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1.1 Introduction
Since the early days of artificial intelligence, it is believed that logic could bring important
benefits in solving computational problems and tasks compared to standard programming
languages. Kowalski’s seminal paper Predicate Logic as a Programming Language [Kowalski
1974] was a major step in this direction and laid the foundations for the field of logic
programming. It introduced two fundamental ideas: on the declarative level, the use of
the Horn clause logic fragment of classical logic; on the procedural level, a procedural
interpretation of this logic which made it possible to write algorithms in the formalism.
With the technology of the time, Kowalski’s paper was a breakthrough for the use of logic
in computer science.

Since then, logic programming has fanned out in many directions, but in most extensions
and variants, the original key ideas are still present in stronger or weaker form: the use of a
rule-based formalism, and the presence of a procedural interpretation. Or at least, if programs
are not procedures, they are representations of computational problems, as in Datalog and in
Answer Set programming.

In this chapter, we present the IDP system (and language) that, although it builds on the
accomplishments of logic programming and contains language constructs based on logic
programming, embodies a more pure view of logic as a modeling language. In this view, a
logic theory is not a program, it cannot be executed or run; it does not describe an algorithm. A
theory, in principle, is not even a specification of a problem. A theory is a bag of information,
a description of possible states of affairs of the domain of discourse, a representation of
knowledge, or in other words a modeling of the domain of discourse. As such, this view breaks
the link that Kowalski had laid between logic and programming. On the other hand, the IDP
language contains a language construct, namely inductive definition, that directly descends
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Human(John). John is a Human

Human(Jane). Jane is a Human

Male(John). John is a Male

Female(x) :−Human(x),notMale(x). Females are Humans that are not Male

?−Female(Jane). is Jane Female?

yes

Table 1.1 Prolog answers “yes” to the query ?- Female(Jane).

from logic programming, and the IDP system is designed to use declarative information to
solve problems and uses many technologies that were developed in logic programming. As
such, the IDP language and system preserve some of the contributions of logic programming
but break with some of the fundamental ideas of logic programming.

To explain the IDP language, we need to go back to the early days of logic program-
ming when negation as failure was introduced. On the one hand, conclusions obtained with
the negation as failure inference rule were often natural and as desired. This is illustrated
by the program and query in Table 1.1. On the other hand, these answers were logically un-
sound if rules were interpreted as material implications1. This problem disturbed the logic
programming community for more than a decade and led to the development of stable and
well-founded semantics [Gelfond and Lifschitz 1988, Van Gelder et al. 1991]. However, a
formal semantics still does not explain the intuition that humans attach to such programs. For
that, we need to study the informal semantics of the logic. So far, two informal semantics have
been proposed that can explain the intuitive meaning of logic programs. One is the view of
logic programs under stable semantics [Gelfond and Lifschitz 1988] as a non-monotonic logic
closely related to default logic and autoepistemic reasoning developed by Gelfond and Lifs-
chitz [Gelfond and Lifschitz 1991]. The second is the view of logic programs as definitions
of concepts. This view was implicit already in Clark’s work [Clark 1978] on completion se-
mantics and in the work by Van Gelder, Ross and Schlipf [Van Gelder 1993, Van Gelder et al.
1991] on the well-founded semantics. It was elaborated later in a series of papers [Denecker
1998, Denecker and Vennekens 2014, Denecker et al. 2001].

The informal concept of definition (as found in scientific texts) has several interesting as-
pects. First, it is a rule-based linguistic concept of informal language: definitions, certainly
inductive ones, are commonly phrased as conditionals or sets of these. Second, definitions are
second nature to us. Much human knowledge is of definitional nature; this includes inductive

1 This is, the logical implication ϕ⇒ ψ that is interpreted as ¬ϕ∨ψ.
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and recursive definitions2. Many familiar recursive logic programs are obviously representa-
tions of inductive definitions (e.g., the member, append and transitive closure programs).
Third, definitions are of mathematical precision: they are the building blocks of formal math-
ematical theories. Fourth, it is a well-known consequence of the compactness theorem that
definitions, in particular inductive ones, cannot, in general, be correctly expressed in classical
first-order logic. Fifth, recently [Denecker and Vennekens 2014], it was shown that rule sets
under two-valued well-founded semantics correctly formalize all main sorts of informal defi-
nitions that we find in scientific text in the sense that the interpretation of the defined symbols
in the well-founded model of a rule set always coincides with the set defined by the informal
definition represented by the rule set. All these are solid arguments that the concept of defini-
tion is a good candidate for the informal semantics of logic programming. Furthermore, they
suggest to define a rule-based logic construct under the well-founded semantics for expressing
definitions. Importantly, given that this form of information cannot be expressed in classical
logic, it makes sense to add such a construct to classical logic. This idea was carried out for
the first time in [Denecker 2000] leading to the logic FO(ID) which forms the basis of the
IDP language. Given that logic programs were originally seen as a fragment of classical logic,
the definition of this logic was certainly a remarkable turn of events.

A definition is a piece of information. It lays a strict, precise, deterministic logical relation-
ship between the defined concept and the concepts in terms of which it is defined. E.g., the
definition of transitive closure of a graph specifies a logical relationship between the transitive
closure relation and the graph. A definition, like all other language constructs in IDP theories,
is not a procedure, it cannot be run, it does not specify a problem. It is a kind of declarative
information.

The following question now naturally arises: if IDP theories are not programs, how can
they be used to solve computational problems? The IDP system, which supports the IDP
language, is conceived as a knowledge base system (KBS) [Denecker and Vennekens 2008].
The scientific working hypothesis underlying the knowledge base paradigm is that many
computational problems can be solved by applying some form of inference to a specification
of information of the problem domain. A KBS essentially consists of two parts. On the
one hand, a formal declarative knowledge representation language and, on the other hand,
a number of powerful and generic inference methods to solve a broad class of tasks using a
knowledge base.

The paradigm is inspired by several observations. First, imperative programming languages
allow the direct encoding of specialised algorithms, but knowledge about the problem domain
is hidden deep within those algorithms. This facilitates high-performance solutions, but makes
debugging and maintenance very difficult. Second, a program is typically written to perform
one task and perform it well, but cannot handle many related tasks based on the same

2 In this text, we use the names recursive definition and inductive definition interchangeably.
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knowledge. Third, knowledge representation languages excel at representing knowledge in
a natural, human-understandable format. Programming language designers are starting to
realize this and provide constructs to express generic knowledge, such as the LINQ [Pialorsi
and Russo 2007] data queries in C# and annotation-driven configuration [Deinum et al. 2014].
Lastly, the above-mentioned progress in automated reasoning techniques facilitates the shift
of the control burden from programmer to inference engine ever more. The knowledge base
paradigm is an answer to these observations: application knowledge is modelled in a high-
level Knowledge Representation (KR) language and state-of-the-art inference methods are
applied to reason on the modelled knowledge. It has also been demonstrated that, while
the KBS approach cannot yet compete with highly tuned algorithms, the effort to reach
an acceptable solution (w.r.t. computing time or solution optimality) can be much smaller
than that to develop an algorithmic solution [Bruynooghe et al. 2015, Gebser et al. 2012a].
Furthermore, the declarative approach results in software that is less error-prone and more
maintainable.

The IDP system is a state-of-the art KBS. The system is already in existence for several
years, but only recently evolved into a KBS. Up until 2012, IDP was a model expansion sys-
tem (the IDP2 system)3 capable of representing knowledge in a rich extension of first-order
logic (FO) and performing model expansion by applying its grounder GIDL and its solver
MINISAT(ID). Recently, we have extended it into the IDP knowledge base framework for
general knowledge representation and reasoning (referred to as IDP3); the earlier technology
is reused for its model expansion inference. The IDP system goes beyond the KBS paradigm:
for a KBS to be truly applicable in practical software engineering domains, it needs to pro-
vide an imperative programming interface, see [De Pooter et al. 2011]. Such an interface,
in which logical components are first-class citizens, allows users to handle input and output
(e.g., to a physical database), to modify logical objects in a procedural way and to combine
multiple inference methods to solve more involved tasks. In this chapter, we use KBS to refer
to a three-tier architecture consisting of language, inference methods, and procedural integra-
tion. The IDP system provides such a procedural integration through the scripting language
Lua [Ierusalimschy et al. 1996]. The system’s name IDP, Imperative-Declarative Program-
ming, also refers to this paradigm.

In the work revolving around IDP, we can distinguish between the knowledge represen-
tation language and the state-of-the-art inference engines. One can naturally model diverse
application domains in the IDP language; this contrasts with many approaches that encode
knowledge such that a specific inference task becomes efficient. Furthermore, reuse of knowl-
edge is central. The IDP language is modular and provides fine-grained management of logic
components, e.g., it supports namespaces. The implementation of the inference engines pro-
vided by IDP aims at the reuse of similar functionality (see Section 1.6). This has two impor-

3 Given a logical theory and a structure interpreting the domain of discourse, model expansion searches for a model
of the theory that extends the structure.
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tant advantages: (i) improvement of one inference engine (e.g., due to progress in one field of
research) immediately has a beneficial effect on other engines; (ii) once “generic” functional-
ity is available, it becomes easy to add new inference engines. To lower the bar for modellers,
we aim at reducing the importance of clever modeling on the performance of the inference
engines. Several techniques, such as grounding with bounds [Wittocx et al. 2010], function
detection [De Cat and Bruynooghe 2013], automated translation to the most suitable solving
paradigm [De Cat et al. 2013] and automated symmetry breaking [Devriendt et al. 2012] have
been devised to reduce the need for an expert modeller.

The rest of the chapter is structured as follows. In Section 1.2, we present the syntax and
semantics of FO(ID,AGG,PF,T), the logic underlying the system. In Section 1.3 we present
a high-level overview of the IDP system. In Section 1.4, we present the IDP language, a
user-friendly syntax for FO(ID,AGG,PF,T) language components and procedural control.
We present advanced language features and inference methods in Section 1.5. In Section 1.6,
we focus on the inner working of some components of the IDP system. More specifically,
we describe the workflow of the optimization inference and how users can control the various
parts of the optimization engine. Applications, tools and performance are discussed in Section
1.7, followed by related work and a conclusion. In the rest of the chapter, we use IDP to refer
to the current (2018), knowledge base version of the system.

This chapter is a tribute to David S. Warren. The XSB Prolog system [Chen and Warren
1996] by David S. Warren and his students was the first to support the well-founded semantics
and was a milestone in closing the gap between the procedural semantics of the SLDNF
proof procedure [Lloyd 1987] and the intuitive declarative semantics of logic programs as
formalized by the well-founded semantics. In fact, XSB is used internally in the IDP system.
In a personal communication, David once told the authors of this chapter that when he learned
about FO(ID) and the IDP system, he was less than thrilled; specifically, he found it “a crazy
idea”. It is with great satisfaction and gratitude that we have noticed that he changed his mind
as can be seen in his LinkedIn editorial that is devoted to the IDP language [Warren 2014]. It
is therefore a great pleasure to contribute this chapter in a book that was initiated to honour
his 65th birthday.

1.2 FO(ID,AGG,PF,T), the Formal Base Language
In this section, we introduce the logic that is the basis of the IDP language. This logic, FO(ID,
AGG,PF,T), is an extension of first-order logic (FO) with inductive definitions, aggregates,
partial functions and types.

1.2.1 First-Order Logic
A vocabulary Σ consists of a set of predicate and function symbols, each with an associated
arity, the number of arguments they take. We sometimes use P/n ( f/n) to denote the predicate
symbol P (function symbol f ) with arity n.
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A term is a variable or an n-ary function symbol applied to n terms. An atom is an n-ary
predicate symbol applied to n terms. An atom is a formula; if ϕ and ϕ′ are formulas and x is a
variable, then ¬ϕ, ϕ∧ϕ′, ϕ∨ϕ′, ∀x : ϕ and ∃x : ϕ are also formulas. The expressions ϕ⇒ ϕ′,
ϕ⇐ ϕ′ and ϕ⇔ ϕ′ are (as usual) shorthands for ¬ϕ∨ϕ′, ϕ∨¬ϕ′ and (¬ϕ∨ϕ′)∧ (ϕ∨¬ϕ′)

respectively. A literal (often denoted l) is an atom a or its negation ¬a. A sentence is a formula
without free (unquantified) variables. A theory T over a vocabulary Σ consists of a set of
sentences with symbols in Σ. A term t containing occurrences of a term t ′ is denoted as t[t ′];
the replacement of t ′ in t by t ′′ is denoted as t[t ′/t ′′] (similarly for formulas).

A two-valued structure (in the literature, sometimes also referred to as an interpretation) I
over a vocabulary Σ consists of a domain D and an interpretation for all symbols in Σ; we use
sI to refer to the interpretation of a symbol s in I. A two-valued interpretation PI of a predicate
symbol P/n is a subset of Dn; a two-valued interpretation f I for a function symbol f/n is a
mapping Dn→ D. The latter mapping can also be represented by a subset of Dn+1 in which
there is a functional dependency from the first n arguments to the last one. Given a domain D,
a domain atom is a tuple (P,d) where P is an n-ary predicate symbol and d ∈Dn is an n-tuple
of domain elements. Sometimes, we abuse notation and write a domain atom as P(d).

While the domain of standard FO is unordered, it is often convenient to assume that there
is a total order of the set of all domain elements and that a vocabulary includes, by default, the
binary comparison predicates =/2, 6=/2, </2, >/2,≥/2 and≤/2; their interpretation is fixed in
accordance with the total order.

By evaluating a term or formula in a structure I, we obtain its value. The value of a term
is a domain element, the value of a formula is a truth value, either true, denoted t, or false,
denoted f, hence an element of the set {t, f}. The value of a term t, denoted as tI , is d if t
is of the form f (t) and f I(tI) = d. The value P(t)I of an atom P(t) in I is t if tI ∈ PI and
f otherwise. We define (ϕ∧ϕ′)I = t if ϕI = ϕ′I = t, ϕ∨ϕ′I = t if either ϕI = t or ϕ′I = t,
¬ϕI = t if ϕI = f; (∀x : ϕ)I = t if (ϕ[x/d])I = t for all d ∈ D, (∃x : ϕ)I = t if (ϕ[x/d])I = t for
at least one d ∈ D. In the two quantified forms, the replacement of x by d in ϕ means that x is
interpreted as d when deriving the value of ϕ in I. We say a two-valued structure I is a model
of a formula ϕ or I satisfies ϕ, denoted as I |= ϕ, if ϕI = t. Given two tuples t = (t1, . . . , tn) and
t ′ = (t ′1, . . . , t

′
n) of terms of equal length n, t = t ′ denotes the conjunction t1 = t ′1∧·· ·∧ tn = t ′n.

For vocabularies Σ and Σ’ with Σ′ ⊇ Σ and a structure I over Σ′, I|
Σ

denotes the restriction of
I to the symbols in Σ.

Unless the context specifies it differently, ϕ denotes a formula, t a term, D a domain, I a
two-valued structure, I a partial structure (introduced below), d a domain element, x and y
variables, and ∼ any comparison predicate.

Sometimes, it is convenient to use true and false as atoms in a formula. Therefore, we
include them as nullary predicates in every vocabulary. In every structure I, true is interpreted
as {()}, i.e., as the set containing only the empty tuple, hence trueI = t, and false is interpreted
as the empty set /0, i.e., falseI = f.
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Partial Structures A typical problem solving setting is that of model expansion [Mitchell
and Ternovska 2005] where one has partial knowledge about a structure and where the goal
is to expand this partial information into a structure that is a model of the given theory. Hence
we also use partial structures. A partial structure over a vocabulary Σ consists of a domain D,
and a partial interpretation I of the symbols in Σ. With sI , we refer to the interpretation of a
symbol s in a partial structure I .

Whereas the two-valued interpretation of a predicate P/n was defined as a subset of Dn, it
can as well be defined as a mapping from Dn to the set {t, f}. The latter form is better suited
for generalization. The partial interpretation of a predicate P/n is defined as a mapping from
Dn to the set {t, f,u}, with u standing for “unknown”. This mapping partitions Dn in the set
of true tuples, denoted PI

ct (here ct stands for certainly true), the set of false tuples, denoted
PI

c f (c f stands for certainly false), and the set of unknown tuples, denoted PI
u . Note that two

of these sets fully determine the partial interpretation of P.
Whereas the two-valued interpretation of a term is a single domain element, this is no

longer the case for a partial interpretation. The partial interpretation of a function f/n is as
a mapping from Dn+1 to {t, f,u}. As for predicates, we can distinguish true tuples f I

ct , false
tuples f I

c f , and unknown tuples f I
u . While a functional dependency holds in the set f I

ct , this is
not the case for the latter two sets. However, (d,d) ∈ f I

ct iff (d,d′) ∈ f I
c f for all d′ ∈ D\{d}.

If I is a partial structure, U a set of domain atoms, and v a truth value, we use I [U : v] to
refer to the partial structure that equals I except that for each domain atom P(d) ∈U , it holds
that P(d)I [U :v] = PI [U :v] = v.

The partial structure I that corresponds to a two-valued v I is such that, for predicate
symbols P/n, PI

ct = PI , PI
c f = Dn \ PI

ct and, PI
u = /0 and, for function symbols f/n, f I

ct =

{(d,d) | f I(d) = d}, f I
c f = Dn+1 \ f I

ct and f I
u = /0.

The truth order <t on truth values is induced by f <t u <t t. The precision order <p on
truth values is induced by u <p t and u <p f. This order is extended to a precision order
over partial structure. A partial structure I is less precise than a partial structure I ′ (notation
I ≤p I ′) if, for all symbols s ∈ Σ, sI

ct ⊆ sI ′
ct and sI

c f ⊆ sI ′
c f . Maximally precise partial structures

are two-valued.
In the remainder of the chapter, partial interpretation or structure is intended when inter-

pretation or structure is used.

1.2.2 Partial Functions
In standard logic, function symbols denote total functions. In practice, partial functions are
unavoidable, e.g., a function that maps persons to their spouse is naturally undefined for
singles as well as for objects that are not a person, and the arithmetic operation division is
undefined when the denominator is zero. So, our logic supports partial functions; however,
defining a semantics for partial functions gives rise to undefined terms (also called non-
denoting); this is a subject of controversy [Frisch and Stuckey 2009, Wittocx 2010].
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The simplest solution is to restrict the syntax of formulas. One could, e.g., only allow terms
of the form f (t) in contexts where it is certain that f (t) is defined. This option is often taken
in mathematics, where terms like, e.g., 1/0 are considered meaningless, but quantifications
of the form ∀x : x 6= 0 ⇒ 1/x 6= 42 are allowed as it is clear that the division 1/x will
be defined for all relevant x. This idea has been implemented for example in the Rodin
toolset for Event-B [Abrial et al. 2010], where for every occurrence of a partial function,
it should be provable that the function will only by applied to values in its domain. However,
this approach is too restrictive for a KBS. For example, in planning problems, the function
Do/1 in a term Do(t) that refers to the action performed at time t is typically a partial
one. It can be pretty hard to come up with the right Condition/1 predicate such that one
can write ∀t : Condition(t)⇒ . . .Do(t) . . .. It is entirely impossible, when the partial function
is a constant for which it is a priori unclear whether it is defined, such as Unicorn. So we
allow terms in contexts where they can be undefined. This brings us to the question what an
ambiguous form such as White(Unicorn) means. Does it mean “if the unicorn exists then
it is white”, i.e., ∀x : Unicorn = x ⇒ White(x) or “the unicorn exists and is white”, i.e.,
∃x : Unicorn = x∧White(x) (which equals (∃x : Unicorn = x)∧White(Unicorn)). For the
user, having to write the longer unambiguous form is rather inconvenient (especially in case
of nested partial functions).

The current approach, which is the result of some years of experimenting, is based on
the relational semantics proposed in [Frisch and Stuckey 2009]. It turns out to be flexible,
intuitive and to allow for elegant modeling. The ambiguous form A( f (t)) is given the second
of the above two meanings, namely ∃x : f (t) = x∧A[x] or equivalently ∃x : f (t) = x∧A[ f (t)].
When the user is in doubt or prefers the other form, he should avoid the ambiguous form and
explicitly write one of the explicit forms.

In a two-valued structure I, the value of a partial function f/n is a mapping f I : S→ D
where S is some subset of Dn. In a partial structure I , f/n is undefined for d if and only if
(d,d) ∈ f I

c f for all d ∈ D. We say that the image f (d) is undefined when f is undefined for d.
The interpretation of a term with a direct subterm that is undefined is also undefined; that of an
atom with a direct subterm that is undefined is false. This corresponds to the above described
semantics.

1.2.3 Arithmetic
Standard FO can easily be extended with arithmetic. Indeed, numbers can be added to
the domain and various (partial) functions can be included in the vocabulary to perform
arithmetic.

So far, the IDP system only supports arithmetic over integers. This is our motivation
to include the integers in every domain of FO(ID,AGG,PF,T) and the arithmetic partial
functions +/2, -/2, -/1, */2 (multiplication), //2 (division) %/2 (modulo) and abs/1 in every
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vocabulary4. To refer to these integers, every vocabulary also includes the constant symbol
n for every integer n. Furthermore, in every structure, the interpretation of these integer
constants is fixed to the corresponding integer in the domain.

1.2.4 Aggregates
Aggregates are an important language construct to boost the expressiveness of first-order
logic. FO(ID,AGG,PF,T) includes the aggregate functions cardinality, sum, product, mini-
mum and maximum. The basic underlying concept is the set expression {(x) | ϕ} or {(x, t) | ϕ}
where x is a tuple of new variables and t is a term t[x,y] with variables in x and in the free vari-
ables y of the expression. Given a two-valued structure I, such a set expression denotes the set
of tuples {(x)I | ϕI = t} or {(x, t)I | (∃z : z = t ∧ϕ)I = t}, where the existential quantification
ranges over the domain of t. The inclusion of ∃z : z = t in the set prescription disambiguates
the set in case of partial functions in ϕ.

Cardinality expressions are written in FO(ID,AGG,PF,T) as #{x : ϕ} and this term denotes
the number of tuples in the set. For the other four, the aggregate expressions take the form
sum{(x, t) : ϕ}, prod{(x, t) : ϕ}, min{(x, t) : ϕ}, and max{(x, t) : ϕ} respectively. These
expressions denote the value of the aggregate function on the multiset obtained by extracting
the last element tI of each tuple. For instance sum{((x1,x2),x2) : P(x1,x2)} sums the values
of the second element of all tuples in P. If there are multiple occurrences of the same “second
element” in tuples of P, then they are counted according to their multiplicity.

All aggregate functions are partial functions; they are undefined for infinite sets. Moreover,
all aggregate functions except # are only defined for sets containing a tuple (. . . ,d) with d an
integer. The aggregates min and max are also undefined for the empty set; in contrast, sum and
prod map the empty set to 0 and 1 respectively.

The aggregates supported by FO(ID,AGG,PF,T) also include the class of formulas ∃∼nx :
ϕ with n a natural number and ∼ one of the comparison operators. While such formulas are
equivalent with #{x : ϕ} ∼ n, they are more concise and a convenient extension of existensial
quantification. They allow one to express “there exists exactly n” (= n), “at most n” (≤ n),
“less than n” (< n), “more than n” (> n), “at least n” (≥ n), and “there does not exist exactly n”
( 6= n) values for x such that ϕ holds. Note that ∃≥1x : ϕ is equivalent with ∃x : ϕ, and ∃=0x : ϕ

with ¬(∃x : ϕ).

1.2.5 Definitions
The logic FO(ID,AGG,PF,T) contains a definition construct to express different kinds of
(possibly inductive) definitions. This construct is one of the most original aspects of FO(ID,
AGG,PF,T) and we explain it in more detail. For additional details we refer to [Denecker and
Ternovska 2008].

4 The current implementation of the IDP language, described in Section 1.4, has only limited support for integer
division.
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Definitions are important building blocks of any scientific theory. However, there is no
general way to express inductive/recursive definitions in FO. Though the notion of defini-
tion is informal, definitions have some extraordinary properties. Certainly those used in for-
mal mathematical text strike us for the precision of their meaning. The formal semantics of
FO(ID,AGG,PF,T) definitions carefully formalizes this meaning. Several types of informal
definitions can be distinguished. Below, the three most common ones are illustrated: Exam-
ple 1.2.1 is a non-recursive one, Example 1.2.2 is a monotone one, while Example 1.2.3 is
by induction over a well-founded order, namely over the subformula order. Definitions over
a well-founded order frequently contain non-monotone rules. For instance the rule defining
I |= ¬α has a non-monotone condition I 6|= α.

Example 1.2.1. Let a,b and c be integers; a is between b and c iff b≤ a and a≤ c.

Example 1.2.2. Let (N,E) be a graph with nodes N and edges E. The transitive closure T of
(N,E) is defined inductively as follows.

• If (a,b) ∈ E, then (a,b) ∈ T ,
• If for some c ∈ N, it holds that (a,c) ∈ T and (c,b) ∈ T , then also (a,b) ∈ T .

Example 1.2.3. Let I be a two-valued structure of a propositional vocabulary. The satisfaction
relation |= is defined by induction over the structure of formulas:

• I |= P if P ∈ I.
• I |= α∧β if I |= α and I |= β.
• I |= α∨β if I |= α or I |= β (or both).
• I |= ¬α if I 6|= α.

In FO(ID,AGG,PF,T), a formal definition ∆ is a set of rules of the form ∀x : P(t)← ϕ or
∀x : f (t) = t ′← ϕ, with the free variables of ϕ and the variables in t and t ′ amongst the x. We
refer to P(t) and f (t) = t ′ as the head of the rule and to ϕ as the body. In the first form, P is the
defined symbol; in the second, f is. The defined symbols of ∆ are all symbols that are defined
by at least one of its rules; all other symbols occurring in ∆ are called parameters or open
symbols of ∆. Intuitively, for each two-valued structure of the parameters, ∆ determines the
interpretation of the defined symbols in a unique way. For instance, the definition of transitive
closure can be formalized as follows{

∀a,b : T (a,b)←E(a,b).
∀a,b : T (a,b)←∃c : T (a,c)∧T (c,b).

}
The different sorts of definitions have different semantic properties. It is commonly as-

sumed that the defined set is the least set that satisfies the rules of the definition, i.e., the least
set such that the head is true whenever the body is true. However, this is only true for mono-
tone definitions. It does not hold for non-monotone definitions as the following example, from
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[Denecker and Vennekens 2014], illustrates.{
Even(0).
∀x : Even(x+1)←¬Even(x).

}
Intuitively, this defines the infinite set {Even(0),Even(2),Even(4) . . .} of even numbers.
However, also the infinite set {Even(0), Even(2), Even(3), Even(5), . . .} satisfies the rules
as for every rule instance with a true body, the head is also true. Both solutions are minimal;
however, none is “least”.

Still, there is an explanation that applies to all kind of definitions [Buchholz et al. 1981]: the
set defined by an inductive definition is the result of a construction process. The construction
starts with the empty set, and proceeds by iteratively applying non-satisfied rules, till the set is
saturated. In the case of monotone definitions, rules can be applied in any order; but in the case
of definitions over a well-founded order, rule application must follow the well-founded order.
This condition is necessary for the non-monotone rules. If they would be applied too early,
later rule applications may invalidate their condition. E.g., in the initial step of the construction
of |=, when the relation is still empty, we could derive I |= ¬ϕ for each ϕ, but the condition
I 6|= ϕ will in many cases later become invalidated. The role of the induction order is exactly to
prevent such an untimely rule application. E.g., to prevent deriving Even(3) before Even(2)
has been derived.

The problem we face in formalizing this idea for the semantics of FO(ID,AGG,PF,T)
definitions, is that the syntax of FO(ID,AGG,PF,T) does not specify an explicit induction
order for non-monotone FO(ID,AGG,PF,T) definitions. Thus, the question is whether one
can somehow “guess” the induction order. Indeed, if we look back at the definition of
Example 1.2.3, we see that the order is implicit in the structure of the rules: formulas in
the head of rules are always larger in the induction order than those in the body. This holds
true in general. It should be possible then to design a mathematical procedure that somehow
is capable to exploit this implicit structure.

In [Denecker and Vennekens 2014], this idea was elaborated. The induction process of
an FO(ID,AGG,PF,T) definition is formalized as a sequence of three-valued structures of
increasing precision. Such a structure records what elements have been derived to be in the
set, what elements have been derived to be out of the set, and which have not been derived
yet. Using the current three-valued structure, one can then establish whether it is safe to apply
a rule or not. All induction sequences can be proven to converge. In case the definition has
the form of a logic program and the underlying structure is a Herbrand interpretation, the
resulting process can be proven to converge to the well-known well-founded model of the
program [Van Gelder et al. 1991]. As such, the semantics of FO(ID,AGG,PF,T) definitions
is a generalization of the well-founded semantics, to arbitrary bodies, arbitrary structures and
with parameters. This (extended) well-founded semantics provides a uniform formalization
for the two most common forms of induction (monotone and over a well-founded order) and
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even for the less common form of iterated induction [Buchholz et al. 1981]. Compared to
other logics of iterated inductive definitions, e.g., the work in [Buchholz et al. 1981], the
contribution is that the order does not have to be expressed; a substantial advantage as this can
be very tedious.

The satisfaction relation of FO is thus extended to handle definitions by means of the
well-founded semantics [Van Gelder 1993], since it formalizes the informal semantics of rule
sets as inductive definitions [Denecker 1998, Denecker and Vennekens 2014, Denecker et al.
2001]. We now formally describe how this is done. First, consider definitions ∆ that define
only predicate symbols. We use the parametrised well-founded semantics. This semantics
has been implicitly present in the literature for a long time, by assigning a meaning to an
intensional database. We follow the formalisation by Denecker and Vennekens [Denecker
and Vennekens 2007]. We say that a two-valued structure I satisfies ∆ (I |= ∆) if I is the
parametrised well-founded model of ∆, that means that I is the well-founded model of ∆

when the open symbols/parameters are interpreted as in I.
Checking the latter is done by computing the well-founded model of ∆. This can be

computed as the limit of a well-founded induction [Denecker and Vennekens 2007], defined
below.

Definition 1.2.4 (Refinement). We call a partial structure I ′ a refinement of partial structure
I if one of the following holds:

• for every defined predicate P and every tuple of domain elements d,

P(d)I ′ = max
≤t
{ϕ[x/d]I | ∀x : P(x)← ϕ is a rule in ∆}.

• I ′= I [U : f], where U is a set of domain atoms unknown in I such that for every P(d)∈U
and every rule ∀x : P(x)← ϕ in ∆, it holds that ϕ[x/d]I

′
= f (such a set U is called an

unfounded set of ∆ in I [Van Gelder et al. 1991]).

A refinement is strict if I ′ 6= I .

The first refinement evaluates all rule bodies of all defined domain atoms and assigns the
largest truth value (e.g., if one rule derives an atom to be true, and the second rule does not
yet derive information about that atom (u), the atom obtains the value t) to each defined atom.
The second refinement identifies an unfounded set: a set of domain atoms such that the bodies
of rules defining them can only become true if at least one of these atoms is true in the first
place (due to cyclic dependencies). Such atoms can never be derived constructively using the
definition, hence they must be false.
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Definition 1.2.5 (Well-founded induction). Let I be a partial structure that interprets only the
open symbols of ∆. A well-founded induction of ∆ in I is a sequence (Ii)i≤n, with n ∈ N, of
partial structures such that the following hold:5

• I0 = I ;
• for each i < n, Ii+1 is a refinement of Ii.

A well-founded induction is terminal if its limit (In) has no strict refinements.

Denecker and Vennekens [Denecker and Vennekens 2007] showed that all terminal well-
founded inductions in I have the same limit, namely the well-founded model of ∆ in context
I .

To extend this satisfaction check to definitions defining functions, one treats a function
f/n as if it is defining an n+1-ary relation. For what concerns the use of partial functions in
the head of a rule, note that ∀y : p(t)← ϕ is equivalent with ∀xy : p(x)← x = t ∧ϕ. Partial
functions in bodies have the same meaning as in formulas.

In FO(ID,AGG,PF,T), a definition is seen in a pure declarative way, as a proposition
stating a special logical relationship between defined predicates and parameter symbols. In
case a theory contains multiple definitions of the same predicate, the theory states multiple
independent such propositions. For instance, a theory that contains{

∀x : Human(x)←Man(x)∨Woman(x).
}{

∀x : Human(x)←Child(x)∨Adult(x).
}

states that Human is the union of men and women and also that human is the union of children
and adults. This implies for example that the union of men and women, and of children and
adults is identical. Note that this declarative view implies that the definition{

p←q.
q← p.

}
has a different meaning than the pair of definitions{

p←q.
}{

q← p.
}

Indeed, in the former, p and q are false in the only well-founded model. In the latter, the
structure in which p and q are true is also a model since we now have two definitions, each
with a parameter.

To reason with definitions, the IDP solver makes also use of their completion. The
completion of ∆ for a symbol P, defined in ∆ by the rules ∀xi : P(t i)← ϕi with i ∈ [1,n],

5 In the infinite case, a similar sequence can be constructed. For details, see [Denecker and Vennekens 2007].
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is the set consisting of the sentence ∀xi : ϕi ⇒ P(t i) for each i ∈ [1,n] and the sentence
∀x : P(x) ⇒

∨
i∈[1,n](x = t i ∧ ϕi); the completion for defined function symbols is defined

similarly. This set is denoted as compP,∆, the union of all these sets for ∆ as comp∆. It
is well known (see, e.g., [Van Gelder et al. 1991]) that if I |= ∆ then I |= comp∆ but not
always vice-versa (e.g., the inductive definition expressing transitive closure is stronger than
its completion).

1.2.6 Types
While first-order logic is untyped, the real world is typed. For example, in a course scheduling
problem, we can distinguish persons, which can be further divided in teachers and students,
courses, rooms, time slots, etc. The advantages are well known in the field of programming
languages. For example, the introduction of the book of Pierce [Pierce 2002] lists, among
others, early detection of errors and a minimum of documentation. These advantages also hold
for a knowledge representation language. Moreover, the use of types leads to more detailed
and more accurate modeling of the different types of objects in the domain of discourse.

FO(ID,AGG,PF,T) is a simple order sorted logic. This means that a vocabulary contains
a set of types on which a subtype relation is defined. The corresponding type hierarchy is a
set of trees. Two types are disjoint if they have no common supertype (a type is a supertype of
itself). Every vocabulary includes the type int of the integers and its subtype nat of the natural
numbers. All predicate and function symbols of a vocabulary are typed by means of a type
signature which associates a type with each argument position, and, in the case of functions,
with the result. All variable occurrences in a theory are typed; all occurrences of a variable
within the same scope have the same type; the type of a variable is given when it is introduced
in a formula or set expression, for example, ∀x[T ] : ϕ[x] and #{x[T ] y[T ′] : ϕ[x,y]}< 3.

In a structure, a domain DT is associated with each type T ; for a subtype T1 of T2, DT1 is a
subset of DT2 ; if T1 and T2 are disjoint types, DT1 and DT2 must be disjoint. Structures are well-
typed. This means that for a predicate symbol P of type (T1, . . . ,Tn), its value PI belongs to the
Cartesian product DT1×·· ·×DTn , and for a function symbol f from (T1, . . . ,Tn) to T , its value
f I is a partial function from DT1 ×·· ·×DTn to DT . For the evaluation of quantified formulas
∀x[T ] : ϕ and ∃x[T ] : ϕ, enumeration of the values of x is over the domain DT . Similarly, in
a set expression {(x [T ], t)|ϕ} of an aggregate, each xi is assigned domain elements from DTi .
Note that a term t of type T1 that occurs in an argument of an atom or function where a term
of type T2 is expected can have the meaning of an undefined term (Section 1.2.2). Indeed,
the atom evaluates to false or the function is undefined when t evaluates to a domain element
outside DT2 . While this cannot happen when T2 is a supertype of T1, it always is the case
when T1 and T2 are disjoint; it depends on the evaluation when there is a third type that is a
supertype of both. When the types are disjoint, it is appropriate to raise a type error as this is
likely a design error in the logical theory.
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• Vocabulary

• Structure

• Theory

• Procedure

• Term

• Namespace

• Query

• Model expansion

• Model checking and
satisfiability checking

• Optimization

• Propagation

• Deduction

• Query inference

• Symmetry detection

Lua code embedded in procedure components for calling
inference methods

Procedural interface: Lua

Inference MethodsLanguage Components

Figure 1.1 High-level representation of a KBS system

1.3 IDP as a Knowledge Base System
We start the section with a description of the architecture and a discussion of design decisions.
We finish with sketching an application where the same knowledge is used for different tasks.

1.3.1 Architecture and Design Decisions
Here, we introduce and motivate the basic design decisions underlying the IDP system, the
decisions that determine the look and feel of IDP as a KBS. IDP is an implementation of a
KBS. Besides the two main parts, the declarative language and the inferences methods, there
is also a part that provides procedural integration. An overview is shown in Figure 1.1.

The first design decision, the one most visible to users, is about the language of the KBS.
The language should be (i) rich enough so that users can express all their needs; (ii) natural
enough so that theories stay close to the original (natural language) problem statement and are
easy to read and to debug; and (iii) modular enough to allow for reuse and future extensions.

It is sometimes argued that the expressiveness of a language should be limited, to avoid that
the language becomes undecidable or intractable. We disagree. First, note that decidability and
tractability depend on the task at hand. While deduction in first order logic is undecidable,
other forms of inference, such as model expansion and querying in the context of a finite
domain, are decidable. Second, while a more expressive language might allow users to express
tasks high in the polynomial hierarchy, that does not imply that simple tasks become harder
to solve. Rather to the contrary, stating the problem in a richer language sometimes allow the
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KBS to exploit structural information that would be hidden in a more lower-level problem
statement.

To address the requirement of a rich and a natural language, we have opted for FO(ID,
AGG,PF,T), FO extended with definitions, aggregates, partial functions and types. We choose
for first-order logic because conjunction, disjunction, universal and existential quantification
have very natural meanings. Extensions are needed because FO has various weaknesses.
Inductive definitions overcome the weakness that FO cannot express inductively defined
concepts. Also non-inductive definitions are very useful. In mathematical texts, it is common
practice to use “if” when defining concepts; this “if” here is (in natural language) a definitional
implication. Aggregates allow users to concisely express information requiring lengthy and
complex FO formulas. Types are omnipresent in the context of natural language, where
quantification typically refers to a specific set of objects (e.g., everyone is mortal). For
integration with a procedural language, IDP currently offers an interface to the languages
Lua and C++.

The third language requirement, modularity, is important both at the language and at the
system level. An advantage of first-order logic as basis of our language is that language
extensions can be added without much interference at the syntactical and semantical level.
For example to introduce aggregates to FO, it suffices to extend the satisfaction of atoms
in which an aggregate occurs in order to obtain a semantics for a language extended with
aggregates.

On the system level, we have also attempted to organize inference engines in a modular
way so that components can be reused in multiple engines. For example, the model expansion
inference is currently implemented as ground-and-solve; the solver can be used separately
from the grounder, and the grounding phase is composed of several smaller, reusable parts
(for example, evaluation of input-*-definitions [Jansen et al. 2013]). Also various approaches
to preprocess simple theories in order to improve their computational efficiently are integrated
in the system. Examples are symmetry detection [Devriendt et al. 2016b] and symmetry
breaking [Devriendt et al. 2012] methods and the use of deduction to detect functional
dependencies [De Cat and Bruynooghe 2013]. Such preprocessing techniques also improve
the user-friendliness and robustness of the KBS as a whole. Indeed, they let a user focus on the
declarative modeling, and partly relieve the user from the task of fine-tuning it on a specific
solver.

1.3.2 Multiple Inference Methods Within One Application Domain
Given any knowledge base, there are often multiple applications that require different kinds
of inference. By way of example, we explore the setting of a university course management
system. Its input is a database with information on students, professors, classrooms, etc. One
task of the system is to help students choose their courses satisfying certain restrictions. Such
an application is usually interactive; students make choices and, in between, the system checks
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the knowledge base. It removes choices when they become invalid, adds required prerequisites
when a course is selected, etc; this is an example of propagation inference. When the student
has made all choices he deems important, the system could use the same knowledge base to
complete the student’s choices to obtain a complete schedule. This type of inference is called
model generation or model expansion: one starts with partial information (certain selections
have been made) and wants to extend it into a complete solution, namely a model of the course
selection theory. Another task where model expansion is needed in the same application area
is to generate a schedule where every course is assigned a location and a starting time such
that 1) no person has to be at two places at the same time, 2) no room is double-booked and 3)
availability of professors is taken into account. However, due to the large number of optional
courses, such a solution (in which no student has overlapping courses) will probably not exist.
In this case, we might want to find a solution in which the number of conflicts is minimal; this
requires minimization inference. Now, one might want to mail students with schedules with
overlaps to give them the opportunity to change their selection. Hence, the solution of the
minimization inference should be queried to find the overlapping courses for every student.
In the course of a semester, professors might have to cancel a lecture due to other urgent
obligations. In that case, we want to find a revision of the current schedule, taking the changed
restrictions into account and minimizing the number of changes with respect to the current
schedule. In case such revisions are done manually, the model checking inference can be used
to ensure that no new conflicts are introduced. If some conflict does occur, an explanation
should be provided. Finally, if a valid schedule is found, a visualization inference can be used
to create an easy-to-understand, visual representation of the schedule, personalized by the
viewer’s status (student, professor, administrative personnel, etc.). Part of such an application,
using the IDP system as a back end, is shown at http://krr.bitbucket.org/courses.

1.4 The IDP Language
The IDP language is the input language of the IDP system. A program in the IDP language
consists of declarative and imperative components. The declarative components are vocab-
ulary, structure, theory and term components. Together, they provide a concrete computer-
readable syntax for FO(ID,AGG,PF,T). The imperative components allow one to perform
computational tasks. They consists of procedures. Each procedure embeds a piece of impera-
tive Lua [Ierusalimschy et al. 1996] code; besides performing standard imperative operations,
procedures can apply inference methods upon FO(ID,AGG,PF,T) theories encoded in the
declarative components.

Vocabulary, structure and theory components are described in Section 1.4.1; procedure
components in Section 1.4.2 and term components in Section 1.4.3. In this section we do not
strive for completeness but focus on what is needed to get started using the IDP system and
on providing answers to the difficulties a starting user might have.
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Before describing the different kinds of components, we first discuss a few general no-
tational conventions. Names are everywhere, they are used for types, predicates, functions
(including constants), and variables as well as for domain elements in structures. To distin-
guish them from numbers, they start with a Latin letter (upper or lower case) and consist of a
sequence of Latin letters and digits; also a few special characters such as “ ” are allowed. For
domain elements, one can deviate from this convention by using a string notation. For details,
we refer to the manual [Bogaerts et al. 2012]. Comments that fit on a single line start with
“ // ”. One can start longer comments with “/∗” and end them with “∗/”.

1.4.1 The Logic
1.4.1.1 Vocabulary

The vocabulary of an FO(ID,AGG,PF,T) theory is represented as a vocabulary component.
We start with an example.

vocabulary c o u r s e s {
type c o u r s e
type p e r s o n
type s t u d e n t i s a p e r s o n
type i n s t r u c t o r i s a p e r s o n
type age i s a nat
t a k e s ( s t u d e n t , c o u r s e )
h a s A g e ( p e r s o n ) : age
V a c a t i o n
Boss : p e r s o n

}

A vocabulary declaration takes the form “vocabulary 〈vocname 〉 { 〈 typed symbol list〉}”. It
specifies the name of the vocabulary, here courses and its symbols. The symbol list comprises
type symbols, and typed predicate and function symbols. Each symbol is to be declared on a
new line. Types are declared using the keyword “type”. A type may be declared as a subtype
using the keyword “ isa” followed by a comma-separated list of supertypes. For example “type
A isa B, C” declares A as a direct subtype of B and C. The declared isa graph needs to be
acyclic. The integers, type int , and its subtype, the natural numbers, type nat, are part of every
vocabulary and need not be declared. The same holds for predicates and functions that are part
of every FO(ID,AGG,PF,T) theory such as comparison predicates and arithmetic functions.
Predicates and functions are introduced by declaring their signature. In the example, takes is
a relation over student and course and hasAge is a function from person to the subtype age, a
subtype of nat. The symbol Vacation is a propositional symbol, and Boss a constant symbol.
Partial functions are introduced by the keyword partial , for example partial hasAge(person)

:age would declare hasAge as a partial function. The IDP system cannot yet cope well with
infinite types, so int and nat can better be avoided in signatures of predicates and functions.
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1.4.1.2 Structure
A structure component describes a partial structure for a vocabulary, in particular the domains
of the user declared types. We start again with an example.

s t r u c t u r e d a t a 1 : c o u r s e s {
c o u r s e = {Logic ; Math}
s t u d e n t = { John ; Bob ; A l i c e }
i n s t r u c t o r = {Marc ; Gerda ; Maur ice}
p e r s o n = { John ; Bob ; A l i c e ; Marc ; Gerda ; Maur ice}
age = {1 . . 65}
t a k e s<c t> = { John , Logic}
t a k e s<cf> = {Bob , Math}
hasAge<c t>= { John−>25; Bob −> 3 0 ; Al i ce−>19}
V a c a t i o n = t r u e
Boss= A l i c e

}

A structure has a name, here data1, and specifies the vocabulary that it (partially) interprets,
here courses. It specifies an assignment of values for symbols using a list of “symbol=value”
equations. Boolean values are denoted true or false , as illustrated by the equation Vacation=

true in the example. Other base values are numbers, strings, or user-defined domain values
like Bob, Math. Set values are denoted as “{ 〈semicolon separated list〉 }”. The list may
consist of individual entities or of tuples of individual entities. Tuples are denoted as comma
separated lists of domain values, potentially between parentheses ”( . . . )”. The shorthand
“n..m” enumerates the integer interval [n,m], as illustrated for age. The same holds for
characters, e.g., student = {a .. d} is a shorthand for student = {a;b;c;d}.

A structure specifies, implicitly or explicitly, the value of each type of the vocabulary6. A
value of a type is a set of domain elements. User-defined domain elements are identified by
symbolic identifiers (e.g., Bob, Math) but these identifiers are not symbols of the vocabulary
and cannot be used in the theory. One can use integers as names for the domain elements of
types, even if this type is not a subtype of int . For example student = {1..50} introduces 50
students. Note, these domain elements are not integers, the domain element 49 of type student
is different from domain element 49 of type integer.

A (total) value for a predicate symbol is a set of domain elements or tuples of it. Alterna-
tively, a structure may specify a partial value for a predicate symbol P, as an assignment of
a list of certainly true, certainly false and unknown tuples to respectively P<ct>, P<cf>, and
P<u>. Only two out of three need to be specified. This is illustrated by takes .

The value or partial value for functions is specified in an analogous way, with the difference
that the user is allowed (but not obliged) to specify a tuple “(a1,. . . ,an,b)” of a function in the

6 Autocompletion may derive missing type domains; e.g., in the absence of a domain for age, autocompletion
will derive {19, 25, 30} for it, in absence of a domain for person, it will derive the union of the student and
instructor domains.
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form “a1 ,.., an −> b”. For partial interpretations of functions, we refer to the discussion on
partial structures in Section 1.2.1. For example, hasAge<cf> = {Marc −> 1; Marc −> 2} can
be used to express that the age of Marc is neither 1 nor 2.

In IDP one cannot currently use a constant as a bound in a domain enumeration, as in
student = {1.. nbstudents}, where nbstudents is a constant symbol whose value is specified
elsewhere. Another limitation that was already mentioned earlier, is that domain values such
as Bob and Alice (identifiers introduced at the right side of “symbol=value” equations), are not
part of the vocabulary and cannot appear in theories.

Recall that there exist also many interpreted symbols (e.g., numerical operators and aggre-
gates) whose values are fixed and are implicit parts of all structures.

1.4.1.3 Theory
A theory component over some vocabulary is declared as “theory 〈theory name〉 : 〈vocname〉 {
. . .}”. For the syntax of formulas and definitions, that of the formal base language is followed
as closely as possible. Formulas and rules are terminated with a “ .” and rules are grouped
in definitions which are put between “define {” and “}”. The following table provides a
translation in a more keyboard friendly notation7.

FO(ID,AGG,PF,T) IDP language FO(ID,AGG,PF,T) IDP language
∧ & ≥ >=

∨ | = =

⇒ => 6= ∼=

⇐ <= ← <−
⇔ <=> #{x : ϕ} #{x1 ... xn : ϕ}
¬ ∼ sum{(x, t) : ϕ} sum{x1 ... xn : ϕ : t}
∀ ! prod{(x, t) : ϕ} prod{x1 ... xn : ϕ : t}
∃ ? max{(x, t) : ϕ} max{x1 ... xn : ϕ : t}
≤ =< min{(x, t) : ϕ} min{x1 ... xn : ϕ : t}

By way of example, we show a vocabulary, a structure and a theory for a small graph
problem that formalizes a connected graph over a set of nodes.

vocabulary V{
type Node
Forb idden(Node , Node )
Edge(Node , Node )
Reachab le (Node )
Root : Node

}

7 The IDE at http://dtai.cs.kuleuven.be/krr/idp-ide/ visualizes the symbols in the syntax of FO(ID,AGG,PF,T).
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s t r u c t u r e S :V{
Node = {A . . D}
F o r b i d d e n = {A,A; A, B ; A, C ; B ,A; B , B ; B , C ; C , C ; C ,D; D,D}
Root = A

}

theory T : V{
/ / i n d u c t i v e d e f i n i t i o n o f Reachab l e
d e f i n e {

R e a c h a b l e ( R o o t ) .
! x [ Node ] : R e a c h a b l e ( x ) <−

? y [ Node ] : R e a c h a b l e ( y ) & Edge(y , x ) .
}

/ / The graph i s f u l l y c o n n e c t e d
! x [ Node ] : R e a c h a b l e ( x ) .

/ / No f o r b i d d e n edges
! x [ Node ] y [ Node ] : Edge(x , y ) => ∼F o r b i d d e n ( x , y ) .

}

The theory contains a definition8 of the Reachable predicate and two formulas that constrain the
solution. All variables are typed with type Node; however, these types can be omitted since
type inference will derive them from the signatures of the symbols in which the variables
occur.9 Observe that this theory defines Reachable as the transitive closure of parameter Edge.
This definition is syntactically similar to a Prolog program, but unlike a Prolog program, it is
here the defined predicate that is known (it is the set of all nodes) and the parameter predicate
that is unknown. It illustrates the declarative understanding of a definition that expresses a
particular logical relationship between the parameters and the defined symbols, and not a way
to compute the defined symbols in terms of the parameters.

1.4.2 Procedure
A procedure component is a chunk of Lua code [Ierusalimschy et al. 1996] encapsulated in
the form of an IDP component (a keyword procedure, a name, a list of parameters and the
chunk of code between “{” and “}”). When the IDP system is run, it calls the procedure main(

). Typically, one will use the IDP system to do some reasoning on an FO(ID,AGG,PF,T)
theory. Here is a simple example:

8 The define keyword is optional; it emphasizes that the brackets { and } are delimiters of a definition.
9 If within the same scope a variable appears in argument positions with different types, the inferred type is their least
supertype if it exists, otherwise a type error is raised, as explained in Section 1.2.6. If no type can be inferred, e.g., as
in !x: x=x, also then an error is raised.
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procedure main( ) {
s t d o p t i o n s . nbmodels = 0
p r i n t m o d e l s ( m o d e l e x p a n d ( T , S ) )

}

The first line, stdoptions .nbmodels = 0, configures the IDP system to compute all models
(with a positive number n, inference is stopped after n models have been found; default value
is 1). The second line calls IDP’s modelexpand procedure with as input arguments the theory
T and the structure S and prints these models (printmodels). The modelexpand procedure calls
upon the solver of the IDP system to search for models of T that expand the input structure
S and returns an array of models. To print a single model, one can select a model and print it,
e.g. print(modelexpand(T,S) [3]) to print the third model. With the theory and structure as given
in the small graph theory of the previous section, the above procedure prints 24 models, the
first one being:

s t r u c t u r e : V {
Node = { ”A” ; ”B” ; ”C” ; ”D” }
Edge = { ”A” , ”D” ; ”B” , ”D” ; ”C” , ”A” ; ”C” , ”B ” ; ”D” , ”A” ; ”D” , ”B ” ; ”D

” , ”C” }
F o r b i d d e n = { ”A” , ”A” ; ”A” , ”B” ; ”A” , ”C” ; ”B” , ”A” ; ”B” , ”B ” ; ”B” , ”C

” ; ”C” , ”C ” ; ”C” , ”D” ; ”D” , ”D” }
Reachab le = { ”A” ; ”B” ; ”C” ; ”D” }
Root = ”A”

}

Note that the model is written in the syntactic format of a structure component. The procedures
modelexpand and printmodels are only two out of many predefined procedures in IDP. Many
procedures provide other forms of inference that can perform computational tasks using
the knowledge represented by an FO(ID,AGG,PF,T) theory. Other procedures serve to
manipulate and create new logical components, such as vocabularies, structures and theories.
We refer to the online IDP Web-IDE (http://dtai.cs.kuleuven.be/krr/idp-ide/) and the IDP
manual (https://dtai.cs.kuleuven.be/krr/files/bib/manuals/idp3-manual.pdf) for examples and
details. The main design philosophy is that all components in an IDP program are first class
citizens. They can be used to perform various reasoning tasks but can also be manipulated by
Lua code to construct different ones. So, it is possible to set up a complete workflow.

This methodology in which fine-grained declarative computation steps are mixed in pro-
cedures is an exciting novel way of integrating declarative and procedural knowledge. This is
illustrated by Bruynooghe et al. [Bruynooghe et al. 2015]. This is an application in stemmatol-
ogy, the study of the family relationships between different manuscripts (hand made copies)
of a text. It sketches a set of procedures that describe the workflow to analyse a number of
texts. For each text, a data set is read and analyzed and transformed into structures and vo-
cabularies. These are then combined with the problem vocabulary and theory and, for each so
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called feature in the input data of a text, it is checked whether a model exists. Finally, for each
data set, a summary report about all its features is reported.

1.4.3 Term
One of the available forms of inference in IDP is to solve minimization problems. This
inference method takes as input a theory, a partial structure, and a cost term, and outputs
one or more models of the theory expanding the partial structure such that the value of the
cost term in these structures is minimal (among the set of all models more precise than the
partial structure). The cost term is to be specified as a separate term component over the same
vocabulary as the theory. To illustrate, we return to our graph problem and introduce a term
to count the number of edges in the solution.

term t : V{
#{x y : Edge(x , y ) }

}

procedure main( ) {
s t d o p t i o n s . nbmodels = 0
models , o p t i m a l , c o s t = minimize(T , S , t )
p r i n t m o d e l s ( m o d e l s )
p r i n t ( o p t i m a l )
p r i n t ( c o s t )

}

The main procedure now calls the minimization inference with the theory T, the structure S and
the optimization term t as input. With T and S as above, the procedure returns three models,
however, it also returns two other values: whether optimality has been proven and the value
of the term in the optimal solution. The assignment models, optimal , cost =... assigns them to
different variables. The first value is an array of models, which can be printed with printmodels

, the other two are simple values; they can be printed with the standard print command. In
this example, optimality is reached with a cost of 3.

1.5 Advanced Features
1.5.1 Constructed Types

In Prolog and ASP, functions and constants have a fixed interpretation, their Herbrand inter-
pretation. Equivalently, we can think of them as logics with built-in unique names and domain
closure axioms (UNA and DCA), i.e., axioms stating that all those values are different and that
the domain consists of nothing more than those values, respectively. In FO(ID,AGG,PF,T),
the axioms are not present and interpretation of functions and constants is open as in standard
FO. Both approaches have their merits, making it useful to integrate the advantages of both.
In ASP, there is work to incorporate open functions [Bartholomew and Lee 2012, Lifschitz
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2012]. In FO(ID,AGG,PF,T), one way to impose UNA and DCA is to explicitly specify a
Herbrand interpretation. This method is illustrated below for the type of days of the week,
using the following declarations in the vocabulary:

Type Day
monday : Day
t u e s d a y : Day
. . .

and in the structure

Day = { ’ ’ monday ’ ’ ; ’ ’ t u e s d a y ’ ’ ; . . . }
monday = ’ ’ monday ’ ’
t u e s d a y = ’ ’ t u e s d a y ’ ’
. . .

There is a way to avoid this cumbersome approach. The following constructed type declaration
in the vocabulary expresses the same information but in a compact way:

type Day c o n s t r u c t e d from {monday , t u e s d a y , wednesday , t h u r s d a y ,
f r i d a y }

This statement declares several things at once: it declares the type Day and seven constants
of this type, it specifies the values for this type and for all its constants in every structure of
the vocabulary. Each constant is interpreted by itself. Here, constants and domain elements
coincide.

Also non-constant constructor symbols are supported this way. For example, having types
row and column, one can introduce the constructed type of positions on a chessboard by
declaring “type position constructed from pos(row,col )”, and use it in the definition of a unary
predicate queen(position ) representing the positions where a queen stands. In theory, this
approach also works for recursive constructors and types such as list of integers: type list

constructed from {nil ; cons[ int , list ]}. However, this creates an infinite type and the current
IDP solver cannot cope with such types.

1.5.2 Structuring Components
All components, vocabularies, theories, structures, terms, and procedures, as we have shown
so far, are part of the implicit global namespace idpglobal . This namespace also contains
all Lua procedures that are available to the user of the system. When working on large
projects, different people may work on different parts, each introducing its own components.
To integrate such different parts, the IDP system provides namespaces. A namespace with
name MySpace is declared by

namespace MySpace {
/ / c o n t e n t o f t h e namespace
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}

A namespace can contain other namespaces, and any sort of IDP component including
vocabularies, theories, structures, terms, and procedures. Each component has a full name that
is determined by the hierarchy of namespaces it belongs to. This allows users to disambiguate
components with the same name but belonging to different namespaces. We refer to the
manual for details.

Another useful structuring method is to compose a vocabulary from existing ones. For
instance, in the following example W is composed of the symbols of V and one function
coloring /1:1 from vocabulary U:10

vocabulary W {
e x t er n vocabulary V
e x t er n U : : c o l o r i n g / 1 : 1
}

Such an extension construct is not available for structures and theories but it could be
simulated for them by making use of certain Lua procedures. For this we refer to the list
of Lua procedures described in the manual.

Worth mentioning is that there is a factlist component to initialize a two valued structure
with Prolog or ASP facts. Also, it is possible to call upon Lua procedures to initialize a
structure.

1.5.3 An Output Vocabulary
In many problems we are interested only in the values of some subset of symbols. In
case multiple solutions are searched, we are interested only in models having different
interpretations of the output symbols. This is achieved by declaring an output vocabulary,
say Vout, and adding it as an extra parameter to the modelexpand call:

procedure main( ) {
p r i n t ( m o d e l e x p a n d ( T , S , Vout ) [ 1 ] )

}

1.5.4 Inference Methods
So far we have mentioned model expansion inference, invoked as modelexpand(T,S) (or
modelexpand(T,S,Vout) if there is an output vocabulary) and optimization inference, invoked
as minimize(T,S, t ) (or minimize(T,S, t ,Vout)). The system supports several other inference
methods. We discuss the most important ones. For a complete list, we refer to the manual.

10 Here, the notation coloring /1:1 means that coloring has arity one (/1) and is a function, i.e., has one output
argument (:1).
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Query inference takes as input a query component that declares a set expression of the
form {x | ϕ} and a two-valued structure I and returns the set {x | ϕ}I . In the IDP language,
this inference is invoked as query(Q,S), where Q is a query and S a structure. Continuing our
graph example,

query Q:V{
{x : ( ? y : Edge(x , y ) ) }

}

procedure main( ) {
models =modelexpand(T , S )
p r i n t ( q u e r y ( Q , models [ 1 ] ) )

}

will print the set of all nodes that participate as the first node of an edge in the first model
computed by the model expansion. Note that query( ...) does not return a structure but a set.

Model checking and satisfiability checking are special cases of model expansion. In
the former, the input structure is two-valued; the result of this inference is true respectively
false if the input structure is a model of the theory. The latter also outputs a Boolean value,
true if the (possibly three-valued) output structure can be expanded to a model. In the IDP
language, both of these inference methods are called using sat(T ,S), where T is a theory and
S a structure.11

Propagation inference takes a theory and a structure and returns a more precise structure
that preserves all solutions. The system supports different versions of propagation with
different costs. The most precise and most expensive version returns the partial structure in
which atoms are unknown iff they do not have the same truth value in all models. This most
expensive propagation is called using optimalpropagate(T ,S). Cheaper, approximate forms of
propagation are called using propagate(T ,S) and groundpropagate(T,S).

Deduction takes as input an FO(ID,AGG,PF,T) theory T and an FO theory TFO and
returns true if T |= TFO, that is if the first theory logically entails the second one. It is
implemented in a sound but incomplete way by translating T into a (weaker) FO theory and
calling the theorem prover SPASS [Weidenbach et al. 2009]. It is used internally in the IDP
system to detect and exploit functional dependencies in predicates [De Cat and Bruynooghe
2013]. It is called using entails(T1 ,T2).

Symmetry detection takes as input a theory T and a partial structure I and returns
symmetries over T and I . A symmetry is a function, say f , mapping structures to structures,
such that, for any two-valued expansion J of I that is a model of T , f (J) is also a model
[Devriendt et al. 2012]. Symmetry detection also returns clauses to break these symmetries
and to eliminate symmetric models. Symmetry detection is not available as a Lua procedure

11 Note that satisfiability checking reduces to model checking in case S is two-valued.
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but can be exploited in the model expansion workflow using the option symmetrybreaking (see
Section 1.6).

∆-model expansion takes as input a definition ∆ and a structure Iin, interpreting all
parameters of ∆, and returns the unique model I that expands Iin. This task is an instance
of model expansion, but is solved in IDP using different technology. The close relationship
between definitions and logic programs under the well-founded semantics is exploited to
translate ∆ and Iin into a tabled Prolog program, after which XSB is used to compute I .
Taking an extra formula ϕ as input, with free variables x, the same approach is used to solve
the query ϕ with respect to ∆ and Iin in a goal-oriented way [Jansen et al. 2013]. There is
no dedicated Lua procedure for calling ∆-model expansion. However, as described in Section
1.6, it is automatically detected that ∆-model expansion can be performed in normal model
expansion calls.

Unsat-core extraction takes as input a theory T and a structure I such that T has
no models expanding I . It returns a (minimal) theory Tout entailed by T (obtained by
instantiating some variables) such that Tout still has no models expanding I . Currently there is
only support for printing the output theory, not for actually obtaining it; this procedures also
prints from which line every sentence in Tout was instantiated. This inference is particularly
useful when debugging logical specification and can be called using printunsatcore(T ,S).

Finally, there is support for the linear time calculus (LTC) defined by Bogaerts et al. [Bo-
gaerts et al. 2014a]. One can build an LTCvocabulary component as a vocabulary extending a
default LTC vocabulary and can use special inference methods to initialize the state and to
perform progression inference, i.e., to infer the successor states step by step [Bogaerts et al.
2014a].

1.6 Under the Hood
In this section we focus on the inner working of some components of the IDP system. First,
we discuss the workflow of the optimization inference and how users can control the various
parts of the optimization engine. Afterwards we discuss techniques (under development) that
help IDP scale to larger, possibly infinite, domains.

Optimization is the task of given a theory T , a structure I , and a term t, all over the same
vocabulary V , finding models of T that expand (are more precise than) I . This inference cap-
tures Herbrand model generation and (bounded) model expansion, both of which were pro-
posed as logic-based methods for constraint solving, respectively in [East and Truszczyński
2006] and [Mitchell and Ternovska 2005]. In its most general form, we define optimization
for typed FO(ID,AGG,PF) as follows. The inference OPT 〈V,T ,I , t,Vout〉 takes as input a
theory T , structure I and term t, all over vocabulary V , and a vocabulary Vout ⊆ V . Both T
and I are well-typed and I interprets all types. The inference returns Vout -structures J such
that at least one model of T expanding both I and J exists and that expansion is minimal with
respect to t. The optimization inference is a generalization of the model expansion inference
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that takes the same arguments without the optimization term t and that returns Vout -structures
J such that at least one model of T expanding both I and J exists. The workflow of these two
inference methods coincides; for optimization, more search is needed to find optimal models.

One approach to optimization, used in IDP, is through ground-and-solve: ground the input
theory and term over the input structure and afterwards apply a search algorithm that, e.g.,
uses branch-and-bound to find optimal models.

In the rest of the section, we present how the optimization algorithm in IDP solves
an OPT 〈V,T ,I , t,Vout〉 task. The workflow consists of an FO(ID,AGG,PF,T) grounding
algorithm, a search algorithm for the full ground fragment of FO(ID,AGG,PF,T) and various
analysis methods and transformations, that result in a smaller grounding and/or improved
search performance.

The workflow of the optimization inference consists of three parts. First, theory and
structure are preprocessed to optimize performance. Secondly, the theory is grounded into
ECNF, the language supported by MINISAT(ID). Last, the solver MINISAT(ID) is called to
perform the actual inference on the ground theory.

1.6.1 Preprocessing
Several preprocessing steps are performed before the grounding phase. We briefly discuss
them below.

1.6.1.1 Checking structure consistency
First, we specify the structure I that is parsed from a structure component, in particular, how
the type autocompletion works. The following definitions formalize this. The value of all other
symbols is clear.

We say that a type t of a vocabulary V is explicitly defined in structure I if I contains an
equation t = S. We define the value of an explicitly defined type in I as stated in its explicit
definition. For a type t that is not explicitly defined, the interpretation of t in I consists of all
elements of its subtypes and domain elements that occur in the interpretation of symbols σ at
an argument position of type t. Formally:

tI =

 ⋃
{s|s is a subtype of t}

sI

⋃ ⋃
{σ∈V |the i’th type of σ is t}

{di | d ∈ σ
I }

 .

A number of constraints are imposed on structures:

• For any subtype s of t, the interpretation of s must be a subset of the interpretation of t:

∀x : s(x)⇒ t(x)
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• If f is a partial or total function that is totally defined, there is at most one image for each
value of the input:

∀x,y,z : f (x) = y∧ f (x) = z⇒ y = z

• If f is a totally defined total function, the structure must contain an image for each input
argument:

∀x : ∃y : f (x) = y.

• A partially defined predicate cannot be both certainly true and certainly false for the same
tuple:

∀x : ¬P〈ct〉(x)∨¬P〈c f 〉(x)

• For any partially defined function f ,

there is at most one certainly true image for every input:

∀x,y,z : f 〈ct〉(x,y)∧ f 〈ct〉(x,z)⇒ y = z

if f is a total function, at least one output is possible (not certainly false) for each
input:

∀x : ∃y : ¬ f 〈c f 〉(x,y)

When any of these constraints are violated in the autocompleted structure I , an appropriate
error message is given.

1.6.1.2 Exploiting input∗-definitions
[Jansen et al. 2013].

Assume that after preprocessing, we obtained a theory T and a structure I1 = I . The next
step is to eliminate some definitions of T and extend I1. The definitions that can be eliminated
are the so called input∗-definitions of T [Jansen et al. 2013].

We define inductively that a definition ∆ of T is an input∗-definition of T in structure I if
all parameters of ∆ have a 2-valued interpretation in I or are defined in input∗-definitions of
T in I .

All input∗-definitions of T can be evaluated in advance. Essentially this is done by iterated
∆-model expansion steps: at each iteration an input∗-definition ∆ is selected that has all
its parameters interpreted in the current structure; we compute12 its model in I1 and add
the interpretation of the defined symbols to I1. The advantage of this is that as explained
below, top-down grounding techniques, as used in IDP, tend to be rather inefficient in case

12 This is done by translating it to a logic program and using XSB.
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of complex (inductive) definitions [Wittocx 2010]. By evaluating these definitions, we avoid
grounding them and we make the input structure more precise.

Notice that this may result in inconsistency if the same predicate is defined in multiple
input∗-definitions that do not agree on its value. Otherwise, the result is a theory T2 and a
refined structure I2.

To exploit the above procedure for a maximal effect, it is extended with a preprocessing
step to split each definition ∆ of T in subdefinitions ∆1, . . . ,∆n. The advantage is that some of
these components may turn out to be input∗-definitions whereas ∆ is not. In this case we can
evaluate part of ∆.

The split of a definition is computed from its dependency relation. Formally, the depen-
dency relation ≤ of a definition ∆ is the least transitive relation containing all pairs P ≤ Q
such that defined symbol P occurs in a rule defining Q. We say that P ∼ Q if P ≤ Q ≤ P.
This is an equivalence relation. The split of ∆ is the partition ∆1, . . . ,∆n of ∆ such that each ∆i

defines an equivalence class of ∼. The idea is that each ∆i defines a group of predicates that
depend on each other.

1.6.1.3 Delaying output∗-definitions
[Bogaerts et al. 2014b, Jansen et al. 2013] Consider a total definition ∆ ∈ T2 such that the
defined symbols of ∆ occur only in ∆ and are not interpreted in I2. Any structure that satisfies
T2 \ {∆} and does not interpret symbols defined in ∆, can be extended to a model of T2 by
evaluating ∆. Consequently, there is no need to consider such a ∆ during search; we prefer to
delay evaluation of ∆ as long as possible, to a postprocessing step.

Such a ∆ is one example of an output∗-definition [Bogaerts et al. 2014b, Jansen et al.
2013]. In general, we define inductively that a definition ∆ of T is an output∗-definition of
T in structure I if all defined symbols of ∆ only occur in ∆ and in the bodies of rules of
output∗-definitions.

These output∗-definitions do not have to be considered during search and can be evaluated
afterwards in a post-processing step. Theory T3 is the theory obtained from T2 by removing
all output∗-definitions; this phase does not modify the structure, hence I3 = I2.

1.6.1.4 Reducing quantification depth using functional dependencies
[De Cat and Bruynooghe 2013]. The size of the grounding is in general exponential in the
nesting depth of quantifiers (as it involves the Cartesian product of the involved domain
sizes). One way to reduce the quantification depth, is to detect that symbols can be split into a
number of symbols with a smaller arity. Assume, for example, that a predicate timeOf(session

, time) specifies at which time a certain session takes place in a scheduling application. If
one could detect that the second argument functionally depends on the first argument (the
first uniquely determines the value of the second), then it could be replaced by a new
function timeFunc(session ) : time instead. With appropriate transformations, a subformula ?t
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: timeOf(s1, t ) & timeOf(s2, t ) can then be reduced to timeFunc(s1)=timeFunc(s2), eliminating
the quantification over t . Detection of functional dependencies is done using the deduction
inference: we check whether an FO formula that expresses the dependency is entailed by the
original theory. For timeOf, the functional dependency holds if the theory entails the sentence
∀s : ∃=1t : timeOf (s, t).

This preprocessing phase takes as input the theory T3 and structure I3 and returns T4 and
I4, in which entailed functional dependencies have been made explicit and quantifications
have been dropped where possible.

However, as the user expects models in the original vocabulary, additional output∗-
definitions are added to T4, that define the original symbol in terms of the newly introduced
ones. In our example, this would be the definition

d e f i n e {
! s t : t imeOf ( s , t ) <− t = t i m e F u n c ( s ) .

}

1.6.1.5 Exploiting symmetries
[Devriendt et al. 2012, 2016b]. It is well-known that if a problem exhibits symmetries, they
can cause a search algorithm to solve the same (sub)problem over and over again. For example
the “pigeonhole” problem “do n pigeons fit in n− 1 holes?” is known to be hard for SAT-
solvers. Symmetries can be detected and broken on the propositional level [Aloul et al. 2006,
Devriendt et al. 2016b], but for large problems, even the task of detecting symmetries becomes
infeasible. Detecting symmetries on the first-order theory [Devriendt et al. 2016a] is often an
easier problem, as much more structure of the problem is explicitly available. For example for
an FO specification of the pigeonhole problem, it is almost trivial to detect that all pigeons
are interchangeable. The symmetry detection inference in IDP detects a simple, frequently
occurring form of symmetries: locally interchangeable domain elements (see [Devriendt et al.
2016a]). Two domain elements are considered interchangeable if they are of the same type
and occur only symmetrically in interpreted predicates. Detected symmetries are handled by
adding sentences to T4 that statically break those symmetries, resulting in the theory T5.

1.6.2 Ground-And-Solve
1.6.2.1 Ground

[De Cat et al. 2013]. The grounding algorithm visits the resulting theory (T5) in a depth-
first, top-down fashion, basically replacing all variables by all their matching instantiations,
according to the interpretation of their types in a partial structure I5. For example, a formula
∀x[t] : ψ(x) is replaced by

∧
d∈tI5 ψ(d).

However, such an instantiation might be unnecessary large. Indeed, if the value of a term
or formula is known in the current structure I5 for a given instantiation of its free variables, it
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should not have been grounded in the first place. The solution is to reuse query inference. For
example, consider a formula ∀x[T ] : ϕ and an instantiation d for the free variables y of this
formula. In that case, x need only be instantiated with tuples d

′
for which ϕ[y/d,x/d

′
] is not

certainly true in I5. Finding such tuples can be done using the query inference on a derived
structure over a vocabulary in which <ct> and <cf> tables have an explicit representation.
For all instantiations of x not in the result of that query, we are certain that the subformula
is true anyway. In fact, an incomplete (cheaper) query inference can be applied, as any over-
approximation will result in additional grounding, still maintaining correctness. The result is
a ground FO(ID,AGG,PF,T) theory. Several optimizations for this step exist, as discussed in
[Jansen et al. 2014]; below we discuss some of them.

1.6.2.2 Simplification
To ensure models are generated that expand the input structure, not only the ground theory,
but also the structure I5 is passed to the search algorithm. Since we use a top-down grounding
algorithm, we can optimize over this: whenever a domain atom or term is generated by
instantiating variables, instead of using the atom or term itself, its interpretation is filled in
in the grounding. For example, if a formula ∀x[t] : P(x)∨Q(x) is grounded in a structure with
interpretations

T={1 ; 2 ; 3}
P<c t> = {1}
Q<cf> = {3}

a simplified grounding is

(t∨Q(1))∧ (P(2)∨Q(2))∧ (P(3)∨ f).

This sentence can be simplified even more, by propagating derived truth values upwards,
resulting in

t∧ (P(2)∨Q(2))∧P(3)

and finally

(P(2)∨Q(2))∧P(3).

These simplification techniques can have as effect that large parts of the theory do not need
to be grounded. For example, consider a sentence ∀x[t] : P(x)∨ϕ(x), where ϕ might be a large
formula. For all instantiations d of x for which P(d) holds, the formula P(d)∨ϕ(d) simplifies
to t. Hence ϕ(d) does not need to be grounded for such d.

1.6.2.3 Approximation and lifted unit propagation
[Wittocx et al. 2010, 2013].
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The above grounding algorithm exploits information in the input structure I using the
query inference. Essentially, it grounds only the instances ϕ[d] of formulas that are unknown
in I . As a consequence, more precise input structures I yield smaller groundings and in-
creased search performance. This observation gave rise to the algorithms presented in [Wit-
tocx et al. 2010], where instead of using structure I5 directly, we first compute a more precise
structure I6 that approximates all models of T5 that expand I5. Ideally, we would like to com-
pute the most precise structure that is less precise than all models of T5 that expand I5. Of
course, finding this ideal structure is a task that is even harder than the original problem.

Instead of searching for this ideal structure, IDP’s approach is to execute a lifted (approxi-
mative) version of the unit propagation that would occur after grounding. The result is stored
as a symbolic representation of a structure. Namely, with each symbol P, we associate two
symbolic set expressions Sct and Sc f with intended meaning that in structure I6, Pct , respec-
tively Pc f , is interpreted as SI5

ct , respectively SI5
c f . Consider, for example, the following theory

∀x : P(x)⇒ Q(x).

∀x : ¬Q(x)⇒ R(x).

Symbolic unit propagation then results in, e.g., a symbolic representation of I6 that interprets
Qct as {x | Pct(x)∨ Rc f (x)} (the latter interpreted in I5!), Rct as {x | Qc f (x)}. During the
grounding phase, all queries for variable instantiations and the interpretation of atoms and
terms are evaluated relative to this symbolic interpretation, resulting in fewer instantiations
and more precise interpretations. E.g., if P is interpreted in I5, and Q and R are completely
unknown in I5, then the second sentence will only be instantiated for x’s such that that P(x) is
not true in I5.

A symbolic representation of complete lifted unit presentation often consists of complex
formulas, which are infeasible to query. However, any approximation of those formulas
is sufficient, as long as the resulting structure is at least as precise as I5. Consequently,
the formulas are simplified to balance the estimated cost of querying against the expected
reduction in number of answers.

1.6.2.4 Search
Optimization in IDP relies on the search algorithm MINISAT(ID) [De Cat et al. 2013]
for ground FO(ID,AGG,PF,T) theories. It takes the ground theory as input together with
structure I5. The algorithm combines techniques from SAT, Constraint Programming (CP)
and Answer Set Programming (ASP) through a DPLL(T) architecture [Ganzinger et al.
2004]. At the core lies the SAT-solver MINISAT [Eén and Sörensson 2003], a complete,
Boolean search algorithm for propositional clauses. This core is complemented by a range
of “propagator” modules that take care of propagation for all other types of constraints in
the theory, such as aggregates, definitions and atoms containing functions. Each module is
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responsible for explaining its propagations in terms of the current assignment. For a definition
∆, for example, the module checks whether the current assignment satisfies ∆’s completion,
whether the current assignment contains unfounded sets, and when a complete assignment is
found, whether the structure is the well-founded model of ∆. Optimization is taken care of by
a module that ensures the search space is visited in a branch-and-bound fashion. Whenever a
model M is found, with value v the interpretation of c in M, a constraint c < v is added to the
ground theory (which raises a conflict, leading to backtracking and additional search).

On the importance of CP integration [De Cat et al. 2013, 2014] In contrast to previous ver-
sions, the current version of MINISAT(ID) supports ground FO(ID,AGG,PF,T) with func-
tion symbols. Function symbols are handled using techniques from constraint programming
[Feydy and Stuckey 2009]. To illustrate the importance of having uninterpreted function sym-
bols, consider the following birthday riddle.

Example 1.6.1. “To determine my age, it suffices to know that my age in 2013 is halfway
between two consecutive primes, that my age’s prime factors do not sum to a prime number,
and that I was born in a prime year.”. In the IDP language, it can be modeled as:

vocabulary V {
type Nb i s a nat
Age : Nb / / u n i n t e r p r e t e d c o n s t a n t : my age
Prime(Nb ) / / p r e d i c a t e c o n t a i n i n g a l l p r ime numbers
Y e a r O f B i r t h : Nb / / u n i n t e r p r e t e d c o n s t a n t : my y e a r o f b i r t h

}
theory T : V {

/ / D e f i n i t i o n o f pr ime numbers
d e f i n e {

! x [ Nb ] : P r ime(x ) <−
x>1 &
! y [ Nb ] : 1 < y < x => (x % y ∼= 0) .

}

/ / R e l a t i o n between age ( i n 2013) and y e a r o f b i r t h
Age = 2013 − Y e a r O f B i r t h .

/ / My age i n 2013 i s ha l fway between two c o n s e c u t i v e p r im es
? x1 x2 :

/ / x1 and x2 a r e pr ime
Pr ime(x1 ) & Pr ime(x2 ) &
/ / t h e y a r e c o n s e c u t i v e
∼( ? y : P r ime(y ) & x1 < y < x2 ) & x1 < x2 &
/ / my age i s ha l fway between them
Age = (x2 + x1 ) / 2 .
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/ / I was born i n a pr ime y e a r
P r i m e ( Y e a r O f B i r t h ) .

/ / my age ’ s pr ime f a c t o r s do n o t sum t o a pr ime number
∼Prime(sum{x : P r ime(x ) & 1 < x =< Age & Age % x = 0 : x } ) .

}

s t r u c t u r e S : V {
Nb = {0 . . 2 0 1 3}

}

IDP is unable to ground this theory without using uninterpreted function symbols (this is
controlled through the option cpsupport, discussed below) due to memory exhaustion. With
uninterpreted constants, IDP takes half a second to find a solution. In fact, IDP proves that
48 different solutions exist; however only one is an age below 100, namely Age = 26.

1.6.3 Post-Processing
As a final, post-processing step, structures returned by the search step are translated back
to structures over V . Next, they are merged with I , output∗-definitions are evaluated over
them and finally, they are projected to Vout , resulting in structures Iout that are solutions to the
original OPT 〈V,T ,I , t,Vout〉 problem.

An output∗-definition is only evaluated if evaluating it will have an effect on the eventual
Vout -structure. If symmetry-breaking was applied, additional solutions can be generated by
applying the symmetries to the solutions found.

1.6.4 Controlling the optimization workflow
Various components of the optimization workflow can be controlled using options. We provide
a brief overview.

stdoptions.assumeconsistentinput default:false
If this option is true, the systems assumes that the input provided by the user is consistent
and the consistency checks are skipped. Use at your own risk.

stdoptions.xsb default:true
If this option is true, input∗-definitions are evaluated using the XSB Prolog system. Oth-
erwise, they are evaluated using standard ground-and-solve techniques. We recommend
to use XSB for efficiency reasons.

stdoptions.postprocessdefs default:true
This option controls whether output∗-definitions are delayed until after search. In
general, we recommend to turn this option on. However, since detection of output∗-
definitions is implemented through a bootstrapping approach, enabling might cause a
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small delay of up to a second. Hence, if your goal is to solve a large number of very
small problems, we recommend to turn this off.

stdoptions.splitdefs default:true
This option controls whether definitions are split into minimal strata. As with the
previous, we recommend to turn it on in most cases, unless when solving very small
problems.

stdoptions.symmetrybreaking default:“none”
This option controls whether symmetries are broken and if they are broken, using which
method. Currently, IDP only provides support for breaking symmetries statically, hence
this option can be set either to ‘‘none’’ or to ‘‘ static ’’ . Future versions of IDP might also
offer the choice ‘‘dynamic’’. Whether symmetry breaking is beneficial strongly depends
on the problem at hand.

stdoptions.reducedgrounding default:true
This option controls whether the grounding is simplified using information from the
structure. We recommend to enable this option in most use cases.

stdoptions.groundwithbounds default:true
This option controls whether the grounding size is reduced using the approximation
techniques described above. We recommend enabling this option in most use cases.

stdoptions.liftedunitpropagation default:true
This option controls whether the symbolic representation of the input structure (I6) is
evaluated in advance, resulting in a concrete representation of the input structure. We
recommend enabling this option in most use cases.

stdoptions.cpsupport default:true
This option controls whether function symbols are allowed in the grounding. If turned
off, the ground theory will be entirely propositional, if turned on, functions symbols
can appear in the ground theory; they are then handled by constraint programming
techniques. We recommend enabling this option in most use cases, except for hard
combinatorial problems with a very small grounding.

stdoptions.cpgroundatoms default:false
This option controls whether function symbols are allowed to occur nested in the
grounding. This is an advanced feature, with as advantage a smaller grounding, but as
disadvantage possible loss of propagation. Whether enabling this option is beneficial
strongly depends on the problem at hand.

stdoptions.functiondetection default:false
This option controls whether predicate symbols are automatically replaced by function
symbols. Whether enabling this option is beneficial depends strongly on the problem at
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hand. For theories crafted by experts (and manually optimised), this options is probably
not beneficial. The more naive the theory is, the more potential benefit this option has. If
this option is enabled, we recommend to also enable the cpsupport option.

stdoptions.nbmodels default:1
This option specifies the number of models that need to be returned by the optimization
(or model expansion) inference.

stdoptions.verbosity default:0 (for all suboptions)
Suboptions of this option control the verbosity of various components in the workflow.
This is used mainly for debugging purposes, e.g., to know which part of the solver is
causing certain delays.

1.6.5 Scalability and Infinity
The reader might have noticed that structures and groundings can be very large or even infinite
(for example, when a predicate or a quantified variable is typed over int). Model expansion
(and thus, optimization) over infinite structures takes infinite time in general. In IDP, several
techniques are applied to address this issue; they often work well in practice.

A first such technique has been explained in Subsection 1.6.2. By intelligent reasoning
over the entire theory, we can sometimes derive better variable bounds. Suppose for example
that a theory contains formulas ∀x[int] : P(x)⇒ Q(x) and ∀y[int] : P(y)⇒ R(y), where Q
only ranges over a finite type, say T , but P and R range over int. The first of these sentences
guarantees that P will only hold for values such that Q holds, hence P can only hold for values
in the finite type T . Thus we know that the second sentence should only be instantiated for y’s
in T , i.e., by deriving an improved bound for y, the grounding of the second sentence suddenly
becomes finite. The first sentence can be handled similarly. We only ground this sentence for
y’s in T and maintain a symbolic interpretation expressing that P is certainly false outside of
T .

Second, the usage of a top-down, depth-first grounding algorithm has the advantage that
interpretations can be evaluated lazily: (i) instantiations of quantifications can be generated
one at a time, and (ii) the interpretation of atoms and terms needs only to be retrieved for
atoms and terms that effectively occur in the grounding. The same advantage applies for
symbols that are interpreted by (complex) procedures: the procedures are only executed for
relevant occurrences of that symbol.

Third, the search algorithm maintains bounds on the interpretation of function terms, taking
constraints in the grounding into account. Consider a constant c : int, which in itself would
result in an infinite search space. However, combined with, e.g., a constraint 0≤ c≤ 10 in the
grounding, the solver reduces c : int to c : [0,10], a finite search space.

A fourth technique currently under development to increase scalability is Lazy Grounding
[De Cat et al. 2015]. Lazy Grounding is based on the observation that the entire grounding
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often is not necessary to find solutions to a model expansion or optimisation problem. Instead,
the technique interleaves grounding with search as follows. Initially, it (roughly) splits the
input theory into two parts: one part is grounded and the underlying solver performs its
standard search algorithm on it. The other part of the theory is delayed: the system makes
assumptions about it that guarantee that models found by the solver can be extended to
models of the entire theory. Whenever these assumptions become violated, i.e., when they
are inconsistent with the solver’s current assignment, the splitting of the theory is revised.
Consider for example ∀x[int] : P(x)⇒ ϕ with ϕ a possibly large formula; it has an infinite
grounding. A smart lazy grounder could delay the grounding of that sentence with the
assumption that P is false for all integers. During search, only when an atom P(d) becomes
true, is the sentence grounded for x = d and only that ground sentence is added to the
search, the remainder still delayed on the assumption that P is false. Whenever the search
algorithm finds a structure that satisfies the grounding and does not violate any assumptions,
that structure can be straightforwardly extended to a model of the whole theory.

1.7 In Practice
Both IDP and its search algorithm MINISAT(ID) are open-source systems, freely available
from dtai.cs.kuleuven.be/krr/software. Next to accepting input in the IDP language, both
systems provide C++ interfaces. The search algorithm MINISAT(ID) supports input in
Clausal Normal Form (CNF), Quantified Boolean Form (QBF, CNF’s higher-order relative)
[Egly et al. 2000], ground ASP (in the LParse-Smodels intermediate format [Syrjänen 1998])
and FlatZinc [Nethercote et al. 2007].

IDP can be be tried online in our web-IDE at https://dtai.cs.kuleuven.be/krr/idp-ide/. Sev-
eral modeling examples are available in the web-IDE as well as at https://dtai.cs.kuleuven.
be/software/idp/examples. The web-IDE also provides support for the visualisations of struc-
tures, as explained, e.g., in https://dtai.cs.kuleuven.be/krr/idp-ide/?chapter=intro/9-IDPD3.

The main usage of IDP3 is currently its model expansion inference, which as discussed
earlier, is closely related to generating answer sets of logic programs and to solving constraint
satisfaction problems. As such, it shares applications with those domains, general examples
of which are scheduling, planning, verification and configuration problems. More concretely,
some applications have been modelled in [Bruynooghe et al. 2015], demonstrating its ap-
plicability as both an approach to replace procedural programming in some cases and as an
approach to rapid prototyping due to the short development time. It has been used to analyze
security issues in several contexts, with an emphasis on formal approaches that allow intuitive
modeling of the involved knowledge [Decroix et al. 2013, Heyman 2013]. The model expan-
sion engine, and various other types of inference, have been used for interactive configuration
[Van Hertum et al. 2016, 2017].

The performance of IDP has been demonstrated for example in the ASP competition series,
in 2009 [Denecker et al. 2009] (IDP2), 2011 [Calimeri et al. 2014] (IDP2) and 2013 [Alviano
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et al. 2013] (IDP3) and in [Bruynooghe et al. 2015], where it is compared to various existing
approaches to specific problems. The performance of the search algorithm MINISAT(ID) has
been demonstrated in [Amadini et al. 2013a,b], where it turned out to be the single-best solver
in their MiniZinc portfolio, and in the latest Minizinc challenges [MinizincChallenge2012].
In [Bruynooghe et al. 2015], it is demonstrated that a KR system like IDP can be practically
used as a front-end for lower-level solvers (e.g., SAT-solvers), instead of manually encoding
problems in SAT or using custom scripting. Experimental results showed that IDP is able to
relieve this burden with minimal performance loss and greatly reduced development effort.

IDP3 is used as a didactic tool in various logic-oriented courses at various universities.

1.8 Related Work
Within several domains, research is targeting expressive specification languages and (to a
lesser extent) multiple inference techniques within one language. While we do not aim at an
extensive survey of related languages (e.g., [Marriott et al. 2008] has a section with such a
survey), we do compare with a couple of them.

The B language [Abrial 1996], a successor of Z, is a formal specification language de-
veloped specifically for the generation of procedural code. It is based on first-order logic
and set theory, and supports quantification over sets. Event-B is a variant for the specifica-
tion of event-based applications. The language Zinc, developed by Marriott et al. [Marriott
et al. 2008], is a successor of OPL and intended as a specification language for constraint
programming applications (mainly CSP and COP solving). It is based on first-order logic,
type theory and constraint programming languages. Within ASP, a number of related lan-
guages, originating from logic programs, are being developed, such as Gringo [Gebser et al.
2009] and DLV [Leone et al. 2006]. They support definitional knowledge and default rea-
soning. Implementations exist for inference techniques like stable model generation (related
to model expansion), visualisation, optimization and debugging. A comparison of ASP and
FO(ID) can be found in [Denecker et al. 2012]. The language of the Alloy [Jackson 2002]
system is basically first-order logic extended with relational algebra operators, but with an
object-oriented syntax, making it more natural to express knowledge from application do-
mains centered around agents and their roles, e.g., security analysis.

The following are alternative approaches to model expansion (or to closely related infer-
ence tasks). The solver-independent CP language Zinc [Marriott et al. 2008] is grounded to
the language MiniZinc [Nethercote et al. 2007], supported by a range of search algorithms us-
ing various paradigms, as can be seen on www.minizinc.org/challenge2012/results2012.html.
In the context of constraint ASP (CASP), several systems ground to ASP extended with
constraint atoms, such as Clingcon [Ostrowski and Schaub 2012] and EZ(CSP) [Balduccini
2011]. For search, Clingcon combines the ASP solver Clasp [Gebser et al. 2012b] with the
CSP solver Gecode [Gecode Team 2013], while EZ(CSP) combines an off-the-shelf ASP
solver with an off-the-shelf CLP-Prolog system. The prototype CASP solver Inca [Drescher
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and Walsh 2012] searches for answer sets of a ground CASP program by applying Lazy
Clause Generation (LCG) for arithmetic and all-different constraints. As opposed to extend-
ing the search algorithm, a different approach is to transform a CASP program to a pure ASP
program [Drescher and Walsh 2011], afterwards applying any off-the-shelf ASP solver. CASP
languages generally only allow a restricted set of expressions to occur in constraint atoms and
impose conditions on where constraint atoms can occur. For example, none of the languages
allows general atoms P(c) with P being an uninterpreted predicate symbol. One exception is
AC (C ), a language aimed at integrating ASP and Constraint Logic Programming [Mellarkod
et al. 2008]. As shown in [Lierler 2012], the language captures the languages of both Clingcon
and EZ(CSP); however, only subsets of the language are implemented [Gelfond et al. 2008].

1.9 Conclusion
Kowalski’s 1974 paper [Kowalski 1974] laid the foundations for the field of Logic Program-
ming, by giving the Horn-clause subset of predicate logic a procedural interpretation to use it
for programming. More recently, progress in automated reasoning in fields such as SAT and
CP made the exploration possible of more pure forms of declarative programming, gradually
moving from declarative programming to declarative modeling, in which the user only has to
care about the problem specification.

In this chapter, we took this development one step further and presented the knowledge
base system IDP, in which knowledge is separated from computation. The knowledge rep-
resentation language is both natural and extensible, cleanly integrating first-order logic with
definitions, aggregates, etc. It provides a range of inference engines and functionalities for
tasks encountered often in practice.

IDP is an extensible framework for declarative modeling, in which both language exten-
sions and inference engines can be added with relative ease. It focuses on moving the burden
of performance on modeling from the user to the system, demonstrated by the workflow of
optimization inference, which is achieved by combining insights from fields such as SAT,
constraint programming, logic programming and answer set programming.
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