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ABSTRACT

The classification of brain states using neural recordings

such as electroencephalography (EEG) finds applications in

both medical and non-medical contexts, such as detecting

epileptic seizures or discriminating mental states in brain-

computer interfaces, respectively. Although this endeavor is

well-established, existing solutions are typically restricted to

lab or hospital conditions because they operate on recordings

from a set of EEG electrodes that covers the whole head. By

contrast, a true breakthrough for these applications would be

the deployment ‘in the real world’, by means of wearable

devices that encompass just one (or a few) channels. Such a

reduction of the available information inevitably makes the

classification task more challenging. We tackle this issue by

means of a multilinear subspace learning step (using data

from multiple channels during training) and subsequently

solving a regression problem with a low-rank structure to

classify new trials (using data from only a single channel dur-

ing testing). We demonstrate the feasibility of this approach

on EEG data recorded during a mental arithmetic task.

Index Terms— Brain-computer interface (BCI), multi-

linear algebra, subspace learning, tensor, tensor regression,

wearable electroencephalography (EEG)

1. INTRODUCTION

Non-invasive neuroimaging techniques have received consid-

erable interest in the last couple of decades because they allow

to conveniently investigate, classify, or detect a wide range of

physiological phenomena taking place in the brain. Among

these techniques, electroencephalography (EEG) has become

the workhorse in many applications, thanks to its low cost,

relatively easy setup of sensors on the scalp, and excellent

temporal resolution. Well-known examples of such EEG-
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based applications are brain computer interfaces (BCI) to re-

store communication for disabled people, perform clinical re-

search or develop consumer products for e.g. mental state

monitoring [1]. Another important application is the auto-

matic detection of seizures in epileptic patients [2].

What unites most of the research trends in these very di-

verse domains is the focus on lab- or clinical-grade EEG sys-

tems, restricting the use in settings outside the lab. For ex-

ample, EEG measurement setups are often bulky and require

substantial manual intervention to use, and more importantly

employ a large set of electrodes that covers almost the whole

head. Evidently, these systems cannot simply be used out-

side the lab or clinic. One important hurdle on the way to

convenient EEG devices for daily use is a (drastic) reduc-

tion of the number of electrodes [3, 4]. This is not only

a hardware-related issue: many established signal process-

ing and machine learning approaches for EEG owe their suc-

cess precisely to the fact that they exploit the spatial diver-

sity that is present in the traditional, multi-channel measure-

ment [5, 6]. Hence, existing processing techniques might

have to be reengineered or replaced by new approaches for

use in current and future EEG devices that employ only one or

a few channels. Several attempts in this direction have already

been made: some authors have proposed algorithms that find

‘good’ subsets of EEG channels to perform certain tasks [7, 8]

or derive complex features from the time courses recorded at

a few channels, that aim to compensate in some way for the

loss of spatial diversity [9].

Here, we take a different approach, and train a model us-

ing all available channels but classify new trials using only

single-channel data. This follows the realization that the re-

striction on the number of channels may present itself only at

the time of deployment of an EEG system. In other words: it

can be acceptable in many cases to have a calibration or train-

ing session where a larger set of channels is used to prepare or

fine-tune an EEG device, after which it is taken into use (‘test-

ing phase’) with only a low number of channels. In this paper,

we present an EEG classification method based on existing

work [10] that exploits multi-channel information during a

training phase, and can operate on a single-channel EEG sig-

nal during testing. Firstly, since there are multiple modes of

variation (channels × time points × trials × ...), the data are

best represented as a tensor, which is a higher order general-
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ization of vectors and matrices (first and second order tensors,

respectively) [11, 12]. Training then consists of a multilinear

or tensor subspace learning step, in which appropriate bases

are found for all modes of the data. During testing, it is then

assumed that unseen trials approximately lie in the same mul-

tilinear subspaces as the training data. Hence, to perform clas-

sification, a data segment of a test trial is regressed simultane-

ously onto several subspaces/bases found during training; the

resulting coefficients have a low-rank structure (because of

the multilinear setting [13]) and inform a decision about class

membership. This generic workflow has previously been in-

troduced for face recognition and irregular heartbeat classifi-

cation [10, 14, 15]. In this paper, we propose several exten-

sions to this framework, to address difficulties that arise in the

case of lower signal quality, such as in EEG data. Most im-

portantly, we leverage the class labels of the available training

trials to perform the subspace learning step in a supervised

fashion, after tensorizing the data using a time delay embed-

ding method. This approach is inspired by the common spec-

tral patterns method presented in [16] and allows to identify

bases in which the data differ substantially between classes,

in contrast to existing approaches, which use a simple unsu-

pervised subspace learning step. Additionally, we robustify

the classification step by non-arbitrarily fixing a sign ambigu-

ity and by employing support vector machines [17] and tree

ensemble methods instead of a nearest neighbor approach.

To demonstrate the feasibility of the novel method, we

apply it on publicly available EEG data that were recorded

from subjects performing a mental arithmetic task [18].

2. CLASSIFYING SINGLE-CHANNEL DATA AFTER

MULTI-CHANNEL TRAINING

2.1. Notation and preliminaries

We mostly follow the convention in [11, 12] for the algebraic

notation. We denote scalars, vectors, matrices and tensors by

lower case (e.g. a), lower case boldface (e.g. a), upper case

boldface (e.g. A) and upper case calligraphic letters (e.g. A),

respectively. An N th order tensor A ∈ R
I1×I2×···×IN is a

multiway array that varies over N modes (e.g. sensors, time

points, trials, ...) with dimensions I1, I2, ... , IN , respectively.

Slices of a tensor are obtained by fixing the index for one or

several modes. When indices of all but one mode are fixed,

and hence only variation over one mode is considered, we

use the term fiber, which is a generalization for matrix rows

and columns. A tensor A can be matricized by stacking all

fibers of a certain mode-n in a matrix. This is also known as

the mode-n unfolding of A and is written as A(n). Equiva-

lently, the vectorization of A is obtained by stacking all mode-

1 fibers in a long vector and is written as vec(A). The mode-

n multiplication of a tensor A and a matrix V is denoted by

A ×nV and consists of the left-multiplication of all mode-n

fibers of A with V. The mode-n rank of a tensor is the rank of

the mode-n unfolding of the tensor. The set of mode-n ranks

(jointly called multilinear rank) is in general different from

the tensor rank, which is the minimal number of rank-1 ten-

sors to fully describe the tensor. Such a collection of rank-1

terms is then called a canonical polyadic decomposition. Ev-

ery rank-1 tensor in its turn is the outer product of N vectors,

denoted by a(1) ⊗ a(2) ⊗ . . . ⊗ a(N). The Kronecker product

of two matrices A ∈ R
I1×I2 and B ∈ R

J1×J2 is indicated

by ⊗ and defined as the I1J1 × I2J2 matrix

A⊗B =







A(1, 1)B · · · A(1, I2)B
...

. . .
...

A(I1, 1)B · · · A(I1, I2)B






(1)

A useful relationship between the the outer and Kronecker

product is vec(a ⊗ b) = b⊗ a.

2.2. Training phase: subspace learning

Training of the classifier consists of finding appropriate sub-

spaces or bases for all modes, in which the training trials’ data

can be represented. Afterwards, data from a new trial can be

regressed or projected onto these subspaces, and the resulting

coefficients can be fed into a classifier that estimates the class

membership. Hence, ideally, subspaces should be sought in

which the coefficients of trials from the same class lie close

to each other, but far from coefficients of other trials.

2.2.1. Tensorization of the data

While a subject participates in several trials of a BCI paradigm,

EEG data are being collected at D electrodes or channels,

with T time points for each of P trials. Hence, the data are

naturally represented as a third order tensor X ∈ R
D×T×P ,

with modes channels × time points × trials, indexed by d,

t and p, respectively. We may expand the data by stacking

L − 1 delayed versions of the signal at every channel along

a fourth mode, increasing the order of the tensor by one.

This method is known as time delay embedding and was

proposed for multi-channel EEG classification in [16]. Math-

ematically, the new tensor X e ∈ R
D×T×L×P is obtained as

X e(d, t, l, p) = X (d, t − (l − 1)τ, p), ∀ d, t, l, p, where L is

known as the embedding dimension and τ is the introduced

delay, and has modes channels × time points × lags × trials.

Every mode has an associated subspace or base in which the

mode-n fibers can be represented.

2.2.2. Unsupervised subspace learning

A popular way to find the multilinear subspaces of a higher

order dataset A ∈ R
I1×I2×···×IN is the multilinear singular

value decomposition (MLSVD), defined as

A = S ×1 U
(1) ×2 U

(2) · · · ×N U(N) (2)

where every U(n) ∈ R
In×In is a unitary matrix, and the core

tensor S ∈ R
I1×I2×···×IN is ordered and all-orthogonal [11,



12]. It is a higher order generalization of the singular value

decomposition (SVD), and as such the (truncated) matrices

U(n) contain bases that capture as much variance of A along

mode n as possible. They can be found by applying an SVD

on unfolded versions of the tensor in every mode. As this ap-

proach disregards class label info, there is no guarantee what-

soever that the data of trials from different classes are repre-

sented (sufficiently) differently in these bases.

2.2.3. Supervised subspace learning

Discriminative subspaces might be found by taking into ac-

count the label information from the training trials. This is

the philosophy of the popular common spatial patterns (CSP)

algorithm [5], in which a set of spatial filters wi is applied to a

multi-channel EEG dataset X such that the filtered output sig-

nals yi = wT
i X have a high power during trials of one condi-

tion, but a low power for trials of other conditions. The output

power of several CSP filters can then be used as features for

classification, assuming that changes in (frequency-specific)

power in the EEG are related to the ‘brain states’ of interest.

This approach was extended to the common spatio-spectral

patterns (CSSP) algorithm, whereby time delay embedding is

used to extend the set of channels, as described earlier, lead-

ing to filters that aggregate signals over multiple channels and

lags [16]. The matrix of CSSP filters W can be found as the

solution to the generalized eigenvalue problem

Σ2 W = (Σ1 +Σ2) WΛ , (3)

in which Σ1 and Σ2 are the covariance matrices of the EEG

data belonging to class 1 and 2, respectively, and Λ is a diag-

onal matrix containing the generalized eigenvalues λi, which

lie between zero and one. Filters wi associated with a λi that

is close to one have a higher output power during trials of

class 2 compared to trials of class 1, which are amplified by

filters with a λi that is closer to zero.

As we aim to classify new trials based on single-channel

EEG, we cannot aggregate multiple signals spatially, but

only temporally, i.e. by taking a weighted sum of the single-

channel EEG over multiple lags (after time delay embedding).

Hence, the covariances in (3) are computed on the unfolded

data Xe
(3) ∈ R

L×DTP , leading to finite impulse response

(FIR) filters that can be applied over the third mode (lags):

Y = X e ×3 W
T (4)

The multilinear bases of the filtered data Y are thus more dis-

criminative than those of the original data X e, as the power

of time series in Y correlates better to the class labels.

2.2.4. Feature extraction

The time-varying power of an EEG signal is computed by

taking the sum of squares of every time course in Y in sliding,

non-overlapping windows of length m. The logarithm of the

power values is used as a feature for classification and stored

in a feature tensor Ỹ . Ultimately, the MLSVD of this tensor

is computed to obtain the training bases Uchan ∈ R
D×D,

Utime ∈ R
T
m

×
T
m , Ufilt ∈ R

L×L and Utrial ∈ R
P×P and a

core tensor S̃y ∈ R
D×

T
m

×L×P that explains the interaction

between basis vectors of the different modes.

2.3. Testing phase: tensor regression and classification

2.3.1. Regression with a low-rank solution

Note that, before truncation of the bases, the time varying

power over the spectral filter outputs Ỹ c,p ∈ R
1×T×L×1 at

every channel d, in every trial p, admits a representation as

Ỹ d,p = S̃y ×1 u
T
chan,d ×2 Utime ×3 Ufilt ×4 u

T
trial,p (5)

in which uT
chan,d and uT

trial,p represent the d th and p th row of

Uchan and Utrial, respectively. Unfolding over the second and

third mode yields

Ỹd,p
(2,3)

= (Ufilt ⊗Utime) S̃y(2,3)
(utrial,p ⊗ uchan,d)

Ỹd,p
(2,3)

= B (utrial,p ⊗ uchan,d)
(6)

This equation describes the data Ỹd,p
(2,3)

in the unfolded mul-

tilinear subspace B using coefficients uchan,d and utrial,p. As

was noted in section 2.1, the Kronecker product

utrial,p ⊗ uchan,d can be seen as the vectorization of a rank-1

matrix uchan,d ⊗utrial,p. For this reason, expressions such

as (6) have been referred to as Kronecker Product Equa-

tions (KPE) [14] or Linear Systems with Canonical Polyadic

Decomposition-constrained solution [10]. To classify a new

trial q using data from EEG channel f , we first construct the

matrix Z̃f,q
(2,3)

by computing the features as explained in previ-

ous section (analogously to the training data). Subsequently,

we solve the following set of equations for ûchan and ûtrial:

Z̃f,q
(2,3)

= B (ûtrial ⊗ ûchan) (7)

This corresponds to performing a regression of the new data

Z̃f,q
(2,3)

onto the multilinear basis B, in which the solution has

a low-rank structure by virtue of the Kronecker product be-

tween the coefficients [13]. The vector ûtrial then holds coef-

ficients that express the new data segment in the subspace of

the trial mode, and can be used for classification.

2.3.2. Classification

In [10, 14], new data instances are classified by comparing the

estimated coefficients ûtrial with rows of the trained matrix

Utrial and assigning the label of the closest matching train-

ing data instance. This nearest neighbor (NN) approach may

be adjusted or replaced by more robust classification meth-

ods that take the coefficients ûtrial as input features. In this

paper, we compare the performance of seven different meth-

ods: K-nearest neighbors (knn) with K equal to 1, 3, or 5,



least-squares support vector machines with a linear kernel

(svm-lin) or radial basis function kernel (svm-rbf), ran-

dom forests with 100 trees (randfor) and gradient boost-

ing using 10 shallow trees that are trained with AdaBoost

(treeboost). The classifiers are trained using the labeled

rows of Utrial as features.

2.3.3. Determining the sign of the coefficients

When solving the tensor regression problem, a sign ambigu-

ity and scaling ambiguity remains, i.e., the values in ûtrial can

be scaled by an arbitrary factor (that can be negative), if the

values in ûchan are counterscaled by the same factor. Since

the scale and sign can have a large impact on the classifica-

tion, it is crucial to fix them. Although algebraically the sign

cannot be retrieved when solving the regression problem, it

may be inferred from the training data set. Namely, we may

look at the matrices Utrial and Uchan and try to find ‘anchoring

variables’, i.e. columns of those matrices that maximize

scorei,trial =

∣

∣

∣

∣

∣

C
∑

c=1

µc,i

σc,i

∣

∣

∣

∣

∣

, scorej,chan =

∣

∣

∣

∣

µj

σj

∣

∣

∣

∣

(8)

Here, µc,i and σc,i are the mean and standard deviation over

values from the ith column of Utrial that belong to class c.

Analogously, µj and σj are the mean and standard devia-

tion over values from the jth column of Uchan. A large score

for a latent variable i indicates that this variable has a con-

sistent sign, i.e. that its values lie sufficiently far from zero

and are either positive and negative, and are not informative

for the class label. Hence, the latent variable that maximizes

scorei,trial provides an ‘anchor’ whose sign dictates the sign of

the corresponding entry of ûtrial, and thus of the whole vec-

tor. Analogously, the latent variable j with the largest score

scorej,chan can be used to correct the sign of the vector ûchan.

As a third criterion, we may impose that ûchan, that was esti-

mated for a certain channel f , should have a positive cosine

similarity with the corresponding row of Uchan: negative val-

ues of Uchan(f, :)ûchan suggest that the sign of ûchan should be

flipped. We use the majority vote of these three criteria to de-

termine the sign of the coefficient pair. The scaling ambiguity

is resolved by scaling ûtrial and all rows of Utrial to unit norm.

3. EXPERIMENTAL RESULTS ON A MENTAL TASK

3.1. Public EEG dataset

We apply the method on a recently published dataset with

EEG recordings of subjects that participate in a mental arith-

metic task (details can be found in [18]). During the exper-

iment, subjects complete sixty trials of ten seconds each, in

half of which they are instructed to repeatedly subtract two

numbers, and in half of which they rest. In this paper, we

used the 30-channel EEG recordings of 14 subjects from this

dataset, which are sampled at 200 Hz.

0 20 40 60 80 100Hz

-30
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0dB

Common Spectral Filters

selecting condition 1 and condition 2

Fig. 1: During training, common spectral pattern (CSP) filters

are tuned to frequency bands in which the spectral power is

discriminative for the class. For a particular subject, the filter-

which maximizes variance for condition 1 (the task) selects a

band around 20 Hz. On the other hand, the filter that focuses

on the other class of trials selects complementary bands.

3.2. Preprocessing and analysis

The EEG data of all subjects were band-pass filtered be-

tween 0.5-40 Hz, and eyeblink artifacts were estimated and

removed using independent component analysis (ICA), as

implemented in the SOBI algorithm from EEGLAB [19].

The traditional, full-channel common spatial patterns anal-

ysis was first ran on every subject’s recording, to identify

the channels in which the mental task manifested itself the

strongest. This information is conveyed by the rows of the

matrix W−1 [5]. We selected C = 10 channels per subject

with the highest root-mean-square value (averaged over all

rows of W−1). The parameters for the subsequent time delay

embedding step were chosen as τ = 10 samples and L = 6
after tuning on data from a subject whose results are left out

of the current analysis.

We estimated L common spectral pattern filters by means

of (3) and applied them to the data as in (4). Finally, the

logarithm of the signal power was computed in windows of

1 second, leading to a feature tensor Ỹ ∈ R
10×10×6×60.

The set of equations in (7) were solved using a state-of-the-

art Gauss-Newton algorithm in Tensorlab [20]. In [10], it was

derived that under mild conditions, the number of equations

should be as least as high as the number of unknown coef-

ficients to ensure that a unique solution exists, i.e. TL >

dim(Utrial)+dim(Uchan). Hence, the basis matrices Uchan and

Utrial were truncated to dimensions 3 and 5, respectively, upon

inspection of the multilinear singular values of of Ỹ . Least

squares SVMs with linear or RBF kernel were trained on the

rows of the truncated matrix Utrial using LS-SVMlab [17].

3.3. Results and discussion

Trials were classified using the seven classifiers described in

section 2.3 in a 15-fold cross-validation setting that was re-

peated ten times per subject. Note that the CSP filters use

label info and are trained as part of the cross-validation pro-

cedure as well [5]. In fig. 1 we inspect (for one subject) the

transfer functions of those filters belonging to the most ex-

treme generalized eigenvalues. Because of the time delay em-

bedding step, the columns of W each have L coefficients that
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Fig. 2: Good single-channel classification accuracy can be at-

tained by the tensor subspace learning and regression method.

The performance depends on the selected channel, and differs

between subjects (coded by color). This is indicated by black

lines at the mean accuracy (over all repetitions) of subjects

with the highest, median, and lowest performance.

map one-to-one to FIR filter coefficients that are spaced by τ

samples. E.g. a column wi gives rise to an impulse response

hi = wi ⊗ [ 1 0 . . . 0 ]T with L degrees of freedom, where

the second vector contains τ − 1 trailing zeros. From the blue

trace, we deduce that the mental arithmetic task provokes neu-

ral activity which differs most saliently from the ‘rest’ condi-

tion in a band between approximately 17-23 Hz. On the other

hand, the orange filter is tuned towards the ‘rest’ trials and

selects complementary frequency bands. The classification

accuracy varies between subjects and channels used during

testing. This is shown in fig. 2 for the linear kernel SVM,

in which the accuracies of different repetitions are shown, in

distinct colors per subject, over channels. Note that the 10

selected channels can be different for every subject, and are

grouped based on their ranking, although in our analysis there

were some electrodes in common for the majority of subjects,

located over the left temporal lobe, and the frontal lobe near

the centerline. The mean accuracy over repetitions of the best-

performing subject was 84% and 70% at the best and worst

channel of the set, respectively. For the worst-performing

subject, these metrics were 50% and 40%. Across all sub-

jects, the single-channel classification method presented here

had a performance which was only 6.6 ± 17% lower than the

performance of the common spatial pattern classification us-

ing all thirty channels, conducted as in [18]; for some subjects

the single-channel method performed even remarkably better.

We conclude that for well-chosen subjects, our pipeline is ro-

bust and may be used for single-channel classification, with

an acceptable loss in performance over a full-channel BCI.

A comparison between the seven evaluated classifiers is

presented in fig. 3 for the best channel of every subject. We

managed to boost the classification accuracy by a six percent,

through the use of linear kernel SVMs instead of the simple

nearest neighbor approach, which was used in [10, 14]. Al-

though KNN classifiers, RBF-SVMs are able to model non-

linear decision boundaries, they are more sensitive to outliers

– which are almost invariably present in these EEG datasets –

than linear classifiers. The random forest yielded intermedi-

ate performance, whereas the tree boosting method was unre-

liable, potentially also due to outlier sensitivity of AdaBoost.

Since the best sensitivity and specificity are attained at differ-

ent channels, improved classification is possible by relying on

two or more channels, as in [14].

We observed that testing accuracy was in general several

percent lower than validation accuracy (not shown). This drop

is due to the feature computation process: for the training (and

validation) trials, features can be readily extracted from the

rows of Utrial, whereas for the test trials, an intermediate step

(tensor regression to obtain the coefficients of the test trials in

the precomputed subspace) is needed. Due to this extra step,

the features of test trials are prone to estimation error, which

explains a lower performance.

Here, we used the same L for all subjects, although this

parameter could be optimized individually. We found that the

performance is relatively stable when choosing closeby val-

ues of L, e.g. 5 or 7, but that the variability of the performance

increases for higher L. This effect is due to two factors: for

higher L, the regression problem in (7) has more observa-

tions and is hence ‘more overdetermined’, leading to a more

robust estimation. However, the accompanying risk is that

the spectral filters W start to overfit the training data, which

undermines the performance for some subjects’ data.
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randfor
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for the best channel

Fig. 3: Support vector machine (SVM) classifiers, especially

the linear kernel SVM, are more robust than the K-nearest

neighbor (KNN) classifiers. Tree boosting yielded the least

reliable classification in the current analysis, followed by the

simple knn1 classifier, used in [10, 14]. Colors and black

levels have the same interpretation as in fig. 2.

4. CONCLUSION

We developed a pipeline for classifying brain states based on

data from a single EEG channel, after a calibration phase in

which information of multiple channels is exploited. This

key aspect renders it suitable for use in wearable devices,

where the number of electrodes is limited. The pipeline re-

lies on 1) a supervised subspace identification step, in which

spectral filters are found that extract frequency bands that are

discriminative for the classification task, 2) solving a tensor



regression problem with a low-rank structure and 3) the appli-

cation of a classifier on the estimated regression coefficients.

Although we demonstrated its success for the classification

of trials of a mental task in a BCI context, the approach is

generic; it may be applicable for the detection of e.g. epileptic

seizures as well, as these also induce spectral changes, or also

for non-EEG data. The proposed framework can still be im-

proved, by using a few channels instead of only one [14], and

by rigorously tuning the parameters in the pipeline (e.g. L,

τ , C, dim(Uchan), dim(Utrial)) with cross-validation. Based

on the ‘equations versus unknowns’ trade-off, a high L and

T are warranted, although this incurs the risk of overfitting

(as discussed in previous section), or increases the latency

of the pipeline, respectively. Alternatively, dim(Uchan) and

dim(Utrial) should be low, though this might compromise the

regression’s fit, and as dim(Utrial) equals the number of fea-

tures, it limits the classifiers’ learning capabilities. During

training, dictionary learning methods could further aid to find

suitable subspaces that are robust to outliers [21].

5. REFERENCES

[1] P. Brunner, L. Bianchi, et al., “Current trends in

hardware and software for brain–computer interfaces

(BCIs),” Journal of neural engineering, vol. 8, no. 2,

pp. 025001, 2011.

[2] U. R. Acharya, S. V. Sree, et al., “Automated EEG anal-

ysis of epilepsy: a review,” Knowledge-Based Systems,

vol. 45, pp. 147–165, 2013.

[3] L. Liao, C. Lin, et al., “Biosensor technologies for aug-

mented brain–computer interfaces in the next decades,”

Proceedings of the IEEE, vol. 100, no. Special Centen-

nial Issue, pp. 1553–1566, 2012.

[4] D. Looney, P. Kidmose, et al., “The in-the-ear recording

concept: User-centered and wearable brain monitoring,”

IEEE pulse, vol. 3, no. 6, pp. 32–42, 2012.

[5] B. Blankertz, R. Tomioka, et al., “Optimizing spatial

filters for robust EEG single-trial analysis,” IEEE Signal

processing magazine, vol. 25, no. 1, pp. 41–56, 2008.

[6] F. Lotte, M. Congedo, et al., “A review of classification

algorithms for EEG-based brain–computer interfaces,”

Journal of neural engineering, vol. 4, no. 2, pp. R1,

2007.

[7] T. N. Lal, M. Schroder, et al., “Support vector chan-

nel selection in BCI,” IEEE transactions on biomedical

engineering, vol. 51, no. 6, pp. 1003–1010, 2004.

[8] B. Lou, B. Hong, et al., “Bipolar electrode selection

for a motor imagery based brain–computer interface,”

Journal of Neural Engineering, vol. 5, no. 3, pp. 342,

2008.

[9] S. Liang, C. Kuo, et al., “Automatic stage scoring

of single-channel sleep EEG by using multiscale en-

tropy and autoregressive models,” IEEE Transactions

on Instrumentation and Measurement, vol. 61, no. 6, pp.

1649–1657, 2012.
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