosen according to the automatically defined LVOT
orientation.

A.5 Discussion

From Table A.1 it is clear that the proposed framework presents an excellent MV
segmentation and tracking performance. In the more specific regionwise analysis of
Figure A.6 it becomes clear that the most challenging is the MA definition. This
is a consequence not only of its very definition, which is prone to error, but of the
fact that, because the MA defines the end of the mesh, different MA definitions
in automatic and manual contours will directly lead to large absolute distances.
The trend towards a larger error on the anterolateral side might be a consequence
of the lower contrast observed in this region due to its proximity to the lungs.
Nevertheless, it can be observed in Figure A.8 that overall a good correlation is
found in the clinical indices considered with the exception of the A-P diameter at
ES where only moderate correlation is found.

In spite of the promising results, this study presents some limitations which must
be addressed in the future. First, the amount of data on which the framework was
validated and on which the atlas is based is quite limited and a larger dataset should
be considered to draw a more definite conclusion. Furthermore, populations with
specific MV pathologies should be targeted to assess the feasibility of this method.
Second, only the systolic phase is considered in this study. While MV dynamics are
generally considered to be more important during systole [281], assessment of the
complete MV dynamics would be interesting. However, the low frame rate (FR)
often obtained in RT3DE TTE can be a limiting factor when tracking the MV
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Figure A.8: Correlations between MV parameters at ED and ES obtained by manual
contouring and automatic segmentation.
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during diastole due to the very fast motion of the leaflets.

A.6 Conclusion

In this work, a novel automatic MV segmentation and tracking framework for
RT3DE TTE based on BEAS and lAAOF is proposed and validated. This tool
provides dynamic systolic MV assessment, allowing for the extraction of important
clinical parameters with good correlation to those obtained from manual assess-
ment.
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Schäfer, Georg Schummers, Arno Bücker, Peter Hanrath, and Andreas Franke. High-
resolution transthoracic real-time three-dimensional echocardiography: quantitation
of cardiac volumes and function using semi-automatic border detection and compar-
ison with cardiac magnetic resonance imaging. Journal of the American College of
Cardiology, 43(11):2083–2090, 2004.

[134] Carly Jenkins, Kristen Bricknell, Lizelle Hanekom, and Thomas H Marwick. Repro-
ducibility and accuracy of echocardiographic measurements of left ventricular param-
eters using real-time three-dimensional echocardiography. Journal of the American
College of Cardiology, 44(4):878–886, 2004.

[135] Lissa Sugeng, Victor Mor-Avi, Lynn Weinert, Johannes Niel, Christian Ebner,
Regina Steringer-Mascherbauer, Frank Schmidt, Christian Galuschky, Georg Schum-
mers, Roberto M Lang, et al. Quantitative assessment of left ventricular size
and function: side-by-side comparison of real-time three-dimensional echocardio-
graphy and computed tomography with magnetic resonance reference. Circulation,
114(7):654–661, 2006.

[136] Annemien E van den Bosch, Danielle Robbers-Visser, Boudewijn J Krenning,
Marco M Voormolen, Jackie S McGhie, Wim A Helbing, Jolien W Roos-Hesselink,
Maarten L Simoons, and Folkert J Meijboom. Real-time transthoracic three-
dimensional echocardiographic assessment of left ventricular volume and ejection
fraction in congenital heart disease. Journal of the American Society of Echocardio-
graphy, 19(1):1–6, 2006.

[137] Carly Jenkins, Jonathan Chan, Lizelle Hanekom, and Thomas H Marwick. Accu-
racy and feasibility of online 3-dimensional echocardiography for measurement of
left ventricular parameters. Journal of the American Society of Echocardiography,
19(9):1119–1128, 2006.



BIBLIOGRAPHY 175

[138] Osama II Soliman, Boudewijn J Krenning, Marcel L Geleijnse, Attila Nemes, Robert-
Jan van Geuns, Timo Baks, Ashraf M Anwar, Tjebbe W Galema, Wim B Vletter,
and Folkert J Ten Cate. A comparison between QLAB and TomTec full volume
reconstruction for real time three-dimensional echocardiographic quantification of
left ventricular volumes. Echocardiography, 24(9):967–974, 2007.

[139] Osama II Soliman, Boudewijn J Krenning, Marcel L Geleijnse, Attila Nemes, Jo-
han G Bosch, Robert-Jan van Geuns, Sharon W Kirschbaum, Ashraf M Anwar,
Tjebbe W Galema, Wim B Vletter, et al. Quantification of left ventricular vol-
umes and function in patients with cardiomyopathies by real-time three-dimensional
echocardiography: a head-to-head comparison between two different semiauto-
mated endocardial border detection algorithms. Journal of the American Society
of Echocardiography, 20(9):1042–1049, 2007.

[140] Jøger Hanseg̊ard, Stig Urheim, Ketil Lunde, Siri Malm, and Stein Inge Rabben.
Semi-automated quantification of left ventricular volumes and ejection fraction by
real-time three-dimensional echocardiography. Cardiovascular ultrasound, 7(1):18,
2009.

[141] Denisa Muraru, Luigi P Badano, Gianluca Piccoli, Pasquale Gianfagna, Lorenzo
Del Mestre, Davide Ermacora, and Alessandro Proclemer. Validation of a novel
automated border-detection algorithm for rapid and accurate quantitation of left
ventricular volumes based on three-dimensional echocardiography. European journal
of echocardiography, 11(4):359–368, 2010.

[142] Sebastiaan A Kleijn, Wessel P Brouwer, Mohamed FA Aly, Iris K Rüssel, Gerben J
de Roest, Aernout M Beek, Albert C van Rossum, and Otto Kamp. Comparison
between three-dimensional speckle-tracking echocardiography and cardiac magnetic
resonance imaging for quantification of left ventricular volumes and function. Euro-
pean Heart Journal–Cardiovascular Imaging, 13(10):834–839, 2012.

[143] Christopher A Miller, Keith Pearce, Peter Jordan, Rachel Argyle, David Clark,
Martin Stout, Simon G Ray, and Matthias Schmitt. Comparison of real-time three-
dimensional echocardiography with cardiovascular magnetic resonance for left ven-
tricular volumetric assessment in unselected patients. European Heart Journal–
Cardiovascular Imaging, 13(2):187–195, 2011.

[144] Paaladinesh Thavendiranathan, Shizhen Liu, David Verhaert, Anna Calleja, Adrien
Nitinunu, Thomas Van Houten, Nathalie De Michelis, Orlando Simonetti, Sanjay Ra-
jagopalan, Thomas Ryan, et al. Feasibility, accuracy, and reproducibility of real-time
full-volume 3D transthoracic echocardiography to measure LV volumes and systolic
function: a fully automated endocardial contouring algorithm in sinus rhythm and
atrial fibrillation. JACC: Cardiovascular Imaging, 5(3):239–251, 2012.

[145] Quan Bin Zhang, Jing Ping Sun, Rui Feng Gao, Alex Pui-Wai Lee, Yan Lin Feng,
Xiao Rong Liu, Wei Sheng, Feng Liu, and Cheuk-Man Yu. Novel single-beat full-
volume capture real-time three-dimensional echocardiography and auto-contouring
algorithm for quantification of left ventricular volume: validation with cardiac mag-
netic resonance imaging. International journal of cardiology, 168(3):2946–2948, 2013.

[146] Sung-A Chang, Sang-Chol Lee, Eun-Young Kim, Seung-Hee Hahm, Shin Yi Jang,
Sung-Ji Park, Jin-Oh Choi, Seung Woo Park, Yeon Hyeon Choe, and Jae K Oh.
Feasibility of single-beat full-volume capture real-time three-dimensional echocar-
diography and auto-contouring algorithm for quantification of left ventricular vol-
ume: validation with cardiac magnetic resonance imaging. Journal of the American
Society of Echocardiography, 24(8):853–859, 2011.



176 BIBLIOGRAPHY

[147] Kentaro Shibayama, Hiroyuki Watanabe, Nobuo Iguchi, Shunsuke Sasaki, Keitaro
Mahara, Jun Umemura, and Tetsuya Sumiyoshi. Evaluation of automated measure-
ment of left ventricular volume by novel real-time 3-dimensional echocardiographic
system: validation with cardiac magnetic resonance imaging and 2-dimensional
echocardiography. Journal of cardiology, 61(4):281–288, 2013.

[148] Wendy Tsang, Ivan S Salgo, Lyubomir Zarochev, Scott Settlemier, Nicole Bhave,
Juergen Weese, Irina Waechter-Stehle, Michael Cardinale, Aldo Prado, Lynn Wein-
ert, et al. Fully automated quantification of left ventricular and left atrial volumes
from transthoracic 3D echocardiography: a validation study. Journal of the Ameri-
can College of Cardiology, 61(10 Supplement):E904, 2018.

[149] Yuichi J Shimada and Takahiro Shiota. A meta-analysis and investigation for the
source of bias of left ventricular volumes and function by three-dimensional echocar-
diography in comparison with magnetic resonance imaging. American Journal of
Cardiology, 107(1):126–138, 2011.

[150] Jennifer L Dorosz, Dennis C Lezotte, David A Weitzenkamp, Larry A Allen, and
Ernesto E Salcedo. Performance of 3-dimensional echocardiography in measuring left
ventricular volumes and ejection fraction: a systematic review and meta-analysis.
Journal of the American College of Cardiology, 59(20):1799–1808, 2012.

[151] Thomas H Marwick. Application of 3D echocardiography to everyday practice:
Development of normal ranges is step 1*, 2012.

[152] Erlend Aune, Morten Bækkevar, Olaf Rødevand, and Jan Erik Otterstad. Reference
values for left ventricular volumes with real-time 3-dimensional echocardiography.
Scandinavian Cardiovascular Journal, 44(1):24–30, 2010.

[153] Kyoko Kaku, Masaaki Takeuchi, Kyoko Otani, Lissa Sugeng, Hiromi Nakai,
Nobuhiko Haruki, Hidetoshi Yoshitani, Nozomi Watanabe, Kiyoshi Yoshida, Yu-
taka Otsuji, et al. Age-and gender-dependency of left ventricular geometry assessed
with real-time three-dimensional transthoracic echocardiography. Journal of the
American Society of Echocardiography, 24(5):541–547, 2011.

[154] Shota Fukuda, Hiroyuki Watanabe, Masao Daimon, Yukio Abe, Akihiro Hirashiki,
Kumiko Hirata, Hiroshi Ito, Masumi Iwai-Takano, Katsuomi Iwakura, Chisato
Izumi, et al. Normal values of real-time 3-dimensional echocardiographic param-
eters in a healthy japanese population. Circulation Journal, 76(5):1177–1181, 2012.

[155] Navtej S Chahal, Tiong K Lim, Piyush Jain, John C Chambers, Jaspal S Kooner,
and Roxy Senior. Population-based reference values for 3D echocardiographic LV
volumes and ejection fraction. JACC: Cardiovascular Imaging, 5(12):1191–1197,
2012.

[156] Denisa Muraru, Luigi P Badano, Diletta Peluso, Lucia Dal Bianco, Simona
Casablanca, Gonenc Kocabay, Giacomo Zoppellaro, and Sabino Iliceto. Comprehen-
sive analysis of left ventricular geometry and function by three-dimensional echocar-
diography in healthy adults. Journal of the American Society of Echocardiography,
26(6):618–628, 2013.

[157] Katrina K Poppe, Robert N Doughty, and Gillian A Whalley. Redefining normal
reference ranges for echocardiography: a major new individual person data meta-
analysis. European Heart Journal–Cardiovascular Imaging, 14(4):347–348, 2012.

[158] Gillian Whalley. A meta-analysis of echocardiographic measurements of the left heart
for the development of normative reference ranges in a large international cohort:
the echonormal study. 2014.



BIBLIOGRAPHY 177

[159] Daniel Barbosa, Olivier Bernard, Oana Savu, Thomas Dietenbeck, Brecht Heyde,
Piet Claus, Denis Friboulet, and Jan D’hooge. Coupled B-spline active geomet-
ric functions for myocardial segmentation: A localized region-based approach. In
Ultrasonics Symposium (IUS), 2010 IEEE, pages 1648–1651. IEEE, 2010.

[160] Michael Unser. Splines: A perfect fit for signal and image processing. IEEE Signal
processing magazine, 16(6):22–38, 1999.

[161] Shawn Lankton and Allen Tannenbaum. Localizing region-based active contours.
IEEE transactions on image processing, 17(11):2029–2039, 2008.

[162] Jan Kybic and Michael Unser. Fast parametric elastic image registration. IEEE
transactions on image processing, 12(11):1427–1442, 2003.

[163] Tony F Chan and Luminita A Vese. Active contours without edges. IEEE Transac-
tions on image processing, 10(2):266–277, 2001.

[164] Daniel Barbosa, Brecht Heyde, Thomas Dietenbeck, Helene Houle, Denis Friboulet,
Olivier Bernard, and Jan D’hooge. Quantification of left ventricular volume and
global function using a fast automated segmentation tool: validation in a clinical
setting. The international journal of cardiovascular imaging, 29(2):309–316, 2013.

[165] Daniel Barbosa, Thomas Dietenbeck, Brecht Heyde, Helene Houle, Denis Friboulet,
Jan D’hooge, and Olivier Bernard. Fast and fully automatic 3-D echocardiographic
segmentation using B-spline explicit active surfaces: feasibility study and validation
in a clinical setting. Ultrasound in Medicine and Biology, 39(1):89–101, 2013.

[166] Marijn van Stralen, KY Esther Leung, Marco M Voormolen, Nico de Jong, Anto-
nius FW van der Steen, Johan HC Reiber, and Johan G Bosch. Time continuous
detection of the left ventricular long axis and the mitral valve plane in 3-D echocar-
diography. Ultrasound in medicine and biology, 34(2):196–207, 2008.
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