
Coherent Explicit Dictionary Application for Haskell
Thomas Winant

imec-DistriNet, KU Leuven

Belgium

thomas.winant@cs.kuleuven.be

Dominique Devriese

imec-DistriNet, KU Leuven

Belgium

dominique.devriese@cs.kuleuven.be

Abstract
Type classes are one of Haskell’s most popular features and

extend its type system with ad-hoc polymorphism. Since

their conception, there were useful features that could not

be offered because of the desire to offer two correctness

properties: coherence and global uniqueness of instances.

Coherence essentially guarantees that program semantics

are independent from type-checker internals. Global unique-

ness of instances is relied upon by libraries for enforcing, for

example, that a single order relation is used for all manipu-

lations of an ordered binary tree.

The features that could not be offered include explicit

dictionary application and local instances, which would be

highly useful in practice. In this paper, we propose a new

design for offering explicit dictionary application, without

compromising coherence and global uniqueness. We intro-

duce a novel criterion based on GHC’s type argument roles

to decide when a dictionary application is safe with respect

to global uniqueness of instances. We preserve coherence

by detecting potential sources of incoherence, and prove it

formally. Moreover, our solution makes it possible to use lo-

cal dictionaries. In addition to developing our ideas formally,

we have implemented a working prototype in GHC.

CCSConcepts •Theory of computation→Type struc-
tures; • Software and its engineering→ Functional lan-
guages;

Keywords Haskell, type classes, dictionaries, coherence

ACM Reference Format:
Thomas Winant and Dominique Devriese. 2018. Coherent Explicit

Dictionary Application for Haskell. In Proceedings of the 11th ACM
SIGPLAN International Haskell Symposium (Haskell ’18), September
27-28, 2018, St. Louis, MO, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3242744.3242752

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00

https://doi.org/10.1145/3242744.3242752

1 Introduction
Haskell’s type class mechanism, introduced by Wadler and

Blott [19], is a powerful abstraction providing a disciplined

form of ad-hoc polymorphism. A type class consists of a

number of methods that may be implemented differently

for different types. For example, the following Eq type class

defines a single method (==) which determines when two

values of a type a are equal and the instance declaration

instantiates the method for argument type Int.

class Eq a where (==) :: a→ a→ Bool

instance Eq Int where (==) = ...

We can also define that a Person, consisting of a name (String)
and a Social Security number (Int), is equal to another Person
when the Social Security numbers are equal:

data Person = Person {name :: String, ssn :: Int }

instance Eq Person where (p1== p2) = (ssn p1== ssn p2)

Another function f can then freely use the type class’s meth-

ods on arbitrary types, as long as (1) an instance is defined

for those types, or (2) the burden is passed to f ’s caller by an-
notating a type class constraint in f ’s type. Such a constraint

specifies that f can only be used on types implementing

the type class. Type class instances are resolved implicitly,

freeing the programmer from passing the right instance each

time a type class constraint is used. For example, two Persons
can be checked for equality as follows:

> Person "Arnold" 2 == Person "Bernard" 2

True

However, since the introduction of the type class mecha-

nism there has been an important restriction: only one type
class instance per type is allowed and it is not possible to

resolve type class constraints with alternative instances. Al-

though this restriction was introduced for good reasons (see

below), it is also one that programmers often bump into.

Take, for example, the Semigroup type class which models

an algebraic structure with an associative binary operation:

class Semigroup a where (⋄) :: a→ a→ a

For integer numbers (Integer), a wide variety of useful in-

stances exist:

instance Semigroup Integer where (⋄) = (+)
instance Semigroup Integer where (⋄) = (×)
instance Semigroup Integer where x ⋄ y = x + y m̀od` 10

https://doi.org/10.1145/3242744.3242752
https://doi.org/10.1145/3242744.3242752

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

The last example uses addition modulo 10, but ideally a pa-

rameter would be used for this instead of hard-coding it to

10. Unfortunately, Haskell only allows a single instance for

Semigroup Integer .
Over the years, a number of workarounds and partial so-

lutions have been proposed for this instance uniqueness

restriction. For example, one workaround is based on the

idea of defining newtype wrapper types that are identical to
an underlying type, except that they have different type class

instances. Another workaround is to define copies of ad-hoc

polymorphic functions that avoid type classes and instead

take method implementations as explicit arguments, for ex-

ample sortBy as an alternative for sort in the Haskell Prelude.

Perhaps the most general workaround was proposed by Kise-

lyov and Shan [11], in the form of a primitive for generating

a fresh local type for which arbitrary instances can then be

defined. This last workaround has the advantage that the

instances can be defined in terms of values that are only

available locally. Unfortunately, all of these workarounds are

cumbersome to use and require boilerplate code like wrapper

type definitions or instances for artificial types.

Existing proposals for adding explicit dictionary instan-

tiations or local instances in the context of Haskell have

failed to gain adoption [7, 10]. One reason is that they break

one or both of the following two important properties of

Haskell: coherence and global uniqueness of instances. The
former, coherence, is a general sanity property related to

type-inference performed by compilers: it states that when-

ever a type system can derive more than one valid typing

derivation for a given piece of code, this choice should not

influence the behaviour of the code. In other words, a pro-

grammer must be able to freely ignore the internal workings

of type inference and trust that their code’s behaviour does

not depend on any choices the type inferencer makes.

The property of global uniqueness of instances (also known

as class or instance coherence) is more Haskell-specific: some

existing Haskell code relies on the property that a given type

class will only ever be instantiated in a single way for a given

type. For example, the Haskell containers package defines
an abstract type of finite sets (implemented using balanced

search trees), which can be used for any type of elements

a for which Ord a is defined. The functions in this library

all have an Ord a constraint, but their correctness relies on
the fact that the same Ord a instance will be used for every

operation on any given set. For example, one can easily break

the search tree invariant of a Set, by using Data.Set.insert
with different Ord a instances.

1.1 Contributions and Outline
In this paper, we propose a new form of explicit dictionary

instantiation that preserves coherence and that is safe with

respect to global uniqueness of instances, but can be directly

applied to common use cases. More concretely, we contribute

the following:

We propose a design for explicit dictionary instantiation

in Haskell, with the following desirable characteristics:

• It directly applies to most use cases we found in the

literature and libraries.

• It is relatively easy to implement and avoids modifying

the constraint solver.

• Explicit dictionaries are allowed to mention local vari-

ables, i.e. we provide the expressiveness of local in-

stances.

• It is coherent and does not break code relying on global

instance uniqueness (see below).

We also propose two (optional) features that complement

our design and provide useful expressive power:

• A way to obtain the dictionary for an implicitly re-

solved constraint,

• Dictionary instances: a way to implement an instance

by providing a dictionary.

We discuss the design in Section 2 and formalise it in Sec-

tion 3. A core part of our design is a criterion that detects

when an explicit dictionary application can be allowed with-

out compromising coherence. In Section 5, we explain the

criterion and formally prove coherence. The proof is itself

technically novel: it is based on prior work, but avoids the

complexity of an algorithmic typing relation or constraint

solver. The full proof can be found in [20].

Section 4 presents a novel criterion that detects when an

explicit dictionary application can be safely allowed without

breaking existing code that relies on global instance unique-

ness. The criterion uses GHC roles and we show informally

that it prevents breaking existing code that relies on global

instance uniqueness. Specifically, we demonstrate that any

explicit dictionary application can be simulated (at the cost of

readability and additional boilerplate) by regular code using

newtypes, regular type class instances and safe coercions [3].

We have a prototype implementation in GHC of our pro-

posal to demonstrate its practical use, see Section 6. While

it is not polished enough for production use, it successfully

compiles all the examples shown in this paper.
1

Finally, we discuss some applications in Section 7, related

work in Section 8, and we conclude in Section 9.

2 Our Proposal in More Detail
In this section, we discuss syntactic elements of our pro-

posed Haskell extension. These are discussed first for ease

of presentation, but they are not the most innovative parts

of our proposal (those are the safety criterions, discussed in

the next sections). All syntactic aspects should be considered

tentative as there may still be syntactic conflicts with other

features or similar problems that we have not noticed.

1
For brevity, some details were omitted in the paper. The full code can be

found at https://github.com/mrBliss/ghc.

https://github.com/mrBliss/ghc

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

2.1 Exposing Type Class Dictionaries
First, we expose the dictionary records that the compiler

generates, to the user. Consider a classC a with superclasses

Csuper and methodsm with types σ , where a horizontal bar
is used to indicate that there can be zero or more:

class Csuper ⇒ C a where m :: σ

The following dictionary record is then exposed to the user:

data C.Dict a = C.Dict {parenti :: Csuper.Dict,m :: σ }

• As type classes and data types are in the same names-

pace, and the type class and data type have different

kinds (... → Constraint vs ... → Type), we cannot

reuse the name C for the dictionary. Therefore, we cur-

rently opt for appending .Dict to the type class name.

While there is no such conflict for the dictionary data

constructor, we use the same suffix for consistency.

• Following GHC’s dictionary translation, superclasses

are translated to additional fields with as types the

corresponding superclass dictionaries. For simplicity,

we currently just use parent1, parent2, ... as the names

for these fields where the order is determined by the

superclass order in the type class declaration. This re-

quires the -XDuplicateRecordFields extension, as

each type class with a superclass will have a field

named parent1.
• Following GHC, a newtype is used in case of a single

method.

• Currently, default methods and the MINIMAL pragma

are ignored, so implementations for all methods have

to be provided when creating a new dictionary. In

practice, one can define smart constructors to make

life easier. It should be possible to provide the ability

to fill in the missing fields of a dictionary record based

on the provided fields by reusing the existing default

methods machinery.

• We do not generate field projections for the dictionary

records, as these would conflict with the type class

methods. One can use pattern-matching to extract the

fields, or use the class methods in combination with

explicit dictionary application.

• Associated types [5] are not supported (yet).

2.2 Explicit Dictionary Application
The second part of our proposal is to provide syntax to ex-

plicitly pass a dictionary to a function expecting one. The

syntax we have chosen for now is the following:

e @{edict}

For example, consider the Prelude function nub :: Eq a ⇒
[a] → [a], which removes duplicates from a list. To make a

case-insensitive version for Strings, one can write:

eqOn :: Eq b⇒ (a→ b) → Eq.Dict a
eqOn f = Eq.Dict {(==) = λv1 v2 → f v1== f v2 }

nubCI :: [String] → [String]
nubCI = nub @{eqOn (map toLower)}

In case of ambiguity, i.e. when there are multiple constraints

of the same type class in the context, an annotation is needed.

For example, consider the following program:

eqTuple :: (Eq a, Eq b) ⇒ (a, b) → (a, b) → Bool
eqTuple (a1, b1) (a2, b2) = a1== a2 && b1== b2

alwaysEq :: Eq.Dict t
alwaysEq = Eq.Dict (λ → True)

> eqTuple @{alwaysEq} (True, 1) (True, 2)

Should the alwaysEq dictionary be used for Eq a or Eq b?
To disambiguate such cases, we allow the user to annotate

the constraint to which the dictionary should be passed. The

syntax we suggest for this is as follows:

e @{edict as C a}

Where C a is the constraint in the context of the type of e to
which the dictionary should be passed. For example:

> eqTuple @{alwaysEq as Eq b} (True, 1) (True, 2)
True

Note that the annotation mentions the original constraint,

not the instantiated constraint (Eq Int in this case).

To prevent ambiguities, we also cannot allow explicit dic-

tionary applications to terms whose type is inferred. Con-

sider the following example:

let eqTuple (a1, b1) (a2, b2) = (a1== a2, b1== b2)
in eqTuple @{alwaysEq as Eq b} (True, 1) (True, 2)

The annotation is needed, as there is ambiguity because of

the two Eq constraints. However, the inferred type of the

local eqTuple binding could be any of the following:

(Eq a, Eq b) → (a, b) → (a, b) → Bool
(Eq a, Eq b) → (b, a) → (b, a) → Bool
(Eq t1, Eq t2) → (t1, t2) → (t1, t2) → Bool

If the first type were inferred, the result of the program

would be True. In case of the second type, False. In case of

the third type, the explicit dictionary application would not

even be used at all. As the programmer cannot predict the

type variables chosen during type inference, we require that

the type signature of e be specified. This can be done simply

by writing a type signature, or by annotating the expression

itself with its type. This is very similar to the requirement

that types should be specified when using explicit type ap-

plications in GHC [8].

Past proposals have often focused on declaring multiple

named top-level instances or (nested) local instances [7, 10].

We have intentionally taken a different approach, namely

that of explicit dictionary application. An important reason

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

for this is that we do not have to touch the constraint solver

in any way. All the complexity is concentrated in the explicit

dictionary application construct, instead of permeating the

whole constraint solver. As the constraint solver is a complex

beast [18], not having to modify it minimises the cost of our

proposal. Additionally, explicit dictionary application and

the ability to construct the right dictionary is more explicit

and flexible than bringing the right instances in scope. The

loss of usability is limited and, in our opinion, acceptable for

a feature that we expect to be used sparingly.

This choice also prevents a problem described in previous

work [7, 11, 19], namely the loss of principal types in the

presence of local instances:

f = let instance Eq Int where ... in (==)

Two different types can be inferred for f : either Eq a⇒ a→
a→ Bool (ignoring the local instance) or Int → Int → Bool.
Neither type is more general than the other, and there is

no principal type for f . If we translate this program to our

proposal, we get:

f = let eqInt = Eq.Dict ... in (==)

As the programmer does not explicitly apply the dictionary,

we can assign the type Eq a ⇒ a → a → Bool to f . If the
programmer wants to use the local dictionary, (s)he must

explicitly pass it, and we end up with the instantiated type.

By forcing the programmer to be more explicit, we avoid

this whole issue.

2.3 Dictionary Instances and Instance Dictionaries
A third, optional, part of our proposal are dictionary instances,
which define a global instance based on a dictionary record

instead of implementing all methods. This idea was inspired

by [7]. For example, recall the instance declaration for Person
we defined before. That instance can be defined more con-

cisely as a dictionary instance:

instance Eq Person = eqOn ssn

The general syntax is (where TC is a type class, see Fig. 2):

instance Ccontext ⇒ TC τ = e

This powerful construct allows for greater code reuse when

writing instances declarations. It generalises the default sig-
natures and generalised newtype deriving features of GHC. In

fact, the functionality of deriving via [1] can be replicated us-

ing this construct. Consider the following example from [1]

that defines an Arbitrary instance for the Year type:

newtype Between (l :: Nat) (u :: Nat) = Between Integer

instance (KnownNat l,KnownNat u)
⇒ Arbitrary (Between l u) where
arbitrary = Between ⟨$⟩ choose (natVal @l Proxy,

natVal @u Proxy)

newtype Year = Year Integer
deriving Arbitary via (Between 1900 2100)

We can define the same instance using a dictionary instance:

between :: Integer → Integer → Arbitrary.Dict Integer
between lower upper = Arbitrary.Dict
{arbitrary = choose (lower, upper)
, shrink = const []}

newtype Year = Year Integer

instance Arbitrary Year = coerce (between 1900 2100)

For more applications of this construct, see Section 7.

An odd aspect of dictionary instances (and the reason we

keep it as an optional part of our proposal) is that it intro-

duces the possibility of top-level instances that are not values

or trivially-terminating functions. In fact, there is nothing to

guarantee that the dictionary term in a dictionary instance

will even terminate. We are not sure how to handle this:

insert the unevaluated dictionary term during elaboration or

perhaps termination-check and/or normalise the dictionary

term somehow? More investigation and feedback from the

community seems needed before committing to this feature.

A second optional feature we propose is a way to obtain

the dictionary for an implicitly-resolved constraint, similar

to the query operator (“?”) from the implicit calculus [13].

This proposal is optional because details still need to be

worked out. It is often useful to obtain the dictionary for an

implicit constraint and we can already manually implement

functions like the following:

eqDict :: Eq a⇒ Eq.Dict a
eqDict = Eq.Dict {(==) = (==)}

However, the compiler should be able to help avoid such

boilerplate. Specifically, we imagine it could provide a type

class with a method getDict and an associated type DictOf ,
that convert a type class constraint to its corresponding

dictionary data type:

class HasDict (c :: Constraint) where
type DictOf c :: Type
getDict :: c ⇒ DictOf c

The getDict function can be implemented at GHC Core level

as a cast. We would forbid the programmer to provide in-

stances of this type class, but instead make the compiler

auto-generate them for declared type classes, for example:

instance HasDict (Functor f) where
type DictOf (Functor f) = Functor .Dict f
getDict = ...

2.4 Local Instances
It is worth pointing out that our explicit dictionaries can be

local: they are allowed to reference variables from the local

environment. For example, we can parameterise a Semigroup

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

υ ::= a | υ1 → υ2 | ∀a.υ | TC.Dict υ Type
t ::= x | λ(x :υ). t | t1 t2 | Λa. t | t υ Term
tev ::= d | tev υ tev Evidence term
Γυ ::= ϵ | (x :υ), Γυ | a, Γυ Typing environment
η ::= [·] | [d 7→ tev,η] Dictionary evidence

substitution
d Dictionary evidence variables
fdv (·) Free dictionary variables

Fig. 1. Syntax of the target language

dictionary over the modulo factor and the underlying opera-

tion (alternatively, the second parameter could be a Semigroup
dictionary instead of a binary function):

modSemigroup :: Integer → (Integer → Integer → Integer)
→ Semigroup.Dict Integer

modSemigroup n op =
Semigroup.Dict (λx y → (x ‘op‘ y) m̀od` n)

Local instanceswere originally forbidden because they caused

problems for coherence, althoughworkarounds and restricted

versions have been proposed in the past [7, 11].

3 Formalisation
To precisely describe explicit dictionary application, we use

a formalisation of Haskell based on previous work [4, 18].

Besides type-checking rules, we also present elaboration
rules, which detail the translation from the source language

to the target language, System F. In practice, GHC’s target

language is GHC Core, but as our formalisation does not

include local assumptions, kinding, type families, etc., we

restrict ourselves to System F. During elaboration things im-

plicit in the source language, e.g. the passing of dictionaries

(dictionary translation), and type abstraction and application,

are made explicit in the target language. We use the term

evidence for dictionary instances in the target language.

We first present the simple target language, then the source

language along with the elaboration from the latter to the for-

mer. Parts marked in red are only relevant for the elaboration

and can be ignored until Section 3.4.

Both languages have the following syntax in common:

x ,y, f Variables
a,b Type variables (skolems)
TC Type classes

A type class (TC) does not include its type arguments, e.g.,

Eq is a TC, Eq a not. For simplicity, we only consider type

classes with exactly one argument.

3.1 Target Language
Fig. 1 shows the mostly standard syntax of the target lan-

guage, System F. The type TC.Dict υ is the type of the dic-

tionary record corresponding to a type class TC υ. Note that

τ ::= a | τ1 → τ2 | TC.Dict τ Monotype
ρ ::= C ⇒ ρ | τ Qualfied type
σ ::= ∀a. σ | ρ Type scheme
C ::= TC τ Type-class constraint
Q ::= ϵ | Q1 ∧Q2 | tev :C Constraints
A ::= ∀a. C ⇒ C Axiom scheme
Q ::= ϵ | Q1 ∧ Q2 | tev :A Top-level axiom scheme
e ::= x | λx . e | e1 e2 | e1 @{e2 as TC a} Term
Γ ::= ϵ | (x :σ), Γ | a, Γ Typing environment

ftv (·) Free type variables

Fig. 2. Syntax of the source language

dictionary evidence variables (d) are also variables, we sim-

ply use a different letter for clarity. To explain evidence terms

(tev), consider the following program in the source language:

f :: Eq a⇒ Maybe Int → a→ a→ Bool
f mbN x y = mbN == Just 1 && x == y

This will be elaborated to the following program in the target

language:

f = Λa. λ(d :: Eq.Dict a). λ(mbN :: Maybe Int).
λ(x :: a). λ(y :: a).
(&&)

((==) (Maybe Int) ($fEqMaybe Int $fEqInt)
mbN (Just Int 1))

((==) a d x y)

Note that type abstraction and application are now explicit,

the types of binders are annotated, and dictionary evidence
is abstracted over and applied. For example, the dictionary

evidence variable d of type Eq.Dict a represents the evidence
that a implements the Eq type class, i.e. the dictionary record
containing the implementations of the methods. In the equal-

ity check of mbN and Just 1, the composed evidence term

($fEqMaybe Int $fEqInt), found by the constraint solver, is

used, where $fEqMaybe and $fEqInt correspond to the evi-

dence terms produced by the respective global instances:

instance Eq a⇒ Eq (Maybe a) where ...

instance Eq Int where (==) = ...

Note that evidence terms are simply a subset of terms.

For brevity, we defer the standard typing rules of the target

language to a companion technical report [20].

3.2 Source Language
Fig. 2 shows the syntax of the source language, based on [4,

18]. We omit parts that are not important with regards to

explicit dictionary application: case expressions, let bindings,
equality constraints, etc. The top-level axiom scheme (Q)

contains instance declarations, for example:

($fEqMaybe :∀a. Eq a ⇒ Eq (Maybe a)) ∧

($fEqInt : Eq Int)

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

Q ; Γ ⊢ e :σ⇝ t Q ; a, Γ ⊢ e :σ⇝ t a < ftv (Q, Γ)

Q ; Γ ⊢ e :∀a. σ⇝ Λa. t
∀i Q ; Γ ⊢ e :∀a. σ⇝ t τ ⇝

τ
υ

Q ; Γ ⊢ e : [a 7→ τ]σ⇝ t υ
∀e

d :C ∧Q ; Γ ⊢ e : ρ⇝ t C ⇝
C

υ d < fdv (Q)

Q ; Γ ⊢ e :C ⇒ ρ⇝ λ(d :υ). t
⇒i

Q ; Γ ⊢ e :C ⇒ ρ⇝ t Q ∧Q ⊩ tev :C

Q ; Γ ⊢ e : ρ⇝ t tev
⇒e

(x :σ) ∈ Γ

Q ; Γ ⊢ x :σ⇝ x
Var

Q ; (x :τ1), Γ ⊢ e :τ2⇝ t τ1 ⇝
τ
υ1

Q ; Γ ⊢ λx . e :τ1 → τ2⇝ λ(x :υ1). t
Abs

Q ; Γ ⊢ e1 :τ1 → τ2⇝ t1 Q ; Γ ⊢ e2 :τ1⇝ t2

Q ; Γ ⊢ e1 e2 :τ2⇝ t1 t2
App

Q ; Γ ⊢
spec

e1 :∀b1ab2. (C1, TC a,C2) ⇒ τ1⇝ t1 τ2 ⇝
τ
υ2

Q ; Γ ⊢ e2 : TC.Dict τ2⇝ t2 [a 7→ τ2]C1 ⇝
C

υ1

Q ; Γ ⊢ e1 @{e2 as TC a} :∀b1b2. [a 7→ τ2]((C1,C2) ⇒ τ1)⇝ Λb1b2. λ(d :υ1). t1 b1 υ2 b2 d t2
DictApp

Q ; Γ ⊢
spec

e :σ⇝ t
Q ; Γ ⊢ e :σ⇝ t

The type of e is specified to be σ
The principal type of e is unambiguous

Q ; Γ ⊢
spec

e :σ⇝ t
Spec

Q ; Γ ⊢
top

e :σ⇝ t Q ; Γ ⊢ e :τ⇝ t Q ∧ d :C ⊩ Q ; η

a = ftv (C,τ) C ⇝
C

υ

Q ; Γ ⊢
top

e :∀a.C ⇒ τ⇝ Λa. λ(d :υ).η(t)
Top

Fig. 3. Declarative typing rules of the source language

Any class constraint C can be considered a degenerate axiom

scheme A with a and C empty. Similarly, any Q can be con-

sidered a degenerate Q. We use C1 ⇒ C2 ⇒ . . .⇒ Cn ⇒ τ ,

(C1,C2, . . . ,Cn) ⇒ τ , or C ⇒ τ when convenient, all three

forms mean the same.

3.3 Type Checking
The typing rules depend on the constraint entailment rela-
tion [18]: Q ⊩ Q . This relation can be read as: “from the

top-level axiom scheme Q, we can derive the constraints Q .”

Following OutsideIn(X), we leave the details of entailment

deliberately unspecified, because it is a parameter of the type

system [18]. Compared to OutsideIn(X), we extend this re-

lation to produce evidence for each entailment, i.e. the tev
in tev :C , which we will use to elaborate typing judgements.

For example:

($fEqMaybe :∀a. Eq a ⇒ Eq (Maybe a)) ∧

($fEqInt : Eq Int)

⊩ $fEqMaybe Int $fEqInt : Eq (Maybe Int)

We now present the declarative typing rules of the source

language in Fig. 3. The typing judgment can be read as: “un-

der assumptions Q and in context Γ, term e has type σ .”
Except for the new DictApp rule, the rules are standard and

based on [4]. We derive polytypes σ instead of just mono-

types τ because the DictApp rule requires polytypes.

Let us now discuss the new DictApp rule. For simplicity,

the annotation “as TC a” is mandatory in the formalisation,

whereas it is optional in the implementation when there

is only one constraint in the context matching the type of

the dictionary. As discussed in Section 2.2, the type of e1,

to which the dictionary will be passed, must be specified.

This is expressed using the Q ; Γ ⊢
spec

e : σ⇝ t judgment.

This judgment also states that the principal type of e must

be unambiguous, a requirement that is needed for coherence

(even without explicit dictionary application), see Section 5.2.

The type class constraint (TC a) to which a dictionary is

passed may occur at any place in the type class context of e1.

The same is true for the corresponding type variable (a). This

is captured by the zero or more constraintsC1 andC2 coming

before and after the type class constraint in question, and

the zero or more type variables b1 and b2 coming before and

after the type variable in question. The dictionary e2 must

have a type (TC.Dict τ2), matching the type class of the

constraint. After passing the dictionary, the type variable

a is instantiated with τ2 and the constraint in question is

removed from the type class context. For simplicity, multiple

explicit dictionary applications cannot be chained one after

the other in the formalisation, but this is supported in the

implementation.

Top-Level Typing The judgment for top-level terms can

be read as “under top-level axiom scheme Q and in context Γ,
term e has type σ .” Compared to the regular typing judgment,

we make sure no free type variables occur by quantifying

over them. We require a monotype τ to be derived for e even
though the judgment can derive a polytype σ . Using the rules
∀e and⇒e, every polytype can be instantiated to amonotype.

Also, the top-level axiom scheme (Q) is used to simplify the

required constraints. For example, if e assumes Eq (Maybe a)
and Q contains the axiom ∀a. Eq a ⇒ Eq (Maybe a), we
want to qualify over the “extra information” needed to satisfy

the assumption, i.e. Eq a, as:

($fEqMaybe :∀a. Eq a ⇒ Eq (Maybe a)) ∧ (d : Eq a)

⊩ d ′ : Eq (Maybe a) ; [d ′ 7→ $fEqMaybe a d]

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

Algorithmic Typing Rules We omit algorithmic typing

rules as they are standard [4, 18] and the algorithmic variant

of DictApp can easily be derived from the declarative one.

3.4 Elaboration
We now turn to the matter of elaborating programs in the

source language into programs in the target language. This

translation is characterised by the typing rules in Fig. 3,

marked in red. We use an additional judgment to elaborate

types (τ ⇝
τ
υ), constraints (C ⇝

C
υ), . . . from the source to

the target language. For example, to elaborate a constraint

to the target language, we have the following rule:

τ ⇝
τ
υ

TC τ ⇝
C TC.Dict υ

Constraint

As the judgment is defined by straightforward inductive

rules, we omit it here, but it can be found in [20].

In Fig. 3, we see that the type of the binder is made explicit

in Abs. Type abstractions and applications become explicit

in ∀i and ∀e. Evidence abstractions and applications become

explicit in⇒i and⇒e.

The elaboration in DictApp is more elaborate, as type

variables and constraints must be rearranged. Consequently,

type and evidence abstractions and applications must be

added to align the resulting type with the resulting term,

i.e. the type υ2 must be applied before b2 are applied and t2
must be applied after the d corresponding with C1. We have

η-reduced the evidence abstractions and applications corre-

sponding with C2. The crux of the rule is that t2, the term
corresponding to the dictionary, is passed as an evidence

argument to t1.
In the Top rule, note the “; η” in the entailment, where η is

a dictionary evidence substitution. Let us explain this with

an example, say we have that:

(d ′ : Eq (Maybe a)) ; ((x :Maybe a),a) ⊢ (==) x x :Bool

⇝ (==) (Maybe a) d ′ x x

When simplifying Q , in this case (d ′ : Eq (Maybe a)), as
demonstrated at the end of Section 3.3, we getd :C = d : Eq a.
However, the elaborated term t still contains the dictionary
variable d ′. Therefore, we must substitute the original dictio-

nary variable d ′ with the simplified evidence $fEqMaybe a d .

4 Global Uniqueness of Instances
A major reason why past proposals have not been adopted

is that they broke existing code that relies on global unique-

ness of instances. The standard example of this, and the

most-heard counterargument against allowing multiple in-

stances or explicit dictionary application, are the Set and
Map abstract data types. These data types use ordered bi-

nary trees under the hood, and their implementation relies

on the fact that the same Ord instance is passed for each

operation manipulating them. Let us show in more detail

how an explicit dictionary application can cause problems

for the Set example from the introduction:

insert :: Ord a⇒ a→ Set a→ Set a
empty :: Set a

reverseOrd :: Ord a⇒ Ord.Dict a
reverseOrd = Ord.Dict {compare = flip compare }

> insert @{reverseOrd} 1 (insert 1 (insert 2 empty))
fromList [1, 2, 1]

We insert 2 and 1 into an empty set using the default in-

stance of Ord, before we insert 1 again, but this time using a

dictionary for Ord that reverses the ordering. The resulting

set contains the element 1 twice, violating the invariant that

each element occurs at most once.

In our proposal, we want to forbid the above explicit dic-

tionary application insert @{reverseOrd}. A similar case that

we want to allow is the case-insensitive nub we saw before:

nubCI :: [String] → [String]
nubCI = nub @{eqOn (map toLower)}

The nubmethod does not rely on global instance uniqueness,

so this dictionary application is harmless.

Our proposal is to restrict explicit dictionary application

using a criterion that distinguishes harmful cases from harm-

less ones. To understand how we make this distinction, it is

useful to consider what we call the “newtype translation” of

explicit dictionary application, a way to simulate the explicit

dictionary translation using wrapper newtypes.

4.1 Newtype Translation
Let us first translate the safe nubCI example:

newtype W a = W a

instance Eq (W String) where
(==) = coerce $ λw1 w2 →
map toLower w1==map toLower w2

We first define a newtype W , with the desired Eq instance.
The desired equality for Strings is converted to work on

W Strings using the function coerce [3]. This function con-

verts between a newtype and its wrapped type without run-

time cost, even when the newtype is nested in a bigger type,

e.g., aW String → W String → Bool can be coerced from/to

a String → String → Bool. Alternatively, this instance could
be written as a dictionary instance:

instance Eq (W String) = coerce (eqOn (map toLower))

Now we can define nubCI ′, which invokes nub at type W
String so that the custom instance of Eq is used, and then co-

erces the resulting function of type [W String] → [W String]
back to [String] → [String].

nubCI ′ :: [String] → [String]
nubCI ′ = coerce (nub @(W String))

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

This program type-checks and works as expected:

> nubCI ′ ["Foo", "foo", "bar", "bar"]
["Foo", "bar"]

Now let us try the same translation for the unsafe program:

newtype W a = W a deriving Eq

instance Ord a⇒ Ord (W a) where
compare = coerce (flip (compare @a))

Or, alternatively:

instance Ord a⇒ Ord (W a) = coerce (reverseOrd @a)

Like before, we define insertRev ′ to call insert at type W a
with the custom Ord instance, and coerce the resulting func-

tion of type W a → Set (W a) → Set (W a) back to a

a→ Set a→ Set a:

insertRev ′ :: ∀a. Ord a⇒ a→ Set a→ Set a
insertRev ′ = coerce (insert @(W a))

Interestingly, this program does not type-check! We get the

following type error:

Couldn’t match type ‘a’ with ‘W a’ arising
from a use of ‘coerce’

The reason for this is that the coercion is not allowed by

GHC because the type parameter of the Set data type has
role Nominal. This means that a Set a can only be coerced

to a Set b if a is nominally equal to b, i.e. they are the exact

same type. The types a andW a are only Representationally
equal, as they have the same run-time representation, but

are not the same exact type. In the nubCI example, the type

[String] can be coerced to [W String], as the type parameter

of the list data type has role Representational. This is why
the nubCI ′ function type-checked.

Set and Map are mentioned in [3] as an example where

library authors must assign the correct roles to the type

arguments to prevent abusive coercions that produce invalid

sets or maps. Our insight is that the problemwe are facing, of

distinguishing safe from unsafe cases of explicit dictionary

application, is related to the problem faced by the authors of

[3] (which motivated the introduction of roles in GHC). The

fact that the newtype translation of the safe case type-checks

and that the newtype translation of the unsafe case did not

type-check, demonstrates that we can reduce our problem

to the problem of safely coercing between (new)types and

reuse their solution (roles) for constructing our criterion.

4.2 Role Criterion
Although this newtype translation could in principle be used

by the compiler as an implementation technique for explicit

dictionary application,
2
we prefer the much simpler solution

of passing the custom dictionary as evidence at the level

of GHC Core, as shown in Section 3.4. However, we use

2
Except for the fact that dictionaries referring to the local environment

cannot be newtype translated.

the newtype translation to construct a role criterion that

will check safety without actually performing the newtype

translation in practice.

Say we want to pass a dictionary for the type class con-

straint TC a to a function with the following type:

∀b1ab2. (C1, TC a,C2) ⇒ τ1

This is safe iff a has role ρ ≤ Representational (i.e. Phantom
orRepresentational) in τ1, in TC.Dicta and in all constraints
in C1 ∧C2 that mention a. Particularly, a may not occur in

any equality constraints in C1 ∧C2 and their superclasses to

prevent programs like the following:

naughtyInsert :: (Ord a, a ∼ b) ⇒ a→ b→ Set b→ Set b
naughtyInsert = insert

These conditions must be included in the DictApp rule.

When TC has more than one type argument, it suffices that

at least one of them satisfies these conditions. Note that the

role of a in constraints mentioning a in C1 ∧ C2 matters,

because they need to be reimplemented for the wrapper type

in the newtype translation, by coercing their dictionary. This

means we rely on correct roles for arguments of these type

class constraints. GHC currently infers roles of type class

arguments conservatively to Nominal by default, which will

unnecessarily prevent some valid explicit dictionary applica-

tions in cases with multiple constraints. This default should

either be modified, or we could simply check the role of a
in the corresponding dictionaries instead, where they are

inferred less conservatively. The role of a in TC.Dict a can

be nominal if a occurs in a Nominal position in one of the

class methods’ types, but this is uncommon in practice.

Let us look at the two cases (in both cases the role in

TC.Dict a is Representational):

Case τ1 Role of a in τ1 Safe?
nub [a] → [a] Representational ✓
insert a→ Set a→ Set a Nominal ✗

Only type-variable arguments are allowed, as it is impos-

sible to detect the role of a concrete type, e.g., what is the

role of Int in Ord Int ⇒ Int → Int → Set Int → Set Int?
The implementation of this function might be λx y s →
if x >y then s else empty,3 which does not exhibit the same

unsafety as the previous example. For this reason, combined

with the issues regarding incoherence, discussed in Section 5,

we disallow explicit dictionary when the argument of the

type class is not a type variable.

To determine the role of a in τ1, we use a simple algorithm

based on the role inference algorithm described in [3], with

as major simplification the fact that we can simply look at

the roles of the arguments of type constructors instead of

inferring them.

To show that the role criterion corresponds to the newtype

translation, consider the steps of the translation and what

3
With Ord a⇒ a→ a→ Set b→ Set b as principal type.

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

could go wrong. After introducing a newtype, an instance

declaration is generated based on the custom dictionary, and

forwarding instances are generated for other constraints.

The dictionaries for these instances are all coerced to the

newtype, leading to the role requirement for a in their types.

Also, these instances must not overlap. For example, passing

a custom instance to the first Eq a in (Eq a, Eq a)would cause
overlapping Eq instances. Such ambiguities are rejected by

the coherence check, discussed in Section 5. Finally, the func-

tion is instantiated to the newtype (which cannot fail) and

then coerced back, which works under the role requirement

for a in τ1.

5 Coherence
We use the definition from [14] for coherence: every different
valid typing derivation for a program leads to a resulting pro-
gram that has the same dynamic semantics. So how does this

translate to our setting? Consider the following program:

foo :: Eq Int ⇒ Bool
foo = 1== 3

There are two valid typing derivations for this program: one

that uses the global instance of Eq Int and one that uses the

instance passed to foo. It does not matter which instance

or dictionary was chosen, because with global uniqueness

of instances, it is the same instance in both cases. With the

ability to explicitly pass a dictionary, it suddenly does matter

which typing derivation is used, because the different typing

derivations can use potentially different dictionaries, which

will directly influence the dynamic semantics. The following

cases have a similar risk of incoherence, as the compiler can

choose between multiple dictionaries:

-- Two Eq a dictionaries...
two :: (Eq a, Eq a) ⇒ a→ a→ Bool
-- A second Eq a hidden in Ord a...

three :: (Eq a,Ord a) ⇒ a→ a→ Bool
-- A second Eq a dictionary thanks to constraint a ∼ b

four :: (Eq a, a ∼ b, Eq b) ⇒ a→ b→ Bool

As for foo above, global instances can create potential inco-

herence, also with type variables:

instance Eq a where == = False

five :: Eq a⇒ a→ a→ Bool

5.1 Detecting and Preventing Incoherence
All of the contrived programs above are valid and coherent

in Haskell as long as global uniqueness of instances holds.

However, when we add explicit dictionary application, they

become incoherent: in each case, the compiler has more than

one choice for which dictionary the functions will use, so

we cannot allow one of those dictionaries to be instantiated

to something else than the others. To preserve coherence,

we restrict explicit type application using another safety

criterion. In this section, we explain this criterion and how

we have proven that it effectively salvages coherence.

So how do we detect cases like the above? Say we pass a

dictionary for class constraint TC a to a function with the

following type:

∀b1ab2. (C1, TC a,C2) ⇒ τ1

What all the examples had in common was that the type

class constraint TC a or any constraint that could be derived

from it in combination with the top-level axiom scheme Q,

could also be derived from the remaining constraints and

the top-level axiom scheme (Q ∧ C1 ∧ C2). As this is also

trivially true for any constraint in Q, we also require that

the constraint cannot be derived from Q while producing

the same evidence. Since we allow explicit type application

to non-top-level expressions, we have to add to this list the

local assumptions (Q). Generally, an explicit type application

can cause incoherence if:

∃C .(Q ∧ TC a ⊩ tev :C) ∧ (Q ∧Q ∧C1 ∧C2 ⊩ C) ∧

Q ⊮ tev :C

To forbid such cases and to safeguard coherence, we add the

following condition to the DictApp rule:

∀C .Q ∧ TC a ⊩ tev :C ⇒

((Q ∧Q ∧C1 ∧C2 ⊮ C) ∨ Q ⊩ tev :C)

In other words: to ensure coherence, the type class constraint

that we provide an explicit dictionary for, or any constraint

implied by it and the global instances, is either not implied

by the remaining constraints and the global instances, or it

is implied by the global instances while yielding the exact

same evidence.

All of the examples above are caught by this check. In

practice, this check does not often fire, as programmers tend

not to use such signatures. GHC even has two flags to detect

and warn about many such cases: -Wsimplifiable-class-
constraints which warns about class constraints in a type

signature that can be simplified using a top-level instance

declaration, and -Wredundant-constraints, which warns

about redundant constraints in type signatures.

However, some superclass hierarchies have only recently

been established: Functor-Applicative-Monad and Semigroup-

Monoid. Programs that have to work with or without these

superclass relations in place, will intentionally have redun-

dant constraints in their signatures, e.g., both Functor m
and Monad m, even though Monad m entails Functor m.

Similarly, programs written to work with or without global

instances that were later introduced, will also fail the check.

The case where TC a is not implied by the remaining

constraints, but one of its superclasses is, is less artificial. For

example, consider a function

go :: (MonadState s m,MonadWriter w m) ⇒ m ()

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

In this case, our coherence criterion prevents instantiating

either constraint because they share a common superclass

Monad m. In this scenario, it would make sense to allow an

explicit application of dictionary d, if we can be sure that the

parent dictionary of d for Monad m is equal to the default

one. This could be done by statically determining whether

the two GHC Core expressions are equal, or by allowing a

dictionary application with some form of partial dictionary

not containing the parent dictionary. A simpler solution

we have chosen in our prototype, is to let the coherence

check generate a warning instead of an error. This defers

the responsibility to the programmer to ensure coherence

in cases where it cannot be statically determined, instead

of forbidding it. This warning can easily be turned into an

error using the -Werror=incoherence flag.

5.2 Proof
To ensure that our coherence criterion is safe, we prove co-

herence of our formalisation. That is: we prove that any two

typing derivation for a program lead to the same dynamic

semantics. More concretely, we show that the two deriva-

tions elaborate to target-language terms that are equivalent,

according to an axiomatic target-language equivalence rela-

tion t1 ≈ t2. This relation, based on [9], is described in more

detail in [20].

Theorem 1 (Coherence). Given typing derivations Q ; Γ ⊢
e :σ ⇝ t1 and Q ; Γ ⊢ e :σ ⇝ t2, if the principal type σ0 of
e is context-unambiguous, and the constraint solver produces
canonical evidence, it must be that t1 ≈ t2.

As established in previous work [9], coherence in the

presence of type classes requires that the principal type of

e is unambiguous.
4
For space reasons, we cannot explain

this restriction here, but refer to Jones [9] as the issue is not

specific to our proposed extension.

In a companion technical report [20], we prove this result

for our system. The proof is itself technically novel and

simpler than previous proofs in the literature (particularly

[9]), as it avoids the use of an algorithmic typing relation

(instead simply assuming that principal typing holds) and is

parametric in the constraint implication judgement (simply

assuming that it produces canonical evidence when given

canonical evidence for assumptions). The proof is essentially

a big induction on the typing judgement, using a suitably

chosen but quite complicated induction hypothesis. More

details and the full proof can be found in [20].

It is worth noting that our proof relies on an assumption

about constraint entailment. When an explicit dictionary

is provided for constraint Cp
to a function with other con-

straints C , and the coherence criterion is satisfied, then we

require the following result: For any constraintC , there exist

a t ′ev and C
′
such that:

4
The context-prefix is only relevant for the proof and follows directly when

a type scheme is well-formed.

• Q ∧ d ′ :C ′ ∧ d :Cp ⊩ t ′ev :C

• For all tev, if Q ∧ C ∧ d :Cp ⊩ tev : C , then tev ≈
[d ′ 7→ t ′′ev]t

′
ev where Q ∧C ⊩ t ′′ev :C ′

For every constraint C , there are constraints C ′ that repre-
sent the extra assumptions needed to obtain C when Cp

is

given. Any evidence of C that can be derived from top-level

instances, C and Cp
, must factor through the evidence that

derives C from C ′ and Cp
. We believe this assumption holds

when both C and Cp
are type classes that only have other

type classes as ancestors, but we are less convinced if they

use type families, etc. Nevertheless, we point out that it is

not necessary to have this property for allC andCp
, but just

for those for which we allow explicit dictionary applications,

so we expect our criterion to be adaptable to such settings.

6 Implementation
We have implemented a proof of concept of our proposal

within GHC. Our implementation successfully type-checks

all examples shown in this paper. The code can be found at

https://github.com/mrBliss/ghc.
GHC generates a dictionary record for each type class.

Instead of exposing these existing dictionary data types using

the proposed .Dict suffix, we generate new dictionary data

types with exactly the same fields and the .Dict suffix. The

main reason for choosing this path was to minimise the

impact on the compiler. An impactful change we hereby

managed to sidestep was the reconciliation of the different

kinds of the dictionary data types: the existing dictionary

data types have kind ... → Constraint whereas the newly
exposed dictionary data types have kind ...→ Type.

In line with the dictionary translation already performed

by GHC, an explicit dictionary application is translated to

a simple function application in GHC Core. To maintain

well-typedness of GHC Core, a Coercion is used to cast the

exposed dictionary data type (of kind Type) to the internal
one (of kind Constraint) [3].
As expected, no changes had to be made to GHC Core.

The implementation is still in a proof of concept stage. The

coherence criterion does not yet check the non-entailment

for all constraints entailed by TC a but only for the class and

its superclasses.

The newly exposed dictionary data types need an im-

port/export policy. We have some principles in mind, but

have not implemented them yet. First, to avoid having to

update existing code to export dictionary types, dictionaries

should be exported alongwith the type class, unless explicitly

specified otherwise. Second, the user can import a dictionary

type independently from the type class and vice versa.

For now, we have hijacked the following syntax for explicit

dictionary application instead of modifying the parser to

support the proposed syntax:

• e ((dict)) instead of e @{dict}
• e ((dict :: C a)) instead of e @{dict as C a}

https://github.com/mrBliss/ghc

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

To avoid breaking existing code, the -XDictionaryApplica
tions flag first has to be enabled.

We currently support dictionary instances, without a ter-

mination check, and we have not yet implemented instance

dictionaries (see Section 2.3).

7 Interesting Applications
While there are many interesting use cases of our proposal,

we have chosen a few to showcase in this section.

7.1 Retrofitting Superclasses
As mentioned before, the functionality of Deriving Via [1]

can be replicated using dictionary instances, even without

using the big hammer of explicit dictionary application.
5
We

will not repeat all these examples, but present one here.

In the latest version of GHC, Semigroup has become a

superclass of Monoid. Dictionary instances can be used to

easily define an instance of the Semigroup class based on the

existing Monoid instance:

semigroupFromMonoid :: Monoid a⇒ Semigroup.Dict a
semigroupFromMonoid = Semigroup.Dict {(⋄) = mappend }

instance Monoid X where ...
instance Semigroup X = semigroupFromMonoid

Similarly, Eq instances can be derived from Ord instances,

Applicative and Functor from Monad, etc.

7.2 Reference-Based MonadState
The MonadState s m monad class models the interface of

a state monad. The StateT monad transformer is typically

used as the implementation. In monad stacks that have IO or

ST at the bottom, adding this extra StateT layer to the stack

should in principle not be needed, because they already offer

efficient mutable references that can be allocated as desired.

However, without local instances, these references cannot

be used directly to instantiate a MonadState constraint. For
performance reasons, some larger programs (e.g., GHC and

the Agda compiler) work around this limitation by adding

a ReaderT layer to the monad stack that passes an IORef
around, which is then used to resolve the MonadState con-
straint. This means that the monad stack must have IO or

ST at the bottom.

Now that we have explicit application of local dictionaries,

we can discharge a MonadState constraint using a locally

created dictionary based on a mutable reference, without

having to embed the reference and the IO monad in the

monad stack:

eval :: (∀m. MonadState state m⇒ m a) → state→ IO a
eval m initState = do ref ← newIORef initState

m @{ioRefState ref }

5
In fact, dictionary instances and instance dictionaries seem useful inde-

pendently from dictionary application.

ioRefState :: IORef state→ MonadState.Dict state IO
ioRefState ref = MonadState.Dict
{parent1 = getDict @(Monad IO)
, get = readIORef ref
, put = writeIORef ref }

This can even be done purely, without IO, by using an STRef
instead of an IORef .

We believe this pattern might allow for significant perfor-

mance improvements in large code bases that use abstract

effect interfaces like MonadState. Examples of this are the

Agda or PureScript compiler, but we do not yet have quanti-

tative measurements. Initial micro-benchmarks of different

ways to discharge a MonadState constraint suggest that the
above pattern outperforms StateT consistently except when

the underlying monad is Identity, presumably because of

some optimisations kicking in.

8 Related Work
We categorise related work in two categories: previous pro-

posals for related features in the context of Haskell, and work

in other languages.

Previous Haskell Proposals The two main proposals for

multiple instances and dictionary application in Haskell

are Making Implicit Parameters Explicit [7] and Named In-

stances [10]. Ignoring syntax, our proposal resembles [7]

most: dictionary records are exposed, there is an explicit dic-

tionary application construct, and even a restricted form of

dictionary instances. The authors claim coherence based on

the fact that local instances take precedence over global ones,

but there is little evidence that this does indeed suffice to

guarantee coherence. In [10], named instances and instances
supply are proposed to draw a parallel with the ML mod-

ule system. In particular, type classes correspond to module

signatures, and to allow multiple modules with the same

instantiation of a module signature, one must allow multiple

named instances, which share the module namespace.

We use a simple annotation to resolve ambiguity when

passing a dictionary, e.g., to which Eq constraint should the

dictionary be passed in ∀a b. (Eq a, Eq b) ⇒ a → b →
Bool? In [10], this is solved by distinguishing ordered from

unordered type class constraints: ∀a b. Eq a ⇒ Eq b ⇒
a → b → Bool vs ∀a b. {Eq a, Eq b} ⇒ a → b → String.
In [7], a different type system is used, that would infer the

following type: ∀a. Eq a⇒ a→ ∀b. Eq b⇒ b→ Bool.
In [11], Kiselyov and Shan propose a form of local in-

stances, restricted to constraints that mention a fresh local

type variable. They first show that local instances restricted

in this way can be implemented in terms of relatively stan-

dard Haskell features, albeit in a convoluted and inefficient

way. The idea is to round-trip dictionaries through the type

system. Subsequently, they propose a simpler direct imple-

mentation that avoids the detour through the type system,

Haskell ’18, September 27-28, 2018, St. Louis, MO, USA Thomas Winant and Dominique Devriese

but retain the restriction to constraints mentioning fresh

type variables, that the encoding suggests. This idea was

implemented and fine-tuned in the reflection library.
6
Com-

pared to our work, Kiselyov and Shan’s idea also seems to

ensure coherence and does not break code relying on global

uniqueness of instances. However, the proposed criterion for

allowing local instances is much more restrictive than ours,

e.g. most of the examples we show cannot be directly in-

stantiated. This restriction requires considerable boilerplate

to work around in practical use: artificial types mentioning

phantom type variables and forwarding instances, as well

as (sometimes?) the unpopular -XUndecidableInstances
extension, or some clever trickery to avoid it.

Other Languages Cochis, the Calculus of CoHerent Im-

plicitS, based upon the implicit calculus [13] and inspired by

the proof-search technique called focussing, supports local
scoping, overlapping rules, first-class and higher-order rules,

while remaining type safe, coherent and unambiguous [15].

The authors of Cochis mention that addressing the problems

with global uniqueness of instances is a future line of work,

and are looking at the approach used in Genus [21] which

tracks the types of instances to enforce their consistent use.

This approach of parameterising the types by the used in-

stances can also be applied in dependently typed languages.

When Haskell gains support for fully dependent types, a

redesign of the Set andMap data structures in the containers
package would still be required in this approach, whereas

our proposal is compatible with existing designs.

Other languages also support multiple instances and ex-

plicit instance application. Agda has instance arguments [6],
implicit arguments that are solved by an instance resolution

algorithm. Instances are declared as records and can also be

explicitly passed. Coq has a similar type class system [17].

Idris’ interface system [2] resembles Haskell’s, but interfaces

can be named and explicitly passed (using the same syntax

we propose). Scala’s implicits mechanism is more powerful

as implicit arguments can be of any type. It can be used to

model a Haskell-like type class system with local instances

and explicit instance application [12]. The language G was

intended to inspire C++’s concepts, which are quite close

to Haskell type classes [16]. The work mentioned in this

paragraph make no guarantees about global uniqueness of

instances, and none come with coherence proofs.

9 Conclusion
Since the introduction of type classes in Haskell, there has

been the restriction that only one instance can be defined per

type to maintain coherence and to ensure global uniqueness

of instances. Our proposal relaxes this restriction by exposing

dictionary records and adding support for explicit dictionary

application. What differentiates our proposal from past ones

6http://hackage.haskell.org/package/reflection

is that we have found a way to distinguish safe from unsafe

explicit dictionary applications with respect to global unique-

ness of instances, using GHC’s roles mechanism. Moreover,

we preserve coherence by detecting potential source of inco-

herence, and have formally proved coherence of our system.

Based on the nature of our criteria, we expect a largemajority

of functions would satisfy them, although it remains future

work to measure this quantitatively. Since it is backwards-

compatible and does not require major new infrastructure

in the compiler, we believe our proposal only needs some

more bikeshedding to be adopted in GHC. If this happens,

we have little doubt that explicit dictionary application, es-

pecially with local dictionaries, will find many applications,

and enable important new design patterns.

Acknowledgments
We would like to thank Tom Schrijvers for his thoughts on

the coherence problem. This research is partially funded by

the Research Fund KU Leuven and the Agency for Innovation

by Science and Technology in Flanders (IWT). Dominique

Devriese holds a postdoctoral fellowship of the Research

Foundation - Flanders (FWO).

References
[1] Baldur Blöndal, Andres Löh, and Ryan Scott. 2018. Deriving

Via: or, How to Turn Hand-Written Instances into an Anti-Pattern

(Haskell ’18).
[2] Edwin Brady. 2018. The Idris Tutorial, Interfaces. http://docs.

idris-lang.org/en/latest/tutorial/interfaces.html
[3] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and

Stephanie Weirich. 2014. Safe Zero-cost Coercions for Haskell

(ICFP ’14).
[4] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.

2005. Associated Type Synonyms (ICFP ’05).
[5] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and

Simon Marlow. 2005. Associated Types with Class (POPL ’05).
[6] Dominique Devriese and Frank Piessens. 2011. On the bright side of

type classes: instance arguments in Agda (ICFP ’11).
[7] Atze Dijkstra and Doaitse S. Swierstra. 2005. Making Implicit Parame-

ters Explicit. Technical Report UU-CS-2005-032. Universiteit Utrecht.
[8] Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.

2016. Visible Type Application (ESOP ’16), Vol. 9632.
[9] Mark P. Jones. 1992. Qualified Types: Theory and Practice. Ph.D. Dis-

sertation. Oxford University.

[10] Wolfram Kahl and Jan Scheffczyk. 2001. Named Instances for Haskell

Type Classes (Haskell ’01).
[11] Oleg Kiselyov and Chung-chieh Shan. 2004. Functional pearl: implicit

configurations–or, type classes reflect the values of types (Haskell ’04).
[12] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type

Classes As Objects and Implicits (OOPSLA ’10).
[13] Bruno C.d.S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee,

and Kwangkeun Yi. 2012. The Implicit Calculus: A New Foundation

for Generic Programming (PLDI ’12).
[14] Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes:

an exploration of the design space (Haskell ’97).
[15] Tom Schrijvers, Bruno C.d.S. Oliveira, and Philip Wadler. 2017. Cochis:

Deterministic and Coherent Implicits. Technical Report 705. Department

of Computer Science, KU Leuven.

http://hackage.haskell.org/package/reflection
http://docs.idris-lang.org/en/latest/tutorial/interfaces.html
http://docs.idris-lang.org/en/latest/tutorial/interfaces.html

Coherent Explicit Dictionary Application for Haskell Haskell ’18, September 27-28, 2018, St. Louis, MO, USA

[16] Jeremy G. Siek and Andrew Lumsdaine. 2011. A Language for Generic

Programming in the Large. Science of Computer Programming 76, 5

(May 2011). Special Issue on Generative Programming and Component

Engineering (Selected Papers from GPCE 2004/2005).

[17] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes

(TPHOLs ’08).
[18] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin

Sulzmann. 2011. OutsideIn(X): Modular type inference with local

assumptions. J. Funct. Program. 21, 4-5 (September 2011).

[19] Philip Wadler and Stephen Blott. 1989. How to make ad-hoc polymor-

phism less ad hoc (POPL ’89).
[20] Thomas Winant and Dominique Devriese. 2018. Coherent Explicit Dic-

tionary Application for Haskell: Formalisation and Coherence Proof.

ArXiv e-prints (July 2018). arXiv:1807.11267

[21] Yizhou Zhang, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov,

and Andrew C. Myers. 2015. Lightweight, Flexible Object-oriented

Generics (PLDI ’15).

http://arxiv.org/abs/1807.11267

	Abstract
	1 Introduction
	1.1 Contributions and Outline

	2 Our Proposal in More Detail
	2.1 Exposing Type Class Dictionaries
	2.2 Explicit Dictionary Application
	2.3 Dictionary Instances and Instance Dictionaries
	2.4 Local Instances

	3 Formalisation
	3.1 Target Language
	3.2 Source Language
	3.3 Type Checking
	3.4 Elaboration

	4 Global Uniqueness of Instances
	4.1 Newtype Translation
	4.2 Role Criterion

	5 Coherence
	5.1 Detecting and Preventing Incoherence
	5.2 Proof

	6 Implementation
	7 Interesting Applications
	7.1 Retrofitting Superclasses
	7.2 Reference-Based MonadState

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

