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ABSTRACT

Virtual reality games demand the use of highly realistic 3D models to
provide an immersive environment to the users. Therefor, modeling
of real world structures is a common process within the industry.
In recent years the photogrammetric tools have become available
to aid in this process. However, obtaining high quality imagery is
still an issue w.r.t. budget and time constraints. We present a simple,
effective method for the reuse of existing video and photo material
towards the generation of 3D models suitable for a virtual reality
gaming environment. An abundance of existing content may be
available in on-line repositories (YouTube, Flickr, Google images,..)
and can be exploited. A complete video-to-VR pipeline is presented
and a use-case of the Berlin Gendarmenmarkt square is tested,
wherein the use of both commercial and open source software is
evaluated. Our proposed method improves existing workflows used
by VR game designers in both structural accuracy and creation time
of real world objects.

1 INTRODUCTION

Digital reconstruction techniques typically operate on newly cap-
tured information. However, this only allows the reconstruction of
the asset in its current state. While this is the preferred deliverable
for most remote sensing applications, it is of great interest to also
reconstruct the state of the asset in previous time periods. By do-
ing so, heritage experts are able to visualize and analyze the asset
in time, thus effectively adding a fourth dimension to the process.
Other stakeholders include game designers that look to reconstruct
historically accurate scenery for their games. The paradigm of creat-
ing these 4D digital reconstructions heavily relies on the presence
of proper data. This is troublesome since most historic data sources
were never meant to be used in reconstruction work-flows and thus
yield improper results. Also, these data sources are typically hetero-
geneous and unstructured. It is within the scope of this project to
assess already acquired data from sites for their compatibility with
current reconstruction work-flows.

We present a use case for virtual reality (VR) game designers
to efficiently re-purpose old and new content to aid them during
the development process. This use case, called “Living the past”,
focuses on the reuse of video footage taken from a historic square,
the Berlin Gendarmenmarkt, in order to create a Virtual Reality
environment.

Scenes depicting the square buildings, statues and lamppost were
automatically reconstructed as 3D models from a number of video
sequences taken from the square. These 3D models were lightly
edited to improve their quality and then imported into a Virtual
Reality designing tool to be used as basis for the scene production.
The Virtual Reality scenes were also enriched with surroundings
assets like buses in the present and horse-drawn carriages in the past,
to give the impression of different time periods.

The remainder of this work is structured as follows. In section 2,
the photogrammetric reconstruction pipeline is proposed. A real test
case is shown in section 3. The VR implementation is presented
in 4. Finally, the conclusions are presented in Section 5 along with a
discussion about future work.

Figure 1: An overview of the Gendarmenmarkt square depicting
the Konzerthaus in the middle. The symmetry of the square is no-
ticeable: the churches to the left and right are nearly identical from
several viewpoints. This may pose severe issues for photogrammet-
ric reconstruction [7].

2 PHOTOGRAMMETRIC RECONSTRUCTION

As previously discussed, historic data sets suffer from data hetero-
geneity. However, low cost photography has been around for a better
part of a century and thus each historic structure of significance has
been captured with images countless times over the past decades.
Our hypothesis is that at least a portion of this information can be
used as input for a photogrammetric reconstruction. In the following
paragraphs, the work-flow for deriving useful inputs from the avail-
able content and fully automatically generating 3D digital models is
discussed.

2.1 Available Content

In this work, the Berlin Gendarmenmarkt is used as a test case for
the photogrammetric reconstruction. This historic market, originat-
ing from the 1600’s, consists of a cobblestone square surrounded by
a number of row houses. A panoramic view is shown in Figure 1.
The prominent historical structures include the Konzerthaus and the
Schiller monument statue. Several image sources are considered for
the reconstruction. First there are the inputs from separate images.
For these we make use of the Europeana Collections database [9],
which provides access to over 50 million digitized items - books,
artwork, photos, videos and more - all indexed and annotated, mak-
ing it searchable and filterable. Secondly YouTube was searched for
videos of the square released under its Creative Commons license.
Other popular on-line repositories such as Flickr, Instagram, . . . are
also available but were not used in this use-case since this imagery
is typically not well inventoried and described. Furthermore, the
emphasis of these images lies often more on portraits than on the
actual asset, so their value is limited.

In the end, several video and image datasets were available for 3D
reconstruction of the Gendarmenmarkt from the following sources:
Europeana (6 historical images), Deutsche Welle (old video footage),
YouTube movies, pictures found on-line and some self-shot videos.

2.2 Previous reconstruction efforts

Previous works have addressed the reconstruction of the Gendar-
menmarkt [6, 26]. Due to repetitive scene structures, reconstruction
was a failure in [26] where a global reconstruction pipeline was em-
ployed. This was mainly due to the high resemblance of the German
Church (left) and French Church (right), as seen in figure 1.
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Figure 2: Various content provided by Europeana Collections (a,b,c) depicting the Gendarmenmarkt as early as 1899. Additional content
includes publicly available images (d,e), videos (f) and self shot material (g,h).

2.3 Image processing pipeline
In this use case two commercial software packages for 3D recon-
struction (Agisoft’s Photoscan [1], Capturing Reality’s RealityCap-
ture [5]) and our own implementation, based on open source package
Colmap [19, 21] have been tested. All three packages are capable
of a full photogrammetry pipeline from input images towards 3D
model output. Each of these packages employs a slightly different
reconstruction strategy. Details of the algorithms of commercial
packages are not disclosed by their developers, however some as-
sumptions may be made. The main reconstruction pipeline of all
packages is similar.

2.3.1 Frame extraction

Photogrammetric pipelines typically employ still images or frames
of a particular scene for 3D reconstruction. Since movies or videos
consist of a multitude of frames (typically recorded at 25 or 30Hz)
and can contain shots of multiple scenes, they are not directly useful
for photogrammetry. Therefor in a preliminary step the various
shot are first delineated and can then be further processed to extract
proper frames for reconstruction. Since simply decomposing the
shots into all of their frames would result in an overload of redundant
data, a subset must be made.

FFmpeg [10], an open source library, was used to access the video
streams. A threshold-based scene detector was used to segment the
shots from each video. To detect the various shots a scene score is
calculated between consecutive frames. The score is determined by
the sum of absolute difference (SAD) between all pixels of consecu-
tive frames. The resulting value varies between 0 and 1 and may be
used as a measure for similarity between 2 image blocks. A video
cut, and thus a new shot, is assumed once the scene score exceeds
a set threshold Tsad . All shots were successfully extracted in this
use case using Tsad = 0.3. The different video shots were sampled
uniformly to a set of frames by extracting N f frames per second.
Depending on the target object for reconstruction N f varied between
1 for a reconstruction of the entire square and 5 for the reconstruc-
tion of smaller objects or fast camera movement (e.g. statue). The
value of N f was manually determined taking into account the num-
ber of output images and the need for sufficient overlap between
consecutive frames.

2.3.2 Feature extraction and description

Sparse feature points in the images are extracted and their appearance
is described using a numerical descriptor. Widely used and well-
performing extraction and descriptor algorithms are SIFT [15] and

SURF [4], together with their variants (SIFT-GPU, SURF-GPU,
ASIFT, DAISY,..). Feature extraction has a very high influence on
the performance and success of the entire pipeline. For this reason
all packages employ several settings to limit the number of feature
points per image. Due its open source transparency, Colmap allows
very in-depth adjustable thresholds and parameters for the feature
extraction algorithm. Neither commercial package discloses internal
algorithms. Settings here are limited to internal image resizing and
the maximum number of feature points per image.

2.3.3 Feature matching
The relative camera motion between a set of images can be deter-
mined with the use of corresponding features. A standard exhaustive
matching approach will attempt to match every image against ev-
ery other image. Since in this approach the number of matching
candidates increases quadratically with the image count, exhaustive
matching is only viable with a relatively low number of images. For
larger datasets Colmap employs a sequential approach for ordered
images sets with consecutively captured images. For unordered
datasets a vocabulary tree approach can be used. A vocabulary
feature descriptor tree was trained from previous reconstructions
and subsequently visual nearest neighbors can be determined for
new images. Matching can then be performed on these nearest
neighbors [20]. A final approach, found in all 3 packages, is spatial
matching where spacial nearest neighbors are determined using prior
information, such as GPS coordinates in the EXIF data. Neither com-
mercial packages discloses internal matching approaches. A generic
preselection mode, available in Photoscan, determines overlapping
pairs of photos by matching them using lower accuracy setting first,
however details of this method are missing.

2.3.4 Camera pose estimation
The extracted image correspondences are used to estimate camera
poses, camera internal parameters and 3D coordinates of image
points. Two major pipelines can be distinguished to perform this
step: incremental and global. An incremental pipeline is the stan-
dard approach that adds one image at a time, calculates the unknown
parameters and thus grows the reconstruction. Due to a potential
buildup of error, better known as drift, in this process it requires
repeated operations of bundle adjustment (BA) [24]. This heavily
impacts performance for large datasets. A global reconstruction
pipeline is different since it considers an entire view graph at the
same time instead of incrementally adding images to a reconstruc-
tion [12]. This way only a single iteration of the BA is required.
While much more efficient, it may be more sensitive to outliers.To
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tackle the issues of efficiency, accuracy and robustness, recent ef-
forts focus on the implementation of a hybrid reconstruction tech-
nique [6].
Our Colmap-based implementation employs an incremental recon-
struction pipeline. Agisoft Photoscan likely also implements an
incremental SfM pipeline. Evidence for this is the similar perfor-
mance with regards to Colmap as well as the repeated BA calls
visible in the logs. RealityCapture likely uses a global pipeline or
slight variant.

2.3.5 Dense reconstruction and model generation

Once a sparse representation of the scene has been completed, denser
scene geometry may be recovered. Typical dense reconstruction
pipelines produce depth maps from stereo-pairs for all registered
images. This relies on accurate exterior and interior camera pa-
rameters and epipolar geometry between images to constraint the
search for matches [18]. Other methods include the use of region
growing [22] or graph-cuts [14]. Depth maps are subsequently fused
into a dense point cloud. Finally a dense surface is estimated from
this fused point cloud typically using Poisson surface reconstruction
methods [13].

3 EXPERIMENTS

For consistency purposes, the processing of the datasets was done
on the same computer. Following versions and general settings of
the software were used:

• Capturing Reality RealityCapture 1.0.3.4658
Standard ’medium’ settings were used.

• Agisoft Photoscan 1.4.0
Standard ’High’ accuracy settings were chosen, lower values
would cause internal image downsizing. A Generic preselec-
tion (see 2.3.3 matching approach was enabled

• Colmap 3.4 based implementation
A custom implementation was deployed. Used photogramme-
try approaches differ for the datasets and will be explained
hereafter.

3.1 Dataset 1 - The Schiller Monument (464 images)
The first dataset depicts an historical statue in the center of the
Gendarmenmarkt square: the Schiller Denkmal. This dataset was
extracted from a single video. A total of 464 frames were extracted
using N f = 5. It is characterized by its sequential frame layout, very
high overlap and loops.

Colmap matching strategy Due to the sequential ordering,
optimizations in the matching part of the reconstruction pipeline
could be employed. Colmap implements a sequential matching
approach to optimize the pipeline performance. Here, each available
frame will be matched with the next N consecutive frames. Tests
have shown that an slightly adapted approach to this method yields
more consistent results and reduces drift. In this approach each frame
fi is matched with fi+1, fi+4, fi+9, fi+16, . . .. Build-in loop closure
detection is available in Colmap’s sequential matching strategy. For
this a vocabulary tree approach is used as explained in section 2.3.3.

Figure 3 depicts the reconstruction in all packages. The results
of the sparse reconstruction was similar in the three cases and the
dense matching was performed as well. However, there was an
issue with the Colmap-based implementation of the 3D textured
model generation, which failed due to the high number of points,
computed by the dense matching. This means we could send two
models to the VR game designer and it was concluded that models
from Realitycapture were preferred for further processing, due to
their higher quality appearance.

Figure 3: top: Sparse reconstruction in all 3 software packages. from
left to right: Photoscan, Realitycapture, Colmap. Middle: dense
point cloud from Colmap. Bottom: close-up of resulting model from
Photoscan (left) and Realitycapture (right)

3.2 Dataset 2 - The Berlin Gendarmenmarkt square
(1057 images)

This dataset contains partially ordered imagery from the entire Gen-
darmenmarkt square. The dataset consists of 1057 images with the
following content distribution: 887 frames from 11 different video
shots, 163 frames from publicly on-line available videos and 8 sepa-
rate publicly on-line images. Prior knowledge of focal length was
present in 2 images, for all other data no prior camera knowledge
was available.

A first reconstruction using Photoscan (’Photoscan 1’ in table 1)
was heavily misaligned as shown in Figure 4 (b). A potential reason
for this might be Photoscan’s assignment of shared camera intrinsics
between all same-size sensors. Due to high optical difference in
the various lenses, a bad camera calibration and thus bad sparse
alignment with an average reprojection error of 16px, occurred. In a
second try, a successful (’Photoscan 2’) reconstruction was obtained
using only the 887 frames.

Colmap’s vocabulary tree matching alogrithm followed by its
incremental pipeline managed to succesfully align 1032 images.
The resulting sparse reconstruction consisted of 176130 tiepoints,
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Table 1: Overview of the results and performance of the different photogrammetric reconstruction methods of the total square. The failed
reconstruction is shown in red.

total images

matched

images matched

new frames /

existing frames /

existing img

avg reproj.

error (px)
Tiepoints

Feature

detection

time (s)

Matching

time (s)

Sparse

reconstr.

time (s)

BA time (s)

(#iterations)

Model

generation

time

(s)

Colmap 1032 861/163/8 0.54 176130 76 5405 4455 3843 (56) N/A

Reality Capture 906 813/93/0 0.88 673757 1449 (combined) undisclosed 1118

Photoscan 1 1036 864/163/8 16 336711 61 3543 805 554 (350) N/A

Photoscan 2 879 879/0/0 0,3 337619 37 2588 700 532 (289) 752

Figure 4: Incorrect image alignment in Photoscan using all available
data

Figure 5: Evening image of the square (including exterior building
lighting) matched to daytime image

remarkably lower than results from Photoscan and Realitycapture.
This was due to the chosen thresholds of the triangulation process,
such as a minimum ray intersecting angle of 3◦ and maximum
reprojection error of 4px. The resulting sparse pointcloud from the
colmap implementation is therefore cleaner with less visual artifacts
(see Figure 6).

3.3 OpenStreetMap comparison
Since no ground-truth measurements such as GPS-points or feature
distances (e.g. building width) are available for our reconstruction
of the Gendarmenmarkt, a swift accuracy assessment was done
using OpenStreetMap (OSM) data [16]. OpenStreetMap is a map
of the world, created by users all over the world whose data and
free to access. Figure 7 shows an orthographic top-view of our
sparse point cloud projected on available Gendarmenmarkt GIS data.
Structure edges from the Konzerthaus (middle left) were fitted onto
the corresponding corners in the OSM data. The point cloud clearly
coincides well with the facades and corners of the three buildings on
the opposite side of the square. The fit with the churches on either
side of the Konzerthaus seems worse but this is mainly due to the
fact that OSM shows the total footprint of each building, which does
not coincide with the main facades or walls.

4 VIRTUAL REALITY INTEGRATION

The VR environment of the square was developed using the Unity3D
game Engine [25]. The assets were imported into Autodesk Maya [3].
Prior to the editing in Maya, the environment was developed by plac-
ing the 3D models of the square in the scene along with smaller
objects extracted from the market. Figure 8 shows the 3D environ-
ment in Unity with the extracted models. Once the 3D scene was
developed, testing was done based on the hardware capabilities to
produce an environment that can be supported by current devices.

The preparation of the model was done in Maya. After 3D extrac-
tion, minor retouching had to be done, as well as deletion of extra
polygons in the model to make it usable in the VR environment due
to hardware limitations on rendering too many polygons. It was
also necessary in some cases to use tools and plug-ins for Maya to
decrease the polygon count of extracted 3D models.

4.1 Change in design process
In the current design process, the designer has to use photos, avail-
able on the Internet to create an estimated building model and use
self-developed rectified textures to produce a similar looking 3D
model with estimated sizes and dimensions. With the 3D models,
extracted by photogrammetry, the relative sizes of the buildings,
more details on the dimensions of the building and other 3D models
are available to the designer. Figure 9 represents the difference be-
tween the Concert house on the Gendarmenmarkt square designed
by a 3D designer (left) and a 3D reconstructed model (right). The
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(a) Sparse reconstruction Colmap (b) Sparse reconstruction Photoscan( 2) (c) Sparse reconstruction Realitycapture

Figure 6: Results of the sparse reconstruction of the total square for the different photogrammetric packages

Figure 7: Point cloud data from the Konzerthaus (central building)
was manually fit on Openstreetmap data (fitting points shown in
red). The fit with the facades on the opposite side of the square is
remarkably good.

Figure 8: Extracted 3D model of Schiller Monument in Unity game
engine

dimensions in the figure on the right correspond better to the real
building which also helps the designer to modify their developed
assets to the right dimensions.

Figure 9: Comparison between manually a modeled concert house
(left) and the result from 3D reconstruction (right) in the VR envi-
ronment. There is a clear difference in length proportions.

5 CONCLUSION AND FUTURE WORK

This paper presents a novel workflow for game designers to optimize
their current workflow of realistically digitizing existing sceneries
and real world objects. The availability of 3D reconstructions, even
if incomplete, has shown great potential for vr game development.
Existing structures represent the reality more accurately when de-
signing them.

5.1 Image processing pipeline improvements
The used 3D reconstruction pipeline proved to be successful. How-
ever, for several steps further improvements could be done.

Starting with the frame extraction where, using ffmpeg’s scene
score, shots are separated. Using a manual set threshold may cause
issues for data with rapid camera movement or sudden light changes.
Additional works like [8] improve this method by proposing an
automated dynamic threshold model.
A second weakness in this pipeline is the constant frame rate
extraction of each shot. Factors like frame overlap, camera
movement or motion blur are not evaluated during extraction. While
all three of these have a very large impact on reconstruction success
rate and accuracy. For newly self-shot video optimizations can be
done with the use of inertial motion unit (IMU) data. However,
the focus of this paper rests on the reuse of existing data, therefor
other solutions are presented. Prior research towards the selection
of key frames for structure and motion recovery has been done
before [2, 17]. Here a new keyframe is selected once the epipolar
geometry model explains the relationship between a pair of frames
better than the homography model. The distinction between both is
based on the geometric robust information criterion (GRIC) values
(H-GRIC and F-GRIC) [23].
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Sudden peaks of motion blur during consecutive frames may
be detected using Haar wavelet transform [11] by selecting the
least blurred frame within a small range of consecutive frames.
Thus minimizing the negative effects of sharp and sudden camera
movement.
A clear difference in performance was noticed between the global
reconstruction pipeline and incremental pipeline. The use of a
Hybrid SfM pipeline could be evaluated for increased performance
while maintaining accuracy from incremental reconstruction [6].
This hybrid pipeline was already successful on a dataset of the
Gendarmenmarkt [6]. Furthermore it suits our dataset very well,
since our data consists of several video sequences which may be
aligned using a global reconstruction pipeline. Subsequently, frames
withing each shot can be matched using an incremental SfM pipeline.

5.2 Dedicated online
The presence of a dedicated service which reuses existing content
eliminates the need to shoot new material. This way vr development
time gets reduced significantly.
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