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Use of modern imaging methods to facilitate trials of 
metastasis-directed therapy for oligometastatic disease in 
prostate cancer: a consensus recommendation from the 
EORTC Imaging Group
Frédéric E Lecouvet, Daniela E Oprea-Lager, Yan Liu, Piet Ost, Luc Bidaut, Laurence Collette, Christophe M Deroose, Karolien Goffin, Ken Herrmann, 
Otto S Hoekstra, Gem Kramer, Yolande Lievens, Egesta Lopci, David Pasquier, Lars J Petersen, Jean-Noël Talbot, Helle Zacho, Bertrand Tombal, 
Nandita M deSouza

Oligometastatic disease represents a clinical and anatomical manifestation between localised and polymetastatic 
disease. In prostate cancer, as with other cancers, recognition of oligometastatic disease enables focal, metastasis-
directed therapies. These therapies potentially shorten or postpone the use of systemic treatment and can delay 
further metastatic progression, thus increasing overall survival. Metastasis-directed therapies require imaging 
methods that definitively recognise oligometastatic disease to validate their efficacy and reliably monitor response, 
particularly so that morbidity associated with inappropriately treating disease subsequently recognised as 
polymetastatic can be avoided. In this Review, we assess imaging methods used to identify metastatic prostate cancer 
at first diagnosis, at biochemical recurrence, or at the castration-resistant stage. Standard imaging methods 
recommended by guidelines have insufficient diagnostic accuracy for reliably diagnosing oligometastatic disease. 
Modern imaging methods that use PET-CT with tumour-specific radiotracers (choline or prostate-specific membrane 
antigen ligand), and increasingly whole-body MRI with diffusion-weighted imaging, allow earlier and more precise 
identification of metastases. The European Organisation for Research and Treatment of Cancer (EORTC) Imaging 
Group suggests clinical algorithms to integrate modern imaging methods into the care pathway at the various stages 
of prostate cancer to identify oligometastatic disease. The EORTC proposes clinical trials that use modern imaging 
methods to evaluate the benefits of metastasis-directed therapies.

Introduction
Oligometastatic disease represents a clinical and anato­
mical manifestation between localised and polymetastatic 
disease, and has been described in prostate cancer.1,2 Its 
importance is increasingly acknowledged, as evidence 
grows for the treatment of limited metastatic lesions with 
focal ablative therapies, such as stereotactic body radiation 
therapy, surgery, or focal thermal ablation, rather than 
with systemic therapies.3,4 In oligometastatic disease, 
these metastasis-directed therapies potentially shorten or 
postpone the use of systemic treatment and alter the 
course of the disease by delaying further metastatic 
progression, potentially increasing overall survival. 
However, although metastasis-directed therapies have 
become increasingly popular among physicians, their 
delivery relies more on conventional wisdom than on 
robust evidence.5 Implementation of these treatments in 
patients in whom the underlying disease is polymetastatic 
(a particular problem in prostate cancer, in which there is 
a long lead time in metastasis development) is undesirable 
because it merely results in unnecessary morbidity. If 
disease is polymetastatic, stereotactic radiotherapy and 
salvage surgery can cause specific toxicity (eg, increased 
femoral fractures6 and vertebral compression fractures7 
after focal radiation therapy), delay systemic treatment, 
and, in rapidly progressing patients, might even be 
counterproductive, by leaving non-detectable, aggressive 
disease untreated. Metastasis-directed therapies in 
prostate cancer, therefore, remain largely investigational; 

only one phase 2 trial has shown that metastasis-directed 
therapies delay the onset of androgen deprivation therapy 
(ADT) in patients with biochemical recurrence after local 
treatment.8 Demonstration of the efficacy of metastasis-
directed therapies relies on a definitive diagnosis of 
oligometastatic disease at the outset.

Imaging has a key role in identifying metastases at 
various points in the prostate cancer care pathway—eg, 
at new diagnosis, biochemical recurrence, or in the 
setting of castration-resistant prostate cancer. No 
standard definition of oligometastatic disease exists and 
experts still debate on the maximum number of 
metastatic deposits and their locations. At the 2017 
Advanced Prostate Cancer Consensus Conference 
(APCCC) consensus meeting, oligometastatic disease 
was defined as the presence of three or fewer bone or 
lymph node metastases.9 Such an anatomical definition 
implies that the imaging technique used to define lesions 
is accurate for detection of metastasis. For prostate 
cancer, the standard imaging methods are technetium 
medronic acid (⁹⁹mTc-MDP) bone scintigraphy to detect 
bone metastases and contrast-enhanced thoraco-
abdomino-pelvic CT or morphological MRI for identi­
fying malignant nodes and visceral lesions.10 Although 
recommended by most guidelines, these techniques have 
poor diagnostic accuracy, underestimating the number of 
metastatic deposits.11 Modern imaging methods, such as 
PET-CT with tumour-specific tracers and increasingly 
whole-body MRI (WB-MRI) with diffusion-weighted 
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imaging (DWI) sequences, allow earlier and more precise 
identification of metastases.12,13

No consensus regarding the use of modern imaging 
methods in prostate cancer exists, nor do comprehensive 
recommendations of clinical trials that evaluate the 
benefits of treating oligometastatic disease recognised 
with these methods. In this Review, we assess the 
evidence for using modern imaging methods to identify 
oligometastatic disease in patients with prostate cancer 
at the various stages of the disease pathway. We then 
outline several clinical trial designs for the evaluation of 
the potential benefit of delivering metastasis-directed 
therapy to oligometastatic disease on the basis of the use 
of modern imaging methods (figure 1). We do not 

address specific drug or ablative technologies, sample 
size, or endpoints for these trials.

Validity of imaging methods
The main imaging requirements for efficient 
oligometastatic disease screening include high sensitivity 
and high specificity, and also high negative predictive 
value at the patient, region, and lesion levels. Standardised 
acquisition, validated repeatability and reproducibility, 
reading recommendations, and response measurement 
criteria are also essential.14 Comparisons of standard and 
modern imaging methods have repeatedly shown the 
superiority of modern approaches, with results 
particularly showing the failure of standard imaging 
approaches to meet the requirements for precision 
medicine.15,16 Modern imaging methods are, therefore, 
preferred for optimal diagnosis and therapeutic planning 
in oligometastatic disease. Some modern imaging 
methods might only partially meet the requisite criteria 
for detecting oligometastatic disease, so a combinatorial 
approach might be required.17 Therefore, despite their 
cost implications, modern imaging methods can help us 
to rethink the care pathways of patients with prostate 
cancer, by providing information that facilitates selection 
of targeted curative therapy in the presence of a limited 
metastatic burden.16 Nevertheless, modern imaging 
methods are poorly represented in guidelines (tables 1–3).

Standard imaging methods
CT and ⁹⁹mTc-MDP bone scintigraphy have a low 
sensitivity to detect oligometastatic disease (appendix 
pp 1–3).15,16 CT allows for whole-body imaging. It is widely 
available and affordable, but has poor sensitivity and 
specificity for detection of lymph nodes metastases and 
is suboptimal for the detection of bone metastases.18,19 
Bone scintigraphy offers reader consistency for classifi­
cation of M1 versus M0 disease in prostate cancer, but 
misses metastatic lesions.20–22 By use of standardised 
reporting tools, the classification of progression versus 
non-progression with these standard imaging methods 
is excellent, but responses are not easily detected.23 
Intervals of 2–3 months between examinations are 
needed for bone scintigraphy and it can be affected by 
the flare phenomenon;24 therefore, additional 
confirmatory examinations are needed and diagnosis can 
be delayed.22,25 Computer-aided analysis has been 
proposed to improve classification of the presence and 
extent of M1 status, but evaluation of the diagnostic 
performance of software by experts masked to the 
software shows notable variation.26

Modern imaging methods
¹⁸F-sodium fluoride (¹⁸F-NaF) PET, like ⁹⁹mTc-MDP, 
largely reflects regional bone blood flow and osteoblastic 
activity so that its specificity and sensitivity for lytic 
metastases and soft tissue disease is insufficient 
(appendix pp 1–3).27 ¹⁸F-NaF PET/CT does not offer a 
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Figure 1: Consensus process on the definition, elaboration, and validation of 
recommendations by the EORTC Imaging Group in oligometastatic prostate 
cancer
Illustrates the methodology, participants, and procedures used for agreeing the 
imaging recommendations for diagnosis of oligometastatic disease in prostate 
cancer: definition of oligometastatic disease and metastasis-directed therapy, 
review of guidelines and of evidence for the use of modern imaging methods, 
determination of the stages of prostate cancer to consider. At each structured 
round, results of the findings were submitted to controlled feedback, reiteration 
and validation of content, finally integrating them into our trial designs. 
EORTC=European Organisation for Research and Treatment for Cancer.

Round 1: Face-to-face meeting, EORTC headquarters, Dec 1, 2016
Scope of recommendations proposed and agreed by EORTC Imaging Group 
members
•  Definition of oligometastatic disease and metastasis-directed therapies
•  Review of imaging guidelines for stages of prostate cancer pathway
•  Evidence for use of standard imaging models and modern imaging methods 
    in stages of prostate cancer pathway
Multidisciplinary, international task force created from EORTC Imaging and 
Genitourinary cancer groups
Methodologist (LC), physicist (LB), radiation oncologists (YL, PO, DP), 
Urologist (BT), nuclear medicine physicians (DEO-L, CMD, KH, OSH, GK, EL, 
LJP, J-NT, HZ), and radiologists (FEL, YL, NMd)

Teleconference, Feb 9, 2017
Definitions agreed, imaging guidelines reviewed, and variations in use of 
standard imaging models and modern imaging methods across multiple 
countries discussed

Round 2: Face-to-face meeting, Brussels, March 9, 2017
Trials designs proposed for validating the use of modern imaging methods at 
various stages of the prostate cancer pathway
Outline of document drafted, evidence gathering, and writing plan agreed 
according to individual technical and clinical expertise 

Teleconference, May 9, 2017
Evidence for use of standard imaging models and modern imaging methods 
presented and discussed
Trial designs refined in view of evidence 

Round 3: Face-to-face meeting, EORTC headquarters, Oct 3, 2017
Review of manuscript content and resolution of discordant points

Round 4: Face-to-face meeting, EORTC headquarters, March 3, 2018
Update of manuscript content
Unanimous validation of manuscript content and design of trials
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substantial clinical benefit compared with bone 
scintigraphy (including SPECT/CT).27

PET with ¹⁸F or ¹¹C radiolabelled choline can be used 
for the imaging of cell membrane phospholipid synthesis 
and consequently cell growth. ¹⁸F-labelling is more 
widely available and more convenient because of its 
longer half-life (110 min vs 20 min) and better spatial 
resolution (shorter positron range of ¹⁸F).27 ¹⁸F-choline 
PET/CT is mainly used for restaging patients at 
biochemical recurrence (appendix p 4). Use of choline 
PET is recommended by guidelines when prostate-
specific antigen (PSA) concentrations are more than 
1 ng/mL.10,28

Well known cellular expression of prostate-specific 
membrane antigen (PSMA) across organs can be 
matched by PET with ⁶⁸Ga-PSMA-ligand.29,30 ¹⁸F-labelled 
PSMA-targeting imaging compounds, such as ¹⁸F-DCFBC 
(a first generation low molecular weight inhibitor of 
PSMA), ¹⁸F-DCFPyL (second generation ¹⁸F-labelled 
small molecule PSMA inhibitor, with superior tissue 
binding ability, improving the detection of metastases 
adjacent to large blood vessels), or ¹⁸F-PSMA-1007 (little 
or no bladder excretion) are also being developed.31–33 
Metastases usually appear as focally increased tracer 
uptake contrasting with the background. High back­
ground activity obscures disease detection in the liver and 
is compounded by the loss of PSMA expression in 
advanced liver metastases.34–36 Absent or low expression of 
PSMA on the tumour cells can result in false negatives, 
although the exact proportion of patients is unknown; 
therefore, strict criteria for visual interpretation remain to 
be established.37 Maurer and colleagues38 compared 
PSMA-ligand PET-CT with pelvic lymph node dissection 
and found that 11 (8%) of 130 patients had no or very faint 
PSMA uptake in the primary tumour. ⁶⁸Ga-PSMA-ligand 
PET is recommended at biochemical recurrence in 
patients with PSA concentrations more than 1  ng/ml 
(appendix p 5).10 A high level of interobserver agreement 
has been shown with ⁶⁸Ga-PSMA PET/CT imaging, 
particularly for the diagnosis of lymph node and bone 
metastases. Both high and intermediate experienced 
observers emphasise the potential added value of 
⁶⁸Ga-PSMA-ligand PET/CT for primary staging and 
for biochemical recurrence detection with a PSA con­
centration of lower than 1 ng/mL.39–42

WB-MRI (with T1, T2, short tau inversion recovery, and 
DWI sequences) allows mapping of the full extent of the 
disease and identifies spinal lesions at risk or responsible 
for neurologic complications.43,44 Interobserver agreement 
for reading of WB-MRI images, including DWI, has been 
tested in detail in a small patient cohort and shown to be 
0·98 (95% CI 0·89–0·99) for the median global apparent 
diffusion coefficient (ADC) and 0·97 (0·83–0·99) for 
the mean ADC.45 In other studies, WB-MRI has outper­
formed bone scintigraphy (κ=0·87, 95% CI 0·66–1·00 for 
ADC, 0·60, 0·26–0·78 for bone scintigraphy).46,47 The 
variability of ADC measurements is less than 15%, 

making it sensitive to treatment-induced changes, thus 
allowing response to be quantifiable and measurable.48–50 
This capability to assess response is particularly helpful 
in late stage disease (ie, castration-resistant prostate 
cancer).44 International guidelines have been published 
for harmonisation in acquisition, interpretation, and 
reporting of WB-MRI, and response assessment criteria 
have been defined.51

Methodology for reaching consensus 
recommendations
The Imaging Group of the European Organisation for 
Research and Treatment of Cancer (EORTC) comprises 
radiologists and nuclear medicine physicians from trial 
centres throughout Europe who actively participate in 
multicentre, EORTC-sponsored trials. The group has 
strong links to the EORTC disease-oriented groups who 
run these trials. Participants for this consensus working 
group comprised all interested parties by open invitation 
from the imaging and prostate cancer groups. We 
discussed the potential recommendations over an 
18-month period, during which three face-to-face meetings 
at the main Imaging Group meetings occurred, as well as 
two teleconferences to refine the final recommendations. 
A procedure of discussion and re-iteration between 
experts was followed, which considered the relevant 
published literature and currently accepted clinical 
practice to achieve unanimous consensus (figure 1).

Findings
Optimal methods for imaging metastases in newly 
diagnosed patients
In countries where PSA testing is available, less than 
10% of the newly diagnosed prostate cancers are 
metastatic.52 Based on five randomised controlled trials, 
the standard treatment of patients metastatic at diagnosis 
has shifted from ADT alone to ADT plus chemotherapy 
or abiraterone acetate.53,54 These drugs have shown a clear 
benefit in patients with high-volume disease (defined as 
the presence of visceral metastases, or four or more bone 
lesions with one or more beyond the vertebral bodies and 
pelvis), but their effect on lower volume disease is 
unclear. For patients with oligometastatic disease, 
intense research is ongoing to assess the potential benefit 
of combining ADT with locoregional metastasis-directed 
therapy. Imaging at new diagnosis should, therefore, 
include recognition of metastatic disease in high-risk 
patients (table 1).

Standard imaging methods detect abnormal lymph 
nodes on the basis of a size threshold. According to 
Response Evaluation Criteria in Solid Tumors (RECIST) 
1.1, nodes with a short axis of 10 mm or longer but 
smaller than 15 mm are considered pathological, 
although non-target, lesions.55 Nodes longer than 15 mm 
in short axis are considered pathological and measurable 
by both RECIST and Prostate Cancer Working Group 3 
(PCWG3) criteria.25,55 Despite its high spatial resolution 
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and even when additional contrast agents are used, 
CT has poor soft tissue contrast resolution, resulting in 
inferior performance compared with MRI.56 An inability 
to detect architectural changes in lymph nodes smaller 
than 10 mm results in very low sensitivity (40%) for CT 
and reactive or inflammatory changes can result in false-
positive observations, which explains its low specificity 
(80%). Although widely used for bone metastases 
screening at staging of prostate cancer,10,57,58 the proportion 
of equivocal planar bone scintigraphy in large trials 
ranges from 15% to 25%.20,59 The proportion of falsely 
negative examinations is even more problematic, because 
radical treatments to the prostate are probably ultimately 
futile. At a lesion level, a patient with polymetastatic 
disease might be falsely identified as having oligo­
metastatic disease. For bone scintigraphy, results from 
meta-analyses60,61 show a sensitivity ranging from 

79% to 88% and a specificity ranging from 75% to 82%. 
The use of SPECT/CT reduces the proportion of equivocal 
findings.62,63

The modern imaging method ¹⁸F-NaF PET is superior 
to bone scintigraphy, but is similarly limited to bone 
screening alone. In a review64 of 318 patients from eight 
studies, sensitivity was 95·5% (range 81–100), specificity 
was 77·4% (54–100), positive predictive value was 85·2% 
(74–100), negative predictive value was 94·9% (77·9–100), 
and accuracy was 78·5% (65·4–100). The sensitivity of 
¹⁸F-NaF PET to minimal degenerative changes reduces 
its specificity.64 Its higher cost and lower availability mean 
that it has not replaced bone scintigraphy.

Radiolabelled choline PET/CT has the advantage of 
being tumour specific. For bone metastases, ¹⁸F-choline 
PET/CT has a sensitivity of 79%, specificity of 97%, and 
diagnostic accuracy of 84%, compared with a consensus 
definition of bone metastases based on conventional 
imaging and clinical endpoints.65 For lymph node 
staging, the sensitivity of ¹⁸F-choline PET/CT ranges 
between 33% and 100% and the specificity between 95% 
and 100%.28 In 912 lymph nodes sampled in high-risk 
patients, ¹⁸F-choline PET/CT proved better than CT, 
particularly for metastases larger than 5 mm in size 
(sensitivity of 66%, specificity of 96%, positive predictive 
value of 82%, and negative predictive value of 92%).66

Tumour specificity is further improved by use of 
⁶⁸Ga-PSMA PET/CT, for which sensitivities of 33% and 
66% and specificities of 100% and 99% against histological 
gold standard have been reported for nodal disease.67,68 
Low patient-based sensitivity (64%) and high specificity 
(95%) is described in both single-centre studies69 and in 
literature reviews.40 Furthermore, comparative data sug­
gest that ⁶⁸Ga-PSMA PET/CT is more accurate than bone 
scintigraphy and CT for the detection of bone and visceral 
metastases.70,71 Formal prospective assessment is needed 
before translation into clinical routine.

Another validated approach to detect both bone and 
lymph node metastases at staging of first diagnosed 
prostate cancer is the use of WB-MRI. A meta-analysis 
study on bone metastasis showed a pooled sensitivity of 
95% (95% CI 90–97), specificity of 92% (88–95), and area 
under the curve for DWI of 0·98 on both a per-patient 
and per-lesion basis.72 Meta-analyses have confirmed the 
superior diagnostic accuracy of WB-MRI over ¹⁸F-choline 
PET/CT, CT, and bone scintigraphy in prostate cancer.61,73

Optimal methods for imaging metastases in patients 
with biochemical recurrence
About 30% of patients treated radically for high or very-
high risk prostate cancer have biochemical recurrence.74 
In those patients with previous radical prostatectomy, 
salvage external beam radiotherapy is recommended.74 
After previous external beam or interstitial radiotherapy, 
salvage surgery, high-intensity focused ultrasound, or 
cryotherapy can be used.74 These treatment methods 
assume that the initial pathology, the time interval 

Imaging recommendation

European Association of Urology

Low risk (PSA <10 ng/mL, Gleason score <7 [ISUP 
grade 1], clinical stage T1–2a)

No imaging

Intermediate risk (PSA 10–20 ng/mL, Gleason score 7 
[ISUP grade 2 or 3] or clinical stage T2b); 
predominantly gastrointestinal 4

Multiparametric MRI for local staging, abdominal 
and pelvic CT, bone scintigraphy

High risk (PSA >20 ng/mL, Gleason score >7 [ISUP 
grade 4 or 5]), or locally advanced )

Multiparametric MRI for local staging, abdominal 
and pelvic CT, bone scintigraphy

Any risk No CT or TRUS for local staging, no choline-PET for 
detection of lymph node metastases, no final 
recommendation on Ga-PSMA or F-PSMA ligand 
PET, no final recommendation on WB-MRI

National Comprehensive Cancer Network (version 2.2017)

If life expectancy >5 years or asymptomatic and: T1 
and PSA >20 ng/mL, T2 and PSA >10 ng/mL, Gleason 
score 9, T3 or T4

Bone scintigraphy

Symptomatic and T3 or T4, T1–T2 and nomogram 
>10% risk of lymph node metastases

CT and MRI

American Urological Association, American Society for Radiation Oncology, Society of Urologic 
Oncology 2017

Very low risk (PSA <10 ng/mL, and grade group 1, and 
clinical stage T1–T2a, and <34% of biopsy cores 
positive, and no core with >50% involved, and PSA 
density <0∙15 ng/mL per cm³)

No abdominal and pelvic CT or bone scintigraphy

Low risk (PSA <10 ng/mL, and grade group 1, and 
clinical stage T1–T2a)

No abdominal and pelvic CT or bone scintigraphy

Unfavourable intermediate risk (grade group 2 [with 
either PSA 10–20 or clinical stage T2b-c] or grade 
group 3 [with PSA <20 ng/mL])

CT and MRI, bone scintigraphy

High risk (PSA >20 ng/mL, or grade group 4–5, or 
clinical stage >T3, or locally advanced)

CT and MRI, bone scintigraphy

Integraal Kankercentrum Nederland (guideline prostate cancer, version 2.1)

PSA >20ng/mL, clinical stage T3, Gleason score 8, 
symptomatic

Bone scintigraphy or choline PET

Any risk Multiparametric MRI for primary diagnosis (if 
available), multiparametric MRI for staging (only if 
relevant for therapy), no CT for staging, no routine 
choline-PET for primary staging

PSA=prostate-specific antigen. ISUP=International Society of Urologic Pathologists. TRUS=transrectal ultrasound. 
PSMA=prostate-specific membrane antigen. WB-MRI=whole-body MRI.

Table 1: Imaging guidelines for newly diagnosed prostate cancer
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between the local treatment and the PSA recurrence, and 
the PSA kinetics are sufficient to distinguish local relapse 
from early metastatic spread.

The role of imaging in these cases is indispensable. 
Imaging should be used to rule out polymetastatic disease 
not amenable to cure by local treatment alone, and to 
detect oligometastatic disease that could benefit from 
regional salvage therapies.75–77 The detection of 
oligometastatic disease at biochemical recurrence is 
important, because results from at least one trial have 
shown that metastasis-directed therapy could delay 
initiation of ADT. Imaging at biochemical recurrence can 
also rule in and confirm locoregional recurrence to plan 
salvage local treatment; multi-parametric MRI is the 
technique of choice.77,78 However, even when imaging is 
negative, pelvic bed external beam radiation therapy is 
administered on the assumption that local recurrence is 
undetected at imaging, a strategy supported by several 
trials of salvage external beam radiation therapy. Imaging 
is recommended in biochemical recurrence when PSA 
concentrations are more than 0·2 ng/mL–1 ng/mL after 
surgery and more than 2 ng/mL above the nadir after 
radiotherapy (table 2).79

CT and bone scintigraphy are not recommended in 
patients with biochemical recurrence, although bone 
scintigraphy can be used if the PSA has reached a 
concentration of 10 ng/mL or higher (table 2).80,81

With regards to modern imaging methods, findings 
from a meta-analysis of 12 studies in 1055 patients with 
biochemical recurrence showed that ¹⁸F-choline or 
¹¹C-choline PET-CT on a per-patient basis had a pooled 
sensitivity of 85% (95% CI 79–89), specificity of 88% 
(73–95), and diagnostic odds ratio of 41·4 (19·7–86·8).82 
Comparable results were described in a meta-analysis of 
19 studies in 1555 patients that showed that the pooled 
sensitivity for all sites of disease (prostatic fossa, lymph 
nodes, and bone) was 85·6% (95% CI 82·9–88·1) 
for ¹¹C-choline and 92·6% (90·1–94·6) for ¹⁸F-choline 
PET/CT.83 However, in another meta-analysis of 14 studies 
in 1869 patients, a pooled detection of 58% was reported 
for ¹⁸F-choline and ¹¹C-choline PET/CT in a restaging 
setting.84 A PSA doubling time of less than 6 months and 
PSA velocity of more than 1 ng/mL per year or higher 
than 2 ng/mL per year proved to be relevant factors in 
predicting a positive result. However, none of the meta-
analyses have reported the performance of choline-PET 
in relation to the amount of PSA.

The most studied modern imaging method in the 
setting of biochemical recurrence is ⁶⁸Ga-PSMA-ligand 
PET/CT.29,85–87 In patients with biochemical recurrence 
after radical prostatectomy, the technique was reported to 
detect pathological findings in 90% of cases, with at least 
one positive lesion in 83% of cases.85,86 Results from a 
meta-analysis showed that the proportion of positive 
⁶⁸Ga-PSMA-ligand PET-CT scans increases with pre-PET 
PSA (42% positive scans for PSA 0–0·2 ng/mL, 58% for 
0·2–1 ng/mL, 76% for 1–2 ng/mL, and 95% for 

>2 ng/mL).41 Shorter PSA doubling times also increase 
detection of ⁶⁸Ga-PSMA-ligand PET/CT on per-patient 
and per-lesion analyses.41 However, the limitations of the 
previous studies must be emphasised, including no 
histological proof for tumoural involvement in detected 
foci, heterogeneity in patient populations, and uneven 
validation. False-positive PET scans, mostly based on 
PSMA, showed no lymph node involvement on pathology 
in 32% at salvage surgery and only 30% of patients had a 
PSA drop.88 However, because no post-surgery imaging 
was done, the wrong lymph node could have been taken 
out, underlining the need for PSMA-directed radioguided 
surgery.89 One case report study also emphasised the 
problem of false-negative findings of modern imaging 
methods, with both PSMA PET/CT and ultrasmall 
superparamagnetic iron oxide-enhanced MRI under­
estimating the number of involved nodes.90

WB-MRI can detect metastases at biochemical recur­
rence even at very low PSA values (median 0·36 ng/mL; 
appendix p 5).76 A WB-MRI based study evaluating the 
distribution of bone and node recurrence showed that 
metastatic disease was often distant, located beyond 
usual surgical and radiotherapeutic boundaries for 
treating biochemical recurrence.12 Although it is poten­
tially a reliable alternative to choline PET/CT in these 
patients,91 results from a single-centre study,92 in which a 
direct comparison was made between WB-MRI (done 
with the suboptimal high b value of 600 mm²/s as per 

Imaging recommendation

European Association of Urology

After prostatectomy with PSA 
<1 ng/mL

No imaging

After prostatectomy with PSA 
>1 ng/mL

Choline or PSMA-ligand PET

After radiotherapy (if fit enough for 
curative salvage)

Multiparametric MRI, and 
choline-PET, no standard tool for 
Ga-PSMA-ligand PET, but should 
be considered if available

General (only if PSA >10 ng/mL, PSA 
doubling time <6 months, and PSA 
velocity >0∙5 ng/mL per month)

Abdominal and pelvic CT, bone 
scintigraphy, no final 
recommendation on WB-MRI

National Comprehensive Cancer Network (version 2.2017)

After prostatectomy Bone scintigraphy

After radiotherapy, if candidate for 
local therapy (T1–2, Nx, or N0, Life 
expectancy >10 years, and PSA 
>10 ng/mL)

Chest X-ray, bone scintigraphy, 
and prostate MRI; abdominal and 
pelvic CT and MRI and ¹¹C-choline 
PET should also be considered

Integraal Kankercentrum Nederland (guideline prostate cancer, 
version 2.1)

PSA >5 ng/mL, PSA >1 ng/mL and 
PSA doubling time <3 months, 
Gleason score 8

Choline PET, bone scintigraphy 
only if PSA >20 ng/mL

Any risk No CT for staging, 
multiparametric MRI should be 
considered for local recurrence

 PSA=prostate-specific antigen. PSMA=prostate-specific membrane antigen.

Table 2: Imaging guidelines for biochemical recurrence of prostate cancer
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European Society of Urogenital Radiology guidelines) 
and ⁶⁸Ga-PSMA PET/CT, showed WB-MRI to be inferior.

Optimal methods for imaging metastases in early 
castration-resistant prostate cancer
Castration resistance is defined by a PSA rise or a 
radiological progression in a patient with testosterone in 
the castrate level.74 Registration of drugs for metastatic 
castration-resistant prostate cancer in the past 10 years 
(two androgen-receptor pathways inhibitors [ARPIs]—
abiraterone acetate and enzalutamide, two chemo­
therapies—docetaxel and cabazitaxel, three bone-targeted 
drugs—radium-223, denosumab, and zoledronic acid, 
and one vaccine—sipuleucel-T)74 demands imaging to 
justify their use and to monitor treatment response. 
ARPIs are the treatment of choice when available.93 The 
progression to metastatic castration-resistant prostate 
cancer (identifiable lesions on imaging) from non-
metastatic castration-resistant prostate cancer (PSA 
increase without detectable metastases on standard 
imaging methods) is usually slow, except in patients 
with a short PSA doubling time of 6 months or less.94 In 
those with a PSA doubling time 10 months or less, the 
ARPIs apalutamide and enzalutamide have been shown 

to significantly extend metastatic-free survival.95,96 
Therefore, in patients with castration-resistant prostate 
cancer, modern imaging methods can help identify early 
metastatic progression, resulting in an earlier initiation 
of abiraterone acetate and enzalutamide. Because up to 
30% of patients with progressive disease have 
oligometastatic disease, addition of metastasis-directed 
therapy to further increase metastasis-free survival might 
be warranted.97

The standard imaging method of bone scintigraphy is 
the reference diagnostic tool (table 3) for defining 
progression of bone metastases, as defined by the 
PCWG3 criteria.25 The bone scan index has a prognostic 
value for estimating survival and the PCWG3 criteria 
(two new confirmed lesions define progressive disease) 
predict overall survival.98–103 The low sensitivity of bone 
scintigraphy to treatment response, however, exposes 
patients with short life expectancy to futile and potentially 
toxic treatment.

Contrast-enhanced CT and MRI are recommended 
(PCWG3) for nodal staging and visceral lesion detection 
(M1a and M1c; table 3). Locations of nodal disease are 
recorded separately (up to five nodes in total) and 
visceral lesions are reported as per RECIST.55 A more 
than 5 mm increase in the short axis from baseline or 
nadir in a previously normal lymph node to more than 
10 mm is considered progressive for RECIST. For 
PCWG3, nodes between 10 mm and 15 mm in short axis 
are considered pathological and subject to clinical 
discretion but non-measurable; an increase in size in 
short axis to more than 15 mm is considered progressive 
and measurable.25

The modern imaging method of choline PET/CT has 
been suggested to assess treatment response in patients 
treated with docetaxel and decreasing PSA concentrations 
but with clinical signs of disease progression.104 Because a 
change in choline uptake does not significantly correlate 
with PSA response,105 use of choline PET/CT in patients 
with castration-resistant prostate cancer is limited to the 
detection of resistant tumour lesions during the course of 
treatment (positive predictive value of 99% and negative 
predictive value of 81%).104 Furthermore, in patients with 
castration-resistant prostate cancer undergoing dedicated 
therapy with abiraterone acetate, enzalutamide, or 
radium-223,106–108 early ¹⁸F-choline PET/CT might predict 
clinical outcome beyond PSA response, although 
standardised uptake value measurement is not routinely 
used in interpretation.109,110 By contrast with its value 
in biochemical recurrence, PSMA PET/CT is not used 
for response assessment, owing to the scarcity of know­
ledge on the temporal association (early overexpression 
and later decrease) between treatment and PSMA 
expression.111

WB-MRI has the potential to allow for early 
categorisation of lesions into response categories to 
define disease response, stability, or progression. 
Examination protocols and both qualitative (eg, lesion 

Imaging recommendation Notes

European Association of Urology

PSA >2 ng/mL, symptomatic Bone scan, CT If negative repeat when PSA 
>5 ng/mL and after PSA 
doubling time

Metastatic castration-resistant 
prostate cancer, monitoring of 
treatment

Chest CT, abdominal and pelvic CT, 
bone scan

Repeated every 6 months

National Comprehensive Cancer Network (version 2.2017)

Castration naive Bone scan, chest X-ray, abdominal 
and pelvic CT and MRI with and 
without contrast; choline PET should 
be considered

··

Monitoring metastatic 
castration-resistant prostate cancer

CT and MRI, bone scan CT and MRI every 
6–12 months, bone scan every 
8–12 weeks

APCCC 2017 (Delphi method >75% agreement)

Oligometastatic castration-naive 
prostate cancer

No abdominal and pelvic CT or bone 
scan

··

Staging and monitoring metastatic 
castration-resistant prostate cancer 
when treating with radium-223

Thoracoabdominal CT, bone scan ··

APCCC 2015

Metastatic castration-resistant 
prostate cancer

Chest CT, abdominal and pelvic CT, 
bone scan, no routine WB-MRI or 
PET/CT for staging

Before start of treatment

Prostate Cancer Working Group 3

If locally persistent or recurrent Multiparametric MRI ··

All patients Chest CT (<5 mm slices), abdominal 
and pelvic CT (<5 mm slices), 
bone scan, WB-MRI and PET/CT 
(all tracers) not recommended

··

PSA=prostate-specific antigen. APCCC=Advanced Prostate Cancer Consensus Conference. WB-MRI=whole-body MRI.

Table 3: Imaging guidelines for castration-resistant prostate cancer
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signal and soft tissue extension) and quantitative 
(eg, number, size, and average diffusion coefficients 
[ADC]) response criteria have been defined, harmonised, 
and reported in the published literature.44,49,50 The volume 
of target lesions, the total metastatic volume assessed by 
DWI, and the median ADC values have been shown to be 
reliable markers of response, showing correlation with 
PSA concentrations and circulating tumoural cell 
counts.112 The available data are derived from single-
centre, non-randomised studies with small patient 
numbers, so should be interpreted with caution. Larger-
scale multicentre trials are necessary.

Proposed clinical trial designs incorporating 
modern imaging methods
The study of modern imaging methods has focused 
primarily on assessing their diagnostic performance, not 
their effect on care pathways. A study in which patients are 
stratified by modern versus standard imaging methods for 
subsequent care would show the difference between a 
modern and a standard imaging method-driven care 
pathway. We anticipate that the detection of oligometastatic 
disease on modern imaging methods would trigger 
metastasis-directed therapy whenever deliverable. The 
alternative would be to test a care pathway in which 
everybody receives modern imaging methods and a 
decision is taken to use or ignore the results. Based on 
these general hypotheses, the EORTC Imaging Group has 
proposed clinical trial designs to validate the use of modern 
imaging methods for defining treatment options in 
oligometastatic disease at various stages of prostate cancer, 

namely at new diagnosis, at biochemical recurrence, and 
at the castration-resistant prostate cancer stage. Trials of 
metastasis- directed therapy to the prostate itself in these 
cases are not included. Endpoints and sample size are not 
addressed in these simulated trials. Modern imaging 
methods are referred to generically. Each study could, 
therefore, use the most appropriate modern imaging 
method (eg, choline vs PSMA-ligand PET/CT, or WB-MRI).

Newly diagnosed prostate cancer
In patients with a Gleason score of more than 7 (4 + 3), 
a T stage of T3 or higher, or a PSA of more than 20 ng/mL, 
or in presence of symptoms, guidelines recommend 
bone scintigraphy and CT and MRI for the detection of 
bone, lymph node, and visceral metastases (table 1).74 In 
patients with a negative metastatic investigation on these 
standard imaging methods, modern imaging methods 
have been shown to identify metastatic deposits in a 
substantial proportion of patients, potentially altering 
treatment by triggering a radiation plan for lymph node 
treatment or replacing or complementing radical treat­
ment with ADT or metastasis-directed therapy when 
metastatic disease is of low volume. In patients with low-
volume metastatic disease on standard imaging methods, 
modern imaging methods also might be useful to 
exclude polymetastases. Modern imaging methods have 
no role in patients designated polymetastatic on standard 
imaging methods.

High-risk patients with newly diagnosed prostate 
cancer with a negative standard imaging method should 
be randomly assigned to receive a modern imaging 

Figure 2: Proposed clinical trials incorporating modern imaging methods in newly diagnosed prostate cancer and impact on care pathway
*Investigational treatments. PSA=prostate-specific antigen. N1=regional (pelvic) lymph nodes. SIM=standard imaging methods. MFS=metastasis-free survival. 
M0=non-metastatic. OMD=oligometastatic disease. Poly-M+=Polymetastatic disease. ADT=androgen deprivation therapy. tCRPC=time to castration-resistant 
prostate cancer (European Association of Urology definition). 
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method or not (figure 2). The standard of care when 
modern imaging method is not done is local treatment of 
the prostate and the pelvic lymph nodes and ADT for 

18–36 months. If the modern imaging method is 
negative, the standard of care remains unchanged. If the 
modern imaging method reveals oligometastatic disease, 
patients could also receive metastasis-directed therapy in 
an investigational setting. Patients with polymetastatic 
disease in a modern imaging method group could be 
treated with ADT with or without docetaxel or abiraterone 
acetate, local treatment being investigational.

Based on the Intermediate Clinical Endpoints in Cancer 
of the Prostate working group, the endpoint for patients 
with localised disease on standard imaging methods is 
metastasis-free survival.113 For patients with metastases, no 
validated endpoint other than overall survival exists. Time 
to castration-resistant prostate cancer could be captured as 
an earlier endpoint compared with overall survival.

Biochemical recurrence without locoregional salvage 
options
Patients with biochemical recurrence can be stratified 
into two categories, those at low-risk and those at high-
risk of metastasis and death (figure 3). Patients at high 
risk are candidates for early ADT (indicated if PSA 
doubling time ≤12 months, or a high initial Gleason 
score [≥8], and a long-life expectancy).10 European 
Association of Urology guidelines already recommend 
choline-PET/CT and PSMA-PET/CT at biochemical 
recurrence at a PSA threshold of 1 ng/mL. PSMA-
PET/CT is preferred, if available, based on findings from 
several studies proving its superiority over choline-PET 
and because of lower production costs.114,115 Based 
on results from individual studies and meta-analyses, 
WB-MRI also appears to be superior to ¹⁸F-choline 
PET/CT and could be considered at this stage.44,61

Figure 3: Proposed clinical trials incorporating modern imaging methods at biochemical recurrence in 
prostate cancer and impact on care pathway
PSA DT=prostate-specific antigen doubling time. iADT=intermittent androgen deprivation therapy. tCRPC=time to 
castration-resistant prostate cancer (European Association of Urology definition). MDT=metastasis-directed therapy.

Figure 4: Proposed clinical trials incorporating modern imaging methods in castration-resistant prostate cancer and their impact on care pathways
Low-risk: PSA 2 ng/mL or less and PSA doubling time 10 months or more. High-risk: PSA 2 ng/mL or higher and PSA doubling 10 months or less. mCRPC=metastatic 
castration-resistant prostate cancer. nmCRPC=non-metastatic castration-resistant prostate cancer. ARPI=androgen receptor pathway inhibitor. 
OMD=oligometastatic disease.
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In high-risk patients (PSA doubling time ≤12 months 
and a Gleason score ≥8) in whom early ADT is 
recommended, two trials designs are proposed (figure 3). 
Both trials use metastasis-directed therapy plus a short 
course of ADT for oligometastatic disease identified on 
modern imaging methods. Because there is no standard 
duration of ADT in combination with metastasis-directed 
therapy, we suggest that 6 months could be used as a 
standard reference. In the first trial design, metastasis-
directed therapy is used to improve on present intermittent 
ADT results in terms of time to castration-resistant 
prostate cancer, disease-specific survival, or overall survival. 
An alternative endpoint is time to castration-resistant 
prostate cancer while on ADT. In the second design, 
modern imaging methods are used to offer surveillance to 
patients with a negative standard imaging method.

Early castration-resistant prostate cancer
Standard imaging methods are the standard of care for 
patients with a rising PSA and a testosterone concentration 
of lower than 50 ng/dL. No widely accepted consensus 
exists for when to undertake standard imaging methods 
in patients with castration-resistant prostate cancer. The 
Assessments for Detection of Advanced Recurrence group 
suggested a bone scan and a CT scan when the PSA 
reaches 2 ng/mL and, if the scan was negative, it should 
be repeated when the PSA reaches 5 ng/mL, and again 
after every doubling of the PSA on the basis of PSA testing 
every 3 months for asymptomatic men.16 Symptomatic 
patients should undergo relevant imaging investigations 
regardless of PSA concentration (table 3).

Patients with a positive standard imaging method 
require treatment with ARPIs , based on the APCCC 2015 
consensus.93 In the APCCC 2017, consensus 76% of the 
panel members voted for PSMA as tracer, 10% voted for 
fluciclovine, 6% voted for choline, and 4% for any of the 
three. Therefore, modern imaging methods could be used 
to confirm oligometastatic disease and study the benefit of 
metastasis-directed therapy (figure 4). In patients with 
negative standard imaging method (non-metastatic 
castration-resistant prostate cancer) with a PSA of 2 ng/dL 
or higher and a PSA doubling time of 10 months or less, 
immediate ARPIs are likely to become the standard of 
care.95 Additionally, patients with a negative modern 
imaging method could be further randomised to 
surveillance versus further local treatment, if possible. 
Modern imaging methods could identify patients with 
oligometastatic disease, and metastasis-directed therapy 
used to either further increase metastasis-free survival or 
to test the hypothesis that metastasis-directed therapy plus 
a short course of an ARPI is equivalent to long-term 
treatment with an ARPI. In patients with non-metastatic 
castration-resistant prostate cancer with a PSA of lower 
than 2 ng/mL or a PSA doubling time of more than 
10 months, modern imaging methods could identify 
candidates for metastasis-directed therapy with the aim of 
delaying progression.

Search strategy and selection criteria

We searched PubMed and MEDLINE for relevant articles 
published between Jan 1, 1995, and March 31, 2018, using 
the search terms “metastasis”, “oligometastasis”, 
“oligorecurrence”, “prostate cancer”, “guidelines”, and 
“imaging”. We imposed no language restrictions. We 
excluded preclinical and animal studies. The type of study, 
source of data, and important findings were noted.

Conclusion
This consensus recommendation from the EORTC 
Imaging Group clarifies the role of modern imaging 
methods for optimal identification of oligometastatic 
disease at different stages of prostate cancer. When 
modern imaging methods are available, the role of 
standard imaging methods should be either as a 
necessary step in defining patient populations, in 
agreement with current recommendations, or as a triage 
tool to identify patients with polymetastatic disease. 
Furthermore, we also set out recommendations for the 
use of modern imaging methods in patients in whom a 
precise metastatic count and lesion mapping is 
necessary. We finally highlight the imaging trial designs 
that should be implemented to show the benefit of 
incorporating modern imaging methods into the care 
pathways at distinct stages of prostate cancer: at new 
diagnosis, at biochemical recurrence, and in castration-
resistant prostate cancer.
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